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Preface

Modeling and simulating biological and physical systems are nowadays active branches of sci‐
ence. The diversity and complexity of behaviors and patterns present in the natural world have
their reciprocity in the life systems. Bifurcations, solitons and fractals are some of these ubiqui‐
tous structures that can be indistinctively identified in many models with the most diverse appli‐
cations, from microtubules with an essential role in the maintenance and the shaping of cells, to
the nano/microscale structure in disordered systems determined with small-angle scattering
techniques. This book collects several works in this direction, giving an overview of some mod‐
els and theories that are useful for the study and analysis of complex biological and physical
systems. It can provide a good guidance for physicists with interest in biology, applied research
scientists, and postgraduate students.

The first section of the book presents different biological models with a wide variety of applica‐
tions. In Chapter 1, Zdravkovic presents three nonlinear mechanical models to explain the dy‐
namics of solitons in microtubules. In Chapter 2, Liu et al. study the behavior of two delayed
epidemic spreading models on scale-free networks. In Chapter 3, Salleh and Rahim investigate
the existence and stability of equilibria in a nutrient-prey-predator model with intratrophic pre‐
dation. In Chapter 4, Gul and Bernhard apply global sensitivity analysis to a multicompartment,
lumped-parameter model of an arm artery to identify the bifurcation parameters of the arm ar‐
teries. The last chapter of this section, Chapter 5 by Maldonado, introduces the idea of biological
hypercomputation and analyzes the relationship between matter, energy and information.

The second section of the book presents some physical models showing soliton and fractal behav‐
iors. In Chapter 6, Kalashnikov and Sorokin present the concept of dissipative soliton and its full
life cycle as a self-organized object. In Chapter 7, Luke discusses the use of solitons for particle
models in the nonlinear Klein-Gordon equation. In Chapter 8, Omel’yanov considers the problem
of propagation and interaction of solitons in the generalized KdV equation. In Chapter 9, Noreldin
at al. perform a weakly nonlinear stability analysis of the flow of a nanofluid in a porous medium
with stress-free boundary conditions. Finally, in the last chapter, Chapter 10, Anitas introduces
the concepts of mass and surface fractals in the context of small-angle scattering techniques.

As the editor of this book, I would like to thank all the authors who have contributed to this
volume as well as the reviewers for their assessment. Also, I must express my gratitude to the
InTechOpen editorial staff for their invitation asking me to be the editor for the second time.
With particular help from Ms. Kristina Kardum, the Publishing Process Manager (PPM), we
have arrived to convert in this new InTechOpen book. Finally, at this moment where life is a
nonsense time flow, I want to dedicate all this effort to the memory of my father, Ricardo López-
Barasoain (1935–2015), and to my mother, Amelia Ruiz-Gastón (1935–present), from Villafranca,
Navarra, Spain. Of course, the rest of my family and all my friends and advisers are not forgot‐
ten in this dedicatory final paragraph.

Ricardo López-Ruiz
University of Zaragoza, Spain
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Abstract

Microtubules are the major part of the cytoskeleton. They are involved in nuclear and
cell division and serve as a network for motor proteins. The first model that describes
nonlinear dynamics of microtubules was introduced in 1993. Three nonlinear models are
described in this chapter. They are longitudinal U-model, representing an improved
version of the first model, radial φ-model and new general model. Also, two mathemat-
ical procedures are explained. These are continuum and semi-discrete approximations.
Continuum approximation yields to either kink-type or bell-type solitons, while semi-
discrete one predicts localized modulated waves moving along microtubules. Some
possible improvements and suggestions for future research are discussed.

Keywords: microtubules, partial and ordinary differential equations, kink solitons,
breathers

1. Introduction

A cell is defined as eukaryotic if it has a membrane-bound nucleus. Such cells are generally larger
and much more sophisticated than prokaryotic ones. Microtubules (MTs) are the basic compo-
nents of cytoskeleton existing in eukaryotes [1]. They are long structures that spread between a
nucleus and a cell membrane. MTs play an essential role in the shaping and the maintenance of
cells and are involved in cell division. Also, they represent a network for motor proteins. These
proteins move with a velocity of 0:1� 2μm=s [2] carrying a certain cargo such as mitochondrion.

All eukaryotic cells produce two kinds of tubulin proteins. These are α and β tubulins, or
monomers, and they spontaneously arrange head to tail forming biologically functional subunit
that we call a heterodimer, or a dimer for short. When intracellular conditions favor assembly,
the dimers assemble into long structures called protofilaments (PFs). Microtubules are usually
formed of 13 PFs, as shown in Figure 1.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71181

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 1

Mechanical Models of Microtubules

Slobodan Zdravković

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71181

Provisional chapter

Mechanical Models of Microtubules

Slobodan Zdravković

Additional information is available at the end of the chapter

Abstract

Microtubules are the major part of the cytoskeleton. They are involved in nuclear and
cell division and serve as a network for motor proteins. The first model that describes
nonlinear dynamics of microtubules was introduced in 1993. Three nonlinear models are
described in this chapter. They are longitudinal U-model, representing an improved
version of the first model, radial φ-model and new general model. Also, two mathemat-
ical procedures are explained. These are continuum and semi-discrete approximations.
Continuum approximation yields to either kink-type or bell-type solitons, while semi-
discrete one predicts localized modulated waves moving along microtubules. Some
possible improvements and suggestions for future research are discussed.

Keywords: microtubules, partial and ordinary differential equations, kink solitons,
breathers

1. Introduction

A cell is defined as eukaryotic if it has a membrane-bound nucleus. Such cells are generally larger
and much more sophisticated than prokaryotic ones. Microtubules (MTs) are the basic compo-
nents of cytoskeleton existing in eukaryotes [1]. They are long structures that spread between a
nucleus and a cell membrane. MTs play an essential role in the shaping and the maintenance of
cells and are involved in cell division. Also, they represent a network for motor proteins. These
proteins move with a velocity of 0:1� 2μm=s [2] carrying a certain cargo such as mitochondrion.

All eukaryotic cells produce two kinds of tubulin proteins. These are α and β tubulins, or
monomers, and they spontaneously arrange head to tail forming biologically functional subunit
that we call a heterodimer, or a dimer for short. When intracellular conditions favor assembly,
the dimers assemble into long structures called protofilaments (PFs). Microtubules are usually
formed of 13 PFs, as shown in Figure 1.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71181

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Hence, MTs are long cylindrical polymers whose lengths vary from a few hundred nanometers
up to meters in long nerve axons [4]. Each dimer is an electric dipole whose mass and length
are m ¼ 1:8� 10�22 kg and l ¼ 8 nm, respectively [5]. The component of its electric dipole
moment in the direction of PF is p ¼ 337Debye ¼ 1:13� 10-27 Cm [6]. Consequently, MT as a
whole appears to be a giant dipole with negatively charged end coinciding with biologically
positive end (more active) and vice versa. This is the reason why an intrinsic electric field exists
within MT.

MTs in non-neuronal cells are unstable structures. They exhibit dynamic instability behavior
existing in phases of elongation (polymerization) or rapid shortening (depolymerization). This
size fluctuation has been called as dynamic instability [7, 8]. Notice that the shrinkage rate is
bigger than the growth rate (see Ref. [9] and references therein). MTs grow steadily at positive
end, corresponding to the β– subunit, and then shrink rapidly by loss of tubulin dimers at the
negative end, corresponding to the α–monomer. Many anticancer drugs, for example, taxol
(paclitaxel), prevent growth and shrinkage of MTs and thus prevent cell proliferation [10].

MTs existing in neuronal cells are stable and, consequently, neurons, once formed, do not
divide [4]. This stability is crucial as there are evidences that neuronal MTs are responsible for
processing, storage and transduction of biological information in a brain [4, 11].

It was mentioned that MTs represent the traffic road for motor proteins. Some more informa-
tion can be found in Ref. [9] and in an exhaustive review paper [12]. It suffices now to state that
the cellular motors with dimensions of less than 100 nm convert chemical energy into useful
work. These small machines have the fundamental role of dissipation in biological systems,
which has been confirmed by both the theoretical and the experimental investigations [13]. The
molecular motors dissipate continuously and operate as irreversible systems [13].

It is clear that any molecular motor, to start moving, should obtain a certain signal. One of the
promising dynamical mechanisms for intracellular signaling is solitary waves, which is exp-
lained in this chapter.

2. Mechanical models

MTs, as well as all biological systems, are nonlinear in nature. Strong covalent chemical bonds are
usually modeled by linear “springs”, while weak chemical interactions, existing in all biological

Figure 1. A tubulin dimer, a protofilament and a microtubule [3].
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systems, are modeled by nonlinear “springs”. This means that expressions for energy of biological
systems require nonlinear terms, which brings about nonlinear partial differential equations
(PDEs) explaining nonlinear dynamics of these systems. This is the topic of the present chapter.
We will see that, in case of MTs, the solutions of these nonlinear PDEs are solitary waves.

The word soliton was introduced in 1965 to designate solitary waves describing the propaga-
tion of excitations in continuous media with nonlinearity and dispersion [14]. The first quali-
tative description of solitary waves dates back to 1834 when hydrodynamic engineer John
Scott Russell observed them on a surface in a shallow channel [15]. The wave was so stable
that the engineer followed it about 1 or 2 miles. From then, there has been tremendous interest
for various kinds of solitons in many branches of physics [15–19]. In this chapter, the terms
soliton and solitary waves are treated as synonyms, which is commonly accepted in literature.

Solitons are localized waves possessing some interesting properties. The most important is
their stability in a sense that they conserve their shape and energy after mutual interaction. In
other words, they can pass through one another without annihilation. This was experimentally
observed in neurons [20].

To model complex MT dynamics, we should introduce some simplifications. To the best of the
author’s knowledge, all the models introduced so far have only one degree of freedom per
dimer. Hence, for the models explained in this chapter, elementary subunits of PFs are dimers
and they perform either longitudinal or angular oscillations and the appropriate models can be
called as longitudinal or angular (radial), respectively.

The longitudinal contacts along PFs are much stronger than those between adjacent PFs [21,
22], which allows us to construct a simplified Hamiltonian of MT, which is, practically, Ham-
iltonian for a single PF only. However, the influence of the neighboring PFs is taken into
consideration through the electric field. Namely, each dimer exists in the electric field coming
from the dimers belonging to all PFs. Also, the nearest neighbor approximation is assumed.

3. U-model

The first model that describes nonlinear dynamics of MTs is a longitudinal one. It was intro-
duced in 1993 by Satarić et al. [23]. According to the model, the dimers perform angular
oscillations but a coordinate u, describing the dimer’s displacement, is a projection of the top
of the dimer on the direction of PF. Therefore, the displacements are radial but the used
coordinate is longitudinal. There is a real longitudinal model assuming longitudinal displace-
ments of the dimers that we call as Z-model [24]. Both U- and Z-models bring about equal
crucial differential equations and the latter one will not be studied here.

