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Abstract

Chaos associated with bifurcation makes a new science, but the origin and essence
of chaos are not yet clear. Based on the well-known logistic map, chaos used to be
regarded as intrinsic randomicity of determinate dynamics systems. However, urbani-
zation dynamics indicates new explanation about it. Using mathematical derivation,
numerical computation, and empirical analysis, we can explore chaotic dynamics of
urbanization. The key is the formula of urbanization level. The urbanization curve can
be described with the logistic function, which can be transformed into one-dimensional
map and thus produce bifurcation and chaos. On the other hand, the logistic model of
urbanization curve can be derived from the rural–urban population interaction model,
which can be discretized to a two-dimensional map. An interesting finding is that the
two-dimensional rural–urban coupling map can create the same bifurcation and chaos
patterns as those from the one-dimensional logistic map. This suggests that the urban
bifurcation and chaos come from spatial interaction between rural and urban populations
rather than pure intrinsic randomicity of determinate models. This discovery provides a
new way of looking at origin and essence of bifurcation and chaos in physical and social
sciences.

Keywords: period-doubling bifurcation, chaos, complexity, scaling, interaction,
urbanization

1. Introduction

Chaos is one of the important subjects of science in the twentieth century. However, the
problems of origin and essence of chaos were not really solved in last century, and they are
passed on to the new century. The simplest model for understanding chaos is the well-known

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71035

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 1

Reinterpreting the Origin of Bifurcation and Chaos by
Urbanization Dynamics

Yanguang Chen

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71035

Provisional chapter

Reinterpreting the Origin of Bifurcation and Chaos
by Urbanization Dynamics

Yanguang Chen

Additional information is available at the end of the chapter

Abstract

Chaos associated with bifurcation makes a new science, but the origin and essence
of chaos are not yet clear. Based on the well-known logistic map, chaos used to be
regarded as intrinsic randomicity of determinate dynamics systems. However, urbani-
zation dynamics indicates new explanation about it. Using mathematical derivation,
numerical computation, and empirical analysis, we can explore chaotic dynamics of
urbanization. The key is the formula of urbanization level. The urbanization curve can
be described with the logistic function, which can be transformed into one-dimensional
map and thus produce bifurcation and chaos. On the other hand, the logistic model of
urbanization curve can be derived from the rural–urban population interaction model,
which can be discretized to a two-dimensional map. An interesting finding is that the
two-dimensional rural–urban coupling map can create the same bifurcation and chaos
patterns as those from the one-dimensional logistic map. This suggests that the urban
bifurcation and chaos come from spatial interaction between rural and urban populations
rather than pure intrinsic randomicity of determinate models. This discovery provides a
new way of looking at origin and essence of bifurcation and chaos in physical and social
sciences.

Keywords: period-doubling bifurcation, chaos, complexity, scaling, interaction,
urbanization

1. Introduction

Chaos is one of the important subjects of science in the twentieth century. However, the
problems of origin and essence of chaos were not really solved in last century, and they are
passed on to the new century. The simplest model for understanding chaos is the well-known

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71035

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



logistic map. The complicated behavior of the logistic growth brought to light by May [1] led
to a profound insight into complex dynamics. Thus, chaos is always regarded as intrinsic
randomicity of determinate dynamical systems. A pending question is how and why determi-
nate systems have complicated behavior. Many studies are devoted to this problem, and many
interesting conjectures are proposed. But the essence of bifurcation and chaos is still puzzling.
In fact, a revealing research can be made from the viewpoint of urban dynamics. Urbanization
provides a new way of understanding the origin and essence of chaos. Urban systems are
complex systems, and the process of urbanization and urban evolution are nonlinear process
associated with chaos and fractals [2–7]. Using mathematical derivation, numerical computa-
tion, and empirical analysis, we can reveal new knowledge about bifurcation and chaos based
on the nonlinear dynamics of urban evolution.

New progress may be made by a simple formula of urbanization ratio. A basic and important
measurement of urbanization is the proportion of urban population to the total population,
which is termed “level of urbanization” in urban geography. The curve of urbanization level is
termed “urbanization curve” and can be described with sigmoid functions such as logistic
function, which can be discretized to a one-dimensional map. Using the formula of urbaniza-
tion level, we can derive the logistic equation from the rural–urban population interaction
model, which can be discretized to a two-dimensional map. Thus the one-dimensional logistic
map can be associated with the two-dimensional rural–urban interaction map. As will be
shown below, the two-dimensional rural–urban map can create the bifurcation and chaos that
are identical in patterns to those produced by the one-dimensional logistic map. This suggests
that the origin of bifurcation and chaos is two-population coupling and interaction rather than
intrinsic randomicity of determinate models [8].

The study of chaos associated with bifurcation can help us understand natural and social
systems deeply. This paper is a development based on a series of previous studies [8–14]. The
rest of this work is organized as follows. In Section 2, the bifurcation and chaos from rural–
urban population interaction dynamics are illustrated by using a two-dimensional map, and a
phase portrait analysis of rural–urban interaction is performed. In Section 3, an empirical
analysis is made by means of American census data to verify the rural–urban interaction
model. The case study lays the foundation of experiments for the urbanization model. In
Section 4, several related questions are discussed. First, the two-population interaction model
is generalized to explain the ecological phenomena including logistic growth and oscillations
of population. Second, the scaling laws of period-doubling cascade are compared with those of
hierarchy of cities. Third, the nonlinear dynamics of urbanization curve is further generalized
to the fractal dimension curve of urban growth. Fourth, the nonlinear replacement dynamics is
outlined. Finally, the discussion is concluded with a brief summary.

2. Mathematical models

2.1. The two-population interaction model

A rural–urban population interaction model can lead to a new understanding of chaos. The
theoretical model has been verified by the observational and statistical data from the real
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world [4]. Based on several assumptions, the spatial interaction model for rural–urban migra-
tion can be expressed as below [8]:

dr tð Þ
dt

¼ ar tð Þ � b
r tð Þu tð Þ

r tð Þ þ u tð Þ
du tð Þ
dt

¼ c
r tð Þu tð Þ

r tð Þ þ u tð Þ

8>>><
>>>:

, (1)

in which r(t) and u(t) denote rural and urban populations at given time t, respectively, and a, b,
and c represent three parameters of population transition. Please note that r(t) > 0, u(t) > 0. This
model indicates that the rural–urban population interaction results in urbanization. According
to Eq. (1), the growth rate of rural population depends on rural population size and the two-
population interaction, while that of urban population growth rate only depends on the rural–
urban interaction. If the study region is a close system, then the parameters b and c are equal to
one another, i.e., b = c, or else they are not. Eq. (1) has a firm basis of statistical analysis. The
model can be verified with the population data set of American census since 1790.

It can be proved that the system of differential equations on rural–urban interaction is equivalent
to the logistic equation of urbanization curve. For simplicity, Eq. (1) can be rewritten as follows:

dr tð Þ
dt

¼ r tð Þ a� b∗u tð Þ½ �

du tð Þ
dt

¼ c∗r tð Þu tð Þ

8>><
>>:

, (2)

in which.

b∗ tð Þ ¼ b
r tð Þ þ u tð Þ , c∗ tð Þ ¼ c

r tð Þ þ u tð Þ : (3)

In urban geography, the level of urbanization is formulated as

L tð Þ ¼ u tð Þ
P tð Þ ¼

u tð Þ
r tð Þ þ u tð Þ ¼ 1� r tð Þ

r tð Þ þ u tð Þ , (4)

where L(t) denotes urbanization level at time t (obviously 0 ≤ L(t) ≤ 1). The level of urbanization
is an important measurement in urban study. Just because of the definition of urbanization
level, the one-dimension map of logistic growth can be associated with the two-dimension
map of rural–urban interaction. In fact, taking the derivative of Eq. (4) yields

dL tð Þ
dt

¼ du tð Þ=dt
r tð Þ þ u tð Þ �

u tð Þ
r tð Þ þ u tð Þ½ �2

dr tð Þ
dt

þ du tð Þ
dt

� �
: (5)

Substituting Eq. (2) into Eq. (5) gives

dL tð Þ
dt

¼ c∗r tð Þu tð Þ
r tð Þ þ u tð Þ �

u tð Þ
r tð Þ þ u tð Þ½ �2 ar tð Þ � b∗ � c∗ð Þr tð Þu tð Þ½ �: (6)
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For simplicity, we can postulate that the region is a close system, which has no population
exchanged with outside. In this case, we have b = c and b* = c*, and thus we have

dL tð Þ
dt

¼ c∗r tð Þu tð Þ
r tð Þ þ u tð Þ �

ar tð Þu tð Þ
r tð Þ þ u tð Þ½ �2 ¼ c∗r tð ÞL tð Þ 1� a

c∗u tð ÞL tð Þ
� �

: (7)

As indicated above, c* = c/[r(t) + u(t)], Eq. (7) can be reduced to

dL tð Þ
dt

¼ c
r tð Þ

r tð Þ þ u tð Þ L tð Þ 1� a
cu tð Þ= r tð Þ þ u tð Þ½ � L tð Þ

� �
: (8)

Based on the level of urbanization defined by Eq. (4), the logistic equation is readily derived as
below:

dL tð Þ
dt

¼ c 1� a
c

� �
L tð Þ 1� u tð Þ

r tð Þ þ u tð Þ
� �

¼ c� að ÞL tð Þ 1� L tð Þ½ �: (9)

In literature, Eq. (9) is always expressed as follows:

dL tð Þ
dt

¼ kL tð Þ 1� L tð Þ½ �, (10)

in which k is just the original rate of growth in the logistic model (k = b-a = c-a). Discretizing
Eq. (10) yields a one-dimension logistic mapping. By means of the one-dimension mapping,
May [1] created the period-doubling bifurcation and chaotic patterns, which are familiar to
many scientists of chaos and complexity.

2.2. Bifurcation and chaos based on two-dimensional map

Discretizing the rural–urban population interaction model yields a two-dimensional map,
which can be employed to make numerical analysis. Since Eq. (10) can be derived from Eq. (1)
through mathematical transformations, we expect that the complicated dynamical behaviors
such as period-doubling oscillation and chaos can also be created by the two-dimension maps
based on Eq. (1). Discretizing Eq. (1) yields a pair of iterative functions such as

r tþ 1ð Þ ¼ 1þ αð Þr tð Þ � β
r tð Þu tð Þ

r tð Þ þ u tð Þ

u tþ 1ð Þ ¼ u tð Þ þ γ
r tð Þu tð Þ

r tð Þ þ u tð Þ

8>>><
>>>:

, (11)

in which the parameters α, β, and γ for discrete form correspond to a, b, and c for continuous
form in Eq. (1), respectively. The parameters in Eq. (11) will vary slightly after continuous-
discrete transformation. If the region is a close system, we will have β = γ. In light of the US
urbanization model as well as the American census in 1790, the parameter α can be set as

Chaos Theory4

α = 0.025, and the initial values can be set as r(0) = 3.727559 and u(0) = 0.201655. Thus the
behavior of Eq. (11) will depend on the values of the parameters β and γ. The numerical
computation can be fulfilled through a common computer with mathematical software. It is
expected that the numerical behavior of the two-dimension maps on the base of Eq. (11) is
really identical in form to the complicated performance of the one-dimension map based on
the logistic function in ecology (Figure 1).

The numerical iterations can be fulfilled by mathematical software such as MATLAB or even
by the well-known spreadsheet, Microsoft Excel. In order to correspond the two-dimension
rural–urban maps to the one-dimension logistic map, a limiting condition is set as β = γ.
The iterative values represent the rural and urban population in different times. Using Eq. (4),

Figure 1. The urbanization curves resulting from the two-dimension mapping based on the rural–urban interaction
model (Note: the parameter value of the model is a = 0.025, and initial values of the iteration are r(0) = 3.727559 and u
(0) = 0.201655. The unit of the initial values is million. See Ref. [8]).
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we can convert the rural and urban population into the level of urbanization and obtain the
urbanization curve. The main results can be summarized as follows. (1) Logistic decay and
growth. When β = γ < 0.025, the urbanization curve takes on a monotonous decreasing graph,
and the final value is Lmin = 0; when 0.025 < β = γ < 1.032, it displays a monotonous increasing
graph, and the final value is Lmax = 1. The latter represents the common logistic curve that is
familiar to geographers. (2) Steady-state behavior. When 1.033 < β = γ < 2.025, the urbanization
curve exhibits an alternating change and finally changes to unit (Figure 1a). (3) Period-
doubling bifurcation. When 2.025 < β = γ < 2.475, the urbanization curve shows an oscillation
of period 2 (Figure 1b); when 2.475 < β = γ < 2.571, the curve displays an oscillation of period 4
(Figure 1c); and with β and γ increasing, an oscillation of period 8 (b = c > 2.571) and period 16
(b = c > 2.591) and period 2n (the natural number n > 4) emerges step by step. Finally, when
β = γ > 2.61, the urbanization curve evolves into chaotic state, in which no 2n cycle can be
detected. The upper limit of the parameters β and γ is about 3.033. That is, if β = γ ≥ 3.033, the
numerical iteration will break down [8].

A comparison can be drawn between the results from the one-dimension logistic mapping and
those from the two-dimension rural–urban interaction mappings. An interesting finding comes
from the comparative analysis. In fact, Eq. (10) can be discretized as a one-dimension mapping
such as L(t + 1) = (1 + K)L(t)-KL(t)2, where the parameter K corresponds to the parameter k in
Eq. (10). Then we have K~β-α. Using this one-dimension logistic mapping, we can obtain various
urbanization curves. The common characters of the bifurcation and chaos from the one-
dimension mapping and the two-dimension mappings are the same with one another. What is
more, the critical values of the model parameters for the period-doubling bifurcation and chaos
are approximate to those of the logistic model. In particular, according to the process of numer-
ical experiments, if the parameterα value becomes small enough, the critical value of the periodic
oscillation to chaos based on the rural–urban interaction is close to the value based on the logistic
growth. This discovery suggests a new way of looking at the origin and essence of bifurcation
and chaos. It is the interaction rather than the intrinsic randomicity that causes the complicated
behaviors of a simple dynamic system.

Another finding is the inherent relation between order and chaos. There are narrow ranges of
periodic solutions in the chaotic “band.” If β = γ > 2.857, the urbanization curve takes on an
oscillation of period 3. Further, when β = γ > 2.871, an oscillation of period 5 or period 6 or
period 7 appears. All in all, a non-2n cycle can be found in the chaotic state. Finally, when
β = γ > 2.88, the urbanization curve will get into a random state once again. However, the
periodic oscillations in the chaotic belt are different from the cycles in the process of period-
doubling bifurcation. The period in bifurcation is of 2n cycle, while the oscillation in chaos is of
non-2n cycle. The varied non-2n cycles such as the period 5 and the period 6 indicate chaos
rather than bifurcation. The typical non-2n cycle is period 3 [15]. In short, the limited chaos can
be regarded as the sum of randomicity and the cycles of non-doubling period [8]. One the
other hand, some slight disorder can be found during the 2n cycles, which can be revealed by
spectral analysis. This suggests that chaos and order cannot be absolutely separated, and they
contain one another or are interwoven with each other.

Chaos Theory6

One of properties of chaos is the sensitive dependence on the initial conditions. The property
can be testified by the urbanization curve based on the rural–urban interaction mapping.
Suppose that the parameter values are given as α = 0.025 and β = γ = 2.785. Let us change the
initial rural population from r(0) = 3.727559 to r(0) = 3.727558 (million) but keep the initial
urban population u(0) = 0.201655 unchanged. In this case, the numerical iterative curve shows
a new urbanization trace. At the beginning, the new urbanization curve and the old urban
curve almost coincide with one another; but gradually, the new curve deviates from the old
one (Figure 2). The difference between the two urbanization curves becomes bigger and bigger
over time. It should be noted that only one person is reduced from the initial rural population.
A minimal error results in wide divergence. This just reflects the sensitive dependence on the
initial conditions of the rural–urban interaction.

Urban chaos is an interesting issue, but it seems to appear in the mathematical world instead of
the physical world. The model parameter values such as α = 0.025 are determined by the US
census data. In terms of Eq. (4), the level of urbanization ranges from 0 to 1, i.e., 0 ≤ L(t) ≤ 1. It
will make no sense if L(t) < 0 or L(t) > 1. On the other hand, according to the observational data
from the real world, the parameter β and γ values should come between 0.025 and 1.032.
Otherwise, the urbanization level L(t) will be less than 0 or greater than 1. Unfortunately, if
the parameter β and γ values are confined into 0.025 and 1.032, no bifurcation and chaos will
emerge in the rural–urban mapping process. If and only if β = γ > 1.032, we can create the
period-doubling bifurcation and chaos, and thus the level of urbanization will exceed 1. This is
absurd in both mathematics and urban geography. It is one of the necessary conditions of
urban complicated behaviors. This suggests that the urban bifurcation and chaos emerge in the
possible world, and we cannot find them in the real world for the time being.

Figure 2. Two urbanization curves display the sensitive dependence on the initial conditions of rural–urban interaction
(Note: the square solid dots represents the typical values of the old urbanization curve, in which the initial rural
population is r(0) = 3.727559; the rhombic hollow dots denotes the typical values of the new urbanization curve, in which
the initial rural population is r(0) = 3.727558).
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2.3. Phase portraits of two-dimension map

Using the two-dimensional map, we can draw the phase portraits of the logistic process based
on the one-dimensional map. The spatiotemporal feature of urbanization dynamics can be
revealed with the phase portraits. Taking rural population r(t) as x-axis and urban population
u(t) as y-axis, we can create a set of scatterplots for the period-doubling bifurcation and chaotic
behavior of urbanization. The plots show the rural–urban relationships defined in the phase
space based on Eq. (11). Consequently, the period-doubling process can be characterized by 2n

radials (n = 1, 2, 3, …), and the cross point of the rural and urban radials is just the origin of
coordinate (Figure 3a–c). If the level of urbanization evolves from bifurcation into chaos, all the
scattered points are randomly confined in the triangular region defined by the intersectant
rural and urban radials (Figure 3d). For the chaotic state, the radials indicative of non-2n cycle

Figure 3. The phase portrait of the period-doubling bifurcation and chaos of rural–urban population interaction (Note: the
times of iterations are 2500. The four subplots in Figure 3 correspond to the four subplots in Figure 1, respectively. See [8]).

Chaos Theory8

may appear in the phase portraits. The feature of phase portrait is independent of the times of
iteration. The spatial distribution of scattered points never converge, and this suggests that
there is no strange attractor in the phase space of urban chaos. This inference differs from the
traditional understanding on the chaotic dynamics based on logistic growth.

Despite the fact that no chaotic attractor can be found, these scatter points follow certain
mathematical rule. The distance from a data point (r(t), u(t)) to the origin (0, 0), i.e., the cross
point of radicals which act as boundaries of these points, can be formulated as

d ¼ r tð Þ2 þ u tð Þ2
h i1=2

, (12)

which quantifies the spatial relationships of the scattered points. Thus the distribution of the
scattered points in the phase space meets a logarithmic relation as below:

N dð Þ ¼ A ln d� B, (13)

in which N(d) refers to the cumulative number of the scattered points within the distance d,
and A and B are two parameters representing the slope and intercept, respectively. Now, let us
examine mathematical structure of the phase space from the perspective of statistics. The
distance is taken as d = 4n, where n is a natural number, and the number of iterations is set as
5000. As an example, if the parameter value β = γ = 2.785 as given, the estimated values of the
parameters in Eq. (13) are A = 369.87 and B = 509.33, respectively, the regression degree of
freedom is df = 8, and the coefficient of determination is about R2 = 0.9999 (Figure 4). Changing
the parameter values in Eq. (11) results in different values of A and B, but the logarithmic
relation will not change with it.

Figure 4. The logarithmic distribution of the scattered points in the phase space of urban chaos (Note: the plot corre-
sponds to the fourth subplot in Figure 3, and the parameter values are β = γ = 2.785).
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The derivative of the logarithmic function is a hyperbolic function. This implies that the
density of the points in the phase portrait of chaotic state decays gradually from the origin,
and the density change can be characterized by a hyperbolic curve. Despite the fact that both a
city and a system of cities bear fractal structure [3–5, 16, 17], the phase portrait of the urban
chaos does not display self-similar pattern. The reciprocal function of the logarithmic function
is just an exponential function. This suggests that the basic property of the logarithmic distri-
bution can be understood through the exponential distribution. Compared with the Gaussian
distribution, the exponential distribution implies complexity [18], while compared with the
exponential distribution, the power-law distribution implies complexity [19, 20]. This suggests
that complexity seems to be a relative concept. Exponential distribution falls between the
simplicity based on normal distribution and the complexity based on power-law distribution.
According to the dual relation between the exponential function and the logarithmic function,
the logarithmic distribution of the scattered points in the phase space of urban chaos indicates
a process appearing between simplicity and complexity.

3. Empirical analysis

3.1. Data and method

The above-shown numerical iterations are based on the two-dimensional map from the rural–
urban population interaction model. It is necessary to make empirical analysis using the
dynamic equations of urbanization and observational data. There are two central variables in
the study of spatial dynamics of city development: population and wealth [21]. According to
the aim of this study, only the first variable, population, is chosen to test the models on urban
chaos. In fact, population represents the first dynamics of urban evolution [22]. Generally
speaking, the population measure falls roughly into four categories: rural population r(t),
urban population u(t), total population P(t), and the level of urbanization indicative of the
ratio of urban population to the total population, L(t). The measure relations are as follows—P
(t) = r(t) + u(t) and L(t) = u(t)/P(t)—which can be found in Eq. (4).

The American rural and urban data comes from the US ten-yearly population censuses.
There are 23 times of census data from 1790 to 2010 available on the website of American
population census. However, only the data from 1790 to 1960 are adopted in this work
(Table 1). In fact, the definition of cities in America was changed in 1950, and the new
definition came into use since 1970. The US urban population caliber after 1970 may be
inconsistent with that before 1960. The observational data can be fitted to the discretization
expressions of the United Nations model [23] and the generalized Lotka-Volterra model
[24–26], respectively. The parameters of models are estimated by the multiple linear regres-
sion based on the ordinary least squares (OLS) method. The advantage of the OLS method is
to keep the key parameters, slopes, come into a proper range. Two sets of tests can be made
after parameter estimation: one is statistical tests and, the other, logical tests. The latter is
usually neglected in literature. First, failing to pass the statistical tests indicates that it has
some problems like incomplete or redundant variables, inaccurate parameter values, and so
on. If so, the modeling process should be reconsidered. Second, failing to pass the logical

Chaos Theory10

tests indicates some structural problem. In this instance, the model cannot explain the situa-
tion at present and cannot predict the tread of development in the future. Statistical tests bear
conventional procedure. However, the logical tests must be made by means of mathematical
reasoning and numerical analyses.

3.2. Parameter estimation and model selection

The above-stated model on rural–urban interaction is an equation system coming from empir-
ical analysis. One of the general forms of urbanization dynamics models can be expressed as

dr tð Þ
dt

¼ ar tð Þ þ φu tð Þ � b
r tð Þu tð Þ

r tð Þ þ u tð Þ
du tð Þ
dt

¼ ωr tð Þ þ ψu tð Þ þ c
r tð Þu tð Þ

r tð Þ þ u tð Þ

8>><
>>:

: (14)

This is in fact the urbanization model of United Nations [23], in which a, b, c, ϕ, ψ, and ω are
parameters. In order to make statistical analysis based on the observational data, we must

Time
(year) [t]

Interval (years)
[Δt]

Rural population
[r(t)]

Urban population
[u(t)]

r tð Þu tð Þ
r tð Þ þ u tð Þ

Rural rate of
growth [Δr(t)]

Urban rate of
growth [Δu(t)]

1790 10 3,727,559 201,655 191305.67 125855.30 12071.60

1800 10 4,986,112 322,371 302794.21 172831.00 20308.80

1810 10 6,714,422 525,459 487322.03 223077.60 16779.60

1820 9.8125 8,945,198 693,255 643391.97 284153.58 44228.48

1830 10 11,733,455 1,127,247 1028443.23 348484.30 71780.80

1840 10 15,218,298 1,845,055 1645549.78 439908.20 172944.10

1850 10 19,617,380 3,574,496 3023569.39 560942.30 264202.20

1860 10 25,226,803 6,216,518 4987478.10 342920.70 368584.30

1870 10 28,656,010 9,902,361 7359287.97 740346.40 422737.40

1880 10 36,059,474 14,129,735 10151800.00 481402.70 797653.00

1890 10 40,873,501 22,106,265 14346837.12 512383.50 810856.70

1900 9.7917 45,997,336 30,214,832 18235956.49 425582.20 1210127.90

1910 9.7917 50,164,495 42,064,001 22879255.97 163788.26 1244862.74

1920 10.25 51,768,255 54,253,282 26490822.68 221831.22 1454372.39

1930 10 54,042,025 69,160,599 30336844.29 341720.60 554473.90

1940 10 57,459,231 74,705,338 32478532.68 373837.30 1542285.60

1950 10 61,197,604 90,128,194 36448706.03 506197.80 2293539.90

1960 10 66,259,582 113,063,593 41776788.81

Source: http://www.census.gov/population

Table 1. The US rural and urban population and the relevant processed data (1790–1960).

Reinterpreting the Origin of Bifurcation and Chaos by Urbanization Dynamics
http://dx.doi.org/10.5772/intechopen.71035

11



The derivative of the logarithmic function is a hyperbolic function. This implies that the
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8>><
>>:

: (14)

This is in fact the urbanization model of United Nations [23], in which a, b, c, ϕ, ψ, and ω are
parameters. In order to make statistical analysis based on the observational data, we must

Time
(year) [t]

Interval (years)
[Δt]

Rural population
[r(t)]

Urban population
[u(t)]

r tð Þu tð Þ
r tð Þ þ u tð Þ

Rural rate of
growth [Δr(t)]

Urban rate of
growth [Δu(t)]

1790 10 3,727,559 201,655 191305.67 125855.30 12071.60

1800 10 4,986,112 322,371 302794.21 172831.00 20308.80

1810 10 6,714,422 525,459 487322.03 223077.60 16779.60

1820 9.8125 8,945,198 693,255 643391.97 284153.58 44228.48

1830 10 11,733,455 1,127,247 1028443.23 348484.30 71780.80

1840 10 15,218,298 1,845,055 1645549.78 439908.20 172944.10

1850 10 19,617,380 3,574,496 3023569.39 560942.30 264202.20

1860 10 25,226,803 6,216,518 4987478.10 342920.70 368584.30

1870 10 28,656,010 9,902,361 7359287.97 740346.40 422737.40

1880 10 36,059,474 14,129,735 10151800.00 481402.70 797653.00

1890 10 40,873,501 22,106,265 14346837.12 512383.50 810856.70

1900 9.7917 45,997,336 30,214,832 18235956.49 425582.20 1210127.90

1910 9.7917 50,164,495 42,064,001 22879255.97 163788.26 1244862.74

1920 10.25 51,768,255 54,253,282 26490822.68 221831.22 1454372.39

1930 10 54,042,025 69,160,599 30336844.29 341720.60 554473.90

1940 10 57,459,231 74,705,338 32478532.68 373837.30 1542285.60

1950 10 61,197,604 90,128,194 36448706.03 506197.80 2293539.90

1960 10 66,259,582 113,063,593 41776788.81

Source: http://www.census.gov/population

Table 1. The US rural and urban population and the relevant processed data (1790–1960).

Reinterpreting the Origin of Bifurcation and Chaos by Urbanization Dynamics
http://dx.doi.org/10.5772/intechopen.71035

11



discretize differential equations, Eq. (14), into difference expressions. As a result, the analytical
process based on continuous dynamics is converted into the process based on discrete dynam-
ics. Given that Δx/Δt ~dx/dt, in which the time difference is Δt = 10. The independent variables
include r(t), u(t), and r(t)*u(t)/[r(t) + u(t)], and the dependent variables are Δr(t)/Δt and Δu(t)/Δt,
respectively. The model can be fitted to the American census data of rural and urban popula-
tion. A multivariate stepwise regression analysis based on the least squares calculation gives
the following model:

Δr tð Þ
Δt

¼ 0:02584r tð Þ � 0:03615
r tð Þu tð Þ

r tð Þ þ u tð Þ
Δu tð Þ
Δt

¼ 0:05044
r tð Þu tð Þ

r tð Þ þ u tð Þ

8>><
>>:

: (15)

which corresponds to Eq. (1). Clearly, the model parameters φ = ψ = ω = 0. Eq. (15) is a pair of
difference equations. Given a significance level of α = 0.01, the important statistics such as F
value, T value, variance inflation factor (VIF) value, and Durbin-Watson (DW) value can pass
the common tests. In theory, as indicated above, we have b = c. However, in the empirical
modeling, the two parameters are not equal to one another. The main reasons are as below.
First, America is not a truly closed system. It has mass foreign migration. Second, the natural
growth of urban population relies heavily on the rural–urban interaction. The latter reason
seems to be more important than the former one. All things considered, as a special case of the
United Nations model, Eq. (15) can describe the rural and urban population migration and
transition of America in the recent 200 years in a better way.

To examine the relationship between the one-dimensional map and the two-dimensional
mapping of urbanization, we can investigate the US urbanization curve. According to Eq. (9),
the level of urbanization should follow the logistic curve. It is easy to calculate the urbaniza-
tion ratio using the data in Table 1. For convenience, we set time dummy t = year-1790. A least
squares computation involving the percentage urban data gives the following results:

L tð Þ ¼ 1
1þ 20:4157e�0:0224t : (16)

The goodness of fit is about R2 = 0.9839. According to Eq. (16), the intrinsic growth rate is about
k = 0.02238. On the other hand, according to Eq. (15), the intrinsic growth rate has two
estimated values: the first is k1 = b-a ≈ 0.03615–0.02584 = 0.01031, and the second is k2 = d-
a ≈ 0.05044–0.02584 = 0.02460. The number comes between 0.01031 and 0.02460. This suggests
that the parameter value based on Eq. (15) is consistent with that based on Eq. (16). The subtle
difference between different estimated results can be attributed to three reasons, that is, non-
closed geographical region, imprecise observational data, and the computation error stem-
ming from the conversion from continuous function to discrete equation.

As a reference, the American rural and urban data can be fitted to the predator–prey interac-
tion model. The independent variables include r(t), u(t), and r(t)*u(t), while the dependent
variables are Δu(t)/Δt and Δr(t)/Δt, respectively. The multivariate stepwise regression based on
the OLS method yields an unacceptable result [27]. If the statistical standard for modeling is
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lowered, then the US urbanization can be described by the Keyfitz-Rogers model [28, 29].
Unfortunately, this model bears two vital deficiencies and is not acceptable for urbanization
analysis [27]. All in all, both the linear model proposed by Keyfitz and Rogers and the
nonlinear model presented by Lotka and Volterra are inferior to the special case of the United
Nations model, Eq. (1).

3.3. Numerical experiment

As a complement analysis, the US census data of urban, rural, and total population as well as
the level of urbanization can be generated using the rural–urban interaction model. A compar-
ison between the simulation value and observed data shows the effect of urban modeling. The
numerical simulation results are based on Eq. (15) and are displayed in Figures 5 and 6,
respectively. Clearly, the change of the urban and total population takes on of the sigmoid
curves, while the rural population takes on a unimodal curve (Figure 5). What is more, the
urbanization level is also an S-shaped curve, which can be described with the logistic function
(Figure 6). The changing trends of four types of curves based on the numerical simulation are
supported by the observation data from the real world [4, 27]. In the model, the capacity
parameter of the urbanization level is evaluated as 100%, and this does not accord with reality
of urban evolution. Nevertheless, the basic characters of the rural and urban development can
be brought to light by Eq. (15). Anyway, there is no logical contradiction in the results from the
numerical computation based on the rural–urban mapping.

So far, we have finished the building work of the model of urbanization based on the population
observation in the real world. To sum up, the calculation results lend empirical support to the
theoretical models and relations. First, the rural–urban population interaction model is testified,
at least for a number of developed countries. The American model of rural–urban population
interaction can be expressed by Eq. (1). This is the experimental foundation of theoretical analysis

Figure 5. The predicted curves of the US rural, urban, and total population based on the two-dimension mapping of
rural–urban interaction (Notes: the numerical iteration is fulfilled by Eq. (15), and the population unit is 10,000 persons.
See [27]).
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Unfortunately, this model bears two vital deficiencies and is not acceptable for urbanization
analysis [27]. All in all, both the linear model proposed by Keyfitz and Rogers and the
nonlinear model presented by Lotka and Volterra are inferior to the special case of the United
Nations model, Eq. (1).

3.3. Numerical experiment

As a complement analysis, the US census data of urban, rural, and total population as well as
the level of urbanization can be generated using the rural–urban interaction model. A compar-
ison between the simulation value and observed data shows the effect of urban modeling. The
numerical simulation results are based on Eq. (15) and are displayed in Figures 5 and 6,
respectively. Clearly, the change of the urban and total population takes on of the sigmoid
curves, while the rural population takes on a unimodal curve (Figure 5). What is more, the
urbanization level is also an S-shaped curve, which can be described with the logistic function
(Figure 6). The changing trends of four types of curves based on the numerical simulation are
supported by the observation data from the real world [4, 27]. In the model, the capacity
parameter of the urbanization level is evaluated as 100%, and this does not accord with reality
of urban evolution. Nevertheless, the basic characters of the rural and urban development can
be brought to light by Eq. (15). Anyway, there is no logical contradiction in the results from the
numerical computation based on the rural–urban mapping.

So far, we have finished the building work of the model of urbanization based on the population
observation in the real world. To sum up, the calculation results lend empirical support to the
theoretical models and relations. First, the rural–urban population interaction model is testified,
at least for a number of developed countries. The American model of rural–urban population
interaction can be expressed by Eq. (1). This is the experimental foundation of theoretical analysis
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of discrete urbanization dynamics. Second, the relationship between the one-dimensional map of
logistic growth and the two-dimensional map of rural–urban interaction is verified. By using the
system of rural–urban interaction models, we can produce the logistic curve of urbanization.
What is more, the curves of urban population, rural population, and total population are empir-
ically acceptable. In the following section, I will discuss the related questions about bifurcation,
chaos, complexity, and scaling law from the theoretical angle of view.

4. Questions and discussion

4.1. Generalization and supposition

According to the theoretical derivation, numerical experiments, and empirical analysis, an
inference can be reached that chaos originates from nonlinear interaction between two cou-
pling elements. The reasons are as below. First, a one-dimensional logistic map is actually
based on a two-dimensional interaction map between two populations. Second, both the one-
dimensional map and the two-dimensional map processes can create the same patterns of
bifurcation and chaos. Further, the theoretical findings can be generalized to the other scientific
fields. Where dynamical behaviors are concerned, urban systems bear analogy with ecosys-
tems [21]. Both the logistic equation and the predator–prey interaction model coming from
ecology and can be applied to urban studies [24]. The predator–prey system can be modeled
by different mathematical expressions, which can produce period-doubling bifurcation and
chaos [9, 30–32]. On the one hand, the bifurcation and chaos proceeding from the two-
dimension mapping of urbanization dynamics remind us of the complicated behaviors shown
by the one-dimension logistic mapping of insect population. On the other, the model of rural–
urban interaction reminds us of the Lotka-Volterra model for the predator–prey interaction
[25, 26]. Therefore, the conclusions drawn from urban studies may be generalized to ecological

Figure 6. The numerical simulation curve of the US urbanization level (1790–2400) (Notes: the numerical simulation is
based on Eq. (15), and the capacity parameter is 1. The curve is identical in shape to that of logistic growth indicated by
Eq. (16). See [27]).

Chaos Theory14

field and vice versa (Table 2). A speculation is that the logistic growth in ecology can be
interpreted by the two-population interaction, and the Lotka-Volterra model can be revised as
below [8]:

dx tð Þ
dt

¼ ax tð Þ � b
x tð Þy tð Þ

x tð Þ þ y tð Þ
dy tð Þ
dt

¼ c
x tð Þy tð Þ

x tð Þ þ y tð Þ � dy tð Þ

8>>><
>>>:

, (17)

in which x(t) and y(t) denote the numbers of prey and predators at time t, respectively. The
symbols a, b, c, and d are all parameters. Eq. (17) represents a generalized predator–prey
interaction model. Given x(t) + y(t) = constant, Eq. (17) will return to the original form of the
Lotka-Volterra model. The dynamical behaviors of Eq. (17) are more plentiful than those of
Eq. (1). In fact, Eq. (1) can be treated as a special case of Eq. (17). Suppose that the percentage of
predator population is defined by

z tð Þ ¼ y tð Þ
x tð Þ þ y tð Þ : (18)

Thus, we can derive a logistic equation from Eqs. (17) and (18) as follows:

dz tð Þ
dt

¼ c� a� dð Þz tð Þ 1� z tð Þ½ �: (19)

Discretizing Eq. (19) yields a one-dimension mapping of logistic growth as below:

z tð Þ ¼ kþ 1ð Þz t� 1ð Þ � kz t� 1ð Þ2, (20)

where the parameter k~c-a-d. Both the one-dimension mapping based on Eq. (19) and the two-
dimension mapping based on Eq. (17) can create the same complicated dynamics as those
displayed in Figure 1. This implies that the two-population interaction leads to the logistic
growth, periodic oscillations, and chaotic behavior in ecosystems.

Model Dynamical equation Urban system Ecosystem

Allometric growth dx tð Þ=dt ¼ ax tð Þ
dy tð Þ=dt ¼ by tð Þ

�
Allometric scaling relations Two-population competition

Two-population
interaction

dx tð Þ=dt ¼ ax tð Þ � bx tð Þy tð Þ
dy tð Þ=dt ¼ cx tð Þy tð Þ � dy tð Þ

�
The rural–urban interaction The predator–prey interaction

Generalized two-
population interaction

dx tð Þ
dt

¼ ax tð Þ � b
x tð Þy tð Þ

x tð Þ þ y tð Þ
dy tð Þ
dt

¼ c
x tð Þy tð Þ

x tð Þ þ y tð Þ � dy tð Þ

8>>><
>>>:

The rural–urban interaction
and logistic growth

Two-population competition and
predator–prey interaction

Notes: In these equations, a, b, c, and d are parameters. The equations of allometric growth suggest simplicity, while the
two-population interaction models indicate complexity.

Table 2. The typical dynamical equations for modeling urban and ecological systems.
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A conjecture is that the logistic growth of population in ecology is just an approximate
expression. It is the ratio of the predator population to the total population rather than the
predator population itself that follows the law of logistic growth. Using the two-dimension
mapping based on Eq. (17), we can carry out a numerical simulation experiment. The results
show that if the percentage of predator population z(t) takes on a logistic growth, the predator
population y(t) will grow according to an J-shaped curve in form (Figure 7). However, the
latter is a quadratic or fractional logistic growth rather than the conventional logistic growth.
What is more, the oscillations of population and the total population can mirror the period-
doubling bifurcation and chaos of percentage population. All in all, the generalized predator–
prey interaction can account for more ecological phenomena than the classical Lotka-Volterra
model does [8]. Anyway, the studies on urban chaos can help us understand John Holland’s
question. After discussing the Lotka-Volterra model, Holland [33] said: “In the long run,
extensions of such models should help us understand why predator-prey interaction exhibit
strong oscillations, whereas the interactions that form a city are typically more stable.”

4.2. Scaling in bifurcation diagrams

Chaos and fractals are often placed in the same category in literature, although there is no
essential correlation between them. A fractal is a hierarchy with cascade structure, which can
be testified by urban systems. In fact, a period-doubling bifurcation diagram contains self-
similar hierarchy. So, the period-doubling bifurcation route to chaos of urbanization dynamics
can be compared with the hierarchical structure of cities. The general character of varied
bifurcation diagrams can be reflected by Feigenbaum’s number, which is a universal constant
found by Feigenbaum [34]. This constant can also be figured out through the rural–urban
interaction mapping. Based on a bifurcation diagram, we can draw the tent map [35] (Figure 8).

Figure 7. The logistic growth of the percentage of predator population and the quasi-logistic growth of the predator
population (Note: if the percentage of predator population takes on the S-shaped logistic growth, then the predator
population growth will take on an J-shaped curve. See [8]). (a) Percentage of predator population. (b) Predator population.
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If we give up the hypothesis of regional closure, the parameter equation β = γ in Eq. (11) will
break. Then more complex and plentiful dynamics can be revealed by the rural–urban interac-
tion mapping.

The period-doubling bifurcation process of urbanization and the cascade structure of systems
of cities share the same hierarchical scaling. The bifurcation can be described with three
exponential functions such as

Nm ¼ N1rm�1, (21)

Lm ¼ L1δ1�m, (22)

Wm ¼ W1a1�m, (23)

Figure 8. Tent map: From steady state to chaos (the initial value is L0 = 0.01) (Note: the graph of tent map is also termed
“spider diagram,”which can be seen in literature such as ref. [35]. The diagrams are created by using the two-dimensional
rural–urban interaction map based on Eq. (11). These subplots correspond to the subplots in Figures 1 and 3).
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where m denotes the order of hierarchy of bifurcation, Nm refers to period number (or bifurca-
tion number), Lm is the range for the stable periodicity, and Wm is the span between two
bifurcation points of order m. As for the parameters, N1 = 1, L1 and W1 are constants, r = 2,
δ ≈ 4.6692, and a ≈ 2.5029 [34, 36, 37]. In fact, Eq. (22) represents “the bifurcation-rate scaling
law” and Eq. (23) “the fork-width scaling law” [38]. Accordingly, Eq. (21) represents “period-
number scaling law.” These what is called scaling laws are linear scaling laws, but they can be
transformed into nonlinear scaling laws, i.e., power laws [4]. From Eqs. (22) and (23), it follows
an allometric scaling relation between the periodical range (Lm) and the fork width (Wm), and
the expression is

Lm ¼ μWb
m, (24)

where the proportionality constant is μ = L1 W1
�b and b denotes a scaling exponent as below:

b ¼ ln δ
ln a

≈ 1:6796: (25)

The physical meaning of this number is not yet clear for the time being and remains to be
brought to light in future studies.

The three exponential equations reflect the universal cascade structure of nature and society.
An analogy can be drawn between the cascade structure of the bifurcation diagram and the
hierarchical structure of urban systems (Table 3). The scaling laws behind the period-doubling
bifurcation can be employed to describe the nonlinear process of urbanization, and the vari-
ants of the scaling laws can be adopted to characterize the cascade structure of a hierarchy of
cities [10–12, 39]. Moreover, the allometric scaling relation, Eq. (24), bears an analogy with the
fractal relation between urban area and population. The allometric growth law asserts that the
rate of relative growth of an organ is a constant fraction of the rate of relative growth of the
total organism [40–42]. In urban studies, the allometric scaling law can be utilized to describe
the measure relation between the urban area (Am) of a city and its population (Pm) in the
urbanized area [4, 16, 42]. The similarity between urban scaling and bifurcation scaling lends
further support to the inference that urban evolution falls between order and chaos [43].

Linear scaling law Period-doubling bifurcation Hierarchy of cities

The first law—number law Nm ¼ N1rm�1 Nm ¼ N1rm�1
n

The second law—length/size law Lm ¼ L1δ1�m Pm ¼ P1r1�m
p

The third law—width/area law Wm ¼ W1a1�m Am ¼ A1r1�m
a

Notes: (1) The scaling laws of hierarchy of cities are illuminated by [4]. (2) The period-doubling bifurcation in this work
comes from the two-dimension mapping based on the rural–urban interaction model, which differs from the one-
dimension logistic mapping in form.

Table 3. A comparison between the linear scaling laws of period-doubling bifurcation and the exponential laws of
hierarchy of cities.

Chaos Theory18

4.3. Dynamics of fractal dimension evolution of urban growth

The nonlinear dynamics of urbanization corresponds to the complex dynamics of urban
growth and morphology. Urban growth can be measured with the time series of fractal dimen-
sion of urban form. The common fractal dimension can be obtained by box-counting method.
In theory, the box dimension of urban form ranges from 0 to 2. However, in practice, the box
dimension always comes between 1 and 2. Boltzmann’s equation can be employed to describe
the fractal dimension growth of cities [13]. In fact, Boltzmann’s equation was used to model
urban population evolution by Benguigui et al. [44]. Urban population is associated with urban
form and urbanization. The Boltzmann model of fractal dimension evolution is as follows:

D tð Þ ¼ Dmin þ Dmax �Dmin

1þ Dmax�D 0ð Þ
D 0ð Þ�Dmin

h i
e�kt

¼ Dmin þ Dmax �Dmin

1þ exp � t�t0
p

� � , (26)

where D(t) refers to the fractal dimension of urban form in time of t; D(0) to the fractal dimension
in the initial time/year; Dmax ≤ 2 to upper limit of fractal dimension, i.e., the capacity of fractal
dimension; Dmin ≥ 0 to the lower limit of fractal dimension; p is a scaling parameter associated
with the initial growth rate k; and t0 a temporal translational parameter indicative of a critical
time, when the rate of fractal dimension growth indicating city growth reaches its peak. The scale
and scaling parameters can be, respectively, defined by p = 1/k, t0 = ln[(Dmax-D(0))/(D(0)-Dmin)]

p. For
the normalized variable of fractal dimension, Eq. (26) can be reexpressed as a logistic function:

D∗ tð Þ ¼ D tð Þ �Dmin

Dmax �Dmin
¼ 1

1þ 1=D∗
0ð Þ � 1

� �
e�kt

, (27)

where D(0)
* = (D(0)-Dmin)/(Dmax-Dmin) denotes the normalized result of D(0), the original value of

fractal dimension. Empirically, Eqs. (26) and (27) can be supported and thus validated by the
dataset of London fromBatty and Longley [16], the datasets of Tel Aviv fromBenguigui et al. [45],
and the dataset of Baltimore from Shen [46]. The derivative of Eq. (27) is just the logistic equation:

dD∗ tð Þ
dt

¼ kD∗ tð Þ 1�D∗ tð Þ½ �, (28)

which is actually based on the normalized fractal dimension. Without loss of generality, let the
time interval Δt = 1. Thus, discretizing Eq. (28) yields a one-dimensional map such as

D∗
tþ1 ¼ 1þ kð ÞD∗

t � kD∗2
t : (29)

Defining Dt
* = (1 + k)xt/k, we can transform Eq. (29) into the following form:

xtþ1 ¼ 1þ kð Þxt 1� xtð Þ ¼ μxt 1� xtð Þ, (30)

where xt is the substitute ofDt
* and μ = k + 1 is a growth rate parameter. Eq. (30) is just the well-

known logistic map [1]. If the fractal dimension of urban form can be fitted to Boltzmann’s
equation, it implies that urban evolution can be associated with spatial chaotic dynamics.
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the measure relation between the urban area (Am) of a city and its population (Pm) in the
urbanized area [4, 16, 42]. The similarity between urban scaling and bifurcation scaling lends
further support to the inference that urban evolution falls between order and chaos [43].

Linear scaling law Period-doubling bifurcation Hierarchy of cities

The first law—number law Nm ¼ N1rm�1 Nm ¼ N1rm�1
n

The second law—length/size law Lm ¼ L1δ1�m Pm ¼ P1r1�m
p

The third law—width/area law Wm ¼ W1a1�m Am ¼ A1r1�m
a

Notes: (1) The scaling laws of hierarchy of cities are illuminated by [4]. (2) The period-doubling bifurcation in this work
comes from the two-dimension mapping based on the rural–urban interaction model, which differs from the one-
dimension logistic mapping in form.

Table 3. A comparison between the linear scaling laws of period-doubling bifurcation and the exponential laws of
hierarchy of cities.

Chaos Theory18

4.3. Dynamics of fractal dimension evolution of urban growth

The nonlinear dynamics of urbanization corresponds to the complex dynamics of urban
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fractal dimension. Empirically, Eqs. (26) and (27) can be supported and thus validated by the
dataset of London fromBatty and Longley [16], the datasets of Tel Aviv fromBenguigui et al. [45],
and the dataset of Baltimore from Shen [46]. The derivative of Eq. (27) is just the logistic equation:
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which is actually based on the normalized fractal dimension. Without loss of generality, let the
time interval Δt = 1. Thus, discretizing Eq. (28) yields a one-dimensional map such as
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Defining Dt
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where xt is the substitute ofDt
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equation, it implies that urban evolution can be associated with spatial chaotic dynamics.
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The process of urban growth is a dynamic process of urban space filling. An urban region falls
into two parts: filled space and unfilled space. We can define a spatial filled-unfilled ratio
(FUR) for urban growth [13], that is:

O ¼ D∗

1�D∗ ¼
U
V
: (31)

Thus we have

D∗ ¼ O
Oþ 1

¼ U
U þ V

¼ U
S
, (32)

where U refers to the filled space area with various buildings (space-filling area), measured by
the pixel number of built-up land on digital maps, and V to the unfilled space area without any
construction or artificial structures (space-saving area). Thus the total space of urbanized
region is S = U + V. Obviously, the higher the O value is, the higher the degree of urban spatial
filling will be. The normalized fractal dimension can be termed level of space filling (SFL) of
cities, implying the degree of spatial replacement.

Based on a digital map with given resolution, the filled space can be measured with the pixels
indicating urban and rural built-up area such as structures, outbuildings, and service areas. In
contrast, the unfilled space is the complement of the filled space of built-up area. On the digital
map, the unfilled space is just the blank space of an urban figure. If a region is extensively
developed and is already occupied by various urban infrastructures and superstructures, it is
transformed, and the unfilled space is replaced by filled space. This spatial replacement
dynamics can be described by a pair of differential equations:

dU tð Þ
dt

¼ αU tð Þ þ β
U tð ÞV tð Þ

U tð Þ þ V tð Þ
dV tð Þ
dt

¼ λV tð Þ � β
U tð ÞV tð Þ

U tð Þ þ V tð Þ

8>><
>>:

, (33)

where α, β, and λ are parameters. This implies that the growth rate of filled space, dU(t)/dt, is
proportional to the size of filled space,U(t), and the coupling between filled and unfilled space,
but not directly related to unfilled space size; the growth rate of unfilled space, dV(t)/dt, is
proportional to the size of unfilled space, V(t), and the coupling between unfilled and filled
space, but not directly related to filled space size. From Eq. (33), we can derive Eq. (28).
Discretizing Eq. (33) yields a two-dimensional map of urban growth, which can be used to
created periodic oscillation chaos similar to the patterns shown in Figure 1 [13].

4.4. Replacement dynamics

The logistic growth model and the rural–urban interaction model can be employed to develop
the theory of replacement dynamics. Dynamical replacement is one of the ubiquitous general
empirical observations across the individual sciences, which cannot be understood in the set
of references developed within the certain scientific domain. We can find the replacement

Chaos Theory20

processes associated with competition everywhere in nature and society. The theory of replace-
ment dynamics should be developed in the interdisciplinary perspective. It deals with the
replacement of one activity by another. One typical substitution is the replacement of old
technology by new; another typical substitution is the replacement of rural population by
urban population. Urbanization is a process of population replacement, that is, the urban
population substitutes for the rural population [47, 48]. The components in a self-organized
system, generally speaking, can be distributed into two classes, and the process of a system’s
evolution is a process of discarding one kind of component in favor of another kind of
component. This process is termed “replacement” [13, 14]. For example, the population in a
geographical region can be divided into urban population and rural population, and urbani-
zation is a process of rural–urban replacement of population [48]; the technologies can be
divided into new ones and old ones, and technical innovation is a process of new-old technol-
ogy replacement [49, 50]. In fact, people can be divided into the rich and the poor, the
geographical space can be divided into natural space and human space, and so on. Where
there are self-organized systems, there is evolution, and where there is evolution, there is
replacement. Replacement results from competition and results in evolution. Replacement
analysis is a good approach to understanding complex systems and complexity.

The basic and simplest mathematical model of replacement is the logistic function, which can
be employed to describe the processes of growth and conversion. Besides, other sigmoid
functions such as the quadratic logistic function and Boltzmann’s equation may be adopted to
model the replacement dynamics. A number of mathematical methods such as allometric
scaling can be applied to analyzing various types of replacement. In fact, the allometric scaling
can be used to analyze the relationships between the one thing/group (e.g., urban population)
and another thing/group (e.g., rural population). A replacement process is always associated
with the nonlinear dynamics described by two-group interaction model. The discrete expres-
sion of the nonlinear differential equation of replacement is a one-dimensional map, which is
equivalent to a two-dimensional map. The maps can generate various simple and complex
behaviors including S-shaped growth, periodic oscillations, and chaos. If the rate of replace-
ment is lower, the growth curve is a sigmoid curve. However, if the replacement rate is too
high, periodic oscillations or even chaos will arise. This suggests, no matter what kind of
replacement it is—virtuous substitution or vicious substitution—the rate of replacement
should be befittingly controlled. Otherwise, catastrophic events may take place, and the system
will likely fall apart. The studies on the replacement dynamics are revealing for us to under-
stand the evolution in nature and society, and the relationship between the one-dimension map
and the two-dimension map is revealing for our understanding of the replacement dynamics.

5. Conclusions

Researching the origin and essence of bifurcation and chaos in urbanization process offers a
new way of looking at complicated dynamics of simple systems. The pattern of phase space
cannot be revealed by the one-dimension mapping diagram based on ecological systems, but it
can be displayed by the two-dimensionmapping diagram based on the rural–urban population
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migration and transition. This suggests that urban evolution is a good window for examining
bifurcation and chaos. Moreover, the similarity between urban dynamics and ecological
dynamics will inspire us to explore the implicit substance of natural laws. By the study of
urbanization dynamics, we can obtain three aspects of new knowledge about bifurcation and
chaos. First, it is interaction rather than the intrinsic randomicity of dynamic systems that leads to
bifurcation and chaos. Period-doubling bifurcation and chaos used to be regarded as inherent
randomness of determinate systems due to the complicated behaviors of the one-dimension
logistic mapping. The people with this viewpoint ignore the following fact: the logistic growth is
always based on two-population interaction. However, because of the absence of effective mea-
surement linking the logistic function and the two-population interaction model, the relation-
ships between chaos and interaction cannot be revealed in ecological fields. Second, the chaotic
behaviors of the logistic model do not indicate a chaotic attractor, and the relationship between chaos and
fractals is scaling.A strange attractor with fractal structure in the phase space used to be treated as
a typical sign of chaos. The phase portrait of the logistic growth cannot be demonstrated by the
one-dimension mapping. The two-dimension mapping based on rural–urban interaction can be
employed to illustrate the phase space of the logistic process. The result shows that the whole
trajectory fails to converge into a limited area. No strange attractor or even no fractal structure
can be found in the phase portrait of the two-population mapping. However, both fractal
structure and the route from bifurcation to chaos can be characterized by hierarchical scaling
law. Third, the predator–prey interaction model can be developed to interpret the logistic growth and
sigmoid curves. By analogy, we can infer that the predator–prey interaction causes the compli-
cated behaviors of the logistic process in ecological field. In fact, the classical Lotka-Volterra
model can be restructured by referring to the expression of the rural–urban interaction model.
Consequently, we can get a normalized predator–prey interaction model. Using the revised
predator–prey model, we can derive the logistic function for population growth. Finally, where
urban geography is concerned, the models of urbanization dynamics can be generalized to
describe the spatial dynamics of urban morphology by means of fractal dimension growth.
Moreover, both the models of urbanization and urban form evolution can be applied to devel-
oping the theory of spatial dynamics of replacement.
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The chapter focuses at corruption practices in the bank crash in the town of Arendal 
in Southern Norway in 1886 using insights from chaos theory and butterfly effects 
as theoretical frameworks. Using secondary sources from reports and documents, we 
illustrate that the bank crash can be explained by corrupt practices of the business 
and political elite involving manipulation of accounting figures, financial guarantees 
given in closed and secret circles, and banks giving credit without sufficient security. 
These activities led the town into a large bank crash in the fall of 1886 having negative 
effects on business performance, large unemployment, and falling living standards 
for decades illustrated through a regional-global model discussed in the chapter. The 
findings can be of interest when studying other bank crashes such as the global bank 
crisis setting in fall 2008 having negative consequences for leading OECD countries up 
to present times.
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explained by corrupt practices from the business and political elite in the town.
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2. Plan for the chapter

We ask if the bank crash in Arendal (Norway) in 1886 can be explained by corrupt practices 
from the business and political elite in the town. For this purpose, we use a regional-global 
organizational model as illustration. Chaos theory is used to illustrate corrupt practices using 
the theory in an untraditional way focusing on bounded rationality as a part of humanistic 
research from organizational thinking. Thereafter, general principles for the research project 
are introduced focusing on chaos theory and how reports and documents are used as second-
ary sources in the data collection process. Findings confirm that corruption took place in the 
bank crash in 1986 initiated and implemented by the business and political elite in the town. 
The problem definition is confirmed leading us to believe that the study might be used as a 
candidate to explain other bank crashes such as the global bank crises setting in fall 2008 hav-
ing negative effects up to this day with no clean-cut suggestions for how the bank crisis can 
be solved.

3. Introduction: the Norwegian shipping industry, a regional-global 
model, and the use of chaos theory

3.1. Norwegian shipping expansion in the 1800s

The historical background. Norwegian shipping has a long and proud history in international 
trade. From the Viking times, it has transported goods from the long coast to Greenland and 
the Southern Europe stimulating trade and economic growth.

Holland became a large economy in the 1500 and 1600 centuries. Norwegian timber was used 
to build Amsterdam and Rotterdam as large cities. Trade leads to a large immigration from 
Norway to Holland, and the opposite [55]. United Kingdom was also a leading player in 
international trade meaning that new trading routes for Norwegian ships were established 
and developed.

The First Industrial Revolution, which spanned from the mid-1700s to the mid-1800s, was 
largely driven by the drivers of international trade in few commodities (particularly cotton). 
Most businesses tended to remain small and to employ as little fixed capital as possible. The 
chaotic markets of this area led economists such as Smith [48] to describe market forces as an 
“invisible hand” that remained largely beyond the control of individual firms, leading to less 
interest for strategic thinking.

The Second Industrial Revolution, which began in the last half of the nineteenth century in 
the United States and rapidly expanded to Europe, saw the emergence of strategy as a way 
to shape market forces and affect the competitive environments. In the United States, the 
construction of the main railways after 1850 made it possible to build mass markets for the 
first time [4]. In some capital industries, such as shipping and banking which is the empirical 
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setting of this research, Smith’s “invisible hand” cam was supplemented by what Chandler 
[5] termed the “visible hand” of professional managers.

Norwegian shipping from 1814 until 1849. Norway got her own constitution, the 17th of May 
1814. After the poor country was significantly hurt by the Napoleon War (1807–1814), Norway 
gradually managed to catch up in the capitalist race far behind super powers like United 
Kingdom and United States basing their economies on decentralized organizational solutions 
from the First Industrial Revolution up to modern times ([4, 5, 52, 58]; 105) formalizing the use 
of explicit and tacit knowledge putting economic growth in the center of attention. The funda-
ments were laid for an expansion in the shipping industry with Arendal, one of the leading 
Norwegian towns.

Norwegian shipping expansion from 1850 until 1886 with a focus on Arendal. The Norwegian ship-
ping industry expanded rapidly from 1850 until 1874. There was a great demand for products 
such as timber from Arendal when the United Kingdom was an engineer of economic growth 
in Europe, leading to possibilities for business people to take advantage of both economics of 
scale and economics of scope [4, 5].

Arendal took advantage of the new business environment and expanded the fleet rapidly. 
From 1850 until 1870, Arendal’s fleet increased by 260% while it barely doubled from 1810 
until 1849 [56]. Arendal was the largest shipping town in Norway.

In 1875, Arendal was the richest town in Norway mainly due to an expanding shipping indus-
try ([22], p. 156).

United Kingdom decided to drop the Navigation laws in 1849 as a result of more trade 
stimulating trade in many parts of the world. Lack of protective steps from United 
Kingdom meant that it opened up markets also for small countries like Norway. The 
change in attitude from United Kingdom meant that Norway and Sweden were regarded 
as one country being involved in a union until 1905 when Norway got her independence. 
This made trade much easier stimulating shipping between Norway and the United 
Kingdom [56].

In 1850, Norway had a fleet of 284,000 death weight tons and 1156 ships mainly consisting of 
sailing ships. The number of crews in the shipping industry this year consisted of 19,000 per-
sons. Twenty-eight years later (1878), the number of death weight tons was 1.5 millions. The 
number of crew working in the shipping industry was about 62,000 persons. For ships, this 
meant a yearly growth rate of 5.7%, for the crew an annual growth rate of 4.5% ([22], p. 136).

In the time period 1850 until 1880, Norway went from number eight in the world of shipping 
to number three in the world, with USA and United Kingdom in the front, a remarkable 
achievement given the small size of the country ([22], p. 136).

Economic and political turbulence often have positive effects on shipping markets. The 
Crimean War (1853–1856), the American Civil War (1861–1865), and the Prussian War (“The 
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first time [4]. In some capital industries, such as shipping and banking which is the empirical 
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setting of this research, Smith’s “invisible hand” cam was supplemented by what Chandler 
[5] termed the “visible hand” of professional managers.

Norwegian shipping from 1814 until 1849. Norway got her own constitution, the 17th of May 
1814. After the poor country was significantly hurt by the Napoleon War (1807–1814), Norway 
gradually managed to catch up in the capitalist race far behind super powers like United 
Kingdom and United States basing their economies on decentralized organizational solutions 
from the First Industrial Revolution up to modern times ([4, 5, 52, 58]; 105) formalizing the use 
of explicit and tacit knowledge putting economic growth in the center of attention. The funda-
ments were laid for an expansion in the shipping industry with Arendal, one of the leading 
Norwegian towns.

Norwegian shipping expansion from 1850 until 1886 with a focus on Arendal. The Norwegian ship-
ping industry expanded rapidly from 1850 until 1874. There was a great demand for products 
such as timber from Arendal when the United Kingdom was an engineer of economic growth 
in Europe, leading to possibilities for business people to take advantage of both economics of 
scale and economics of scope [4, 5].

Arendal took advantage of the new business environment and expanded the fleet rapidly. 
From 1850 until 1870, Arendal’s fleet increased by 260% while it barely doubled from 1810 
until 1849 [56]. Arendal was the largest shipping town in Norway.

In 1875, Arendal was the richest town in Norway mainly due to an expanding shipping indus-
try ([22], p. 156).

United Kingdom decided to drop the Navigation laws in 1849 as a result of more trade 
stimulating trade in many parts of the world. Lack of protective steps from United 
Kingdom meant that it opened up markets also for small countries like Norway. The 
change in attitude from United Kingdom meant that Norway and Sweden were regarded 
as one country being involved in a union until 1905 when Norway got her independence. 
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Kingdom [56].

In 1850, Norway had a fleet of 284,000 death weight tons and 1156 ships mainly consisting of 
sailing ships. The number of crews in the shipping industry this year consisted of 19,000 per-
sons. Twenty-eight years later (1878), the number of death weight tons was 1.5 millions. The 
number of crew working in the shipping industry was about 62,000 persons. For ships, this 
meant a yearly growth rate of 5.7%, for the crew an annual growth rate of 4.5% ([22], p. 136).

In the time period 1850 until 1880, Norway went from number eight in the world of shipping 
to number three in the world, with USA and United Kingdom in the front, a remarkable 
achievement given the small size of the country ([22], p. 136).

Economic and political turbulence often have positive effects on shipping markets. The 
Crimean War (1853–1856), the American Civil War (1861–1865), and the Prussian War (“The 
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War of 1870”) made it possible for the shipping industry to achieve handsome economic 
returns, a fact shipping people learn early in their careers often told by the elderly generation 
as an illustration as to how tacit knowledge is transferred [43].

3.2. Toward a regional-global organizational model in shipping with Arendal as the 
empirical setting

Arendal had a strong global orientation of her shipping activities paying attention to chang-
ing business regimes, political changes, and social unrest. The shipping industry is dynamic  
where profits are dependent upon economic, political and social changes (i.e., Blandley, 2000).

Flexibility may be the only option in a changing business landscape [46]. In order to adjust to 
changing market situations, it is necessary to disregard and even to overturn existing knowl-
edge. Creating new knowledge requires theory building and conceptualization, experimenta-
tion and testing, involving successes as well as mistakes and dead ends [29], statement that 
many shipping executives might agree with.