Somewhat improved and more general version of the first nonlinear model is what we call as
U-model [25] and this will be explained in the following paragraphs. Both models are based on
the fact mentioned above that the dimers are electric dipoles and that the whole MT can be
regarded as ferroelectric [23, 26], which means that the interaction between a single dimer and
its surrounding can be modeled by W-potential [23, 27]. This yields to the following Hamilto-
nian for MT [23, 25, 28]
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where dot means the first derivative with respect to time while the integer n determines the
position of the considered dimer in PF. The first term obviously represents a kinetic energy of
the dimer of mass m. The second one is interaction between the neighboring dimers belonging
to the same PF in the nearest neighboring approximation and k is an intradimer stiffness
parameter. The next two terms represent the W-potential energy mentioned earlier, where the
parameters A and B should be determined or, at least, estimated and are assumed to be
positive. We should point out that the double-well potential is rather common in physics [27,
29, 30]. The very last term is coming from the fact that the dimer is the electric dipole existing in
the field of all other dimers, where Q > 0 represents the excess charge within the dipole and
E > 0 is internal electric field. The last three terms together can be regarded as unsymmetrical
W-potential.

Our final goal is the function un tð Þ, describing nonlinear dynamics of MT. This function is a
solution of so-called dynamical equation of motion, which can be obtained from Eq. (1). To
derive it, we introduce generalized coordinates qn and pn defined as qn ¼ un and pn ¼mdun=dt.
Using well-known Hamilton’s equations of motion dpn=dt ¼ �dH=dqn and dqn=dt ¼ dH=dpn,
we obtain the following discrete differential equation that should be solved

m €un ¼ ku unþ1 þ un�1 � 2unð Þ þ Aun � Bun3 þQE� γ _un (2)

The last term is a viscosity force with γ being a viscosity coefficient [23]. Therefore, nonlinear
dynamics of MTs has been described by Eq. (2). Obviously, nonlinearity is coming from the
fourth degree term in the W-potential.

It was explained earlier that we used some approximations to derive Eq. (2). However, we
need one more to solve it. We now explain two mathematical methods for solving this equa-
tion. Practically, these two approaches are two approximations. They are continuum and semi-
discrete approximations. We will see that the different mathematical procedures yield to
different solutions. Therefore, the function un tð Þ depends not only on the physical system but
also on the used mathematical method.

Let us explain the continuum approximation first. A question if MTs are discrete or continuum
systems was studied in Ref. [31], where it was shown that the continuum approximation is valid.
The continuum approximation means a transition un tð Þ ! u x; tð Þ, which allows a series expan-

sion of the terms un�1, that is, un�1 ! u� ∂u
∂x lþ 1

2
∂2u
∂x2 l

2, where l is the dimer’s length explained
earlier. In fact, PF can be seen as one-dimensional crystal with l being a period of the lattice. This
straightforwardly brings about the following continuum dynamical equation of motion

m
∂2u
∂t2

� ku l2
∂2u
∂x2

�QE� Auþ Bu3 þ γ
∂u
∂t

¼ 0 (3)

This is PDE that cannot be easily solved. Hopefully, this equation can be transformed into an
ordinary differential equation (ODE). It is well known that, for a given wave equation, a
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traveling wave u ξð Þ is a solution which depends upon x and t only through a unified variable ξ
as ξ ¼ κx� ωt, where κ and ω are constants. If we substitute the variables x and t by ξ we
straightforwardly transform Eq. (3) into the following ODE

αuΨ 00 � ruΨ
0 � Ψ þ Ψ 3 � σ ¼ 0 (4)

where u0 � du=dξ and

u ¼
ffiffiffiffi
A
B

r
Ψ , αu ¼ mω2 � kul2κ2

A
, σ ¼ qE

A
ffiffiffiffiffiffiffiffiffi
A=B

p , ru ¼ γω
A

(5)

Eq. (4) becomes the appropriate one in Ref. [23] for αu ¼ �1. Therefore, the U-model is more
general than its predecessor introduced in Ref. [23]. It is crucial that the parameter αu can be
determined together with the function Ψ for known or estimated σ and ru. This is because αu

has very important physical meaning. The first term in Eq. (3) is the inertial term and it is
coming from the kinetic energy in Hamiltonian (1), while the second one is the elastic one.
Therefore, positive αu means that the inertial term is bigger than the elastic one and vice versa.

Eq. (4) has already been solved using different mathematical procedures like standard proce-
dure [23, 27, 29, 30] and method of factorization [31, 32]. There exists a group of procedures
where the function Ψ is represented as a serious expansion over other known function like

Ψ ¼ PN
k¼0

AkΦ
k. The function Φ is usually known and we plug Ψ into Eq. (4) and determine the

coefficients Ak. A common example for Φ is a solution of Riccati equation, which is either
tangent or tangent hyperbolic. As only the latter function may have physical meaning, we call
the method as tangent hyperbolic function method (THFM) [25, 33–35] and extended or
modified extended THFM [36]. The function Φ can also be one of Jacobian elliptic functions
[37] and, even, unknown [38].

It is very likely that the most general procedure is the simplest equation method (SEM) [39–41]
and its simplified version called as modified simplest equation method (MSEM) [42]. Accor-
ding to SEM, the series expansion is [39–41].

Ψ ¼ A0 þ
XN

k¼1

AkΦ
k þ Bk

Φ0

Φ

� �k
 !

(6)

where A0, Ak and Bk are coefficients that should be determined and Φ0 represents the first
derivative. In general, the function Φ ¼ Φ ξð Þ is known and represents a solution of a certain
ODE of lower order than the equation that should be solved. A commonly used example is the
Riccati equation [40]

Φ0 þ Φ2 � 2aΦ� b ¼ 0, a, b ¼ const (7)

To determine the positive integer N in Eq. (6), we should plug Ψ ¼ c=ξp, c ¼ const, into Eq. (4)
and concentrate our attention on the leading terms [42]. One can easily show that N ¼ 1 for

Eq. (4) as the leading terms are proportional to ξ� pþ2ð Þ and ξ�3p.
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The well-known general solution of Eq. (7) is [39, 40]

Φ ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
ξ� ξ0ð Þ

h i
(8)

In what follows, we assume ξ0 ¼ 0.

Our next step is determination of the parameters A0, A1, B1, a, b and αu. According to Eqs. (6)
for N ¼ 1 and (7), we obtain the expressions for Ψ 0, Ψ 00 and Ψ 3 as required by Eq. (4), which
yields to the following expression:

K3Φ
3 þ K3

0
Φ�3 þ K2Φ

2 þ K2
0
Φ�2 þ K1Φþ K1

0
Φ�1 þ K0 ¼ 0 (9)

Obviously, this is satisfied if all the coefficients are simultaneously equal to zero. This brings
about a system of seven equations, which can be obtained using Mathematica or similar
software [39]. One of them can be written as

K3 � A1 � B1ð Þ � 2αu þ A1 � B1ð Þ2
h i

¼ 0 (10)

indicating two possible relationships between the parameters A1 and B1. Hence, there are a
few cases to be studied. They are as follows [39]: (1) B1 ¼ 0, a ¼ 0; (2) B1 ¼ 0, a 6¼ 0; (3) A1 ¼ B1;

(4) 2αu ¼ � A1 � B1ð Þ2, A1B1 6¼ 0; (5) A1 ¼ 0, a 6¼ 0 and (6) A1 ¼ 0, a ¼ 0.

It is obvious that the first case represents nothing but a simpler method called extended tanh-
function method. The system mentioned earlier brings about [39]

8A0
3 � 2A0 þ σ ¼ 0, αu ¼ �A1

2

2
, A1 ¼ � ru

3A0
, b ¼ 1� 3A0

2

A1
2 (11)

The final result is [39]

Ψ i ¼ A0i þ A1iΦi, Φi ¼
ffiffiffiffi
bi

p
tanh

ffiffiffiffi
bi

p
ξ

� �
(12)

where A0i is the following three real solutions of the first of Eqs. (11)

A01 ¼ 1
2
ffiffiffi
3

p cos Fþ
ffiffiffi
3

p
sin F

� �
, A02 ¼ 1

2
ffiffiffi
3

p cos F�
ffiffiffi
3

p
sin F

� �
(13)

A03 ¼ � 1ffiffiffi
3

p cos F, F ¼ 1
3
arccos

σ
σ0

� �
, σ0 ¼ 2

3
ffiffiffi
3

p (14)

Of course, these three solutions exist for σ < σ0. The case σ > σ0 was discussed in Ref. [25].

All the three solutions are shown in Figure 2 for σ ≈ 0:9σ0 and ru ¼ 1. Of course, these solutions
reproduce previously known results [25]. Figure 2 shows that the solutions of Eq. (4) are kink
and antikink solitons. More detailed analysis of their physical meaning is given in Ref. [25].

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals8

It was shown [42] that the second case is equal to the first one indicating that the value of a is
irrelevant if B1 ¼ 0. In other words, we could have assumed a simpler version of the Riccati
equation neglecting the term 2aΦ.

The third case is more interesting. It turns out that, instead of the three lines in Figure 2, that is,
the three solutions, we obtain infinitely many lines corresponding to each of them [39]. How-
ever, they represent three groups of parallel lines, which means that all these solutions are only
shifted functions and, consequently, have equal physical meaning. Therefore, this case does not
bring about any physically new result.

Case 4 is suggested by Eq. (10). The system of seven equations, mentioned earlier, gives the
first and the last term in Eq. (11) as well as

a ¼ 0, A1 ¼ 2B1, αu ¼ �B1
2

2
, B1 ¼ � ru

3A0
(15)

The final expression for Ψ is

Ψ ξð Þ ¼ A0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3A0

2
q

tanh yþ 1
sinh y

� �
, y ¼ 3A0

2ru

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3A0

2
q

ξ (16)

This case yields to a new solution, which was not obtained using less general mathematical
methods. However, it may be interesting from mathematical point of view only as Ψ diverges
for ξ ¼ 0.

Figure 2. The functions Ψ ξð Þ for ru ¼ 1 and σ ¼ 0:34.

Mechanical Models of Microtubules
http://dx.doi.org/10.5772/intechopen.71181

9



The well-known general solution of Eq. (7) is [39, 40]

Φ ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
ξ� ξ0ð Þ

h i
(8)

In what follows, we assume ξ0 ¼ 0.