Trade from Arendal was dependent upon a regional approach from Southern Norway. We 
build our reasoning based on research conducted by Drucker [10], Handy [18], Bartlett and 
Ghoshal (1995), and Syvertsen [50, 51] relating regionalization to globalization.

A study of a regional – global model can have a certain degree of validity when  studying 
Arendal  in the years from 1850 until 1885. Globalization opens up trading opportunities 
and the same time as regionalization can support personal and business identity and stimu-
late trade. It can be wise to have a mental home in global business.

Studies of regionalization have become a popular research approach in the last decades con-
sisting of specialized production, close cooperation, personal contact, and a strong culture, 
well-defined geographical areas as elements ([39]; Cappchi, 1990).

In the world of regionalization, the value to craftwork becomes an asset in itself as it helps 
business firms offer tailor-made solutions to carefully targeted market segments (Boynton, 
2000). The time of mass production and mass distribution is over, putting regional identity 
in the center for ship building, ownership over ships, and the operation of the ships, as illus-
trated in this study using a historical study of the town Arendal in Southern Norway as the 
empirical setting. In many ways, the idea of market novelty is consistent with the classis mar-
ket position of differentiation, wherein a firm tries to garner a premium price with a product 
or a service that customers regard as unique and customized [40].

Business practices often have their own dynamics where contributions from the academic 
world can give limited insights. Management can thus in many situations be more regarded 
as an art than a science, by Mintszberg [36] called crafting:

“Craft evolves traditional skill, dedication, perfection through mastery of detail.

What springs to mind is not so much thinking and reason as involvement, a feeling of.

intimacy and harmony with the materials at hand, developed through long experience and commit-
ment. Formulation and implementation merge into a fluid process of learning though which creative 
strategies evolve.”

Chaos Theory30

3.3. Chaos theory used in the shipping industry

Why we use chaos theory in this study? Due to the dynamic character of the shipping indus-
try, well-established theories such as forecasting and behavior patterns of clients seem 
to change rapidly. Economic turbulence coupled with accelerating globalization, con-
tinuous improvements in technologies, and deregulation of markets have a profound 
impact on business firm’s competition. As a consequence, firms have to organize their 
operations in new ways and use new mental models when analyzing a changing business 
environment.

Chaos theory is an approach with a relatively long history with most contributions from 
natural science, less with a focus on economics and business administration. Still, it can be 
regarded as a flexible theory chosen as the theory to use in this research project.

What is meant by chaos theory? Chaos theory is a study of complex systems, nonlinear dynamic 
systems, dislodged from its steady-state condition by trigging events, where outcomes can 
lead to both harmony and increased tensions [20].Chaos describes a situation where the sys-
tem is dislodged from its steady-state condition by trigging events [33]. It involves regroup-
ing of elements of a system, for which a new order eventually emerges arising spontaneously 
from the internal structures [16].

It is possible that economic models can be improved through the application of chaos theory 
by studying and applying which factors can influence processes leading to economic growth 
or decline. It has shown to be a difficult task. The results in the field give mixed results in 
part due to confusion between specific tests for chaos and a more general test for nonlinear 
relationships [3].

Chaos theory can in our point of view, in contrast to much as the writing on chaos theory, 
be judged from a humanistic perspective in the way that the concept of bounded rationality 
[47] is central. This logic breaks with neoclassical economic thinking assuming that actors are 
rational which often is hard to believe analyzing our daily lives and taking a critical look at 
strategic decisions such as job changes and buying a new home?

We believe that actors are unable to take decisions in a completely rational manner due to both 
mental limitations and information-processing constraints [12]. Decisions from the practical 
world of business are often so complex to comprehend and therefore it is difficult to judge the 
different alternatives when a decision has to be made. Relatively simple and heuristic decision 
rules, rules of thumbs and easy procedures and routines are used in order to respond rapidly 
to a changing shipping market where it can look like that the only constants are uncertainty 
and short-term competitive advantages (Spencer, 1996).

Why butterfly effects are important in chaos theory? The field of chaos theory was pioneered by 
Lorentz [33] who studied the dynamics of turbulent flows. It is when a system is in a state of 
chaos that it is most vulnerable to butterfly effects, which states that small causes can have 
large effects [33].

This metaphor explains that a butterfly in Amazon can, certainly theoretically, cause a swell-
ing ripple that, in turn, can lead to a gigantic dust storm in Texas. Lorentz [33] discovered the 
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Trade from Arendal was dependent upon a regional approach from Southern Norway. We 
build our reasoning based on research conducted by Drucker [10], Handy [18], Bartlett and 
Ghoshal (1995), and Syvertsen [50, 51] relating regionalization to globalization.

A study of a regional – global model can have a certain degree of validity when  studying 
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empirical setting. In many ways, the idea of market novelty is consistent with the classis mar-
ket position of differentiation, wherein a firm tries to garner a premium price with a product 
or a service that customers regard as unique and customized [40].

Business practices often have their own dynamics where contributions from the academic 
world can give limited insights. Management can thus in many situations be more regarded 
as an art than a science, by Mintszberg [36] called crafting:

“Craft evolves traditional skill, dedication, perfection through mastery of detail.

What springs to mind is not so much thinking and reason as involvement, a feeling of.

intimacy and harmony with the materials at hand, developed through long experience and commit-
ment. Formulation and implementation merge into a fluid process of learning though which creative 
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3.3. Chaos theory used in the shipping industry
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to change rapidly. Economic turbulence coupled with accelerating globalization, con-
tinuous improvements in technologies, and deregulation of markets have a profound 
impact on business firm’s competition. As a consequence, firms have to organize their 
operations in new ways and use new mental models when analyzing a changing business 
environment.

Chaos theory is an approach with a relatively long history with most contributions from 
natural science, less with a focus on economics and business administration. Still, it can be 
regarded as a flexible theory chosen as the theory to use in this research project.

What is meant by chaos theory? Chaos theory is a study of complex systems, nonlinear dynamic 
systems, dislodged from its steady-state condition by trigging events, where outcomes can 
lead to both harmony and increased tensions [20].Chaos describes a situation where the sys-
tem is dislodged from its steady-state condition by trigging events [33]. It involves regroup-
ing of elements of a system, for which a new order eventually emerges arising spontaneously 
from the internal structures [16].

It is possible that economic models can be improved through the application of chaos theory 
by studying and applying which factors can influence processes leading to economic growth 
or decline. It has shown to be a difficult task. The results in the field give mixed results in 
part due to confusion between specific tests for chaos and a more general test for nonlinear 
relationships [3].

Chaos theory can in our point of view, in contrast to much as the writing on chaos theory, 
be judged from a humanistic perspective in the way that the concept of bounded rationality 
[47] is central. This logic breaks with neoclassical economic thinking assuming that actors are 
rational which often is hard to believe analyzing our daily lives and taking a critical look at 
strategic decisions such as job changes and buying a new home?

We believe that actors are unable to take decisions in a completely rational manner due to both 
mental limitations and information-processing constraints [12]. Decisions from the practical 
world of business are often so complex to comprehend and therefore it is difficult to judge the 
different alternatives when a decision has to be made. Relatively simple and heuristic decision 
rules, rules of thumbs and easy procedures and routines are used in order to respond rapidly 
to a changing shipping market where it can look like that the only constants are uncertainty 
and short-term competitive advantages (Spencer, 1996).

Why butterfly effects are important in chaos theory? The field of chaos theory was pioneered by 
Lorentz [33] who studied the dynamics of turbulent flows. It is when a system is in a state of 
chaos that it is most vulnerable to butterfly effects, which states that small causes can have 
large effects [33].

This metaphor explains that a butterfly in Amazon can, certainly theoretically, cause a swell-
ing ripple that, in turn, can lead to a gigantic dust storm in Texas. Lorentz [33] discovered the 
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effect when he observed the runs of a weather model with initial condition data that behaved 
in a perceived inconsequential manner that failed to reproduce results in a consistent manner. 
The butterfly effect presents a challenge of prediction since initial conditions for a system can 
never be known to complete accuracy.

On the other hand, scientists have since the contribution of Lorentz [33] argued that the 
weather system is not as sensitive to initial conditions as previously believed [2, 34]. Research 
has suggested that the Lorentz equilibriums are highly simplified, seen from a natural science 
point of view [38].

4. Closer description of the research project

4.1. The research design

The objective of the research is to analyze if corruption took place in the bank crash in Arendal 
in the year 1886 caused by the business and political elite.

In order to draw conclusions, we had to find indicators of corruption using reports and docu-
ments as sources in the data collection process. This way of approaching research is consistent 
with the argument to search for relationships that repeat themselves [11].

Kuhn [29] introduced the concept of paradigm shift in order to focus on changes in thinking 
that can take place over time. He defines a paradigm as a “scientific umbrella” that might 
manage to unify theories that might seem to be contradictorily. Chaos theory is new enough 
and flexible enough so that it can be used for a study of the bank crash in Arendal in 1886, 
where more research is needed.

According to Howe and Eisenhardt [23], the research questions should drive the research 
design and not the opposite. Platt [41, 42] warns about becoming “method oriented” rather 
than “problem orientated.” We have played attention to these advices by having an applied 
approach on the current study. For us, theory has no value in itself. Theory should confirm or 
reject the claim found in the problem statement.

Validity refers to the relevance of measures and variables. Cook and Campbell [6] present four 
types of validity: internal, external, statistical, and construct validity. In an ideal world, one 
should design one’s study to ensure that all forms of validity are ensured. However, this is not 
always possible in social science. Internal validity refers to causality between two variables, 
whether variable A has an effect on variable B. In this research chapter, we ask if the there is a 
relationship between corrupt practices and the bank crash in Arendal in 1886.

According to Calder et al. (1981), generalizability can be distinguished by effect application 
and theory application. The two types of application lead to different priorities when design-
ing studies. This study belongs to the first category; this means that the study is more practical 
oriented than theory driven. We ask if the study can be of interest for other bank crashes. We 
are particularly interested if the current study can be of interest when studying the global 
bank crisis from 2008 until the current times.

Chaos Theory32

4.2. Data collection through analysis of records and documents

Since this is a historical study with implications for bank crashes in recent decades, it was 
necessary to research and draw conclusions from both records and documents ([32], p. 277).

In this research project records included banking statements and shipping contracts. 
Documents are prepared for personal rather than for official reasons and include diaries, 
memos, letters, field notes, and so on. Documents, closer to speech, require more contextual 
interpretations. Records may have local uses that may become distant from officially sanc-
tioned meanings [7].

It has often been assumed that written texts provide a “truer” indication of original meanings 
than other types of evidence. Indeed, Western social science has long privileged spoken over 
the written and the written over the non-verbal [7]. Somehow, it is assumed that the words 
get closer to the minds ([32], p. 277).

However, as Derrida [7] has suggested, meaning does not reside in a text but in the writing 
and reading it. As the text is reread in different contexts, it is given new meanings, often 
contradictory and always socially embedded, giving room for subjective interpretations of 
observations and findings.

4.3. A flexible research approach

Given the explorative way the research took place, we preferred to use a flexible research 
approach. As the study processed, a similar process outlined by Meyer et al. [35], whereby 
concepts and research methods were constantly rethought and updated following analysis 
and findings, followed. Similarly, [24], 99) argued that the researcher has to modify theoreti-
cal frameworks during the life of the project.

It has been recognized that the conventional research cycle conceptualization, design, mea-
surement, analysis, and reporting do not hold well in hyperturbulent environments (Chiaburu, 
2006, 744). In order to understand organizational phenomena at a more than superficial level, 
the scholarly literature has called for a more in-depth process research [30].

In our research, we consider change to be a continual process of becoming, rather than a 
succession of stable states. This viewpoint suggests that social reality is not a steady state, 
but rather can be regarded as a dynamic process (Beech and Johnson, 2005). Thus, there is a 
need to observe events and interactions as they unfold over time. This approach suggests that 
dynamic construction, deconstruction, and reconstruction of meaning make sense over time 
as contextual forces evolve and as organizational restructuring takes place.

An interpretive approach is regarded as suitable for the investigation of complex and poorly 
understood phenomena [9] since such an approach implies that the researcher’s task is to 
“make sense of local actors’ activities” ([49],1426). Thus, the important criterion for assessing 
interpretive data analysis is its ability to provide reasonable insights into phenomena that 
demand deeper understandings. Empirical findings illustrate, rather than validate, the theo-
ries they reflect [1].
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are particularly interested if the current study can be of interest when studying the global 
bank crisis from 2008 until the current times.
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necessary to research and draw conclusions from both records and documents ([32], p. 277).

In this research project records included banking statements and shipping contracts. 
Documents are prepared for personal rather than for official reasons and include diaries, 
memos, letters, field notes, and so on. Documents, closer to speech, require more contextual 
interpretations. Records may have local uses that may become distant from officially sanc-
tioned meanings [7].

It has often been assumed that written texts provide a “truer” indication of original meanings 
than other types of evidence. Indeed, Western social science has long privileged spoken over 
the written and the written over the non-verbal [7]. Somehow, it is assumed that the words 
get closer to the minds ([32], p. 277).

However, as Derrida [7] has suggested, meaning does not reside in a text but in the writing 
and reading it. As the text is reread in different contexts, it is given new meanings, often 
contradictory and always socially embedded, giving room for subjective interpretations of 
observations and findings.
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approach. As the study processed, a similar process outlined by Meyer et al. [35], whereby 
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and findings, followed. Similarly, [24], 99) argued that the researcher has to modify theoreti-
cal frameworks during the life of the project.

It has been recognized that the conventional research cycle conceptualization, design, mea-
surement, analysis, and reporting do not hold well in hyperturbulent environments (Chiaburu, 
2006, 744). In order to understand organizational phenomena at a more than superficial level, 
the scholarly literature has called for a more in-depth process research [30].

In our research, we consider change to be a continual process of becoming, rather than a 
succession of stable states. This viewpoint suggests that social reality is not a steady state, 
but rather can be regarded as a dynamic process (Beech and Johnson, 2005). Thus, there is a 
need to observe events and interactions as they unfold over time. This approach suggests that 
dynamic construction, deconstruction, and reconstruction of meaning make sense over time 
as contextual forces evolve and as organizational restructuring takes place.

An interpretive approach is regarded as suitable for the investigation of complex and poorly 
understood phenomena [9] since such an approach implies that the researcher’s task is to 
“make sense of local actors’ activities” ([49],1426). Thus, the important criterion for assessing 
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4.4. Data collection through records and documents

We collected data through secondary sources using records and documents. We collected 
these data from October 2016 until June 2017, using the Kuben (Aust-Agder Museum and 
Achieves) in Arendal (Norway) as the main site in the data collection process.

Records can include banking statements and shipping contracts, and intentions of going busi-
ness. Documents are prepared for personal rather than official reasons and include diaries, 
memos, letters, field notes and so on. Documents, closer to speech, require more contextual 
interpretations. Records may have local uses that may become distant from officially sanc-
tioned meanings. ([32], p. 277).

It has often been assumed that what written texts provide a “truer” indication of original 
meanings than other types of evidence. Indeed, Western social science has long privileged the 
spoken over the written and the written over the non-verbal. Somehow it is assumed that the 
words get closer to the minds [7].

However, as Derrida [7] has suggested, meaning does not reside in a text but in the writing 
and reading it. As the text is reread in different contexts, it is given new meanings, often con-
tradictory and always socially embedded. Thus, there is no “ordinal” or “true” meaning of a 
text outside the specific historical context. In a similar fashion, different types of texts have to 
be understood in the context of their conditions of reading and production [57].

5. The bank crash in Arendal (southern Norway) in 1886 explained 
using insights from chaos theory and butterfly effects

In order to analyze the bank crash, we will distinguish between the years before the crash 
(1872–1886), the crash itself in 1886, and the time after the crash.

5.1. The time before the crash 1872–1885: butterfly effects illustrate the coming 
harder economic times

The traditional view on the crash. The traditional approach to the decline is that United Kingdom as 
the main trading partner of Norway went into a decline in 1872 due to high costs in production 
and distribution and a country not being able to change technology to a more modern capitalist 
tradition found in Germany and Holland [56]. This led to major decline in supply from Norway, 
for example, timber to the United Kingdom, having negative effects on the town of Arendal [17].

Sailing ships was a Norwegian trade mark as the people had a competence in both building, 
owning, and operating such ships. This was to a large extent the case in Arendal where this 
research takes place. When sailing ships became outcompeted by the dampers, the strategic 
advantage of sailing ships became less dominating ([22], p. 155).

The traditional point of ship owners from Arendal was to show in the transformation from 
sailing ships to dampers leading to the bank crash in 1886. Our findings are not in accordance 
with this argument.
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The argument of corruption from the business and political elite in Arendal leads to the crash. The 
argument is that the elite controlled the business bank Arendal Privatbank, established in 
1884 in order to support the business interests of local and regional business. This view point 
supports the idea that business people were involved in opportunistic behavior manipulating 
accounts in order to attract more investors and ordinary people to take part in new ventures 
in Arendal, for example, in shipping, insurance, and wood processing.

Our findings support the argument that the brothers Axel and Oscar Herlofson were involved 
in business practices allocated through Arendal Privatbank, putting their interests first as 
investors in a number of industries in Arendal, other parts of Norway and abroad. Our results 
are in accordance with writings of Torstveit [53, 54] claiming that business practices of the 
business and political elite had direct effects on the bank crash in Arendal in 1886.

The 1860, 1870s, and 1880s were the swinging years of Arendal. Arendal was the town with 
the highest incomes in Norway with many people being involved in the shipping industry 
as investors. The years from 1870 until 1874 ship owners gave an annual dividend on 17% of 
invested capital on average ([54]).

High earnings in shipping led to unrealistic attitudes toward risk in both business and pri-
vately. In the late 1870s, business people had easy access to credit without good security. People 
guaranteed for each other. Rules and procedures for sound banking were no longer so carefully 
followed. Shortcuts were taken in conflict with good banking practices. The banks also had far 
too low capital in relation to the assets not being able to meet toucher market situations [27, 28].

The Herlofson family played a main role in the crash of 1886. With ownership and man-
agement in many industries, the family was central in the crash of Arendal in 1886. Axel 
Herlofson was also involved in politics. He was a member of tax commission from 1874 on, 
and from 1878 he had a similar position in Barbu, which was at that time a village close to 
Arendal, now a natural part of the town. He won confidence of ordinary people writing off 
small amounts of debts in appeals.

Axel Herlofson was a key person in a network of young businessmen called the “Arendal 
Ring.” They supported each other in business and in social activities operating as a closed 
group of people with concentration of economic and political power.

5.2. The bank crash of 1886

At times of increased debt, falling freight rates, and ships of falling quality in 1885, it was only 
a question of time before a financial collapse would occur. So it did.

Arendal Privatbank went bankrupt the 30th of September 1886. For the first time in Norwegian 
history, a business bank went bankrupt. It was revealed that Axel and Oscar Herlofson’s debt 
was 12.5 million croners, more than the annual budget in the larger town in Southern Norway 
Kristiansand [54].

Axel Herlofson had to quit his job when corrupt business practices were found to be of great 
disappointment for many people in Arendal. He was arrested in the town of Kristiansand 
trying to leave the country with money from the bank making the scandal even larger. 
Corruption was confirmed leaving a prison sentence of 6 years for Mr. Aksel Herlofson [54].
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The situation in the savings Arendal Sparebank was also led to bankruptcy; 1.7 million cron-
ers were given in credit to business clients with limited degree of financial security. Other 
clients, particularly from the villages, lost the confidence to the bank and rushed to the 
bank trying to withdraw cash. A total of 800,000 croners were withdrawn until December 
1886, of these 75% where from clients in the villages. Accounts for 600,000 were canceled 
from the clients. The Board of Directors came to the conclusion that it was not possible to 
continue in business. The bank went bankrupt on the 13th of December 1986. The same 
occurred the next day with the financial group Arendl Haanværkeres Laaneindretning. The 
only bank that survived the financial crisis in Arendal was the small savings bank Tromø 
Sogn Sparebank [56].

A successful town went into a recession with large negative consequences. Workers from 
all industries came unemployed. In October 1986, Arendal was at the edge of revolt. Fund-
raising campaigns and emergency work were started to reduce the disappointment by ordi-
nary people [54].

The working class emerged as a powerful forces leading to the foundation of the Norwegian 
Labor Party in August 1887 in Arendal. Other consequence of the bank crash in Arendal in 1886 
was changes in the bank legislation. The huge corruption in Arendal taking place meant that pub-
lic authorities were of the opinion that business people had to be controlled to a large extent [54].

6. Consequences of the bank crash of 1886: long-term effects as a 
result of butterfly effects prior to the crash

The crash in Arendal in 1886 had large negative effects. It is argued by the people of Arendal 
that the town, de facto, never recovered from the decline. The neighboring town of Kristiansand 
in Southern Norway has expanded while Arendal has not had the same positive development.

The bank failure in Arendal had consequences far beyond the local community. The region of 
Southern Norway was pushed into recession leading to immigration to the USA, particularly 
to New York and the surrounding areas.

The socialist movement became a strong source of influence in Norway changing the politi-
cal landscape from the 1920s on broke with the communist bloc within the party in 1923. The 
Labor Party has since played a major role in Norwegian politics.

As a part of the new political regime, the bank failure in Arendal, the Norwegian Parliament 
adapted stricter banking laws. The new legislation stipulated requirements for credits and 
restrictions for how clients could organize loans in the financial sector [54].

7. Findings

7.1. Corrupt business practices confirmed

The findings must be regarded as preliminary due to little research conducted using the 
regional-global model as a new to historical events as we have done in this piece of research.

Chaos Theory36

Overall, the research confirms that corruption leads to economic decline in Arendal with large 
regional negative consequences not only for Arendal as a town but also for the region of 
Southern Norway.

In order to study the corruption, the regional-global model [51] made sense describing 
Arendal as a center for shipping until the decline set in the beginning of the 1870s. In the 
industrialization and urbanization of large countries such as Germany, United Kingdom, and 
United States, Arendal as a town and Southern Norway as a region had the timber, ice, fish, 
and other resources that meet the demand internationally.

However, the study of corruption practices is limited to the business elite in Arendal in the 
1870 and 1880s. Corruptions might also have taken part in other towns and villages in the 
region but we have not enough data to draw any conclusions. This is neither the case when it 
comes to business associates at international markets.

The global part of the regional-global model probably made it possible to hide business prac-
tices to a certain extent. In the time period the research project focuses at the 1870s and 1880s 
in Arendal in Southern Norway, it was probably easier than today to avoid paying taxes in 
international deals due to less control, also from the public sector. In those years, people from 
over the class had probably greater possibilities to take advantage of a favorable position. 
Today with stronger means of social control and an active press, opportunistic behavior have 
been reduced to a large extent.

7.2. Can the study have external validity?

The study of the Arendal bank crash in 1886 can have a certain degree of external validity as 
the bank crash in the USA in 2008 led to a global recession that has negative effects on the 
economic situation such as employment and loss of main industries.

The case of the Arendal crash in 1886 was a result of adaptive expectations, meaning that price 
increases, for example, in real estate and on stocks would continue to increase. The assump-
tions were not illustrated through a fall on the US real estate market. Loans were not possible 
to be met leading to dramatic consequences for the private households and firms, alike [26].

Many of the loans were given with bad security to clients with weak financial standings, the 
so-called pub-prime loans. Many banks and other financial institutions ran into problems in 
many situations leading to bankruptcy [26].

Greed was the main motivation for many of the banks leading poor people with limited finan-
cial security into deep trouble. In the years from 2005 until 2007, more than 50% of the allo-
cated loans in the US belonged to the prime loan category indicating opportunistic behavior 
and maybe also corruption [26].

7.3. The argument of random growth confirmed

The research confirms the findings of Geroski et al. [14] arguing that growth rates vary more 
or less randomly across firms over time. As such, it might be argued that corporate growth is 
unpredictable. However, their data also indicate that firms’ current period of high growth rates 
is a reasonable predictor of increases in long-term predictability. Our study confirm such as logic.
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Labor Party has since played a major role in Norwegian politics.
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7. Findings
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regional-global model as a new to historical events as we have done in this piece of research.
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region but we have not enough data to draw any conclusions. This is neither the case when it 
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The global part of the regional-global model probably made it possible to hide business prac-
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in Arendal in Southern Norway, it was probably easier than today to avoid paying taxes in 
international deals due to less control, also from the public sector. In those years, people from 
over the class had probably greater possibilities to take advantage of a favorable position. 
Today with stronger means of social control and an active press, opportunistic behavior have 
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the bank crash in the USA in 2008 led to a global recession that has negative effects on the 
economic situation such as employment and loss of main industries.

The case of the Arendal crash in 1886 was a result of adaptive expectations, meaning that price 
increases, for example, in real estate and on stocks would continue to increase. The assump-
tions were not illustrated through a fall on the US real estate market. Loans were not possible 
to be met leading to dramatic consequences for the private households and firms, alike [26].

Many of the loans were given with bad security to clients with weak financial standings, the 
so-called pub-prime loans. Many banks and other financial institutions ran into problems in 
many situations leading to bankruptcy [26].

Greed was the main motivation for many of the banks leading poor people with limited finan-
cial security into deep trouble. In the years from 2005 until 2007, more than 50% of the allo-
cated loans in the US belonged to the prime loan category indicating opportunistic behavior 
and maybe also corruption [26].

7.3. The argument of random growth confirmed

The research confirms the findings of Geroski et al. [14] arguing that growth rates vary more 
or less randomly across firms over time. As such, it might be argued that corporate growth is 
unpredictable. However, their data also indicate that firms’ current period of high growth rates 
is a reasonable predictor of increases in long-term predictability. Our study confirm such as logic.
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7.4. The importance of crowd practices confirmed

The study shed light on the importance of crowd practices when business decisions are taken 
in closed and secret circles. The important role of the brothers Axel and Oscar Herlofson is 
mentioned in the chapter in order to explain how corruption could take place and lead to the 
bank crash.

Crowd-related practices and seemingly new, more “open” organizational form are receiving 
increased attention in the strategy, organizational design, and innovation literature (Harhoff 
and Lakhani [19]. In this research line, the current research might help to give a contribution 
to how crowds function, both as an organization and how such organization helps to under-
stand the environment in which the organization operates (i.e., [13]).

7.5. Limitations of the study

The results must be regarded as pre-limitary. It is the first study that tries to combine a bank 
crash and corruption to chaos theory and how the regional-global model can be used.

More research in public registers and shipping registers can lead to new insight on how cor-
ruption can have led to the bank crash in Arendal in 1886. We are of the opinion that more 
insights can lead to more insights on other bank crashes, also studies as to how the chances of 
large bank crashes in the future.

On this journey, chaos theory and butterfly effects can be a candidate for further studies on 
bank crashes. Deeper insights on chaos theory can give possibilities to gain more insights 
on bank crashes combining theory with practice, an adequate research tradition from chaos 
theory building on Greek thinking from the early antique.

8. Conclusion

8.1. Corruption confirmed with its negative effects

Corruption was confirmed studying the bank crash in Arendal (Norway) in 1886. Opportunistic 
behavior of the business and political elite lead the town into a deep economic recession with 
negative long-term consequences.

8.2. Future research

More research on the relationship between bank crashes and corruption can give new insights.

We will suggest certain areas that can push research to new levels of knowledge.

The ambidexterity organization literature and corruption? More research on banking crashes 
linked to corporate practices can use insights from the ambidexterity organization literature 
(Birkinshaw and Gupta, 2013, [37]), focusing at strategic decisions and operation in running a 
company, for example, a business bank or a ship owner company.

Chaos Theory38

Blue ocean strategy and corruption? We are of the opinion that in our search for corrupt business 
practices, chaos theory can be combined with a blue ocean strategy [25] looking at the busi-
ness world through untraditional approaches, expanding for mental processes. We believe 
that people who wish to fight corruption can benefit handsomely from using such a way of 
approaching corporate practices.

Coase and corruption? Shipping executives must be brave and ask why they exist at all, as 
Coase [8] did in his article. Coase’s [8] theory of the firm can be regarded as a landmark contri-
bution to help understand organizational boundaries and the competitive dynamics between 
organizations and markets [15, 44, 45, 59].

Coase, in short, argued that the existence of transaction costs in markets leads to the “emer-
gence of the firm.” His seminal contribution was to highlight how the visible hand of an entre-
preneur or a manager ([5, 31]; Baldwin and Von Hippel, 2012) intervenes in markets through 
price mechanism [21].

While Coese’s theory (1937) made significant contributions to the understanding of firms and 
markets, it might be argued that Coase has a rather limited view on social processes in his 
study. We are of the opinion that future studies on corruption in bank crashes can benefit 
from paying more attention to environmental factors, in accordance with current political 
winds found in many parts of the world, for example, in Germany, France, and the USA.

More research on bank crashes using the regional-global model. We assume that bank crashes will become 
a more researched area given the more complex and turbulent business environments. We believe 
that the regional-global model can be a suitable candidate when researching on bank crashes.
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Abstract

The two-parametric functional for weakly interacting fluctuations of liquid density and
composition is studied within the theory based on Landau potential for these fluctuations
in the kind of ensemble of phonons and compound clusters. Using the standard diagram
technique, the task for weak-interacting phonons and clusters is reduced to solving the
equations of proper-energetic functions of quasi-particle interaction by Neumann itera-
tions of Feynman diagrams in “bootstrapping” of Fourier images (propagators) for corre-
lation of the composition of liquid and its topological structure. It is shown that
composition fluctuations as clusters are induced by phonons when impurity atoms being
initially outside the dense part of liquid (introduction solution) become inherent constitu-
ents of the dense part (addition solution). By renormalizing parameters of the model, we
have transformed weakly interacting fluctuations to free “dressed” phonons and clusters
whose autocorrelation functions are characterized by various behaviors in small and large
scales in comparison with the atomic spacing. In the first case, density fluctuations of
liquid do not feel impurities. In the intermediate scale, the liquidmatrix is inhomogeneous
in the form of colloids, which is not observed at the large scales. Dynamics of such liquid
is characterized by diffusion modes of solvent and oscillations of impurities.

Keywords: liquid, density and composition fluctuations, Feynman diagram, bootstrap,
phonon, cluster, renormalization

1. Introduction

It is known that any liquid is characterized by a random chaotic packing of atoms. They are
easily rearranged by little thermal fluctuations in contrast to a crystal whose topological
structure is stable under any thermal fluctuations below the melting point [1].

At the same time, the topological structure of instantaneous dense part of any condensed
matter (liquid, crystal, and amorphous) is represented as configurations of closely packed
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particles in Delaunay simplexes (dense triangular pyramids with particles in their vertices)
that are connected by faces into ramified short-living tetrahedral clusters of density fluctua-
tions [2, 3]. Using the topological criterion [3] in molecular-dynamic (MD) simulation of deter-
ministic nonlinear system of many particles, one can exactly select these simplexes by defining
a maximal length of their edges over the maximal number of obtained simplex clusters in the
MD cell. The statistics of these clusters is gotten for any condensed matter [4] as their two-
dimensional (2D) discrete distribution on cardinality (number of simplexes in the cluster) and on
connectivity (number of their vertexes belonging also to other clusters).

For any crystal, these clusters consist of one and only one simplex, that is, their cardinality is
equal to 1, but their connectivity is distributed normally in the interval of 7–23 (15 on average).
In contrast to the crystal heated, the cluster cardinality of amorphous dense part achieves 10,
and the connectivity of such clusters is more than 3 but less than 20 (11 on average). It means
that the solid state (crystal and amorphous) is characterized by percolation of tetrahedral
dense-part clusters of structural fluctuations.

The topological features of a liquid: (1) the cardinality of liquid dense-part clusters reaches 37, that
is, almost four times more than the solid ones, and (2) there are almost 5% of dense-part clusters
with zero connectivity sufficient for breaking off the percolation of solid dense-part clusters,
providing a fluidity of liquid and forming long chains of liquid dense part. These clusters as dense
configurations of particles are dynamically changed but statistically preserve the multifractal
structure [3].

The existence in liquid metal of such chains with the fractal gyration radius of ~100 nm is
confirmed by the experiments [5] on small-angle-scattering of neutrons. These data are
obtained on the contrast of liquid-dense and nondense parts, which amount to 10–15% from
the contrast of liquid boundary in vacuum.

Thus, a liquid is characterized by existence of dense-part clusters with zero connectivity in
contrast to crystal and amorphous solid which have not such clusters. Moreover, the cardinal-
ity of dense-part clusters in any crystal is equal to 1, while amorphous solid occupies the
intermediate position between crystal and liquid on the discrete 2D distribution of dense-part
clusters [4]. At the same time, the tetrahedral clusters of dense-part open for impurity in
principle two topologically differing positions in liquid and amorphous solid: (1) outside the
dense-part simplexes and (2) in their clusters as compound constituents [6, 7]. The induced by
density-fluctuations polymorphic transition of impurity between these positions is the subject
of given theoretical consideration.

Revealing a mechanism of such self-organization of impurities in liquids will allow to have
found an approach to their structural modification over chosen attributes by impurities.

2. The method of Green function

The method of Green function used in physics of phase transitions allows so to have formu-
lated and disposed questions of theory that one can obtain topologically exact answers without
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knowing an explicit kind of the state equation [8]. This method bases on Landau potential [9]
which usually is represented by a functional of generalized variables expressing parameters of
the local order. Then, structural and phase changes are described by calculus variations of
these parameters [8]. They mean by topological and compound (chemical) order. The first is
understood as ordering of atoms regardless of the particles nature. The second is characterized
by spatial correlation of different atoms and is responsible for the microstratification and
clustering of the particles.

Besides the compound parameter of order (CPO), the two-parametrical fluctuation model of
liquid alloy includes the topological parameter of order (TPO) which can induce by density
fluctuations the clustering of impurity atoms far off from the phase change [10].

We consider the double system, A1�xBx, where x ¼ n2= n1 þ n2ð Þ is the average concentration of
impurity component, B; ni is the density of i-particles number (i = 1, 2) for representing Landau
potential, ΔF, of this system by the functional of two parameters n1; n2ð Þ [10]:

ΔF ¼
ð

V

f Δi, ∇
!
Δi, n, x

� �
d3rþ ΔF0 n; xð Þ (1)

Here, d3r is the differential of 3D space, f is the density of Helmholtz free energy, Δi ¼ ni � ni is

the density fluctuation of i-particles number, ∇
!

is the gradient, n is the average density of
particles, ΔF0 ¼ ΔF Δi ¼ 0ð Þ is the free energy of homogeneous system, and V is its volume.

The Δið r!Þ fluctuations are averaged in the neighborhood of point, r!, in a small volume which

however contains sufficiently great number of particles as well as a distance, where Δið r!Þ
function changes is appreciably more than the interatomic spacing, r0 [8]. In this case, the other
degrees of freedom (electronic, vibration et al) require a time far less than the configuration

field, Δið r!Þ, for reaching equilibrium. Therefore, one can apply the adiabatic approximation for
describing the fluctuations fields of CPO and TPO in double system.

Then, one can limit Taylor expansion of f(Δi) as a function of small parameter, Δi, by the
members of third-order infinitesimal: Δ3

1, Δ
2
1Δ2, and Δ1Δ2

2, which correct the second and third
approximation of perturbation theory for F0. One can also neglect the members of fourth-order

infinitesimal: Δif g4, because the coefficients of Δ2
i in Taylor expansion of f(Δi) are positive, and

the Δi proportional members of Taylor series are equal to zero in (1) owing to the constant
number of particles in the system.

Further for the isotropic liquid, the first derivatives, ∇
!
Δi
!
, can come into Taylor expansion of

f ðΔi, ∇
!
ΔiÞ only in the scalar combination ð∇! Δi� ∇

!
ΔkÞ, and the second ones can be as prod-

ucts: const ∇2
!

Δi and Δi∇2
!

Δk. The first of them gives the insignificant addition into the integral

(1.1), which for the second is transformed into integral of ð∇! Δi� ∇
!
ΔkÞ [11].

Thus, without limiting a task generality for liquid, one can present f as [10]
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obtained on the contrast of liquid-dense and nondense parts, which amount to 10–15% from
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infinitesimal: Δif g4, because the coefficients of Δ2
i in Taylor expansion of f(Δi) are positive, and

the Δi proportional members of Taylor series are equal to zero in (1) owing to the constant
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!
Δi
!
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!
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!
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!

Δi and Δi∇2
!
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Thus, without limiting a task generality for liquid, one can present f as [10]
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Here, μi (n, x, T) � (∂f/∂ni)TV is the chemical potential of i-component, T is Kelvin temperature,
Kik ¼ 2 Uik r0ð Þj jr20z, Uik r0ð Þ is the pair-interaction potential of nearest particles of kind: i and k, and
z is the average coordination number. Considering the homogeneous liquid of double system by
the model of ideal solution, one can present the chemical potential, μi (i = 1, 2), in the form

μ1 ¼ μ10 T; nð Þ þ Tln 1� xð Þ
μ2 ¼ μ20 T; nð Þ þ Tlnx

����� (3)

which, obviously, satisfies to Gibbs-Duhem relation

1� xð Þ ∂μ1
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¼ 0 (4)

Then, we will obtain [7]
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(5)

at the condition that the first bracket in (2) is the quadratic form positively defined. Here,
β ¼ n=Tð Þ ∂μ10=∂n

� �
, β0 ¼ n2=T

� �
∂2μ10=∂n

2
� �

, and P is the static pressure.

For simple liquids, β >> 1 and (∂P/∂n)Tweakly depends on the number density, n, of particles.
Therefore, one can accept β' ~ �β [7].

Transforming the quadratic forms in (2) to diagonal ones, one can present Landau potential as
a sum of free-field Hamiltonians and the weak-interaction potential. Then, we will have the
almost ideal Bose gas of two components [8].
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Using relations (3)–(5), one can do (2) by diagonal square form bymeans of linear transformation

Δ1 ¼ n a11φþ a12χð Þ
Δ2 ¼ n a21φþ a22χð Þ

����� (6)

Substituting (6) into (2), we will find parameters

a11 ¼ 1

a22 ¼ x

a12 ¼ �xα1 1� x α1 � α2=α1ð Þγ½ �
a21 ¼ x 1þ x 1� α1γ� 1� α2ð Þβ� �� �

γ

����������
(7)

for x < 1/γ and zero coefficients at (φ � χ) and ð∇! φ� ∇! χÞ [10]. Here, α1 ¼ K12=K11 � 1,
α2 ¼ K22=K11 � 1, and γ ¼ 1� 1� α1ð Þβ are the alternating-sign factor. As a result, Eq. (2) to
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Labeling a0¼1þ xγ, b0¼1þxα1γ, c¼ 1þ x 1�α1ð Þ2β
h i

=β, λ¼1�α1þx 1�α2ð Þγ, and

ρ!¼ r!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
, we will obtain
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K11=βT

q ð
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What sense have the parameters of order, φ and χ? We obtain φ ≈ Δ1 þ Δ2ð Þ=n and
χ ≈ Δ2=x� Δ1ð Þ=n out of (6) when αi ≈ 1and x < 1. Then, φ is the reduced TPO of liquid, and χ
expresses the reduced CPO for clustering the initially homogeneous liquid alloy to microregions
of different composition, that is, the parameter, χ, describes the compound fluctuation field as
opposed to the parameter, φ, which describes the topological fluctuation field.

Each of these fields can be presented as a set of oscillations of averaged corresponding
collective modes that are Fourier images of topological and compound fluctuations of the
liquid alloy. They are defined by Green functions, G(φ) и G(χ) [12].
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Here, μi (n, x, T) � (∂f/∂ni)TV is the chemical potential of i-component, T is Kelvin temperature,
Kik ¼ 2 Uik r0ð Þj jr20z, Uik r0ð Þ is the pair-interaction potential of nearest particles of kind: i and k, and
z is the average coordination number. Considering the homogeneous liquid of double system by
the model of ideal solution, one can present the chemical potential, μi (i = 1, 2), in the form
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at the condition that the first bracket in (2) is the quadratic form positively defined. Here,
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, and P is the static pressure.

For simple liquids, β >> 1 and (∂P/∂n)Tweakly depends on the number density, n, of particles.
Therefore, one can accept β' ~ �β [7].

Transforming the quadratic forms in (2) to diagonal ones, one can present Landau potential as
a sum of free-field Hamiltonians and the weak-interaction potential. Then, we will have the
almost ideal Bose gas of two components [8].
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for x < 1/γ and zero coefficients at (φ � χ) and ð∇! φ� ∇! χÞ [10]. Here, α1 ¼ K12=K11 � 1,
α2 ¼ K22=K11 � 1, and γ ¼ 1� 1� α1ð Þβ are the alternating-sign factor. As a result, Eq. (2) to
x2 becomes
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What sense have the parameters of order, φ and χ? We obtain φ ≈ Δ1 þ Δ2ð Þ=n and
χ ≈ Δ2=x� Δ1ð Þ=n out of (6) when αi ≈ 1and x < 1. Then, φ is the reduced TPO of liquid, and χ
expresses the reduced CPO for clustering the initially homogeneous liquid alloy to microregions
of different composition, that is, the parameter, χ, describes the compound fluctuation field as
opposed to the parameter, φ, which describes the topological fluctuation field.

Each of these fields can be presented as a set of oscillations of averaged corresponding
collective modes that are Fourier images of topological and compound fluctuations of the
liquid alloy. They are defined by Green functions, G(φ) и G(χ) [12].
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In the integral (9), Hamiltonian (2) defines the change of free energy of weak-interacting long-
wave phonons and clusters in the double alloy. In the adiabatic approximation, one can take into
account only the given ordering (φ, χ) without caring of other variables of the system. Then, we

will define the equilibrium fields, φðρ!Þ and χðρ!Þ, in the minimum of ΔF(φ, χ) [8]. This condition
looks like Euler variation equation which for the entered parameters of order gives equations [10].

�b20 ∇
! 2φþ a20φ� a30φ

2=2 ¼ x λφχþ x 1� α1ð Þ2χ2=2
h i

x α2
1 � α2

� �
∇
! 2χþ cχ� λφ2=2 ¼ x 1� α1ð Þ2φχ

������
(10)

Using the standard diagram techniques [11] for averaged collective variables, one can reduce the
task for weak-interacting phonons and clusters to solve the equations of proper-energetic func-

tions of interacting quasi-particles [10]. For this, we use an averaged correlator 〈ϕðρ!Þ � ϕðρ! 0Þ〉
which is Green function at ρ! 0 ¼ 0 [8]:

Gφ ρ!
� �

¼ φ ρ!
� �

� φ 0ð Þ
D E

(11)

In such case, one can present the effects of alloy fluctuation nonhomogeneity as the integrals

containing correlation functions, Gφðρ!Þ and Gχðρ!Þ or their spectral densities

φ k
!� �

� φ k
! 0
� �D E

¼ G
k
! φð Þδ k

! � k
! 0

� �

χ k
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� χ k
! 0
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k
! χð Þδ k

! � k
! 0
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�������
(12)

obtained by Fourier conversion:

φ ρ!
� �

¼
ð
ei k

!
ρ!φ k

!� �
d3k= 2πð Þ3

χ ρ!
� �

¼
ð
ei k

!
ρ!χ k

!� �
d3k= 2πð Þ3

��������
(13)

where φð� k
!Þ ¼ φ∗ðk!Þ and χð� k

!Þ ¼ χ∗ð k!Þ. According to Wiener-Khinchin theorem, Giðρ!Þ and
G

k
! ið Þ (i = φ, χ) are equivalent functions because they are connected by Fourier conversion

Gi ρ!
� �

¼
ð
G

k
! ið Þei k

!
ρ!d3k= 2πð Þ3 (14)

Thanking δ-normalization of φð k!Þ and χð k!Þ, one can change the differential equations (10) to

the algebraic ones for Fourier-images of Green functions: G
k
!
�
φÞ ¼ 〈jφð k!Þj2〉. We will calculate

them in approximation of the perturbation theory by means of iterations and Neumann series
of Feynman diagrams [13].
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3. The formalism of Feynman diagrams

For “bare” phonon propagator G0
k
! φð Þ, determined by the first equation of system (10) without

the member on the right (x = 0), we have [10]

a20 þ b20k
2� �
G0

k
! φð Þ ¼ a30=2
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F
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where F
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φðρ!Þ� is the iteration procedure presented by the chain

ð16Þ

which is converted into the recurrence form [12]
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and has the analytic solution
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under the condition: jΣ0ðk
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2Þ < 1. Here, Σ0ðk
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φð Þ (19)

and gp! φð Þ ¼ a20 þ b20p
2

� ��1
as the solution of (15) with unit on the right. From the second

equation of system (10) without the member on the right, we obtain the equation for “bare”
cluster propagator, G0

k
! χð Þ [10]:

cþ x α2 � α2
1
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k2
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k
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The solution of this equation converted into the recurrence form has the graphic form

0
(χ)
k
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2
p

2

k k p k

ð21Þ

and the analytic one under the conditions, jΠ0ð k
!Þj=½cþ xðα2 � α2

1Þk2� < 1 and j k! j < 1:
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In the integral (9), Hamiltonian (2) defines the change of free energy of weak-interacting long-
wave phonons and clusters in the double alloy. In the adiabatic approximation, one can take into
account only the given ordering (φ, χ) without caring of other variables of the system. Then, we

will define the equilibrium fields, φðρ!Þ and χðρ!Þ, in the minimum of ΔF(φ, χ) [8]. This condition
looks like Euler variation equation which for the entered parameters of order gives equations [10].
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G0
k
! χð Þ ¼ cþ x α2 � α2

1

� �
k2 �Π0 k

!� �h i�1
> 0 (22)

Here, Π0ðk
!Þ is the phonon-proper-energetic function determined by the equation [10]
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p! φð ÞG0

k
!�p!

φð Þ (23)

The solution (22) of the Eq. (20) defines the propagator of induced compound field entering in
Hamiltonian (9), that is, the clusters are generated forcedly by phonons unlike their free field
with the propagator, G0

k
! φð Þ, whose fluctuations are formed spontaneously.

The natural development of this idea is the “bootstrap” hypothesis [14] which consists in the
following. The fluctuations of CPO, χ, arising at the interaction of phonons deform partially the
density-fluctuations field, φ, “dressing” the propagator, G0

k
! φð Þ, by the proper-energetic function
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defined by the members of the first equation of system (10) on the right. The graphic and
analytic solution of this equation is [10]
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and
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This formula makes sense under the obvious condition jΣ1ð k
!ÞjG0

k
!ðφÞ < 1.

Now, one can analytically express the first (topological) bootstrapping of deformed CPO field
by replacing function, G0

k
! φð Þ, in (23) by “dressed” phonon propagator, G

k
! φð Þ:
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and its substitution in the formula (22) instead of Π0ð k
!Þ. It is possible under the condition:

jΠ1ð k
!Þj=½cþ xðα2 � α2

1Þk2� < 1. Taking into account the member in the second equation of

system (10) on the right gives for propagator, G0
k
!ðχÞ, the proper-energetic function in the

final form
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¼ x2 1� α1ð Þ4
ð

d3p

2πð Þ3G
0
p! χð ÞG

k
!�p!

φð Þ (28)

This is expressed in graphic and analytic forms by

( )
k
G

0
( )
k
G

2
( )kχ χ

ð29Þ

and

G
k
! χð Þ ¼ 1=G0

k
! χð Þ �Π2 k

!� �h i�1
> 0 (30)

under the condition jΠ2ð k
!ÞjG0

k
!ðχÞ < 1.

Thus, one can find the fluctuation fields of the liquid density and compound in the form of
autocorrelation functions of impurity concentration, x, and the parameters α1;α2; β

� �
by means

of the graphic, algebraic, and integral Eqs. (17)–(19) and (21)–(30).

4. The coherent propagators of phonons and clusters

One can find the solutions of the Eq. (10) in the form of phonons and clusters that are averaged
on ensemble of the casual states defined by Hamiltonian (9). The representation of own functions

of this Hamiltonian by flat waves with k = j k! j < 1 is a good approximation for the impurity
content far from the saturation of liquid alloy.

For dilute solutions (x << 1), one can restrict the proper-energetic functions (19), (24), (27), (28)
by the second degree of k and present the propagators (18), (22), (26), (30) in the form [10].

G0
k
! φð Þ ¼ a0 þ b0k2

� ��1

G
k
! φð Þ ¼ aþ bk2

� ��1

G0
k
! χð Þ ¼ u0 þ v0k2

� ��1

G
k
! χð Þ ¼ uþ vk2

� ��1

��������������

(31)

At such restriction, it is easy to find all the proper energetic functions. For this, we will
substitute (31) into (24), (27), and (28) and transform these multiple integrals to the kind

Ilm kð Þ ¼
ð∞

0

σl þ τlp2
� ��1

σm þ τmj k
!� p! j2

� ��1
d3p= 2πð Þ3 ¼ arctg

ΛlΛmk
Λl þΛm

� �
=4πτlτmk (32)
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G0
k
! χð Þ ¼ cþ x α2 � α2

1

� �
k2 �Π0 k

!� �h i�1
> 0 (22)

Here, Π0ðk
!Þ is the phonon-proper-energetic function determined by the equation [10]

Π0 k
!� �

¼ λ2

8

ð
d3p

2πð Þ3G
0
p! φð ÞG0

k
!�p!

φð Þ (23)

The solution (22) of the Eq. (20) defines the propagator of induced compound field entering in
Hamiltonian (9), that is, the clusters are generated forcedly by phonons unlike their free field
with the propagator, G0

k
! φð Þ, whose fluctuations are formed spontaneously.

The natural development of this idea is the “bootstrap” hypothesis [14] which consists in the
following. The fluctuations of CPO, χ, arising at the interaction of phonons deform partially the
density-fluctuations field, φ, “dressing” the propagator, G0

k
! φð Þ, by the proper-energetic function

Σ1 k
!� �

¼ x2λ2
ð

d3p

2πð Þ3G
0
p! φð ÞG0

k
!�p!

χð Þ þ x4 1� α1ð Þ4
8

ð
d3p

2πð Þ3G
0
p! χð ÞG0

k
!�p!

χð Þ (24)

defined by the members of the first equation of system (10) on the right. The graphic and
analytic solution of this equation is [10]

( )
k
G

0
( )
k
G

1
( )kϕ ϕ

ð25Þ

and

G
k
! φð Þ ¼ 1=G0

k
! φð Þ � Σ1 k

!� �h i�1
> 0 (26)

This formula makes sense under the obvious condition jΣ1ð k
!ÞjG0

k
!ðφÞ < 1.

Now, one can analytically express the first (topological) bootstrapping of deformed CPO field
by replacing function, G0

k
! φð Þ, in (23) by “dressed” phonon propagator, G

k
! φð Þ:

Π1 k
!� �

¼ λ2

8

ð
d3p

2πð Þ3Gp! φð ÞG
k
!�p!

φð Þ (27)

and its substitution in the formula (22) instead of Π0ð k
!Þ. It is possible under the condition:

jΠ1ð k
!Þj=½cþ xðα2 � α2

1Þk2� < 1. Taking into account the member in the second equation of

system (10) on the right gives for propagator, G0
k
!ðχÞ, the proper-energetic function in the

final form
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Π2 k
!� �

¼ x2 1� α1ð Þ4
ð

d3p

2πð Þ3G
0
p! χð ÞG

k
!�p!

φð Þ (28)

This is expressed in graphic and analytic forms by

( )
k
G

0
( )
k
G

2
( )kχ χ

ð29Þ

and

G
k
! χð Þ ¼ 1=G0

k
! χð Þ �Π2 k

!� �h i�1
> 0 (30)

under the condition jΠ2ð k
!ÞjG0

k
!ðχÞ < 1.

Thus, one can find the fluctuation fields of the liquid density and compound in the form of
autocorrelation functions of impurity concentration, x, and the parameters α1;α2; β

� �
by means

of the graphic, algebraic, and integral Eqs. (17)–(19) and (21)–(30).

4. The coherent propagators of phonons and clusters

One can find the solutions of the Eq. (10) in the form of phonons and clusters that are averaged
on ensemble of the casual states defined by Hamiltonian (9). The representation of own functions

of this Hamiltonian by flat waves with k = j k! j < 1 is a good approximation for the impurity
content far from the saturation of liquid alloy.

For dilute solutions (x << 1), one can restrict the proper-energetic functions (19), (24), (27), (28)
by the second degree of k and present the propagators (18), (22), (26), (30) in the form [10].

G0
k
! φð Þ ¼ a0 þ b0k2

� ��1

G
k
! φð Þ ¼ aþ bk2

� ��1

G0
k
! χð Þ ¼ u0 þ v0k2

� ��1

G
k
! χð Þ ¼ uþ vk2

� ��1

��������������

(31)

At such restriction, it is easy to find all the proper energetic functions. For this, we will
substitute (31) into (24), (27), and (28) and transform these multiple integrals to the kind

Ilm kð Þ ¼
ð∞

0

σl þ τlp2
� ��1

σm þ τmj k
!� p! j2

� ��1
d3p= 2πð Þ3 ¼ arctg

ΛlΛmk
Λl þΛm

� �
=4πτlτmk (32)
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where Λl ¼
ffiffiffiffiffiffiffiffiffiffi
τl=σl

p
. Under the condition of k < 1=Λl þ 1=Λm, one can transform (32) into

Taylor expansion on k up to the second member [10]:

Ilm kð Þ ffi ΛlΛm

4πτlτm Λl þΛmð Þ 1� ΛlΛm

Λl þΛm

� �2 k2

3

" #
(33)

Substituting (33) into (19), (24), (27), and (28), we will obtain

Σ0 kð Þ ¼ a50
64πb30

1� b20k
2

12a20

� �
(34)

Σ1 kð Þ ¼ x2

4πv0
λ2

b0
ffiffiffi
a0
b0

p þ ffiffiffi
u0
v0

p� �þ x2 1� α1ð Þ2
16

ffiffiffiffiffiffiffiffiffi
u0v0

p
" #

� x2k2

12πv0
λ2

b0
ffiffiffi
a0
b0

p þ ffiffiffi
u0
v0

p� �3 þ
x2v0 1� α1ð Þ2

64
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0ð Þ3v0

q

2
64

3
75 (35)

Π1 kð Þ ¼ λ2

64π
ffiffiffiffiffiffiffi
ab3

p 1� bk2

12a

� �
(36)

Π2 kð Þ ¼ x2 1� α1ð Þ2
4πbv0

ffiffi
a
b

p þ ffiffiffi
u0
v0

p� � 1� k2

3
ffiffi
a
b

p þ ffiffiffi
u0
v0

p� �2
 !

(37)

Now using formulas (18), (31), and (34), we will obtain

a0 ¼ a20 1� a0=b0ð Þ3
64π

 !

b0 ¼ b20 1þ a0=b0ð Þ3
768π

 !

�����������

(38)

The parameters u0; v0
� �

can be obtained by means of (22), (31), (36), and the comment to (27)

u0 ¼ c� λ2

64π
ffiffiffiffiffiffiffi
ab3

p

v0 ¼ x α2 � α2
1

� �þ λ2

768π
ffiffiffiffiffiffiffi
a3b

p

���������
(39)

At last, the mutual solution of (26) and (30) gives the parameters of “dressed” phonon and
cluster propagators, G

k
! φð Þ and G

k
! χð Þ:

a ¼ a0 � x2

4πv0
λ2=b0ffiffiffi
a0
b0

p þ ffiffiffi
u0
v0

p� �þ x2 1� α1ð Þ2
16

ffiffiffiffiffiffiffiffiffi
u0v0

p
 !

b ¼ b0 þ x2

12πv0
λ2=b0
ffiffiffi
a0
b0

p þ ffiffiffi
u0
v0

p� �3 þ
x2 1� α1ð Þ2

64
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0ð Þ3=v0

q

0
B@

1
CA

�������������

(40)
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u ¼ u0 � x2 1� α1ð Þ2
4πbv0

ffiffi
a
b

p þ ffiffiffi
u0
v0

p� �

v ¼ v0 þ x2 1� α1ð Þ2

12πbv0
ffiffi
a
b

p þ ffiffiffi
u0
v0

p� �3

����������
(41)

It means that the renormalization procedure of the model (9) parameters carries out isomor-
phic transformation of weak-interacting fields of TPO and CPO into the ensemble of free
“dressed” phonons and clusters with Hamiltonian

ΔF φ;χð Þ ¼ nK11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11=βT

q ð

V βT
K11
ð Þ3=2

d3ρ
a
2
φ2 þ b

2
∇
!
φ

� �2
þ x

u
2
χ2 þ v

2
∇
!
χ

� �2� �� �
(42)

under the condition a > 0 and u > 0. In this representation, the correlation functions for TPO
and CPO functions look like:

Gφ ρ
� � ¼ βT

K11

� �3=2 exp � ρ
Λφ

� �

4πβρnb

Gχ ρ
� � ¼ βT

K11

� �3=2 exp � ρ
Λχ

� �

4πβρnv

�����������

(43)

where Λφ ¼ ffiffiffiffiffiffiffi
b=a

p
and Λχ ¼ ffiffiffiffiffiffiffiffi

v=u
p

. It is easy to see that Gi ρ
� �

∝ρ�1 at ρ < Λi, and this function
exponentially works for zero, when ρ > Λi.

It is clear that the Eq. (40) is obtained under the condition: k < 1=Λ0
φ ¼

ffiffiffiffiffiffiffiffiffiffiffi
a0=b0

q
, that is equivalent

to j ρ! j > Λ0
φ, that is, the relation, Gφ ρ!

� �
� j ρ! j�1, is valid for the interval, Λ0

φ < j ρ! j < Λφ.

Under the condition: j ρ! j < Λ0
φ, it is necessary to replace the correlator, G

k
! φð Þ, by the “bare”

propagator, G0
k
! φð Þ, with the parameters (39).

Thus, the TPO fluctuations in the liquid alloy are characterized by various behaviors in small

and large scales in comparison with Λ0
φ. In the case of j ρ! j < Λ0

φ, density fluctuations of liquid

do not feel impurities. When Λ0
φ < j ρ! j < Λφ, the liquid matrix is inhomogeneous in the form

of impurity colloids, and for j ρ! j > Λφ, such heterogeneity is not observed at all [10].

5. Stratification of impurity by density fluctuations of liquid alloy

The structural modification of the liquid alloy at varying the system parameters x;α1;α2; β
� �

is characterized by changing the correlation radii Λϕ and Λχ of Green functions (43). They
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where Λl ¼
ffiffiffiffiffiffiffiffiffiffi
τl=σl

p
. Under the condition of k < 1=Λl þ 1=Λm, one can transform (32) into

Taylor expansion on k up to the second member [10]:

Ilm kð Þ ffi ΛlΛm

4πτlτm Λl þΛmð Þ 1� ΛlΛm

Λl þΛm

� �2 k2

3

" #
(33)

Substituting (33) into (19), (24), (27), and (28), we will obtain

Σ0 kð Þ ¼ a50
64πb30

1� b20k
2

12a20

� �
(34)

Σ1 kð Þ ¼ x2

4πv0
λ2

b0
ffiffiffi
a0
b0

p þ ffiffiffi
u0
v0

p� �þ x2 1� α1ð Þ2
16

ffiffiffiffiffiffiffiffiffi
u0v0

p
" #

� x2k2

12πv0
λ2

b0
ffiffiffi
a0
b0

p þ ffiffiffi
u0
v0

p� �3 þ
x2v0 1� α1ð Þ2

64
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0ð Þ3v0

q

2
64

3
75 (35)

Π1 kð Þ ¼ λ2

64π
ffiffiffiffiffiffiffi
ab3

p 1� bk2

12a

� �
(36)

Π2 kð Þ ¼ x2 1� α1ð Þ2
4πbv0

ffiffi
a
b

p þ ffiffiffi
u0
v0

p� � 1� k2

3
ffiffi
a
b

p þ ffiffiffi
u0
v0

p� �2
 !

(37)

Now using formulas (18), (31), and (34), we will obtain

a0 ¼ a20 1� a0=b0ð Þ3
64π

 !

b0 ¼ b20 1þ a0=b0ð Þ3
768π

 !

�����������

(38)

The parameters u0; v0
� �

can be obtained by means of (22), (31), (36), and the comment to (27)

u0 ¼ c� λ2

64π
ffiffiffiffiffiffiffi
ab3

p

v0 ¼ x α2 � α2
1

� �þ λ2

768π
ffiffiffiffiffiffiffi
a3b

p

���������
(39)

At last, the mutual solution of (26) and (30) gives the parameters of “dressed” phonon and
cluster propagators, G

k
! φð Þ and G

k
! χð Þ:

a ¼ a0 � x2

4πv0
λ2=b0ffiffiffi
a0
b0

p þ ffiffiffi
u0
v0

p� �þ x2 1� α1ð Þ2
16

ffiffiffiffiffiffiffiffiffi
u0v0

p
 !

b ¼ b0 þ x2

12πv0
λ2=b0
ffiffiffi
a0
b0

p þ ffiffiffi
u0
v0

p� �3 þ
x2 1� α1ð Þ2

64
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0ð Þ3=v0

q

0
B@

1
CA

�������������

(40)
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u ¼ u0 � x2 1� α1ð Þ2
4πbv0

ffiffi
a
b

p þ ffiffiffi
u0
v0

p� �

v ¼ v0 þ x2 1� α1ð Þ2

12πbv0
ffiffi
a
b

p þ ffiffiffi
u0
v0

p� �3

����������
(41)

It means that the renormalization procedure of the model (9) parameters carries out isomor-
phic transformation of weak-interacting fields of TPO and CPO into the ensemble of free
“dressed” phonons and clusters with Hamiltonian

ΔF φ;χð Þ ¼ nK11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11=βT

q ð

V βT
K11
ð Þ3=2

d3ρ
a
2
φ2 þ b

2
∇
!
φ

� �2
þ x

u
2
χ2 þ v

2
∇
!
χ

� �2� �� �
(42)

under the condition a > 0 and u > 0. In this representation, the correlation functions for TPO
and CPO functions look like:

Gφ ρ
� � ¼ βT

K11

� �3=2 exp � ρ
Λφ

� �

4πβρnb

Gχ ρ
� � ¼ βT

K11

� �3=2 exp � ρ
Λχ

� �

4πβρnv

�����������

(43)

where Λφ ¼ ffiffiffiffiffiffiffi
b=a

p
and Λχ ¼ ffiffiffiffiffiffiffiffi

v=u
p

. It is easy to see that Gi ρ
� �

∝ρ�1 at ρ < Λi, and this function
exponentially works for zero, when ρ > Λi.

It is clear that the Eq. (40) is obtained under the condition: k < 1=Λ0
φ ¼

ffiffiffiffiffiffiffiffiffiffiffi
a0=b0

q
, that is equivalent

to j ρ! j > Λ0
φ, that is, the relation, Gφ ρ!

� �
� j ρ! j�1, is valid for the interval, Λ0

φ < j ρ! j < Λφ.

Under the condition: j ρ! j < Λ0
φ, it is necessary to replace the correlator, G

k
! φð Þ, by the “bare”

propagator, G0
k
! φð Þ, with the parameters (39).

Thus, the TPO fluctuations in the liquid alloy are characterized by various behaviors in small

and large scales in comparison with Λ0
φ. In the case of j ρ! j < Λ0

φ, density fluctuations of liquid

do not feel impurities. When Λ0
φ < j ρ! j < Λφ, the liquid matrix is inhomogeneous in the form

of impurity colloids, and for j ρ! j > Λφ, such heterogeneity is not observed at all [10].

5. Stratification of impurity by density fluctuations of liquid alloy

The structural modification of the liquid alloy at varying the system parameters x;α1;α2; β
� �

is characterized by changing the correlation radii Λϕ and Λχ of Green functions (43). They
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define the characteristic ranges of observed TPO and CPO fluctuations [8]. Therefore, the
concentration dependence, Λi(x), is interested to consider for different x;α1;α2; β

� �
of the

model (9). At the same time, one should remember that this model is applied only in Taylor

expansion (2) of f ðΔi, ∇
!
ΔiÞ under the conditions [11]: x < 1=4j1þ αi � 1ð Þβj and jij2� �

Λi
<< 1

that are reduced to:
ffiffiffiffiffiffiffiffiffi
b3=a

q
,
ffiffiffiffiffiffiffiffiffiffi
v3=u

p
>> e� 2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β T=2zjJ11jð Þ3

q
=e 1þ zð Þ [10].

The solutions of Eqs. (38)–(41) obtained under these conditions are illustrated in Figures 1–4 by
the graphs of functions, Λϕ(x) and Λχ(x), in logarithmic coordinates for the ranges: 0.095 < α2

1 <
α2 ≤ 1.4 and 10 ≤ β ≤ 150. The last one characterizes liquid metals where the alloy components
have a tendency for demixing at α2

1 < α2 in contrast to clustering at α2
1 > α2. The structural

features of such alloy are discussed below.

One can see that the correlation radius of phonons (Λϕ) is practically not changed with
growing the impurity concentration as opposed to the correlation radius of impurity demixing
(Λχ) which increases: the higher values of αi at α2

1 < α2, the more is. At the same time,
increasing β partially decreases this effect (compare Figures 3 and 4) [10].

Figure 1. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:31, α2 ¼ 0:1, and
β = 10.
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Figure 3. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 1:1, α2 ¼ 1:4, and β = 10.

Figure 2. The graphs of lgΛφ(1) and lgΛχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:89, α2 ¼ 0:8, and β = 10.
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define the characteristic ranges of observed TPO and CPO fluctuations [8]. Therefore, the
concentration dependence, Λi(x), is interested to consider for different x;α1;α2; β

� �
of the

model (9). At the same time, one should remember that this model is applied only in Taylor

expansion (2) of f ðΔi, ∇
!
ΔiÞ under the conditions [11]: x < 1=4j1þ αi � 1ð Þβj and jij2� �

Λi
<< 1

that are reduced to:
ffiffiffiffiffiffiffiffiffi
b3=a

q
,
ffiffiffiffiffiffiffiffiffiffi
v3=u

p
>> e� 2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β T=2zjJ11jð Þ3

q
=e 1þ zð Þ [10].

The solutions of Eqs. (38)–(41) obtained under these conditions are illustrated in Figures 1–4 by
the graphs of functions, Λϕ(x) and Λχ(x), in logarithmic coordinates for the ranges: 0.095 < α2

1 <
α2 ≤ 1.4 and 10 ≤ β ≤ 150. The last one characterizes liquid metals where the alloy components
have a tendency for demixing at α2

1 < α2 in contrast to clustering at α2
1 > α2. The structural

features of such alloy are discussed below.

One can see that the correlation radius of phonons (Λϕ) is practically not changed with
growing the impurity concentration as opposed to the correlation radius of impurity demixing
(Λχ) which increases: the higher values of αi at α2

1 < α2, the more is. At the same time,
increasing β partially decreases this effect (compare Figures 3 and 4) [10].

Figure 1. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:31, α2 ¼ 0:1, and
β = 10.
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Figure 3. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 1:1, α2 ¼ 1:4, and β = 10.

Figure 2. The graphs of lgΛφ(1) and lgΛχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:89, α2 ¼ 0:8, and β = 10.
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6. Impurity clustering induced by alloy density fluctuations

At α2
1 > α2, the graphs of lg Λϕ(x) and lg Λχ(x) are shown in Figures 5–8 for α1 ¼ 0:6, α2 ¼ 0:3,

and for four values of β in the range of 10–150.

Figure 4. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 1:1, α2 ¼ 1:4, and
β = 150.

Figure 5. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and β = 10.
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Figure 6. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and
β = 50.

Figure 7. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and
β = 100.
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6. Impurity clustering induced by alloy density fluctuations

At α2
1 > α2, the graphs of lg Λϕ(x) and lg Λχ(x) are shown in Figures 5–8 for α1 ¼ 0:6, α2 ¼ 0:3,

and for four values of β in the range of 10–150.

Figure 4. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 1:1, α2 ¼ 1:4, and
β = 150.

Figure 5. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and β = 10.
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Figure 6. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and
β = 50.

Figure 7. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and
β = 100.
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It turned out that Λχ decreases sharply at some critical point, xc. This indicates the decay of
CPO fluctuations of double alloy into compound clusters on the background of long-wave
density fluctuations of liquid. One can see that the range of impurity concentration of clusters
existence decreases with growing the rigidity, β, of condensed matter.

At the same time, xc does not practically change because this point is defined by the value of
α2
1 � α2 which is constant. The following sharp increase of the CPO correlation radius (see

Figures 7 and 8) is interpreted as aggregation of clusters [10]. The observed growing of TPO
correlation radius, Λϕ(x), can be caused by impurity precipitations that do more lengthy the
density fluctuations.

7. Conclusions

According to the two-parametric model represented above, density fluctuations of liquid
induce mono-ordering impurity in micro-regions at α2

1 < α2 (see Figures 2–4) and its clustering
with basic component at α2

1 > α2 (see Figures 5–8). Such self-organization of liquid alloy has
no thermodynamic singularities of the first-order phase transition because it has continuous
character without the potential jump and concerns only to change the impurity state in liquid
alloy, that is, it is interpreted as a component phase transition of the first order [15].

Figure 8. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and
β = 150.
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The scale of this transition increases with growing the concentration and bond force of impu-
rity particles and it decreases with growing the rigidity of condensed matter inclined to
stratification of components ðα2

1 < α2Þ. For opposite components inclined to clustering
ðα2

1 > α2Þ, the composition fluctuations of double alloy decay to local states in the form of
quasi-molecular fluctuations.

By renormalizing parameters of this model, we have transformed weakly interacting fluctua-
tions to free “dressed” phonons and clusters whose autocorrelation functions are characterized
by various behaviors in small and large scales in comparison with the atomic spacing. In the
first case, density fluctuations of liquid do not feel impurities. In the intermediate scale, the
liquid matrix is inhomogeneous in the form of colloids, which is not observed at the large
scales. Dynamics of such liquid is characterized by diffusion modes of solvent and oscillations
of impurities.

At the same time, any liquid can be composed from two structures. The first of them represents
finite and ramified clusters from almost tetrahedrons having common faces in pairs. The
second is locally less dense which includes micropores as elements of free volume of liquid.
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Abstract

The attractive properties of chaos signal that is generated from dynamic systems moti-
vate the researchers to explore the advantage of using this signal type as a carrier in
different communication systems. In this chapter, different types of digital chaos–based
communication system are discussed; in particular, digital communications where ref-
erence signal and its modulated version are transmitted together. This type is called
differential coherent systems. Brief surveys on the recently developed systems are
presented.

Keywords: chaos, coherent systems, non-coherent systems, differentially coherent
systems, DCSK, CDSK, HE-DCSK, TR-DCSK, EF-DCSK

1. Introduction

In digital communication systems, sinusoidal carriers with high frequency are used to carry
information by modulation process where these carriers are deterministic with constant power
over the time of transmission. Another proposed type of carriers is currently analyzed and is
called chaotic. The chaotic signal is non-periodic, random-like, with low cross-correlation and
impulse-like auto correlation. It is derived from dynamical systems, particularly from the
independent state variables. The instantaneous value is often bounded between two constant
peaks determined by the trajectory of the generated maps. To simplify the description of
chaotic signal generation, let us consider the discrete time presentation for the iterative equa-
tion, that is, xn = f(xn� 1,u) where xn is output vector of the state variable sampled at nth instant,
f(xn–1) is the iterative function determined by the map, finally μ is the parameter which controls
the behavior of the chaotic function.

In chaos-based digital communications, bits are mapped to actual non-periodic output of cha-
otic circuits and the sample function for a given symbol is non-periodic and different from one
bit to another [1]. Sample of chaos-based signal for symmetric tent map is shown in Figure 1.
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over the time of transmission. Another proposed type of carriers is currently analyzed and is
called chaotic. The chaotic signal is non-periodic, random-like, with low cross-correlation and
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Based on the previous discussion, receivers of digital chaotic communication systems can be
broadly classified according to the receiver structures such as coherent, non-coherent and
differentially coherent systems [2].

2. Types of chaos-based digital communication systems

2.1. Coherent systems

In coherent systems, a local synchronized copy of each sample function has to be produced at
the receiver. When the transmitted signal is corrupted by the random noise, it will be challeng-
ing to synchronize the local generated carrier with that in the transmitters as in coherent shift
keying (CSK) [1]. The idea of CSK is to map each information bit to chaos bases signal say f1
and f2. If “+1” is to be sent, then chaos signal from generator f1 is to be transmitted with one bit
duration, and if “�1” is to be sent, chaos signal from generator f2 is transmitted with same bit
duration. The receiver should generate exact copy from f1 and f2 to recover the information.
This is done by using dedicated synchronization circuits [3].

2.2. Non-coherent systems

This type of chaos receivers offers simple solution for synchronization problem by estimating
one unique parameter such as power. This is achieved by multiplying and integrating the
product of received sample signal with itself to estimate the signal energy. Chaos ON OFF
keying (COOK) and non-coherent chaos shift keying are a practical implementation of this
idea [4]. In COOK, the signal is transmitted within bit duration only if information “+1” is to be
transmitted. Otherwise, no transmission is taken place at “�1” bit duration. A bit control

Figure 1. Chaotic signal generated by symmetric tent map.
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switch is used to control the emission of signal at the transmitter output. However, obtaining
an optimum threshold to distinguish between signal sets does not depend only on signal
power at the correlator output but also on the noise power estimation that is the major
drawback of such systems [1].

2.3. Differentially coherent systems

Another scheme is developed where a reference signal is followed by another reference signal
modulated by the information bit and called information carrying signal. This arrangement is
known as differentially coherent systems. Here, every bit is presented by two sample func-
tions. In the case of bit 1 transmission, the information is sent by transmitting two identical
sample functions. For bit 0, the reference signal is transmitted and followed by an inverted
copy of the sample function. General structure of the receiver is based on how to correlate the
reference signal with information bearing signal.

Differentially coherent systems show better bit error rate (BER) performance among other
existing chaos-based systems and in different channel conditions [5]. In spite of some structure
complexity, hardware design is studied and tested.

In this chapter, standard differentially coherent schemes are described and tested by computer
simulations, analytical expression to estimate BER in additive white Gaussian channel is
obtained using Gaussian approximation method [6, 7]. A brief description of recently devel-
oped system is discussed.

3. Differential coherent systems

3.1. Differential chaos shift keying

Differential chaos shift keying (DCSK) transmitter structure is shown in Figure 1. Each infor-
mation bit is represented by twin of successive chaotic signal slots with length of samples,
where 2M represents the spreading factor. First time slot contains a reference signal and
second slot contains the information bearing signal. That is simply a delayed version of the
reference signal multiplied by the information bit. Thus, the instantaneous value of the trans-
mitted signal at any instant can be written as

Si ¼
xi 0 < i ≤M

b xi�M M < i ≤ 2M

�
(1)

Average bit energy for a single bit can be given by:

Eb ¼ 2MV xið Þ (2)

where V(.) is the variance operator.

There are many chaotic maps which can be used as a signal source [1, 8]. However, symmetric
tent map is selected to produce the chaotic signal due to its simplicity. Its discrete form is given
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by the equation xn + 1 = 1� 2|xn| where x is uniformly distributed between 1 and �1. It can be
easily shown that E(x) = 0, V xð Þ ¼ 1

3 and V x2
� � ¼ 4

45 [1] where E(.) represents the average
operator [6, 9, 10].

Received signal sample ri = si + ζi is received via noisy channel characterized by Gaussian
distribution where noise sample ζi is stationary random process withE(ζ) = 0 and its power
spectral density given by V ζð Þ ¼ No

2 . The received sample is multiplied by its delayed version
ri�M and the multiplication output is integrated over half bit duration M. Assuming that
synchronization is achieved perfectly at the DCSK receiver shown in Figure 3. Then, the
correlator output ZDCSK at the end of bit duration can be described.

ZDCSK ¼
XM

i¼1

riri�M ¼
XM

i¼1

Si þ ζið Þ Si�M þ ζi�Mð Þ

¼ b
XM

i¼1

x2i þ
XM

i¼1

xi ζi�M þ bζið Þ þ
XM

i¼1

ζiζi�M

(3)

Average value of the correlator output can be determined by the value of information bit in the
first term, while other terms will have mean value of zero due to their statistical independence
[1, 6, 9, 11]. The correlator output is passed to the detector with zero threshold value to
minimize BER as described in (4).

~b ¼ 1 ZDCSK ≥ 0
�1 ZDCSK < 0

�
(4)

As the chaotic signal x is stationary and xi is statistically independent from ζj at any(i, j),
correlator output ZDCSK tends to have Gaussian distribution at sufficient value ofM. Therefore,
BER analytical evaluation of DCSK is obtained by calculating the means and variances of
conditional probability of P(ZDCSK| b = 1) and P(ZDCSK| b = � 1), respectively; then theoretical
estimate of BER can be calculated as (5)

BERDCSK ¼ 1
2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb

4No
1þ 2

5M
Eb

No
þ N0

2Eb
M

� ��1
s0

@
1
A (5)

where erfc y
� � ¼ 2ffiffiffi

π
p
Ð∞
y e�

t2
2 dt.

Two major drawbacks of DCSK systems are as follows: (1) data rate is reduced by half because
of the need of separate reference signal and (2) a technical issue can be generated from
continuous change of switch position in Figure 2.

3.2. CDSK

Sending reference signal and information bearing signals in separate time slot will result in
data rate reduction by half. Instead, orthogonality between each chaotic signal and its delayed
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version can be utilized efficiently by adding the generated chaotic signal with the modulated
version of the previous signal. This scheme is known as correlation delay shift keying (CDSK)
[6]. Information bit is sent by transmitting a signal as the sum of a chaotic sequence xi and of
the delayed chaotic sequence multiplied by the information signal blxi� L, where l is the bit
counter and L is the amount of sequence to be delayed. Hence, the transmitted signal of CDSK
at any instant i is given by

si ¼ xi þ blxi_L l� 1ð ÞM < i ≤ lM (6)

where L ≥M and Eb = 2MV(x).

Compared with structure of DCSK, structure of CDSK transmitter is characterized by
replacing the switch by an adder as illustrated in Figure 4. Data rate is doubled when com-
pared with DCSK because of reference time slot utilization [6]. Putting delay L =M, then the
receiver of CDSK is similar to that DCSK and each received sample ri segment is correlated
with the previous one ri�M. Hence, correlator output ZCDSK can be computed as

Figure 2. DCSK transmitter.

Figure 3. DCSK receiver.
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where erfc y
� � ¼ 2ffiffiffi

π
p
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y e�

t2
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Two major drawbacks of DCSK systems are as follows: (1) data rate is reduced by half because
of the need of separate reference signal and (2) a technical issue can be generated from
continuous change of switch position in Figure 2.

3.2. CDSK

Sending reference signal and information bearing signals in separate time slot will result in
data rate reduction by half. Instead, orthogonality between each chaotic signal and its delayed
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version can be utilized efficiently by adding the generated chaotic signal with the modulated
version of the previous signal. This scheme is known as correlation delay shift keying (CDSK)
[6]. Information bit is sent by transmitting a signal as the sum of a chaotic sequence xi and of
the delayed chaotic sequence multiplied by the information signal blxi� L, where l is the bit
counter and L is the amount of sequence to be delayed. Hence, the transmitted signal of CDSK
at any instant i is given by

si ¼ xi þ blxi_L l� 1ð ÞM < i ≤ lM (6)

where L ≥M and Eb = 2MV(x).

Compared with structure of DCSK, structure of CDSK transmitter is characterized by
replacing the switch by an adder as illustrated in Figure 4. Data rate is doubled when com-
pared with DCSK because of reference time slot utilization [6]. Putting delay L =M, then the
receiver of CDSK is similar to that DCSK and each received sample ri segment is correlated
with the previous one ri�M. Hence, correlator output ZCDSK can be computed as

Figure 2. DCSK transmitter.

Figure 3. DCSK receiver.
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It can be clearly observed that the correlator output ZCDSK contains more intra-signal and noise
terms compared to DCSK. Hence, BER performance is expected to be lower. The cross terms in
(7) is statistically independent and ZCDSK tends to have Gaussian distribution at sufficient
value of M. Theoretical value of BER can be found by calculating the mean and variance of
ZCDSK when the transmitted bit is +1 and �1, respectively. Decoding is performed according to
the same rule in (4) and BER is given by [6].
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3.3. High efficiency-differential chaos shift keying (HE-DCSK)

To enhance the bandwidth efficiency of DCSK and CDSK, a pair of information bits can be
modulated using same reference signal by reusing each reference signal twice [9]. First, refer-
ence signal is modulated with information bit after delay of M sequence as a standard DCSK.
Second, information bit is modulated after the delay of 3 M. Both modulated segments are
added together in the second time slot. The scheme is illustrated in Figure 5. Thus, transmitted
signal which is emitted from HE-DCSK transmitter can be written as:

Si ¼
xi 2kM < i ≤ 2kþ 1ð ÞM

b2kxi_M þ b2k�1xi�3M 2K þ 1ð ÞM < i ≤ 2K þ 1ð ÞM
�

(9)

Figure 4. CDSK transmitter.
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where k is the pair sequence number. Signal is received through AWGN where each received
signal is delayed and correlated twice, first, after M samples delay and second, after 3M as
shown in Figure 6. The scheme represents an extended version of DCSK receiver, therefore the
output of first modulator Zl can be given by:
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(10)

Figure 6. HE-DCSK receiver diagram.

Figure 5. HE-DCSK transmitter diagram.
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where k is the pair sequence number. Signal is received through AWGN where each received
signal is delayed and correlated twice, first, after M samples delay and second, after 3M as
shown in Figure 6. The scheme represents an extended version of DCSK receiver, therefore the
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Figure 6. HE-DCSK receiver diagram.

Figure 5. HE-DCSK transmitter diagram.
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Similarly, Z2 can be calculated by Z2 ¼
PM

i¼1 riri�3M. Average value of the first term in (10)
contains the useful signal energy while the remaining terms are having zero mean. Informa-
tion recovery is performed by comparing Z1 and Z2with zero-based threshold defined by the
following equation.

~b2k ¼
1 Z1 ≥ 0
�1 Z1 < 0

�
(11)

~b2k�1 ¼
1 Z2 ≥ 0
�1 Z2 < 0

�
(12)

Both correlator output Z1 and Z2 exhibit Gaussian distribution. BER of any correlator can be
given as [9]
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3.4. Time reversal-differential chaos shift keying (TR-DCSK)

The system is initially proposed [12] and developed by Albassam [13]. In this scheme, refer-
ence signal is generated and added to its time-reversed version. Hence, no separate time slot
for reference signal is needed. This will generate a symmetric signal around the middle of bit
duration. First half is transmitted directly and the second half is modulated with information
bit. Provided that M is spreading factor, transmitted signal can be given by

Si ¼
xi þ xM�iþ1 0 < i ≤

M
2

b xi þ xM�iþ1ð Þ M
2
< i ≤M

9>=
>;

8><
>:

(14)

Transmitter block diagram is illustrated in Figure 7.

Figure 7. Time reversal DCSK transmitter.
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Channel under investigation is AWGN and the received signal can be written as

ri ¼
xi þ xM�iþ1 þ ζi 0 < i ≤

M
2

b xi þ xM�iþ1ð Þ þ ζi
M
2
< i ≤M

9>=
>;

8><
>:

(15)

At the receiver, each incoming noisy segment undergoes time reversal process. Hence, the
output after the time reversal unit r 0i can be given as

ri 0 ¼
b xM�iþ1 þ xið Þ þ ζM�iþ1 0 < i ≤

M
2

xi þ xM�iþ1ð Þ þ ζM�iþ1
M
2
< i ≤M

9>=
>;

8><
>:

(16)

Perfect bit synchronization is assumed where each incoming signal ri is correlated with time-
reversed version r 0i . Due to signal symmetry, correlator output is integrated over the duration
of M

2 , which is twice as in DCSK and CDSK. This is to avoid the effect of redundant signal

components in the second half (i.e.,> M
2 ). The correlator output Z at the end of first bit duration

can be given as

Z ¼
XM2
i¼1

rir0i ¼
XM2
i¼1
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(17)

Similarly, BER rate can be readily shown to have

BERTRDCSK ¼ erfc
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3.5. Energy efficient-differential chaos shift keying (EF-DCSK)

In all previous systems, each transmitted signal is composed of two separate segments such as
reference signal and information bearing signal. A simplified system with minimum energy
requirement is proposed in Ref. [14]. Simply, a chaos source generates a signal for one bit to be
sent as a reference. Then, the transmitter will decide to send either same reference signal or
newly generated one using a bit controlled switch as shown in Figure 9. For example, if
information bit 1 is transmitted, delayed version of the reference signal is transmitted. Other-
wise, the transmitter will generate a new signal. Therefore, each segment will play a dual role;
one as information bearing signal at the time of bit generation and as a reference signal for the
next bit duration. This eliminates the need for sending reference separately. Without loss of
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In all previous systems, each transmitted signal is composed of two separate segments such as
reference signal and information bearing signal. A simplified system with minimum energy
requirement is proposed in Ref. [14]. Simply, a chaos source generates a signal for one bit to be
sent as a reference. Then, the transmitter will decide to send either same reference signal or
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generality, we will consider the analysis for the first bit b where b∈ {1, 0} and the transmitted
signal Si at the ith instant can be represented as

Si ¼ xi�bM (19)

The source emits M samples for each information bit in addition to the initial reference signal.
Thus, the average bit energy transmitted can be found as.

Eb ¼ lþ 1
l

MVar x2
� �

≈MVar x2
� �

(20)

Information decoding is performed by correlating each incoming signal ri with its delayed

version and the correlation product is averaged over M. Information bit ~b can be extracted by
comparing correlator output with the predefined threshold as shown in Figure 10.

Figure 8. Time reversal DCSK receiver diagram.

Figure 9. Energy efficient DCSK transmitter diagram.
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The received signal ri can be described as ri = si + ζi and the correlator output Zef can be
formulated as

Z ¼
XM

i¼1

riri�M ¼
XM

i¼1

xi�bM þ ζið Þ xi�Mζi�Mð Þ

¼
XM

i¼1

xi�bMxi�Mð Þ þ
XM

i¼1

xi�bMζi�Mð Þ þ
XM

i¼1

xi�Mζið Þ þ
XM

i¼1

ζiζi�Mð Þ
(21)

Signal energy estimation can be obtained only by taking the mean value of first term in (7).
Ideally, this will be either zero or Var(x), all other terms are the zero mean. Obviously, it can be
observed that the number of cross-terms of EF-CDSK correlator is less to that in CDSK.
However, the distance between signal elements (average value of the correlator for each
transmitted bit) is half compared to that in DCSK. Despite all that, the information can be
decoded according to the following rule

~b ¼
1 Z ≥αth

0 Z < αth

(
(22)

where αth is the decoding threshold and it is given by Eb/2.

BER expression can be found by calculating mean and variance of the Gaussian distribution
function of P(Z| b = 1) and P(Z| b = � 1) and can be formulated as
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2
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Figure 10. EF-CDSK receiver.

Chaos-Based Communication Systems
http://dx.doi.org/10.5772/intechopen.71447

71



generality, we will consider the analysis for the first bit b where b∈ {1, 0} and the transmitted
signal Si at the ith instant can be represented as

Si ¼ xi�bM (19)

The source emits M samples for each information bit in addition to the initial reference signal.
Thus, the average bit energy transmitted can be found as.

Eb ¼ lþ 1
l

MVar x2
� �

≈MVar x2
� �

(20)

Information decoding is performed by correlating each incoming signal ri with its delayed

version and the correlation product is averaged over M. Information bit ~b can be extracted by
comparing correlator output with the predefined threshold as shown in Figure 10.

Figure 8. Time reversal DCSK receiver diagram.

Figure 9. Energy efficient DCSK transmitter diagram.

Chaos Theory70

The received signal ri can be described as ri = si + ζi and the correlator output Zef can be
formulated as

Z ¼
XM

i¼1

riri�M ¼
XM

i¼1

xi�bM þ ζið Þ xi�Mζi�Mð Þ

¼
XM

i¼1

xi�bMxi�Mð Þ þ
XM

i¼1

xi�bMζi�Mð Þ þ
XM

i¼1

xi�Mζið Þ þ
XM

i¼1

ζiζi�Mð Þ
(21)

Signal energy estimation can be obtained only by taking the mean value of first term in (7).
Ideally, this will be either zero or Var(x), all other terms are the zero mean. Obviously, it can be
observed that the number of cross-terms of EF-CDSK correlator is less to that in CDSK.
However, the distance between signal elements (average value of the correlator for each
transmitted bit) is half compared to that in DCSK. Despite all that, the information can be
decoded according to the following rule

~b ¼
1 Z ≥αth

0 Z < αth

(
(22)

where αth is the decoding threshold and it is given by Eb/2.

BER expression can be found by calculating mean and variance of the Gaussian distribution
function of P(Z| b = 1) and P(Z| b = � 1) and can be formulated as

BEREFCDSK ¼ 1
2
erfc

Eb

2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
b

M þ EbNo þ MN2
o

4

� �r

0
BB@

1
CCA

¼ 1
2
erfc

ffiffiffiffiffiffiffiffi
Eb

8No

s
1þ 1

M
Eb

No
þM

4
No

Eb

� � !
(23)

Figure 10. EF-CDSK receiver.
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4. Performance evaluation

A simulation result of BER for DCSK, CDSK, HE-DCSK and TR-DCSK schemes BER versus Eb
No

is presented in Figures 11–14 with typical values of M, respectively. For all the systems, it can
be clearly observed that BER performance is decreased by increment of spreading factor M.
This is due to the nonlinear contribution of the last term in (3), (7), (10), and (17) with respect to
other terms which exhibit linear contribution with respect to M.

In Figure 15, an overall comparison between an optimum differentially coherent systems
performance is shown. With respect to DCSK, CDSK system has degradation in performance
by 2–3 dB. This is due to two fundamental reasons: (1) number of cross terms in CDSK
correlator is more than in DCSK and (2) incomplete orthogonality between intra-signal terms
[1, 6, 9], which can affect the correlator output negatively. Additionally, HE-DCDK outperform

DCSK at M = 100 and when Eb
No

is below 17 db. The fact behind this is the reduction in average

bit from 2MVar(x) to 3M
2 Var xð Þ which result in improvement by 1.25 dB. However, this

improvement is vanished due to signal to signal contribution. TR-DCSK always shows better
performance against DCSK, CDSK and HE-DCSK by an average of 2 dB.

In Figure 14, theoretical estimation of BER for all the above mentioned systems in (5), (8), (13)
and (18) is plotted against simulation result. Clearly, there is an acceptable matching between
theoretical expression and simulated version. However, these expressions are derived based
on GA approximation method, which is suitable for the system operating in large spreading
factor. To have more accurate derivation, it is preferred to implement integration method [15].

Figure 11. BER vs. Eb/N for DCSK system at M = 50,100 and 300.
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5. Other differential coherent systems

Many chaotic systems have been suggested to enhance BER and bandwidth efficiency of
DCSK. Single reference segment is used as a reference to modulate and demodulate multiple
successive bits in Ref. [16]. Average bit energy is reduced with bit error rate enhancement.
However, the system is not suitable for secure communications due to easy spectrum prediction

Figure 12. BER vs. Eb/N for CDSK system at M = 50,100 and 300.

Figure 13. BER vs. Eb/N for HE-DCSK system at M = 50,100 and 300.
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In Figure 14, theoretical estimation of BER for all the above mentioned systems in (5), (8), (13)
and (18) is plotted against simulation result. Clearly, there is an acceptable matching between
theoretical expression and simulated version. However, these expressions are derived based
on GA approximation method, which is suitable for the system operating in large spreading
factor. To have more accurate derivation, it is preferred to implement integration method [15].

Figure 11. BER vs. Eb/N for DCSK system at M = 50,100 and 300.
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5. Other differential coherent systems

Many chaotic systems have been suggested to enhance BER and bandwidth efficiency of
DCSK. Single reference segment is used as a reference to modulate and demodulate multiple
successive bits in Ref. [16]. Average bit energy is reduced with bit error rate enhancement.
However, the system is not suitable for secure communications due to easy spectrum prediction

Figure 12. BER vs. Eb/N for CDSK system at M = 50,100 and 300.

Figure 13. BER vs. Eb/N for HE-DCSK system at M = 50,100 and 300.
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in addition to the need for multiple delay elements in both transmitter and receiver which
increase the system complexity. Chaotic signals have fluctuated energy due to randomness
nature of the signal. To have fixed energy, FM-DCSK is proposed in Ref. [17] as a possible

Figure 14. BER vs. Eb/N for TR-DCSK system at M = 50,100 and 300.

Figure 15. Simulation result and theoretical evaluation for DCSK, CDSK, HE-DCSK and TR-DCSK at M = 500.
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solution. Permutation between chaotic samples is implemented to destroy the similarity
between the reference signal and information signal in DCSK. Moreover, permutation is used
to reduce the interference between different users in multiple access-DCSK (MA-DCSK).

Sending both reference and information bearing signal in separate time slot causes a reduction
in bandwidth efficiency of differential coherent systems such as DCSK. Hence, many systems
have been designed to combine both reference signal and information bearing signal in one
time slot. Xu and Wang proposed a code-shifted DCSK (CS-DCSK) system [18]. System is
based on using Walsh code to combine reference signal and information bearing signal in
single time slot rather than sending them separately. An extend version of CS-DCSK which
sent multiple bits using single reference is named as (high data rate-DCSK) [19]. Another
scheme which is based on mapping series of bits into two channels and each encoded output
is consider as an initial condition value for the sequence generator pairs and their outputs are
added and up converted [20]. Implementation of delay diversity scheme as a basic building
block for space time block coder (STBC) is suggested in ref. [21]. Here, bits stream is converted
from series to parallel; an each bit in parallel channel is modulated by DCSK modulators and
followed by analogue space time block coder (STBC). This arrangement gains advantage of
transmission by 5 dB at BER of 1 � 10�4 compared with the single input-single output DCSK.

Efficiency of multicarrier modulation has been used to send multiple bits of modulating each
information bits with subcarrier using multicarrier modulation-DCSK. The system provides a
considerable saving in bandwidth [22]. However, the cost which needs to pay is the complex-
ity of having multiple carrier multipliers in the transmitter side and bank of matched filter on
the receiver side.

Transmitting reference signal followed by information bearing signal is the common signal
format for most of the differential coherent spread spectrum systems which can be affected by
fast fading channel. A suggested scheme to send only one sample form reference signal
followed directly by one sample from information bearing signal is analyzed and tested in
Ref. [23]. The system provides immunity against fading in continuous mobility environment.
System block diagram is almost similar to standard DCSK except for switching timing.

Major drawback of DCSK system is the addition of channel random noise in both signal
segments reference and information bearing signal. Therefore, a noise reduction technique
has been introduced to reduce the noise variance by sending a repeated subsegment of sam-
ples inside one bit duration rather than sending continuous stream of samples. At the receiver,
averaging operation is performed over the repeated segment before the standard correlation
procedure [24]. This enhances the BER performance over other newly developed segments.
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Abstract

In recent years, the application of nonlinear filtering for processing chaotic signals has
become relevant. A common factor in all nonlinear filtering algorithms is that they
operate in an instantaneous fashion, that is, at each cycle, a one moment of time magni-
tude of the signal of interest is processed. This operation regime yields good perfor-
mance metrics, in terms of mean squared error (MSE) when the signal-to-noise ratio
(SNR) is greater than one and shows moderate degradation for SNR values no smaller
than �3 dB. Many practical applications require detection for smaller SNR values (weak
signals). This chapter presents the theoretical tools and developments that allow
nonlinear filtering of weak chaotic signals, avoiding the degradation of the MSE when
the SNR is rather small. The innovation introduced through this approach is that the
nonlinear filtering becomes multimoment, that is, the influence of more than one
moment of time magnitudes is involved in the processing. Some other approaches are
also presented.

Keywords: nonlinear filtering, chaotic systems, Rossler attractor, Lorenz attractor, Chua
attractor, Kalman filter, weak signals, mean squared error

1. Introduction

The detection of chaotic (stochastic) weak signals is relevant (among others) for applications
such as biomedical telemetry [1, 2], seismological signal processing [3], underwater signal
processing [4], interference modeling [5], etc. Effective detection of weak and rather weak
chaotic signals (�3 dB or less) is a challenge whose solution can improve, for example, the link
budget (communication distance). Among different approaches to this problem, one can
mention techniques such as stochastic resonance [4], instantaneous spectral cloning [6], etc.
The problem in this chapter is addressed from the standpoint of nonlinear filtering techniques
which earlier was designed to operate with signal-to-noise ratio (SNR) values bigger than one
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or at least rather close to one (with an acceptable slight degradation as the SNR approaches
�3 dB [7]. Far down �3 dB, the performance of the available filtering methods drops down
sharply and becomes ineffective. One of the possible explanations for this issue is that current
nonlinear filtering algorithms can be considered as one moment in the sense that they operate
in an instantaneous fashion, that is, during each operation cycle, they process an instantaneous
one moment of time magnitude of the received aggregate signal; in the next cycle, a new
instantaneous one moment of time magnitude is processed and so on. This is precisely the
operation rule for all known optimum algorithms and their quasi-optimum versions as well,
for instance, the extended Kalman filter (EKF) [7], but it can also be found in strategies such as
unscented Kalman filter (UKF), Gauss-Hermite filter (GHF), and quadrature Kalman filter
(QKF), among others. One of the goals of this chapter is to describe the detection of weak
chaotic signals applying the principles of noninstantaneous filtering in a block way, that is,
multimoment filtering theory [8], through a real-time implementation in a digital signal
processing (DSP) block. Moreover, some space of this chapter will be dedicated to the condi-
tionally optimum approach for the nonlinear filtering methods as well, together with some
asymptotic methods.

Theoretically, for many cases, the chaos might be represented as an output signal of dissipative
continuous dynamic systems (strange attractors) [9]:

_x ¼ f x tð Þð Þ, x∈Rn, x t0ð Þ ¼ x0, (1)

where f(•) = [f1(x),…fn(x)]
T is a differentiable vector function.

According to the idea of Kolmogorov, the equations for strange attractors (1) can be successfully
transformed in the equivalent stochastic form as a stochastic differential equation (SDE) [9, 10]:

_x ¼ f x tð Þð Þ þ εξ tð Þ: (2)

The influence of a weak external source of white noise is denoted by ξ(t), and the noise
intensities are given in a matrix form ε = [εij]

nxn.

Note that a stationary distribution Wst(x) exists even when the weak white noise component is
tending to zero [11–13].

Nonlinear filtering of chaotic desired signals comes up naturally when SDE (2) is used as
model of chaos. This follows straight from the classical theory of nonlinear filtering for Markov
processes, proposed more than 50 years ago [14, 15] and extensively developed in subsequent
studies [16–21], although those methods are still under development.

From the practical implementation point of view, the nonlinear filtering strategies are approx-
imate (see the references above). This follows from the fact that, in general, there is no
analytical solution for the a posteriori probability density functions when one attempts solving
the Stratonovich-Kushner equations (SKE).

In the following, some of the numerous nonlinear filtering approximate approaches that have
been developed will be presented.

Chaos Theory80

2. Nonlinear filtering for Markovian processes

Let assume that filtering of the following received signal is required:

y tð Þ ¼ s t; x tð Þð Þ þ n0 tð Þ, (3)

where s (�) is a vector function of the “message dependent” desired signal (which is subject of
filtering) of dimension “m,” the received signal is denoted by the vector y(t) (also of dimension
“m”), and n0 is a vector of the white additive noises characterized by the intensity matrix
N0(m � m). The following SDE is used to model the signal s (�) as an n-dimensional Markov
diffusion process [22]:

_x ¼ g t; xð Þ þ ξ tð Þ: (4)

Strictly speaking, Eqs. (4) and (2) are the same SDE, and the vector function g (�) substitutes f (�)
in (2); for (4), D denotes the correspondent matrix of intensities for ξ(�).
Under this assumption ([14, 22] and so on), one can use the so-called Fokker-Planck-Kolmogorov
(FPK) equation in order to solve the a priori probability density function (a priori PDF), for x(t):

∂WPR x; tð Þ
∂t

¼ �
Xn

i¼1

∂
∂xi

gi t; xð ÞWPR x; tð Þ� �þ 1
2

Xn

i¼1

Xn

j¼1

∂2

∂xi∂xj
DijWPR x; tð Þ� �

, (5)

where WPR(x,t0) = W0(x).

The Eq. (5) can be rewritten in another form [21, 23] as well:

∂WPR x; tð Þ
∂t

¼ �divπ x; tð Þ, (6)

or

∂WPR x; tð Þ
∂t

¼ LPR WPR x; tð Þf g, (7)

where π(x, t) is a probabilistic “flow” with components:

π x; tð Þ ¼ gi x; tð ÞWPR x; tð Þ � 1
2

Xn

j¼1

∂
∂xj

DijWPR x; tð Þ� �
: (8)

In Eqs. (5)–(8), {Dij} denote diffusion coefficients of the Markov process and gi x; tð Þ� �n
1 are the

correspondent drift coefficients, and both of them will be used in the Stratonovich sense
[14, 22]; LPR{�} denotes a FPK linear operator.

The integrodifferential equation for the a posteriori probability density function WPS(x, t) is
given by any of the two equivalent expressions (see [14]:
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multimoment filtering theory [8], through a real-time implementation in a digital signal
processing (DSP) block. Moreover, some space of this chapter will be dedicated to the condi-
tionally optimum approach for the nonlinear filtering methods as well, together with some
asymptotic methods.

Theoretically, for many cases, the chaos might be represented as an output signal of dissipative
continuous dynamic systems (strange attractors) [9]:

_x ¼ f x tð Þð Þ, x∈Rn, x t0ð Þ ¼ x0, (1)

where f(•) = [f1(x),…fn(x)]
T is a differentiable vector function.

According to the idea of Kolmogorov, the equations for strange attractors (1) can be successfully
transformed in the equivalent stochastic form as a stochastic differential equation (SDE) [9, 10]:

_x ¼ f x tð Þð Þ þ εξ tð Þ: (2)

The influence of a weak external source of white noise is denoted by ξ(t), and the noise
intensities are given in a matrix form ε = [εij]

nxn.

Note that a stationary distribution Wst(x) exists even when the weak white noise component is
tending to zero [11–13].

Nonlinear filtering of chaotic desired signals comes up naturally when SDE (2) is used as
model of chaos. This follows straight from the classical theory of nonlinear filtering for Markov
processes, proposed more than 50 years ago [14, 15] and extensively developed in subsequent
studies [16–21], although those methods are still under development.

From the practical implementation point of view, the nonlinear filtering strategies are approx-
imate (see the references above). This follows from the fact that, in general, there is no
analytical solution for the a posteriori probability density functions when one attempts solving
the Stratonovich-Kushner equations (SKE).

In the following, some of the numerous nonlinear filtering approximate approaches that have
been developed will be presented.
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2. Nonlinear filtering for Markovian processes

Let assume that filtering of the following received signal is required:

y tð Þ ¼ s t; x tð Þð Þ þ n0 tð Þ, (3)

where s (�) is a vector function of the “message dependent” desired signal (which is subject of
filtering) of dimension “m,” the received signal is denoted by the vector y(t) (also of dimension
“m”), and n0 is a vector of the white additive noises characterized by the intensity matrix
N0(m � m). The following SDE is used to model the signal s (�) as an n-dimensional Markov
diffusion process [22]:

_x ¼ g t; xð Þ þ ξ tð Þ: (4)

Strictly speaking, Eqs. (4) and (2) are the same SDE, and the vector function g (�) substitutes f (�)
in (2); for (4), D denotes the correspondent matrix of intensities for ξ(�).
Under this assumption ([14, 22] and so on), one can use the so-called Fokker-Planck-Kolmogorov
(FPK) equation in order to solve the a priori probability density function (a priori PDF), for x(t):

∂WPR x; tð Þ
∂t

¼ �
Xn

i¼1

∂
∂xi

gi t; xð ÞWPR x; tð Þ� �þ 1
2

Xn

i¼1

Xn

j¼1

∂2

∂xi∂xj
DijWPR x; tð Þ� �

, (5)

where WPR(x,t0) = W0(x).

The Eq. (5) can be rewritten in another form [21, 23] as well:

∂WPR x; tð Þ
∂t

¼ �divπ x; tð Þ, (6)

or

∂WPR x; tð Þ
∂t

¼ LPR WPR x; tð Þf g, (7)

where π(x, t) is a probabilistic “flow” with components:

π x; tð Þ ¼ gi x; tð ÞWPR x; tð Þ � 1
2

Xn

j¼1

∂
∂xj

DijWPR x; tð Þ� �
: (8)

In Eqs. (5)–(8), {Dij} denote diffusion coefficients of the Markov process and gi x; tð Þ� �n
1 are the

correspondent drift coefficients, and both of them will be used in the Stratonovich sense
[14, 22]; LPR{�} denotes a FPK linear operator.

The integrodifferential equation for the a posteriori probability density function WPS(x, t) is
given by any of the two equivalent expressions (see [14]:
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∂WPS x; tð Þ
∂t

¼ LPR WPS x; tð Þf g þ 1
2

F x; tð Þ �
ð∞

�∞

F x; tð ÞWPS x; tð Þdx
2
4

3
5WPS x; tð Þ (9)

or

∂WPS x; tð Þ
∂t

¼ �divbπ x; tð Þ þ 1
2
F x; tð Þ� < F x; tð Þ >½ �WPS x; tð Þ, (10)

where < F x; tð Þ > denotes the averaging of F(x,t) given by < F x; tð Þ >¼ Ð∞
�∞

F x; tð ÞWPS x; tð Þdx,
bπ x; tð Þ is (5), WPR(x, t) is substituted by WPS(x, t), and

F x; tð Þ ¼ y tð Þ � 1
2
s x; tð Þ

� �T
N�1

0 y tð Þ � 1
2
s x; tð Þ

� �
: (11)

The combination of Eqs. (9)–(11) is known as the Stratonovich-Kushner nonlinear equations
(SKE), and they have an appealing physical sense: the first term in (9) represents the dynamics
of the a priori data of x(t). For the second term, the analysis of observations is used to drive the
innovation of the a priori data.

Using any optimization criteria, one can get bx tð Þ (the optimum estimation of x(t)) which comes
as a solution of (9), when y(t) is the input signal, that is, filtering of x(t).

Here, one has to note that Eq. (9) turns into FPK (6) if the intensity of the additive noises N0

grows (the first term in (9) is dominant), and as a consequence, the filtering accuracy dimin-
ishes drastically. In the opposed scenario (large signal-to-noise ratio), the WPS(x, t) tends to the
unimodal Gaussian PDF [14, 20].

Note that the time evolution of WPS(x, t) is completely described by the SKE but, as it was
mentioned earlier, does not provide exact analytical solutions. There are very few exceptions:
linear SDE (4) which yields the well-known Kalman filtering algorithm [14–24], the Zakai
approach [25], and so on. Due to this, the nonlinear filtering algorithms are practically always
approximate. As it was mentioned before, during almost 50 years of intensive research, the
bibliography for nonlinear filtering algorithms has become enormous; in the next section, we
will consider only few of those works taking into account the following considerations:

• the models applied for filtering of chaos correspond to the equations for Rössler, Chua,
and Lorenz strange attractors with n = 3, that is, low dimensional;

• the algorithms for nonlinear filtering have to be of reduced computational complexity in
order to satisfy real-time application requirements;

• the algorithms for nonlinear filtering, according to the aim of the material of the chapter,
have to be able to perform satisfactorily in scenarios with low or very low signal-to-noise
ratios (SNR), although the Gaussian assumption for WPS(x) is not always valid;

•
s x tð Þ; tð Þ ffi x tð Þ; (12)

• All Dij are equal to zero, except D11 ffi D1 [11].
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2.1. Approximate approaches for nonlinear filtering

For the sake of simplicity, it is “easier” to approximate the a posteriori PDF WPS(x, t) than the
nonlinearity at (4) and (9) [16, 17, 19]. In this sense, let us just list some of the approximate
approaches for WPS(x, t):

• Integral or global approximations for WPS(x, t) [20];

• Functional approximations for WPS(x, t) [16, 21];

• Higher Order Statistics (HOS) approximations for WPS(x, t), and so on;

• Gaussian approximations: extended Kalman filter (EKF) [14–24]; unscented Kalman filter
(UKF) [19]; quadrature Kalman filter (QKF) [17]; iterated Kalman filter (IKF), etc.

It is hardly feasible to give a complete overview of all those methods; moreover, not all of them
are adequate, taking into account the observations introduced at the end of the previous section.

Let us start with the extended Kalman filter (EKF): considering WPS(x, t) as a three-

dimensional Gaussian PDF-cWG x; tð Þ, from (9), it is possible to obtain the following equations

for per-component of the mean estimates bxif g31 and for estimates of the elements of the a

posteriori covariance matrix bRij

n o3

i, j¼1
:

_bxi ¼
ð∞

�∞

bπT x; tð Þgrad xi
� �

dxþ 1
2

ð∞

�∞

xiF x; tð ÞcWG x; tð Þdx� bxi
ð∞

�∞

F x; tð ÞcWG x; tð Þdx
2
4

3
5

_bRij ¼
ð∞

�∞

bπT x; tð Þgrad x∘ ix
∘
j

� �
dxþ 1

2

ð∞

�∞

x∘ ix
∘
jF x; tð ÞcWG x; tð Þdx� bRij

ð∞

�∞

F x; tð ÞcWG x; tð Þdx
2
4

3
5,

(13)

where x∘ i ¼ xi � bxi and x∘ j ¼ xj � bxj.
The matrix form [14–16, 20] can be used to represent Eq. (13); however, for some specific
applications, per-component representation (13) could be more adequate (see the following).

It is reasonable to assume convergence to the stationary values Rij for ∀bRij tð Þ when t!∞, and
as a result, the second equation in (13) can be expressed as a system of nonlinear algebraic
equations, with standard numerical solutions. This consideration is relevant for real-time
scenarios, as it significantly simplifies the implementation of the related EKF algorithms.

Functional approximation for WPS(x, t) is, as it was described in [16, 21],

WPS x; tð Þ ¼
Y3

i¼1

WPS xið Þ 1þ
X3
q¼2

Xq�1

j¼1

Rqj

RqqRji
xq � bxq
� �

xj � bxj
� �2

4
3
5: (14)

From (14), we see that the functional approximation for the PDF is sufficiently non-Gaussian
(marginal WPS(xi) is arbitrary), but for “joint” characterization of the vector bx, only elements of

the a posteriori covariance matrix bRij are considered.
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5WPS x; tð Þ (9)
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s x; tð Þ

� �
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The combination of Eqs. (9)–(11) is known as the Stratonovich-Kushner nonlinear equations
(SKE), and they have an appealing physical sense: the first term in (9) represents the dynamics
of the a priori data of x(t). For the second term, the analysis of observations is used to drive the
innovation of the a priori data.

Using any optimization criteria, one can get bx tð Þ (the optimum estimation of x(t)) which comes
as a solution of (9), when y(t) is the input signal, that is, filtering of x(t).

Here, one has to note that Eq. (9) turns into FPK (6) if the intensity of the additive noises N0

grows (the first term in (9) is dominant), and as a consequence, the filtering accuracy dimin-
ishes drastically. In the opposed scenario (large signal-to-noise ratio), the WPS(x, t) tends to the
unimodal Gaussian PDF [14, 20].

Note that the time evolution of WPS(x, t) is completely described by the SKE but, as it was
mentioned earlier, does not provide exact analytical solutions. There are very few exceptions:
linear SDE (4) which yields the well-known Kalman filtering algorithm [14–24], the Zakai
approach [25], and so on. Due to this, the nonlinear filtering algorithms are practically always
approximate. As it was mentioned before, during almost 50 years of intensive research, the
bibliography for nonlinear filtering algorithms has become enormous; in the next section, we
will consider only few of those works taking into account the following considerations:

• the models applied for filtering of chaos correspond to the equations for Rössler, Chua,
and Lorenz strange attractors with n = 3, that is, low dimensional;

• the algorithms for nonlinear filtering have to be of reduced computational complexity in
order to satisfy real-time application requirements;

• the algorithms for nonlinear filtering, according to the aim of the material of the chapter,
have to be able to perform satisfactorily in scenarios with low or very low signal-to-noise
ratios (SNR), although the Gaussian assumption for WPS(x) is not always valid;

•
s x tð Þ; tð Þ ffi x tð Þ; (12)

• All Dij are equal to zero, except D11 ffi D1 [11].
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2.1. Approximate approaches for nonlinear filtering

For the sake of simplicity, it is “easier” to approximate the a posteriori PDF WPS(x, t) than the
nonlinearity at (4) and (9) [16, 17, 19]. In this sense, let us just list some of the approximate
approaches for WPS(x, t):

• Integral or global approximations for WPS(x, t) [20];

• Functional approximations for WPS(x, t) [16, 21];

• Higher Order Statistics (HOS) approximations for WPS(x, t), and so on;

• Gaussian approximations: extended Kalman filter (EKF) [14–24]; unscented Kalman filter
(UKF) [19]; quadrature Kalman filter (QKF) [17]; iterated Kalman filter (IKF), etc.

It is hardly feasible to give a complete overview of all those methods; moreover, not all of them
are adequate, taking into account the observations introduced at the end of the previous section.

Let us start with the extended Kalman filter (EKF): considering WPS(x, t) as a three-

dimensional Gaussian PDF-cWG x; tð Þ, from (9), it is possible to obtain the following equations

for per-component of the mean estimates bxif g31 and for estimates of the elements of the a

posteriori covariance matrix bRij
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where x∘ i ¼ xi � bxi and x∘ j ¼ xj � bxj.
The matrix form [14–16, 20] can be used to represent Eq. (13); however, for some specific
applications, per-component representation (13) could be more adequate (see the following).

It is reasonable to assume convergence to the stationary values Rij for ∀bRij tð Þ when t!∞, and
as a result, the second equation in (13) can be expressed as a system of nonlinear algebraic
equations, with standard numerical solutions. This consideration is relevant for real-time
scenarios, as it significantly simplifies the implementation of the related EKF algorithms.

Functional approximation for WPS(x, t) is, as it was described in [16, 21],

WPS x; tð Þ ¼
Y3

i¼1

WPS xið Þ 1þ
X3
q¼2
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j¼1
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xq � bxq
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xj � bxj
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From (14), we see that the functional approximation for the PDF is sufficiently non-Gaussian
(marginal WPS(xi) is arbitrary), but for “joint” characterization of the vector bx, only elements of

the a posteriori covariance matrix bRij are considered.
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It can be shown that the equations for bxif gn1 and bRij

n o
coincide with those in (13), and the

unique difference would be that one has to apply in (13) the approximation for WPS(x, t)

instead of cWG x; tð Þ. The resulting integrals can be solved either through the Gauss-Hermit
quadrature formula [17, 18] or analytically.

The integral or Global approximation forWPS(x, t) is another approach for approximate solution.
Maybe the experienced reader already noticed that the last two approximations forWPS(x, t) can

be considered as “local” as they offer maximum ofWPS(x, t), estimation of bxif g, and bRij

n o
.

For conditions of significantly large SNR, this is sufficient, but for low SNR, one has to find a
different approach, known as integral approximation. This strategy was suggested as an ade-
quate approximation ofWPS(x, t) together with the PDF’s “tails,” that is, for the whole span of x.

Let us suppose that WPS(x, t) can be characterized as:

WPS x; tð Þ ¼ WPS x;α tð Þð Þ: (15)

Here α is an unknown vector of approximation parameters. As an approximation criterion for
PDF, it is possible to use the Kullback measure; thus, one might obtain the following equation
for the unknown vector α:

_α ¼ LþPR h x; tð Þf g� �þ V�1 tð Þ h x; tð ÞF x; tð Þh i, (16)

where h x; tð Þ ¼ ∂lnWPS x;α tð Þð Þ
∂α , V tð Þ ¼ Ð∞

�∞

∂lnWPS x;α tð Þð Þ
∂α

h iT
WPS x;α tð Þð Þdx ¼ ∂2WPS x;α tð Þð Þ

∂α∂αΤ , LþPR •f g is a

self-adjoint operator to the FPK operator [22].

Now, as an integral approximation of WPS(x, α(t), let us choose the so-called “Dynkin PDF”
with α(t) is the vector of sufficient statistics for WPS(�):

WPS x;α tð Þð Þ ¼ C exp
XK
p¼1

αp tð Þϕp xð Þ þ ϕ0 xð Þ
8<
:

9=
;, (17)

where {φp(x)} are orthogonal multidimensional operators: Laguerre, Hermite, and so on.

One can notice that there is a significant coincidence between (17) and the orthogonal series
characterization of WPS(x, α(t) [22]: even though both apply series of orthogonal functions, in
(17), it is not used for WPS(x, α(t)) but for its monotonical transform ln{WPS(x, α(t)}. So, the
coefficients {αp(t)} can be expressed by means of the cumulants of WPS(x) [22]. Thanks to this,
instead of searching for a solution of (17), hardly possible in an analytically way, one can
search directly equations for the cumulants (HOS) of WPS(x, t) [16, 26].

Here, the HOS approach will be presented because the last problem was addressed in the cited
references. It is worth noticing the following: for real-time scenarios when n > 1, equations for
HOS and Eq. (16) are significantly complex; for n = 1, both strategies are equivalent [26].
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3. Multimoment filtering of chaos

As it follows from the material of Section 2, all the algorithms are “one-moment” in the sense
that they are operating only with the data at each time instant, that is, they are tracking
instantaneously one moment magnitude of the received aggregate signal. As it was shown at
[27], the adequate filtering algorithm (for the one-moment case) is an Extended Kalman Filter
(EKF).

This choice is more or less expected, due to the experience which is already known from the
available references (see above). EKF shows rather good performance for the filtering of
chaotic signals: the mean squared error (MSE) is less than 1% when SNR is about �3 dB, and
for SNR bigger than �3 dB, the results are much better.

In this regard, a question arises: is it possible to improve this approach in the sense of getting
still rather good MSE’s for successively lower thresholds of the SNR with an algorithm of
reasonable complexity? The following material attempts to prove that the answer is “yes,” if
one can apply some additional information from the received aggregate signal taken on
several sequential time instants.

It means that the information has to be considered in the block manner by aggregating data, in
our case, for several time instants ([8, 16, 27], and so on.). The difference between the following
approach and that from the cited references is precisely the aggregated data obtained for many
time instants: multimoment algorithms are carried out through the generalization of the
Stratonovich-Kushner equations (SKE) for the corresponding multimoment data, and there-
fore, in the following, all heuristics for the simplification, considered as Generalized SKE
(GSKE), are not arbitrary but can be taken as generalized heuristics from the “standard” one-
moment SKE (see below). This gives a “hope” to achieve the abovementioned improvement
for the SNR threshold with less complex tools.

It follows from the fact that, as it was shown in [8] (see also the references therein), the GSKE
comes from the same structure as its one-moment prototype. So the way of its simplification
(except for the limiting of the number of time instants) in order to get a quasi-optimum
algorithm, could be done in a similar way as for the one-moment case: approximation of the a
posteriori PDF (characteristic function) in SKE with a minimum set of significant parameters.
Moreover, there is an additional way to improve the accuracy of the quasi-optimum solution
for the GSKE: assume this quasi-optimum algorithm as a “given structure,” as it was proposed
in [16] and also considered in the following.

3.1. Generalization of SKE for the multimoment case

In the same way, as it was underlined earlier, the chaos is “generated” by the equation:

_x ¼ f xð Þ, x∈Rn, x t0ð Þ ¼ x0, (18)

where f(•) = [f1(x),…fn(x)]T is a differentiable vector function and it can be considered as a
degenerated Markov process from the following stochastic equation:
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It can be shown that the equations for bxif gn1 and bRij

n o
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for the SNR threshold with less complex tools.

It follows from the fact that, as it was shown in [8] (see also the references therein), the GSKE
comes from the same structure as its one-moment prototype. So the way of its simplification
(except for the limiting of the number of time instants) in order to get a quasi-optimum
algorithm, could be done in a similar way as for the one-moment case: approximation of the a
posteriori PDF (characteristic function) in SKE with a minimum set of significant parameters.
Moreover, there is an additional way to improve the accuracy of the quasi-optimum solution
for the GSKE: assume this quasi-optimum algorithm as a “given structure,” as it was proposed
in [16] and also considered in the following.

3.1. Generalization of SKE for the multimoment case

In the same way, as it was underlined earlier, the chaos is “generated” by the equation:

_x ¼ f xð Þ, x∈Rn, x t0ð Þ ¼ x0, (18)

where f(•) = [f1(x),…fn(x)]T is a differentiable vector function and it can be considered as a
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_x ¼ f xð Þ þ εξ tð Þ, (19)

where ξ(t) is a vector of “weak” external white noise with the related positively defined matrix
of “intensities” ε = [εij]

n�n.

In the following, one can consider both the ordinary differential equation (ODE) (18) and the
stochastic differential equation (SDE) (19) when the noise intensities tend equally to zero.
Adding the ε term in (19) guarantees the existence of a stationary PDF for x(t) as well, no
matter how small the elements of εmight be [28]. So, one can suppose that this stationary PDF,
WST(x), is known a priori. For our case in practical sense, one can deal actually only with the
stationary PDF, which we assumed is modeled by means of a chaotic process (concretely let us
say the first component, x1(t), of certain attractor model). Certainly WST(x1) can easily be
obtained from WST(x). If the two PDFs coincide in terms of certain fitness criteria, then only
for simplicity in the subsequent developments, the SDE (19) can be substituted by its statisti-
cally equivalent one-dimensional SDE with the same WST(x1):

_x1 ¼ f x1ð Þ þ ffiffiffi
ε

p
ξ tð Þ, (20)

where f x1ð Þ ¼ ε
2

d
dx1

lnWST x1ð Þ and ε in (20) can be considered here as a “scale factor” and can

be chosen by equalizing the average powers of real x1(t) and solution of (20). Formally, there is
no need for all those operations, but then the reader has to be extremely concentrated with
“multiindex” definitions: one index for the number of applied components of the attractor and
another index for the time instant, that is, xm(ti), which might cause confusion in further
developments, as x1(t) is an observable component whose dynamics depends on other
“nonobservable” components. For those reasons, in the following, (20) will be considered as a
model of the desired signal for filtering.

Let us introduce the following notation for the time instants (time moments): t1 < t2 < t3 … <tn
and xi = x(ti), i ¼ 1, n. Then, x tið Þf gn1 forms a vector x(t) = [x(t1),…, x(tn)]

T and Wn(x, t)ffiWn(x1,
…xn; t1,…tn); Wn(x,t) is an a priori PDF for x(t). As it follows from ([16], ch. 5):

∂Wn x; tð Þ
∂ti

¼ Li Wn x; tð Þf g (21)

where Li •f g ¼ � ∂
∂xi

K1 xið Þ þ 1
2
∂2

∂x2i
K2 xið Þ is the FPK operator [16] with K1(xi) = f1(xi), K2(xi) = ε

2. It

is easy to show that by consecutive differentiation one can obtain:

∂nWn x; tð Þ
∂t1…∂tn

¼
Yn

i¼1

Li Wn x; tð Þf g, (22)

LPR •f g ¼
Yn

i¼1

Li •f g: (23)

Certainly, the adjoint operator [16, 22] for the multimoment case is:
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bLPR •f g ¼
Yn

i¼1

bLi •f g, (24)

where bLi ¼ K1 xið Þ ∂
∂xi

þ K2 xið Þ
2

∂2

∂x2i
is a Kolmogorov operator [22].

Let us then introduce the a posteriori n-dimensional PDF Wps(y|x,t) ffi Wps(x,t) for the
multimoment case. Then, repeating formally the development for the SKE, but in this case
generalized for the “n” time case (in the same way as it was done at [27]), one can get:

∂nWps x; tð Þ
∂t1…∂tn

¼ LPR Wps x; tð Þ� �þ 1
2

F x; tð Þ �
ð

Rn

F x; tð ÞWps x; tð Þdx
2
4

3
5Wps x; tð Þ (25)

with t = [t1, …, tn]
T,

F x; tð Þ ¼ y tð Þ � 1
2 x tð Þ� �T

N0
y tð Þ � 1

2
x tð Þ

� �
, (26)

where y(t) = [y(t1), …, y(tn)]
T is the vector of x tið Þf gn1 taken from y(t) = x(t) + n(t) and n(t) is the

AWGN with intensity N0.

Analyzing (25) by comparing it with the standard form of the SKE (see Eqs. (9) and (10) in part
II), one can see that there is a total “structural” identity! The same matter takes place for the a
posteriori cumulants [16, 27], that is:

∂κps
r1,…rn tð Þ

∂t1…∂tn
¼ �jð Þk ∂k

∂λr1
1 ,…∂λrn

n

M bL exp jλTx
� �

F x; tð Þ
n o

M exp jλTx
� �� �

2
4

3
5
λ¼0

þ M exp jλTx
� �

F x; tð Þ� �

M exp jλTx
� �� �

" #

λ¼0

8<
:

9=
;

(27)

where r1+ r2 + … + rn = k, k = 1, 2, ….

One can see from (25) and (26) that those algorithms are rather complex for implementation in
real-time regime. So, in addition to the one-moment SKE, they have to be modified in order to
get the quasi-optimum solution.

3.2. Quasi-optimum solutions. Generalized EKF

One has to know that “quasi-optimum” solutions (for any problem) are based on some heuris-
tics and those heuristics have to be reasonable and based on previous experience in solving
similar problems. In the case of multimoment filtering, the analogies can be the following (of
course implicit considerations for complexity have always to be taken into account):

• The priority will be given to the quasi-linear approximation for nonlinear functions in the
same way as it was assumed for the “standard” one-moment filtering.
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where y(t) = [y(t1), …, y(tn)]
T is the vector of x tið Þf gn1 taken from y(t) = x(t) + n(t) and n(t) is the

AWGN with intensity N0.

Analyzing (25) by comparing it with the standard form of the SKE (see Eqs. (9) and (10) in part
II), one can see that there is a total “structural” identity! The same matter takes place for the a
posteriori cumulants [16, 27], that is:
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where r1+ r2 + … + rn = k, k = 1, 2, ….

One can see from (25) and (26) that those algorithms are rather complex for implementation in
real-time regime. So, in addition to the one-moment SKE, they have to be modified in order to
get the quasi-optimum solution.

3.2. Quasi-optimum solutions. Generalized EKF

One has to know that “quasi-optimum” solutions (for any problem) are based on some heuris-
tics and those heuristics have to be reasonable and based on previous experience in solving
similar problems. In the case of multimoment filtering, the analogies can be the following (of
course implicit considerations for complexity have always to be taken into account):

• The priority will be given to the quasi-linear approximation for nonlinear functions in the
same way as it was assumed for the “standard” one-moment filtering.
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• All algorithms for block processing show that there is in some sense a reasonable block
length for the processed data. Taking into account the complexity limits and that the
covariance function of the chaos initially drops rather fast [29], let us take first n = 2.

• The approximation of the a posteriori PDF (characteristic function) has to apply the
minimum set of first cumulants; one has to remind that, as the order of cumulants grows,
their significance for PDF approximation vanishes [22];

Taking these observations into account, let us take n = 2, that is, two-moment filtering case,
then [16, 22]:

θps λð Þ ffi exp
X2
s¼1

js
s!

XS
r1, r2

κs t1; t2ð Þλr1λr2

( )
, (28)

and cumulants are:

κ psð Þ
r1,…rn tð Þ ¼ �jð Þk ∂k

∂λr1
1 ,…∂λrn

n
lnθps λð Þ

� �

λ¼0
:

Another assumption is that the a posteriori process is supposed to be stationary; then, the one-
moment cumulants for t1 and t2 have to be the same and the only mutual cumulant taken into
account might be κ11(t1, t2). Next, for each moment “t1” and “t2” one-moment cumulants can
be calculated applying Gaussian approximation for the a posteriori PDF, and for the two-
moment case, the “functional approximation” could be applied. In a rigorous sense, the a
posteriori variance κps2 has to be evaluated as κps

2 t1; t2ð Þ, considering the covariance among time
instants “t1” and “t2”; in the following, the heuristic strategy will be introduced, which avoids
the cumbersome calculations.