Our next step is determination of the parameters A0, A1, B1, a, b and αu. According to Eqs. (6)
for N ¼ 1 and (7), we obtain the expressions for Ψ 0, Ψ 00 and Ψ 3 as required by Eq. (4), which
yields to the following expression:

K3Φ
3 þ K3

0
Φ�3 þ K2Φ

2 þ K2
0
Φ�2 þ K1Φþ K1

0
Φ�1 þ K0 ¼ 0 (9)

Obviously, this is satisfied if all the coefficients are simultaneously equal to zero. This brings
about a system of seven equations, which can be obtained using Mathematica or similar
software [39]. One of them can be written as

K3 � A1 � B1ð Þ � 2αu þ A1 � B1ð Þ2
h i

¼ 0 (10)

indicating two possible relationships between the parameters A1 and B1. Hence, there are a
few cases to be studied. They are as follows [39]: (1) B1 ¼ 0, a ¼ 0; (2) B1 ¼ 0, a 6¼ 0; (3) A1 ¼ B1;

(4) 2αu ¼ � A1 � B1ð Þ2, A1B1 6¼ 0; (5) A1 ¼ 0, a 6¼ 0 and (6) A1 ¼ 0, a ¼ 0.

It is obvious that the first case represents nothing but a simpler method called extended tanh-
function method. The system mentioned earlier brings about [39]

8A0
3 � 2A0 þ σ ¼ 0, αu ¼ �A1

2

2
, A1 ¼ � ru

3A0
, b ¼ 1� 3A0

2

A1
2 (11)

The final result is [39]

Ψ i ¼ A0i þ A1iΦi, Φi ¼
ffiffiffiffi
bi

p
tanh

ffiffiffiffi
bi

p
ξ

� �
(12)

where A0i is the following three real solutions of the first of Eqs. (11)

A01 ¼ 1
2
ffiffiffi
3

p cos Fþ
ffiffiffi
3

p
sin F

� �
, A02 ¼ 1

2
ffiffiffi
3

p cos F�
ffiffiffi
3

p
sin F

� �
(13)

A03 ¼ � 1ffiffiffi
3

p cos F, F ¼ 1
3
arccos

σ
σ0

� �
, σ0 ¼ 2

3
ffiffiffi
3

p (14)

Of course, these three solutions exist for σ < σ0. The case σ > σ0 was discussed in Ref. [25].

All the three solutions are shown in Figure 2 for σ ≈ 0:9σ0 and ru ¼ 1. Of course, these solutions
reproduce previously known results [25]. Figure 2 shows that the solutions of Eq. (4) are kink
and antikink solitons. More detailed analysis of their physical meaning is given in Ref. [25].

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals8

It was shown [42] that the second case is equal to the first one indicating that the value of a is
irrelevant if B1 ¼ 0. In other words, we could have assumed a simpler version of the Riccati
equation neglecting the term 2aΦ.

The third case is more interesting. It turns out that, instead of the three lines in Figure 2, that is,
the three solutions, we obtain infinitely many lines corresponding to each of them [39]. How-
ever, they represent three groups of parallel lines, which means that all these solutions are only
shifted functions and, consequently, have equal physical meaning. Therefore, this case does not
bring about any physically new result.

Case 4 is suggested by Eq. (10). The system of seven equations, mentioned earlier, gives the
first and the last term in Eq. (11) as well as

a ¼ 0, A1 ¼ 2B1, αu ¼ �B1
2

2
, B1 ¼ � ru

3A0
(15)

The final expression for Ψ is

Ψ ξð Þ ¼ A0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3A0

2
q

tanh yþ 1
sinh y

� �
, y ¼ 3A0

2ru

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3A0

2
q

ξ (16)

This case yields to a new solution, which was not obtained using less general mathematical
methods. However, it may be interesting from mathematical point of view only as Ψ diverges
for ξ ¼ 0.

Figure 2. The functions Ψ ξð Þ for ru ¼ 1 and σ ¼ 0:34.

Mechanical Models of Microtubules
http://dx.doi.org/10.5772/intechopen.71181

9



Case 5 is a simplified version of SEM, explained in Ref. [42]. The mentioned system brings
about ru ¼ 0 as well as

B1 ¼ �A0

a
, αu ¼ �B1

2

2
, A0

3 �A0 � σ ¼ 0, b ¼ a2 A0
2 � 1

� �

2A0
2 (17)

where a notation A0 has been introduced to distinguish this parameter from A0, used in the
previous cases. It is interesting to compare the polynomials for A0 and A0, existing in Eqs. (11)
and (17). We can see that.

A0i ¼ �2A0i, i ¼ 1, 2, 3 (18)

which means that the values for A0i are given by Eqs. (13), (14) and (18). We can easily show
that the final solution for Ψ is [39]

Ψ ¼ A0 � A0K2

cosh 2 aKξð Þ 1þ Ktanh aKξð Þ½ � , K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A0

2 � 1
p

A0
ffiffiffi
2

p (19)

Obviously, this function cannot diverge for any value of aξ but only for �1 < K < 1. Also, K
should be real and these two requirements eliminate Ψ 2 and Ψ 3 [39], which means that Ψ and
A0 in Eq. (19) are Ψ 1 and A01.

The function Ψ 1 ξð Þ is shown in Figure 3 for a ¼ 0:1 and for two values of the parameter σ. We
notice very interesting result that is a bell-type soliton! This certainly demonstrates the advan-
tage of SEM method over the less general ones.

It is important to study the physical meanings of the parameters a and σ. Eq. (19) indicates that
solitonic width is inversely proportional to aj j and that a does not affect maximum of the wave.
Figure 3 shows that the amplitude of Ψ 1 is a decreasing function with respect to σ.

Finally, the last case gives the solution

Ψ ¼ �
ffiffiffi
2

p

sin 2
ffiffiffiffiffiffi�b

p
ξ

� � , b < 0 (20)

which is obviously divergent for
ffiffiffiffiffiffi�b

p
ξ ¼ kπ, k ¼ 0, � 1, � 2,….

Therefore, all the cases are explained and we can see that the continuum approximation yields
to both kink solitons and bell-type solitons. The latter may exist only if viscosity is neglected.

It was stated earlier that the coordinate u was the projection of the top of the dimer on the
direction of MT. A patient reader may ask how u can be negative when this is the projection.
This question is answered in Ref. [28].

It was mentioned earlier that there are two approximations that can be used to solve Eq. (2).
Now we get back to Eq. (2) and study semi-discrete one [15, 28, 43]. A mathematical basis for
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the method is a multiple-scale method or a derivative-expansion method [16, 44]. We assume
small oscillations

un tð Þ ¼ εΦn tð Þ, ε << 1 (21)

which straightforwardly transforms Eq. (2) into

εm €Φn ¼ εk Φnþ1 þ Φn�1 � 2Φnð Þ þ εAΦn � ε3BΦn
3 þ qEþO ε4

� �
(22)

According to the semi-discrete approximation, we look for wave solution which is a modu-
lated wave, that is [28, 45]

Φn tð Þ ¼ F ξð Þeiθn þ ε F0 ξð Þ þ εF2 ξð Þei2θn þ ccþO ε2
� �

(23)

ξ ¼ εnl; ε tð Þ, θn ¼ nql� ωt (24)

where ω is the optical frequency of the linear approximation, q = 2π/λ > 0 is the wave number,
cc represents complex conjugate terms and the function F0 is real. Of course, l is the dimer’s
length, as mentioned earlier. The function F is continuous and represents an envelope, while
exp(iθn), including discreteness, is a carrier component. Notice that the parameter ε exists in

Figure 3. A bell-type soliton for a = 0.1 and σ = 0.34 (a) and σ = 0.1 (b).
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to both kink solitons and bell-type solitons. The latter may exist only if viscosity is neglected.

It was stated earlier that the coordinate u was the projection of the top of the dimer on the
direction of MT. A patient reader may ask how u can be negative when this is the projection.
This question is answered in Ref. [28].

It was mentioned earlier that there are two approximations that can be used to solve Eq. (2).
Now we get back to Eq. (2) and study semi-discrete one [15, 28, 43]. A mathematical basis for

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals10

the method is a multiple-scale method or a derivative-expansion method [16, 44]. We assume
small oscillations

un tð Þ ¼ εΦn tð Þ, ε << 1 (21)

which straightforwardly transforms Eq. (2) into

εm €Φn ¼ εk Φnþ1 þ Φn�1 � 2Φnð Þ þ εAΦn � ε3BΦn
3 þ qEþO ε4

� �
(22)

According to the semi-discrete approximation, we look for wave solution which is a modu-
lated wave, that is [28, 45]

Φn tð Þ ¼ F ξð Þeiθn þ ε F0 ξð Þ þ εF2 ξð Þei2θn þ ccþO ε2
� �

(23)

ξ ¼ εnl; ε tð Þ, θn ¼ nql� ωt (24)

where ω is the optical frequency of the linear approximation, q = 2π/λ > 0 is the wave number,
cc represents complex conjugate terms and the function F0 is real. Of course, l is the dimer’s
length, as mentioned earlier. The function F is continuous and represents an envelope, while
exp(iθn), including discreteness, is a carrier component. Notice that the parameter ε exists in

Figure 3. A bell-type soliton for a = 0.1 and σ = 0.34 (a) and σ = 0.1 (b).

Mechanical Models of Microtubules
http://dx.doi.org/10.5772/intechopen.71181

11



the function F, but does not in exp(iθn). This is because the frequency of the carrier wave is
much higher than the frequency of the envelope and we need two time scales, t and ε t, for
those two functions. The same holds for the coordinate scales.