One can obtain the first two-moment cumulants:

_κ1 ¼< K1 xð Þ > þ 1
2
< xF x; tð Þ > �κ1

2
< xF x; tð Þ >

_κ2 ¼< 2xK1 xð Þ > �κ1 < K1 xð Þ > þεþ 1
2
< x� κ1ð Þ2F x; tð Þ > �κ2

2
< xF x; tð Þ > ,

(29)

where < > is a symbol for the averaging procedure, F x; tð Þ ¼ 1
N0

y tð Þ � 1
2 x tð Þ� �

, and K1(x) is the

drift coefficient for (19).

One has to notice that at (29) κ1(t) is an estimation of the filtered signal (in our case, it is a
chaotic signal); κ2(t) is a measure of the filtering accuracy. As it can be is seen from (29), those
equations were written without any intention for linearization, that is, they are presented in a
generalized form. For the quasi-linear algorithms, it is well known [27] that κ2(t)/N0 is the main
part for the “averaging coefficient” of the second element in the first quasi-linear equation of (29),
that is, it is an averaging value for the instantaneous information actualization from the
entering desired signal plus noise. Thus, if one can reduce κ2 through the two-moment
processing, the accuracy of the quasi-linear method will grow and the challenge stated before
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will be almost solved. To achieve the latter, one can take into account that κ2(t) in the stationary

regime is oscillating around its stationary value κ2 tð Þ ¼ limt!∞ κ2 tð Þ which is commonly
assumed as an accuracy measure in the one-moment case.

The value of κ2 tð Þ can be diminished applying the information from κ11(t) also in the stationary

case, that is, κ11 ¼ limt1, t2!∞ κ11 t1; t2ð Þ; then, it is known that bκ2 ¼ κ2 1� κ2
11

� �
and it is always

less than κ2, if and only if the κ11 ≥ 0; In this way, bκ2 can be used as a new weighting coefficient
in (29). To find κ11(t1,t2) from (27), some cumbersome developments are required which finally
yield to:

∂κ11 t1; t2ð Þ
∂t1∂t2

¼< K1 x1ð ÞK1 x2ð Þ > þ <
x1x2
2

F x; tð Þ > � κ11 t1; t2ð Þ
2

< F x; tð Þ > (30)

and

κ11 ¼
2 < x1x2F x;tð Þ

2 þ 2K1 x1ð ÞK1 x2ð Þ >
h i

< F x; tð Þ > : (31)

First we would like to stress here that, as we are interested in covariance calculation, it is
necessary to preserve the notations x(t1) = x1 and x(t2) = x2. Second, we want to “improve” the
stationary value κ2 evaluated for the one-moment case through its indirect dependence on κ11
as if it was “evaluated” for the two-moment case.

Thus in doing so, the direct calculation of the quasi-linear algorithm for the two-moment case
is bypassed (see (29) and (30)). For applications in real time, the formal calculus is almost
impossible. Instead, we simplified it with a formal “ignorance” of the two-moment features.
There might be for sure a compromise between the complexity and the improvement attempt
for the “classic” EKF.

In order to avoid some additional complexities for the calculation of (31), let us make the

following assumption: introduce the SNR of the filtering in the way: h2 ¼ κ2
1

N0
<< 1, that is,

weak signal case. In this regard [16, 27], the a priori data are the main influence, that is,
approximately only <K1(x1) K1(x2) > can be applied. Or one can simply apply a Gaussian
approximation for the second equation in (29) for the stationary regime ( _κ2 ffi 0)

2 K1
0 κ1ð Þ þ κ11

h iκ2

2
þ εþ 1

4
F00 κ1ð Þκ22 ¼ 0: (32)

In the case h2 < 1, it is possible to achieve:

κ2 � 1

2 K0 κ1ð Þ þ κ11

h i , (33)

and if κ11 > 0, and K0(κ1) ≥ 0, κ2 is always reduced compared with the one-moment approach.
Formula (33) can be seen as another illustration about the usefulness of the heuristic
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• All algorithms for block processing show that there is in some sense a reasonable block
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� �
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drift coefficient for (19).
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part for the “averaging coefficient” of the second element in the first quasi-linear equation of (29),
that is, it is an averaging value for the instantaneous information actualization from the
entering desired signal plus noise. Thus, if one can reduce κ2 through the two-moment
processing, the accuracy of the quasi-linear method will grow and the challenge stated before
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and
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necessary to preserve the notations x(t1) = x1 and x(t2) = x2. Second, we want to “improve” the
stationary value κ2 evaluated for the one-moment case through its indirect dependence on κ11
as if it was “evaluated” for the two-moment case.

Thus in doing so, the direct calculation of the quasi-linear algorithm for the two-moment case
is bypassed (see (29) and (30)). For applications in real time, the formal calculus is almost
impossible. Instead, we simplified it with a formal “ignorance” of the two-moment features.
There might be for sure a compromise between the complexity and the improvement attempt
for the “classic” EKF.

In order to avoid some additional complexities for the calculation of (31), let us make the

following assumption: introduce the SNR of the filtering in the way: h2 ¼ κ2
1

N0
<< 1, that is,

weak signal case. In this regard [16, 27], the a priori data are the main influence, that is,
approximately only <K1(x1) K1(x2) > can be applied. Or one can simply apply a Gaussian
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2 K1
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h iκ2
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In the case h2 < 1, it is possible to achieve:

κ2 � 1
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and if κ11 > 0, and K0(κ1) ≥ 0, κ2 is always reduced compared with the one-moment approach.
Formula (33) can be seen as another illustration about the usefulness of the heuristic
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approximation proposed above. Then, to evaluate the order of the κ11, let us apply for averag-
ing of <K1(x1) K1(x2)> the functional approximation of Wps(x1, x2) in the way:

Wps x1; x2ð Þ ¼ 1
2πκ2

exp � x1 � κ1ð Þ2
2κ2

" #
exp � x2 � κ1ð Þ2

2κ2

" #
1þ κ11 x1 � κ1ð Þ x2 � κ1ð Þ½ �: (34)

As an approximate result, one can substitute (34) in (33), assume h2 < 1 and see that the
normalized value κ11 has the same order as h2, that is, κ11 � O(h2). This is an important
consideration because usually the pure chaos has a low covariance interval [29] and one can
obtain a very small MSE for two time instants t1 and t2 arbitrarily close. In this sense and fixing
SNR� 0.5 andMSE� 0.1%, an equivalent MSE can be reached using the two-moment approach
but with an SNR threshold 30% lower than for the one-moment case. Let us be emphatic and say

that the approximation κ11 � O(h2) is valid just for h2 < 1, and calculation of bκ2 � κ2 1� κ2
11

� �
has

to be updated instantaneously because h2 is varying in the interval 0 ≤ h2 < 1.

Of course this calculation is quite approximated and true superiority for the two-moment case
of the modified quasi-linear strategy has to be verified by computer experiments. Anyway it is
a strong sign indicating that the use of the two-moment strategy can be very opportunistic if
and only if one can find strategies to reduce the computational complexity, for example, the
generalized extended Kalman filter (GEKF) algorithm.

Finally, let us reiterate that the GEKF is yet a one-moment strategy for quasi-optimum filtering,
but internally makes processing of the statistical features of the chaotic data (input) through
the multimoment (two-moment) apparatus. That is why this modified GEKF improved accu-
racy in comparison with the standard EKF. In the following in order to additionally improve
the accuracy of this one-moment modified EKF, it is convenient to apply the principles of the
theory of so-called “conditionally optimum filtering” proposed in ([16], ch. 9), taking this
generalized EKF as the “tolerance” or “admitted” filter.

4. Conditionally optimum filtering approach

The ideas and methods for conditionally optimum filtering are rather simple and are thor-
oughly described at ([16], ch. 9). So, let us first present the basic idea of this method. In the
general case, the conditional optimum filter for the optimum estimation of the desired signal
x(t) in presence of AWGN n(t) can be presented in the form [16]:

_κ1 ¼ αξ y;κ1; tð Þ þ βη y;κ1; tð Þy tð Þ, (35)

where κ1(t) is a filtered signal; y(t) = x(t) + n(t); n(t) is the AWGN with intensity N0; α, β are
some time-dependent coefficients which have to be found.

The representation (35) is a generalized representation of the filtering algorithms where _κ1 is
the expectation of the filtered signal. It is clear as well [16] that this form is valid also for the
quasi-optimum nonlinear filtering algorithms. In the previous part, a modified EKF algorithm
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was proposed for the two-time-moment case, which shows rather opportunistic improvement
of the filtering accuracy, applying some heuristics related to the simplified implementation of
the two-moment principle of filtering. Sure those simplifications do not allow taking full
advantage of the application of the two-moment principle. Once again, this simplification is
reasonable for diminishing the dimension of the filtering algorithm in order to make it practi-
cal for real-time applications. Therefore, the hope for further improvement of the characteris-
tics of this modified EKF might be based on further optimization in the framework of
conditional optimality [16].

In the theory of conditional optimality, the structure of the filter is already chosen (in our case,
it is the GEKF) and the only chance for further accuracy improvement is to optimize the
coefficients α(t) and β(t) in order to minimize the MSE. The structure which was chosen
initially is a so-called admitted structure which actually belongs to a class of the admitted
filters. The next step is to minimize the MSE. The minimization of the MSE is a strategy in
which the admitted filter makes an optimal transition at the moment “s” (s > t, s ! t) from an
initial stage, at moment “t,” to a new stage at the moment “s” with the minimum MSE. The
algorithm of such kind of filter is “conditionally optimum” according to Ref. [16].

Hereafter we are not going to present all the material related to this approach as it was
comprehensively described at ([16], ch. 9), we will only apply the necessary final formulas
from there. Unfortunately, full use of the abovementioned approach is not possible (as we will
see in the following), and so, we will present some developments that allow to obtain the
coefficients α(t) and β(t) successfully.

4.1. Approach to find unknown coefficients α(t) and β(t)

It is possible to present an admitted structure of the conditionally optimum filter from (29) in
two equivalent forms:

_κ1 ¼ α K1 κ1ð Þ þ
bκ2

2
K1

00
κ1ð Þ

" #
þ β

bκ2

N0
y tð Þ � κ1 tð Þ½ � (36)

_κ1 ¼ α K1 κ1ð Þ þ
bκ2

2
K1

00
κ1ð Þ �

bκ2κ1

N0

" #
þ β

bκ2

N0
y tð Þ, (37)

where, as it was proposed earlier,

bκ2 ¼ κ2 1� κ2
11

� �
: (38)

Then, from (36) and (37), one has

ξ tð Þ ¼ K1 κ1ð Þ þ
bκ2

2
K1

00
κ1ð Þ, η tð Þ ¼

bκ2

N0
y tð Þ � κ1 tð Þ½ � (39)

ξ tð Þ ¼ K1 κ1ð Þ þ
bκ2
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bκ2κ1

N0
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approximation proposed above. Then, to evaluate the order of the κ11, let us apply for averag-
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x(t) in presence of AWGN n(t) can be presented in the form [16]:
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filters. The next step is to minimize the MSE. The minimization of the MSE is a strategy in
which the admitted filter makes an optimal transition at the moment “s” (s > t, s ! t) from an
initial stage, at moment “t,” to a new stage at the moment “s” with the minimum MSE. The
algorithm of such kind of filter is “conditionally optimum” according to Ref. [16].

Hereafter we are not going to present all the material related to this approach as it was
comprehensively described at ([16], ch. 9), we will only apply the necessary final formulas
from there. Unfortunately, full use of the abovementioned approach is not possible (as we will
see in the following), and so, we will present some developments that allow to obtain the
coefficients α(t) and β(t) successfully.
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One can see that in this regard, α and β are weighting coefficients of a priori information
related to the desired chaotic signal and a posteriori data. This issue was thoroughly
commented in [27]. For SNR < 1, the weight of ξ(t) obviously prevails, because a posteriori

data are strongly corrupted by the additive noise. Nevertheless, taking into account that bκ2 is

rather small for the modified EKF, in the following, bκ2 (which is actually the MSE) will be
considered as a “small parameter” in all the approximations.

In order to follow all definitions and notations from ([16], ch. 9), one has to use the Ito form in
all the equations:

dy ¼ Xdtþ dW1 ¼ ϕ1 y; x; tð Þdtþ ψ1 y; x; tð ÞdW1

dx ¼ f xð Þdtþ dW2 ¼ ϕ1 x; tð Þdtþ ψ x; tð ÞdW2,
(41)

where {Wi(t)} are independent Wiener processes, i = 1, 2. It is obvious that:

φ1 x; tð Þ ¼ f xð Þ ¼ κ1 xð Þ
φ1 y; x; tð Þ ¼ x
ψ1 y; xð Þ ¼ 1
ψ x; tð Þ ¼ 1

(42)

Then, from ([16], ch. 9)

bxs � bxt ffi κs � κt ¼ αξtΔtþ βηt ϕ1t
Δtþ ϕ1t

ΔW
� �

: (43)

Unbiased conditions for the optimum estimation from (43) are [16]:

α < ξt > þ < ηtϕ1t
> � < ϕ1 >¼ 0: (44)

Taking ξt and ηt according to its definitions from (40), it is easy to get from (44):

αm1 þ βm2 ¼ m0, (45)

where m0 = <φt>, m1 = <ξt>, m2 = < ηtφ1t>.

Taking into account (42) with conditions bκ2 < 1 and assuming that K1(κ1) ≈ K1´´(κ1) ≈ 01, finally
one gets:

β
α
¼ κ2

< x2 >
: (46)

The next step, as it was proposed in ([16], ch. 9), is focused on checking the correlation
conditions for the error (κs�xs) with the vector [ξΔt, ηΔy] which yields to [16]:

1
This assumption follows from symmetry conditions for f (x).
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β ¼ κ02κ
�1
22 , (47)

where

κ02 ¼< xt � κ1tð Þxt
bκ2

N0
yt > þ < ηt � yt >

bκ2

N0
, κ22 ¼

bκ2

N0

 !2

< y2t � ηt > : (48)

From the second equation in (48), it follows that β ! ∞ which is a clear absurd. So, why this
happened and what is wrong? Is the approach in ([16], ch. 9) wrong? Definitively, no. It is
possible to show that the estimate κ1 is unbiased and decorrelated with both components ξ(t)
and η(t), but for our special case, the condition that κ22 (a matrix in the general case) has to be
invertible is violated. Opposed as it was stated in ([16], ch. 9), the approach is not working.

The solution might be found from direct calculation of (x�κ1) from the SDE of chaos and (29)
and by minimization of <(x-κ1)

2 > by α or β.

4.2. Direct evaluation of the MSE and its minimization

As a first step, let us calculate the difference between the solution of (20) and (39) by applying (46):

x� κ1ð Þ ¼
ðT

0

K1 xð Þ � αK1 κ1ð Þ½ � � ακ1bκ2n tð Þ
< x2 > N0

( )
dt: (49)

Let us take the second power of (49) and make a statistical average. One has to notice that the
second power of (49) is a double integral and <n(t1) n(t2)> = N0δ(t2�t1). Then, applying finally

the assumption bκ2 < 1, one can get for the MSE:

MSE ≈ < K2
1 xð Þ > þα2 < K2

1 κ1ð Þ > �2α < K1 xð ÞK1 κ1ð Þ > þ α2bκ2

< x2 > N0
: (50)

Looking for the minimum of (50) in terms of “α”, one easily finds:

α ¼ < K1 κ1ð ÞK1 xð Þ >
< K2

1 κ1ð Þ > þ bκ2
<x2>

: (51)

Assuming that still bκ2 is a “small parameter,” it follows that α ≈ 1 and β ffi κ1
<x2> ffi O 1

κ1

� �
. In this

regard,

MSE �
bκ2

� �2

< x2 >
: (52)

Comparing Eq. (52) with the MSE of the one-moment filtering which is κ2, one can see that the
conditional optimum filtering might significantly improve the MSE with the same SNR or
significantly diminish the SNR threshold for a fixed MSE.
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This assumption follows from symmetry conditions for f (x).

Chaos Theory92

β ¼ κ02κ
�1
22 , (47)

where

κ02 ¼< xt � κ1tð Þxt
bκ2

N0
yt > þ < ηt � yt >

bκ2

N0
, κ22 ¼

bκ2

N0

 !2

< y2t � ηt > : (48)
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happened and what is wrong? Is the approach in ([16], ch. 9) wrong? Definitively, no. It is
possible to show that the estimate κ1 is unbiased and decorrelated with both components ξ(t)
and η(t), but for our special case, the condition that κ22 (a matrix in the general case) has to be
invertible is violated. Opposed as it was stated in ([16], ch. 9), the approach is not working.

The solution might be found from direct calculation of (x�κ1) from the SDE of chaos and (29)
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2 > by α or β.
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x� κ1ð Þ ¼
ðT

0

K1 xð Þ � αK1 κ1ð Þ½ � � ακ1bκ2n tð Þ
< x2 > N0

( )
dt: (49)

Let us take the second power of (49) and make a statistical average. One has to notice that the
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Comparing Eq. (52) with the MSE of the one-moment filtering which is κ2, one can see that the
conditional optimum filtering might significantly improve the MSE with the same SNR or
significantly diminish the SNR threshold for a fixed MSE.
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The authors consider that the two-moment filtering of chaos together with the conditionally opti-
mum principle is a very opportunistic approach to significantly improve theMSE for chaos filtering.
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Abstract

The aim of this chapter is threefold. First, we show some advances in complexity dynamics
of set-valued discrete systems in connection with the Devaney’s notion of chaos. Secondly,
we start to explore some relationships between control sets for the class of linear control
systems on Lie groups with chaotic sets. Finally, through several open problems, we invite
the readers to give a contribution to this beauty theory.
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1. Introduction

Relevant classes of real problems are modelled by a discrete dynamical system

xnþ1 ¼ f xnð Þ , n ¼ 0, 1, 2,… (1)

where X; dð Þ is a metric space and f : X ! X is a continuous function. The basic goal of this
theory is to understand the nature of the orbit O x; fð Þ ¼ f n xð Þ= n ¼ 0; 1; 2;…f g for any state
x∈X, as n becomes large and, in general this is a hard task. The study of orbits says us how the
initial states are moving in the base space X and, in many cases, these orbits present a chaotic
structure. In 1989 in [1], Devaney isolates three main conditions which determine the essential
features of chaos.

Definition 1 Let X be a metric space and f : X ! X a continuous map. Hence, f .

a. is transitive if for any couple of non-empty open subsets U and V of X there exists a natural

number k such that f k Uð Þ ∩V 6¼ ∅.

b. is periodically dense if the set of periodic points of f is a dense subset of X.
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c. has sensitive dependence on initial conditions if there is a positive number δ (a sensitivity
constant) such that for every point x∈X and every neighbourhood N of x there exists a
point y∈N and a non-negative integer number n such that d f n xð Þ; f n yð Þð Þ ≥ δ.

Next, we mention a remarkable characterisation of transitive maps. In fact, as a consequence of
the Birkhoff Transitivity Theorem (see [2] for details), it is possible to prove.

Proposition 2 Let X be a complete metric space which is also perfect (closed and without isolated
points). If f : X ! X is continuous, then f is transitive if and only if there exists at least one orbit
O x; fð Þ dense in X.

Remark 3 Also, other concepts very useful in this work are the following: i) f is weakly mixing iff for

any non-empty open subsets U and V of X there exists a natural number k such that f k Uð Þ ∩V 6¼ ∅ and

f k Vð Þ ∩V 6¼ ∅. ii) f is mixing iff given two non-empty open subsets U and V of X there exists a natural
number k such that f n Uð Þ ∩V 6¼ ∅ for all n ≥ k. iii) f is exact iff given a non-empty open subsets U there

exists a natural number k such that f k Uð Þ ¼ X. It is clear that f exact ) f mixing ) f weakly mixing
) f transitive.

It is worth to point out that sensitivity dependence on initial conditions was widely under-
stood as being the central idea in chaos for many years. However, in a surprising way, Banks
et al. has proved that transitivity and periodically density imply sensitivity dependence (for
details see [3]). Furthermore, for continuous functions on real intervals, Vellekoop and
Berglund in [4] show that transitivity by itself is sufficient to get chaos. This last result is not
necessarily true in other type of metric spaces (see Example 4.1 in [5]).

However, sometimes we need to know information about the collective dynamics, i.e. how are
moved subsets of X via iteration or dynamics induced by f. For example, if X denotes an
ecosystem and x∈X, then, by using radio telemetry elements, we can obtain information about
the movement of x in the ecosystem X. In this form, it is possible to build an individual
displacement function f : X ! X. Of course, this function could be chaotic or not. Eventually,
we could also be interested to get information about the collective dynamics induced by f,
means, to follow the dynamics of a group of individuals. Thus, in a natural way the following
question appears: what is the relationship between individual and collective dynamics? This is
the main topic of this chapter.

Given the system (1), consider the set-valued discrete system associated to f defined by

Anþ1 ¼ f Anð Þ, n ¼ 0, 1, 2,… (2)

where f is the natural extension of f to the metric space K Xð Þ;Hð Þ of the non-empty compact
subsets of X endowed with the Hausdorff metric H induced by the original distance d of X.

In a more general set up, this work is strictly related with the following fundamental question:
what is the relationship between individual and collective chaos?

As a partial response to this question, in this chapter we search the transitivity of a continuous
function f on X in relation to the transitivity of its extension f to K Xð Þ: Our main result here

establishes that f transitive implies f transitive. That is to say, collective chaos implies individ-

ual chaos under the dynamics of f .

Chaos Theory98

On the other hand, we propose a new approach to this problem: to study the dynamics
induced by f on the subextension Kc Xð Þ of K Xð Þ: Precisely, on the class of non-empty
compact-convex subsets of X. We prove that the induced dynamics is less chaotic than the
original one!

Finally, we mention that some relevant problems in the theory of control systems can be also
approached by the theory of set-valuated map. In fact, to any initial state x of the system, one
can associate its reachable set A xð Þ. In other words, A xð Þ contains all the possible states of the
manifold that starting from x you can reach in non-negative time by using the admissible
control functions U of the system. The aim of this section is twofold. First of all, to apply to the
class of linear control systems on Lie groups, the existent relationship between control sets of an
affine control system Σ on a Riemannian manifoldM with chaotic sets of the shift flow induced
by Σ on M� U , [6]. In particular, we are looking for the consequences of this relation on the
controllability property. At the very end, we propose a challenge to the readers to motivate the
research on this topic through some open problem relatives to the mentioned relationship.

2. Preliminaries

In this section, we mention some notions and fundamental results we use through the chapter.

2.1. Extensions

If X; dð Þ is a metric space and f : X ! X continuous, then we can consider the space K Xð Þ;Hð Þ
of all non-empty and compact subsets of X endowed with the Hausdorff metric induced by d
and f : K Xð Þ ! K Xð Þ, f Að Þ ¼ f Að Þg, the natural extension of f to K Xð Þ. Also, we denote by
Kc Xð Þ ¼ A∈K Xð Þ=A is convexf g. If A∈K Xð Þ we define the “e -dilatation of A” as the set
N A; eð Þ ¼ x∈X= d x;Að Þ < ef g, where d x;Að Þ ¼ inf

a∈A
d x; að Þ.

The Hausdorff metric on K Xð Þ is given by

H A;Bð Þ ¼ inf e > 0= A⊆N B; eð Þ and B⊆N A; eð Þf g:

We know that K Xð Þ;Hð Þ is a complete (separable, compact) metric space if and only if X; dð Þ is
a complete (separable, compact) metric space, respectively, (see [3, 7, 8]).

Also, if A∈K Xð Þ, the set B A; eð Þ ¼ B∈K Xð Þ=H A;Bð Þ < ef g denotes the ball centred in A and
radius e in the space K Xð Þ;Hð Þ.

Furthermore, given a continuous function I; dð Þ!f I; dð Þ on a real interval I, we also consider the

extension Kc Ið Þ;Hð Þ!f c Kc Ið Þ;Hð Þ, where f c is the restriction f
��
Kc Ið Þ.

2.2. Baire spaces

In this section, we review some properties of Baire spaces.

Definition 4 A topological space X is a Baire space if for any given countable family of closed sets
An : n∈Nf g covering X, then int Anð Þ 6¼ ∅ for at least one n.
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Definition 5 In any Baire space X,

1. D⊂X is called nowhere dense if int cl Dð Þð Þ ¼ ∅:

2. Any countable union of nowhere dense sets is called a set of first category.

3. Any set not of first category is said to be of second category.

4. The complement of a set of first category is called a residual set.

Remark 6 It is important to note that:

a. Any complete metric space is a Baire space.

b. Every residual set is of second category in X.

c. Every residual set is dense in X.

d. The complement of a residual set is of first category.

e. If B is of first category and A⊆B, then Ais of first category.

(For details, see [8–10])

In particular, if X ¼ I is an interval, then C Xð Þ and C X;Rð Þ, endowed with the respective
supremum metrics, are Baire spaces.

In a Baire space X, we say that “most elements of X” verify the property (P) if the set of all x∈X
that do not verify property (P) is of first category in X. In this form, sets of second category can be
regarded as “big” sets. A relevant area of the real analysis is to estimate the “size” of some sets
associated to a continuous interval function f such as the set P fð Þ of periodic points of f , or the
set F fð Þ of fixed points of f . Typically, continuous interval functions have a first category set of
periodic points (see [11]) and, in particular, a first category set of fixed points. It has also been
recently proved that a typical continuously differentiable interval function has a finite set of fixed
points and a countable set of periodic points (see [12] and references therein). It is also well-
known that the class of nowhere differentiable functionsND Ið Þ is a residual set in C Ið Þ (see [13, 14]).
Also, a special class of functions in C Ið Þ is the class CNL Ið Þ of all continuous functions whose
graphs “cross no lines” defined in a negative way as follows (see [10]):

Definition 7 Let f : a; b½ � ! a; b½ � a continuous map and L : R ! R a function whose graph is a
straight line. We say that L crosses f (or f crosses L) if there exists x0 ∈ a; b½ � and δ > 0 such that
f x0ð Þ ¼ L x0ð Þ and either.

(a) L xð Þ ≤ f xð Þ for all x∈ x0 � δ; x0½ � ∩ a; b½ � and L xð Þ ≥ f xð Þ for all x∈ x0; x0 þ δ½ � ∩ a; b½ �; or.
(b) L xð Þ ≥ f xð Þ for all x∈ x0 � δ; x0½ � ∩ a; b½ � and new L xð Þ ≤ f xð Þ for all x∈ x0; x0 þ δ½ � ∩ a; b½ �.
The following result can be found in [10]:

Theorem 8 ([10]) The set CNL Ið Þ ¼ f ∈ C Ið Þ= f crosses no linesf g is residual in C Ið Þ.
The set CNL Ið Þ will play an important role in the next sections.
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2.3. The dynamics of control theory

In Section 7, we propose some challenges through the relationship between the notion of
chaotic sets in the Devaney sense and control sets for the class of Linear Control Systems on
Lie Groups, [15]. In particular, we explicitly show some results concerning the controllability
property in terms of chaotic dynamics.

In the sequel, we follow the relevant book The Dynamics of Control by Colonius and
Kliemann, [6]. Let M be a d dimensional smooth manifold. By an affine control system Σ in M,
we understand the family of ordinary differential equations:

Σ : _x tð Þ ¼ X x tð Þð Þ þ
Xm

j¼1

uj tð ÞYj x tð Þð Þ, u ¼ u1;…; umð Þ∈U (3)

where X,Yj, j ¼ 0, 1,…, m are arbitrary C∞ vector fields on M: The set U ⊂L∞ R;Ω⊂Rmð Þ is the
class of restricted admissible control functions where Ω⊂Rm with 0∈ intΩ, is a compact and
convex set.

Assume Σ satisfy the Lie algebra rank condition, i.e.

for any x∈M ) SpanLA X;Y1;…;Ym� �
xð Þ ¼ d:

Of course, LAmeans the Lie algebra generated by the vector fields through the usual notion of
Lie bracket. Furthermore, the ad -rank condition for Σ is defined as follows:

for any x∈M ) Span adi Yj� �
: j ¼ 1;…;m and i ¼ 0; 1;…

� �
xð Þ ¼ d:

For each u∈U and each initial value x∈M, there exists an unique solution w t; x; uð Þ defined on
an open interval containing t ¼ 0, satisfying w 0; x; uð Þ ¼ x. Since we are concerned with
dynamics on Lie Groups, without loss of generality we assume that the vector fields X,

Y1,…, Ym are completes. Then, we obtain a mapping Φ satisfying the cocycle property

Φ : R�M� U ! M, t; x; uð Þ↦Φ t; x; uð Þ and Φ tþ s; x; uð Þ ¼ Φ t;Φ s; x; uð Þ;Θsuð Þ

for all t, s∈R, x∈M, u∈U : Where, for any t∈R, the map Θt is the shift flow on U defined by
Θs uð Þ tð Þ≔u tþ sð Þ: Hence, Φ is a skew-product flow. The topology here is given by the
product topology between the topology of the manifold and the weak* topology on U :

It turns out the following results.

Lemma 9 [6] Consider the set U equipped with the weak* topology associated to L∞ R;Rmð Þ ¼
L1 R;Rmð Þ∗�

as a dual vector space. Therefore,

1. U ; dð Þ is a compact, complete and separable metric space with the distance given by

d u1; u2ð Þ ¼
X∞
n¼1

1
2n

Ð
R < u1 tð Þ � u2 tð Þ; vn tð Þ > dt

�� ��
1þ Ð

R < u1 tð Þ � u2 tð Þ; vn tð Þ > dt
�� �� :

Here, vn : n∈Nf g⊂ L1 R;Rmð Þ is a dense set of Lebesgue integrable functions.
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2.3. The dynamics of control theory

In Section 7, we propose some challenges through the relationship between the notion of
chaotic sets in the Devaney sense and control sets for the class of Linear Control Systems on
Lie Groups, [15]. In particular, we explicitly show some results concerning the controllability
property in terms of chaotic dynamics.

In the sequel, we follow the relevant book The Dynamics of Control by Colonius and
Kliemann, [6]. Let M be a d dimensional smooth manifold. By an affine control system Σ in M,
we understand the family of ordinary differential equations:

Σ : _x tð Þ ¼ X x tð Þð Þ þ
Xm

j¼1

uj tð ÞYj x tð Þð Þ, u ¼ u1;…; umð Þ∈U (3)

where X,Yj, j ¼ 0, 1,…, m are arbitrary C∞ vector fields on M: The set U ⊂L∞ R;Ω⊂Rmð Þ is the
class of restricted admissible control functions where Ω⊂Rm with 0∈ intΩ, is a compact and
convex set.

Assume Σ satisfy the Lie algebra rank condition, i.e.

for any x∈M ) SpanLA X;Y1;…;Ym� �
xð Þ ¼ d:

Of course, LAmeans the Lie algebra generated by the vector fields through the usual notion of
Lie bracket. Furthermore, the ad -rank condition for Σ is defined as follows:

for any x∈M ) Span adi Yj� �
: j ¼ 1;…;m and i ¼ 0; 1;…

� �
xð Þ ¼ d:

For each u∈U and each initial value x∈M, there exists an unique solution w t; x; uð Þ defined on
an open interval containing t ¼ 0, satisfying w 0; x; uð Þ ¼ x. Since we are concerned with
dynamics on Lie Groups, without loss of generality we assume that the vector fields X,

Y1,…, Ym are completes. Then, we obtain a mapping Φ satisfying the cocycle property

Φ : R�M� U ! M, t; x; uð Þ↦Φ t; x; uð Þ and Φ tþ s; x; uð Þ ¼ Φ t;Φ s; x; uð Þ;Θsuð Þ

for all t, s∈R, x∈M, u∈U : Where, for any t∈R, the map Θt is the shift flow on U defined by
Θs uð Þ tð Þ≔u tþ sð Þ: Hence, Φ is a skew-product flow. The topology here is given by the
product topology between the topology of the manifold and the weak* topology on U :

It turns out the following results.

Lemma 9 [6] Consider the set U equipped with the weak* topology associated to L∞ R;Rmð Þ ¼
L1 R;Rmð Þ∗�

as a dual vector space. Therefore,

1. U ; dð Þ is a compact, complete and separable metric space with the distance given by

d u1; u2ð Þ ¼
X∞
n¼1

1
2n

Ð
R < u1 tð Þ � u2 tð Þ; vn tð Þ > dt

�� ��
1þ Ð

R < u1 tð Þ � u2 tð Þ; vn tð Þ > dt
�� �� :

Here, vn : n∈Nf g⊂ L1 R;Rmð Þ is a dense set of Lebesgue integrable functions.
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2. The map Θ : R� U ! U defines a continuous dynamical systems on U . Its periodic points
are dense and the shift is topologically mixing (and then topologically transitive).

3. The map Φ defines a continuous dynamical system on M� U:

On the other hand, the completely controllable property of Σ, i.e. the possibility to connect any
two arbitrary points of M through a Σ-trajectory in positive time, is one of the most relevant
issue for any control system. But, few systems have this property. A more realistic approach
comes from a Kliemann notion introduced in [16].

Definition 10 A non-empty set C ⊂M is called a control set of (3) if.

i. for every x∈M there exists u∈U such that w t; x; uð Þ : t ≥ 0f g⊂ C

ii. for every x∈ C, C ⊂ cl A xð Þð Þ
iii. C is maximal with respect to the properties ið Þ and iið Þ:
A xð Þ denotes the states that can be reached from x by Σ in positive time and cl its closure

A xð Þ ¼ y∈M : ∃u∈U and t > 0 with y ¼ w t; x; uð Þf g:

Moreover, for an element x∈M, the set of points that can be steered to x through a Σ-trajectory
in positive time is denoted by

A∗ xð Þ ¼ ∪
τ>0

y∈M : ∃u∈U ; e ¼ wτ, u xð Þ� �
:

Finally, we mention that the Lie algebra rank condition warranty that the system is locally
accessible, which means that for every τ > 0,

int A ≤ τ xð Þð Þ and int A∗
≤ τ xð Þ� �

are non empty, for any x∈M:

3. f transitive implies f transitive

As we explain, in terms of the original dynamics and its extensions a natural question arises:
what are the relations between individual and collective chaos? As a partial response to this
question, in the sequel, we show that the transitivity of the extension f implies the transitivity
of f : For that, we need to describe some previous results.

Lemma 11 [5] Let A be a non-empty open subset of X. If K∈K Xð Þ and K⊂A, then there exists
e > 0 such that N K; eð Þ⊂A:.

Definition 12 Let A⊂X be. Then the extension of A to K Xð Þ is given by e Að Þ ¼ K∈K Xð Þ= K⊂Af g.
Remark 13 e Að Þ ¼ ∅⇔A ¼ ∅:.

Lemma 14 [5] Let A⊂X be, A 6¼ ∅, an open subset of X. Then, e Að Þ is a non-empty open subset of
K Xð Þ.
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Lemma 15 [5] If A, B⊂X, then: i) e A ∩Bð Þ ¼ e Að Þ ∩ e Bð Þ, ii) f e Að Þð Þ⊆e f Að Þð Þ, and iii) f
p ¼ f p , for

every p∈N.

Now, we are in a position to prove the following results

Theorem 16 Let f : X ! X be a continuous function. Then, f transitive implies f transitive.

Proof: Let A, B be two non-empty open sets in X. Due to Lemma 13, e Að Þ and e Bð Þ are non-
empty open sets in K Xð Þ. Thus, by transitivity of f , there exists some k∈N such that

f
k
e Að Þð Þ ∩ e Bð Þ ¼ f k e Að Þð Þ ∩ e Bð Þ 6¼ ∅

and, from Lemma 14, we obtain

e f k Að Þ
� �

∩ e Bð Þ ¼ e f k Að Þ ∩B
� �

6¼ ∅

which implies f k Að Þ ∩B 6¼ ∅ and, consequently, f is a transitive function.

4. Two examples

Now we show that, in general, the converse of Theorem 15 is not true.

Example 4.1 (Translations of the circle). If λ∈R is an irrational number and we define
Tλ : S1 ! S1 by Tλ eiθ

� � ¼ ei θþ2πλð Þ, then it was shown by Devaney [1] that each orbit

Tn
λ eiθ
� �

=n∈N
� �

is dense in S1 and, due Proposition 2, Tλ is transitive. Nevertheless, Tλ has
no periodic points and, because Tλ is isometric, it does not exhibit sensitive dependence on
initial conditions either.

If K∈K S1
� �

, because Tλ preserves diameter, then diam Kð Þ ¼ diam Tλ
n
Kð Þ

� �
, for all n∈N.

Now, let K∈K S1
� �

such that diam Kð Þ ¼ 1, and let e > 0 sufficiently small. Then

F∈U ¼ B K; eð Þ ) diam Fð Þ ≈ 1
G∈V ¼ B 1f g; eð Þ ) diam Gð Þ ≈ 0:

Thus, diam Tλ
n
Fð Þ

� �
≈ 1 ∀n∈N and, consequently, Tλ

n
Uð Þ ∩V ¼ ∅ for all n∈N, which

implies that Tλ is not transitive on K S1
� �

.

Example 4.2 Define the “tent” function f : 0; 1½ � ! 0; 1½ � as f xð Þ ¼ 2x if 0 ≤ x ≤ 1=2 and
f xð Þ ¼ 2 1� xð Þ if 1=2 ≤ x ≤ 1.

It is not difficult to show that f is an exact function on [0,1]. In fact, intuitively we can see that,
after each iteration, the number of tent in the graphics is increasing, whereas the base of each
tent is decreasing and they are uniformly distributed over the interval 0; 1½ �.
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2. The map Θ : R� U ! U defines a continuous dynamical systems on U . Its periodic points
are dense and the shift is topologically mixing (and then topologically transitive).

3. The map Φ defines a continuous dynamical system on M� U:

On the other hand, the completely controllable property of Σ, i.e. the possibility to connect any
two arbitrary points of M through a Σ-trajectory in positive time, is one of the most relevant
issue for any control system. But, few systems have this property. A more realistic approach
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are non empty, for any x∈M:
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Remark 13 e Að Þ ¼ ∅⇔A ¼ ∅:.

Lemma 14 [5] Let A⊂X be, A 6¼ ∅, an open subset of X. Then, e Að Þ is a non-empty open subset of
K Xð Þ.
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Lemma 15 [5] If A, B⊂X, then: i) e A ∩Bð Þ ¼ e Að Þ ∩ e Bð Þ, ii) f e Að Þð Þ⊆e f Að Þð Þ, and iii) f
p ¼ f p , for

every p∈N.

Now, we are in a position to prove the following results

Theorem 16 Let f : X ! X be a continuous function. Then, f transitive implies f transitive.

Proof: Let A, B be two non-empty open sets in X. Due to Lemma 13, e Að Þ and e Bð Þ are non-
empty open sets in K Xð Þ. Thus, by transitivity of f , there exists some k∈N such that
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and, from Lemma 14, we obtain

e f k Að Þ
� �

∩ e Bð Þ ¼ e f k Að Þ ∩B
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is dense in S1 and, due Proposition 2, Tλ is transitive. Nevertheless, Tλ has
no periodic points and, because Tλ is isometric, it does not exhibit sensitive dependence on
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If K∈K S1
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, because Tλ preserves diameter, then diam Kð Þ ¼ diam Tλ
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, for all n∈N.

Now, let K∈K S1
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such that diam Kð Þ ¼ 1, and let e > 0 sufficiently small. Then

F∈U ¼ B K; eð Þ ) diam Fð Þ ≈ 1
G∈V ¼ B 1f g; eð Þ ) diam Gð Þ ≈ 0:

Thus, diam Tλ
n
Fð Þ

� �
≈ 1 ∀n∈N and, consequently, Tλ

n
Uð Þ ∩V ¼ ∅ for all n∈N, which

implies that Tλ is not transitive on K S1
� �

.

Example 4.2 Define the “tent” function f : 0; 1½ � ! 0; 1½ � as f xð Þ ¼ 2x if 0 ≤ x ≤ 1=2 and
f xð Þ ¼ 2 1� xð Þ if 1=2 ≤ x ≤ 1.

It is not difficult to show that f is an exact function on [0,1]. In fact, intuitively we can see that,
after each iteration, the number of tent in the graphics is increasing, whereas the base of each
tent is decreasing and they are uniformly distributed over the interval 0; 1½ �.
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Thus, if U is an arbitrary non-empty open subset of 0; 1½ �, then U contains an open interval J
and, after certain number of iterations, there exists a tent, with height equal to one, whose base
is contained in J, which implies that f Uð Þ ¼ 0; 1½ � and, according to Remark 3, f is an exact
mapping and, consequently, f is a mixing function.

The conclusions in Examples 4.1 and 4.2 come from the next result, Banks [17] in 2005.

Theorem 17 If f : X ! X is continuous, then the following conditions are equivalent:

i) f is weakly mixing, ii) f is weakly mixing, iii) f is transitive.

Hitherto, we have used the strong topology induced by the H-metric on K Xð Þ. However,
considering the we-topology on K Xð Þ generated by the sets e Að Þ with A an open set in X, we
obtain the following complementary result, see [5]:

Theorem 18 For a continuous map f : X ! X the following conditions are equivalent:

i) f is transitive in X; dð Þ, ii) f is transitive in the we-topology.

5. Sensitivity and periodic density of f

Let f : X ! X be a continuous function and let f be its corresponding extension to the hyper-

space K Xð Þ. Then, the study of sensitivity of f in the base space in relation to the sensitivity of f
on K Xð Þ has been very exhaustively analysed in the last years. Román and Chalco published
the first result in this direction [18] in 2005, where the authors prove

Theorem 19 f sensitively dependent implies f sensitively dependent.

Proof: If f has sensitive dependence, then there exists a constant δ > 0 such that for every
K∈K Xð Þ and every e > 0 there exists G∈B K; eð Þ and n∈N such that H f n Kð Þ; f n Gð Þð Þ ≥ δ.
Now, let x∈X be and e > 0. Then, taking K ¼ xf g∈K Xð Þ, we have that there exists
G∈B xf g; eð Þ and n∈N such that H f n xf gð Þ; f n Gð Þð Þ ¼ H f n xð Þ; f n Gð Þð Þ ≥ δ.
Thus, H f n xð Þ; f n Gð Þð Þ ¼ supy∈G d f n xð Þ; f n yð Þð Þ ≥ δ and, due to the compactness of G and the

continuity of f , there exists y0 ∈G such that H f n xð Þ; f n Gð Þð Þ ¼ d f n xð Þ; f n y0
� �� �

≥ δ.

But, G∈B x; eð Þ implies G⊂B x; eð Þ and, consequently, y0 ∈B x; eð Þ. This proves that f is sensi-
tively dependent (with constant δ).

The reverse of this theorem is not true. In fact, recently Sharma and Nagar [19] show an
example where X; dð Þ is sensitive but K Xð Þ;Hð Þ is not. Now, in order to overcome that short-
coming, the authors in [19] introduce the following notion of sensitivity:

Definition 20 (Stronger sensitivity [19]). Let f : X ! X be a continuous function. Then f is strongly
sensitive if there exists δ > 0 such that for each x∈X and each e > 0, there exists n0 ∈N such that for
every n ≥n0, there is a y∈X with d x; yð Þ < e and d f n xð Þ; f n yð Þð Þ > δ.
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Obviously, the notion of stronger sensitivity is more restrictive than sensitivity, and the authors
in [19] obtain the following results:

Theorem 21 If f : X ! X is a continuous function and K Xð Þ;H; f
� �

is strongly sensitive then
X; d; fð Þ is strongly sensitive.

In the compact case, it is possible to obtain a characterization as follows.

Theorem 22 Let X; dð Þ be a compact metric space and f : X ! X a continuous function. Then

K Xð Þ;H; f
� �

is strongly sensitive if and only if X; d; fð Þ is strongly sensitive.

In connection with these results, recently Subrahmomian ([20], 2007) has been shown that most
of the important sensitive dynamical systems are all strongly sensitive (the author here calls
them cofinitely sensitive). Hence, we can say that for most cases, sensitivity is equivalent in
both cases X; dð Þ and K Xð Þ;Hð Þ. It turns out that, strongly sensitivity and sensitivity are
equivalent on the class of interval functions, which implies that

Theorem 23 If f : I ! I is a continuous function, the following conditions are equivalent.

a) I; d; fð Þ is sensitive, b) K Ið Þ;H; f
� �

is sensitive.

We finish this section assuming the existence of a dense set of periodic points for f , we have

Theorem 24 Let X; dð Þ be a compact metric space and f : X ! X a continuous function. If f : X ! X

has a dense set of periodic points then f : K Xð Þ ! K Xð Þ has the same property.

Proof: Let K∈K Xð Þ and e > 0. Then there exists a e=2-net covering K, That is to say, there are
x1,…, xp in K such that K⊂B x1; e=2ð Þ∪…∪B xp; e=2

� �
: Because f has periodic density, there are

yi ∈X and ni ∈N such that:

yi ∈B xi; e=2ð Þ , ∀i ¼ 1,…, p and f ni yi
� � ¼ yi , ∀i ¼ 1,…, p:

Now, takeG ¼ y1;…; yp
n o

: By construction, we haveH K;Gð Þ < e and, moreover, f n1n2…np yi
� � ¼

yi, for all i ¼ 1,…, p. Therefore, f n1n2…np Gð Þ ¼ G, which implies that f has periodic density.

The converse of this theorem is no longer true (for a counterexample, see Banks [17]). How-
ever, to find conditions on f warranting the existence of a dense set of periodic points for f is a
very hard problem which still remains open.

6. The dynamics on the Kc Ið Þ;Hð Þ extension

In the previous sections, we have studied the diagram

K Xð Þ;Hð Þ !f K Xð Þ;Hð Þ
↑ ↑

X; dð Þ !f X;dð Þ
(4)

Chaos on Set-Valued Dynamics and Control Sets
http://dx.doi.org/10.5772/intechopen.72232

105



Thus, if U is an arbitrary non-empty open subset of 0; 1½ �, then U contains an open interval J
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is contained in J, which implies that f Uð Þ ¼ 0; 1½ � and, according to Remark 3, f is an exact
mapping and, consequently, f is a mixing function.
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≥ δ.

But, G∈B x; eð Þ implies G⊂B x; eð Þ and, consequently, y0 ∈B x; eð Þ. This proves that f is sensi-
tively dependent (with constant δ).
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example where X; dð Þ is sensitive but K Xð Þ;Hð Þ is not. Now, in order to overcome that short-
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Definition 20 (Stronger sensitivity [19]). Let f : X ! X be a continuous function. Then f is strongly
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and the chaotic relationships between f and f . However, in the setting of mathematical model-
ling of many real-world applications, it is necessary to take into account additional consider-
ations such as vagueness or uncertainty on the variables. This implies the use of interval
parameters and, consequently, to deal with interval systems. That is, it is necessary to consider
an interval X ¼ I and to study the following new diagram:

Kc Ið Þ;Hð Þ !f c Kc Ið Þ;Hð Þ
↑ ↑

I; dð Þ !f I;dð Þ
(5)

along with the analysis of the connection between their respective dynamical relationships.
Here f c denotes the restriction of f to Kc Ið Þ, the class of all compact subintervals of I. For
A ¼ a; b½ �, B ¼ c; d½ �∈Kc Ið Þ, the Hausdorff metric can be explicitly computed as

H A;Bð Þ ¼ max a� cj j; b� dj jf g: (6)

The aim of this section is to show that the Devaney complexity of the extension f c on Kc Ið Þ is
less or equal than the complexity of f on the base space I. More precisely, f c is never transitive

for any continuous function f ∈ C Ið Þ. Also, we will show that f c has no dense set of periodic

points for most functions f ∈ C Ið Þ: Finally, we prove that f c has no sensitive dependence for
most functions f ∈ C Ið Þ.
As a motivation, we present the following examples.

Example 6.1 Consider the “tent” function f : 0; 1½ � ! 0; 1½ � defined by

f xð Þ ¼
2x if 0 ≤ x ≤

1
2

2 1� xð Þ if
1
2
≤ x ≤ 1:

8><
>:

Then it is well known that f is D-chaotic on 0; 1½ � (see [1]). Moreover, because f is a mixing

function on 0; 1½ �, then f is transitive on K 0; 1½ �ð Þ (see [17]). Also, we observe that x ¼ 2
3 is a fixed

point of f . On the other hand, it is clear that if K is a compact and convex subset of X ¼ 0; 1½ �,
then f Kð Þ is also a compact and convex subset of X. Consequently, if we let Kc 0; 1½ �ð Þ denote
the class of all closed subintervals of 0; 1½ �, then we can consider f c as a mapping

f c : Kc 0; 1½ �ð Þ ! Kc 0; 1½ �ð Þ. We recall that Kc 0; 1½ �ð Þ is a closed subspace of K 0; 1½ �ð Þ (see [21]).
Now, considering the open balls B 0; 1½ �; 1

10

� �
and B 0f g; 1

10

� �
in Kc 0; 1½ �ð Þ, we have.

K∈B 0; 1½ �; 1
10

� �) 2
3 ∈K which implies 2

3 ∈ f
p
c Kð Þ, ∀p∈N:.

On the other hand, if F∈B 0f g; 1
10

� �
, then F⊂ 0; 1=10½ � . Consequently, H f

p
c Kð Þ; F

� �
≥ 17

30 for every

K∈B 0; 1½ �; 1
10

� �
and F∈B 0f g; 1

10

� �
.
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Therefore,

f
p
c B 0; 1½ �; 1

10

� �� �
∩B 0f g; 1

10

� �
¼ ∅, ∀p∈N:

Thus, f c is not transitive on Kc 0; 1½ �ð Þ.

Example 6.1 shows a function f which is transitive on the base space X ¼ 0; 1½ � and f is also

transitive on the total extension K 0; 1½ �ð Þ, but f c is not transitive on the subextension Kc 0; 1½ �ð Þ.
The following example shows a function f : 0; 1½ � ! 0, 1� with a dense set of periodic points,

and where the total extension of f to K 0; 1½ �ð Þ also has a dense set of periodic points, whereas f c
does not have a dense set of periodic points on Kc 0; 1½ �ð Þ.
Example 6.2. Let X ¼ 0; 1½ � and consider the “logistic” function f : 0; 1½ � ! 0; 1½ � defined by
f xð Þ ¼ 4x 1� xð Þ. It is well known that f is D-chaotic on 0; 1½ � (see [1]). Moreover, f is a mixing

function. Thus, in particular, f has a dense set of periodic points and, therefore, f also has a
dense set of periodic points on the total extension K 0; 1½ �ð Þ) (see Theorem 24).

However, f c has no a dense set of periodic points on Kc Xð Þ.
In order to see this, we claim that the open ball B 1

8 ;
3
8

� �
; 18

� �
in Kc 0; 1½ �ð Þ;Hð Þ does not contain

periodic points of f c.

In fact, if K ¼ c; d½ �∈B 1
8 ;

3
8

� �
; 18

� �
, then c� 1

8

�� �� < 1
8 and d� 3

8

�� �� < 1
8, which implies that 0 < c < 1

4

and 1
4 < d < 1

2.

Thus, we obtain that 1
4 ∈K ) 3

4 ∈ f Kð Þ ) f Kð Þ 6¼ K.

On the other hand,

3
4
∈ f Kð Þ ) 3

4
∈ f n Kð Þ, ∀n ≥ 2 ) f n Kð Þ 6¼ K, ∀n ≥ 1

and, consequently, f c has no periodic points in the ball B 1
8 ;

3
8

� �
; 14

� �
⊆ Kc 0; 1½ �ð Þ;Hð Þ, which

implies that f c has no dense set of periodic points on Kc 0; 1½ �ð Þ;Hð Þ.

Lemma 25 f c transitive on Kc a; b½ �ð Þ implies f transitive on a; b½ �.
Proof. Let U,V non-empty open subsets of X ¼ a; b½ �. We can choose x∈U, y∈V and e > 0
such that B x; eð Þ⊂U and B y; eð Þ⊂V. Now, in Kc a; b½ �ð Þ consider the open balls B xf g; eð Þ and
B yf g; eð Þ with respect to the H-metric. Due to the transitivity of f c on Kc a; b½ �ð Þ, there exists

n∈N such that f
n
c B xf g; eð Þð Þ ∩B yf g; eð Þ 6¼ ∅.

Therefore, there exists an interval J∈B xf g; eð Þ such that f
n
c Jð Þ ¼ f n Jð Þ∈B yf g; eð Þ. However,

J⊂B x; eð Þ and, analogously, f n Jð Þ⊂B y; eð Þ, which implies that f n B x; eð Þð Þ ∩B y; eð Þ 6¼ ∅ and,
consequently, f n Uð Þ ∩V 6¼ ∅. And f is a transitive function on a; b½ �.
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Therefore, there exists an interval J∈B xf g; eð Þ such that f
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c Jð Þ ¼ f n Jð Þ∈B yf g; eð Þ. However,

J⊂B x; eð Þ and, analogously, f n Jð Þ⊂B y; eð Þ, which implies that f n B x; eð Þð Þ ∩B y; eð Þ 6¼ ∅ and,
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It is well-known that if X ¼ I is an interval, then most functions f ∈ C Ið Þ has no dense orbits,
that is to say, there exists a residual set D⊂ C Ið Þ such that every function f ∈D has no point
whose orbit is dense in I (see [22]) and, consequently, most functions f ∈ C Ið Þ are not transitive.
From Lemma 24, we can conclude that f c is not transitive for most functions f ∈ C Ið Þ.
The next theorem provides a stronger result.

Theorem 26 Let f : a; b½ � ! a; b½ � be continuous. Then f c is not transitive on Kc a; b½ �ð Þ.
Proof. By Schauder Theorem, f has at least one fixed point p∈ a; b½ �.
Case 1. Suppose that p∈ a; bð Þ and let r ¼ max p� a; b� pf g. Without loss of generality, we can
suppose that r ¼ p� a and, because a < b, it is clear that r > 0.

Now, let r0 ¼ b� p > 0 and let e ¼ r0
2. If we consider the open balls B a; b½ �; eð Þ, B af g; eð Þ∈

Kc a; b½ �ð Þ, it follows that K∈B a; b½ �; eð Þ ) p∈K ) p∈ f
n
Kð Þ for any n∈N.

On the other hand,

F∈B af g; eð Þ ) H F; af gð Þ < e ) F⊂ a, aþ e� :

Because r0 < r we get

H f
n
Kð Þ; F

� �
≥ p� a� e ¼ r� r0

2
> 0

for each K∈B a; b½ �; eð Þ, F∈B a; eð Þ and for any n∈N. Thus,

f
n
B a; b½ �; eð Þð Þ ∩B a; eð Þ ¼ ∅ , ∀n∈N:

Consequently, f is not transitive on Kc a; b½ �ð Þ.
Case 2. Suppose that f has no fixed points in a; bð Þ. From the continuity of f , we have that
f xð Þ > x for all x∈ a; bð Þ or f xð Þ < x for all x∈ a; bð Þ. This clearly implies that f is not a transitive

function, and consequently, due to Lemma 24, f c is not transitive on Kc a; b½ �ð Þ.

An important question to answer is what about the size of the set of periodic points of f c. It is
clear that there are some functions f ∈ C Ið Þ with a dense set of periodic points on I, and such

that their extensions f c also has a dense set of periodic points on Kc Ið Þ (for instance, f xð Þ ¼ x).

Therefore, an analogous result to Theorem 26, but for periodic density of f c, cannot be

obtained. However, as we will see, most functions f ∈ C Ið Þ do not have an extension f c with a
dense set of periodic points on Kc Ið Þ. To prove it, we need the following lemma.

Lemma 27 Let I be a compact interval in R, and f : I ! I be a continuous function. If we suppose that

f c has periodic density on Kc Ið Þ, then f has periodic density on I.

Proof. If x0 ∈ I and e > 0 then x0f g∈Kc Ið Þ and, consequently, there exists K∈Kc Ið Þ and n∈N
such that
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a. H x0f g;Kð Þ < e

b. f
n
c Kð Þ ¼ K.

Combining a. and b. we get

d x0; f n xð Þð Þ < e, for all x∈K: (7)

Because f
n
Kð Þ ¼ f n Kð Þ ¼ f n Kð Þ ¼ K and f n is continuous on K then, by the Schauder’s Fixed

Point Theorem, there exists xp ∈K such that f n xp
� � ¼ xp. Thus, xp is a periodic point of f and,

due to (7), we obtain d x0; xp
� �

< e. Hence, f has periodic density on I. □

Theorem 28 Let I ¼ a; b½ � be a compact interval in R. Then f c does not have a dense set of periodic
points in Kc Ið Þ, for most functions f ∈ C Ið Þ.
Proof. The proof is based on an exhaustive analysis of the behaviour of the fixed points of f .
We connect this analysis with an adequate residual set in C Ið Þ. The analysis of each fixed point
of f is fundamental to decide whether the function f allows or not an extension f c that has a
dense set of periodic points. More precisely, the behaviour of each fixed point will imply only
two (mutually exclusive) options:

A. f c does not have a dense set of periodic points, or.

B. f ∈ CNL Ið Þ½ �c, which is a set of first category in C Ið Þ.
Towards this end, let f : a; b½ � ! a; b½ � be a continuous function. By the Schauder’s Fixed Point
Theorem, f has at least one fixed point p∈ a; b½ �. The proof is divided in.

Case 1: f has no fixed points in a; bð Þ.
In this case, we have the following three subcases:

1iÞ p ¼ a is the unique fixed point of f .

We have, either

f xð Þ > x , ∀ x∈ a; bð Þ ) x < f xð Þ < f 2 xð Þ < … < f n xð Þ < …
� �

, or

f xð Þ < x , ∀ x∈ a; bð Þ ) x > f xð Þ > f 2 xð Þ > … > f n xð Þ > …
� �

:

In both cases it follows that f has no periodic points in a; bð Þ.
1iiÞ p ¼ b is the unique fixed point of f .

This case is analogous to the case 1iÞ.
1iiiÞ p ¼ a and p ¼ b are the unique fixed points of f .

This case is also analogous to the cases 1iÞ and 1iiÞ.
Therefore, in case 1 the function f does not have a dense set of periodic points in a; b½ �. Due to

Lemma 24, f c does not have a dense set of periodic points in Kc a; b½ �ð Þ.
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Case 2: f has at least one fixed point p∈ a; bð Þ.
We have the following subcases:

2iÞ ∃ q∈ a; bð Þ , q 6¼ p such that f qð Þ ¼ p.

Without loss of generality, suppose that q∈ a; pð Þ. Then, taking 0 < e < min q�a
2 ;

p�q
2

� �
, we can

consider the open ball B q� e; qþ e½ �; eð Þ in the space Kc a; b½ �ð Þ. If J ¼ c; d½ �∈B q� e; qþ e½ �; eð Þ,
from (6) we have

c� q� eð Þj j < e and d� qþ eð Þj j < e

which implies that a < c < q and q < d < p and, consequently, q∈ J whereas p∉J. Thus,

q∈ J ) f qð Þ ¼ p∈ f Jð Þ ) f Jð Þ 6¼ J : (8)

On the other hand, p∈ f Jð Þ implies that

p∈ f n Jð Þ, ∀n ≥ 2 ) f n Jð Þ 6¼ J, ∀n ≥ 2 , (9)

and, consequently, f c has no periodic points in the ball B q� e; qþ e½ �; eð Þ⊆ Kc a; b½ �ð Þ;Hð Þ, which

implies that f c does not have a dense set of periodic points on Kc a; b½ �ð Þ;Hð Þ.
2iiÞ q ¼ a, q 6¼ p, is the unique point such that f að Þ ¼ p.

Without loss of generality, we can suppose that f xð Þ > p, for all x∈ a; pð Þ.
Now, in addition to hypothesis 2iiÞ, we have two subcases:

2iia1Þ f does not cross the line y ¼ p and f xð Þ > p for all x∈ a; pð Þ.
In this situation, f xð Þ ≥ p for all x∈ a, b�. Thus, choosing q∈ a; pð Þ and 0 < e < max q�a

2 ;
p�q
2

� �
, we

can consider the open ball B qf g; eð Þ to have

K ¼ c; d½ �∈B qf g; eð Þ ) K⊂ a; pð Þ: (10)

From our hypothesis, we obtain

f n zð Þ > p , ∀z∈K, ∀n∈N, (11)

which implies that f n Kð Þ 6¼ K, ∀n∈N. Consequently, f c has no periodic points in the ball

B qf g; eð Þ. In other words, f c does not have a dense set of periodic points in Kc Ið Þ.
2iia2Þ f does not cross the line y ¼ p and f xð Þ < p for all x∈ a; pð Þ.

In this case, f xð Þ ≥ p for all x∈ a; b½ �. Thus, choosing q∈ p; bð Þ and 0 < e < max q�p
2 ;

b�q
2

n o
, we can

consider the open ball B qf g; eð Þ to obtain

K ¼ c; d½ �∈B qf g; eð Þ ) K⊂ p; bð Þ: (12)

Again, from our hypothesis, we get
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f n zð Þ < p , ∀z∈K, ∀n∈N, (13)

which implies that f n Kð Þ 6¼ K, ∀n∈N and, consequently, f c has no periodic points in the ball

B qf g; eð Þ. In other words, f c does not have a dense set of periodic points in Kc Ið Þ.
2iibÞ f crosses the line y ¼ p.

It is clear that, in this case, f ∈ CNL Ið Þ½ �c which, due to Theorem 8 and Remark 6, is a set of first
category in C a; b½ �ð Þ.
2iiiÞ q ¼ b, q 6¼ p, is the unique point such that f bð Þ ¼ p.

This case is analogous to case 2iiÞ and, consequently, if f does not cross the line y ¼ p then f c
does not have a dense set of periodic points in Kc Ið Þ, whereas if f crosses the line y ¼ p, then
f ∈ CNL Ið Þ½ �c.
2ivÞ q1 ¼ a and q2 ¼ b, q1, q2 6¼ p, are the unique points such that f að Þ ¼ f bð Þ ¼ p.

In this case, we have the following subcases:

2iva1Þ f does not cross the line y ¼ p and f xð Þ > p and f xð Þ > p for all x∈ a; bð Þ pf g.
This case is analogous to the case 2iia1Þ and the same is true for 2iva2Þwhen f does not cross the
line y ¼ p and f xð Þ < p for all x∈ a; bð Þ pf g which is analogous to the case 2iia2Þ Finally, there
only remains two subcases:

2ivb1Þ f crosses the line y ¼ p and f xð Þ > p in a; pð Þ and f xð Þ < p in p; bð Þ, and.
2ivb2Þ f crosses the line y ¼ p and f xð Þ < p in a; pð Þ and f xð Þ > p in p; bð Þ.
It is clear that in both cases f ∈ CNL Ið Þ½ �c.
Thus, as a direct consequence of the analysis of the behaviour of the set of fixed points of f , it

turns out that the unique cases in which f could have an extension f c with a dense set of
periodic points on Kc Ið Þ are when there exists a fixed point p of f such that f crosses the line
y ¼ p at x ¼ p. In other words, we obtain

HDS Ið Þ ¼ f ∈ C Ið Þ= f c has a dense set of periodic points in Kc Ið Þ� �) HDS Ið Þ⊆ CNL Ið Þ½ �c,

But, CNL Ið Þ is a residual set in C Ið Þ, therefore from Remark 6, we conclude that HDS Ið Þ is of
first category in C Ið Þ. Equivalently, f c does not have a dense set of periodic points, for most
functions f ∈ C Ið Þ, which ends the proof.

Finally based on the following result,

Theorem 29 ([23]) For most functions f ∈ C Ið Þ, the set of all points where f is sensitive is dense in the
set of all periodic points of f .

we show an analogous result for the sensitivity property, as follows.

Theorem 30 For most functions f ∈ C Ið Þ, the extension f c ∈ C Kc Ið Þð Þ is not sensitive.
Proof. This is a direct consequence of Theorem 28 and Theorem 29.
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2 ;

p�q
2

� �
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7. Control sets of linear systems and chaotic dynamics

The aim of this section is twofold. First of all, to start to apply to the class of linear control
systems on Lie groups, the existent relationship between control sets of an affine control
system Σ on a Riemannian manifold M with chaotic sets of the shift flow induced by Σ on
M� U , [6]. In particular, we are looking for the consequences of this relation on the controlla-
bility property The second part is intended to motivate the research on this topic to writing
down some open problems relatives to this relationship.

7.1. Linear control systems on lie groups

Let G be a connected d dimensional Lie group with Lie algebra g. A linear control system ΣL on
G is an affine system determined by

ΣL : _x tð Þ ¼ X x tð Þð Þ þ
Xm

j¼1

uj tð ÞYj x tð Þð Þ, u ¼ u1;…; umð Þ∈U (14)

where X is linear, that is, its flow X tð Þt∈R is a one-parameter group of G-automorphism, the

control vectors Yj, j ¼ 1,…, m are invariant vector fields, as elements of g. The restricted class
of admissible control U is the same as before.

Certainly, the drift vector field X is complete and the same is true for every invariant vector

field Yj, j ¼ 1,…, m. As usual, we assume that ΣL satisfy the Lie algebra rank condition, i.e.

for any x∈M ) SpanLA X ;Y1;…;Ym� �
xð Þ ¼ d:

The system is said to be controllable if A eð Þ ¼ A is G:

The class of systems ΣL is huge and contains many relevant algebraic systems as the classical
linear and bilinear systems on Euclidean spaces [6], and the class of invariant systems on Lie
groups, [24]. Furthermore, according to the Jouan Equivalence Theorem [25], ΣL is also rele-
vant in applications. It approaches globally any affine non-linear control system Σ on a
Riemannian manifold when the Lie algebra of the dynamics of Σ is finite dimensional.

One can associate to X a derivation D of g defined byDY ¼ � X ;Y½ � eð Þ, Y∈ g:Indeed, the Jacobi
identity shows D X;Y½ � ¼ DX;Y½ � þ X;DY½ � is in fact a derivation. The relation between wt and
D is given by the formula

wt expY
� � ¼ exp etDY

� �
, for all t∈R, Y∈ g:

Consider the generalised eigenspaces of D defined by

gα ¼ X∈ g : D� αð ÞnX ¼ 0 for some n ≥ 1f g

where α∈Spec Dð Þ. Then, gα; gβ

h i
⊂ gαþβ when αþ β is an eigenvalue of D and zero otherwise.

Therefore, it is possible to decompose g as g ¼ gþ ⊕ g0 ⊕ g�, where
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g ¼ gþ ⊕ g0 ⊕ g�, where

gþ ¼ ⊕
α:Re αð Þ>0

gα, g0 ¼ ⊕
α:Re αð Þ¼0

gα and g� ¼ ⊕
α:Re αð Þ<0

gα:

Actually, gþ, g0, g� are Lie algebras and gþ, g� are nilpotent. Denote by Gþ, G� and G0 the
connected and closed Lie subgroups of G with Lie algebras gþ, g� and g0 respectively.

Despite the fact that for an invariant system the global controllability property is local, this
class has been studied for more than 50 years, see [24] and the references there in. The
important point to note here is: for an invariant system the reachable set from the identity is a
semigroup. However, in [26] the authors show that this is not the case for a linear system
which turns the problem more complicated. Therefore, we would like to explore the men-
tioned connection between control sets and the Devaney and Colonius-Kliemann ideas. This
section is the starting point for the ΣL class. We begin with a fundamental result.

Theorem 31 Assume the system ΣL satisfy the Lie algebra rank condition. Therefore, there exists a
control set

Ce ¼ cl A eð Þð Þ ∩A∗ eð Þ

which contains the identity element e in its interior. Here, A∗ eð Þ is the set of states of G that can
be sent by ΣL to e in positive time.

For a proof in a more general set up, see [6].

Recently, we were able to establish some algebraic, topological, and dynamical conditions on ΣL

to study uniqueness and boundness of control sets and it consequences on controllability : But,
the state of arts is really far from being complete. In order to approach this problem for ΣL, as in
[27] we assume here that G has finite semisimple centre, i.e. all semisimple Lie subgroups of G
have finite center. We notice that any nilpotent and solvable Lie group, and any semisimple Lie
group with finite centre has the finite semisimple centre property. But also, the product between
groups with finite semisimple centre have the same property. We also assume that A is open.
This is true if for example, the system satisfy the ad -rank condition. About the uniqueness and
boundness of control sets of a linear systems, we know few things [27].

Theorem 32 Let ΣL a linear control system on the Lie group G:

1. If G ¼ G�G0Gþ is decomposable, Ce is the only control set with non-empty interior. In
particular, this is true for any solvable Lie group.

2. Suppose that G is semisimple or nilpotent, it turns out that

if cl AG�ð Þ, cl A∗
Gþ

� �
and G0 are compact sets C is bounded:

3. If G is a nilpotent simply connected Lie group, it follows that

C is bounded⇔ cl AG�ð Þ and cl A∗
Gþ

� �
are compact sets and D is hyperbolic:

Furthermore, it is possible to determine algebraic sufficient conditions to decide when C is
bounded. Actually, in a forthcoming paper we show that
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Theorem 33 Let ΣL be a linear control system on the Lie group G: Assume that G is decomposable and
Gþ,0 is a normal subgroup of G. Hence, cl G� ∩Að Þ is compact.

A analogous result is obtained for Gþ ∩A assuming that G�,0 is normal. Of course, Gþ,0 is a
normal subgroup of G if and only if gþ ⊕ g0 is an ideal of g. On the other hand,

gþ ⊕ g0 and gþ ⊕ g0 are ideals of g⇔ gþ; g0
� � ¼ 0 and gþ; g�½ �⊂ g0:

7.2. Chaos and control sets

We start with an explicitly relationship between chaotic subsets ofM� U and the Σ-control sets.

Theorem 34 Let ℭ⊂ M� U and the canonical projection πM : M� U ! M: Hence,

πM ℭð Þ ¼ x∈M : there exists u∈U with x; uð Þ∈ℭf g

is compact and its non-void interior consists of locally accessible points. Then,

1. ℭ is a maximal topologically mixing set if and only if there exists a control C such that

ℭ ¼ cl x; uð Þ∈M� U : w t; x; uð Þ∈ int Cð Þ for every t∈R
� �

In this case, C is unique and int Cð Þ ¼ int πM ℭð Þð Þ, cl Cð Þ ¼ cl πM ℭð Þð Þ.
2. The periodic points of Φ are dense in ℭ.

3. Φ restrict to ℭ is topologically mixing, topologically transitive and has sensitive depen-
dence on initial conditions.

In order to apply this fundamental result for a non-controllable linear control system, the
boundness property of its control set is crucial. Let us assume that C is a bounded control set
with non-empty interior of ΣL and define ℭ ¼ π�1

M Cð Þ ¼ cl C� UCð Þ where

UC ¼ u∈U : exist x∈ C with w t; x; uð Þ∈ int Cð Þ for every t∈R
� �

:

The Lie group G is finite dimensional and UC is a closed subset of the compact class of
admissible control U ⊂L∞ R;Ω⊂Rmð Þwith the weak* topology. Since the projection is a contin-
uous map, it turns out that πM ℭð Þ is compact and ℭ, C are uniquely defined.

On the other hand, we are assuming that ΣL satisfy the Lie algebra rank condition, hence the
system is locally accessible at any point of the state space. Therefore, we are in a position to
apply Theorem 32, first, for some classes of controllable linear systems, as follows.

Theorem 35 Let ΣL be a linear control system on a Lie group G. Any condition.

1. G is compact, or

2. G is Abelian, or
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3. G has the finite semisimple centre property and the Lyapunov spectrum of D is 0f g
implies that the skew flow Φ is chaotic in G� U .

Proof. Under the hypothesis in 1ð Þ, any control set is bounded. Furthermore, if G is compact,
the Lie algebra rank condition assures that the linear control system ΣL is controllable on G,
see [15]. Hence, Φ is topologically mixing, topologically transitive and the periodic points of Φ
are dense in G� U , which give us the desired conclusion.

It is well known that any Abelian Lie group is a product G ¼ Rm � Tn between the Euclidean
space Rm and the torus Tn ¼ S1 �…� S1 (n times), for some m, n∈N: In this case, ΣL is also
controllable [15]. Indeed, since the automorphism group of Tn is discrete, any linear vector
field on the torus is trivial. But, we are assuming the Lie algebra condition on G which
coincides with the Kalman rank condition in Rm: And, on the compact part, we apply 1ð Þ:
Hence, the skew flow Φ is chaotic in G� U . In fact, π�1

M Cð Þ ¼ G� U and the hypothesis of the
compacity on the projection in Theorem 32 is not necessary for the lifting, see Proposition 4.3.3
in [6]. The same is true for 3ð Þ: Actually, for this more general set up, we recently prove that the
system is also controllable, [28, 29].

In the sequel, we use some topological properties of Ce to translate these properties to its
associated chaotic set ℭ, as follows.

Theorem 36 Let ΣL be a linear control system on a Lie group G: It holds.

1. If G ¼ G�G0Gþ there exists one and only one chaotic set ℭ ¼ π�1
M Ceð Þ in G� U given by

ℭ ¼ cl x; uð Þ : w t; x; uð Þ∈ int Ceð Þ for every t∈R
� �

⊂M� U

2. If G is nilpotent and D has only eigenvalues with non-positive real parts, then the only
chaotic set ℭ ¼ π�1

M Cð Þ in G� U is closed

3. If G is nilpotent and D has only eigenvalues with non-negative real parts then the only
chaotic set ℭ ¼ π�1

M Cð Þ in G� U is open

Proof. If G is decomposable, we know that there exists just one control set: the one which
contains the identity element. Hence, ℭ ¼ π�1

M Ceð Þ is the only chaotic set of Φ on G� U which
proves 1ð Þ: To prove 2ð Þ and 3ð Þ, we observe that the Lyapunov spectrum condition on the
derivation D associated to the drift vector field X is equivalent to the control set Ce be closed or
open, respectively. Since the projection πG : G� U ! G is a continuous map with the weak*
topology on U , the lifting π�1

G Ceð Þ is both closed and open, respectively.

7.3. Challenge

In this very short section, we would like to invite the readers to work on the relationship
between chaotic and control sets. We suggest to go further in this research through some
specific examples on low-dimensional Lie groups. For that, we give some relevant information
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Theorem 33 Let ΣL be a linear control system on the Lie group G: Assume that G is decomposable and
Gþ,0 is a normal subgroup of G. Hence, cl G� ∩Að Þ is compact.
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� � ¼ 0 and gþ; g�½ �⊂ g0:
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� �
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� �
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3. G has the finite semisimple centre property and the Lyapunov spectrum of D is 0f g
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� �

⊂M� U
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about two groups of dimension three: the simply connected nilpotent Heisenberg Lie group H
and the special linear group SL 2;Rð Þ. We finish by computing an example on H.

1. The nilpotent Lie algebra h ¼ R3;þ; ;
� �

, has the basis E12;E23;E13f g with E12;E23½ � ¼ E13:

Here, Eij denotes the real matrix of order 3 with zero everywhere except 1 in the position ij:
The associated Heisenberg Lie group has the matrix representation

G ¼ g ¼
1 x z
0 1 y
0 0 1

0
B@

1
CA : x; y; z∈R

8><
>:

9>=
>;

!w:g! x;y;zð ÞR3:

As invariant vector fields, the basis elements of g has the following description

E12 ¼ ∂
∂x

, E23 ¼ ∂
∂y

þ x
∂
∂z

and E13 ¼ ∂
∂z

:

The canonical form of any g-derivation is given by

D ¼
a d 0
b e 0
c f aþ e

0
B@

1
CA : a, b, c, d, e, f ∈R:

Any linear vector field X reads as

X x; y; zð Þ ¼ axþ dyð Þ ∂
∂x

þ bxþ eyð Þ ∂
∂y

þ b
2
x2 þ d

2
y2 þ cxþ fyþ aþ eð Þz

� �
∂
∂z

:

2. The vector space g ¼ sl 2;Rð Þ of all real matrices of order three and trace zero is the Lie

algebra of the Lie group G ¼ SL 2;Rð Þ ¼ det�1 1ð Þ. Let us consider the following generators of g:

Y1 ¼ 0 1
�1 0

� �
, Y2 ¼ 0 1

0 0

� �
and Y3 ¼ 1 0

0 �1

� �
: The Lie group G is semisimple, then any

g derivation is inner which means that there exists an invariant vector field Y such that ad Yð Þ
represents : Thus, a general form of a derivation reads as

α ad Y1� �þ β ad Y2� �þ γ ad Y3� �
:

Example 7.1 On the Heisenberg Lie group, consider the system

ΣL : g� tð Þ ¼ X g tð Þð Þ þ u1 tð ÞE12 g tð Þð Þ þ u2 tð ÞE23 g tð Þð Þ, u ¼ u1; u2ð Þ∈U (15)

where X is determined by the derivation D ¼ ad E12ð Þ ¼ E32: Since the group is nilpotent, it has
the semisimple finite centre property. The Lyapunov spectrum ofD reduces to zero. Finally, the
reachable set from the identity A is open. In fact, the ad-rank condition is obviously true
because D E12ð Þ ¼ E13. It turns out that the skew flow Φ is chaotic in H � U :
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Abstract

Here, we present a brief insight into some current methods allowing for the detection
of quantum chaos phenomena. In particular, we show examples of proposals of the
parameters which could be applied as indicators of quantum-chaotic behavior and
already were presented in the literature. We concentrate here on the quantum fidelity
and the fidelity-like functions, defined for the wave functions describing system’s
evolution. The definition of the fidelity-like parameter also involves the operator of
the mean number of photons/phonons. Discussing such parameter, we show here how
it is possible to take into account in the discussion of quantum-chaotic systems simul-
taneously the behavior of the divergence of wave functions and the energy of the
system represented by the mean number of photons/phonons. Next, we discuss
entropy-type parameter which can also be a good candidate for the indicators of
quantum chaos’ phenomena. We show the ability of all considered here parameters
to be witnesses of quantum-chaotic behavior for the systems of the quantum nonlinear
Kerr-like oscillator—the classical counterpart of such system can exhibit chaotic evo-
lution in its canonical form.

Keywords: quantum chaos, quantum nonlinear oscillator, Kerr-like oscillator, fidelity,
entropy, photons, phonons

1. Introduction (some history)

The classical chaos phenomenon is related to the irregular and unpredictable evolution of
nonlinear systems. What is important is that the behavior of such systems is determined,
which means that time evolution of the system’s state can be described by corresponding
equations, usually in a form of nonlinear differential equations. The term “irregular evolution”
is related to the nature of the dynamics of the system and is not related to the unpredictable
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influence of the environment. The chaotic behavior exhibits itself in high sensitivity of system’s
evolution to the initial conditions. In fact, it refers to the situation when we are not able to
determine the final state of a system when we have limited information concerning its initial
state. On the other hand, when the initial state of the system is well defined, according to the
principle of determinism, its final state should be well determined. However, for real systems,
such ideal situation cannot be observed, as the initial conditions are always determined with
some accuracy.

One of first papers describing the chaotic behavior of the studied systems was published at the
end of the nineteenth century. In the years 1892–1899, Henri Poincaré published the work of
Les Méthodes Nouvelles de la Mecanique Celeste [1], which attempts to answer the question:
whether the solar system is stable? Poincaré studied the behavior of the reduced Hill model.
This model consists of three bodies, which interact with gravity forces. Additionally, the mass
of one of the bodies is so small that does not affect on the behavior of the other two. On the
other hand, the other two bodies influence the behavior of the first one. Henri Poincaré, in
his research, has obtained very complex trajectories of motion for small body, which we now
call chaotic.

The great importance in chaos theory plays studies initiated by Kolmogorov [2] and contin-
ued by Arnold [3] and Moser [4]. Their studies concerned the integrable Hamiltonian sys-
tems and the influence of small perturbations on such systems. They have shown that
when small perturbations are present in a dynamical system, some fraction of orbits in the
phase space remains indefinite in some region of the space. That result is now known as
KAM theorem.

In 1963, Lorenz [5] numerically studied a simple model of cellular convection (called Rayleigh-
Bénard convection model) and discovered that all equations of motion are unstable and almost
all are nonperiodic. He also paid attention to the phenomenon of the sensitivity of the system’s
evolution to the initial conditions. The system which models cellular convection consists of two
horizontal plates and a liquid medium placed between them. The temperature of the top plate
is lower than that measured at the surface of the bottom plate. For some values of the
temperature difference ΔT, although we observe the convection rolls in the fluid, the state of
the system remains stationary. By increasing ΔT, the fluid flow rate changes, and the behavior
of the system becomes chaotic. In the following years, Rayleigh-Bénard convection was also
studied by Ahlers and Behringer [6], Gollub and Benson [7], Libchaber and Maurer [8], and
Bergé et al. [9]. The model analyzed by Lorenz can be applied to describe the behavior of
various physical systems. For example, in 1975 Haken applied Lorenz model to explain the
irregular spiking behavior of laser system [10].

The same time when Lorenz was studying the model of cellular convection, Ueda analyzed
Duffing’s model [11, 12] which describes a periodically excited damping system. Ueda
observed that for some values of the amplitude of excitation force and the damping parameter
system’s oscillations become accidental. Further studies showed that damped oscillators,
which are excited by a periodic force, for certain values of the parameters describing excitation,
are sensitive to initial conditions.
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In 1898, Hadamard studied the behavior of the geodesics on surfaces with constant negative
curvature [13]. He proved that the motion along geodetic lines on negative curvature surfaces
is unstable and this system exhibits sensitivity to initial conditions. That means that small
change in initial direction of a geodesic entails large changes in predicted results after a long
time. These studies were continued by Birkhoff [14]. In subsequent years successive systems
were discussed in the context of chaotic behavior and their sensitivity to initial conditions.
Nowadays, the chaos theory is applied to the discussions of a broad range, not necessarily
physical problems, for instance, the motion of planets [15, 16], chemical reactions [17], medi-
cine [18, 19], and others.

In the twentieth century, the new field of physics has been developed, including quantum
mechanics. One of the main principles of quantum mechanics is proposed by Bohr, correspon-
dence principle [20]. With accordance to it, when the value of the action associated with the
energy of the system is much higher than the Planck constant, the quantum description of the
system reduces to the classical one. In consequence, if for the classical counterpart of the
quantum system we observe the transition to chaotic behavior, the similar effect should appear
in the quantum system. However, such transitions appearing in quantum systems have the
entirely different character from those originating in the classical ones. It can be explained as a
result of the fact that the Schrödinger equation which describes the evolution of the quantum
system is linear with respect to the wave function. In consequence, it gives periodic or quasi-
periodic solutions which do not lead to the chaotic behavior in the classical sense. Additionally,
as a result of the Heisenberg uncertainty principle, it is not possible to consider the trajectories
in phase space, and the main feature of classical chaos cannot be observed. In quantum
mechanics, all points in a 2n-dimensional space which are located in the volume smaller than
ℏn are indistinguishable. Therefore, if the state of the system remains inside such region, when
the system’s dynamics is classically chaotic, in the quantum regime, such chaotic effects are not
visible. Then, we cannot analyze the rate of separation of infinitesimally close trajectories
known as the Lyapunov exponent. On the other hand, according to Bohr’s correspondence
principle when the Planck constant tends to zero, the results of quantum mechanics should
correspond to the results of classical mechanics. According to that, the transition to the chaotic
behavior of the classical system should lead to the appearance of the changes in dynamics of
the quantum system. Therefore, when we study quantum chaos, we try to find some differ-
ences between the behavior of quantum systems for which classical counterpart exhibits
regular evolution and quantum systems for which their classical counterparts are chaotic.
Thus, one of the primary goals of the research in the field of quantum chaos is to find such
parameters (witnesses) which allow for distinguishing between such two types of quantum
behavior. For instance, the differences appearing in spectra of quantum-mechanical systems
were predicted by Percival in 1973 [21] and then confirmed in 1979 by McDonald and Kauf-
man [22]. Those latter have studied the behavior of a particle which moves within the region
confined inside rigid walls composed of two semicircles of radius r and two parallel seg-
ments of length d (see Figure 1b). Such system is called the quantum billiard, and its classical
counterparts regularly behave when d = 0 (Figure 1a). McDonald and Kaufman studied the
distribution of distances N(ΔE) between two neighboring energy levels ΔE =Ek + 1�Ek. For a
circular billiard (d = 0), when E = 0 the distributionN(ΔE) reaches its greatest value (Figure 2).
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When energy E increases, the value of N(ΔE) decreases. In consequence, we can observe the
phenomenon called attraction of energy levels which can lead to their degeneracy. However,
for stadium billiard (d 6¼ 0), the distribution N(ΔE) changes considerably. For E = 0 it does not
take its maximum value as we observed for the earlier case—it reaches its maximum for
another value of the energy E 6¼ 0. That means that for the stadium billiard systems the
phenomenon called repulsion of energy levels appears. At this point, we should also mention
that similar result for the quantum Sinai’s billiard was obtained by Bohigas et al. [23].

In 1984 Peres proposed a new way of studying the dynamics of quantum systems [24]. His
method was based on the comparison of the evolution of the unperturbed system to that
corresponding to the same system for which small perturbations Δ were applied into the
Hamiltonian H. The state of the unperturbed system is described by the wave function Ψu,
whereas Ψp represents the state corresponding to the perturbed Hamiltonian. To determine
the distance between such two states, we need to calculate the scalar product of two
corresponding to them wave functions and then define parameter

F ¼ ∣Ψ u tð ÞjΨ p tð Þ∣, (1)

a) b)
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Figure 1. The billiard systems: (a) circular and (b) stadium.

0
Δ E

N
(Δ

E
)

Figure 2. The distribution of distances between two neighboring energy levels N(ΔE) for circular billiard (dashed line)
and stadium billiard (solid line).
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which is called fidelity. At this point, one should mention that in the literature the fidelity is
sometimes defined as squared modulus, not modulus itself. Moreover, especially in the papers
dealing with condensed matter physics, the fidelity is called Loschmidt echo (for instance, see ([25]
and the references quoted therein). Such quantity was applied for investigation of quantum-chaotic
phenomena for the first times by Peres [24] and then byWeinstein et al. and Emerson et al. [26, 28].
The fidelity was also discussed in Ref. [27], where anharmonic oscillator models excited by
ultrashort pulses were considered. For a quantum system whose classical counterpart shows
regular behavior, we observe regular oscillations of the fidelity. However, when the classical
counterpart of a quantum system exhibits a chaotic behavior, the evolution of the fidelity changes
its character. It was shown in [26, 28] that in such a case the value of F decreases. The way in which
such fidelity decays depends on the value of perturbation Δ. The methods of investigation of
quantum-chaotic systems based on the fidelity were applied in studies of the dynamics of various
quantum systems such as the quantum kicked top [26, 29], quantum nonlinear oscillator [27],
particle kicked by a Gaussian beam [30], Josephson junction [31], etc.

2. The quantum nonlinear Kerr-like oscillator system: its quantum and
classical evolution

To show the ability of discussed here parameters to describe quantum-chaotic phenomena, we
need to choose a physical model which can exhibit quantum chaos’ effects. The model should
be a nonlinear type and allows to compare its quantum dynamics with its classical counter-
part. We decided to discuss nonlinear Kerr-like oscillator systems. The models which we will
apply are general enough to be applied in various fields. For instance, they can be applied to
description nanomechanical resonators and various optomechanical systems [32–38], boson
trapped in lattices [39–41], Bose-Hubbard chains [41, 42], circuit QED models [43, 44], etc.

The Hamiltonian for the anharmonic oscillator excited by a series of ultrashort pulses can be
written as

Ĥ ¼ ĤNL þ ĤK, (2)

where the first part ĤNL describes “free” evolution of the oscillator during the time between two

subsequent external pulses. ĤNL can be written with the use of boson creation and annihilation
operators as

ĤNL ¼ χ
2

â†
� �2

â2: (3)

The parameter χ appearing here describes nonlinearity of the oscillator. Here, we will assume
for the convenience that χ = 1 and, then, other quantities will be expressed in units of χ. The

second Hamiltonian ĤK is related to the interaction of the system with the external coherent
pulses. It can be expressed in the following form:
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written as

Ĥ ¼ ĤNL þ ĤK, (2)

where the first part ĤNL describes “free” evolution of the oscillator during the time between two

subsequent external pulses. ĤNL can be written with the use of boson creation and annihilation
operators as
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â2: (3)

The parameter χ appearing here describes nonlinearity of the oscillator. Here, we will assume
for the convenience that χ = 1 and, then, other quantities will be expressed in units of χ. The

second Hamiltonian ĤK is related to the interaction of the system with the external coherent
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ĤK ¼ ε â† þ â
� �X∞

k¼1

δ t� kTð Þ, (4)

where ε describes the strength of external excitation, whereas T denotes the duration of the
time between two subsequent pulses (for the cases discussed here, we will assume that T =π).
Appearing here Dirac-delta function models a single, infinitely short external pulse. In fact,
every single pulse is much shorter than the time interval between two successive pulses but is
sufficiently long to allow nonlinear system interact with the field.

As we neglect here all damping effects, the system’s evolution can be described by unitary
operators defined with the use of two Hamiltonians. We can notice that the whole evolution
can be divided into two types of subsequent stages. Thus, for the moments of time, when t = kT
(k = 1, 2,…), the external pulses act on the oscillator. It is described by the Hamiltonian HK. On
the other hand, during the period between two subsequent pulses, the anharmonic oscillator
evolves “freely,” and such evolution is governed by HNL. In consequence, we can define two

unitary evolution operators ÛK and ÛNL, respectively. They are.

ÛK ¼ e�iε â†þâð Þ (5)

and

ÛNL ¼ e�iχTn̂ n̂�1ð Þ=2, (6)

where n̂ ¼ â†â is the photon number operator. Applying ÛNL and ÛK, we can define the

operator Ûu transforming the wave function from that corresponding to the moment of time
just after kth external pulses to that for the moment after (k + 1)th one. Such defined time
evolution operator allows for a so-called quantum mapping of the system. For unperturbed

system Ûu has the following form:

Ûu ¼ e�iε â†þâð Þe�iχTn̂ n̂�1ð Þ=2: (7)

When we apply the perturbation Δ, corresponding to it evolution operator Ûp is defined as

Ûp ¼ e�i εþΔð Þ â†þâð Þe�iχTn̂ n̂�1ð Þ=2: (8)

Next, to find solutions we need to choose initial state of the system. Here, we will assume that
the system’s evolution starts from the vacuum state ∣Ψ(0)〉. Thus, we are in the position to find
two wave functions appearing in the definition of fidelity. After the k-fold operation of the
evolution operators onto the initial state, we obtain the wave functions (perturbed and
unperturbed ones) corresponding to the moments of time just after the kth pulse. They are

∣Ψ u kð Þi ¼ Ûu

� �k
∣Ψ 0ð Þi (9)
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and

∣Ψ p kð Þi ¼ Ûp

� �k
∣Ψ 0ð Þi, (10)

respectively. Finally, the modulus of the scalar product of such calculated wave functions gives
the fidelity defined in Eq. (1).

As we have mentioned earlier, it is necessary to determine the regions for which the classical
counterpart of our model exhibits regular or chaotic dynamics. Therefore, we will follow the
path shown in [45]. First, we will find the solution for the annihilation operator and, then,
replace the operators appearing there by appropriate complex numbers. Such solution will
allow drawing a bifurcation diagram for the classical system.

We remember that during the time between two subsequent pulses the energy is conserved
and the total number of photons is constant. Therefore, we can write the equation describing
the time evolution of â for such period of time:

dâ
dt

¼ 1
iℏ

â; ĤNL

h i
, (11)

and it has the solution of the form

â τð Þ ¼ e�iχâ† âτâ: (12)

To transform such determined annihilation operator from that corresponding to the moment of

time just before a single pulse to that just after it, we can use ÛK defined in Eq. (8). Due to the

fact that ÛK is the displacement operator, the recurrence formula transforming â from the
moment of time just after kth pulse to that after (k+1)th one can be written as

âkþ1 ¼ e�iχ â†kþiεð Þ âk�iεð ÞT âk � iεð Þ: (13)

We can replace â (â†) by complex numbers α (α∗), now. In consequence, we get the following
equation allowing for finding classical maps:

αkþ1 ¼ αk � iεð Þe�i χ αk�iεj j2ð ÞT : (14)

The classical energy of the system is determined by |α|2, and, now, we can draw a bifurcation
diagram for the classical nonlinear system. Thus, Figure 3 shows such diagram plot for various
values of the strength of external pulses ε. We see that the character of our system’s dynamic
depends on the value of this parameter—the evolution of the classical system is regular for
ε < 0.344 and 0.362 < ε < 0.47 and when 0.344 < ε < 0.362 and 0.47 < ε, the classical system exhibits
chaotic evolution.
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â; ĤNL
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To transform such determined annihilation operator from that corresponding to the moment of

time just before a single pulse to that just after it, we can use ÛK defined in Eq. (8). Due to the
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3. Witnesses of quantum chaos

3.1. The fidelity

From the bifurcation diagram, we know for which values of external excitations ε the evolu-
tion of the classical counterpart of the quantum system is regular and for which it is chaotic.
Choosing the appropriate values of ε, we can examine the time evolution of the fidelity:

F kð Þ ¼ ∣ Ψ 0ð ÞjÛk
uÛ

k
pjΨ 0ð Þ

D E
∣, (15)

where Ûu and Ûp are already defined in Eqs. (7) and (8). We concentrate here on the behavior
of F(k) in a long-time limit.

In Figure 3 one can see that four regions of different characters of the system’s dynamics appear
there. There are regular area for ε < 0.344, narrow chaotic band for 0.344 < ε < 0.362, second
regular area for 0.362 < ε < 0.47, and area of deep chaos for ε > 0.47. Therefore, we choose four
values of ε to examine the behavior of F(k) in all four areas. They are ε = {0.2; 0.35; 0.45; 0.65}, and
for such values of ε, the time evolution of the fidelity is presented in Figure 4. In addition, we
assumed here that the perturbation parameter Δ = 0.001.

Figure 4a shows the time evolution of fidelity for ε = 0.2. For this value of ε, the dynamics of
the classical counterpart of the quantum system is regular. We can observe here that the
value of F(k) changes in time periodically from zero to unity. We see that the both amplitude
and period of oscillations remain constant even for the long-time limit. Here, the value of the
period of oscillations is equal to 3178 pulses (after such number of pulses F(k) reaches its
initial value F(0) = 1). The similar situation we observe for ε = 0.45 (see Figure 4c). In bifurca-
tion diagram, this value of the external excitation corresponds to the second regular region
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Figure 3. The bifurcation diagram showing the dependence of the average energy |α|2 on the excitation strength ε. The
system is not damped, and the time between two subsequent pulses is assumed to be T =π.
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(band). The amplitude of oscillations is slowly modulated, so we observe beating effect. This
effect appears as a result of the proximity of chaotic region which affects oscillations of F, and
additional frequency appears in the evolution. Analogously to the case (a), the fundamental
oscillations of the fidelity are regular, and its period is constant and equal to 3414 pulses (the
period differs slightly from that of case (a)). Appearing of additional frequencies is related to
the bifurcations which appear for the values of ε slightly smaller than that for that
corresponding to the deep chaos border.

The case when ε = 0.35 seems to be more attractive. Such value of the external excitation
corresponds to the chaotic band which is located between two regular areas. The same as for
the case when ε = 0.2; the fidelity changes periodically from zero to unity. Thus, we could
conclude that we are in the regular area, and the question arises: why the evolution of the
fidelity for ε = 0.35 is practically the same, as that for ε = 0.2? Probably, such evolution is
strongly influenced by the neighborhood of the two regular areas which we see in the bifurca-
tion diagram. Moreover, such behavior of the system becomes more clear when we plot the
map defined in a two-dimensional phase space for the classical case and, then, overlap it with
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3. Witnesses of quantum chaos

3.1. The fidelity

From the bifurcation diagram, we know for which values of external excitations ε the evolu-
tion of the classical counterpart of the quantum system is regular and for which it is chaotic.
Choosing the appropriate values of ε, we can examine the time evolution of the fidelity:

F kð Þ ¼ ∣ Ψ 0ð ÞjÛk
uÛ

k
pjΨ 0ð Þ

D E
∣, (15)

where Ûu and Ûp are already defined in Eqs. (7) and (8). We concentrate here on the behavior
of F(k) in a long-time limit.
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initial value F(0) = 1). The similar situation we observe for ε = 0.45 (see Figure 4c). In bifurca-
tion diagram, this value of the external excitation corresponds to the second regular region
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(band). The amplitude of oscillations is slowly modulated, so we observe beating effect. This
effect appears as a result of the proximity of chaotic region which affects oscillations of F, and
additional frequency appears in the evolution. Analogously to the case (a), the fundamental
oscillations of the fidelity are regular, and its period is constant and equal to 3414 pulses (the
period differs slightly from that of case (a)). Appearing of additional frequencies is related to
the bifurcations which appear for the values of ε slightly smaller than that for that
corresponding to the deep chaos border.

The case when ε = 0.35 seems to be more attractive. Such value of the external excitation
corresponds to the chaotic band which is located between two regular areas. The same as for
the case when ε = 0.2; the fidelity changes periodically from zero to unity. Thus, we could
conclude that we are in the regular area, and the question arises: why the evolution of the
fidelity for ε = 0.35 is practically the same, as that for ε = 0.2? Probably, such evolution is
strongly influenced by the neighborhood of the two regular areas which we see in the bifurca-
tion diagram. Moreover, such behavior of the system becomes more clear when we plot the
map defined in a two-dimensional phase space for the classical case and, then, overlap it with
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Husimi Q-function. Q-Function is one of the quasi-probabilities which gives the information
concerning system’s quantum state presented in a phase space (for the discussion of various
quasi-probabilities usually applied in quantum optics, see, for instance, [46] and the references
quoted therein). We should note at this point that the parameter of mutual information which
was also proposed as a tool which can be applied in a finding of the quantum-chaotic behavior
[47] is derived with the use of Husimi Q-function. Moreover, Q-function is not the only one
quasi-probability function which can be applied in an investigation in that field. For instance,
in [48] the parameter derived on the basis of the Wigner quasi-probability function was also
considered in a context of finding quantum chaos witnesses.

Figure 5 shows the classical map (represented by dots) and contour plot of Q-function (dashed
lines). We see that the main peak of Q-function (and the greatest probability) is placed in the
region corresponding to the regular trajectories in the phase plane. This fact explains why the
time evolution of F exhibits regular character.

For ε = 0.65 (this situation corresponds to the area of deep chaos in the bifurcation diagram) the
behavior of F completely differs from the previous cases (a)–(c) in Figure 4. When the system
starts its evolution, we observe decay of the fidelity. The character of such initial vanishing of F
was discussed in [26], where it was shown that it changes at the border of chaotic region and,
thus, it can be applied as the witness of quantum chaos. Let us concentrate on the time
evolution of F for the longer times. So, apart from the initial decay, we can see that the fidelity
evolves in an irregular way in the long-time regime. Such irregularity appears when the values
of excitations correspond to the area of deep chaos in the bifurcation diagram.

For each case discussed here, the perturbation parameter Δ is small, according to the pertur-
bation theory. Therefore, the initial decay of the fidelity is described by the Gaussian functions
[26]. This means that the decay of F can be characterized by the function exp(�const � t2). The
rate of decay changes with the value of the external excitations. Figure 6 shows how many
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Figure 5. Classical map (dots) overlapping the contour plot of Q-function (dashed lines). We assume here that ε = 0.35.
The remaining parameters are the same as those for Figure 4.

Chaos Theory128

pulses are necessary for the fidelity to get the value 0.5 for the first time, for various values of
the strength of the external excitation ε. We see that when ε increase, the time (in fact, the
number of the pulses) for which F reaches 0.5 also increases, and, hence, the rate of initial
decay of the fidelity decreases. We observe such relation between the decay rate and the
strength of the external pulse for ε < 0.47 (it corresponds to both areas of regular motion and
the narrow chaotic band in the bifurcation diagram). On the other hand, for the excitations
corresponding to the region of deep chaos, the rate of fidelity decay changes irregularly. We
observe similar behavior for various values of perturbation parameter Δ. However, when Δ
increases, the time of decay becomes shorter, and the rate of fidelity decay is greater (see
Figure 6). What is important is that when the values of the perturbation parameter become
greater and greater, the transition to the phase of its irregular changes with ε is less pro-
nounced, so it is harder to detect the edge of chaotic behavior from discussed dependence.

3.2. Entropic parameter ε

Entropic measures, especially the Kolmogorov entropy, are the most relevant parameters of
characterizing chaotic dynamics [49]. Therefore, we will define here the entropy-like quantity ε
to show how it could be applied in quantum chaos detection. What is important is that ε will
be defined for the quantum, not a classical model.

Thus, first, we calculate the Fourier transform F(k):

F ωð Þ ¼
X
k

F tð Þe�iωtdt: (16)

We applied here discrete transform due to the discrete character of the system’s evolution
which is influenced by the train of ultrashort external pulses. Then, we calculate the power
spectrum P(ω) = |F(ω)|2, and after its proper normalization, we define the entropy-like param-
eter ε in the form
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Figure 6. The number of pulses for which the fidelity reaches 0.5 for the first time, as a function of the strength of
excitation for two values of the perturbation parameter Δ.
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pulses are necessary for the fidelity to get the value 0.5 for the first time, for various values of
the strength of the external excitation ε. We see that when ε increase, the time (in fact, the
number of the pulses) for which F reaches 0.5 also increases, and, hence, the rate of initial
decay of the fidelity decreases. We observe such relation between the decay rate and the
strength of the external pulse for ε < 0.47 (it corresponds to both areas of regular motion and
the narrow chaotic band in the bifurcation diagram). On the other hand, for the excitations
corresponding to the region of deep chaos, the rate of fidelity decay changes irregularly. We
observe similar behavior for various values of perturbation parameter Δ. However, when Δ
increases, the time of decay becomes shorter, and the rate of fidelity decay is greater (see
Figure 6). What is important is that when the values of the perturbation parameter become
greater and greater, the transition to the phase of its irregular changes with ε is less pro-
nounced, so it is harder to detect the edge of chaotic behavior from discussed dependence.

3.2. Entropic parameter ε

Entropic measures, especially the Kolmogorov entropy, are the most relevant parameters of
characterizing chaotic dynamics [49]. Therefore, we will define here the entropy-like quantity ε
to show how it could be applied in quantum chaos detection. What is important is that ε will
be defined for the quantum, not a classical model.

Thus, first, we calculate the Fourier transform F(k):
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We applied here discrete transform due to the discrete character of the system’s evolution
which is influenced by the train of ultrashort external pulses. Then, we calculate the power
spectrum P(ω) = |F(ω)|2, and after its proper normalization, we define the entropy-like param-
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Ε ¼ �
X
ω

PN ωð Þ log PN ωð Þð Þ: (17)

Thus, Figure 7 shows how the value of ε depends on the strength of external excitation ε. We
see that when the dynamics of the classical counterpart of our system is regular, the value of
the parameter ε changes slightly with increasing ε. For strengths of the external excitation
corresponding to the border of deep chaos, the value of ε increases rapidly. For even higher
values of ε, when the classical system exhibits purely chaotic behavior, the value of the
parameter ε increases, and, additionally, irregular oscillations appear with increasing ε. This
result seems to be very promising. As for classical systems, the bifurcation diagram allows us
to determine when it exhibits regular, or chaotic, evolution; the character of quantum system’s
dynamics could be confirmed by the application of the parameter defined in Eq. (17). The
procedure discussed here to other parameters, for instance, Kullback–Leibler quantum diver-
gence [50], is also a worth considering application.

3.3. The fidelity-like parameter

In the bifurcation diagram, we showed the values of |α|2 calculated for the long-time limit and
corresponding to various values of ε. The classical value of |α|2 corresponds to the mean
number of photons in the quantum picture. From another side, the fidelity F(k) does not
contain any information concerning the energy or, equivalently, numbers of photons for con-
sidered system. Thus, there is a need to define such parameter that would contain the infor-
mation concerning both divergence of wave function and energy of the system. Therefore, we
will discuss here the fidelity-like parameter Fn(k) which could be not only a good witness of the
divergence of two wave functions in Hilbert space but also contain the information concerning

the mean number of photons. The definition of Fn(k) should involve the operator n̂ ¼ â†â and
two wave functions (one corresponding to the perturbed system and second for the unperturbed
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Figure 7. The entropic-like quantity ℰ versus the strength of external excitation ε.
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one). Here, we discuss one of the parameters which its definition fulfills such requirements. Its
definition can be written as [51]

Fn kð Þ ¼ ∣ Ψ 0ð ÞjÛk
u â†â
� �

Ûk
pjΨ 0ð Þ

D E
∣: (18)

The parameter Fn gives us the possibility to directly compare the behavior of Fn with the
information obtained from the bifurcation diagram. Analogously to the cases discussed earlier
(see the discussion concerning the fidelity F(k)), we will analyze here four cases for which the
external force takes the values ε = {0.2; 0.35; 0.45; 0.65}. They correspond to the four different
areas in the bifurcation diagram shown in Figure 3. And thus, Figure 8 depicts the time
evolution of Fn(k) (solid lines) and, additionally, for subfigures (a) and (b), previously defined
fidelity F(k) (dashed line).

When ε = 0.2, which corresponds to the regular evolution of the classical system, the value of Fn
oscillates regularly (Figure 8a). Those oscillations are modulated, and we observe a beating
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Figure 8. The fidelity-like parameter Fn(k) (solid line) and fidelity F(k) (dashed line) versus the number of pulses for (a)
ε = 0.2, (b) ε = 0.35, (c) ε = 0.45, and (d) ε = 0.65. In the inset we have shown Fn in an extended timescale.
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result seems to be very promising. As for classical systems, the bifurcation diagram allows us
to determine when it exhibits regular, or chaotic, evolution; the character of quantum system’s
dynamics could be confirmed by the application of the parameter defined in Eq. (17). The
procedure discussed here to other parameters, for instance, Kullback–Leibler quantum diver-
gence [50], is also a worth considering application.

3.3. The fidelity-like parameter

In the bifurcation diagram, we showed the values of |α|2 calculated for the long-time limit and
corresponding to various values of ε. The classical value of |α|2 corresponds to the mean
number of photons in the quantum picture. From another side, the fidelity F(k) does not
contain any information concerning the energy or, equivalently, numbers of photons for con-
sidered system. Thus, there is a need to define such parameter that would contain the infor-
mation concerning both divergence of wave function and energy of the system. Therefore, we
will discuss here the fidelity-like parameter Fn(k) which could be not only a good witness of the
divergence of two wave functions in Hilbert space but also contain the information concerning

the mean number of photons. The definition of Fn(k) should involve the operator n̂ ¼ â†â and
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one). Here, we discuss one of the parameters which its definition fulfills such requirements. Its
definition can be written as [51]

Fn kð Þ ¼ ∣ Ψ 0ð ÞjÛk
u â†â
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∣: (18)

The parameter Fn gives us the possibility to directly compare the behavior of Fn with the
information obtained from the bifurcation diagram. Analogously to the cases discussed earlier
(see the discussion concerning the fidelity F(k)), we will analyze here four cases for which the
external force takes the values ε = {0.2; 0.35; 0.45; 0.65}. They correspond to the four different
areas in the bifurcation diagram shown in Figure 3. And thus, Figure 8 depicts the time
evolution of Fn(k) (solid lines) and, additionally, for subfigures (a) and (b), previously defined
fidelity F(k) (dashed line).

When ε = 0.2, which corresponds to the regular evolution of the classical system, the value of Fn
oscillates regularly (Figure 8a). Those oscillations are modulated, and we observe a beating
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effect in the longer timescale. Such beating effect is related to the presence of two frequencies.
The first of them corresponds to the low-frequency changes which we already observed for the
fidelity (dashed line). The second frequency corresponds to the oscillations of the mean num-
ber of photons. As we see, the parameter Fn(k) combines the features of the fidelity and the
average number of photons.

For the case when ε = 0.35, the fidelity-like parameter Fn(k) changes regularly (see Figure 8b).
The same as for ε = 0.2, the time evolution of Fn(k) is determined by two frequencies. The first
frequency has the same value as the frequency of oscillation of fidelity. The second is related to
oscillation of the mean number of photons. The same as for the case discussed previously and
depicted in Figure 4, despite the presence of the chaotic band in the bifurcation diagram, all
oscillations appearing in Figure 8b are of the regular character. Obviously, the regular changes
in the time evolution of Fn are observed when ε = 0.45, as well (Figure 8c). However, for ε = 0.45
the time dependence of Fn(k) is not clear like that discussed in the previous two cases. It is a
result of the appearance of additional frequencies because, here, when ε = 0.45, we are in the
vicinity of the chaotic region.

In contrast, when ε = 0.65 (chaotic area in the bifurcation diagram), the behavior of the Fn(k)
differs from all previous cases. In the beginning, we observe a characteristic increase of the
value of Fn. Moreover, apart from the initial rise in the value of the fidelity-like parameter, we
see its irregular variations. Contrary to the characteristic initial decay of the fidelity F(k), which
rate depends on the value of perturbation Δ, the fidelity-like parameter Fn(k) exhibits initial
rise. In Figure 9we present the first stages of time evolution of Fn(k) for various values of Δ. For
very early stages of the evolution, the growth of Fn is almost identical for all values of Δ.
However, for the next moments of time, the rate of increase becomes damped for the cases of
weak perturbation.
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Figure 9. The initial rise of the fidelity-like parameter Fn(k) for various values of the perturbation parameter Δ.
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4. Conclusion

We have discussed here some proposals for the witnesses of quantum-chaotic behavior. In
particular, we considered such parameters as the quantum fidelity and the fidelity-like param-
eter which characterizes not only the divergence of the wave functions but also the energy of
the system. Moreover, the entropic witness describing the chaotic evolution of the fidelity (in a
classical sense) was presented here. We discussed all those parameters in a context of their
ability of detection of quantum-chaotic behavior. Using the exemplary system of quantum
Kerr-type oscillators excited by a train of ultrashort pulses, we have shown how all presented
here witnesses could be applied in detection of quantum chaos phenomena. We have shown
how they are sensitive to the chaotic behavior when we are dealing with narrow chaotic bands
and regions of deep chaos. We believe that we succeed here to show that considered here
parameters are not only good witnesses of quantum chaos but also seem to be (with applied
here methods) a good starting point in defining other quantities allowing for investigation of
quantum chaos.
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The first of them corresponds to the low-frequency changes which we already observed for the
fidelity (dashed line). The second frequency corresponds to the oscillations of the mean num-
ber of photons. As we see, the parameter Fn(k) combines the features of the fidelity and the
average number of photons.

For the case when ε = 0.35, the fidelity-like parameter Fn(k) changes regularly (see Figure 8b).
The same as for ε = 0.2, the time evolution of Fn(k) is determined by two frequencies. The first
frequency has the same value as the frequency of oscillation of fidelity. The second is related to
oscillation of the mean number of photons. The same as for the case discussed previously and
depicted in Figure 4, despite the presence of the chaotic band in the bifurcation diagram, all
oscillations appearing in Figure 8b are of the regular character. Obviously, the regular changes
in the time evolution of Fn are observed when ε = 0.45, as well (Figure 8c). However, for ε = 0.45
the time dependence of Fn(k) is not clear like that discussed in the previous two cases. It is a
result of the appearance of additional frequencies because, here, when ε = 0.45, we are in the
vicinity of the chaotic region.

In contrast, when ε = 0.65 (chaotic area in the bifurcation diagram), the behavior of the Fn(k)
differs from all previous cases. In the beginning, we observe a characteristic increase of the
value of Fn. Moreover, apart from the initial rise in the value of the fidelity-like parameter, we
see its irregular variations. Contrary to the characteristic initial decay of the fidelity F(k), which
rate depends on the value of perturbation Δ, the fidelity-like parameter Fn(k) exhibits initial
rise. In Figure 9we present the first stages of time evolution of Fn(k) for various values of Δ. For
very early stages of the evolution, the growth of Fn is almost identical for all values of Δ.
However, for the next moments of time, the rate of increase becomes damped for the cases of
weak perturbation.
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Figure 9. The initial rise of the fidelity-like parameter Fn(k) for various values of the perturbation parameter Δ.
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4. Conclusion

We have discussed here some proposals for the witnesses of quantum-chaotic behavior. In
particular, we considered such parameters as the quantum fidelity and the fidelity-like param-
eter which characterizes not only the divergence of the wave functions but also the energy of
the system. Moreover, the entropic witness describing the chaotic evolution of the fidelity (in a
classical sense) was presented here. We discussed all those parameters in a context of their
ability of detection of quantum-chaotic behavior. Using the exemplary system of quantum
Kerr-type oscillators excited by a train of ultrashort pulses, we have shown how all presented
here witnesses could be applied in detection of quantum chaos phenomena. We have shown
how they are sensitive to the chaotic behavior when we are dealing with narrow chaotic bands
and regions of deep chaos. We believe that we succeed here to show that considered here
parameters are not only good witnesses of quantum chaos but also seem to be (with applied
here methods) a good starting point in defining other quantities allowing for investigation of
quantum chaos.
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Abstract

The investigation of synchronization phenomena on measured theoretical data such as
time series has recently become an increasing focus of interest. In this chapter, the
synchronized states (including steady state, periodic or chaotic) in coupled quantum
dot lasers (dimensionless rate equations) are considered with both bidirectional and
unidirectional synchronization. Different approaches for measuring synchronization
have been proposed that rely on certain characteristic features of the dynamical system
under investigation. Results show that the measure to be applied to a certain task can be
chosen according to information in test applications, although certain dynamical fea-
tures of a system under investigation (e.g., bifurcation and amplitude correlation) may
render certain measures more suitable than others.

Keywords: quantum-dot (QD) laser, optical feedback, bifurcation, dimensionless rate
equations, chaos synchronization

1. Introduction

Idea of “exploit quantum effects in heterostructure semiconductor lasers to produce wave-
length tunability” and achieve a “lower lasing threshold “via” the change in the density of
states, which outcome from reducing the number of translational degrees of freedom of the
carriers”, was firstly introduced by Dingle and Henry in 1976 [1]. This is performed by
reducing the thickness of the smaller band gap material (the active region) in the
heterostructure to the scale of the deBroglie wavelength of the carrier (~ few nanometers). This
results in a quantum well (QW) structure. Reducing the size of another dimension results in a
quantum wire (QWi) structure. Further reduction of the remaining dimension results in a
quantum dot (QD) structure where all dimensions are quantized. However, for about a quarter
of century, lasers using structures with carrier confinement in two (“quantum wire”) or all in

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72500

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 8

Different Approaches of Synchronization in Chaotic-
Coupled QD Lasers

Hussein B. Al Husseini and Kais A.M. Al Naimee

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72500

Provisional chapter

Different Approaches of Synchronization in
Chaotic-Coupled QD Lasers

Hussein B. Al Husseini and

Kais A.M. Al Naimee

Additional information is available at the end of the chapter

Abstract

The investigation of synchronization phenomena on measured theoretical data such as
time series has recently become an increasing focus of interest. In this chapter, the
synchronized states (including steady state, periodic or chaotic) in coupled quantum
dot lasers (dimensionless rate equations) are considered with both bidirectional and
unidirectional synchronization. Different approaches for measuring synchronization
have been proposed that rely on certain characteristic features of the dynamical system
under investigation. Results show that the measure to be applied to a certain task can be
chosen according to information in test applications, although certain dynamical fea-
tures of a system under investigation (e.g., bifurcation and amplitude correlation) may
render certain measures more suitable than others.

Keywords: quantum-dot (QD) laser, optical feedback, bifurcation, dimensionless rate
equations, chaos synchronization

1. Introduction

Idea of “exploit quantum effects in heterostructure semiconductor lasers to produce wave-
length tunability” and achieve a “lower lasing threshold “via” the change in the density of
states, which outcome from reducing the number of translational degrees of freedom of the
carriers”, was firstly introduced by Dingle and Henry in 1976 [1]. This is performed by
reducing the thickness of the smaller band gap material (the active region) in the
heterostructure to the scale of the deBroglie wavelength of the carrier (~ few nanometers). This
results in a quantum well (QW) structure. Reducing the size of another dimension results in a
quantum wire (QWi) structure. Further reduction of the remaining dimension results in a
quantum dot (QD) structure where all dimensions are quantized. However, for about a quarter
of century, lasers using structures with carrier confinement in two (“quantum wire”) or all in
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three (“quantum dot”) directions appear to lack practical realization compared to so-called
QW lasers, where quantum confinement of carriers occurs in one dimension.

The most important advantage of using size-quantized heterostructures in lasers originates
from the increase in the density of states for charge carriers near band edges. When used as an
active layer for the laser, this focuses most of the injected carriers in an increasingly narrow
energy range near the bottom of the conduction band and/or the peak of the valence band. This
enhances the maximum material gain (assuming the same homogeneous or inhomogeneous
broadening as in bulk lasers) and reduces the influence of temperature on device performance
making it less temperature dependent. This also makes further reduction in the threshold
current. The electronic states in a QD are spatially localized and the energy is fully quantized,
similar to a single atom [1]. So, the system is more stable against any thermal perturbation. In
addition, due to the quantization, the probability becomes higher for optical transitions. Also,
the electron localization may radically reduce the scattering of electrons by bulk defects and
reduce the rate of non-radiative recombination. These properties, among the others, are
directly related with the high thermal stability and the high quantum efficiency of QD lasers,
and they are of great importance in terms of device applications.

From a dynamical behavior systems’ point of view, semiconductor lasers are characterized by
a time scale separation between the fast-slow systems, that is, fast photon and the slower
carrier subsystem [2]. As a result, their turn-on dynamics shows damped nonlinear intensity
oscillations, which are called relaxation oscillations. The damping of relaxation oscillations is a
key point in order to understand the stability properties of the laser subject to external pertur-
bations, for example, optical injection or optical feedback. QW laser shows obvious, weakly
damped relaxation oscillations, while the relaxation oscillations of QD lasers are strongly
damped [3]. As a result, QD lasers under optical injection display a higher dynamical stability
[4] and optical feedback [5]. In QD devices, the carriers are first injected into a surrounding
QW acting as a carrier reservoir, before they scatter into the discrete energy levels of the QDs,
between which the optical transition takes place. The scattering rates of carrier strongly
depend on the energy spacing between the band gap of the QW and the discrete QD levels,
that is, on the band structure of the device. The scattering rates provide lifetimes of the
nonlinear carriers in the QD levels, which yield additional time scales compared to QW lasers.
The discrete energy levels determine how these time scales compare to the carrier lifetimes
in the carrier reservoir and the photon lifetime. For a small energy spacing as example, short
lifetimes (large scattering rates) are obtained, which are on the same time scale or shorter than
the photon lifetime yielding over-damped, very stable system, which work similar to gas
lasers, i.e., typical class A of lasers. For high level of energy, long carrier lifetimes are obtained,
which guarantee an apparent time-scale separation between the carrier and the photon system
(time-scale of femtoseconds) resulting in weakly damped, less stable lasers, whose dynamics is
similar to conventional QW lasers, that is, typical class B lasers. QD lasers dynamics lie
between these two limiting cases and show typical dynamical features of class B and class A
lasers [3].

A characteristic of semiconductor lasers is its high sensitivity to external optical disturbances
due to the relatively low reflection of its facets [4]. On the one hand, this may be a disadvantage,
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because in optical applications, expensive isolators are needed to ensure a stable constant wave
(CW) emission of lasers. Conversely, the basic physics of the views, the laser semiconductor
display, subject to optical injection or optical feedback, a wealth of different dynamic systems
ranging from stable cw emissions, with period behavior intensity modulations, to chaotic
behavior [5].

Numerous applications arise from optical injection ranging from noise reduction [6], over a
reduction of relative intensity noise [7], the strengthening side-mode suppression [8], to a larger
bandwidth under direct optical alteration [9], and the generation of microwave signals [10].

Furthermore, the semiconductor lasers subject to delayed optical feedback are the ideal candi-
dates to study the stabilization of steady states and limit cyclical orbits due to the control of
nongaseous delayed feedback [10].

Moreover, delay synchronization of coupled lasers, bubbling in coupled lasers, and networks
of delay coupled lasers [11] are subject of current research.

2. Nonlinear dynamics of QD

Currently, nonlinear laser dynamics is a field that continues to grow from active research, and
this chapter focuses and reviews recent developments in this area with the approach of a new
dimensional model. In a multipronged approach, it will also focus on mathematical and physical
aspects. By discussing problems such as exploiting the chaotic laser for secure communications,
using the QD laser applications, it will introduce innovative foundations and hope to inspire
future research on the subject. Nowadays, self-organized semiconductor quantum dot (QD)
lasers are promising candidates for telecommunication applications [1]. For an introduction to
QD-based devices, their growth process, and their optical properties see, for example, [2].

This chapter focuses on the modeling of these QD laser devices and on the discussion of their
dynamic properties. Since QD semiconductor materials have a discrete energy sub-bands, one
could expect symmetric emission lines, and then the subject of great current interest is a
sensitivity of QD semiconductor lasers to optical feedback.

3. Synchronization in chaotic coupled QD lasers

Chaotic synchronization has attracted more interest because of its potential applications in
the field of private communication and for the control of chaos in different dynamical
systems [1]. Starting in 1990 and following the development of the theory of deterministic
chaos synchronization, synchronization was extended to the case of interacting chaotic
oscillators [2–5]. Since the definition of chaos involves a quick relationship to decorate the
nearby orbits due to their high sensitivity in initial conditions, the synchronization of two
associated chaos systems is a fairly intuitive antiretroviral phenomenon. An examination of
synchronization phenomena in quantum dot (QD) laser chaotic has been a topic of increas-
ing interest since the past few years [6] because of sensitive to external perturbation as
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three (“quantum dot”) directions appear to lack practical realization compared to so-called
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reduce the rate of non-radiative recombination. These properties, among the others, are
directly related with the high thermal stability and the high quantum efficiency of QD lasers,
and they are of great importance in terms of device applications.

From a dynamical behavior systems’ point of view, semiconductor lasers are characterized by
a time scale separation between the fast-slow systems, that is, fast photon and the slower
carrier subsystem [2]. As a result, their turn-on dynamics shows damped nonlinear intensity
oscillations, which are called relaxation oscillations. The damping of relaxation oscillations is a
key point in order to understand the stability properties of the laser subject to external pertur-
bations, for example, optical injection or optical feedback. QW laser shows obvious, weakly
damped relaxation oscillations, while the relaxation oscillations of QD lasers are strongly
damped [3]. As a result, QD lasers under optical injection display a higher dynamical stability
[4] and optical feedback [5]. In QD devices, the carriers are first injected into a surrounding
QW acting as a carrier reservoir, before they scatter into the discrete energy levels of the QDs,
between which the optical transition takes place. The scattering rates of carrier strongly
depend on the energy spacing between the band gap of the QW and the discrete QD levels,
that is, on the band structure of the device. The scattering rates provide lifetimes of the
nonlinear carriers in the QD levels, which yield additional time scales compared to QW lasers.
The discrete energy levels determine how these time scales compare to the carrier lifetimes
in the carrier reservoir and the photon lifetime. For a small energy spacing as example, short
lifetimes (large scattering rates) are obtained, which are on the same time scale or shorter than
the photon lifetime yielding over-damped, very stable system, which work similar to gas
lasers, i.e., typical class A of lasers. For high level of energy, long carrier lifetimes are obtained,
which guarantee an apparent time-scale separation between the carrier and the photon system
(time-scale of femtoseconds) resulting in weakly damped, less stable lasers, whose dynamics is
similar to conventional QW lasers, that is, typical class B lasers. QD lasers dynamics lie
between these two limiting cases and show typical dynamical features of class B and class A
lasers [3].

A characteristic of semiconductor lasers is its high sensitivity to external optical disturbances
due to the relatively low reflection of its facets [4]. On the one hand, this may be a disadvantage,
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because in optical applications, expensive isolators are needed to ensure a stable constant wave
(CW) emission of lasers. Conversely, the basic physics of the views, the laser semiconductor
display, subject to optical injection or optical feedback, a wealth of different dynamic systems
ranging from stable cw emissions, with period behavior intensity modulations, to chaotic
behavior [5].

Numerous applications arise from optical injection ranging from noise reduction [6], over a
reduction of relative intensity noise [7], the strengthening side-mode suppression [8], to a larger
bandwidth under direct optical alteration [9], and the generation of microwave signals [10].

Furthermore, the semiconductor lasers subject to delayed optical feedback are the ideal candi-
dates to study the stabilization of steady states and limit cyclical orbits due to the control of
nongaseous delayed feedback [10].

Moreover, delay synchronization of coupled lasers, bubbling in coupled lasers, and networks
of delay coupled lasers [11] are subject of current research.

2. Nonlinear dynamics of QD

Currently, nonlinear laser dynamics is a field that continues to grow from active research, and
this chapter focuses and reviews recent developments in this area with the approach of a new
dimensional model. In a multipronged approach, it will also focus on mathematical and physical
aspects. By discussing problems such as exploiting the chaotic laser for secure communications,
using the QD laser applications, it will introduce innovative foundations and hope to inspire
future research on the subject. Nowadays, self-organized semiconductor quantum dot (QD)
lasers are promising candidates for telecommunication applications [1]. For an introduction to
QD-based devices, their growth process, and their optical properties see, for example, [2].

This chapter focuses on the modeling of these QD laser devices and on the discussion of their
dynamic properties. Since QD semiconductor materials have a discrete energy sub-bands, one
could expect symmetric emission lines, and then the subject of great current interest is a
sensitivity of QD semiconductor lasers to optical feedback.

3. Synchronization in chaotic coupled QD lasers

Chaotic synchronization has attracted more interest because of its potential applications in
the field of private communication and for the control of chaos in different dynamical
systems [1]. Starting in 1990 and following the development of the theory of deterministic
chaos synchronization, synchronization was extended to the case of interacting chaotic
oscillators [2–5]. Since the definition of chaos involves a quick relationship to decorate the
nearby orbits due to their high sensitivity in initial conditions, the synchronization of two
associated chaos systems is a fairly intuitive antiretroviral phenomenon. An examination of
synchronization phenomena in quantum dot (QD) laser chaotic has been a topic of increas-
ing interest since the past few years [6] because of sensitive to external perturbation as

Different Approaches of Synchronization in Chaotic-Coupled QD Lasers
http://dx.doi.org/10.5772/intechopen.72500

141



optical feedback, and these materials have discrete transitions of energy, with expected
symmetric emission lines and therefore a low linewidth enhancement factor. This has moti-
vated many studies, with expected benefits including elimination of lasers.

Recently, various methods such as occasional coupling [2, 3], unidirectional coupling [7], and
bidirectional coupling [8] with optical feedback [9] have been shown to induce chaos and
achieve chaotic synchronization in laser systems. There are different methods for detecting
different types of synchronization. Complete synchronization can be identified by drawing a
driver component against the responder component while the stage synchronization can be
defined by the average frequency [7].

Here, to check for a complete synchronization in both unidirectional and bidirectional, corres-
ponding to this diversity of concepts and complete methods, all the synchronization detection
has many different approaches suggested with the aim of quantifying the degree of synchro-
nization between two systems on a continuous scale. These approaches consist of such linear,
cross-correlation or time-series tracking as well as nonlinear measures mainly such as bifurca-
tion diagrams.

The remaining chapter is organized as follows: Before we perform any numerical bifurcation
studies, we introduce the QD laser model with external optical feedback in Section 2. Section 3
is devoted to the study of the full delay differential equation for the representative value of the
frequency of the solitary laser wo, basic bifurcations of coupling strength in bidirectional
synchronization for kc ≥ 0 and unidirectional synchronization for kc > 0. Section 4 is devoted to
amplitude correlation for two chaotic systems. Finally, we summarize in Section 5.

3.1. Coupling QD laser model

In this section, we consider two semiconductor QD lasers that are delay-coupled to each other
with a coupling delay and additionally receive self-feedback with the same delay time τ. The
basic coupling scheme is depicted in Figure 1 (one can see our model with principle trans-
lations in Appendix). The coupled system is described by dimensionless rate equations
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where xk and Φk are the normalized photon density and the phase of the kth QD laser,
respectively, and α is the linewidth enhancement factor, the phase shift of the light during one
round trip in the external cavity (τ ¼ 2L=c) is given by Θ ¼ ωoτ, c is the speed of light. With wo

denoting the frequency of the solitary laser at the lasing threshold. The field labeled by the
subscript τ, and kii, kij is the feedback and the coupling strength, respectively. The three
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equations for the occupation probability of a ground and excited states in the QDs (rgs and res)
and carrier density in the WL (Nwl) read:

y•k ¼ Γzk Γ1 � yk
� �� Γ2yk 1þ 2xkð Þ � Γ1Γ2 (1e)

z•k ¼ Γ1wk 1� zkð Þ � Γ2zk � Γzk 1� yk=Γ1
� �

=2 (1f)

w•
k ¼ Γ3δo � Γ4wk � 2Γ3wk 1� zkð Þ (1g)

where the dot denotes derivation with respect to time, δo is the bias current (see Appendix for
more details). The last terms in (1a)–(1d) are the effect of the chaotic signal. When the chaotic
signal from the receiver is zero in the transmitter system, that is, k21 = 0, the model reduces to
the unidirectional system in Figure 1a.