To simplify the problem, a continuum limit nl ! z should be introduced as well as new trans-
formations Z ¼ εz and T ¼ ε t. This allows a series expansion of F ξð Þ, that is

F ε n� 1ð Þl; ε tð Þ ! F Z;Tð Þ � FZ Z;Tð Þε lþ 1
2
FZZ Z;Tð Þε2l2 (25)

where indexes Z and ZZ denote the first and the second derivative with respect to Z. Hence,
the function Φn tð Þ becomes

Φn tð Þ ¼ Feiθ þ F∗ e�iθ þ εF0 þ F2 ei2θ þ F2∗ e�i2θ (26)

where ∗ stands for complex conjugate and F � F Z;Tð Þ. All this allows us to obtain the expres-
sions existing in Eq. (22), such as Φnþ1 þ Φn�1 � 2Φn, Φn and Φn

3, and Eq. (22) becomes [28]

ε3FTT � 2iε2ωFT � εω2F
� �

eiθ � 4iε3ωF2T þ 4ε2ω2F2
� �

ei2θ þ cc ¼
¼ ε

k
m

2F cos qlð Þ � 1½ � þ 2iε lFZ sin qlð Þ þ ε2l2FZZ cos qlð Þ� �
eiθ

þε
k
m

2εF2 cos 2qlð Þ � 1½ � þ 2iε2 lF2Z sin 2qlð Þ� �
ei2θ þ C

m

þε
A
m

Feiθ þ εF0 þ εF2 ei2θ
� �� ε3

B
m

3 Fj j2Feiθ þ F3 ei3θ
� �

þ ccþO ε4
� �

(27)

This crucial expression represents a starting point for a series of important expressions. They
can be obtained equating the coefficients for the various harmonics. For example, equating the
coefficients for eiθ and neglecting all the terms with ε2 and ε3 one obtains the following
expressions for the dispersion relation ω ¼ ω qð Þ and the group velocity dω=dq:

ω2 ¼ 2ku
m

1� cos qlð Þ½ � � A
m
, Vg ¼ l ku

mω
sin qlð Þ (28)

Also, the coefficients for ei0 ¼ 1 and ei2θ , respectively give [28]

ε2F0 ¼ �C
A
, F2 ¼ 0 (29)

which yields to

un ¼ εFeiθn � C
A
þ cc (30)

Eqs. (28) and (29) and new coordinates S and τ, defined as S ¼ Z� Vg T and τ ¼ εT, allows us
to simplify Eq. (27). An explanation for why the parameter ε exists in the time scaling but is
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absent in the space scaling is given in Refs. [45, 46]. If we consider the terms for eiθ again we
obtain the well-known nonlinear Schrödinger equation (NLSE) for the function F

iFτ þ PFSS þQ Fj j2F ¼ 0 (31)

where the dispersion coefficient P and the coefficient of nonlinearity Q are

P ¼ 1
2ω

kul2

m
cos qlð Þ � Vg

2
� �

, Q ¼ � 3B
2mω

(32)

Even though Eq. (31) is PDE, its solution exists. This well-known solution, existing for PQ > 0,
is [15, 47, 48]

F S; τð Þ ¼ Ae sech
S� ueτ

Le

� �
exp

iue S� ucτð Þ
2P

, ue > 2uc (33)

where parameters ue and uc represent envelope and carrier component velocities, while the
amplitude Ae and the soliton width Le have the forms

Ae ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ue2 � 2ueuc

2PQ

s
, Le ¼ 2Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ue2 � 2ue uc
p (34)

It is very difficult to deal with the parameters ue and uc as ue > 2uc is completely unprecise
statement. However, uc=ue < 0:5 seems to be more practical. Hence, new parameters Ue and η
have been introduced as Ue ¼ εue, η ¼ uc=ue and 0 ≤ η < 0:5 [45]. Finally, we can easily obtain
the expression for the longitudinal displacement of the dimer at the position n

un tð Þ ¼ A0sech
nl� Ve t

L

� �
cos Θnl�Ωtð Þ � C

A
� Un tð Þ � C

A
(35)

where

A0 � 2εAe ¼ 2 Uej j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2η
2PQ

s
, L � Le

ε
¼ 2P

Uej j ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2η

p (36)

Ve ¼ Vg þUe, Θ ¼ qþUe

2P
, Ω ¼ ωþ Vg þ ηUe

� �
Ue

2P
(37)

One more parameter can be eliminated using the idea of coherent mode [49]. This mode means
that the envelope and the carrier wave velocities are equal. It follows from Eq. (35) that Ve ¼
Ω=Θ, which yields to the function Ue ηð Þ. This means that the wave un tð Þ is the one phase
function, preserving its shape in time.

To plot the function un tð Þ or, equivalently, Un tð Þ we should know or estimate the values of a
couple of the parameters. Of course, if 2D plot is chosen, Un tð Þ can be presented as either a
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the function F, but does not in exp(iθn). This is because the frequency of the carrier wave is
much higher than the frequency of the envelope and we need two time scales, t and ε t, for
those two functions. The same holds for the coordinate scales.

To simplify the problem, a continuum limit nl ! z should be introduced as well as new trans-
formations Z ¼ εz and T ¼ ε t. This allows a series expansion of F ξð Þ, that is

F ε n� 1ð Þl; ε tð Þ ! F Z;Tð Þ � FZ Z;Tð Þε lþ 1
2
FZZ Z;Tð Þε2l2 (25)

where indexes Z and ZZ denote the first and the second derivative with respect to Z. Hence,
the function Φn tð Þ becomes

Φn tð Þ ¼ Feiθ þ F∗ e�iθ þ εF0 þ F2 ei2θ þ F2∗ e�i2θ (26)

where ∗ stands for complex conjugate and F � F Z;Tð Þ. All this allows us to obtain the expres-
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This crucial expression represents a starting point for a series of important expressions. They
can be obtained equating the coefficients for the various harmonics. For example, equating the
coefficients for eiθ and neglecting all the terms with ε2 and ε3 one obtains the following
expressions for the dispersion relation ω ¼ ω qð Þ and the group velocity dω=dq:

ω2 ¼ 2ku
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1� cos qlð Þ½ � � A
m
, Vg ¼ l ku

mω
sin qlð Þ (28)

Also, the coefficients for ei0 ¼ 1 and ei2θ , respectively give [28]

ε2F0 ¼ �C
A
, F2 ¼ 0 (29)

which yields to

un ¼ εFeiθn � C
A
þ cc (30)

Eqs. (28) and (29) and new coordinates S and τ, defined as S ¼ Z� Vg T and τ ¼ εT, allows us
to simplify Eq. (27). An explanation for why the parameter ε exists in the time scaling but is
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absent in the space scaling is given in Refs. [45, 46]. If we consider the terms for eiθ again we
obtain the well-known nonlinear Schrödinger equation (NLSE) for the function F

iFτ þ PFSS þQ Fj j2F ¼ 0 (31)

where the dispersion coefficient P and the coefficient of nonlinearity Q are
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2ω

kul2

m
cos qlð Þ � Vg

2
� �

, Q ¼ � 3B
2mω

(32)

Even though Eq. (31) is PDE, its solution exists. This well-known solution, existing for PQ > 0,
is [15, 47, 48]

F S; τð Þ ¼ Ae sech
S� ueτ

Le

� �
exp

iue S� ucτð Þ
2P

, ue > 2uc (33)

where parameters ue and uc represent envelope and carrier component velocities, while the
amplitude Ae and the soliton width Le have the forms

Ae ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ue2 � 2ueuc

2PQ

s
, Le ¼ 2Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ue2 � 2ue uc
p (34)

It is very difficult to deal with the parameters ue and uc as ue > 2uc is completely unprecise
statement. However, uc=ue < 0:5 seems to be more practical. Hence, new parameters Ue and η
have been introduced as Ue ¼ εue, η ¼ uc=ue and 0 ≤ η < 0:5 [45]. Finally, we can easily obtain
the expression for the longitudinal displacement of the dimer at the position n

un tð Þ ¼ A0sech
nl� Ve t

L

� �
cos Θnl�Ωtð Þ � C

A
� Un tð Þ � C

A
(35)

where

A0 � 2εAe ¼ 2 Uej j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2η
2PQ

s
, L � Le

ε
¼ 2P

Uej j ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2η

p (36)

Ve ¼ Vg þUe, Θ ¼ qþUe

2P
, Ω ¼ ωþ Vg þ ηUe

� �
Ue

2P
(37)

One more parameter can be eliminated using the idea of coherent mode [49]. This mode means
that the envelope and the carrier wave velocities are equal. It follows from Eq. (35) that Ve ¼
Ω=Θ, which yields to the function Ue ηð Þ. This means that the wave un tð Þ is the one phase
function, preserving its shape in time.

To plot the function un tð Þ or, equivalently, Un tð Þ we should know or estimate the values of a
couple of the parameters. Of course, if 2D plot is chosen, Un tð Þ can be presented as either a
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function of t at a certain position n or as a function of n for chosen t. Very detailed analysis of
the parameter selection was done in Ref. [28]. One example for q ¼ 2π=Nl is shown in Figure 4.
Obviously, this is a localized modulated wave usually called as breather. We can see that its
width is about 200 nm, which means that it covers about 25 dimers.

As a conclusion, we can state that the two mathematical procedures bring about even three
results, that is, three different solitons. These are kinks, bell-type solitons and breathers. They
may be signals for the motor proteins to start moving, as explained in Introduction.

Obviously, viscosity has been neglected. This will be explained in the following section, within
the φ-model.

4. φ-model

Aweak point of the U-model is the last term in Eq. (1). A scalar product� p! � E!¼ �QdE cosφn

would be better choice for the potential energy, where d is the distance between the centers of
positive and negative charges within the dipole. This potential indicates the angle as a coordi-
nate instead of the projection u and the Hamiltonian for the radial model, which we call as
φ-model, is [50, 51]

Figure 4. Function U nð Þ for t ¼ 50ns, A ¼ 2:9� 10�3N=m, B ¼ 1:7� 1014N=m3, ku ¼ 150A, N ¼ 15 and η ¼ 0:43.
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Hφ ¼
X
n

I
2
_φn

2 þ kφ
2

φnþ1 � φn

� �2 � pE cosφn

� �
(38)

where I is a moment of inertia of the dimer at the position n. Notice that the W-potential does
not exist in Eq. (38) even though the terms including φn

2 and φn
4 appear as a result of a series

expansion of the cosine function. Instead of viscosity force introduced in the previous section,
we introduce viscosity momentum Mv ¼ �Γ _φ, where Γ is the viscosity coefficient [51–53].
Following the procedure explained earlier, we obtain

αφΨ 00 � rφΨ
0 þ Ψ � Ψ 3 ¼ 0 (39)

where

φ ¼ Ψ
ffiffiffi
6

p
, αφ ¼ Iω2 � kφl2κ2

pE
, rφ ¼ ωΓ

pE
(40)

Like above, the solutions are kink solitons [50].

It is very interesting to compare the expressions for αu and αφ, given by Eqs. (5) and (40). They
can be written as

αu ¼ mκ2

A
v2 � cu2
� �

, cu2 ¼ kul2

m
(41)

and

αφ ¼ Iκ2

pE
v2 � cφ2� �

, cφ2 ¼ kφl2

I
(42)

where v ¼ ω=κ is the soliton velocity, while cu and cφ are corresponding sound velocities.
According to Eq. (11), we can see that the U-model predicts cu > v as A is positive. On the
other hand, αφ ¼ 2rφ

2=9 > 0 [50] means that, according to the φ-model, the kink belongs to the

class of supersonic solitons. We will return to this issue in the next section.

Now, we switch to the semi-discrete approximation within the φ-model to solve the dynamical
equation of motion, which is [51]

ε I €Φn ¼ ε kφ Φnþ1 þ Φn�1 � 2Φnð Þ � εpEΦn þ ε3pEΦn
3 þO ε4

� �
(43)

where φ ¼ εΦ has been used. Of course, Eq. (43) is analog to Eq. (22). Following the procedure
explained in the previous section, we straightforwardly obtain F0 ¼ 0 and F2 ξð Þ ¼ 0, as well as

ω2 ¼ ω2
0 þ

4k
I

sin 2 ql=2ð Þ, ω0 ¼
ffiffiffiffiffiffiffiffiffiffi
pE=I

q
, Vg ¼ l k

Iω
sin qlð Þ (44)

where ω0 is the lowest frequency of the oscillations [59]. Also, we easily obtain NLSE (31), where
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where v ¼ ω=κ is the soliton velocity, while cu and cφ are corresponding sound velocities.
According to Eq. (11), we can see that the U-model predicts cu > v as A is positive. On the
other hand, αφ ¼ 2rφ

2=9 > 0 [50] means that, according to the φ-model, the kink belongs to the

class of supersonic solitons. We will return to this issue in the next section.