3.2. Coupling QD laser results

A QD semiconductor laser display is just one of many examples that interact between many
nonlinear similar systems that can lead to a variety of rich emerging behaviors [10]. Neurons,
chemical oscillations, or Josephson intersections are other representative cases of nonlinear
dynamics that have attracted the attention of researchers from special fields. But, quite aston-
ishingly, only lately has the effects of limited rapid use of signals in the interaction and
coupling of several of these systems taken into account.

In this chapter, we accurately focus on the effect of these mismatching strength and delay
times, which constitute a rich basis of instabilities, on the dynamics and synchronization of
semiconductor QDs laser systems.

Figure 1. Schematic diagram of two chaotic systems of QD laser with optical feedback object. (a) Unidirectional coupling
system. (b) Bidirectional coupling system: (1) transmitter QD laser and (2) receiver QD laser. (c) Schematic energy band
diagram of QWand QD. ΔEe and ΔEh denote the energy spacing of the QW band edge and the QD ground state (GS) for
electrons and holes. ћω marks the GS lasing energy of the QD.
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optical feedback, and these materials have discrete transitions of energy, with expected
symmetric emission lines and therefore a low linewidth enhancement factor. This has moti-
vated many studies, with expected benefits including elimination of lasers.

Recently, various methods such as occasional coupling [2, 3], unidirectional coupling [7], and
bidirectional coupling [8] with optical feedback [9] have been shown to induce chaos and
achieve chaotic synchronization in laser systems. There are different methods for detecting
different types of synchronization. Complete synchronization can be identified by drawing a
driver component against the responder component while the stage synchronization can be
defined by the average frequency [7].

Here, to check for a complete synchronization in both unidirectional and bidirectional, corres-
ponding to this diversity of concepts and complete methods, all the synchronization detection
has many different approaches suggested with the aim of quantifying the degree of synchro-
nization between two systems on a continuous scale. These approaches consist of such linear,
cross-correlation or time-series tracking as well as nonlinear measures mainly such as bifurca-
tion diagrams.

The remaining chapter is organized as follows: Before we perform any numerical bifurcation
studies, we introduce the QD laser model with external optical feedback in Section 2. Section 3
is devoted to the study of the full delay differential equation for the representative value of the
frequency of the solitary laser wo, basic bifurcations of coupling strength in bidirectional
synchronization for kc ≥ 0 and unidirectional synchronization for kc > 0. Section 4 is devoted to
amplitude correlation for two chaotic systems. Finally, we summarize in Section 5.

3.1. Coupling QD laser model

In this section, we consider two semiconductor QD lasers that are delay-coupled to each other
with a coupling delay and additionally receive self-feedback with the same delay time τ. The
basic coupling scheme is depicted in Figure 1 (one can see our model with principle trans-
lations in Appendix). The coupled system is described by dimensionless rate equations
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where xk and Φk are the normalized photon density and the phase of the kth QD laser,
respectively, and α is the linewidth enhancement factor, the phase shift of the light during one
round trip in the external cavity (τ ¼ 2L=c) is given by Θ ¼ ωoτ, c is the speed of light. With wo

denoting the frequency of the solitary laser at the lasing threshold. The field labeled by the
subscript τ, and kii, kij is the feedback and the coupling strength, respectively. The three
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equations for the occupation probability of a ground and excited states in the QDs (rgs and res)
and carrier density in the WL (Nwl) read:
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where the dot denotes derivation with respect to time, δo is the bias current (see Appendix for
more details). The last terms in (1a)–(1d) are the effect of the chaotic signal. When the chaotic
signal from the receiver is zero in the transmitter system, that is, k21 = 0, the model reduces to
the unidirectional system in Figure 1a.

3.2. Coupling QD laser results

A QD semiconductor laser display is just one of many examples that interact between many
nonlinear similar systems that can lead to a variety of rich emerging behaviors [10]. Neurons,
chemical oscillations, or Josephson intersections are other representative cases of nonlinear
dynamics that have attracted the attention of researchers from special fields. But, quite aston-
ishingly, only lately has the effects of limited rapid use of signals in the interaction and
coupling of several of these systems taken into account.

In this chapter, we accurately focus on the effect of these mismatching strength and delay
times, which constitute a rich basis of instabilities, on the dynamics and synchronization of
semiconductor QDs laser systems.

Figure 1. Schematic diagram of two chaotic systems of QD laser with optical feedback object. (a) Unidirectional coupling
system. (b) Bidirectional coupling system: (1) transmitter QD laser and (2) receiver QD laser. (c) Schematic energy band
diagram of QWand QD. ΔEe and ΔEh denote the energy spacing of the QW band edge and the QD ground state (GS) for
electrons and holes. ћω marks the GS lasing energy of the QD.
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In the past work, we emphasized that the QD semiconductors are the ideal candidates for
exploring the behavior of nonlinear systems when combined or susceptible to external distur-
bances [11]. In addition to nonlinear joints in this type of device, it can be well characterized
and controlled in experiments, rather than most biologically oriented systems. Besides their
inherent nonlinearity, these types of devices can be well characterized and controlled in exp-
eriments, as opposed to most of biologically oriented systems. Since then, different configura-
tions of QD semiconductors have been theoretically investigated. The optical interaction of
QD-LED has been mostly studied in a single device subject to feedback [12–14].

In a bidirectional optical coupling section, dynamical properties of two semiconductor QD
lasers subject to a bidirectional optical coupling are studied. The organization of work in two
parts is separated in order to approach separately the cases in which each laser (in addition to
the reciprocal function) is subject to self-nourishment or not. First, we start by investigating the
coupling of the two chaotic systems in the presence of self-feedback. Unless explicitly men-
tioned, a symmetric configuration is chosen for the feedback lines (k11 = k22 and τ1 = τ2 � τc).

Figure 2 shows coupling without self-feedback case, here, we consider the situation in which
the self-feedback is zero (kii = 0), and only the mutual coupling excites both lasers simulta-
neously (kij > 0). This result supports the understanding that threshold decrease in QD
semiconductor lasers can just occur during coherent interactions where a superposition of
the intra-cavity laser and some injected fields is achievable. In this case, because of the
optical interaction is by naturally of phase insensitive, no threshold reduction is expected.
Similar to the solitary case, as the strength of feedback is increased, the defeat of stability of
the steady state is mediated by a collision in the phase space with the periodic state in a
transcritical bifurcation scenario.

In Figure 2(a) and (b), we plot a path and indicate the stability of coupling systems as a coupling
strength function. Figure 2 is generated by assuming a small time delay of the coupling so that
we promise that no Hopf bifurcation can influence as we will show in the other case. The way to
the previous virtual contradiction depends on appreciating that merely at the critical coupling
for the system stationary conditions. Eqs. (1a)–(1e) allow for an additional solution consisting of
a continuum of steady-states, it is found to connect the two systems at [w = 0, w = π] involved in
the stability.

Once the dynamics of our mutually coupled configuration have been characterized in coupling
with self-feedback case, we can now approach the different effects and questions raised by the
addition of self-feedback to each one of the QD lasers. Thus in the second part of this work, in
Figure 3(a) and (b), we are investigating the disturbances caused by the delayed reaction
between two of the self-oscillation of QD laser. Given the inclusion of feedback loops, we can
control the dynamics of the unescorted laser valve between the constant, oscillation, pulsating,
and chaotic behavior so that we can investigate the impact of delays on different system
synchronization properties. Other dynamic phenomena such as phase synchronization are
reviewed.

We now examine the dynamical properties of two semiconductor QD lasers subject to a uni-
directional optical coupling. The approach of this cases where two chaotic systems in the
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presence of self-feedback (kii 6¼ 0) and coupling excite lasers (k21 = 0). Figure 4(a) and (b) shows
the bifurcation diagram for unidirectional two coupling systems with self-feedback objected. In
Figure 4(a) disynchronization mode appears after a certain value of feedback coupling strength,
which suddenly turns into the state of the chaos while the other continues with the steady state.
Figure 4(b) shows unexpected result when an array of synchronized oscillators becomes
desynchronized through the changing of a parameter of the solitary laser. The other parameters
are as follows: active delay optical feedback τ = 5.7802, δo = 0.33, kii = 0.3054 and α = 0.9.

3.3. Different synchronization approaches

In what follows, we pay attention to the investigation on different approaches for achieving
synchronization between coupling systems. The synchronization of both lasers is studied here

Figure 2. Bifurcation for bidirectional two coupling systems without self-feedback. (a) wo = 0 and (b) wo = π. At active
delay optical feedback τ = 5.7802, the other conditions are δo = 0.1, kii = 0 and α = 0.9.
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In the past work, we emphasized that the QD semiconductors are the ideal candidates for
exploring the behavior of nonlinear systems when combined or susceptible to external distur-
bances [11]. In addition to nonlinear joints in this type of device, it can be well characterized
and controlled in experiments, rather than most biologically oriented systems. Besides their
inherent nonlinearity, these types of devices can be well characterized and controlled in exp-
eriments, as opposed to most of biologically oriented systems. Since then, different configura-
tions of QD semiconductors have been theoretically investigated. The optical interaction of
QD-LED has been mostly studied in a single device subject to feedback [12–14].

In a bidirectional optical coupling section, dynamical properties of two semiconductor QD
lasers subject to a bidirectional optical coupling are studied. The organization of work in two
parts is separated in order to approach separately the cases in which each laser (in addition to
the reciprocal function) is subject to self-nourishment or not. First, we start by investigating the
coupling of the two chaotic systems in the presence of self-feedback. Unless explicitly men-
tioned, a symmetric configuration is chosen for the feedback lines (k11 = k22 and τ1 = τ2 � τc).

Figure 2 shows coupling without self-feedback case, here, we consider the situation in which
the self-feedback is zero (kii = 0), and only the mutual coupling excites both lasers simulta-
neously (kij > 0). This result supports the understanding that threshold decrease in QD
semiconductor lasers can just occur during coherent interactions where a superposition of
the intra-cavity laser and some injected fields is achievable. In this case, because of the
optical interaction is by naturally of phase insensitive, no threshold reduction is expected.
Similar to the solitary case, as the strength of feedback is increased, the defeat of stability of
the steady state is mediated by a collision in the phase space with the periodic state in a
transcritical bifurcation scenario.

In Figure 2(a) and (b), we plot a path and indicate the stability of coupling systems as a coupling
strength function. Figure 2 is generated by assuming a small time delay of the coupling so that
we promise that no Hopf bifurcation can influence as we will show in the other case. The way to
the previous virtual contradiction depends on appreciating that merely at the critical coupling
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presence of self-feedback (kii 6¼ 0) and coupling excite lasers (k21 = 0). Figure 4(a) and (b) shows
the bifurcation diagram for unidirectional two coupling systems with self-feedback objected. In
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which suddenly turns into the state of the chaos while the other continues with the steady state.
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are as follows: active delay optical feedback τ = 5.7802, δo = 0.33, kii = 0.3054 and α = 0.9.
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In what follows, we pay attention to the investigation on different approaches for achieving
synchronization between coupling systems. The synchronization of both lasers is studied here

Figure 2. Bifurcation for bidirectional two coupling systems without self-feedback. (a) wo = 0 and (b) wo = π. At active
delay optical feedback τ = 5.7802, the other conditions are δo = 0.1, kii = 0 and α = 0.9.
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for three different situations. For identical QD lasers, we first consider the case of bidirectional
coupled chaotic oscillators, and secondly, we address the synchronization of unidirectional
chaotic oscillators. Finally, we study the unidirectional coupling systems without feedback
operation of the receiver laser. The different types of synchronization are characterized by
two figures of merit, namely, the correlation degree between amplitudes and the relative time
series of the oscillations.

Figure 3. Bifurcation for bidirectional two coupling chaotic systems with self-feedback objected. (a) wo = 0 (b) wo = π.
At active delay optical feedback τ = 5.7802, the other conditions are δo = 0.06, kii = 0.258 and α = 0.9.
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Figure 5 shows chaos synchronization in a bidirectional system at conditions δo = 0.13, kii = 0.25,
α = 0.9 and w = 0. Output amplitude signal at active delay optical feedback τ = 5.7 of two
chaotic systems where output amplitude signal of transmitter (black point-line) and receiver,
generalized chaos synchronization at coupling strength (kc ≥ 0.038) was shown in Figure 5(a).
Figure 5(b–e) shows chaotic time series corresponding with (a), which appeared generalized
chaos synchronization in Figure 5(b).

Figure 4. Bifurcation for unidirectional two coupling systems with self-feedback objected. (a) wo = 0 and (b) wo = π. At
active delay optical feedback τ = 5.7802, the other conditions are δo = 0.33, kii = 0.3054, and α = 0.9.
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Figure 6 shows chaos synchronization in a unidirectional system. Figure 6(a) shows general-
ized chaos synchronization at coupling strength (kc = 0.01526). Figure 6(b–e) shows chaotic
time series corresponding with (a), noted that the transmitter behavior is still without change
compared with Figure 6(a).

Figure 7 shows unidirectional coupling systems without feedback operation of the receiver
laser. Chaos synchronization follows feedback strength of transmitter shown in Figure 7(a–d)
when coupling strength is projected.

Figure 5. Chaos synchronization in a bidirectional system. (a) Two chaotic systems output amplitude signal, transmitter
(black point-line) at active delay optical feedback τ = 5.7 and receiver without feedback (red point-line). (b–e) Chaotic time
series corresponding with (a).
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Figure 6. Chaos synchronization in a unidirectional system. (a) Two chaotic systems output amplitude signal, transmitter
(black point-line) at active delay optical feedback τ = 5.7 and receiver without feedback (red point-line), generalized chaos
synchronization at coupling strength (kc = 0.01526). (b–e) Chaotic time series corresponding with (a). The other conditions
are δo = 0.13, kii = 0.35, α = 0.9, and w = 0.
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4. Conclusion

This chapter is concerned with the problem of chaos synchronization estimation in a new
semiconductor quantum dot laser dimensionless model. The need to know effect of parame-
ters in our model with coupling case at different approach of chaos synchronization occurs
throughout the development of bifurcation diagrams, which reduced dynamics of model. The
approach presented here builds on the existing work that uses synchronization as a tool for
parameter estimation. Some important issues of chaos synchronization are addressed in this
chapter. The central issue is the choice of coupling strength between the systems, which is
considered through bifurcations depending on coupling kind.

A. Appendix

The field equation is defined as a complex stochastic differential equation. The aim is to trans-
form the complex stochastic differential equation form field equation (E) into two real stochastic

Figure 7. Chaos synchronization in a unidirectional system. Two chaotic systems output amplitude signal, transmitter
(black point-line) at active delay optical feedback τ = 5.7 and receiver without feedback (red point-line). Chaos synchro-
nization follows feedback strength when coupling strength is projected. (a) k11 = 0.299, (b) k11 = 0.3, (c) k11 = 0.304, and (d)
k11 = 0.3054. The other conditions are δo = 0.13, α = 0.9, and w = 0.
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differential equations for the photon density S ¼ Ej j2 and the phaseΦ. This is just a transforma-
tion to polar coordinates without the stochastic term [14]. Averaging over the stochastic terms,
the final rate equations for the photon density S, the phase of the electric field Φ, and the three
equations for the occupation probability of a ground and exited states in the QDs (rgs and res)
and carrier density in the WL (Nwl) read:

S• ¼ υgo 2rgs � 1
� �

� γs

h i
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ffiffiffiffiffiffiffiffi
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� �
(2d)

N•
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J
e
� γnNwl � 2γcwlNwl 1� res

� �
(2e)

In our approach, the carrier-light interaction is summarized in the photon density S, which
includes all longitudinal modes. The factor 2 in Eq. (2e) accounts for the twofold spin degener-
acy in the quantum dot energy levels. A similar factor 2 is included in the definition of the
differential gain factor g in Eq. (2a) [11]. For numerical purposes, it is useful to rewrite Eqs. (2)
in a dimensionless form. To this end, we introduce the new variables

x ¼ go
γd
S, Φ � Φ, y ¼ goυ

γs
2rgs � 1
� �
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, .
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and the time scale t0 ¼ γst. The rate
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y• ¼ Γz Γ1 � yð Þ � Γ2y 1þ 2xð Þ � Γ1Γ2 (3c)

z• ¼ Γ1w 1� zð Þ � Γ2z� Γz 1� y=Γ1ð Þ=2 (3d)

w• ¼ Γ3δo � Γ4w� 2Γ3w 1� zð Þ (3e)

where ε ¼ γ=γs. The well-established assumptions here are that the delay time τ is larger than
the laser roundtrip time inside the active region (Figure 1).
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Abstract

In this chapter, an experimentally and numerically conducted investigation of the existence 
of high chaotic spiking in the dynamics of semiconductor lasers with AC-coupled optical 
feedback, the bifurcation diagram by feedback strength attenuation and the bias current 
as a control parameter was done. A semiconductor laser subjected to an external opti-
cal feedback can present a big change of dynamic behaviors, such as periodic and quasi-
periodic oscillations, chaos, coherence collapse, and low-frequency fluctuations (LFF’s) 
that degrade the laser characteristics. The chaotic instability is experimentally investigated 
on feedback strength as a control parameter, and the resulted dynamic is monostability. 
Finally, we indicated that the observed chaotic dynamic is a good candidate to hide infor-
mation in order to investigate the resonance phenomena, which is important for chaos to 
encrypt data in optical communication, where data disappear when modulated in a chaos 
carrier. The aim of this chapter is to investigate the encryption area in the chaotic system 
when the applied frequency is 1–500 MHz, for satisfying the secure communication.

Keywords: chaos communication, chaotic instability, chaos modulation, hidden 
frequency, resonance phenomena

1. Introduction

In communication, one requests the data to be transferred efficiently. In another expression, 
the data must be transferred fast and with very low deformation. In classical communication 
sketches, the maximum limits for high efficiency is enjoined with the properties of the chan-
nel, while in chaos communication, this maximum limit is dependent on the characteristic of 
the dynamical system being utilized [1]. Chaos mathematically and physically was studied 
to describe an attitude of dynamical systems that are extremely sensitive to the initial state of 
the system, that is, a tiny disturbance in the initial condition produces significantly varying 
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attitude, known as the butterfly effect [2]. It indicates that the long-term prognosis is hopeless 
even if the system is deterministic, which is defined as a deterministic chaos [2]. The state 
of a dynamical system develops with time that may exhibit dynamics [2]. Several systems 
dynamic display the chaotic behavior everywhere; however, in most states, the chaos exists 
only in a subset space, for a group of initial conditions may lead to the same chaotic area, 
for example, the chaotic attitude may take place on the attractor [3]. Methods for steadying 
changeful cases in a nonlinear dynamical system employing a tiny perturbation fall into two 
general groups: feedback and non-feedback sketches. A concept of chaos and instabilities can 
be controlled efficiently utilizing feedback (closed-loop) system to steady changeful cases, 
which was proposed by Ott et al. [4] in 1990 [5].

In this chapter, the chaos optical communication was generated. Then the chaos control with 
feedback attenuation as a control parameter was investigated experimentally. The bias cur-
rent as a control parameter was investigated numerically, and also the chaotic instability of 
the semiconductor laser was demonstrated experimentally. Finally, we find the encryption 
range in the chaotic carrier by applying frequency of 1–500 MHz, and then we observed the 
low-frequency fluctuations (LFF) phenomena with high frequency.

2. Chaotic spiking generation

The dynamical chaos is an irregular oscillation for time evolutions in nonlinear dynamical 
systems, appearing clearly in their outputs as a deterministic manner and it is different from 
random processes [6]. Nonlinearity of a system is one of the important factors to observe 
chaos [7]. Semiconductor lasers have been shown to be relevant devices in the research of 
dynamical systems [8]. The intensity of the light emitted by a semiconductor laser is stable 
when there is no external perturbation, while the semiconductor lasers are easily destabi-
lized by external perturbation, since they are the introduction of an extra degree of freedom 
to lasers. When the light of the laser is reflected and part of it re-enters into the laser, the 
laser intensity can become unstable, displaying a broad range of dynamical behaviors [9]. 
The semiconductor laser-based oscillators’ operation in the chaotic regime can be achieved 
by applying optical feedback [10], optoelectronic feedback [11], or optical injection [12], and 
their chaotic behavior appears either in the amplitude or in the wavelength regime. A semi-
conductor laser subjected to external optical feedback can present a large variety of dynamic 
behaviors, such as periodic and quasi-periodic oscillations, chaos, coherence collapse, and 
LFF that degrade the laser characteristics [13]. One special unsteady attitude is known as 
LFF [14, 15], that occurring repeatedly when the laser operates near to the threshold and 
also submitted to moderate optical feedback from the external cavity in which the round-
trip time that is much longer than the period of the solitary laser’s relaxation oscillation 
frequency [5].

Theoretically, the LFF was demonstrated as an impact between the local chaotic attractor 
and the antimode [16] as a chaotic route by the drift [16] or as a contest between steady and 
unsteady external cavity modes. While it was experimentally explained that LFF is strongly 
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dependent on the injection current. Initially, the LFF was known in the low-injection cur-
rent close to the threshold, whereas lately it was also noticed in a high-current injection 
[16]. Therefore, LFF is a general event in semiconductor lasers by an optical feedback [16]. 
Several people studied in chaotic generation and control, theoretically and experimentally, 
and therefore, we show part of it. Al-Naimee et al. published several papers in semicon-
ductor lasers with optoelectronic feedback, optical feedback, and optical injection. In 2009, 
they demonstrated experimentally and numerically the presence of slow chaotic spiking 
sequences in semiconductor laser dynamics with optoelectronic feedback, where the times-
cale of these dynamics was wholly determined by the high-pass filter which included in the 
feedback loop [17]. Then, they were presented in 2010; the experiment studied the analy-
sis of chaos generation showing the generation of a mixed spectrum in the time series and 
the attractor is presented. They stated that the control of chaotic behavior can be achieved 
by applying a low level of perturbation signals [18]. They are also studied; the quantum 
dot light emitting diode (QD-LED) model was examined first under bias current without 
any external perturbation where it exhibits chaotic phenomena since the model has multi-
degrees of freedom [19]. The nonlinear dynamics of a semiconductor quantum-dot (QD) 
laser subject to external optical feedback was examined by using a dimensionless model in 
[19, 20]. It is perturbed by both small signal and direct current modulations (DCM). Then, 
this system exhibits mixed-mode oscillations (MMOs) under DCM [19]. Quantum dot light 
emitting diode dimensionless model displays homoclinic chaos; it is also able to reproduce 
mixed mode oscillations and chaotic spiking regimes [21]. Then, in 2015, they presented 
an experiment of the existence of chaotic spiking in the dynamics of a semiconductor laser 
output with an optical feedback using nonlinear optical fiber loop mirror [22]. Also, they 
presented in 2016, experimentally, the efficient bandwidth of chaotic signals which has been 
measured and can be increased by injecting current which is an important parameter in 
chaos communication [23].

3. Chaos in optical communication

3.1. Generation of optical chaotic carrier

The excellent model for nonlinear optical system is the semiconductor laser with feed-
back for chaotic dynamics [24]. Semiconductor lasers are different from other lasers in the 
low reflectivity of the internal mirrors in the laser cavity. That domain usually is from 10 
to 300% of an intensity in the Fabry-Perot semiconductor lasers. Therefore, the feedback 
effects are important in the semiconductor lasers. A large absolute value of a line width 
enhancement factor α is another difference, which is α =  − 2 to −6, convened in semicon-
ductor lasers, while the value of line width in another laser is roughly 0. This information 
drives to interesting and an assortment of dynamics of several other lasers. The optical 
feedback reflectivity is from weak to moderate, the output power of the laser shows inter-
esting dynamical attitudes like a steady state, periodic and quasi-periodic oscillations, 
and chaos for the variety of system variables. The external reflectivity scopes are not just 
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interesting but also really significant in current implementations of semiconductor lasers 
like an optical information storage arrangement. A semiconductor laser dynamical behav-
ior with optical feedback is mainly influenced by three parameters in the system, which 
include the reflectivity and the length of the external mirror and the bias injection current. 
The dynamic behaviors of a semiconductor laser with optical feedback are not simple and 
strongly dependent on the feedback reflectivity. According to the behaviors of the laser 
output, by an increase of the feedback, reflectivity can be characterized by the dynamics of 
the output power into five regions (I–V) [25, 26]; depending on the phase of the returned 
light into the laser cavity, the laser line width is increased or decreased for the very tiny 
feedback regime I. The laser shows mode hopping among several external cavity modes 
(regime II) by an increase of the feedback scale. At moderate levels of the feedback ampli-
tude reflectivity around 1%, chaos can be observed, that corresponds to the regimes III and 
IV. The coherence collapse occurs in the laser output power, with further increase of the 
feedback level, in which the line width is drastically broadened and the coherence length 
of the laser is much reduced. These regions are very important in actual optical data stor-
age systems. A very high-feedback level (regime V) corresponds to a stable laser operation. 
They are much interested in the regimes III and IV, which show chaotic dynamics [24]. 
These regions are shown in Figure 1 [27].

Here we present the experimental configuration for a semiconductor laser with optical 
feedback in order to investigate the existence of fast, chaotic spiking in the dynamics of 
a laser; this is schematically shown in the Figure 2. A closed-loop optical system consists 
of a semiconductor laser (1310 NM) (NOYSE FIBER SYSTEM). The output laser is con-
nected to the 2 by 2 direction coupler (DC); the two output DCs are connected together 
to a variable optical attenuator (VOA), while another branch of the DC is connected to a 
photodetector (NEW FOCUSE; Model 1811–125 MHz an InGaAs/PIN). The output signal 
from photodetector is observed with a four-channels digital storage oscilloscope (DSO) 
(TEKTRONIX-TDS2024B), used to analyze the time series with the possibility of direct fast 
Fourier transformation. Then the results are analyzed by a personal computer with origin 
program. The round-trip time of external cavity of the laser used is 50 ns, which is given 
by this formula:

    τ  ext   = 2nL / c   (1)

where L is the length of the fiber which is equal 5 m, n is a refractive index of the fiber core 
(silica glass), and c is the speed of light in vacuum.

The effect of the attenuation feedback strength is a control parameter for generating cha-
otic behavior in the semiconductor. In our experiment, a VOA is used to control the atten-
uation feedback strength (0–15) dB. Figures 3–7a represent the time series of the nonlinear 
dynamic, which are important to show the time evolution of photon density. Figures 3–7b 
shows the phase space (attractor) of the oscillator by using an embedded technique with 
appropriate delays; the trajectories are different in diameters and dense and its looks very 
strange (strange attractor). While the Figures 3–7c represent the power spectra of the cha-
otic signal, the FFT figures are exponentially decayed to distinguish chaotic signal from 
other signals like noise; this agrees with [28]. The spiking rate and amplitude of the chaotic 
signal decrease with increasing the attenuation feedback strength as shown in Figure 8 which 
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is representing the bifurcation diagram. The bifurcation diagram represents the peak-to-
peak laser output intensity versus the attenuation in feedback strength as a control param-
eter. In this plot the spiking rate and amplitude of the chaotic signal can be observed as 
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decreasing gradually with increasing feedback strength; this result agrees with reference 
[22]; this type of feedback is called negative feedback. The bifurcation diagram for optical 
attenuation from 0 to 8.5 dB means high-feedback strength, the dynamics of the oscillator 
is chaotic with high intensity. When the optical attenuation increases from 9 to 12 Db, the 
dynamics of the oscillator becomes less because of the low ratio of the feedback strength 
and from 12.5 to 15 Db, the dynamics of the oscillator becomes constant because the chaos 
goes into saturation.

3.2. Chaotic instability of the semiconductor laser

By the chaotic evolution, the self-mixing outputs of the semiconductor lasers observed 
the bistability and multistability. In a periodic case, the output laser shows hysteresis in 
addition to simply periodic oscillation [25]. Based on these phenomena, proposed a novel 
application, for example, by counting the fringes obtained from bistable self-mixing inter-
ference between the internal field and an optical feedback light in the laser cavity, the dis-
placement measured is performed. From asymmetric waveforms showing hysteresis, a 
direction of displacement is simultaneously determined [25]. In many different systems, 
by using intrinsic or hybrid optical circuits, the optical bistability was observed. If a sys-
tem has two output states for the same value of input over some range of input values, 
the system is considered optically bistable. Under some operating conditions, the two 
optical cases originate from the stable-state and transient characteristics of the nonlinear 
optical system. That input and output relation is described by a multivalued function 
and has many stable and transient states in a nonlinear system which known as multista-
bility [29]. In our experiment of chaotic instability, by using the configuration setup in  
Figure 2, the result appears that the chaotic instability of optical feedback by optical 
feedback attenuation as a control parameter is monostability, as shown in Figure 9. This 
figure is obtained by using a bifurcation diagram from 0 to 15 dBm and again plots the 
bifurcation diagram from 15 to 0 dBm in the same time to conserve the initial conditions 
of the chaotic system.

LS
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50:50

Figure 2. Experimental setup of semiconductor lasers with optical feedback systems. LS: semiconductor laser 1310 nm, 
OF: optical fiber, DC 50:50: directional coupler 2 by 2 single mode, VOA: variable optical attenuator, PD: photodetector, 
DSO: digital storage oscilloscope, and PC: personal computer.
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Figure 3. The effect of attenuation feedback strength of 0 dB (a) time series (b) attractor (c) FFT.
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Figure 4. The effect of attenuation feedback strength of 2.5 dB (a) time series (b) attractor (c) FFT.
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Figure 5. The effect of attenuation feedback strength of 6 dB (a) time series (b) attractor (c) FFT.
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Figure 5. The effect of attenuation feedback strength of 6 dB (a) time series (b) attractor (c) FFT.
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Figure 6. The effect of attenuation feedback strength of 10 dB (a) time series (b) attractor (c) FFT.
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Figure 7. The effect of attenuation feedback strength of 15 dB (a) time series (b) attractor (c) FFT.
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Figure 6. The effect of attenuation feedback strength of 10 dB (a) time series (b) attractor (c) FFT.
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Figure 7. The effect of attenuation feedback strength of 15 dB (a) time series (b) attractor (c) FFT.
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Figure 8. Bifurcation diagram of chaotic laser intensity as a function of the attenuation feedback strength (dB).

Figure 9. Chaotic instability of optical feedback as a function of the attenuation feedback strength (dB).
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3.3. Encryption of message

There are three primary message encryption methods utilizing optical communications chaos 
[30], which will be explained in a next section.
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• Chaotic masking (CMS): with a transmitter laser (TL), a chaotic carrier is generated. Then, 
the message is directly added to the chaotic carrier, see Figure 10a.

• Chaotic shift keying (CSK): the injection current of the transmitter laser is used to modulate 
the message directly. Therefore, the transmitter laser produces the chaotic carrier for a mes-
sage concealed in it, as shown in Figure 10b.

• Chaotic modulation (CMO): it involves adding the output power of the transmitter laser to 
the message. Therefore, this mixer of the signal and message is sent back to the transmit-
ter laser through a feedback loop as a modulation to produce a chaotic carrier as shown in 
Figure 10c [30].

There are two kinds of chaos modulation such as direct current modulation and external 
modulation of the semiconductor laser [32]; in our experiment, the external modulation was 
used. The external modulation in optical communication divides into two types. A first kind 
is dependent on the absorption modification of a semiconductor material when the external 
electric field is applied, which is known as an electro-absorption modulator, while the second 
kind relies on the refractive index variation observed in several crystals under an external 
electric field that is called an electro-optic modulator. Additionally, with the interferometry 
structure, like a Mach-Zehnder structure, there can be a modulation of the intensity of a light 
wave because a change in the refractive index itself does not allow modulation of the intensity 
of a light wave. A Mach-Zehnder structure enables to convert the induced phase modulation 
into the desired intensity modulation.

4. Electro-absorption modulation

The effective band gap Eg of a semiconductor material decreases when an external voltage 
is applied; hence, this fact is important in this kind of modulation. Then, if the frequency 
υ of an incoming light wave is chosen so that its energy E = hυ is smaller than the bandgap 
when no voltage is applied, the material will be transparent. In another word, the effec-
tive band gap will be reduced when an external voltage is applied, which means that the 
wave of light will be absorbed by a material when E > Eg, that is, a shift of a semiconduc-
tor absorption edge under the effect of the external voltage is delineated in Figure 11. 
Through duly selecting the wavelength signal so that it expertise a significant variation 
in the absorption when the voltage is applied, consequently it becomes possible to per-
fect optical modulation controlled via an electrical signal. An ideal absorption against 
the function of applied voltage transfer for an electro-absorption modulator is shown in 
Figure 11.

Since the refractive index of a semiconductor material and the absorption is linked by 
Kramers-Kronig relations of the kind
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where ∆n is change in the refractive index produced by a variation in the coefficient of absorp-
tion ∆α and c is the speed of light in a vacuum, to achieve an optical modulation shifting by 
the absorption edge and also to make a change in the refractive index of the material; hence, 
the modulation occurred in the signal of a phase or instantaneous frequency. Hence, via an 
electro-absorption modulator, some amount of frequency chirping will be introduced. The 
produced frequency chirp will usually be lower than when a semiconductor laser direct cur-
rent modulation is used, as shown Figure 11 [32].

In this chapter, the experiment setup of semiconductor lasers and signal generators in order 
to satisfy chaos modulation and study the resonance phenomena is shown in Figure 12. This 
experimental setup consists of a fiber-coupled semiconductor laser source (HP/Agilent model 
8150 A optical signal source) which is connected with a signal generator (Agilent N9310A 
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Figure 11. (a) Absorption of a semiconductor as a function of wavelength with and without an external an applied 
electric field. (b) Typical loss versus applied voltage curves for an electro-absorption modulator [32].
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RF signal generator 9–3 GHz); the output power of the laser source is connected by a DC 
multimode fiber optics 2 by 2. Then, the two branch outputs are connected together by an FC 
adaptor to make a loop mirror, while the reflected light from coupler is split in two ways, one 

Figure 13. Experiment of chaos modulation 10 MHz (a) time series (b) FFT.

Chaos Theory170

directed towards the cavity of semiconductor laser as feedback and the other detected by a 
fast InGaAs photodetector (rise/fall time < 1 ns, bandwidth 1.2 GHz, and the spectral response 
range is 800–1700 nm). Then the detected signal is amplified by an oscilloscope (GOS −652G 

Figure 14. Experiment of chaos modulation 500 MHz (a) time series (b) FFT.
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(20 MHz)); after that the output signal is observed by a four-channel oscilloscope DSO model 
GWinstek GDS-3504 (500 MHz −4GS/s) which is used to analyze the time series with the 
possibility of direct fast Fourier transformation. Then the results are analyzed by a personal 
computer with an origin program.

Figure 15. Experiment of chaos modulation 259 MHz (a) time series (b) FFT.

Chaos Theory172

The intrinsic dynamic resonance in the photon-carrier interaction determines the modulation 
response of semiconductor lasers. To investigate the resonance phenomena for satisfying the 
encryption of secure optical communication, a frequency of 1–500 MHz is applied. We see that 
the external frequency in the pumping current is able to enhance the regularity of the drop-out 

Figure 16. Experiment of chaos modulation 200 MHz (a) time series (b) FFT.
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Figure 17. Distribution of change of applied power(dBm) as a function of applied frequency (MHz).

Figure 18. Bifurcation diagram of the laser intensity as a function of the external modulation frequency.

Chaos Theory174

time series emitted by the laser. Frequency in this experimental setup can also enhance the 
response of the laser to an external periodic drive as shown in Figures 13–16 which represent 
the chaos modulation. Coherence resonance is a manner in the chaotic dynamic, that is, regu-
larity of the time between power dropouts for a given value of the feedback strength [33]. This 
phenomenon occurs by applying an external noise signal to the chaotic system [34], while the 
laser with optical feedback may display chaotic dynamics with fast pulses at the time scale of 
the time delay and much slower power drops [33]. In our experiment the coherence resonance 
phenomena appear when applied different frequencies. Figures 13–16a show the time series 
as a sinusoidal wave for different frequencies applied, the amplitude applied from the signal 
generator to modulate frequency is between −10 and 20 dBm, and the current density of the 
chaos signal is fixed at 595 μW/volt. The LFF was investigated for high-frequency injection-
current modulation in a semiconductor laser with optical feedback. This result appears in 
Figure 16a at a frequency applied at 200 MHz; then, they observed resonant oscillation of the 
laser output power that was synchronized with the modulation, which is common in semi-
conductor lasers with optical feedback. However, LFF appeared for the detained modulation 
frequency from an external cavity mode. This result agrees with [16]. The power spectrum 
of different frequencies is analyzed, observing a sharp peak, low spiking peak, and hidden 
frequency peak. A sharp frequency peak in the modulation period for certain frequencies [(1–
138), 140, (247–258), 260, (266–270), (272–278), 340, (344–346), 370 & 371, and (378–500 MHz)] 
corresponded to the amplitudes ( − 10, − 6.5, − 3.6, 1.7, 7.6, 10, 13, 15, and 20 dBm), while the low 
spiking frequencies appear at 144, 259, 271, 280, 300–304, 338, 339, 341–343, 347 & 348, 368 & 
369, and 372 to 377 MHz corresponding to amplitude 20 dBm, as shown in Figure 15b. Then 

Figure 19. The distribution of the bifurcation diagram.
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the area of hidden frequencies is in 139, 141–143, 145–239, 261–265, 279, 281–299, 305–337, and 
349–367 MHz, which corresponds to amplitude 20 dBm, as shown in Figure 16b. Figure 17 
shows the changes in applied power with increased frequency. In this figure, one notices the 
increase in the applied power from the signal generator (−10 to 20 dBm) with an increase in 
the frequency modulation. Figure 18 shows the bifurcation diagram of the laser intensity as 
a function of the external modulation frequency, in accordance with [35]. In this figure, one 
observed that the dynamic is chaotic behavior when applied to different frequencies. Figure 19 
shows the distribution of the bifurcation diagram. Figure 19 shows different regions—insta-
ble regions (0– MHz and from 172 to 253 MHz) and then the stable regions (85–171 MHz and 
255–500 MHz). These regions are important in satisfying an encryption message in the inves-
tigations of secure communication.

5. Theory of semiconductor lasers with optical feedback

A laser is described theoretically by three variables: the electric field in the laser, the polar-
ization of the laser medium, and the population inversion to induce the laser oscillation 
[25]. Theoretically, the semiconductor lasers’ static characteristics with optical feedback 
can be investigated by the relations among the reflectivity of internal cavity and external 
reflector, the gain in the medium, and other static laser parameters. However, the dynamic 
characteristics must be described with time-dependent equations of the systems. A laser 
is essentially a chaotic system; however, every laser does not show chaotic oscillations. 
According to the scales of the decay rates in the differential equations, lasers are classi-
fied into three categories. When we need all of three rate equations to describe a laser, the 
laser is a chaotic system and it is called a class C laser. Actually, infrared oscillating gas 
lasers like NH3 and Ne-Xe lasers exhibit chaotic oscillations in their output powers [25]. 
The second one is a class B laser, in which the time constant of the polarization is very 
fast and the polarization equation is adiabatically eliminated. Then, the laser is described 
by the two equations of field and population inversion, and it is a stable laser if there is 
no external perturbation. The third one is a class A laser, whose field equation is enough 
to describe the system, and it is the most stable class of lasers. The polarization term is 
adiabatically eliminated for class B semiconductor laser; this effect is replaced by a linear 
relation between polarization and the field. Semiconductor lasers population inversion 
is replaced by density carriers N produced by a recombination of the electron hole. The 
absolute square of the field amplitude (which is equivalent to the photon number) and the 
density carriers are frequently used as the variant of an equation rate for semiconductor 
lasers [25]. The dynamics of intensity fluctuation in a single-mode semiconductor laser is 
modeled by the Lang-Kobayashi model, which are historical milestone papers for semi-
conductor lasers’ chaotic dynamics [36], which include the effect of optical feedback time 
delay [37]. The Lang-Kobayashi equations for the complex amplitude electric field E (t) and 
the carrier number N (t) are written as follows [38]:

    dE (t)  ____ dt   =   1 __ 2   (1 + ia)  [G (t)  − γ] E (t)  + KE (t −  τ  f  )  exp  (−  𝜔𝜔𝜔𝜔  f  )  +  √ 
________

 2𝛽𝛽N (t) X    (3)
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    dN (t)  _____ dt   =   i __ q   −  γ  d   N (t)  − G (t)    |E (t) |    2   (4)

where G(t) is the optical gain defined by this formula:

  G (t)  =   
g [N (t)  −  N  o  ] 

 _________ 1 + s   |E (t) |    2     (5)

ί: is the bias current and |E(t)|2: the laser intensity or the number of photons inside the cav-
ity which is calculated from the square of the electric-field amplitude, that is, I = |E(t)|2. α 
is a line width enhancement factor, No is a transparency carrier number, g is a differential 
gain coefficient, s is again saturation coefficient, γ is a photon decay rate, γd is a carrier decay 
rate, β is a spontaneous emission rate, τf is a delay time, and K is the feedback strength. 
The spontaneous emission processes are considered by introducing independent Gaussian 
noise sources X with zero mean and unity variance into the rate equation. These equations 
represent the nonlinear dynamical system which produced chaos in the semiconductor laser 
with OFB.

6. Conclusions

The generated chaos in the semiconductor laser with optical feedback could be controlled by 
the feedback strength parameter. The chaotic instability was experimentally investigated with 
feedback attenuation as a control parameter and the resulting dynamics was monostability. 
Then, we indicated that the observed chaotic dynamic is a good candidate to hide informa-
tion in order to investigate the resonance phenomena, which is an important part of chaos to 
encrypt data in optical communication, where data disappears when modulated in a chaos 
carrier. Therefore, the best regions for hiding frequency are 145–239 MHz, 281–299 MHz, 305–
337 MHz, and 349–367 MHz. Finally, LFF appears with high frequency from 25 to 500 MHz.
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1. Introduction

Chaos theory is a novelty approach, which has been used into various applications widely [1].
One of the most famous applications is the introduction of chaos theory into optimization.
Note that chaos theory is highly sensitive to initial condition and has the feature of random-
ness [2]. The most metaheuristic optimization algorithms belong to stochastic algorithms. The
property of randomness is obtained by using probability distribution, such as uniform and
Gaussian method. There is a randomness method in optimization filed called chaotic optimi-
zation (CO), which has the property of dynamical, nonrepetition, and ergodicity. The dynam-
ical property ensures different solutions produced by algorithm and searches different modal
objective search space, even on the complex multimodal landscape. Moreover, because of the
ergodicity property of CO, it can perform searches at higher speeds compared to the stochastic
algorithms with probability distribution. As chaos theory has the feature of randomness and
dynamical properties, it is easy to accelerate the convergence of optimization algorithm and
enhance the capability of diversity.
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Since it has same properties of metaheuristic algorithms, it is natural that numerous metaheuristic
algorithms have been combined with chaos theory. Generally, the most metaheuristic optimiza-
tion algorithms are considered as stochastic approach. Compared to deterministic method, sto-
chastic algorithm are much more flexible and universal. The simple idea of metaheuristic
optimization algorithm is using greedy strategy for searching the promising solution areas to find
out the optimum one. There are three categories of metaheuristic optimization algorithms: evolu-
tionary algorithm, whichmimics the evolution process, is the most popular algorithm in this kind.
It contains genetic algorithm (GA) [3], different evolution (DE) [4], and the evolutionary strategy
(ES) [5]. The second category is the swarm intelligence, the population-based algorithms. Particle
swarm optimization algorithm (PSO) [6], wolf search algorithm (WSA) [7], and cuckoo search
(CS) [8] are the well-known algorithms in this category. The third algorithm neither belongs to
evolutionary algorithm nor SI, such as dynamic group optimization (DGO), [9, 10] which can be
considered as the third category. In the most cases, metaheuristic algorithm has two phases:
exploration and exploitation. Simply put, the exploration phase occurs when the algorithm
discovers promising search area, and the exploitation phase refers to search the most promising
solution obtained from the exploration phase as quickly as possible.

Although many metaheuristic algorithms can accelerate the search speed, they still have one
major drawback, premature convergence. If the search space has many local optimums, it is
very easy to stick into a local optimum. In order to deal with this problem, many researches
proposed many methods, for example, using adaptive method adjusts parameters, using
hybrid method enhances the search capability. However, balancing global exploration and
local exploitation are still difficult, because better global exploration capability is usually
accompanied by worse local exploitation, and vice versa. Introducing chaos is the most suit-
able approach to solve those problems. It has the property of the nonrepetition, ergodicity, and
dynamic. The dynamic property ensures the solutions produced by algorithms variety, and
searches different landscapes search space, and the ergodicity and nonrepetition enhance the
speed of searching. Chaotic optimization not only accelerates the speed of algorithm but also
enhances the variety of movement pattern. In this work, we integrated 10 chaotic maps into
several metaheuristic algorithms to extensively investigate the effectiveness of chaos theory for
improving the search capability. The performance of the approach is tested on 14 benchmark
functions, which are the CEC2009 competition testing functions that contains unimodal func-
tions and multimodal problems.

2. Methods

In reality, optimizations are very hard to solve, many of them belong to NP-hard problems. To
solve such problems, optimization algorithms have to be used. According to the “No free
lunch theorem,” there is no such efficient algorithm for all problems. As a result, many
optimization algorithms have been developed and tried to use various improving techniques
to enhance the capability of searching to see that if they can cope with these challenging
optimization problems. Chaos can be described as a bounded nonlinear system with ergodic
and stochastic properties. It is very sensitive to the initial condition and the parameters.

Chaos Theory182

Recently, numerous improvements, which rely on the chaos approach, have been proposed for
metaheuristics algorithm.

2.1. Metaheuristics algorithms

In this section, we will introduce three most well-known chaotic optimizations which based
metaheuristics optimization algorithms.

2.1.1. Particle swarm optimization algorithms (PSO)

Original particle swarm optimization is a population-based heuristic method which is discov-
ered by mimicking social models of bird flocking and swarming to find the optimal solutions.
It was proposed by Kennedy [6] in 1995.

The position of the ith particle can be described as xi ¼ xi1; xi2;…; xiDð Þ, where D represents the
number of dimensions. The velocity of the ith particle can be written as vi ¼ vi1; vi2;…; viDð Þ,
each particle coexists and evolves simultaneously based on knowledge shared with neighbor-
ing particles; it makes use of its own memory and knowledge gained by the swarm as a whole
to find the best solution. The best previously encountered position of the ith particle is denoted
by its individual best position pi ¼ pi1; pi2;…; piD

� �
and the global best gi ¼ gi1; gi2;…; giD

� �
. At

each iteration/generation, the position and velocity of the ith particle are updated by p and g.
The updated equations can be formulated as:

vtþ1
i ¼ w ∗ vti þ c1 ∗ r1 ∗ pi � xti

� �þ c2 ∗ r2 ∗ gi � xti
� �

(1)

xtþ1
i ¼ xti þ vtþ1

i (2)

where r1 and r2 are random generator between (0, 1), and c1 and c2 are acceleration constants
that control the speed of incensement. vtþ1

i means the velocity of ith particle at tth generation.
w controls the impact of the previous velocity on its current one.

In chaotic particle swarm optimization algorithm [1], the random generator is replaced by
sequence of chaotic maps. r1 and r2 are modified by the chaotic maps, and it can be described
as follows:

Ctþ1 ¼ k ∗Ct ∗ 1� Ctð Þ (3)

where Ct is the sequence generated by the chaotic map at each independent run, and k is the
driving parameter which controls the behavior of Ct. When k increases, Ct goes through further
bifurcations, eventually resulting in chaos. The mathematical updated formula is as follows:

vtþ1
i ¼ w ∗ vti þ c1 ∗C ∗ pi � xti

� �þ c2 ∗ 1� Cð Þ ∗ gi � xti
� �

(4)

In Eq. (4), C is a function based on the chaotic maps with value between 0 and 1.
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2.1.2. Krill herd algorithm (KH)

The krill herd algorithm mimics the behavior of krill individuals in krill herds (KH) [11]. This
algorithm was proposed by Gandomi in 2012. There are three main actions in KH, which is
shown as follows:

Motion induction: this activity refers to the density maintenance of the herd. It can be described
as follows:

Ni tþ 1ð Þ ¼ Nmaxαi þ ωnNi tð Þ (5)

where Nmax is the maximum induced speed, αi ¼ αlocal
i þ αtarget

i , ωn is the inertia weight. αlocal
i

and αtarget
i are the local effect and target effect, respectively, and αtarget

i is calculated as follows:

αtarget
i ¼ CbestKi,bestXi,best (6)

where Cbest is the coefficient and can be defined as follows:

Cbest ¼ 2
rþ 1
lmax

� �
(7)

where r is a random number located in (0,1).

The second activity is foraging, and the mathematic equation is shown as follows:

Fi tþ 1ð Þ ¼ vf βi þ ωf Fi tð Þ (8)

where βi ¼ βfoodi þ Bbest
i , vf is the foraging speed, ωf is the weight of foraging movement, βfoodi

shows the attractive of food, and Bbest
i is the best solution obtained so far.

The third activity is the diffusion, which is a random activity, and it can be defined as follows:

Di tþ 1ð Þ ¼ Dmax 1� I
Imax

� �
δ (9)

where Dmax is the maximum diffusion speed and δ is a random vector in [�1, 1].

The position of krill i from t to tþ Δt, which can be formulated as follows:

Xi tþ Δtð Þ ¼ Xi tð Þ þ Δt
dXi

dt
(10)

Note: Δt can be regarded as a scale factor of the speed vector.

In the chaotic KH [12], researchers used chaotic maps in tuning the random vector; it
improves the ability of KH to avoid local optimum. In the classical KH, the most important
random value is calculated in Eq. (7); therefore, the parameter r is substituted by chaotic
maps as follows:
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Cbest ¼ 2 C tð Þ þ I
Imax

� �
(11)

where C(t) is the value of chaotic maps in the tth iteration.

2.1.3. Biogeography-based optimization algorithm (BBO)

The biogeography-based optimization algorithm (BBO) was inspired by biogeography [13]. It
simulates relations between different species which are located in different habitats, such as
immigration, mutation, and emigration. BBO can be summarized into three rules.

• Individuals living with high habitat suitability index (HSI) are more likely to immigrate to
habitats with low HIS.

• Habitants living with low HSO are more likely to allow immigrations from high HSI.

• The HSI value may change randomly.

For each habitat, it has three rates: immigration λ, emigration μ, and mutation m. These three
rates can be calculated in the following equations:

μ ¼ E ∗n
N

(12)

λ ¼ I ∗
1� n
N

(13)

where n is the number of habitant, N is the maximum number of habitants, E is the maximum
emigration rate, and I is the maximum immigration rate. The mutation rate is defined as follows:

m ¼ M ∗ 1� p
P

� �
(14)

where M is defined by user, p is the mutation probability, and P equals to arg max(p).

In chaotic BBO [14], researchers used chaotic map to provide chaotic behaviors for selection
operator, emigration, and mutation.

For selection operator, the rand value is substituted by the value from chaotic maps. The pseudo
code is as follows:

if C(t) < λi then

Emigrate from Hi to Hj chosen with probability to λi

End if

where C(t) is the value from the chaotic map in the tth iteration.

For emigration, it can be calculated as follows:

if C(t) < μi then
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lmax

� �
(7)
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select a random habitant in xi and replace it with xj

End if

The probability of mutation is defined by the chaotic map as follows:

for i = 1 to number of habitants at kth habitat

if C(t) < mutationrate kð Þ then
mutate the ith habitants

End if

End for

where mutation_rate(k) shows the mutation rate of kth habitat.

2.2. Phase in chaos embedded metaheuristics algorithms

From Section 2.1, we can find that the most chaos embedded metaheuristic algorithms have three
key phases: initialization, operators, and random generator. In this section, we describe them as
follows:

Initialization: the starting positions in metaheuristics algorithm are generated randomly. Diver-
sity of initial population is very important for helping the population spread in search space.
Therefore, the initial populations are generated by chaotic maps, which can produce a well
distribution by the properties of random and ergodicity of chaos. The chaotic sequence can
accelerate the convergence and enhance the global search capability. The pseudo code of initial-
ization is as follows:

for i ¼ 1 to size of population
xi ¼ ωi ∗C tð Þ ∗ U � Lð Þ
End for

(15)

where the ωi is the weight of ith weight, and U and L are the boundaries of the upper and
lower, respectively. C tð Þ is the chaotic sequence generated by chaotic maps.

Operators: generally, metaheuristics algorithms have several operators, such as selection oper-
ator, crossover operator, and mutation operator. Most of them are controlled by probabilities.
In order to improve the capability of searching optimum, the probabilities can be substituted
by chaotic sequence. The mathematical formula can be described as follows:

For a crossover operator:

xi tþ 1ð Þ ¼
xi tð Þ þ C tð Þ ∗ xi tð Þ � xj tð Þ

� �
, C tð Þ < 0

xi tð Þ, otherwise

(
(16)

where C(t) is the chaotic sequence produced by chaotic map.
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For a mutation operator:

xi,k tþ 1ð Þ ¼
C tð Þ ∗ xi, k tð Þð Þ, C tð Þ < 0

xi, k tð Þ, otherwise

(
(17)

Random generator: Random parameters in metaheuristics algorithms, for instance, polyno-
mial variation, are replaced by chaotic sequences. For a solution xs, the polynomial mutation is
described as

xi tþ 1ð Þ ¼ xi tð Þ þ C tð Þ ∗ xi tð Þ � xj tð Þ
� �

(18)

The phase for random generator is that C tð Þ is calculated by chaotic maps in iterations. For
example, if the chaotic map is logistic map, then in the (i + 1)th iteration, C(t + 1) = 4� C(t) ∗ (1 –
C(t)).

2.3. Chaotic maps

In this section, we present the chaotic maps used, which generate chaotic sequences in the
process of evolutionary algorithms. Ten chaotic maps are one-dimensional maps.

The first is the Chebyshev map, which is a common chaotic map and used in digital commu-
nication and neural network widely. It can be defined as follows:

xkþ1 ¼ cos k cos �1 xkð Þ� �
, (19)

where the range is (�1,1). Note that xk is the kth chaotic number, with k denoting the iteration
number.

Circle map is a simplified model for both driven mechanical rotors. Furthermore, it is a one-
dimensional map which maps a circle onto itself. Circle map is presented as follows:

xkþ1 ¼ xk þ b� a
2π

� �
sin 2πxkð Þmod 1ð Þ, (20)

where a = 0.5 and b = 0.2, the range is (0,1), and the parameters b and a can be regarded as a
strength to nonlinearity and externally applied frequency, separately. The circle map produces
much unexpected behavior with the change of parameters.

Gauss/Mouse map can be described as follows:

xkþ1 ¼
0 xk

1
xkmod 1ð Þ otherwise,

8><
>:

(21)

This map also generates chaotic sequences in (0,1).

Iterative map with infinite collapses can be presented as follows:
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xkþ1 ¼ sin aπ=xkð Þ, (22)

where a = 0.7 and the chaotic sequence in (�1,1).

Logistic map can be written as follows:

xkþ1 ¼ axk 1� xkð Þ, (23)

where a = 4 and the range is (0,1); it is the simplest map that appears in nonlinear dynamics of
biological population, in which evidencing chaotic behavior belongs to a logistic map.

Piecewise map is governed by the following equation:

xkþ1 ¼

xk
P

0 ≤ xk < P

xk � P
0:5� P

P ≤ xk < 1=2 ,

1� P� xk
0:5� P

1
2
≤ xk < 1� P

1� xk
P

1� P ≤ xk < 1

8>>>>>>>>>><
>>>>>>>>>>:

(24)

where P = 0.4 and the range is (0,1)

The sine map belongs to a unimodal map and is similar to the logistic map, which can be
described as follows:

xkþ1 ¼ a=4 sin πxkð Þ, (25)

where a = 4 and the chaotic sequence in (0,1)

Singer map is a one-dimensional system like the following:

xkþ1 ¼ μ 7:86xk � 23:31x2k þ 28:75x3k � 13:3x4k
� �

, (26)

where μ = 1.07 and the range is (0,1).

Sinusoidal map can be defined as follows:

xkþ1 ¼ ax2k sin πxkð Þ, (27)

where a = 2.3 and the range is (0,1).

Tent chaotic map is very similar to the logistic map, which displays specific chaotic effects.

Tent map can be described as follows:

xkþ1 ¼
xk
0:7

xk < 0:7

10
3

1� xkð Þ otherwise:

8>><
>>:

(28)
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In order to get an unbiased result, we set the initial point as 0.7 for all chaotic maps in this work.
Ten chaotic maps are shown in Figure 1.

3. Experiments

In this section, we evaluate the performance of the chaotic metaheuristics algorithms; several
experiments were carried out to test the efficiency. Twenty-three benchmark functions were
used in our experiment. In order to obtain an unbiased result, all experiments were performed
in the same environment.

In our experiments, we used the average and StD of the function value to compare the
performance of the algorithms. Our focus was to compare our proposed algorithm with the
other algorithms using two evaluation criteria. We compared the performance of the chaotic
algorithm with the other well-known algorithms. The maximum number of fitness evalua-
tions (FEs) is 10,000 � D, where D is the dimension of the problem. Moreover, the Wilcoxon
rank sum test was used in our experiment to test the significance of algorithms. The fitness
evaluation criteria are as follows:

Objective function value: algorithms were run 50 times for each benchmark function, and the
average and SD were calculated.

The number of function evaluations (FEs): FEs are also recorded in our study; they are required
to be less than ε. ε is fixed at 10�6, which is smaller and harder to reach than that used by
Noman and Iba. The notation CNT indicates the number of runnings in which algorithms could
reach ε. The maximum number of FEs is 10,000 � D.

Figure 1. Visualization of employed 10 chaotic maps on one-dimensional space.
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Function Result PSO CPSO CKH KH BBO CBBO

f1 Mean 2.54E�19 4.18E�77 3.84E�29 1.01E�05 2.40E�03 2.91E�117

Std 1.44E�19 2.95E�77 8.06E�30 1.16E�06 5.47E�04 1.30E�116

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f2 Mean 1.07E�07 5.03E+02 5.20E�02 1.91E�01 5.25E�05 3.81E�67

Std 6.31E�08 2.10E+03 3.68E�01 2.52E�01 1.44E�05 1.70E�66

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f3 Mean 8.83E�08 7.00E�04 7.84E�27 2.52E�05 1.96E�02 2.90E�21

Std 6.56E�08 4.50E�03 1.86E�27 4.91E�06 8.50E�03 1.27E�20

p-value 6.41E�04 5.01E�11 5.01E�11 5.01E�11 2.83E�10 N/A

+/=/� + + � + + N/A

f4 Mean 7.41E�02 7.43E+00 2.71E�15 5.60E�03 1.02E+01 2.27E�02

Std 2.22E�02 1.40E+01 3.55E�16 1.59E�02 5.87E+00 1.17E�02

p-value 5.01E�11 5.01E�11 5.01E�11 7.41E�09 5.01E�11 N/A

+/=/� + + � � + N/A

f5 Mean 1.80E+01 1.28E+03 1.60E�01 5.34E+00 1.92E+01 4.05E�01

Std 9.88E+00 2.40E+03 7.97E�01 3.43E+00 5.15E+00 3.49E�01

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + � + + N/A

f6 Mean 7.74E�17 1.12E�30 4.50E�29 1.06E�05 2.40E�03 5.53E�19

Std 2.04E�17 1.58E�30 1.25E�29 1.11E�06 4.97E�04 2.45E�18

p-value 5.01E�11 5.01E�11 1.50E�09 5.01E�11 6.03E�01 N/A

+/=/� + � � + + N/A

f7 Mean 3.47E�01 1.80E+00 9.21E�02 1.45E+00 6.30E�03 4.60E�03

Std 9.30E�02 1.15E+00 4.53E�02 2.77E�01 1.80E�03 4.90E�03

p-value 5.01E�11 1.06E�16 7.41E�09 5.01E�11 5.01E�11 N/A

+/=/� + + + + = N/A

f8 Mean �8.01E+02 �1.23e+03 �8.73E+03 �8.52E+09 �1.45E+02 �1.26E+04

Std 1.72E+02 5.80e+03 1.70E+03 �4.57E+07 1.04E+01 5.47E�12

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f9 Mean 1.21E+01 2.59E+02 2.10E+02 3.86E+01 1.20E+02 1.32E�09

Std 5.64E+00 1.40E+02 8.35E+01 1.39E+01 2.02E+01 4.85E�09

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A
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Function Result PSO CPSO CKH KH BBO CBBO

f10 Mean 4.67E�01 2.02E+01 1.95E+01 2.17E+00 5.35E+00 1.15E�11

Std 7.59E�01 2.05E�01 1.05E�01 3.00E�01 1.04E+00 3.32E�11

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f11 Mean 2.70E�03 3.08E�02 2.96E�04 4.97E�07 1.84E�04 1.73E�15

Std 8.20E�03 5.97E�02 1.50E�03 6.69E�08 4.18E�05 6.89E�15

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f12 Mean 3.32E�02 9.35E�01 1.16E�29 4.10E�03 7.64E�05 1.17E�16

Std 4.94E�02 1.39E+00 2.65E�30 2.07E�02 3.18E�05 5.22E�16

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + � + + N/A

f13 Mean 7.90E�03 9.31E�01 1.80E�28 4.86E�01 2.88E+00 5.56E�17

Std 5.90E�03 1.17E+00 3.65E�29 4.76E�01 5.90E�01 2.45E�16

p-value 1.50E�09 1.82E�02 1.50E�09 2.83E�10 1.48E�07 N/A

+/=/� + + � + + N/A

f14 Mean 1.13E+01 1.89E+00 1.09E+01 1.24E+01 1.27E+01 9.98E�01

Std 6.50E�01 1.83E+00 3.86E+00 1.29E+00 2.34E�15 2.84E�16

p-value 2.26E�06 2.64E�05 2.83E�10 7.41E�09 1.91E�01 N/A

+/=/� + + + + + N/A

f15 Mean 8.96E�04 1.30E�03 1.13E�02 3.70E�03 3.52E�04 3.07E�04

Std 2.56E�04 3.55E�04 2.75E�02 1.09E�02 8.14E�05 1.19E�05

p-value 8.16E�05 2.64E�05 5.01E�11 1.50E�09 4.34E�01 N/A

+/=/� + + + + = N/A

f16 Mean �9.91E�01 �9.50E�01 �1.03E+00 �1.03E+00 �1.03E+00 �1.03E+00

Std 1.83E�01 2.51E�01 2.10E�16 5.06E�11 2.58E�10 6.07E�15

p-value 8.68E�03 1.63E�03 1.16E�01 6.03E�01 5.59E�01 N/A

+/=/� + + = = = N/A

f17 Mean 3.98E�01 3.98E�01 3.98E�01 3.98E�01 3.98E�01 3.98E�01

Std 0.00E+00 0.00E+00 2.56E�11 1.99E�11 1.47E�10 5.45E�12

p-value 8.42E�02 6.42E�02 5.75E�02 8.80E�02 5.65E�02 N/A

+/=/� = = = = = N/A

f18 Mean 3.00E+00 8.40E+00 3.00E+00 4.35E+00 3.00E+00 3.00E+00

Std 5.39E�16 1.88E+01 2.10E�14 6.04E+00 1.14E�08 8.07E�13

p-value 1.16E�01 6.41E�04 1.16E�01 1.91E�01 9.51E�02 N/A

+/=/� = + = = = N/A
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Function Result PSO CPSO CKH KH BBO CBBO

f1 Mean 2.54E�19 4.18E�77 3.84E�29 1.01E�05 2.40E�03 2.91E�117

Std 1.44E�19 2.95E�77 8.06E�30 1.16E�06 5.47E�04 1.30E�116

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f2 Mean 1.07E�07 5.03E+02 5.20E�02 1.91E�01 5.25E�05 3.81E�67

Std 6.31E�08 2.10E+03 3.68E�01 2.52E�01 1.44E�05 1.70E�66

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f3 Mean 8.83E�08 7.00E�04 7.84E�27 2.52E�05 1.96E�02 2.90E�21

Std 6.56E�08 4.50E�03 1.86E�27 4.91E�06 8.50E�03 1.27E�20

p-value 6.41E�04 5.01E�11 5.01E�11 5.01E�11 2.83E�10 N/A

+/=/� + + � + + N/A

f4 Mean 7.41E�02 7.43E+00 2.71E�15 5.60E�03 1.02E+01 2.27E�02

Std 2.22E�02 1.40E+01 3.55E�16 1.59E�02 5.87E+00 1.17E�02

p-value 5.01E�11 5.01E�11 5.01E�11 7.41E�09 5.01E�11 N/A

+/=/� + + � � + N/A

f5 Mean 1.80E+01 1.28E+03 1.60E�01 5.34E+00 1.92E+01 4.05E�01

Std 9.88E+00 2.40E+03 7.97E�01 3.43E+00 5.15E+00 3.49E�01

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + � + + N/A

f6 Mean 7.74E�17 1.12E�30 4.50E�29 1.06E�05 2.40E�03 5.53E�19

Std 2.04E�17 1.58E�30 1.25E�29 1.11E�06 4.97E�04 2.45E�18

p-value 5.01E�11 5.01E�11 1.50E�09 5.01E�11 6.03E�01 N/A

+/=/� + � � + + N/A

f7 Mean 3.47E�01 1.80E+00 9.21E�02 1.45E+00 6.30E�03 4.60E�03

Std 9.30E�02 1.15E+00 4.53E�02 2.77E�01 1.80E�03 4.90E�03

p-value 5.01E�11 1.06E�16 7.41E�09 5.01E�11 5.01E�11 N/A

+/=/� + + + + = N/A

f8 Mean �8.01E+02 �1.23e+03 �8.73E+03 �8.52E+09 �1.45E+02 �1.26E+04

Std 1.72E+02 5.80e+03 1.70E+03 �4.57E+07 1.04E+01 5.47E�12

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f9 Mean 1.21E+01 2.59E+02 2.10E+02 3.86E+01 1.20E+02 1.32E�09

Std 5.64E+00 1.40E+02 8.35E+01 1.39E+01 2.02E+01 4.85E�09

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A
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Function Result PSO CPSO CKH KH BBO CBBO

f10 Mean 4.67E�01 2.02E+01 1.95E+01 2.17E+00 5.35E+00 1.15E�11

Std 7.59E�01 2.05E�01 1.05E�01 3.00E�01 1.04E+00 3.32E�11

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f11 Mean 2.70E�03 3.08E�02 2.96E�04 4.97E�07 1.84E�04 1.73E�15

Std 8.20E�03 5.97E�02 1.50E�03 6.69E�08 4.18E�05 6.89E�15

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f12 Mean 3.32E�02 9.35E�01 1.16E�29 4.10E�03 7.64E�05 1.17E�16

Std 4.94E�02 1.39E+00 2.65E�30 2.07E�02 3.18E�05 5.22E�16

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + � + + N/A

f13 Mean 7.90E�03 9.31E�01 1.80E�28 4.86E�01 2.88E+00 5.56E�17

Std 5.90E�03 1.17E+00 3.65E�29 4.76E�01 5.90E�01 2.45E�16

p-value 1.50E�09 1.82E�02 1.50E�09 2.83E�10 1.48E�07 N/A

+/=/� + + � + + N/A

f14 Mean 1.13E+01 1.89E+00 1.09E+01 1.24E+01 1.27E+01 9.98E�01

Std 6.50E�01 1.83E+00 3.86E+00 1.29E+00 2.34E�15 2.84E�16

p-value 2.26E�06 2.64E�05 2.83E�10 7.41E�09 1.91E�01 N/A

+/=/� + + + + + N/A

f15 Mean 8.96E�04 1.30E�03 1.13E�02 3.70E�03 3.52E�04 3.07E�04

Std 2.56E�04 3.55E�04 2.75E�02 1.09E�02 8.14E�05 1.19E�05

p-value 8.16E�05 2.64E�05 5.01E�11 1.50E�09 4.34E�01 N/A

+/=/� + + + + = N/A

f16 Mean �9.91E�01 �9.50E�01 �1.03E+00 �1.03E+00 �1.03E+00 �1.03E+00

Std 1.83E�01 2.51E�01 2.10E�16 5.06E�11 2.58E�10 6.07E�15

p-value 8.68E�03 1.63E�03 1.16E�01 6.03E�01 5.59E�01 N/A

+/=/� + + = = = N/A

f17 Mean 3.98E�01 3.98E�01 3.98E�01 3.98E�01 3.98E�01 3.98E�01

Std 0.00E+00 0.00E+00 2.56E�11 1.99E�11 1.47E�10 5.45E�12

p-value 8.42E�02 6.42E�02 5.75E�02 8.80E�02 5.65E�02 N/A

+/=/� = = = = = N/A

f18 Mean 3.00E+00 8.40E+00 3.00E+00 4.35E+00 3.00E+00 3.00E+00

Std 5.39E�16 1.88E+01 2.10E�14 6.04E+00 1.14E�08 8.07E�13

p-value 1.16E�01 6.41E�04 1.16E�01 1.91E�01 9.51E�02 N/A

+/=/� = + = = = N/A
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To obtain an unbiased result, we compared our algorithm with five well-known optimization
algorithms of different types, such as evolutionary and warm-based algorithms. Several stud-
ies have shown that they have good performance on optimization problems. These algorithms
include particle swarm optimization algorithm, Krill herd algorithm, and Biogeography-based
optimization algorithm and their chaos-based algorithms. The experiments were carried out
on a PC with a 3.60-Hz processor and 8.0 RAM in MatLab R2014b.