Now, we switch to the semi-discrete approximation within the φ-model to solve the dynamical
equation of motion, which is [51]
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where φ ¼ εΦ has been used. Of course, Eq. (43) is analog to Eq. (22). Following the procedure
explained in the previous section, we straightforwardly obtain F0 ¼ 0 and F2 ξð Þ ¼ 0, as well as
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P ¼ 1
2ω

l2k
I

cos qlð Þ � Vg
2

� �
, Q ¼ 3pE

2Iω
: (45)

The final solution φn tð Þ is the same as Un tð Þ except that P and Q are different. Therefore, both
the U- and the φ-models predict the breather waves moving through MT.

Finally, viscosity should be introduced in the semi-discrete approximation [51]. Due to viscos-
ity momentum Mv ¼ �Γ _Φn, the final result φn tð Þ includes the expected exponential term e�β t,
where β ¼ Γ=2I [51].

5. General model of MTs

It was mentioned earlier that the weak point of the U-model is the last term in Eq. (1). Also, it is
better to use the radial coordinate φ than the longitudinal one as we assume angular oscilla-

tions of the dimers. The scalar product � p! � E!¼ �QdE cosφn, existing in the φ-model, solved
these problems but the W-potential has been missing. In fact, a series expansion of cosφn gives
φn

2 and φn
4 terms but with opposite signs from those in the U-model. These two terms are,

practically, a potential that looks like W in a mirror having only one minimum surrounded by
two maxima and, due to its shape, can be called as M-potential [54]. This potential brings
about αφ > 0, which is disputable result.

Therefore, we want to solve the mentioned problem regarding the U-model but to keep the W-
potential, the coordinate φ and, probably, Iω2 < kl2κ2, that is, α < 0. This suggests the follow-
ing Hamiltonian

H ¼
X
n

I
2
_φn

2 þ k
2

φnþ1 � φn

� �2 � A
2
φn

2 þ B
4
φn

4 � pE cosφn

� �
(46)

where A > 0, B > 0 and φn has the same meaning as in the φ-model. Let us call the model as
general one (GM). The procedure mentioned earlier brings about

Iω2 � kl2κ2� �
φ00 � Γωφ0 � A� pEð Þφþ B� pE

6

� �
φ3 ¼ 0 (47)

where, of course, φ � φ ξð Þ. If we consider Eqs. (3) and (47), we can see that the last two terms
in Eq. (47) may be the first derivatives of either W- or M-potential, depending on the sign of the
terms in the brackets. However, these brackets may have different signs or can be zero.
Therefore, the possible cases are:

Case 1: A� pEð Þ B� pE
6

� �
> 0, Case 2: A� pEð Þ B� pE

6

� �
< 0,

Case 3: A ¼ pE, B 6¼ pE
6 , Case 4: A 6¼ pE, B ¼ pE=6.
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All of them are studied in Ref. [54] and they will be explained here briefly.

Case 1 straightforwardly yields to

α1Ψ 00 � r1Ψ
0 þ Ψ � Ψ 3 ¼ 0 (48)

where

φ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� pE
B� pE=6

s
Ψ � KΨ , α1 ¼ Iω2 � kl2κ2

pE� A
, r1 ¼

Γω
pE� A

(49)

and the final solution is [54]

φ ξð Þ ¼ K
2

1þ tanh
3
4r1

ξ
� �� �

, α1 > 0 (50)

Eq. (50) holds for both positive and negative r1. Therefore, φ ξð Þ represents kink soliton if
r1 > 0 and antikink one for negative r1, which is shown in Figure 5.

One of the advantages of the GM over the φ-model is the value of amplitude. Namely, the

amplitude of the kink soliton, according to the φ-model, is
ffiffiffi
6

p
, coming from Eq. (40). This is

unrealistic, too big value. Instead of
ffiffiffi
6

p
, the appropriate factor, existing in the GM, is K, given

by Eq. (49).

If viscosity is neglected, the GM brings about

φ0 ¼ Ktanh ξ=að Þ, a2 ¼ 2α1 (51)

Case 2 straightforwardly yields to

α2Ψ 00 � r2Ψ
0 þ Ψ þ Ψ 3 ¼ 0, φ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pE� A
B� pE=6

s
Ψ � K0Ψ (52)

and to the final results

φ2 ¼ i
K0

2
1þ tanh

3
4r2

ξ
� �� �

, r2 6¼ 0 (53)

and

φ20 ¼ K0 tan ξ=að Þ, a2 ¼ �2α, r2 ¼ 0 (54)

It is obvious that these results do not have physical meaning as φ2 is complex, while φ20 may
diverge.

Case 3 brings about
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P ¼ 1
2ω

l2k
I

cos qlð Þ � Vg
2

� �
, Q ¼ 3pE

2Iω
: (45)

The final solution φn tð Þ is the same as Un tð Þ except that P and Q are different. Therefore, both
the U- and the φ-models predict the breather waves moving through MT.
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5. General model of MTs

It was mentioned earlier that the weak point of the U-model is the last term in Eq. (1). Also, it is
better to use the radial coordinate φ than the longitudinal one as we assume angular oscilla-

tions of the dimers. The scalar product � p! � E!¼ �QdE cosφn, existing in the φ-model, solved
these problems but the W-potential has been missing. In fact, a series expansion of cosφn gives
φn

2 and φn
4 terms but with opposite signs from those in the U-model. These two terms are,

practically, a potential that looks like W in a mirror having only one minimum surrounded by
two maxima and, due to its shape, can be called as M-potential [54]. This potential brings
about αφ > 0, which is disputable result.

Therefore, we want to solve the mentioned problem regarding the U-model but to keep the W-
potential, the coordinate φ and, probably, Iω2 < kl2κ2, that is, α < 0. This suggests the follow-
ing Hamiltonian

H ¼
X
n

I
2
_φn

2 þ k
2

φnþ1 � φn

� �2 � A
2
φn

2 þ B
4
φn

4 � pE cosφn

� �
(46)

where A > 0, B > 0 and φn has the same meaning as in the φ-model. Let us call the model as
general one (GM). The procedure mentioned earlier brings about

Iω2 � kl2κ2� �
φ00 � Γωφ0 � A� pEð Þφþ B� pE

6

� �
φ3 ¼ 0 (47)

where, of course, φ � φ ξð Þ. If we consider Eqs. (3) and (47), we can see that the last two terms
in Eq. (47) may be the first derivatives of either W- or M-potential, depending on the sign of the
terms in the brackets. However, these brackets may have different signs or can be zero.
Therefore, the possible cases are:

Case 1: A� pEð Þ B� pE
6

� �
> 0, Case 2: A� pEð Þ B� pE

6

� �
< 0,

Case 3: A ¼ pE, B 6¼ pE
6 , Case 4: A 6¼ pE, B ¼ pE=6.
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All of them are studied in Ref. [54] and they will be explained here briefly.

Case 1 straightforwardly yields to

α1Ψ 00 � r1Ψ
0 þ Ψ � Ψ 3 ¼ 0 (48)

where

φ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� pE
B� pE=6

s
Ψ � KΨ , α1 ¼ Iω2 � kl2κ2

pE� A
, r1 ¼

Γω
pE� A

(49)

and the final solution is [54]

φ ξð Þ ¼ K
2

1þ tanh
3
4r1

ξ
� �� �

, α1 > 0 (50)

Eq. (50) holds for both positive and negative r1. Therefore, φ ξð Þ represents kink soliton if
r1 > 0 and antikink one for negative r1, which is shown in Figure 5.

One of the advantages of the GM over the φ-model is the value of amplitude. Namely, the

amplitude of the kink soliton, according to the φ-model, is
ffiffiffi
6

p
, coming from Eq. (40). This is

unrealistic, too big value. Instead of
ffiffiffi
6

p
, the appropriate factor, existing in the GM, is K, given

by Eq. (49).

If viscosity is neglected, the GM brings about

φ0 ¼ Ktanh ξ=að Þ, a2 ¼ 2α1 (51)

Case 2 straightforwardly yields to

α2Ψ 00 � r2Ψ
0 þ Ψ þ Ψ 3 ¼ 0, φ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pE� A
B� pE=6

s
Ψ � K0Ψ (52)

and to the final results

φ2 ¼ i
K0

2
1þ tanh

3
4r2

ξ
� �� �

, r2 6¼ 0 (53)

and

φ20 ¼ K0 tan ξ=að Þ, a2 ¼ �2α, r2 ¼ 0 (54)

It is obvious that these results do not have physical meaning as φ2 is complex, while φ20 may
diverge.

Case 3 brings about
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α3Ψ 00 � r3Ψ
0 þ Ψ 3 ¼ 0, α3 ¼ Iω2 � kl2κ2

B� pE=6
, r3 ¼

Γω
B� pE=6

(55)

as well as a0 ¼ a ¼ α3 ¼ r3 ¼ 0, which certainly means that Eq. (55) does not have any solution
having physical sense.

The remaining Case 4 linearizes Eq. (47) and will not be studied here.

Therefore, the GM yields to the kink solitons as the previous two models do. However, this
is the radial model and the problems with both the last term in Eq. (1) and the huge amplitude in
the case of the φ-model have been solved. We should study one more issue. It was mentioned
earlier that the U-model predicts the subsonic kink soliton, while the φ-model predicts the
supersonic wave. How about the GM? It was shown that Case 1 yields to the solutions having
physical sense and that α1 > 0. According to Eq. (49), we easily reach the final conclusion:

a. If A > pE and B > pE=6, then r1 < 0 and the function φ x; tð Þ is subsonic soliton, kink for
the positive K in Eq. (50) and antikink otherwise.

b. If A < pE and B < pE=6, then r1 > 0 and the function φ x; tð Þ is supersonic soliton, antikink
for the positive K in Eq. (50) and kink otherwise.

All this certainly suggests the advantages of the GM with respect to the previous two.

Figure 5. Kink soliton for r1 ¼ �1 (a) and antikink soliton for r1 ¼ 1 (b) for K ¼ 1.
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6. Conclusion and future research

In this chapter, the three models describing nonlinear dynamics of MTs are shown. The first
one, the U-model, is the improved version of the first nonlinear model and it predicts subsonic
kink solitons moving along MT. The second one, the radial φ-model, predicts the supersonic
kinks. Finally, the GM is explained. This is the radial model which yields both possibilities
regarding the kink’s speed. If we assume that the kink soliton is subsonic wave then we know
the minimum value of the parameter A, that is, A > pE, as explained earlier.