The global optimization toolbox used in our experiment includes PSO algorithms. We used
the standard PSO algorithm; c1 and c2 used a default value of 1.49. For the CPSO, we used the
same parameter settings. For the BBO and CBBO, the probability of modification is 1 and
the initial mutation probability is 0.005. The max immigration and emigration rates for each
island are 1. For the KH and CKH, the foraging speed is 0.02 and the maximum diffusion
speed is 0.005.

This group contains twenty-three benchmark functions f1–f23, which have limited dimensions,
many dimensions, and multiple modal cases. From Tables 1 and 2, we find that the chaotic

Function Result PSO CPSO CKH KH BBO CBBO

f19 Mean �3.86E+00 �3.86E+00 �3.86E+00 �3.79E+00 �3.86E+00 �3.86E+00

Std 2.13E�15 5.23E�09 1.85E�15 2.38E�01 1.80E�07 1.85E�12

p-value 8.68E�03 1.16E�01 2.96E�01 8.68E�03 1.82E�01 N/A

+/=/� + = = + = N/A

f20 Mean �3.24E+00 �3.28E+00 �3.32E+00 �3.27E+00 �3.32E+00 �3.32E+00

Std 5.82E�02 7.81E�02 4.56E�16 5.98E�02 2.33E�04 6.07E�05

p-value 8.68E�03 3.59E�02 2.96E�01 3.88E�03 1.16E�01 N/A

+/=/� + + = + = N/A

f21 Mean �5.46E+00 �5.13E+00 �4.79E+00 �5.31E+00 �7.35E+00 �1.02E+01

Std 2.20E+00 2.80E+00 3.26E+00 1.14E+00 2.60E+00 6.80E�07

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 2.26E�06 N/A

+/=/� + + + + + N/A

f22 Mean �3.96E+00 �6.67E+00 �8.80E+00 �5.02E+00 �9.87E+00 �1.04E+01

Std 1.19E+00 3.23E+00 2.86E+00 3.05E�01 1.64E+00 2.88E�06

p-value 5.01E�11 5.01E�11 5.97E�07 5.01E�11 3.59E�02 N/A

+/=/� + + + + + N/A

f23 Mean �4.49E+00 �5.77E+00 �9.36E+00 �5.26E+00 �1.03E+01 �1.05E+01

Std 2.41E+00 3.71E+00 2.87E+00 1.38E+00 1.21E+00 2.12E�07

p-value 5.01E�11 5.01E�11 6.41E�04 5.01E�11 1.63E�03 N/A

+/=/� + + + + + N/A

Sum(+/=/�) 21/2/0 20/2/1 12/6/5 19/3/1 16/7/0 N/A

Table 1. The average function values obtained by the average function values obtained by PSO, CPSO, KH, CKH, BBO,
and CBBO at D = 30.
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Function Result PSO CPSO CKH KH BBO CBBO

f1 Mean 8.45E+03 2.23E+04 9.36E+03 8.55E+04 N/A 1.68E+04

Std 7.83E+02 7.53E+02 1.45E+02 5.47E+03 N/A 7.21E+02

CNT 50 50 50 31 N/A 50

f2 Mean 1.51E+05 6.05E+04 N/A N/A 1.50E+05 8.56E+03

Std 1.35E+04 5.64E+03 N/A N/A 8.94E+03 9.66E+01

CNT 5 3 N/A N/A 29 50

f3 Mean 5.72E+05 2.18E+05 3.75E+04 2.65E+05 N/A 2.50E+03

Std 3.67E+04 4.46E+04 1.17E+03 1.16E+05 N/A 1.25E+02

CNT 50 8 50 45 N/A 50

f4 Mean N/A N/A 1.76E+04 N/A N/A 6.95E+03

Std N/A N/A 3.79E+02 N/A N/A 4.96E+02

CNT N/A N/A 50 N/A N/A 50

f5 Mean N/A N/A N/A N/A N/A N/A

Std N/A N/A N/A N/A N/A N/A

CNT N/A N/A N/A N/A N/A N/A

f6 Mean 9.81E+04 3.45E+04 9.36E+03 4.54E+04 N/A 2.89E+04

Std 7.35E+03 1.95E+03 1.30E+02 5.03E+03 N/A 2.51E+03

CNT 50 50 50 9 N/A 50

f7 Mean 1.81E+05 3.58E+04 N/A N/A N/A N/A

Std 1.02E+05 4.20E+03 N/A N/A N/A N/A

CNT 11 2 N/A N/A N/A N/A

f8 Mean 7.81E+00 N/A N/A N/A N/A 5.43E+03

Std 1.07E+04 N/A N/A N/A N/A 1.32E+03

CNT 1 N/A N/A N/A N/A 50

f9 Mean 1.34E+05 N/A N/A N/A N/A 3.77E+03

Std 4.12E+03 N/A N/A N/A N/A 7.38E+01

CNT 2 N/A N/A N/A N/A 50

f10 Mean 1.51E+05 4.27E+03 1.24E+04 N/A N/A 6.89E+03

Std 8.90E+03 1.56E+03 4.53E+03 N/A N/A 8.73E+01

CNT 50 13 44 N/A N/A 50

f11 Mean N/A N/A 1.19E+04 2.91E+04 1.84E+05 1.54E+03

Std N/A N/A 5.24E+03 4.92E+03 4.21E+03 7.03E+01

CNT N/A N/A 48 49 19 50

f12 Mean N/A N/A 1.08E+04 4.18E+04 N/A 1.21E+04

Std N/A N/A 4.08E+02 7.18E+03 N/A 4.78E+01

CNT N/A N/A 50 45 N/A 50

f13 Mean N/A N/A 1.12E+04 2.23E+05 N/A 2.90E+05

Std N/A N/A 2.80E+02 0.00E+00 N/A 4.08E+01

CNT N/A N/A 50 1 N/A 50
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To obtain an unbiased result, we compared our algorithm with five well-known optimization
algorithms of different types, such as evolutionary and warm-based algorithms. Several stud-
ies have shown that they have good performance on optimization problems. These algorithms
include particle swarm optimization algorithm, Krill herd algorithm, and Biogeography-based
optimization algorithm and their chaos-based algorithms. The experiments were carried out
on a PC with a 3.60-Hz processor and 8.0 RAM in MatLab R2014b.

The global optimization toolbox used in our experiment includes PSO algorithms. We used
the standard PSO algorithm; c1 and c2 used a default value of 1.49. For the CPSO, we used the
same parameter settings. For the BBO and CBBO, the probability of modification is 1 and
the initial mutation probability is 0.005. The max immigration and emigration rates for each
island are 1. For the KH and CKH, the foraging speed is 0.02 and the maximum diffusion
speed is 0.005.

This group contains twenty-three benchmark functions f1–f23, which have limited dimensions,
many dimensions, and multiple modal cases. From Tables 1 and 2, we find that the chaotic

Function Result PSO CPSO CKH KH BBO CBBO

f19 Mean �3.86E+00 �3.86E+00 �3.86E+00 �3.79E+00 �3.86E+00 �3.86E+00

Std 2.13E�15 5.23E�09 1.85E�15 2.38E�01 1.80E�07 1.85E�12

p-value 8.68E�03 1.16E�01 2.96E�01 8.68E�03 1.82E�01 N/A

+/=/� + = = + = N/A

f20 Mean �3.24E+00 �3.28E+00 �3.32E+00 �3.27E+00 �3.32E+00 �3.32E+00

Std 5.82E�02 7.81E�02 4.56E�16 5.98E�02 2.33E�04 6.07E�05

p-value 8.68E�03 3.59E�02 2.96E�01 3.88E�03 1.16E�01 N/A

+/=/� + + = + = N/A

f21 Mean �5.46E+00 �5.13E+00 �4.79E+00 �5.31E+00 �7.35E+00 �1.02E+01

Std 2.20E+00 2.80E+00 3.26E+00 1.14E+00 2.60E+00 6.80E�07

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 2.26E�06 N/A

+/=/� + + + + + N/A

f22 Mean �3.96E+00 �6.67E+00 �8.80E+00 �5.02E+00 �9.87E+00 �1.04E+01

Std 1.19E+00 3.23E+00 2.86E+00 3.05E�01 1.64E+00 2.88E�06

p-value 5.01E�11 5.01E�11 5.97E�07 5.01E�11 3.59E�02 N/A

+/=/� + + + + + N/A

f23 Mean �4.49E+00 �5.77E+00 �9.36E+00 �5.26E+00 �1.03E+01 �1.05E+01

Std 2.41E+00 3.71E+00 2.87E+00 1.38E+00 1.21E+00 2.12E�07

p-value 5.01E�11 5.01E�11 6.41E�04 5.01E�11 1.63E�03 N/A

+/=/� + + + + + N/A

Sum(+/=/�) 21/2/0 20/2/1 12/6/5 19/3/1 16/7/0 N/A

Table 1. The average function values obtained by the average function values obtained by PSO, CPSO, KH, CKH, BBO,
and CBBO at D = 30.
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Function Result PSO CPSO CKH KH BBO CBBO

f1 Mean 8.45E+03 2.23E+04 9.36E+03 8.55E+04 N/A 1.68E+04

Std 7.83E+02 7.53E+02 1.45E+02 5.47E+03 N/A 7.21E+02

CNT 50 50 50 31 N/A 50

f2 Mean 1.51E+05 6.05E+04 N/A N/A 1.50E+05 8.56E+03

Std 1.35E+04 5.64E+03 N/A N/A 8.94E+03 9.66E+01

CNT 5 3 N/A N/A 29 50

f3 Mean 5.72E+05 2.18E+05 3.75E+04 2.65E+05 N/A 2.50E+03

Std 3.67E+04 4.46E+04 1.17E+03 1.16E+05 N/A 1.25E+02

CNT 50 8 50 45 N/A 50

f4 Mean N/A N/A 1.76E+04 N/A N/A 6.95E+03

Std N/A N/A 3.79E+02 N/A N/A 4.96E+02

CNT N/A N/A 50 N/A N/A 50

f5 Mean N/A N/A N/A N/A N/A N/A

Std N/A N/A N/A N/A N/A N/A

CNT N/A N/A N/A N/A N/A N/A

f6 Mean 9.81E+04 3.45E+04 9.36E+03 4.54E+04 N/A 2.89E+04

Std 7.35E+03 1.95E+03 1.30E+02 5.03E+03 N/A 2.51E+03

CNT 50 50 50 9 N/A 50

f7 Mean 1.81E+05 3.58E+04 N/A N/A N/A N/A

Std 1.02E+05 4.20E+03 N/A N/A N/A N/A

CNT 11 2 N/A N/A N/A N/A

f8 Mean 7.81E+00 N/A N/A N/A N/A 5.43E+03

Std 1.07E+04 N/A N/A N/A N/A 1.32E+03

CNT 1 N/A N/A N/A N/A 50

f9 Mean 1.34E+05 N/A N/A N/A N/A 3.77E+03

Std 4.12E+03 N/A N/A N/A N/A 7.38E+01

CNT 2 N/A N/A N/A N/A 50

f10 Mean 1.51E+05 4.27E+03 1.24E+04 N/A N/A 6.89E+03

Std 8.90E+03 1.56E+03 4.53E+03 N/A N/A 8.73E+01

CNT 50 13 44 N/A N/A 50

f11 Mean N/A N/A 1.19E+04 2.91E+04 1.84E+05 1.54E+03

Std N/A N/A 5.24E+03 4.92E+03 4.21E+03 7.03E+01

CNT N/A N/A 48 49 19 50

f12 Mean N/A N/A 1.08E+04 4.18E+04 N/A 1.21E+04

Std N/A N/A 4.08E+02 7.18E+03 N/A 4.78E+01

CNT N/A N/A 50 45 N/A 50

f13 Mean N/A N/A 1.12E+04 2.23E+05 N/A 2.90E+05

Std N/A N/A 2.80E+02 0.00E+00 N/A 4.08E+01

CNT N/A N/A 50 1 N/A 50
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Function Result PSO CPSO CKH KH BBO CBBO

f14 Mean N/A N/A N/A N/A N/A 1.55E+04

Std N/A N/A N/A N/A N/A 8.78E+03

CNT N/A N/A N/A N/A N/A 50

f15 Mean 1.02E+04 2.44E+03 3.72E+04 N/A 1.12E+05 2.55E+05

Std 6.25E+03 1.09E+03 8.14E+03 N/A 5.55E+04 3.21E+04

CNT 29 18 42 N/A 40 40

f16 Mean 3.60E+03 3.62E+04 5.70E+04 8.56E+04 9.31E+04 3.45E+04

Std 2.80E+02 1.98E+02 2.36E+03 4.69E+03 2.90E+03 1.10E+03

CNT 48 46 50 50 50 50

f17 Mean 3.65E+04 1.01E+04 8.63E+03 5.94E+04 1.09E+05 7.53E+02

Std 4.75E+02 1.83E+02 1.47E+02 4.73E+03 8.85E+03 5.04E+02

CNT 50 50 50 50 50 50

f18 Mean 4.00E+04 1.34E+04 3.52E+03 1.06E+04 2.04E+03 8.59E+02

Std 3.64E+02 2.75E+02 2.11E+03 8.55E+03 4.01E+03 1.05E+03

CNT 50 41 50 49 50 50

f19 Mean 4.58E+04 6.60E+03 1.12E+03 6.98E+03 1.08E+04 3.90E+03

Std 4.48E+02 1.12E+03 8.49E+02 4.88E+02 8.05E+03 3.45E+02

CNT 50 50 50 44 50 50

f20 Mean 2.48E+05 1.32E+04 3.75E+03 1.82E+05 5.13E+04 8.55E+04

Std 3.45E+03 5.41E+03 7.78E+03 1.03E+05 3.66E+04 5.66E+04

CNT 27 42 50 32 50 50

f21 Mean 4.89E+04 3.76E+04 1.85E+05 4.56E+04 8.50E+04 4.33E+03

Std 3.93E+02 4.48E+02 8.80E+03 4.57E+02 1.29E+03 9.19E+02

CNT 25 22 19 5 46 50

f22 Mean 4.91E+04 3.70E+04 5.79E+04 8.94E+04 1.84E+05 5.80E+04

Std 5.22E+02 7.49E+02 5.46E+03 8.95E+03 8.79E+03 1.32E+03

CNT 8 17 47 34 12 50

f23 Mean 4.91E+04 3.73E+04 1.52E+05 2.55E+05 2.13E+05 8.79E+04

Std 4.67E+02 4.35E+02 2.35E+04 1.79E+04 5.65E+04 2.13E+03

CNT 11 7 32 16 41 50

Table 2. The average FEs obtained by PSO, CPSO, KH, CKH, BBO and CBBO at D = 30.

Algorithm PSO CPSO CKH KH BBO CBBO

Average ranking 3.30 4.13 2.6 3.52 3.39 1.39

Final ranking 3 6 2 5 4 1

Table 3. The average rank of PSO, CPSO, KH, CKH, BBO and CBBO.
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algorithms easily reach the global best result on all benchmark functions. The other algorithms
cannot obtain the results as good as those of the chaotic algorithms. For example, the KH and
PSO algorithms both obtain very few global best results on this set of functions. Table 2 shows
that the convergence of the chaotic algorithms also outperforms those of the other algorithms
and requires very few FEs to reach the ε level. For example, on function f18, the FE of the
CBBO algorithm is 8.59E+02, which is significantly lower than the others. Table 3 shows the
rank of all functions.

From the results of the 23 benchmark functions, we can find that, in general, the chaotic
algorithms outperform the other algorithms in terms of the average function value and the
number of function evaluations. The results presented in this section confirm that the pro-
posed chaotic algorithm exhibits a higher convergence velocity and greater robustness than
the other algorithms.

4. Discussion and conclusion

The convergence properties of metaheuristics algorithms are strongly related to its stochastic
nature and they use a random sequence for its parameters during running. Generating random
sequences with a long period and a good uniformity are very important for easy simulating
complex phenomena, sampling, numerical analysis, decision-making, and especially in heu-
ristic optimization. Its quality determines the reduction of storage and computation time to
achieve a desired accuracy. Chaos has properties of randomness, nonrepetition, and ergodic-
ity; it matched the stochastic feature of metaheuristic optimization algorithms perfectly. Cha-
otic optimization not only accelerates the speed of algorithm, but can also enhance the variety
of movement pattern.

Chaos has been observed in various applications widely. In this chapter, we used chaos theory
combined with the latest algorithm to analyze the properties. The first advantage of chaotic
algorithms is using fewer chaotic maps to enhance the searching capability. Secondly, chaotic
optimization performs search at higher speed compared to the stochastic searches that rely on
probability. Moreover, chaotic optimization is a simple structure and easy to implement. For
future studies, it may be well worth employing chaotic algorithms for solving real-world
engineering problems.
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Function Result PSO CPSO CKH KH BBO CBBO
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Table 2. The average FEs obtained by PSO, CPSO, KH, CKH, BBO and CBBO at D = 30.

Algorithm PSO CPSO CKH KH BBO CBBO

Average ranking 3.30 4.13 2.6 3.52 3.39 1.39
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algorithms easily reach the global best result on all benchmark functions. The other algorithms
cannot obtain the results as good as those of the chaotic algorithms. For example, the KH and
PSO algorithms both obtain very few global best results on this set of functions. Table 2 shows
that the convergence of the chaotic algorithms also outperforms those of the other algorithms
and requires very few FEs to reach the ε level. For example, on function f18, the FE of the
CBBO algorithm is 8.59E+02, which is significantly lower than the others. Table 3 shows the
rank of all functions.

From the results of the 23 benchmark functions, we can find that, in general, the chaotic
algorithms outperform the other algorithms in terms of the average function value and the
number of function evaluations. The results presented in this section confirm that the pro-
posed chaotic algorithm exhibits a higher convergence velocity and greater robustness than
the other algorithms.

4. Discussion and conclusion

The convergence properties of metaheuristics algorithms are strongly related to its stochastic
nature and they use a random sequence for its parameters during running. Generating random
sequences with a long period and a good uniformity are very important for easy simulating
complex phenomena, sampling, numerical analysis, decision-making, and especially in heu-
ristic optimization. Its quality determines the reduction of storage and computation time to
achieve a desired accuracy. Chaos has properties of randomness, nonrepetition, and ergodic-
ity; it matched the stochastic feature of metaheuristic optimization algorithms perfectly. Cha-
otic optimization not only accelerates the speed of algorithm, but can also enhance the variety
of movement pattern.

Chaos has been observed in various applications widely. In this chapter, we used chaos theory
combined with the latest algorithm to analyze the properties. The first advantage of chaotic
algorithms is using fewer chaotic maps to enhance the searching capability. Secondly, chaotic
optimization performs search at higher speed compared to the stochastic searches that rely on
probability. Moreover, chaotic optimization is a simple structure and easy to implement. For
future studies, it may be well worth employing chaotic algorithms for solving real-world
engineering problems.
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Abstract

The purpose of the present chapter is once again to show on concrete new examples that
chaos in one-dimensional unimodal mappings, dynamical chaos in systems of ordinary
differential equations, diffusion chaos in systems of the equations with partial deriva-
tives and chaos in Hamiltonian and conservative systems are generated by cascades of
bifurcations under universal bifurcation Feigenbaum-Sharkovsky-Magnitskii (FShM)
scenario. And all irregular attractors of all such dissipative systems born during realiza-
tion of such scenario are exclusively singular attractors that are the nonperiodic limited
trajectories in finite dimensional or infinitely dimensional phase space any neighbor-
hood of which contains the infinite number of unstable periodic trajectories.

Keywords: nonlinear systems, dynamical chaos, bifurcations, singular attractors
FShM theory

1. Introduction

Well-known, that chaotic dynamics is inherent practically in all nonlinear mappings and systems
of differential equations having irregular attractors, distinct from stable fixed and singular
points, limit cycles and tori. However, many years there was no clear understanding of that from
itself represent irregular attractors and how they are formed. In this connection it was possible to
find in the literature more than 20 various definitions of irregular attractors: stochastic, chaotic,
strange, hyperbolic, quasiattractors, attractors of Lorenz, Ressler, Chua, Shilnikov, Chen, Sprott,
Magnitskii and many others. It was considered that there are differences between attractors of
autonomous and nonautonomous nonlinear systems, systems of ordinary differential equations
and the equations with partial derivatives, and that the chaos in dissipative systems essentially
differs from chaos in conservative and Hamiltonian systems. There was also an opinion which
many outstanding scientists adhered, including Nobel prize winner I.R. Prigogine, that irregular
attractors of complex nonlinear systems cannot be described by trajectory approach, that are
systems of differential equations. And only in twenty-first century it has been proved and on
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numerous examples it was convincingly shown, that there is one universal bifurcation scenario
of transition to chaos in nonlinear systems of mappings and differential equations: autonomous
and nonautonomous, dissipative and conservative, ordinary, with private derivatives and with
delay argument (see, for example, [1–9]). It is bifurcation Feigenbaum-Sharkovsky-Magnitskii
(FShM) scenario, beginning with the Feigenbaum cascade of period-doubling bifurcations of
stable cycles or tori and continuing from the Sharkovskii subharmonic cascade of bifurcations
of stable cycles or tori of an arbitrary period up to the cycle or torus of the period three, and then
proceeding to theMagnitskii homoclinic or heteroclinic cascade of bifurcations of stable cycles or
tori. All irregular attractors born during realization of such scenario are exclusively singular
attractors that are the nonperiodic limited trajectories in finite dimensional or infinitely dimen-
sional phase space any neighborhood of which contains the infinite number of unstable periodic
trajectories.

However, in the scientific literature many papers continue to appear in which authors, not
understanding an essence of occurring processes, write about opened by them new attractors
in nonlinear systems of differential equations. Such papers are, for example, papers [10, 11]
which authors with surprise ascertain an existence of chaotic dynamics in nonlinear system of
ordinary differential equations with one stable singular point and try to explain this phenom-
enon by presence in the system of Smale’s horseshoe. Numerous papers continue to be
published also in which presence of chaotic attractor in the system of ordinary differential
equations is connected with Lyapunov’s positive exponent found numerically, diffusion chaos
in nonlinear system of equations with partial derivatives is explained by the Ruelle-Takens
(RT) theory and is connected with birth of mythical strange attractor at destruction of three-
dimensional torus, and presence of chaotic dynamics in Hamiltonian or conservative system is
explained by the Kolmogorov-Arnold-Mozer (KAM) theory and is connected with consecutive
destruction in the system of rational and mostly irrational tori of nonperturbed system.

The purpose of the present paper is once again to show on concrete new, not entered in [1–9],
examples, that chaos in the system considered in Refs. [10, 11], and also chaos in one-
dimensional unimodal mappings, dynamical chaos in systems of ordinary differential equa-
tions, diffusion chaos in systems of the equations with partial derivatives and chaos in Hamil-
tonian and conservative systems are generated by cascades of bifurcations under the FShM
scenario. Thus, in any nonlinear system there can be an infinite number of various singular
attractors, becoming complicated at change of bifurcation parameter in a direction of the
cascade of bifurcations. Presence or absence in system of stable or unstable singular points,
presence or absence of saddle-nodes or saddle-focuses, homoclinic or heteroclinic separatrix
contours and Smale’s horseshoes and also positivity of the calculated senior Lyapunov’s
exponent are not criteria of occurrence in system of chaotic dynamics. And the birth in the
system of three-dimensional and even multi-dimensional stable torus leads not only to its
destruction with birth of mythical strange attractor, but also to cascade of its period-doubling
bifurcations along one of its frequencies or several frequencies simultaneously. Chaotic
dynamics in Hamiltonian and conservative systems also is consequence of cascades of bifurca-
tions of birth of new tori, instead of consequence of destruction of some already ostensibly
existing mythical tori of nonperturbed system. Thus, for the analysis of chaotic dynamics of
any nonlinear system, attempts of calculation of a positive Lyapunov’s exponent, application
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of КАМ and RT theories and the proof of existence of Smale’s horseshoes are absolutely
senseless. Let us notice, that the results of Feigenbaum and Sharkovsky are received only for
one-dimensional unimodal maps and then were transferred by Magnitskii at first on two-
dimensional systems of differential equations with periodic coefficients, then on three-
dimensional, multi-dimensional and infinitely dimensional dissipative and conservative
autonomous systems of ordinary differential equations and then on systems of the equations
with partial derivatives. Besides this, it is proved by Magnitskii, that the subharmonic cascade
of Sharkovsky bifurcations can be continued by homoclinic or heteroclinic bifurcations cascade
both in the differential equations, and in continuous one-dimensional unimodal mappings.

1.1. FShM-cascades of bifurcations of stable cycles and a birth of singular attractors in
one-dimensional unimodal mappings

Let us give a summary of bifurcation FShM theory of chaos in one-dimensional continuous
unimodal mappings. Detailed proof of statements of the present section can be found in Ref. [1].

1.1.1. FShM-cascade of bifurcations in logistic mapping

Studying the properties of logistic mapping

f x;μ
� � ¼ μx 1� xð Þ, x∈ 0; 1½ �, μ∈ 1; 4½ � (1)

Feigenbaum proved that in this equation there is a cascade of period-doubling bifurcations of
its cycles and found a sequence of values of the parameter μ at which these bifurcations occur.
Further studies have shown that the complex chaotic dynamics of the logistic mapping is also
characteristic of any continuous difference equation of а kind xn + 1 = f(xn,μ) in which one-
dimensional mapping f : I! I is unimodal at corresponding choice of scale, that is, it has the
only extremum on an interval I. Return mapping f�1 has in this case two branches on I.

Considering the map (1) on an interval x∈ [0, 1], Feigenbaum has established, that there is the
infinite sequence μn of parameter values μ converging with a speed of the geometrical pro-
gression with a denominator 1/δ ≈ 1/4.67 to value μ∞ ≈ 3.57 in which period-doubling bifurca-
tions of the cycles of logistic map occur. That is at all parameter values μn <μ <μn + 1 Eq. (1) has
unique regular attractor—a stable cycle of the period 2n and a set of unstable cycles of all
periods 2k, k = 0,…, n� 1. Thus, the first most simple and low-power singular attractor, born in
unimodal one-dimensional continuous mapping at the end of the Feigenbaum period-
doubling bifurcation cascade, is a nonperiodic trajectory consisting of points, any neighbor-
hood of each contains points belonging to some unstable cycles of the periods 2n, n > 0. This
attractor is called Feigenbaum attractor. It is, obviously, everywhere not dense set of points on
an interval. In the case of logistic mapping (1), Feigenbaum attractor exists at the parameter
value μ∞ ≈ 3.57. However, logistic mapping is defined on the interval x∈ [0, 1] at all parameter
values μ ≤ 4. The answer to a question, that occurs with trajectories of logistic mapping and
with any other unimodal continuous mapping at parameter values μ >μ∞, gives Sharkovsky
theorem. It follows from this theorem that complication of structure of cycles of iterations of
one-dimensional unimodal mappings, as a rule, does not come to the end with the cascade of
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numerous examples it was convincingly shown, that there is one universal bifurcation scenario
of transition to chaos in nonlinear systems of mappings and differential equations: autonomous
and nonautonomous, dissipative and conservative, ordinary, with private derivatives and with
delay argument (see, for example, [1–9]). It is bifurcation Feigenbaum-Sharkovsky-Magnitskii
(FShM) scenario, beginning with the Feigenbaum cascade of period-doubling bifurcations of
stable cycles or tori and continuing from the Sharkovskii subharmonic cascade of bifurcations
of stable cycles or tori of an arbitrary period up to the cycle or torus of the period three, and then
proceeding to theMagnitskii homoclinic or heteroclinic cascade of bifurcations of stable cycles or
tori. All irregular attractors born during realization of such scenario are exclusively singular
attractors that are the nonperiodic limited trajectories in finite dimensional or infinitely dimen-
sional phase space any neighborhood of which contains the infinite number of unstable periodic
trajectories.

However, in the scientific literature many papers continue to appear in which authors, not
understanding an essence of occurring processes, write about opened by them new attractors
in nonlinear systems of differential equations. Such papers are, for example, papers [10, 11]
which authors with surprise ascertain an existence of chaotic dynamics in nonlinear system of
ordinary differential equations with one stable singular point and try to explain this phenom-
enon by presence in the system of Smale’s horseshoe. Numerous papers continue to be
published also in which presence of chaotic attractor in the system of ordinary differential
equations is connected with Lyapunov’s positive exponent found numerically, diffusion chaos
in nonlinear system of equations with partial derivatives is explained by the Ruelle-Takens
(RT) theory and is connected with birth of mythical strange attractor at destruction of three-
dimensional torus, and presence of chaotic dynamics in Hamiltonian or conservative system is
explained by the Kolmogorov-Arnold-Mozer (KAM) theory and is connected with consecutive
destruction in the system of rational and mostly irrational tori of nonperturbed system.

The purpose of the present paper is once again to show on concrete new, not entered in [1–9],
examples, that chaos in the system considered in Refs. [10, 11], and also chaos in one-
dimensional unimodal mappings, dynamical chaos in systems of ordinary differential equa-
tions, diffusion chaos in systems of the equations with partial derivatives and chaos in Hamil-
tonian and conservative systems are generated by cascades of bifurcations under the FShM
scenario. Thus, in any nonlinear system there can be an infinite number of various singular
attractors, becoming complicated at change of bifurcation parameter in a direction of the
cascade of bifurcations. Presence or absence in system of stable or unstable singular points,
presence or absence of saddle-nodes or saddle-focuses, homoclinic or heteroclinic separatrix
contours and Smale’s horseshoes and also positivity of the calculated senior Lyapunov’s
exponent are not criteria of occurrence in system of chaotic dynamics. And the birth in the
system of three-dimensional and even multi-dimensional stable torus leads not only to its
destruction with birth of mythical strange attractor, but also to cascade of its period-doubling
bifurcations along one of its frequencies or several frequencies simultaneously. Chaotic
dynamics in Hamiltonian and conservative systems also is consequence of cascades of bifurca-
tions of birth of new tori, instead of consequence of destruction of some already ostensibly
existing mythical tori of nonperturbed system. Thus, for the analysis of chaotic dynamics of
any nonlinear system, attempts of calculation of a positive Lyapunov’s exponent, application
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of КАМ and RT theories and the proof of existence of Smale’s horseshoes are absolutely
senseless. Let us notice, that the results of Feigenbaum and Sharkovsky are received only for
one-dimensional unimodal maps and then were transferred by Magnitskii at first on two-
dimensional systems of differential equations with periodic coefficients, then on three-
dimensional, multi-dimensional and infinitely dimensional dissipative and conservative
autonomous systems of ordinary differential equations and then on systems of the equations
with partial derivatives. Besides this, it is proved by Magnitskii, that the subharmonic cascade
of Sharkovsky bifurcations can be continued by homoclinic or heteroclinic bifurcations cascade
both in the differential equations, and in continuous one-dimensional unimodal mappings.

1.1. FShM-cascades of bifurcations of stable cycles and a birth of singular attractors in
one-dimensional unimodal mappings

Let us give a summary of bifurcation FShM theory of chaos in one-dimensional continuous
unimodal mappings. Detailed proof of statements of the present section can be found in Ref. [1].

1.1.1. FShM-cascade of bifurcations in logistic mapping

Studying the properties of logistic mapping

f x;μ
� � ¼ μx 1� xð Þ, x∈ 0; 1½ �, μ∈ 1; 4½ � (1)

Feigenbaum proved that in this equation there is a cascade of period-doubling bifurcations of
its cycles and found a sequence of values of the parameter μ at which these bifurcations occur.
Further studies have shown that the complex chaotic dynamics of the logistic mapping is also
characteristic of any continuous difference equation of а kind xn + 1 = f(xn,μ) in which one-
dimensional mapping f : I! I is unimodal at corresponding choice of scale, that is, it has the
only extremum on an interval I. Return mapping f�1 has in this case two branches on I.

Considering the map (1) on an interval x∈ [0, 1], Feigenbaum has established, that there is the
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Feigenbaum bifurcations and Feigenbaum attractor, and it is continued by more complex
cascade of bifurcations according to the order established by Sharkovsky in his theorem.

Definition. Ordering in set of the natural numbers, looking like

1⊲2⊲22⊲…2n⊲…⊲22 � 7⊲22 � 5⊲22 � 3⊲…2 � 7⊲2 � 5⊲2 � 3⊲…⊲7⊲5⊲3: (2)

is called as Sharkovsky’s order. Theorem of Sharkovsky approves, that if continuous unimodal
map f : I! I has a cycle of the period n then it has also all cycles of each period k, such that k⊲ n
in the sense of the order (2). Consequence of the theorem is the statement, that if map f has a
cycle of the period 3, then it has cycles of all periods.

It also follows from the Sharkovsky theorem, that at change of values of bifurcation parameter,
stable cycles in one-dimensional unimodal continuous mappings are obliged to be born
according to the order (2). And their births occur in pairs together with unstable cycles as a
result of saddle-node (tangent) bifurcations. Each stable cycle of Sharkovsky cascade, which
has born thus, undergoes then the cascade of period-doubling bifurcations, generating its own
window of periodicity (Figure 1). A limit of such cascade is more complex singular attractor—
nonperiodic almost stable trajectory any neighborhood of which contains the infinite number
of unstable periodic trajectories. Hence, the cascade of Feigenbaum bifurcations is an initial
stage of the full subharmonic cascade of bifurcations, described by Sharkovsky order. In the
case of logistic mapping (1) cycle of the period three is born at value μ ≈ 3.828 (Figure 1).
Hence, the subharmonic cascade of Sharkovsky bifurcations does not cover all area of change
of values of bifurcation parameter μ ≤ 4.

Behind subharmonic Sharkovsky cascade, homoclinic (heteroclinic) cascade of bifurcations
lays, opened by Magnitskii at first in nonlinear systems of ordinary differential equations,
and then found out in logistic and other unimodal continuous mappings. Homoclinic
(heteroclinic) cascade of bifurcations consists of a consecutive birth of stable homoclinic
(heteroclinic) cycles of the period n converging to a homoclinic (heteroclinic) contour. As a
rule, it is a separatrix loop of a saddle-focus (heteroclinic separatrix contour) in nonlinear
system of ordinary differential equations and a separatrix loop of a fixed point (heteroclinic
separatrix contour) in one-dimensional unimodal mapping. Born before, unstable cycles and

Figure 1. Full bifurcation diagram of logistic mapping at μ ≤ 4 and the separatrix loop of the zero fixed point at μ = 4.
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nonperiodic trajectories (singular attractors) remain in system, therefore dynamics of
unimodal mapping in a neighborhood of a homoclinic (heteroclinic) contour is the most
complex. The first cycles of homoclinic cascade are the most simple cycle of the period two
of the Feigenbaum cascade and the most complex cycle of the period three of Sharkovsky
cascade. In logistic mapping stable homoclinic cycle of the period four exists at μ = 3.9603,
and the separatrix loop of the fixed point x = 0 exists at μ = 4, that completely covers all area of
change of values of bifurcation parameter (Figure 1). So, in one-dimensional unimodal
mappings at various parameter values stable periodic (regular) attractors and nonperiodic
singular attractors can exist together with finite or infinite number of unstable periodic
trajectories, and all such attractors are born as a result of cascades of soft bifurcations
(saddle-node and period-doubling) in full accordance with the Feigenbaum-Sharkovsky-
Magnitskii (FShM) theory.

2. Dynamical chaos in nonlinear dissipative systems of ordinary
differential equations

Bases of the FShM theory with reference to nonlinear dissipative systems of ordinary differen-
tial equations are stated in Refs. [1–3, 7]. Thus in systems with strong dissipation it is realized
both the full subharmonic cascade of Sharkovsky bifurcations, and full (or incomplete)
homoclinic (or heteroclinic) cascade of Magnitskii bifurcations depending on, whether exists
homoclinic (or heteroclinic) separatrix contour in the system. In systems with weak dissipation
the FShM-order of bifurcations can be broken in its right part. Hence, attractors of such
systems are regular attractors (stable singular points, stable cycles and stable tori of any
dimension), or singular cyclic or toroidal attractors—limited nonperiodic almost stable trajec-
tories or the toroidal manifolds, being limits of cascades of the period-doubling bifurcations of
regular attractors (cycles, tori). In Refs. [1–3, 7] it is proved, that the FShM scenario of transition
to chaos takes place in such classical two-dimensional dissipative systems with periodic coef-
ficients, as systems of Duffing-Holmes, Mathieu, Croquette and Krasnoschekov; in three-
dimensional autonomous dissipative systems, as systems of Lorenz, Ressler, Chua, Magnitskii,
Vallis, Anishchenko-Astakhov, Rabinovich-Fabricant, Pikovskii-Rabinovich-Trakhtengertz,
Sviregev, Volterra-Gause, Sprott, Chen, Rucklidge, Genezio-Tesi, Wiedlich-Trubetskov and
many others; in multi-dimensional and infinitely dimensional autonomous dissipative sys-
tems, as systems of Rikitaki, Lorenz complex system, Mackey-Glass equation and many
others. These systems describe processes and the phenomena in all areas of scientific
researches. Lorenz system is a hydrodynamic system, Ressler system is a chemical system,
Chua system describes the electro technical processes, Magnitskii system is a macroeconomic
system, Widlich-Trubetskov system describes the social processes and phenomena, Mackey-
Glass equation describes the processes of hematopoiesis.

2.1. Transition to chaos in the system with one stable singular point

In this chapter, let us consider the three-dimensional system of ordinary differential equations
with one stable singular point which has been proposed in Ref. [10]
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nonperiodic trajectories (singular attractors) remain in system, therefore dynamics of
unimodal mapping in a neighborhood of a homoclinic (heteroclinic) contour is the most
complex. The first cycles of homoclinic cascade are the most simple cycle of the period two
of the Feigenbaum cascade and the most complex cycle of the period three of Sharkovsky
cascade. In logistic mapping stable homoclinic cycle of the period four exists at μ = 3.9603,
and the separatrix loop of the fixed point x = 0 exists at μ = 4, that completely covers all area of
change of values of bifurcation parameter (Figure 1). So, in one-dimensional unimodal
mappings at various parameter values stable periodic (regular) attractors and nonperiodic
singular attractors can exist together with finite or infinite number of unstable periodic
trajectories, and all such attractors are born as a result of cascades of soft bifurcations
(saddle-node and period-doubling) in full accordance with the Feigenbaum-Sharkovsky-
Magnitskii (FShM) theory.

2. Dynamical chaos in nonlinear dissipative systems of ordinary
differential equations

Bases of the FShM theory with reference to nonlinear dissipative systems of ordinary differen-
tial equations are stated in Refs. [1–3, 7]. Thus in systems with strong dissipation it is realized
both the full subharmonic cascade of Sharkovsky bifurcations, and full (or incomplete)
homoclinic (or heteroclinic) cascade of Magnitskii bifurcations depending on, whether exists
homoclinic (or heteroclinic) separatrix contour in the system. In systems with weak dissipation
the FShM-order of bifurcations can be broken in its right part. Hence, attractors of such
systems are regular attractors (stable singular points, stable cycles and stable tori of any
dimension), or singular cyclic or toroidal attractors—limited nonperiodic almost stable trajec-
tories or the toroidal manifolds, being limits of cascades of the period-doubling bifurcations of
regular attractors (cycles, tori). In Refs. [1–3, 7] it is proved, that the FShM scenario of transition
to chaos takes place in such classical two-dimensional dissipative systems with periodic coef-
ficients, as systems of Duffing-Holmes, Mathieu, Croquette and Krasnoschekov; in three-
dimensional autonomous dissipative systems, as systems of Lorenz, Ressler, Chua, Magnitskii,
Vallis, Anishchenko-Astakhov, Rabinovich-Fabricant, Pikovskii-Rabinovich-Trakhtengertz,
Sviregev, Volterra-Gause, Sprott, Chen, Rucklidge, Genezio-Tesi, Wiedlich-Trubetskov and
many others; in multi-dimensional and infinitely dimensional autonomous dissipative sys-
tems, as systems of Rikitaki, Lorenz complex system, Mackey-Glass equation and many
others. These systems describe processes and the phenomena in all areas of scientific
researches. Lorenz system is a hydrodynamic system, Ressler system is a chemical system,
Chua system describes the electro technical processes, Magnitskii system is a macroeconomic
system, Widlich-Trubetskov system describes the social processes and phenomena, Mackey-
Glass equation describes the processes of hematopoiesis.

2.1. Transition to chaos in the system with one stable singular point

In this chapter, let us consider the three-dimensional system of ordinary differential equations
with one stable singular point which has been proposed in Ref. [10]
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_x ¼ yzþ 0:006, _y ¼ x2 � y, _z ¼ 1� 4x (3)

This system has the only stable singular point (0.25, 0.0625,�0.096) of stable focus type as
Jacobian matrix in the singular point has eigenvalues (�0.96069,�0.01966� 0.50975 i), where
i2 = � 1. The system (3) has no neither saddle-focuses, nor a saddle-nodes and, hence, it has no
homoclinic or heteroclinic contours, but it has strongly expressed chaotic dynamics (see in Ref.
[10] and below in Figure 2). In Ref. [11] attempt is undertaken to explain chaos in system (3) by
presence in it of Smale’s horseshoe. We shall show now, that transition to chaos in system (3)
actually occurs in full accordance with universal bifurcation scenario of Feigenbaum-
Sharkovsky-Magnitskii. For this purpose, it is necessary only to define correctly bifurcation
parameter at which change the cascade of bifurcations under FShM scenario is realized in the
system.

As bifurcation parameter we choose the parameter b and consider the system

_x ¼ yzþ 0:006, _y ¼ x2 � by, _z ¼ 1� 4x (4)

At b = 1, the system (4) obviously passes into system (3). We shall search stable cycles of the
system (4) by numerical modeling of the system by the Runge-Kutta method of the fourth
order. The system (4) remains dissipative at all parameter values b > 0. At values b < 0.39 there
are no attractors in the system, except for a singular point of a stable focus type. At value
b ≈ 0.39 there is a stable cycle in the system as a result a saddle-node bifurcation of births of
stable and unstable cycles. This cycle exists up to the value b ≈ 0.8, when the stable cycle of the
double period is born in the system . Further the cascade of Feigenbaum period-doubling
bifurcations follows: the cycle of period 2 is observed up to value b ≈ 0.9, the cycle of the
period 4—up to value b ≈ 0.926, generating a stable cycle of the period 8, etc. At the further
increase in parameter values b, the next cycles have been found: of the period 7 at b ≈ 0.956, of
the period 5 at b ≈ 0.965 and of the period 3 at b ≈ 0.982. This indicates the realization of full
subharmonic cascade of Sharkovsky bifurcations in the system (4) (Figure 2). At b = 1 there
exists a chaos in the system (4) and, hence, in the system (3), corresponding to an area of
FShM scenario, which lies behind the Sharkovsky cascade. Homoclinic cascade in the system
(4) is not found out, in view of absence in it of unstable singular points and homoclinic
separatrix contours.

Figure 2. Projections to a plane (x, y) of cycles of periods 8 (b = 0.927), 3 (b = 0.982) and singular attractor (b = 1) of the
system (4).
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3. Dynamical chaos in Hamiltonian and conservative systems

Conservative system saves its volume at movement along the trajectories and, hence, cannot
have attractors. Therefore studying of dynamical chaos in Hamiltonian and, especially, simply
conservative systems is more a difficult task in comparison with the analysis of chaotic dynamics
in dissipative systems which can be described by universal bifurcation FShM theory. The main
problem solved by the modern classical theory of Hamiltonian systems (the Kolmogorov-
Arnold-Moser theory) is the problem of integrability of such a system, that is, the problem of its
reduction to the “action-angle” variables by constructing some canonical transformation. It is
assumed that in such variables the motion in a Hamiltonian system is periodic or quasiperiodic
and occurs on the surface of an n-dimensional torus. In this formulation, any non-integrable
Hamiltonian system is considered as a perturbation of the integrable system, and the analysis of
the dynamics of the perturbed system reduces to studying the problem of the destruction of the
tori of an unperturbed system with increasing values of the perturbation parameter. But numer-
ous examples of Hamiltonian and simply conservative systems, considered by the author in
[4–7], deny existence such classical KAM-scenario of transition to chaos.

One of the most effective approaches to the decision of a problem of the analysis of chaotic
dynamics in conservative systems is offered by the author in Ref. [4] (see also [5–7]). The
approach assumes consideration of conservative system in the form of limiting transition from
corresponding extended dissipative system (in which the dissipative member is added) to
initial conservative system. This approach can be evidently shown by means of construction
of two-parametrical bifurcation diagramwhich corresponds to transition from dissipative state
to conservative state. Attractors (stable cycles, tori and singular attractors) of extended dissi-
pative system can be found numerically with use of results of universal bifurcation FShM
theory. Further transition to chaos in conservative (Hamiltonian) system is carried out through
cascades of bifurcations of attractors of extended dissipative system when dissipation param-
eter tends to zero. Areas of stability of stable cycles of the extended system at zero dissipation
turn into tori of conservative (Hamiltonian) system around of its elliptic cycles into which
stable cycles transform. Thus tori of conservative (Hamiltonian) system touch through hyper-
bolic cycles into which saddle cycles of extended dissipative system transform. In [4–7] the
considered above approach is described in detail with reference to Hamiltonian systems with
one and a half, two, two and a half and three degrees of freedom, and also to simply conser-
vative systems of differential equations, including the conservative Croquette equation, the
equation of a pendulum with oscillating point of fixing, the conservative generalized Mathieu
equation, well-known Hamiltonian system of Henon-Heiles equations. In Refs. [12, 13] the
given approach has been applied and strictly proved by continuation along parameter of
solutions from dissipative into conservative areas by means of the Magnitskii method of
stabilization of unstable periodic orbits [1] at research bifurcations and chaos in the Duffing-
Holmes equation

€x þ μ _x � δxþ x3 � ε cos ω tð Þ ¼ 0, (5)

and in the model of a space pendulum
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and occurs on the surface of an n-dimensional torus. In this formulation, any non-integrable
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approach assumes consideration of conservative system in the form of limiting transition from
corresponding extended dissipative system (in which the dissipative member is added) to
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€x þ μ _x þ kxþ ε sin 2πxð Þ ¼ h cosω t: (6)

Corresponding bifurcation diagrams in a plane (ε,μ) of existence of cycles of various
periods down to a conservative case at μ = 0 are shown in [12–14]. Application of Magnitskii
approach has revealed the essence of dynamical chaos in Hamiltonian and simply conser-
vative systems. It became clear, that the chaos in such systems is not a result of destruction
or non-destruction of some mythical tori of nonperturbed systems, as it follows from the
KAM theory, but absolutely on the contrary, it is a consequence of limit transition of infinite
number of cycles, tori and singular attractors, born according to the FShM theory as a result
of cascades of bifurcations in extended dissipative system when dissipation parameter tends
to zero.

3.1. Hamiltonian Yang-Mills-Higgs system with two degrees of freedom

In this chapter, let us illustrate Magnitskii approach by the example of Yang-Mills-Higgs
system with two degrees of freedom and with Hamiltonian

H ¼ _x2 þ _z2
� �

=2þ x2z2=2þ ν x2 þ z2
� �

=2, (7)

passing into classical system of the Yang-Mills equations at ν = 0. We shall consider four-
dimensional phase space of the system with coordinates x, y ¼ _x, z, r ¼ _z:

_x ¼ y, _y ¼ �x νþ z2
� �

, _z ¼ r, _r ¼ �z νþ x2
� �

: (8)

The system (8) has four sets of periodic solutions to which there correspond four basic cycles in
phase space

Сx : z ¼ r ¼ 0, y2 þ νx2 ¼ 2; Cz : x ¼ y ¼ 0, r2 þ νz2 ¼ 2; C� : z ¼ �x, y2 þ νx2 þ x4=2 ¼ 1:
(9)

Assuming H = 1, we shall consider four-dimensional extended two-parametrical dissipative
system of differential equations of a kind

_x ¼ y, _y ¼ �x νþ z2
� �� μy, _z ¼ rþ 1�H x; y; z; rð Þð Þz, _r ¼ �z νþ x2

� �
, (10)

where r ¼ _z . Complication of solutions of Hamiltonian system (8) of the Yang-Mills-Higgs
equations down to full chaotic dynamics occurs at ν! 0. In turn for each value ν > 0 the
structure of solutions of Hamiltonian system (8) is completely determined by cascades of
bifurcations of cycles of extended dissipative system (10) when dissipation parameter μ! 0.
Stable cycles of dissipative system (10), born as a result of cascades of bifurcations, pass into
elliptic cycles of Hamiltonian system (8), and their areas of stability—into tori around of
these elliptic cycles. The contact of born tori of conservative system occurs on hyperbolic
cycles in which corresponding unstable cycles of extended dissipative system transform.
These unstable cycles are born in the dissipative system together with stable cycles as a
result a saddle-node bifurcations, or at loss of stability of a cycle as a result of pitchfork
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bifurcation or period-doubling bifurcation. In neighborhoods of separatrix surfaces of hyper-
bolic cycles there is a formation of new more complex hyperbolic and elliptic cycles
according to nonlocal effect of multiplication of cycles and tori in conservative systems (see
[4–7]). Last effect plays a key role in the system of Yang-Mills-Higgs equations at an initial
stage of transition from regular dynamics to chaotic dynamics. At the same time, as numer-
ical calculations show, the further complication of dynamics of solutions of system (10) at
reduction of parameter value ν occurs not only by means of multiplication of elliptic and
hyperbolic cycles and tori, but also by means of the cascade of period-doubling bifurcations
of the basic cycles and by means of the subharmonic cascade of bifurcations. Initial cycles of
the cascade of period-doubling bifurcations of the cycle C+ are presented in Figure 3. In Ref.
[14] stabilization of unstable cycles of system (8) by modified Magnitskii method [1] is
carried out.

Further, the process continues with the birth of infinitely folded heteroclinic separatrix mani-
fold, stretched over separatrix Feigenbaum tree, both in extended dissipative system (10), and
in Hamiltonian system (8) close to it. Accordions of corresponding heteroclinic separatrix
zigzag fill the whole phase space of the system, however the limited accuracy of numerical
methods does not allow to track this process up to the value ν = 0, corresponding to the initial
system of the Yang-Mills equations.

4. Spatio-temporal chaos in nonlinear partial differential equations

Bases of FShM theory with reference to a wide class of nonlinear systems of partial
differential equations are stated in Refs. [6–9]. This class includes systems of the equations
of reaction-diffusion type, describing various autowave oscillatory processes in chemical,
biological, social and economic systems, including the well-known brusselator equations;
the equations of FitzHugh-Nagumo type, describing processes of chemical and biological
turbulence in excitable media; the equations of Kuramoto-Tsuzuki (or Time Dependent
Ginzburg-Landau) type, describing complex autooscillating processes after loss of stability
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€x þ μ _x þ kxþ ε sin 2πxð Þ ¼ h cosω t: (6)
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� �
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� �
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� �

: (8)
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� �
, (10)
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4.1. Diffusion chaos in reaction-diffusion systems

Wide class of physical, chemical, biological, ecological and economic processes and phenom-
ena is described by reaction-diffusion systems of partial differential equations

ut ¼ D1uxx þ f u; v;μ
� �

, vt ¼ D2vxx þ g u; v;μ
� �

, 0 ≤ x ≤ l, (11)

depending on the scalar or vector parameter μ. The dynamics of the solutions of such a
complex system of equations depends on the boundary conditions, the length of the spatial
region, and the values of the diffusion coefficients. In many cases, there is a value of the
system parameter μ0, such that for μ <μ0 the system (11) has a stable spatial homogeneous
stationary solution (U,V), called the thermodynamic branch. In the case of loss of stability of
the thermodynamic branch, when μ > μ0, solutions of the system (11) can be various homo-
geneous and inhomogeneous periodic solutions, spiral waves, running impulses, stationary
dissipative structures, as well as nonstationary nonperiodic inhomogeneous solutions, called
space-time or diffusion chaos.

The nonlinear processes occurring in so-called excitable media, are described by a special
case of systems of the reaction-diffusion equations—FitzHugh-Nagumo type systems

ut ¼ Duxx þ f u; v;μ
� �

, vt ¼ g u; v;μ
� �

: (12)

Solutions of the system (12) are: switching waves, traveling waves and running impulses,
dissipative stationary spatially inhomogeneous structures, and diffusion chaos—nonstationary
nonperiodic inhomogeneous structures, sometimes called biological or chemical turbulence. All
such solutions can be analyze on a line by replacement ξ = x� c t and transition to three-
dimensional system of ordinary differential equations

_u ¼ y, _y ¼ � cyþ f u; v;μ
� �� �

=D, _v ¼ �g u; v;μ
� �

=c, (13)

where the derivative is taken over the variable ξ. Therefore, the separatrix of the heteroclinic
contour of system (13) describes the switching wave of the system (12), the limit cycle and the
separatrix loop of the singular point of system (13) describe the traveling wave and the
running impulse of system (12). And diffusion chaos in system (12) is described by singular
attractors of the system of ordinary differential Eq. (13) in full accordance with the universal
bifurcation Feigenbaum-Sharkovsky-Magnitskii theory. The greatest interest represents a case
when c is a bifurcation parameter, describing a speed of wave distribution along an axis x,
which is not included obviously into initial system (12). This case means, that system of a kind
(12) with the fixed parameters can have infinitely number of various autowave solutions of any
period running along a spatial axis with various speeds, and infinite number of modes of
diffusion chaos. One of such system, describing chemical turbulence in autocatalytic chemical
reactions, is studied in [6, 7, 15].

In this chapter, let us consider the system of a kind (12) describing distribution of nervous
impulses in a cardiac muscle [16]:
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ut ¼ uxx þ 1
ε
u 1� uð Þ u� 0:06þ v

0:75

� �
, vt ¼ u3 � v: (14)

where u is the activator, v—ingibitor, slowing down development of the activator, the param-
eter 1/ε defines time of restoration of the system after perturbation. Let us show, that transition
to diffusion chaos in system (14), during complication of periodic fluctuations occurring in it,
occurs according to universal bifurcation scenario of the FShM theory. We shall analyze
solutions of system (14) by means of automodeling replacement of independent variables
ξ = x� c t, having reduced the initial system of partial differential equations to three-
dimensional system of ordinary differential equations

_u ¼ w, _w ¼ � cwþ 1
ε
u 1� uð Þ u� 0:06þ v

0:75

� �� �
, _v ¼ v� u3

� �
=c, (15)

where derivative is taken with respect to the variable ξ. If (u(ξ), v(ξ),w(ξ)) is the solution of
system of ODE (15) then (u(x� ct), v(x� ct),w(x� ct)) will be the solution of system in private
derivatives (14). Thus running waves in system (14) are described by limit cycles of system
(15), and running impulses—by separatrix loops of saddle-focuses. Let us carry out numerical
research of system (15) in the field of where one of singular points is a saddle-focus. The
greatest interest represents a case when c is the bifurcation parameter which describes a speed
of waves distribution along an axis x and which is not included obviously into initial system
(14). This case means, that the system (14) with the fixed parameters can have infinitely
number of various autowave solutions of any period running along a spatial axis with various
speeds, and infinite number of modes of diffusion chaos. Let us fix a parameter value ε : 1/ε =
17.4, and take the parameter c as bifurcation parameter. At c∈ [1.6305, 1.6316] there is a stable
cycle in the system (15). At c ≈ 1.6317 the cascade of Feigenbaum period-doubling bifurcations
of the initial cycle begins, and at c∈ [1.6317, 1.6331] the cycle of period 2 is observed, at
c∈ [1.6332, 1.6335]—the cycle of period 4, and at c ≈ 1.63375 the first singular attractor—
Feigenbaum attractor is found out (Figure 4).

At the further reduction of values of parameter c, cycles of period 5 and period 3 are found out
at c ≈ 1.6344 and at c ≈ 1.6347 (Figure 4). Thus, it is established, that in system (15) at change of
parameter c, Feigenbaum cascade of period-doubling bifurcations of stable limit cycles and the
full subharmonic Sharkovsky cascade of bifurcations of stable cycles according to the
Sharkovsky order are realized. To the found cycles of system (15) there correspond running
waves of system (14), some of which are represented in Figure 5.

Figure 4. Cycles of periods 1, 2, 3 from Sharkovsky cascade and Feigenbaum attractor.
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4.2. Spatio-temporal chaos in autooscillating mediums

It is well-known that any solution of the reaction-diffusion system (11) in a neighborhood
μ >μ0 of the thermodynamic branch can be approximated by some complex-valued solution
W(r, τ) = u(r, τ) + iv(r, τ) of the Kuramoto-Tsuzuki (or Time Dependent Ginzburg-Landau) equa-
tion (see [1, 2, 6, 7]):

Wτ ¼ W þ 1þ ic1ð ÞWrr � 1þ ic2ð Þ Wj j2W, (16)

where r ¼ εx, τ ¼ ε2t, ε ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiμ� μ0
p , 0 ≤ r ≤R, с1, c2—two real constants. Obviously, Eq. (16)

has a spatial homogeneous solution W(τ) = exp(�i(c2τ +φ)) for an arbitrary phase φ. Conse-
quently, each element of the medium (16) oscillates with a frequency c2. This solution is
stable in a certain area of parameters c1 and c2. So, such media are called as autooscillating
media. Research of solutions of the Kuramoto-Tsuzuki (Ginzburg-Landau) Eq. (16) directly
in its phase space has shown, that actually in this equation there is subharmonic cascade of
bifurcations of stable two-dimensional tori of any period according to the Sharkovsky
order over each of frequencies and over two frequencies simultaneously. In [1, 2, 6, 7]
solutions of the second boundary-value problem for the Eq. (16) on an interval are ana-
lyzed in detail. It has been constructed four-dimensional subspace (u(0), v(0), u(l/2), v(l/2))
of infinitely dimensional phase space of solutions of the problem, and its Poincare section
by the plane u(l/2) = 0 for various values of bifurcation parameters c1 and c2 has been
considered. Poincare’s method of the analysis of phase space of solutions of the Eq. (16)
has allowed to find all cascades of bifurcations of two-dimensional tori in full accordance
with the FShM theory.

In this chapter, we consider the problem of research of nonlinear effects in model of surface
plasmon-polyariton. The passage of an electromagnetic wave through a configuration from
three various environments dielectric-metal-dielectric can be described by following system of
the equations in partial derivatives in the complex variables, turning out of Maxwell equations
(see [17]):

Figure 5. Running waves of system (14), corresponding to cycles of system (15) with periods 2, 3.
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i
∂ψp

∂z
þ 1
2β

∂2ψp

∂y2
þ il� Δβ
� �

ψp þ κψ a ¼ 0,

i
∂ψ a

∂z
þ 1
2β

∂2ψ a

∂y2
þ i l� gð Þ þ Δβ
� �

ψ a þ fΥ ψ aj j2ψ aκψp ¼ 0,

(17)

The system (17) represents two connected Ginzburg-Landau equations, ψp and ψa—complex-
valued functions, y and z—independent variables. The role of time in Ginzburg-Landau equa-
tion in this case is played with spatial coordinate z. The equation for ψp corresponds to a wave
on border of metal and passive dielectric, and for ψa—on border of metal and active nonlinear
dielectric. Parameters l g, κ—accordingly dimensionless factors of losses, strengthening and
connection between two borders. In Ref. [17] the following fixed values of parameters were
considered: l = 0.0026, κ = 0.0028, Δβ = 0, β = 1.43, fΥ = f(Υ' + iΥ'') = 3.5 � 10�3(1 + 0.1i). We shall
research dynamics of system (17) at various values of parameter g, and as boundary conditions
on spatial variable y we shall consider periodic boundary conditions. In analysis of dynamics
of the system (17) we use the real functions: u1, v1, u2, v2 instead of complex-valued functions
ψp and ψa where ψp =u1 + iv1, ψa =u2 + iv2. And vector of independent variables is denoted

x!¼ u1; v1; u2; v2ð ÞT .
In the considered initial boundary-value problem it is possible to allocate a subclass of spa-
tially homogeneous solutions, not dependent on a variable y. They can be found, solving the
system of ordinary differential equations received from (17) by rejection of members,

containing derivatives on y. The received system of ODE in coordinates x! is

dx!

dz
¼

�l Δβ 0 �κ

�Δβ �l κ 0
0 �κ � l� gð Þ �Δβ

κ 0 Δβ g� l

0
BBB@

1
CCCA� x! þ u22 þ v22

� �
f

0
0

Υ
00 � u2 þ Υ

0 � v2
Υ

00 � v2 � Υ
0 � u2

0
BBB@

1
CCCA (18)

Critical value of parameter is g = 0.0052. At smaller parameter values the zero solution is stable.
At great values the solution loses stability, and the signs on the real parts are changed at once
with four roots of the characteristic equation. Approximately at parameter value g = 0.00357 a
pair of periodic solutions appears in system (18) as a result of the saddle-node bifurcation At
parameter value g = 0.0052, when zero singular point loses its stability, the unstable periodic
solution disappears as a result of subcritical Andronov-Hopf bifurcation. Thus, at g > 0.0052
there is a stable limit cycle in the system. Let us consider the scenario of complication of
dynamics of solutions in system (17) at value L = 10, where L is the size of physical area on a
variable y. Phase portraits of system we build in a point y =L/3: u1(L/3, z), v1(L/3, z), u2(L/3, z),
v2(L/3, z) . In case of periodic boundary conditions, the first stages of complication go according
to the Landau-Hopf scenario, that is, occurrence of periodic and quasiperiodic solutions of the
increasing phase dimension have been found out. At parameter values g < 0.0095 the homoge-
neous cycle described above saves the stability, and at a parameter value g = 0.0096 he becomes
non-homogeneous. The further complication of dynamics of system occurs at parameter value
g ≈ 0.0105. At this value a quasiperiodic solution—torus of dimension two is born in the system
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as a result Andronov-Hopf bifurcation. A kind of this solution in phase space and its section by
a plane u1 = 0 are represented in Figure 6. It is visible, that the section represents the closed
curve.

Following bifurcation in the system (17) occurs in a range of parameter values g from 0.01385
till 0.01390. As a result of one more Andronov-Hopf bifurcation more complex quasiperiodic
solution is formed in the system—it is torus of dimension three. A phase portrait of this torus
at g = 0.0139 and its Poincare sections are represented in Figure 7. The first section u1 = 0
represents two-dimensional torus which in turn in section u2 = 0 gives two closed curves.

For the problem with Neumann’s homogeneous boundary conditions also it was possible to
observe a non-homogeneous stable cycle at g = 0.0060. At g = 0.0095 stable two-dimensional torus
is born from this cycle, and at g ≈ 0.013 stable three-dimensional torus is born from it as a result of
the second Andronov-Hopf bifurcation. Thus, it is proved, that in complex nonlinear systems of
partial differential equations stable three-dimensional tori can exist, that contradicts to the
Ruelle-Takens theorem. The natural is not the decay of three-dimensional torus with forming
uncertain mythical strange attractor, but further complication of dynamics of solutions as a result
of following Andronov-Hopf bifurcation with forming four-dimensional torus, or as a result of
period-doubling bifurcation of three-dimensional torus along one of its frequencies or along all
frequencies simultaneously (that takes place in systems of Navier-Stokes equations).

Figure 7. Phase portrait of system (17), its first section by the plane u1 = 0 and second section by the plane u2 = 0, g = 0.0139.

Figure 6. Phase portrait of system (17) and its section by the plane u1 = 0, g = 0.0105.
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4.3. Laminar-turbulent transition in Navier-Stokes equations

The problem of turbulence consists in explaining the nature of the disordered chaotic motion
of a nonlinear continuous medium and in finding ways and methods of its adequate mathe-
matical description. Originating more than a 100 years ago, the problem of turbulence is still
one of the most complicated and most interesting problems in mathematical physics. It is in the
list of seven mathematical millennium problems, named so by the Clay Institute of Mathemat-
ics [18]. In addition, the turbulence problem is formulated in the list of S.Smale's 18 most
important mathematical problems of the twenty-first century [19]. The most important and
interesting in the problem of turbulence is to elucidate the causes and mechanisms of chaos
generation in a nonlinear continuous medium when passing from the laminar to the turbulent
state. Currently, there are several mathematical models that claim to explain the mechanisms
of generation of chaos and turbulence in nonlinear continuous media. The most famous among
these models are: the Landau-Hopf model explaining turbulence by motion along an infinite-
dimensional torus generated by an infinite cascade of Andronov-Hopf bifurcations; and the
Ruelle-Takens model, which explains turbulence by moving along a strange attractor gener-
ated by the destruction of a three-dimensional torus. In recent years, the author and his pupils
have proved (see [8, 9, 20–22]) that the universal bifurcation FShM mechanism for the transi-
tion to space-time chaos in nonlinear systems of partial differential equations through
subharmonic cascades of bifurcations of stable cycles or two-dimensional and multi-
dimensional tori also takes place in problems of laminar-turbulent transitions for Navier-
Stokes equations
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where R is the bifurcation parameter (Reynolds number). The existence of stable two-
dimensional tori of doubled period and stable three-dimensional tori and their further bifurca-
tions is established for the problem of fluid flow from the ledge [20]. The existence of
subharmonic cascades of bifurcations of stable cycles and two-dimensional tori is established
for Rayleigh-Benard convection in Ref. [21]. A numerically complete subharmonic cascade of
bifurcations of stable two-dimensional tori is found up to a torus of period three in the famous
Kolmogorov problem in two-dimensional and three-dimensional spatial cases [22]. The fea-
tures of compressible flow and instabilities triggered by Kelvin-Helmholtz (KH) and Rayleigh-
Taylor (RT) mechanisms are considered in Ref [9]. The Kelvin-Helmholtz instability is the
instability of the shear layer, which is a tangential discontinuity for the inviscid liquid and
which arises when there is a velocity difference at the interface of two liquids or when there is a
velocity shift in one of the liquids. Rayleigh-Taylor instability is the instability of the boundary
between two liquids, where a lighter liquid supports a heavier fluid in a gravitational or
external potential field, the gradient vector of which is directed from the heavier liquid to the
lighter one. Light fluid can also push heavier one. Those two instabilities are often considered
together. Indeed, RT instability causes movement of adjusted fluids in different directions with
the appearance of the shear layer that is subject to KH instability.
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In this chapter, we consider shortly the bifurcation scenario in coupled Kelvin-Helmholtz and
Rayleigh-Taylor problem. This problem is solved in detail in Ref. [9]. We begin our consider-
ation from the value of R = 1 for which the system has a stationary solution corresponding to a
stable singular point in the phase space of solutions. Approximately for R = 10.5 the first
bifurcation of the stationary solution occurs with the formation from the singular point of the
stable limit cycle in the phase space of solutions. The next attractor that can be able to detect is
the limited torus. Close resemblance to the cycle may indicate that this attractor was formed
from the cycle as the result of Andronov-Hopf bifurcation. This indicates the existence of two
irrational frequencies in the system. Further increase of the Reynolds number up to R = 516
resulted in the other Andronov-Hopf bifurcation with the formation of the three-dimensional
invariant torus. This torus becomes singular (by period-doubling bifurcations along one of the
frequencies). However this cascade of period-doubling bifurcations is reversed to the original
3D torus. The next bifurcation that could be traced at R = 520.5 is second Andronov-Hopf
bifurcation leading to the formation of the four-dimensional invariant torus (Figure 8) . Further
increase of the Reynolds number leads to the chaotic solution that corresponds to the dense
field of points in phase subspace projections up to R = 2100. With the further increase of R,
formation of inverse bifurcation cascades is observed. Thus, it seems reasonable, that there is
no unified laminar-turbulent transition scenario in problems described by Navier-Stokes equa-
tions, it can be a cascade of stable limit cycles or cascade of stable two-dimensional or many
dimensional tori, but all these scenarios lay in the frameworks of the FShM theory. However,
the existence of computationally stable 4D invariant torus is a remarkable fact. It took 2.6 � 109
time samples to analyze and about 3.5 month to calculate this torus and its Poincare sections.

5. Conclusion

We make some general remarks on the chaotic dynamics of nonlinear systems of differential
equations, since the very publication of papers [10, 11] and many similar papers, even in
prestigious refereed journals, attests to a complete lack of understanding of the mechanism of
transition to chaos in nonlinear systems of differential equations. In this chapter, on numerous
examples, it is convincingly demonstrated that there exists one universal FShM bifurcation
scenario of transition to chaos in all systems of nonlinear differential equations without excep-
tion: autonomous and nonautonomous, dissipative and conservative, ordinary, with partial
derivatives and with delayed argument. All irregular attractors that arise during the imple-
mentation of this scenario are exclusively singular attractors. Each nonlinear system can have

Figure 8. Projection of the invariant four-dimensional torus into three-dimensional phase subspace and sequential first,
second and third sections in the phase space for R = 520.5 (left to right). Only parts of sections are shown.
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infinitely many different structurally unstable singular attractors for different values of the
bifurcation parameter, which can enter implicitly into the equations of the system. Thus,
neither the presence or absence of stable or unstable singular points in the system, nor the
presence or absence of saddle-nodes or saddle-focuses, as well as homoclinic or heteroclinic
separatrix contours, is not a criterion for the appearance of chaotic dynamics in the system.
Also, neither the positivity of the senior Lyapunov exponent, nor the proof of existence of
Smale’s horseshoe, nor the KAM (Kolmogorov-Arnold-Moser) theory, nor the theory of RT
(Ruelle-Takens), are such criteria either. The positivity of the Lyapunov exponent is purely a
consequence of computational errors, because due to the presence of an everywhere dense set
of nonperiodic trajectories, numerical motion is possible only over the whole region occupied
by the trajectory of the singular attractor, and not along its trajectory itself. In addition, the
Lyapunov exponent will also be positive when moving along a stable periodic trajectory of a
large period in the vicinity of some singular attractor. The presence of Smale’s horseshoe in the
system testifies to the complex dynamics of the solutions, however, even in the neighborhood
of the separatrix loop of saddle-focus, where by Shilnikov’s theorem there exists an infinite
number of Smale’s horseshoes, the dynamics of solutions are determined not by horseshoes,
but by a much more complex infinite set of unstable periodic solutions generated at all stages
of all three cascades of bifurcations of the FShM scenario, whose homoclinic cascade of cycles
ends in the limit precisely with the separatrix loop of saddle-focus. The only method that
allows establishing reliably the presence of chaotic dynamics in the system is the numerical
finding of stable cycles or tori of the FSM-cascades of bifurcations.
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Abstract

The structural characterization of deterministic mass fractals at nano- and microscales is
presented in this chapter using two complementary techniques in both reciprocal and real
spaces. In the former case, fractal and geometrical features are obtained from the small-
angle scattering (SAS) (neutrons, X-rays, light) spectrum in the reciprocal space. The
lacunarity technique is considered to extract structural properties and differentiate textures
of fractals in real space. We present and discuss various types of mass fractals, such as thin
and fat fractals, as well as fractals generated with the Chaos game representation (CGR).
We show how the main structural properties of the fractals, such as the fractal dimension,
the iteration number, the scaling factor, the overall size of the fractal, and the size of the
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1. Introduction

Historically, the mathematical characterization of geometrical properties of objects has its roots
in describing regular forms, such as circles, rectangles, spheres, or cuboids. However, most of
the natural formations across the scales present fairly complex structures. The fractal geometry,
in its turn, describes complex systems that completely or partially preserve their structure
under a scale transformation. This property is often called self-similarity and is exhibited in
many systems from macro to micro scales [1]. The development of fractal theory to describe
natural systems was due to B. Mandelbrot, who was the first to introduce the term fractal from
Latin “fractus”meaning “broken” [2]. However, naturally occurring fractals does not preserve
self-similarity on all scales. For example, nano- and microfractals, at the bottom, are limited
by the size of atoms and molecules and, at the top, by the size of the cluster/aggregate, etc.
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Thus, fractals can be divided into two main classes: showing self-similarity at all scales (also
known simply as fractals), and respectively showing self-similarity only on a finite range of
scales. The latter ones are also known as pre-fractals but we refer to them as fractals to keep
track with the common terminology in literature.

It is considered that one of the main properties that characterize the fractals is the fractal
dimension [2, 3]. The fractal dimension D of any object can be defined by the minimal number
N(r) of the spheres of the radius r that are needed to cover the object, with the condition, that
the spheres can penetrate each other and all points within the object are covered at least by one
of the spheres. If the object is a fractal, then N(r) has to satisfy the relation

N rð Þ ¼ N0r�D, (1)

where N0 is the constant. Applying that definition to the straight line or smooth surface shows
that D = 1 for the line and D = 2 for the surface, because the number of spheres needed to cover
a line is proportional to r�1 and to cover the surface, the number is proportional to r�2.
However, in the case of the fractals, D can take a noninteger value.

Several algorithms have been developed to generate various types of fractals, and roughly they
can be divided into two types. Depending on the exact or statistical process involved in the
construction algorithms, the obtained fractals may be deterministic (exact self-similar) or
stochastic/random (statistically self-similar). Stochastically generated fractals have been
proved as effective models for describing disordered systems, such as biological molecules,
percolation clusters, diffusion-limited aggregates, etc. [4]. However, rapid progress in the field
of materials science [5] allows creating exact deterministic fractal structures [6–9]. Since the
influence of the fractal structure on the physical properties of the system is of significant
research interest [11], investigations concerning structural properties of deterministic fractals
have been recently suggested [14, 30, 31].

One of the most effective and representative methods for analyzing the structure of both mass
[13] and surface [23] fractals, that provides information about the geometric and fractal prop-
erties of the sample in the reciprocal space is the small-angle scattering (SAS) (neutron, X-ray,
light) [10, 11]. The main feature of the scattering from the mass fractals is the power-law
behavior of exponent of the scattering intensity I(q) and which gives the fractal dimension of
the sample [12, 13]

I qð Þ � qDm , (2)

where q is the momentum transfer and Dm is the mass fractal dimension of the sample. For
surface fractals, the scattering exponent is 6�Ds, where Ds is the surface fractal dimension
with 2 <Ds < 3. Thus, in practice, if the absolute value of the measured scattering exponent is
smaller than 3, the sample is a mass fractal with fractal dimension Dm, and if the exponent is
between 3 and 4, the sample is a surface fractal with fractal dimension 6�Ds.

Although most of the modern fractal research techniques are aimed to analyze fractals
according to their fractal dimensions [15, 16], such analysis does not directly provide complete
information about the spatial arrangement of the mass inside the fractal. The ambiguity may
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arise from the fact that the particular value of the fractal dimension does not correspond to the
unique fractal structure [2]. To deal with this issue, B. Mandelbrot introduced the notion of
lacunarity (from Latin “lacuna” meaning “gap”) that shows the inhomogeneity of the fractal
structure by describing the spatial distribution of mass inside the fractal. This complementary
method can be used to analyze real images obtained from SEM, MRI, CT, and other techniques
[17, 18].

In this chapter, we present and discuss small-angle scattering and the lacunarity techniques for
structural analysis of deterministic mass fractals. Discussion of structural properties of surface
fractals [31] involves a separate analysis, which is beyond the scope of this chapter. These
techniques are implemented to the deterministic mass fractals generated using iterated func-
tion systems (IFS) [19]. We also present the structural characterization of various types of mass
fractals, such as fat fractals [20] and Chaos game representation (CGR) fractals [21]. We show
how to extract from both methods the structural properties, such as the fractal dimension, the
iteration number, the scaling factor, the sizes of units of the particular iteration, the sizes of the
basic units, and the number of units composing the fractal.

2. Theoretical background

Structural characterization of the nano- and microscale systems is a rapidly developing field
that has influenced many fundamental and applied research areas. The structure of nano- and
microscale fractals are mainly obtained by using real space images or by scattering techniques
operating in reciprocal space. In the following sections, we discuss the theoretical basics of
both approaches.

2.1. Small-angle scattering

In a small-angle scattering experiment, beams of neutrons, X-rays, or light are generally used.
A typical SAS experimental set-up is presented in Figure 1 and consists of a source of mono-
chromatic beam of particles with incident wave vector ki that irradiates the sample. The
particles with the wave vector kf are scattered at the angle 2θ and are registered by the
detector. The quantity measured is the differential cross-section per unit volume (for 3D
samples) as a function of the momentum transfer or scattering vector q =ki� kf [11].

Let us suppose that the sample consists of identical units with the scattering length bj. If rj is the
position vector of the fractal units, then the corresponding scattering length density (SLD) is

Figure 1. Schematic representation of the experimental small-angle scattering set-up.
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ρs(r) =∑j  bjδ(r� rj), where δ is Dirac’s delta function. If the particles have uniform SLD ρf and
are placed in a matrix of SLD ρ0, then the contrast will be given as Δρ =ρ� ρ0. The total
scattering intensity in the case of two-dimensional fractal will be given by [11, 22]

I qð Þ � 1
A0

dσ
dΩ

¼ n Δρ
�� ��2A2 F qð Þj j2

D E
, (3)

where n is the concentration of fractal, A and A
0
are the surface area of each fractal, and

respectively of the irradiated area, F(q)� (1/A)
Ð
A  exp(�iq � r)dr is the normalized form factor,

with F(0) = 1, F qð Þj j2 ¼ 1=4πð Þ Ð π0 dθ sinθ
Ð 2π
0 dϕ F q;θ;ϕ

� ��� ��2 is the averaging that takes into
account the rotation of the fractals in a three-dimensional space, with equal probability.

Since for the construction of our models, we will use the IFS algorithm, defined in the next
section, we shall compute the intensity spectrum starting from Debye formula [24]

I qð Þ ¼ NIs qð Þ þ 2Fs qð Þ2
XN�1

i¼1


XN

j¼iþ1

 sin qrij
qrij

, (4)

where Is(q) and Fs(q) are the scattered intensity and the form factor of each fractal unit, and rij is
the distance between units i and j. However, the time consumption of the term sin(qrij)/(qrij) is
increasing proportional to number of units, and even for modern computers the calculation of
the scattering from few thousands of particles may take several hours. The problem can be
resolved by introducing a pair-distance histogram g(r) with a bin-width commensurate with
the experimental resolution [25] and thus Eq. (4) can be rewritten as

I qð Þ ¼ NIs qð Þ þ 2F2s qð Þ
XNbins

i¼1

g rið Þ sin qri
qri

, (5)

where g(ri) is the pair-distance histogram. We can consider Is qð Þ ¼ F2s qð Þ ¼ 1 and then using
normalization I0(q) = I(q)/N, we obtain the following expression for the scattering intensity

I0 qð Þ ¼ S qð Þ ¼ 1þ 2
N

XNbins

i¼1

g rið Þ sin qri
qri

, (6)

where S(q) is called the structure factor, and it carries information about the structural proper-
ties of the samples. By using the last expression, we can easily implement it as a computational
algorithm and to perform calculations few orders of magnitude faster.

2.2. Lacunarity

Lacunarity, as opposed to SAS, analyzes the objects in the real space. Nowadays, the technique
is widely used in image analysis [26, 27]. The concept was introduced by Mandelbrot [2] in the
context of characterizing the texture of the fractals. In this chapter, we present results obtained
using probabilistic algorithm for estimating lacunarity based on differential box counting (DBC)
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due to its speed and simplicity in computational implementation. The algorithm was intro-
duced by Voss in [28] and defines lacunarity as the entropy of the discreet pixels on the digital
image of the fractal.

The algorithm begins by the consecutive covering of an image with the grid of nonoverlapping
square boxes of the size r, as shown in Figure 2. The total number of boxes in the grid that
cover the image is denoted as N. Then, the number of occupied boxes withM number of pixels
(mass) inside, is determined as n(M, r). The probability function that a box of size r contains M
number of pixels is then defined by

P M; rð Þ ¼ n M; rð Þ
N

: (7)

Statistical moments of P(M, r) are defined as

Z qð Þ rð Þ ¼
XN
M¼1

MqP M; rð Þ, (8)

so Z(1)(r) and Z(2)(r) represent the mean of the occupied pixels and respectively, the variance.
Thus, the lacunarity can be interpreted as the fluctuations of mass distribution over its mean

Λ rð Þ ¼
Z 2ð Þ rð Þ � Z 1ð Þ rð Þ

� �2

Z 1ð Þ rð Þ
� �2 : (9)

As it seen from the equation, Λ is increasing when the mean Z(1) tends to 0, meaning that more
clustered and inhomogeneous sets will have higher lacunarity. The lacunarity of the determin-
istic fractals shows periodicity in the spectrum [1]. As it will be shown in the next section, some
structural properties of deterministic mass fractals can be extracted from such behavior.

Although, there are few definitions of lacunarity and several algorithms for its computation
exist, we will use here an intuitive and elegant probabilistic approach, which is easily
performed computationally ([28]). In spite of this simplicity, it has slight disadvantages in
comparison with the gliding-box (GB) algorithm, which provides more precise and hence
more time-consuming evaluations [29]. The GB algorithm calculates the lacunarity by placing

Figure 2. The process of covering the image with a grid of nonoverlaping boxes.
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the square box of the size r in the corner of the image of the size L, and then glides the box pixel
by pixel along horizontal and vertical directions, note that the box should not slide beyond the
image. The number of boxes generated by GB algorithm in this case is nGB(r) = (L� r + 1)2. The
DBC algorithm covers the image by a grid of boxes, and the number of such boxes is nDBC(r) =
(L/r)2. When L and r are of the same order of magnitude, the difference in number of boxes for
both algorithms is negligible, but when L is at least one order larger than r, the number of
boxes will differ in two orders. Both algorithms calculate the number of pixels within the box,
thus the computational time directly depends on the number of boxes.

3. Structural properties of mass fractals

In this section, we present the mathematical description of a very well-known fractal generat-
ing algorithm and discuss various types of fractals constructed using deterministic and ran-
dom approaches.

3.1. Iterated function systems

There is no universal method to construct a fractal, but one of the most common algorithms to
generate a large class of fractals is iterated function systems (IFS) [19]. The IFS image is defined
as being the union of geometric transforms of itself. Rigorously, an IFS is a complete metric
space (X, d) with a finite set of contraction mappings wn :X!X, and respective contractive
factors sn, n = 1, 2,⋯,N.

By considering an IFS with contractive factor s, and (H Xð Þ, h(d)) as the space of nonempty com-
pact subsets with the Hausdorff metric h(d), the transformationW :H Xð Þ!H Xð Þ are defined as

W Bð Þ ¼ ∪Nn¼1wn Bð Þ, ∀B∈H Xð Þ: (10)

The unique fixed point A ¼ ∪Nn¼1wn Að Þ, A∈H Xð Þ is given by A ¼ limm!∞W ∘m Bð Þ for anyB∈
H Xð Þ, and the set A is called the attractor of the IFS [19].

The deterministic algorithm, which allows to find the attractor of an IFS, begins by choosing a
compact set A0⊂R2, and then recursively Am according to

Am ¼ ∪Nn¼1wn Am�1ð Þ, form ¼ 1, 2,⋯: (11)

This process generates the sequence {Am :m = 0, 1,⋯}⊂H Xð Þ that converges to the attractor of
the IFS.

The random iteration algorithm begins by assigning the probability pn > 0 to wn for n ¼
1, 2,⋯, N,where

PN
n¼1 pn ¼ 1:Then choosing a point x0 ∈X and then recursively,

xk ∈ w1 xk�1ð Þ;w2 xk�1ð Þ⋯;wN xk�1ð Þf g, (12)

where the probability of the event xk =wn(xk� 1) is pn, and k = 1, 2,⋯. This process generates the
sequence {xk : k = 0, 1,⋯}⊂X that converges to the attractor of the IFS.
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For a two-dimensional fractal, an IFS can be represented in the matrix form as

wi
x
y

� �
¼ ai bi

ci di

� �
x
y

� �
þ ei

fi

� �
(13)

where ai, bi, ci, di, and ei, fi with i = 1, 2,…, n are the transformation and translation coefficients
of the contraction mapping.

3.2. Deterministically generated fractals

Let us consider a model that at the iteration number m = 0 starts with the disk inscribed in the
square of the side length a0, situated at the origin (initiator). Then, in order to obtain the fractal
structure, we establish the rule of evolution (generator) [30, 31], shown in Figure 3. The rule is
the following: scale the initial disk by the factor of βs = 1/3 and make four copies of it, so the
length size of the squares in which the disks at m = 1 are inscribed as a1 = a0βs. Then, translate
the obtained circles so that they are situated in the vertices of a square. To generate the
structure of the fractal repeat the same rule for each new circle.

The size of the units at m� th iteration is am ¼ βms a0 and the number of the units is Nm ¼ 4m.
The fractal that we obtain is a Cantor fractal.The corresponding IFS coefficients of the contrac-
tion mappings that generate this fractal are presented in Table 1.

The fractal dimension of Cantor-like fractal is determined by [2]

D ¼ lim
m!∞

logNm

log a=amð Þ ≈ 1:26, (14)

whereNm and am are the number of units and their side length atm-th iteration. As it can be seen,
the value of the fractal dimension depends on how many copies are created at each iteration, (in
the terms of IFS, the number of the contractionmappings) and on the scaling factor. However, the
fractal dimension is completely independent on the translations of the copies, and its value can be
the same for different textures, as for the models shown in Figure 4 for which the translation
coefficients of one of the contraction mappings have different values, presented in Table 2. Note
that the transformation coefficients of the fractals presented in Figure 5 are not modified.

In order to differentiate textures of the above mass-fractal models, we consider them as the
square digital images with the side length L = 300 pixels. We calculate the lacunarity spectra
according to Eq. (9). The results are shown in the left part of Figure 6. At first, one can find that
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PN
n¼1 pn ¼ 1:Then choosing a point x0 ∈X and then recursively,

xk ∈ w1 xk�1ð Þ;w2 xk�1ð Þ⋯;wN xk�1ð Þf g, (12)

where the probability of the event xk =wn(xk� 1) is pn, and k = 1, 2,⋯. This process generates the
sequence {xk : k = 0, 1,⋯}⊂X that converges to the attractor of the IFS.
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For a two-dimensional fractal, an IFS can be represented in the matrix form as

wi
x
y

� �
¼ ai bi

ci di

� �
x
y

� �
þ ei

fi

� �
(13)
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of the contraction mapping.
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D ¼ lim
m!∞

logNm

log a=amð Þ ≈ 1:26, (14)

whereNm and am are the number of units and their side length atm-th iteration. As it can be seen,
the value of the fractal dimension depends on how many copies are created at each iteration, (in
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fractal dimension is completely independent on the translations of the copies, and its value can be
the same for different textures, as for the models shown in Figure 4 for which the translation
coefficients of one of the contraction mappings have different values, presented in Table 2. Note
that the transformation coefficients of the fractals presented in Figure 5 are not modified.

In order to differentiate textures of the above mass-fractal models, we consider them as the
square digital images with the side length L = 300 pixels. We calculate the lacunarity spectra
according to Eq. (9). The results are shown in the left part of Figure 6. At first, one can find that
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the fractal-d has the highest value of the lacunarity along all ranges, which is due to the most
inhomogeneous and clustered distribution of the mass among all four models. On the contrary,
the texture of the fractal-a has uniformly distributed mass and thus, the lowest lacunarity.

In addition to differentiating the texture, the lacunarity analysis also may reveal some geomet-
rical and fractal properties. For example, when one covers the fractal by the boxes of the exact
size as the size of its elements at the particular iteration m, the number of empty boxes takes
maximum value. This leads to the highest variation in the mass distribution over the mean and
the lacunarity at this scale will increase. The number of such maxima (denoted by vertical lines
in Figure 6, left part) shows the iteration number of the fractal. The positions of these maxima
reveal the size of the units at particular iteration, and from the periodicity of such maxima, one
can obtain the scaling factor.

w a b c d e f

1 1/3 0 0 1/3 1/3 1/3

2 1/3 0 0 1/3 �1/3 1/3

3 1/3 0 0 1/3 1/3 �1/3

4 1/3 0 0 1/3 �1/3 �1/3

Table 1. IFS parameters of the Cantor-like fractal construction

Figure 4. The rule of the deterministic mass-fractal construction.

e f

Fractal-a 1/3 1/3

Fractal-b �1/3 0

Fractal-c 0 0

Fractal-d �1/3 0

Table 2. Translation coefficients of one of the contraction mappings of the Cantor-like fractals construction
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The SAS data, on the other hand, gives information about structure in the reciprocal space. The
typical SAS spectrum consists of the region with a constant intensity at small values of qwhich
is called Guinier region. The rightmost part of the region shows the overall size of the fractal as
q = 2π/a, where a is the side length of the fractal. A main feature of the SAS from fractals is that

Figure 5. Construction of the deterministic Cantor-like mass fractals up to third iteration m= 3.

Figure 6. Left part: lacunarity spectra for the iteration number m= 3 of the deterministic mass-fractal models; right part:
Scattering intensities for the iteration number m= 3 of the deterministic mass-fractal models. The values of the scattering
intensities for the fractals -b, -c and -d are scaled up for clarity by the factor 2, 4, and 8, respectively .
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the slope in the region that immediately follows the Guinier regime, so-called fractal region,
gives the fractal dimension of the fractal, as discussed in the Introduction section. The number
of the most pronounced minima in this region (denoted by vertical lines in Figure 6, right part)
indicates the iteration number and the last minimum indicates the size of basic units as
q ¼ 2π=βms a. The scaling factor of the fractal can be obtained from the periodicity of the minima
[14]. Additionally, the asymptotic behavior of SAS spectrum at high values of q provides the
information about number of basic units Nm at particular iteration [14].

A more general way to construct fractals may be thought in a framework of fat fractals, when
the scaling factor is not constant but it depends on the iteration number [20, 32]. Here, we
present a simple model of the fat fractal, represented by a two-dimensional deterministic
Cantor-like mass fractal, as shown in Figure 7. In the presented model, the first two iterations
m = 0 and m = 1 of construction of the Cantor-like fat fractal coincide with the structure of
ordinary (thin) Cantor-like fractal, which obeys the rule from the Figure 4. To obtain the fat

fractal, a modification of the algorithm used at iteration m = 1 with the scaling factor β 1ð Þ
s must

be done, by choosing another scaling factor β 2ð Þ
s at m = 2. The superscript index (…) denotes to

which iteration number the scaling factor belongs. In the suggested model shown in Figure 7,

β 1ð Þ
s ¼ 1=3 and β 2ð Þ

s ¼ 2=5. It is clear from the construction that the regular version of the fractal

is recovered when the scaling factors, at each iteration, are chosen to be equal β 1ð Þ
s ¼ β 2ð Þ

s . The
fat fractal does not have a unique value of the fractal dimension at every scale, since the scaling
factor is not constant. The comparison of the SAS and the lacunarity spectra between thin and
fat fractal models is demonstrated in Figure 8.

Here, we consider the square image from Figure 7with the side length L = 360 pixels and the size
of the fractal on the image coincides with the size of the image a0 = L. The rightmost maxima on

the lacunarity spectrum from Figure 8 left part, show the sizes of units a1 ¼ β 1ð Þ
s a0 at m = 1, that

coincide for both fat and thin fractals. The difference begins to be observed on the scale of the

size of the fat fractal units (black disks) afat2 ¼ β 2ð Þ
s a1; the left highest maximum shows the sizes of

the units of thin fractal a2 ¼ β 1ð Þ
s a1 at m = 2. As expected, the lacunarity of fat fractal, which

occupies more space than thin has lower values in the range r ≤ afat2 . In the lacunarity obtained
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Figure 7. Construction of the Cantor-like fat fractal.
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using DBC, wemay not observe the maximumwhich corresponds to the size of fat fractal units

afat2 ¼ β 2ð Þ
s afat1 at iteration m = 2. However, such problem may be addressed using the gliding-box

approach [29].

In the SAS spectrum, the difference between fat and thin fractals may be determined in the
fractal region, from the different position of the minima, which correspond to the most com-
mon distance between units of the fractal. In the case of the fat fractal the most common
distance is shorter than in the case of thin one, thus in the reciprocal space we observe a
minimum corresponding to fat fractal, which is shifted to higher value of q. The behavior of
scattering curves of both fat and thin fractals is similar at Guinier and asymptotic regions due
to the same overall size and equals the number of units.

3.3. Stochastically generated fractals

One of the most known stochastic algorithms for the construction of the fractals is the Chaos
game representation (CGR) [19], which is based on the random IFS. The CGR approach allows
one to visually reconstruct a great number of the different types of fractals, from well-known
deterministic fractals to various classes of disordered systems. Technically, CGR is an iterative
map that generates the position of units, which cover the attractor of IFS, the image of the
fractal. CGR algorithm is very convenient for structural investigations using SAS, because it
generates directly the coordinates of the scatters, which can be used in the optimized Debye
formula [25].

Here we are interested, how the set of the points generated using the CGR approach will
recover the structure of the deterministic fractal. In order to quantitatively analyze the similar-
ities and the differences in the structure of the fractals obtained by both algorithms, we
calculate corresponding SAS and lacunarity spectra. In Figure 9 are presented the determinis-
tic and the CGR Cantor fractals. The well-known Cantor fractal is constructed by dividing
the square of the side length a0 into nine smaller squares with side a1 = βsa0, and removing

Figure 8. Left part: lacunarity spectra of thin and fat Cantor-like fractals at iteration number m= 2; right part: structure
factor of thin and fat Cantor-like fractals at iteration number m= 2.

Structural Analysis of Deterministic Mass Fractals Using Small-Angle Scattering and Lacunarity Techniques
http://dx.doi.org/10.5772/intechopen.70885

227



the slope in the region that immediately follows the Guinier regime, so-called fractal region,
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using DBC, wemay not observe the maximumwhich corresponds to the size of fat fractal units

afat2 ¼ β 2ð Þ
s afat1 at iteration m = 2. However, such problem may be addressed using the gliding-box

approach [29].

In the SAS spectrum, the difference between fat and thin fractals may be determined in the
fractal region, from the different position of the minima, which correspond to the most com-
mon distance between units of the fractal. In the case of the fat fractal the most common
distance is shorter than in the case of thin one, thus in the reciprocal space we observe a
minimum corresponding to fat fractal, which is shifted to higher value of q. The behavior of
scattering curves of both fat and thin fractals is similar at Guinier and asymptotic regions due
to the same overall size and equals the number of units.

3.3. Stochastically generated fractals

One of the most known stochastic algorithms for the construction of the fractals is the Chaos
game representation (CGR) [19], which is based on the random IFS. The CGR approach allows
one to visually reconstruct a great number of the different types of fractals, from well-known
deterministic fractals to various classes of disordered systems. Technically, CGR is an iterative
map that generates the position of units, which cover the attractor of IFS, the image of the
fractal. CGR algorithm is very convenient for structural investigations using SAS, because it
generates directly the coordinates of the scatters, which can be used in the optimized Debye
formula [25].

Here we are interested, how the set of the points generated using the CGR approach will
recover the structure of the deterministic fractal. In order to quantitatively analyze the similar-
ities and the differences in the structure of the fractals obtained by both algorithms, we
calculate corresponding SAS and lacunarity spectra. In Figure 9 are presented the determinis-
tic and the CGR Cantor fractals. The well-known Cantor fractal is constructed by dividing
the square of the side length a0 into nine smaller squares with side a1 = βsa0, and removing

Figure 8. Left part: lacunarity spectra of thin and fat Cantor-like fractals at iteration number m= 2; right part: structure
factor of thin and fat Cantor-like fractals at iteration number m= 2.
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consecutive five noncorner squares. The CGR Cantor fractal is generated using random IFS,
with equal probability of choosing one of the contraction mappings presented in Table 1.

It is seen from Figure 9 that the CGR Cantor fractal approaches the structure of the determin-
istic Cantor fractal with increasing the number of generated points (scattering units) k. To
determine the number of generated points in the CGR algorithm needed to obtain the approx-
imation of the deterministic Cantor fractal, we compare the particular iteration, the structure
factor, and the lacunarity of the deterministic fractal, and the structure generated from CGR,
respectively. Numerically, we calculate the small-angle scattering and the lacunarity spectra for
the CGR algorithm at k = 1000 and the deterministic Cantor fractal at m = 3. The results are
shown in Figure 10. The left part of the figure shows almost perfect agreement of the spectra of
lacunarity. The number of the maxima in the spectrum of the CGR Cantor fractal shows that
k = 1000 is enough to reconstruct the deterministic fractal at m = 3. The positions of the maxima
show the sizes of the points in CGR and the sizes of the units at m-th iteration for deterministic
fractal. Note that the size of the points of CGR algorithm is kept constant for any k. In general,
the lacunarity has dependence on the sizes of the points, the larger points leading to smaller
gaps and to lower lacunarity.

The SAS spectrum shows the approximation of the structure factors of CGR to deterministic
algorithms. The Guinier regions coincide, showing that the overall sizes of the CGR and
deterministic fractal are the same. The scattering curves almost completely overlap each other
in the intermediate region, except the last minimum. The values of the slopes of the curves,
which reveal the fractal dimension is approximately the same. The positions of the minima
also coincide for both algorithms. Moreover, the SAS data shows that generating a number of
k = 1000 points can reconstruct more than three iterations of the deterministic structure [21].

m = 0 m = 1

m = 2 m = 3

k = 30 k = 100

k = 300 k 1000

Figure 9. Right part: CGR of Cantor fractal at number of generated points k = 30,100,300, and 1000; left part; deterministic
Cantor fractal at iterations m= 0, 1, 2, and 3.
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Different behavior of the curves in the asymptotic region indicates that the number of elements
is not the same, 1/Nm for the deterministic and 1/k for the CGR algorithms.

In the last part of this section, we present a structural analysis of two well-known fractals
generated using CGR. As a first example, we consider the pentaflake fractal, which is a single scale
fractal, as shown in Figure 11. The pentaflake is generated using CGR, with the IFS parameters
presented in Table 3 for k = 4000 with the scaling factor βs = 0.38. Thus, the fractal dimension is

D ≈ � log 5= log 0:38≃ 1:67: (15)
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Figure 11. Fractal pentaflake obtained by CGR with k = 4000 points.

Figure 10. Left part: lacunarity spectra of deterministic and CGR Cantor fractal; right part: structure factor of determin-
istic and CGR Cantor fractal.
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Different behavior of the curves in the asymptotic region indicates that the number of elements
is not the same, 1/Nm for the deterministic and 1/k for the CGR algorithms.

In the last part of this section, we present a structural analysis of two well-known fractals
generated using CGR. As a first example, we consider the pentaflake fractal, which is a single scale
fractal, as shown in Figure 11. The pentaflake is generated using CGR, with the IFS parameters
presented in Table 3 for k = 4000 with the scaling factor βs = 0.38. Thus, the fractal dimension is

D ≈ � log 5= log 0:38≃ 1:67: (15)
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The corresponding structure factor of the pentaflake fractal is calculated using Eq. (6) and the
lacunarity spectrum using Eq. (9). The results are shown in Figure 12. As in the case of the CGR
Cantor fractal, all the main features of SAS from CGR pentaflake are presented in the spectrum
and the numerical value of the fractal dimension coincides with the theoretical one given by
Eq. (15). The periodicity of the positions of minima in the fractal region shows the value of
the scaling factor βs = 0.38, and this is a specific feature of scattering from fractals with a single
scale [14, 32]. As expected, the lacunarity spectrum of the image of the pentaflake fractal gives
the information about the scaling factor from the periodicity of themost pronouncedmaxima, the
iteration number, and corresponding sizes of the units.

The CGR approach is often used to represent the structural properties of the DNA sequence,
which exhibits the multi-scale fractal structure [21, 33]. As a second example, we consider that
the four bases “A”, “C”, “G”, and“T” (or“U”) of DNA sequences may be expressed by the four
contraction mappings of the random IFS, presented in the Table 4. Generating the CGR with a
few thousand points, one can obtain the graphical representation of the DNA sequence clearly
showing fractal patterns (Figure 13).

The number of genetic sequences is found with the missing subsequences, and the CGR
approach can provide the visual representation of such patterns. The CGR algorithm can

w a b c d e f

1 0.38 0 0 0.38 0 0.3

2 0.38 0 0 0.38 0.3 0.1

3 0.38 0 0 0.38 �0.3 0.1

4 0.38 0 0 0.38 �0.185 �0.25

5 0.38 0 0 0.38 0.185 �0.25

Table 3. IFS parameters of the pentaflake fractal construction

Figure 12. Left part: the lacunarity of pentaflake fractal; right part: the structure factor of pentaflake fractal.
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restrict some of the moves of chaos game [33]. Figure 13 shows the CGR in the square ACGT of
k = 4000 bases,with the eliminated sequence GC.

By considering the positions of the bases in the Figure 13 as the coordinates that are used in
Eq. (6), we can compute the corresponding SAS spectrum. The structural properties, such as
the overall size of the fractal, the fractal dimension, and the number of units are obtained from
the Guinier, the fractal, and from the asymptotic regions, respectively. Although in the scatter-
ing from the CGR fractals, we can observe a succession in the minima in the fractal region, as it
was the case for the Cantor and the pentaflake fractals, for the DNA these minima are smeared
out. Thus, for DNA fractals, the iteration and the scaling factor can hardly be recovered.

This feature may indicate the existence of the multi-fractal structure in the CGR of DNA
sequence [3]. Multi-scale fractals are characterized by the presence of different (multiple)
scaling factors for some of the fractal units and they cannot be obtained directly from the SAS
spectrum. However, as we can see from the left part of Figure 14, the lacunarity spectrum of
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Figure 13. A CGR of the DNA with k = 4000 moves in the ACGT square when the sequence GC is eliminated.

w a b c d e f

A 0.5 0 0 0.5 �0.5 �0.5

C 0.5 0 0 0.5 �0.5 0.5

G 0.5 0 0 0.5 0.5 0.5

T 0.5 0 0 0.5 0.5 �0.5

Table 4. IFS parameters of the DNA sequence
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the image of the CGR of the DNA sequence can reveal at least one of the scaling factors that
belong to the major part of units. The size of the image of the CGR of the DNA is considered to
have the length L = 320 pixels. The maxima on the lacunarity spectrum correspond to the sizes
of the gaps inside the image, and the maxima that show the periodicity in their behavior can
reveal the scaling factors of the multi-fractal. Thus, the lacunarity technique can be used as the
complementary analysis of the structural properties of multi-fractals.

4. Conclusions

In this chapter, we presented the structural characterization of deterministic mass fractals. The
small-angle scattering and the lacunarity techniques are considered as complementary
methods to analyze the structure of the nano- and microscale fractals. We present the theoret-
ical foundations of both techniques, and show how they can be implemented in the investigat-
ing morphology of the fractals. The analysis is performed using an intuitive and an efficient
implementation of Pantos and box-counting algorithms for calculating the spectra of the small-
angle scattering and, the lacunarity, respectively.

The mathematical description of the general algorithm for the construction of the fractals, the
iterated function systems (IFS) is explained. We show how to generate various types of the
fractals, such as thin and fat fractals using deterministic IFS algorithm. We explain the differ-
ence in the construction of both models. Also the stochastic (random) IFS algorithm, the Chaos
game representation (CGR) is used to reconstruct the structure of the deterministic fractal. The
comparison of the structural characteristics of the CGR fractal with the deterministic one is
presented.

For each introduced model, we calculate the scattering and the lacunarity spectrum, and we
explain how to extract the main fractal and geometrical properties such as the fractal dimen-
sion, the iteration number, the scaling factor, the overall size, the sizes of the basic units, and
the number of units in the system.

Figure 14. Left part: the lacunarity of the CGR DNA with 4000 moves; right part: the structure factor of the CGR DNA
with 4000 moves.
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Abstract

After a brief summary of the basic methods for secure transmission using optical chaos, 
we report on most recent achievements, namely, on the comparison between the stan-
dard two-laser and the three-laser schemes and on the network architecture for multiuser 
secure transmission. From our investigations, we found that while both the basic two-
laser and the three-laser schemes are suitable to secure data exchange, the three-laser 
scheme offers a better level of privacy due to its symmetrical topology. Moreover, while 
transmission based on optical chaos is usually restricted to point-to-point interconnec-
tions, a more advanced solution, derived from the well-known public key cryptography, 
allows for private message transmission between any couple of subscribers in a network.

Keywords: chaos, cryptography, steganography, laser, telecommunications, 
synchronization

1. Introduction

Chaos [1] is a widely studied regime of many nonlinear systems, which exhibit pseudorandom 
oscillations, strongly depending on starting conditions and parameter values. Several chaotic 
systems have been investigated and implemented in optics [2, 3]. For example, a semiconduc-
tor laser may be routed to chaos by injection from another source or simply by reflection or 
diffusion from an external optical element. In the last years, several chaos applications have 
been proposed in the telecommunication field. Among them, private communication using 
chaotic waveforms fully exploits the characteristic of chaos of being deterministic, exhibiting, 
however, a strong dependence on even minimal variations of the system parameters.

The basic approach to chaos secured data transmission consists in hiding or coding a message 
into the very complex noise-like waveform generated by a chaotic laser [4, 5].

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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chaotic waveforms fully exploits the characteristic of chaos of being deterministic, exhibiting, 
however, a strong dependence on even minimal variations of the system parameters.

The basic approach to chaos secured data transmission consists in hiding or coding a message 
into the very complex noise-like waveform generated by a chaotic laser [4, 5].
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In most schemes, chaos generation is based on delayed optical feedback, that is, on reflection 
of a fraction of the laser emission back into its cavity by an external mirror or even from the 
tip of the output fiber [4–7]. With this approach, we can select different chaos characteristics, 
such as amplitude and bandwidth, by acting on the mirror or fiber position. Using standard 
distributed feedback laser (DFB) telecommunication lasers, complex and robust chaotic wave-
forms can be generated, which modulate the laser on a large bandwidth, well in excess of its 
relaxation frequency.

A suitable method of chaotic transmission consists of simply superposing chaos to the mes-
sage at the transmitter (Tx), in order to strongly reduce its signal-to-noise ratio (SNR). The 
composite signal is transmitted through the fiber link, and if the message is small enough, it 
is efficiently hidden both in the time and in the frequency domain. In well-designed systems, 
it cannot be extracted, neither by filtering nor by using a correlator.

In most cases, message recovery is performed by master/slave synchronization; at the receiver 
(Rx), another laser (the slave, SL) is used, having parameters very well matched with those of 
the transmitter laser (the master, MS). The waveform from the optical link (chaos + message) 
is injected into the slave. Under proper operating conditions, the slave laser is forced to syn-
chronize to the chaos of the MS (i.e., the two devices generate almost exactly the same chaotic 
waveform), without, however, synchronizing the message. In other words, the SL behaves as 
a nonlinear “chaos-pass,” “message-stop,” filter. Thus, the message can be extracted by mak-
ing the difference between the received composite signal and the recovered chaotic waveform.

The degree of matching required between master and slave for efficient synchronization is 
significantly high. A suitable pair of devices (“twins”) must be selected in close proximity 
from the same wafer. This laser pair represents the (hardware) cryptographic key. Chaos 
cryptography is compatible, and can be superposed, to standard algorithmic cryptography.

2. Chaos-protected transmission schemes

In Figure 1, we show a typical implementation of the chaos transmission scheme, which is 
usually referred to as chaos masking (CM), since the message is added to the chaotic wave-
form, usually by an external amplitude modulator. Other schemes are possible [4, 5], which 
are broadly referred to as “chaotic cryptography” in the literature, even though in most cases, 
such as in Figure 1, the term “chaotic steganography” would better describe these methods. 
For example, in chaos shift keying (CSK), the message directly modulates the pump current of 
the transmitter laser, and in additive chaos masking (ACM), the message is applied by using 
a third laser modulated in amplitude by the analog or digital message, whose output is then 
combined with the chaotic waveform.

A large experimental and numerical work has been performed on such topic by different 
authors. Numerical analysis is usually based on the Lang-Kobayashi (L-K) model [8], which 
is generally accepted and has proven to correctly describe reflection-induced and injection 
phenomena for different applications, including feedback interferometry [9, 10].
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Other methods are suitable for chaos generation and synchronization, for example, a two-
laser injection system [11, 12]. However, delayed optical feedback is used in virtually all 
schemes of chaos generation, while direct injection of the master into the slave is preferred 
for synchronization, since they are by far much easier to implement than other solutions pro-
posed in the literature.

Improved schemes have been also proposed, which use specific methods to better reject 
eavesdropper attacks [13] or to improve SNR [14], also combining complete and generalized 
synchronization [15].

Based on this method, data transmission on a metropolitan network [7] has been performed. 
Several basic functional blocks have been already studied and experimentally demonstrated, 
such as chaotic signal repeaters [16], subsystems for wavelength multiplexing [17] and for 
wavelength conversion [18]. Moreover, integrated optics modules for chaotic transmitters and 
receivers [19, 20] have been designed. A system, specifically designed for transmission on 
free-space optics links (FSOL), has been presented [21]. Finally, methods to improve masking 
efficiency [22, 23] and the statistical properties of chaos residual after synchronization, as well 
as its impact on SNR, have been investigated [24].

Alternatives to the standard approach, still based on delayed optical feedback, have been 
also studied, and a remarkably different one, using three lasers [25, 26], is shown in Figure 2. 
Here, a common chaotic master laser (driver, DRV) injects two slave lasers (SL1, SL2), one at 
the transmitter (Tx) and the other at the receiver (Rx). If the two slaves are “twins,” and both 
synchronized to the driver, they produce the same chaos and the message can be hidden at 
the transmitter and extracted at the receiver much as in the two-laser scheme.

The most important difference between the three-laser and the two-laser secure transmission 
schemes is that in the three-laser scheme, both SLs are symmetrically injected by the third 
laser and by their external mirrors, whereas in the two-laser scheme, the master is injected 
by its own external mirror only, and the slave by its mirror and by the master. Thus, in this 
second case, the twin devices work in different injection conditions.

Figure 1. Two-laser scheme of chaos secured transmission (from Annovazzi-Lodi et al. [27]).
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3. Comparison of two- and three-laser schemes

Since both the two- and the three-laser schemes have been proposed for secure transmission, 
it is important to compare their performances [27]. To this end, the bit error rate (BER) and a 
Q-factor of the optical link have been computed, in back-to-back conditions, as a function of 
parameter mismatch between Rx and Tx lasers, with the aim of evaluating the quality of the 
message retrieved by an eavesdropper, after the performance for the authorized sender and 
recipient has been optimized. This analysis has been carried out by numerical simulations, 
since selecting many laser pairs, with different combinations of parameters, would result in a 
very hard experimental effort.

The two-laser scheme (Figure 1) and the three-laser scheme (Figure 2) have been modeled as 
detailed in Ref. [27], and the L-K equations are shown below:

    dE (t)  ____ dt   =   1 __ 2   (1 + i𝛼𝛼)  [G (t)  −   1 __  τ  p    ] E (t)  +   K __  τ  in     E (t − τ)  exp  (− i𝜔𝜔𝜔𝜔)  +    K   ′  __  τ  in      E   ′ (t−T)   exp  (− i𝜔𝜔T)   (1)

    dN (t)  _____ dt   =   
η
 ___ eV   I −   N (t)  ____  τ  s     − G (t)   |E (t) |    2   (2)

  G (t)  =   
ξ [N (t)  −  N  o  ]  _________ 1 − 𝜀𝜀𝜀𝜀   |E (t) |    2     (3)

In Eqs. (1)–(3), E(t) is the slowly varying, complex electric field of the laser, N(t) the carrier den-
sity, G(t) the linear gain, I the pump current, e the electron charge, K is the feedback parameter 
from MS and SL external mirrors. Other parameters are listed in Table 1.

The first term on the right hand side of Eq. (1) together with Eqs. (2) and (3) describes the 
solitary laser. By adding the second term of Eq. (1), we describe a laser with reflection from an 
external mirror, that is, all lasers in Figures 2 and 3. By also adding the third term in Eq. (1), 
we describe a laser subject to both reflection and injection from another source, such as the SL 

Figure 2. Three-laser scheme of chaos secured transmission (from Annovazzi-Lodi et al. [27]).
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in Figure 1 and the two SLs in Figure 2. The injecting source is described by E’(t), whereas T and 
K′ are the propagation delay time and the injection parameter between MS and SL, respectively.

In the previous equations, the electric fields are normalized in [m−3/2] as usual, and the true 
value of each electric field (in [V/m]) is given by:

Parameters Driver Twin Rx/Tx Unit

Linewidth enhancement factor α = 2.8 α = 3

Photon lifetime τp = 1.9 τp = 1.9 ps

Carrier lifetime τs = 1.9 τs = 2 ns

Gain coefficient ξ = 7.7 10−13 ξ = 8 10−13 m3 s−1

Carrier density at transparency No = 1.16 10−24 No = 1.10 10−24 m−3

Threshold current Ith = 12.4 Ith = 11 mA

Laser cavity roundtrip time τin = 8 τin = 8 ps

Solitary laser pulsation ω = 1.2177 1015 ω = 1.2177 1015 s−1

External cavity roundtrip time τ = 0.3 τ = 0.3 ns

Active region efficiency η = 1 η = 1

Active region volume V = 8.0 10−17 V = 8.0 10−17 m3

Nonlinear gain coefficient ε = 2.5 10−23 ε = 2.5 10−23 m3

Confinement factor Γ = 0.36 Γ = 0.36

Active medium refractive index n = 3 n = 3

Stimulated emission cross-section ζ = 1.0 10−20 ζ = 1.0 10−20 m2

Table 1. Parameters used for numerical simulations.

Figure 3. Message in clear (a), message hidden in chaos (b) and recovered message (c) (from Annovazzi-Lodi et al. [28]).
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where Z0 = 1/(ε0 c) is the vacuum impedance, εo is the vacuum permittivity, ℏ is the Planck’s 
constant, and c is the speed of light.

In our simulations, we used the typical parameter values [27] shown in Table 1. For simplic-
ity, we have taken no propagation delay, T = 0. Langevin noise and photodetector noise (shot 
noise and Johnson noise of a 50 Ω load resistance) have been taken into account.

We started by assuming perfectly matched pairs for both schemes (i.e., twin MS and SL in 
the two-laser scheme and twin SL1, SL2 in the three-laser scheme). After selecting a suit-
able working point, the same for the lasers of both schemes, the message amplitude has 
been determined in order to get a BER = 10−9 for a non-return to zero (NRZ) 2 Gb/s digital 
signal. This data rate has been selected for the best message protection since the chaos had 
a broad amplitude maximum at 2 GHz for our devices.

Then, the laser parameters of the L-K model, that is, linewidth enhancement factor α, photon 
lifetime τp, carrier lifetime τs, gain coefficient ξ and carrier density at transparency N0, have 
been varied by 1% steps, and BER and Q were computed again for all cases. In order to more 
closely simulate a real experiment for each parameter set, synchronization has been opti-
mized by acting on the pump current of the Rx and on its injection from the MS or DRV laser. 
This is what the authorized recipient can do to optimize the message quality. This is also what 
an eavesdropper can do to try to force the cryptosystem.

For example, in Figure 3, a simulation of a digital message transmission is shown, assuming 
a small mismatch (1%) between the parameters of the twin lasers.

In Figure 3, the first trace (a) is without both MS and SL external reflectors and represents a 
measure of the channel transmission quality, which takes into account noise and bandwidth 
limitations, for reference; the second trace (b) shows message + chaos, whereas trace (c) visu-
alizes the message extracted from chaos after synchronization. Some disturbances, mainly 
due to residual chaos, are visible on the recovered digital message; however, the message 
quality can be improved by suitable electronic processing, including filters and an amplitude 
discriminator, possibly after integration over the bit time.

From numerical simulations, it has been found that the best pair for the three-laser scheme 
is indeed the twin pair, as usually assumed in the literature, and that the BER rapidly drops 
with parameter mismatch.

This can be appreciated from Figure 4, where we plot the BER and Q values obtained for dif-
ferent parameter mismatch.

In this figure, points are shown, each representing one of all different combinations of param-
eters. Some points represent laser pairs where all parameters have been changed as shown 
on the abscissa; other points, pairs where only some parameters have been changed, while 
other parameters keep their nominal values. The different curves connect BER (and Q) values 
obtained for the same parameter combinations, with different mismatch amounts. It can be 
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concluded that a mismatch of about 3–4% is enough to strongly reduce the BER, which dem-
onstrates the high level of privacy of the three-laser scheme.

In practice, since it is virtually impossible to find a perfectly matched pair, even for the autho-
rized users, the signal must be somewhat increased to still get low BER even in the presence of 
a small amount (≈1%) of mismatch. Alternatively, a somewhat higher transmission BER may be 
accepted by the authorized sender and recipient, who can then improve the BER by a forward 
error correction (FEC) algorithm. Since such algorithms usually have a threshold in terms of 
BER, which is difficult to match by the eavesdropper, this results in better transmission privacy.

Different results have been found for the two-laser scheme. In this case, the optimal perfor-
mance was not obtained using the twin-pair, but, rather, with a pair where all parameters are 
matched but one, that is, the photon lifetime (curve with the arrow in Figure 5), that must be 
reduced in the SL with respect to the MS. We believe that the reason for this finding is the 
asymmetry of the two-laser scheme, where the double injection of the slave (by its mirror and 
by the master), must be compensated by larger cavity losses (i.e., shorter photon lifetime) 
with respect to the master (being injected by its mirror only).

With our simulated lasers, a reduction of 7% (or 12%) offered the best performances. Thus, we 
selected this laser pair (with 7% mismatch on photon lifetime) as the new reference and scaled 
the message amplitude to have BER = 10−9 for this optimal pair. The results shown in Figure 5 
for the BER as a function of parameter mismatch were finally obtained.

Figures 4 and 5 allow us to compare the two schemes in terms of privacy and of ease of 
implementation.

Figure 4. BER and Q as a function of laser parameter mismatch for the three-laser scheme (from Annovazzi-Lodi et al. 
[28]).
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Since for the two-laser scheme, the authorized sender and recipient have to select a laser 
with a proper mismatch, they have a more difficult task than with the three-laser scheme, for 
which the twin pair can be usually found as close-proximity devices on the same wafer. On 
the other hand, such parameter does not need to be accurately met, which partially simplifies 
the job.

Once the optimal pair has been selected, the eavesdropper is in a slightly better situation 
than with the three-laser scheme: s/he has to find a laser similar to another one, without 
knowledge of its parameters; however, one of these parameters does not need to be accu-
rately matched.

If the authorized sender and recipient prefer to use a twin pair to avoid the problem of select-
ing the optimal pair, the eavesdropper has the opportunity to extract the message with the 
same BER as the authorized users, or even better, in principle, if he gets the proper pair. This 
is not an easy job, however, since an accurate matching of all parameters, but one, is required, 
without the knowledge of their values. In practice, as it is usually assumed that the eaves-
dropper cannot match the laser parameters by better than 5%, it is virtually impossible for 
him/her to extract the message in any case.

4. Chaos-protected network

A common feature of all methods for chaos-protected message transmission is that only 
point-to-point interconnections between couples of users can be implemented, since a twin 
pair of lasers is required, one device being used by the transmitter (Tx) and the other by the 
receiver (Rx). Thus, to exchange data with other subscribers, every user must hold one pair 
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of twin lasers for each possible correspondent. This is clearly unpractical, especially if the 
number of users is large.

A more convenient approach [28], similar to public key cryptography, has been proposed 
recently. By this method, we can build a network of subscribers, where all users can freely 
exchange data. This configuration is shown in Figure 6. The network consists of number of 
user nodes (US1, US2,…) and also includes a special provider node (PV), whose role is similar 
to the certifying authority of public-key cryptography.

For each user node US, the network requires a pair of twin lasers. A device of such pair is used 
by PV, whereas the other by US. The lasers are driven to chaos by a suitable method, such as 
delayed optical feedback, as in Figures 1 and 2.

In Figure 6, US1 and US2 are two subscribers at specific network nodes. Each user and the 
provider share a laser of a twin pair, L1 for US1 and L2 for US2.

If a user (e.g., US1) would like to send a message to another user (US2), s/he starts by sending 
a message in clear to PV to ask him to create a chaos-protected link.

Figure 6. Chaos-protected network. Tx and Rx are the transmitter and receiver blocks and Pij are photodetectors. PV 
holds one laser for each user, but only L1 and L2 are shown (from Annovazzi-Lodi et al. [28]).
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A secure connection from US1 to PV (A in Figure 6) is thus established by employing the 
twin pair held by PV and US1 (L1 in Figure 6). This is done by using the standard two-laser 
scheme, as exemplified in Figure 6, or by the three-laser or another suitable scheme.

Then, using the secure link A, US1 sends a message r to PV, asking to create a chaos-secured 
connection between himself and US2.

After receiving the request of US1, PV sends the chaotic waveform produced by laser L2 to 
user US1. US1 will use this chaotic carrier to transmit a message m to US2. S/he may use, for 
example, CM modulation, as in Figure 6 path B, or another chaos-based transmission method. 
Exchanged data are protected, since only US2 can extract this message from chaos, because  
s/he is the only one to hold the required twin laser L2. Other subscribers, or an eavesdropper, 
cannot retrieve the message.

The same procedure applies, for example, when US2 wants to send a message to US1. US2 
first contacts PV in clear; then, using her/his laser L2, s/he asks the provider to route the suit-
able chaotic waveform (laser L1) to her/him. PV decodes the message by his laser L2 and 
sends the required chaotic waveform to US2. Using this chaotic waveform, US2 can now send 
the message, which US1 can decode using her/his laser L1. In the same way, chaos-secured 
connections can be established between all pairs of users.

Lasers at the provider node are employed either to create a secure connection with a user 
or to produce a chaotic waveform to be routed to a user to enable her/him to create a secure 
connection with another user. Lasers at US nodes are used to create a secure connection with 
the provider or to decode a message of another user. In the proposed network architecture, 
the traffic between users does not pass by PV node. This is important to improve security and 
avoid congestion.

The transmission link between two users is usually implemented by simply modulating the 
chaotic waveform received by the provider, and in such case, only an amplitude modulator is 
required in block Tx of Figure 6. However, if the distance between users, and/or users and PV, 
is large, amplification of the chaotic waveform is required to adequately hide the message. In 
such case, an optical amplifier will also be included in block Tx.

Transmission of data between two users following the scheme of Figure 6 is similar to a stan-
dard point-to-point connection. Thus, all the results obtained by the L-K model and by experi-
mental investigations apply here, including our previous comparison of the two basic schemes.

5. Conclusions

In conclusion, after a brief introduction on chaotic cryptography, we have presented recent 
achievements, by comparing the two most widely used schemes for chaos-secured data trans-
mission, showing that the three-laser scheme has some specific advantage over the two-laser 
scheme in terms of privacy.
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Moreover, we have shown that private transmission based on optical chaos is suitable for 
multiuser networking, using a proper architecture. This approach is based on the usual, 
widely investigated and well-developed chaotic transmission schemes, but makes use of a 
provider to allow for data exchange between several users and requires only one twin laser 
pair for each subscriber.
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