Two mathematical procedures are explained, continuum and semi-discrete approximations. It
is very interesting that the final result depends not only on the physical system but on the
mathematical methods as well. These solutions are the kink soliton and the breather. The
question is which one, if any, really moves along MTs. This is not known in the moment and
cannot be without experimental results.

It was demonstrated that the GM is better than the previous two models. However, this does
not mean that it should not be improved. For example, there has been an attempt to improve
the model introducing Morse potential instead of the harmonic one [55]. The harmonic poten-
tial energy assumes that attractive and repulsive forces are equal. Morse potential is not
symmetric and is good for both strong and weak interactions.

In this chapter, the dimers are considered as elementary units. However, their structure is more
complicated and they include tubulin tales (TTs). Consequently, nonlinear dynamics of TTs
should also be studied and some results already exist [56, 57].

The W-potential has two minima which means that it assumes existence of the two angles
between the dimer and the direction of PF around which the dimer oscillates. One of the future
tasks should be measuring these angles. First of all, such experiment would check if the W-
potential is correct or not. If it is, then our knowledge of their values would improve the theory
a lot.

One of the future research goals should be two-component model. This may mean that we
should construct the model assuming two degrees of freedom. However, one of these degrees
can be an internal one, which means that oscillations if monomers within the dimer should be
taken into consideration. Notice that the two-component model may be the one studying
electro-acoustic wave excitations [58].

Finally, we should bear in mind the cytological and medical applications of the research
explained in this chapter [59–61].
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Abstract

Two novel delayed epidemic spreading models with latent period on scale-free network
are presented. The formula of the basic reproductive number and the analysis of dynam-
ical behaviors for the models are presented. Meanwhile, numerical simulations are given
to verify the main results.
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1. Introduction

Following the seminal work on scale-free network, in which the probability of p(k) for any
node with k links to other nodes is distributed according to the power law p(k) =Ck�γ (2 <γ ≤ 3),
suggested by Barabási and Albert [1], the researches of complex network have attracted more
and more interests. It was found that many relevant networks, for instance, the internet, the
World Wide Web (WWW), the patterns of human sexual contacts, biology network, transpor-
tation infrastructure, etc., exhibit power-law or “scale-free” degree distributions.

The dynamical behaviors of epidemic diseases have been studied for a long time. The epidemic
spreading process on network is primarily dominated by two factors: one is the macroscopic
topology of the underlying network, and the other is the microscopic infection scheme, which
includes properties of disease, infection pattern, individual differences, infectivity of individ-
uals, etc. The traditional epidemic dynamics is based on homogeneous network, and the
infectivity rate is equally likely over all links [2]. However, the real disease transmission
network exhibits scale-free properties, and the spreading of epidemic disease (e.g., computer
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virus spreading, epidemic disease between human beings) on heterogeneous network, i.e.,
scale-free network, has been studied by many researchers [3–27].

A handful of existing works address the complex behavior of epidemic spreading using
compartmental differential equations [2, 15]. Comparing with the ordinary differential equa-
tion models, more realistic models should be retarded functional differential equation models
which can include some of the past states of these systems. Time delay plays an important role
in the process of the epidemic spreading, for instance, the latent period of the infectious
diseases or computer virus, the infection period of infective members, and the immunity
period of the recovered individuals can be represented by time delays [2]. Recently, some
researchers discussed the epidemic spreading model with time delays [7, 15–17]. Susceptible-
Infected-Removed (SIR) model is a basic and important epidemic model, Zou and Wu
discussed a delayed SIR model without birth and death [15], and Wang and Wang et al.
discussed a delayed SIR model with birth rate and death rate [16]. However, it is suitable to
divide the nodes being considered into disjoint classes of susceptible, exposed, infective, and
recovered nodes in modeling disease transmission [2, 10], i.e., a susceptive node first through
an incubation period (and it is said to become exposed) after infection and before becoming
infectious. For example, the latent period of epidemic cholera is about 1–3 days, hepatitis B
virus 100 days, measles 10–11 days, chincough 7–10 days, diphtheria 2–4 days, scarlatina 2–5
days, poliomyelitis 7–14 days, and so on [25]; the resulting model is Susceptible-Exposed-
Infected-Removed (SEIR) model. In addition, some diseases confer temporary immunity, and
the recovered nodes cycle back into the susceptive class after an immune period; the resulting
model is Susceptible-Exposed-Infected-Removed-susceptible (SEIRS) model.

In this paper, we will present a suitable SEIR model with time delay and a suitable SEIRS
model with time delay on heterogeneous network by using functional differential equation to
investigate the dynamical behaviors of epidemic spreading.

The rest of this paper is organized as follows: In Section 2, the SEIRSmodel with time delay on
scale-free network is discussed. The SEIRS model with time delay on scale-free network is
discussed in Section 3. Finally, the main conclusions of this work are summarized in Section 4.

2. Analysis of the SEIR model with time delay

2.1. The SEIR model

Suppose that the size of the network is a constant N and the degree of each node is time
invariant during the period of epidemic spreading, p(k) denotes the degree distribution of the
network. We classify all the nodes in the network into n groups such that the nodes in the same
group have the same degree. That is, each node in the kth group has the same connectivity
(k =m,m + 1,⋯,n). Let Sk(t),Ek(t), Ik(t) and Rk(t) be the relative density of susceptible nodes,
exposed nodes, infected nodes, and recovered nodes of connectivity k at time t, respectively,
where k =m,m + 1,⋯, n (m and n are the minimum and maximum degree in network topology)
and n is related to the network age, measured as the number of nodes N [3]:

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals26

n ¼ mN1= γ�1ð Þ: (1)

Let τ be the latent period of the disease, i.e., each exposed node becomes an infected node after
τ. The relative density Sk(t),Ek(t), Ik(t) and Rk(t), at the mean-field level, satisfy the following set
of coupled different equations when t > 0 [15, 16]:

_Sk tð Þ ¼ �λ kð ÞSk tð ÞΘ tð Þ,
_Ek tð Þ ¼ λ kð ÞSk tð ÞΘ tð Þ � λ kð ÞSk t� τð ÞΘ t� τð Þ,
_I k tð Þ ¼ λ kð ÞSk t� τð ÞΘ t� τð Þ � μIk tð Þ,
_Rk tð Þ ¼ μIk tð Þ

8>>>><
>>>>:

(2)

with the normalization condition

Sk tð Þ þ Ek tð Þ þ Ik tð Þ þ Rk tð Þ ¼ 1 (3)

holds due to the fact that the number of total nodes with degree k is a constant p(k)N during
the period of epidemic spreading. Where λ(k) is the degree-dependent infection rate such as
λ(k) =λk [3] and λC(k) [4], μ is the recovery rate of the infected nodes; Θ(t) represents the
probability that any given link points to an infected node. Assuming that the network has no
degree correlations [7, 16, 22], we have

Θ tð Þ ¼ 1
kh i
Xn

k¼m

ϕ kð Þp kð ÞIk tð Þ (4)

in which 〈k〉 =∑kp(k)k stands for the average node degree and ϕ(k) means the occupied edges
which can transmit the disease (i.e., represents the infectivity of infected nodes) [22]; they have
many different forms, such as φ(k) =A in [5], φ(k) = akα/(1 + bkα), 0 <α < 1 in [7], and so on. Here,
we point out that the delay τ in the model (2) in this paper is different from one in the model
(2)–(4) in [15]. The incubation period τ in the model in [15] is another kind of time period,
during which the infectious agents develop in the vector and the infected vector becomes
infectious after that time.

Note that we obtain from the third equation of system (2) that

Ek tð Þ ¼ λ kð Þ
ðt
t�τ

Sk sð ÞΘ sð Þds (5)

and the normalization condition becomes the following mathematical form

Sk tð Þ þ λ kð Þ
ðt
t�τ

Sk sð ÞΘ sð Þdsþ Ik tð Þ þ Rk tð Þ ¼ 1: (6)

The initial conditions of system (2) are

Sk θð Þ ¼ φk θð Þ, Ik θð Þ ¼ Ψ k θð Þ, Rk tð Þ ¼ ζk θð Þ,θ∈ �τ; 0½ � (7)
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and satisfy Sk 0ð Þ þ λ kð Þ Ð 0�τ Sk sð ÞΘ sð Þdsþ Ik 0ð Þ þ Rk 0ð Þ ¼ 1 which guarantees the normali-
zation condition holds. And Φk = (ϕk(θ),Ψk(θ), ζ(θ), k =m,m + 1,⋯, n�m + 1)∈C are non-
negative continuous on [�τ, 0], ϕk(0) > 0,Ψk(0) > 0, and ζ(θ) = 0 for θ = 0. C denotes
the Banach space C([�τ, 0],R3(n�m + 1)) with the norm, where ∣f(θ)∣τ = sup�τ ≤ θ ≤ 0 ∣ f(θ)∣.

ωk k ¼ Pn
i¼m Ψ i θð Þj j2τ þ ϕi θð Þ�� ��2

τ þ ζi θð Þj j2τ
� �1=2

:

�

2.2. The main results for the model

In this section, we first discuss the final size relation of solutions for system (2).

It is easy to know that system (2) only has a disease-free equilibrium set

M0 ¼ bS; bE;bI ; bR
� �

jEk ¼ Ik ¼ 0; Sk þ Rk ¼ 1;Rk; Sk ≥ 0; k ¼ m;mþ 1;⋯; n
n o

(8)

in which bS ¼ Sm;Smþ1;⋯;Snð Þ, bE ¼ Em;Emþ1;⋯;Enð Þ,bI ¼ Im; Imþ1;⋯; Inð Þ, bR ¼ Rm;Rmþ1;⋯;Rnð Þ:
Supposing f(t) is an arbitrary nonnegative continuous function f(t), we adopt the following
convention:

f þ∞ð Þ ¼ lim
t!þ∞

f tð Þ (9)

and we obtain from the last equation of system (2) that

Rk þ∞ð Þ � Rk 0ð Þ ¼ μ
ðþ∞

0
Ik sð Þds: (10)

According to the last equation of system (2), Rk(t) is increasing and bounded above by 1, and it
has a limit as t! +∞. Thus, the left-hand side of (10) is finite due to boundedness of Rk(+∞),

and Rk(0) exits, i.e., 0 <
Ðþ∞
0 Ik uð Þdu < þ∞. Since Ik(t) is smooth nonnegative function, we know

Ik(+∞) = 0, i.e., limt! +∞Ik(t) = 0.

Furthermore, we have from (5) that

0 ≤Ek tð Þ ¼ λ kð Þ
ðt
t�τ

Sk sð ÞΘ sð Þds ≤λ kð Þ
ðt
t�τ

Θ sð Þds, (11)

In addition, by using mean value theorem for integrals, we have
ðt
t�τ

Θ sð Þds ¼ Θ ξð Þτ, t� τ ≤ ξ ≤ tð Þ: (12)

We obtain from Ik(+∞) = 0 that limξ! +∞Θ(ξ)τ = 0 and then limt! +∞Ek(t) = 0. Hence, M0 is
globally attractive [27].

In addition, it follows from (2) that

_Sk tð Þ þ _Ek tð Þ þ _I k tð Þ ¼ �μIk tð Þ: (13)
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Integrating (13) from 0 to +∞, we obtain that

Sk 0ð Þ � Sk þ∞ð Þ þ Ek 0ð Þ � Ek þ∞ð Þ þ Ik 0ð Þ � Ik þ∞ð Þ ¼ μ
ðþ∞

0
Ik sð Þds: (14)

Noting that Ik(+ ∞) = 0, Ek(0) =Ek(+ ∞) = 0, and Sk(+ ∞) exists due to existence of
Ðþ∞
0 Ik sð Þds, we

have from (14) that
ðþ∞

0
Ik sð Þds ¼ 1

μ
Sk 0ð Þ þ Ik 0ð Þ � Sk þ∞ð Þð Þ: (15)

Additionally, integrating the first equation of system (2) from 0 to + ∞, we have

ln
Sk 0ð Þ
Sk ∞ð Þ ¼

λ kð Þ
kh i
X
k

ϕ kð Þp kð Þ
ðþ∞

0
Ik sð Þds: (16)

Substituting (15) into (16), we obtain that

ln
Sk 0ð Þ
Sk þ∞ð Þ ¼

λ kð Þ
kh i
X
k

ϕ kð Þp kð Þ 1
μ

Sk 0ð Þ þ Ik 0ð Þ � Sk þ∞ð Þð Þ: (17)

Because there are only several infective nodes at the beginning of disease spreading, we take
Sk(0) ≈ 1 and obtain from (17) that

ln Sk þ∞ð Þ ¼ λ kð Þ
μ kh i

X
k

ϕ kð Þp kð Þ Sk þ∞ð Þ � 1ð Þ: (18)

Consequently,

Rk ∞ð Þ ¼ 1� Sk þ∞ð Þ: (19)

Hence, we have the following result.

Theorem 2.1. The equilibrium set M0 ¼ bS; bE;bI ; bR
� �

jEk ¼ Ik ¼ 0; Sk þ Rk ¼ 1; k ¼ 1; 2;⋯; n
n o

of

system (2) is globally attractive, i.e., limt! +∞Ik(t) = 0, limt!∞Ek(t) = 0. And Rk(+∞), Sk(+∞) are given
by formulas (18) and (19).

Note that it is impossible for every susceptible to be infected. Supposing Sk(+∞) = 0, we know
from (16) that

þ∞ ¼ λ kð Þ
μ kh i

X
k

ϕ kð Þp kð Þ (20)

Obviously, Eq. (20) does not hold, i.e., Sk(+∞) = 0. Similar results were obtained in the early
literature [19].

Secondly, we discuss the basic reproductive number of model (2). The basic reproductive
number is an important conception; it represents the average number of secondary infections
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τ þ ζi θð Þj j2τ
� �1=2

:

�

2.2. The main results for the model

In this section, we first discuss the final size relation of solutions for system (2).

It is easy to know that system (2) only has a disease-free equilibrium set

M0 ¼ bS; bE;bI ; bR
� �

jEk ¼ Ik ¼ 0; Sk þ Rk ¼ 1;Rk; Sk ≥ 0; k ¼ m;mþ 1;⋯; n
n o

(8)

in which bS ¼ Sm;Smþ1;⋯;Snð Þ, bE ¼ Em;Emþ1;⋯;Enð Þ,bI ¼ Im; Imþ1;⋯; Inð Þ, bR ¼ Rm;Rmþ1;⋯;Rnð Þ:
Supposing f(t) is an arbitrary nonnegative continuous function f(t), we adopt the following
convention:

f þ∞ð Þ ¼ lim
t!þ∞

f tð Þ (9)

and we obtain from the last equation of system (2) that

Rk þ∞ð Þ � Rk 0ð Þ ¼ μ
ðþ∞

0
Ik sð Þds: (10)

According to the last equation of system (2), Rk(t) is increasing and bounded above by 1, and it
has a limit as t! +∞. Thus, the left-hand side of (10) is finite due to boundedness of Rk(+∞),

and Rk(0) exits, i.e., 0 <
Ðþ∞
0 Ik uð Þdu < þ∞. Since Ik(t) is smooth nonnegative function, we know

Ik(+∞) = 0, i.e., limt! +∞Ik(t) = 0.

Furthermore, we have from (5) that

0 ≤Ek tð Þ ¼ λ kð Þ
ðt
t�τ

Sk sð ÞΘ sð Þds ≤λ kð Þ
ðt
t�τ

Θ sð Þds, (11)

In addition, by using mean value theorem for integrals, we have
ðt
t�τ

Θ sð Þds ¼ Θ ξð Þτ, t� τ ≤ ξ ≤ tð Þ: (12)

We obtain from Ik(+∞) = 0 that limξ! +∞Θ(ξ)τ = 0 and then limt! +∞Ek(t) = 0. Hence, M0 is
globally attractive [27].

In addition, it follows from (2) that

_Sk tð Þ þ _Ek tð Þ þ _I k tð Þ ¼ �μIk tð Þ: (13)
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Integrating (13) from 0 to +∞, we obtain that

Sk 0ð Þ � Sk þ∞ð Þ þ Ek 0ð Þ � Ek þ∞ð Þ þ Ik 0ð Þ � Ik þ∞ð Þ ¼ μ
ðþ∞

0
Ik sð Þds: (14)

Noting that Ik(+ ∞) = 0, Ek(0) =Ek(+ ∞) = 0, and Sk(+ ∞) exists due to existence of
Ðþ∞
0 Ik sð Þds, we

have from (14) that
ðþ∞

0
Ik sð Þds ¼ 1

μ
Sk 0ð Þ þ Ik 0ð Þ � Sk þ∞ð Þð Þ: (15)

Additionally, integrating the first equation of system (2) from 0 to + ∞, we have

ln
Sk 0ð Þ
Sk ∞ð Þ ¼

λ kð Þ
kh i
X
k

ϕ kð Þp kð Þ
ðþ∞

0
Ik sð Þds: (16)

Substituting (15) into (16), we obtain that

ln
Sk 0ð Þ
Sk þ∞ð Þ ¼

λ kð Þ
kh i
X
k

ϕ kð Þp kð Þ 1
μ

Sk 0ð Þ þ Ik 0ð Þ � Sk þ∞ð Þð Þ: (17)

Because there are only several infective nodes at the beginning of disease spreading, we take
Sk(0) ≈ 1 and obtain from (17) that

ln Sk þ∞ð Þ ¼ λ kð Þ
μ kh i

X
k

ϕ kð Þp kð Þ Sk þ∞ð Þ � 1ð Þ: (18)

Consequently,

Rk ∞ð Þ ¼ 1� Sk þ∞ð Þ: (19)

Hence, we have the following result.

Theorem 2.1. The equilibrium set M0 ¼ bS; bE;bI ; bR
� �

jEk ¼ Ik ¼ 0; Sk þ Rk ¼ 1; k ¼ 1; 2;⋯; n
n o

of

system (2) is globally attractive, i.e., limt! +∞Ik(t) = 0, limt!∞Ek(t) = 0. And Rk(+∞), Sk(+∞) are given
by formulas (18) and (19).

Note that it is impossible for every susceptible to be infected. Supposing Sk(+∞) = 0, we know
from (16) that

þ∞ ¼ λ kð Þ
μ kh i

X
k

ϕ kð Þp kð Þ (20)

Obviously, Eq. (20) does not hold, i.e., Sk(+∞) = 0. Similar results were obtained in the early
literature [19].

Secondly, we discuss the basic reproductive number of model (2). The basic reproductive
number is an important conception; it represents the average number of secondary infections
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infected by an individual of infective during the whole course of disease in the case that all the
members of the population are susceptible [2].

Theorem 2.2. For system (2),

R0 ¼
λ kð Þϕ kð Þ� �
μ kh i (21)

is the basic reproductive number for system (2).

Proof. Note that
Pn

k¼m φ kð Þp kð ÞIk tð Þ may be considered as the force of infection [15] and Θ(t)
may be considered as the average force of infection. Letting Θ(t) be an auxiliary function and
computing its time derivative along the solution of (2), we get

dΘ tð Þ
dt

¼ 1
kh i
X
k

ϕ kð Þp kð Þ _I k tð Þ

¼ 1
kh i
X
k

ϕ kð Þp kð Þ λ kð ÞSk t� τð ÞΘ t� τð Þ � μIk tð Þ� �

¼ Θ t� τð Þ 1
kh i
X
k

λ kð Þϕ kð Þp kð ÞSk t� τð Þ � μΘ tð Þ:

(22)

We have

dΘ tð Þ
dt

����
t¼0

¼ Θ �τð Þ 1
kh i
X
k

λ kð Þϕ kð Þp kð ÞSk �τð Þ � μΘ 0ð ÞÞ: (23)

Since each exposed node becomes infected node after τ, Ik(�τ) = Ik(0). It follows thatΘ(�τ) =Θ(0).
Meanwhile, Sk(�τ) ≈ 1. Hence, we have from (23) that

dΘ tð Þ
dt

����
t¼0

¼ μ
1

μ kh i
X
k

λ kð Þϕ kð Þp kð Þ � 1

 !
Θ 0ð Þ ¼ μ R0 � 1ð ÞΘ 0ð Þ: (24)

If R0 > 1,
dΘ tð Þ
dt

���
t¼0

> 0, which means that Θ(t) increases at the beginning of the epidemic and

there exists at least one outbreak.

Meanwhile, if R0 ≤ 1, we obtain from (24) that dΘ tð Þ
dt

���
t¼0

≤ 0. Let t∗ = sup {T ≥ 0 :Θ(t) decreases on

[0,T]}. Then, it follows from the above discussion that T ≥ 0. We will prove that T = + ∞ . Note
that we obtain from the first equation of system (2) that

Sk tð Þ ¼ Sk 0ð Þe�λ kð ÞΨ tð Þ (25)

in which Ψ tð Þ ¼ 1
kh i
P

k

Ð t
0 φ kð Þp kð ÞIk uð Þdu: Hence, it follows from Eqs. (22) and (25) that

dΘ tð Þ
dt

¼ Θ t� τð Þ 1
kh i
X
k

λ kð Þϕ kð Þp kð ÞSk 0ð Þe�λ kð ÞΨ t�τð Þ � μΘ tð Þ: (26)
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By way of contradiction, supposing that T < +∞, then we have d
dtΘ t∗ð Þ ¼ 0, and there exists a

t1∈ (t∗, t∗ + τ] such that d
dtΘ t1ð Þ > 0. It follows that there is a t2∈ [t∗, t1) such that d

dtΘ t2ð Þ ¼ 0 and
Θ(t2) <Θ(t1). Note that Θ(t2� τ) ≥Θ(t1� τ). It follows from (25) that

0 <
d
dt
Θ t1ð Þ ≤ d

dt
Θ t2ð Þ ¼ 0, (27)

which is a contradiction. Hence, Θ(t) decreases on [0, +∞), and there is no one outbreak when
R0 ≤ 1. Hence, R0 is the basic reproductive number for system (2).

It follows from Theorems 2.1 and 2.2 that R0 is the basic reproductive number for system (2),
which is irrelative to τ. There exists at least one outbreak for the spreading of epidemic if R0 > 1,
and there is no outbreak if R0 ≤ 1. Whether or not there exists one outbreak for the spreading of
epidemic, limt! +∞Ik(t) = 0 due to global attractivity of M0.

Besides, if we let τ = 0, φ(k) = k,λ(k) =λk, μ = 1, the model (2) reduces to the model in [9].
Furthermore, the basic reproductive number for system (2) is R0 = (λ〈k

2〉)/(〈k〉), which is identi-
cal with the results that the epidemic threshold λc = (λ〈k〉)/(〈k

2〉) in [9]. And, R0 is always more
than unity when N is large enough [3, 7], and it means the lack of any basic reproductive
number. This result is consistent with the results in epidemic dynamics on heterogeneous
network [3, 10].

2.3. Numerical simulation for the model

Now, we present numerical simulations to support the results obtained in previous sections
and analyze the effect of time delay on behaviors of disease spreading.

The degree distribution of scale-free network is p(k) =Ck�γ, and C satisfies
Pn

k¼1 p kð Þ ¼ 1.
Here, we set the maximum degree n = 100 and the minimum degree m = 1. Consider system
(2), let φ(k) = akα/(1 + bα) in which a=0.5,α=0.75, b=0.02 and λ(k) =λk, and let γ=2.5. Figures 1–4
show the dynamic behaviors of system (2) with the initial functions satisfying condition (7).
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Figure 1. (a) The time evolutions for system (2) with λ = 0.5,μ = 0.4, τ = 5 and Ik(0) = 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k
and R0 = 0.4006. (b) The time evolutions for system (2) with different initial values, λ = 0.4,μ = 0.4, τ = 5 and R0 = 0.4006.
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infected by an individual of infective during the whole course of disease in the case that all the
members of the population are susceptible [2].

Theorem 2.2. For system (2),

R0 ¼
λ kð Þϕ kð Þ� �
μ kh i (21)

is the basic reproductive number for system (2).

Proof. Note that
Pn

k¼m φ kð Þp kð ÞIk tð Þ may be considered as the force of infection [15] and Θ(t)
may be considered as the average force of infection. Letting Θ(t) be an auxiliary function and
computing its time derivative along the solution of (2), we get

dΘ tð Þ
dt

¼ 1
kh i
X
k

ϕ kð Þp kð Þ _I k tð Þ

¼ 1
kh i
X
k

ϕ kð Þp kð Þ λ kð ÞSk t� τð ÞΘ t� τð Þ � μIk tð Þ� �

¼ Θ t� τð Þ 1
kh i
X
k

λ kð Þϕ kð Þp kð ÞSk t� τð Þ � μΘ tð Þ:

(22)

We have

dΘ tð Þ
dt

����
t¼0

¼ Θ �τð Þ 1
kh i
X
k

λ kð Þϕ kð Þp kð ÞSk �τð Þ � μΘ 0ð ÞÞ: (23)

Since each exposed node becomes infected node after τ, Ik(�τ) = Ik(0). It follows thatΘ(�τ) =Θ(0).
Meanwhile, Sk(�τ) ≈ 1. Hence, we have from (23) that

dΘ tð Þ
dt

����
t¼0

¼ μ
1

μ kh i
X
k

λ kð Þϕ kð Þp kð Þ � 1

 !
Θ 0ð Þ ¼ μ R0 � 1ð ÞΘ 0ð Þ: (24)

If R0 > 1,
dΘ tð Þ
dt

���
t¼0

> 0, which means that Θ(t) increases at the beginning of the epidemic and

there exists at least one outbreak.

Meanwhile, if R0 ≤ 1, we obtain from (24) that dΘ tð Þ
dt

���
t¼0

≤ 0. Let t∗ = sup {T ≥ 0 :Θ(t) decreases on

[0,T]}. Then, it follows from the above discussion that T ≥ 0. We will prove that T = + ∞ . Note
that we obtain from the first equation of system (2) that

Sk tð Þ ¼ Sk 0ð Þe�λ kð ÞΨ tð Þ (25)

in which Ψ tð Þ ¼ 1
kh i
P

k

Ð t
0 φ kð Þp kð ÞIk uð Þdu: Hence, it follows from Eqs. (22) and (25) that

dΘ tð Þ
dt

¼ Θ t� τð Þ 1
kh i
X
k

λ kð Þϕ kð Þp kð ÞSk 0ð Þe�λ kð ÞΨ t�τð Þ � μΘ tð Þ: (26)
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By way of contradiction, supposing that T < +∞, then we have d
dtΘ t∗ð Þ ¼ 0, and there exists a

t1∈ (t∗, t∗ + τ] such that d
dtΘ t1ð Þ > 0. It follows that there is a t2∈ [t∗, t1) such that d

dtΘ t2ð Þ ¼ 0 and
Θ(t2) <Θ(t1). Note that Θ(t2� τ) ≥Θ(t1� τ). It follows from (25) that

0 <
d
dt
Θ t1ð Þ ≤ d

dt
Θ t2ð Þ ¼ 0, (27)

which is a contradiction. Hence, Θ(t) decreases on [0, +∞), and there is no one outbreak when
R0 ≤ 1. Hence, R0 is the basic reproductive number for system (2).

It follows from Theorems 2.1 and 2.2 that R0 is the basic reproductive number for system (2),
which is irrelative to τ. There exists at least one outbreak for the spreading of epidemic if R0 > 1,
and there is no outbreak if R0 ≤ 1. Whether or not there exists one outbreak for the spreading of
epidemic, limt! +∞Ik(t) = 0 due to global attractivity of M0.

Besides, if we let τ = 0, φ(k) = k,λ(k) =λk, μ = 1, the model (2) reduces to the model in [9].
Furthermore, the basic reproductive number for system (2) is R0 = (λ〈k

2〉)/(〈k〉), which is identi-
cal with the results that the epidemic threshold λc = (λ〈k〉)/(〈k

2〉) in [9]. And, R0 is always more
than unity when N is large enough [3, 7], and it means the lack of any basic reproductive
number. This result is consistent with the results in epidemic dynamics on heterogeneous
network [3, 10].

2.3. Numerical simulation for the model

Now, we present numerical simulations to support the results obtained in previous sections
and analyze the effect of time delay on behaviors of disease spreading.

The degree distribution of scale-free network is p(k) =Ck�γ, and C satisfies
Pn

k¼1 p kð Þ ¼ 1.
Here, we set the maximum degree n = 100 and the minimum degree m = 1. Consider system
(2), let φ(k) = akα/(1 + bα) in which a=0.5,α=0.75, b=0.02 and λ(k) =λk, and let γ=2.5. Figures 1–4
show the dynamic behaviors of system (2) with the initial functions satisfying condition (7).
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Figure 1. (a) The time evolutions for system (2) with λ = 0.5,μ = 0.4, τ = 5 and Ik(0) = 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k
and R0 = 0.4006. (b) The time evolutions for system (2) with different initial values, λ = 0.4,μ = 0.4, τ = 5 and R0 = 0.4006.
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Denote that

S tð Þ ¼
Xn

k¼m

p kð ÞSk tð Þ, I tð Þ ¼
Xn

k¼m

p kð ÞIk tð Þ, R tð Þ ¼
Xn

k¼m

p kð ÞRk tð Þ: (28)

They are the relative average density of susceptible nodes, exposed nodes, infected nodes, and
recovered nodes at time t, respectively.

First, Figures 1 and 2 show that the infection eventually disappears, whatever R0 < 1 or not,
and the outbreak of disease spreading appears when R0 > 1 and the outbreak of disease
spreading does not appear when R0 ≤ 1. Meanwhile, Figure 3 shows that phase trajectories on
SR-plane of system (2) with different initial values tend to be S(t) +R(t) = 1, i.e., ∑kp(k)(Sk(t)
+Rk(t)) = 1, which is consistent with the fact that the equilibrium M0 is globally attractive. The
numerical simulation results are identical with Theorems 2.1–2.2.
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Figure 3. (a) Phase trajectories on SR-plane of system (2) with different initial values, λ = 0.5,μ = 0.4, τ = 5 and R0 = 0.4006.
(b) Phase trajectories on SR-plane of system (2) with different initial values, λ = 1,μ = 0.1, τ = 5 and R0 = 3.2051.
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Figure 2. (a) The time evolutions for system (2) with λ = 1,μ = 0.1, τ = 5 and Ik(0) = 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k and
R0 = 3.2051. (b) The time evolutions for system (2) with different initial values, λ = 1,μ = 0.1, τ = 5 and R0 = 3.2051.
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Second, time delay τ has no effects on the basic reproductive number R0 according to (21),
but it has much impact on the of process of the disease; the slower the relative density of
infected nodes converges to zero, the larger τ gets, i.e., time delay may slow down the speed
of disappearing the disease spreading on network. Meanwhile, time delay may effectively
reduce the peak value of the relative density of infected nodes when R0 > 1. Thus, the delay
cannot be ignored.

At last, we know from Figure 5 that time evolutions of the average force of infection for
system (2) is consistent with time evolutions of the average relative density I(t). However,
there is only one outbreak, which is different from the phenomenon in [15].
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Figure 4. (a) The time evolutions of the average relative density I(t) for system (2) with different τ as well as Ik(0)
= 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k, λ = 0.5,μ = 0.4 and R0 = 0.4006. (b) The time evolutions of the average relative
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Figure 5. (a) The time evolutions of the average force of infection Θ(t) for system (2) with different τ as well as with Ik(0)
= 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k, λ = 0.5,μ = 0.4 and R0 = 0.4006. (b) The time evolutions of the average force of
infection Θ(t) for system (2) with different τ as well as Ik(0) = 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k, λ = 1,μ = 0.1 and
R0 = 3.2051.
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Denote that

S tð Þ ¼
Xn

k¼m

p kð ÞSk tð Þ, I tð Þ ¼
Xn

k¼m

p kð ÞIk tð Þ, R tð Þ ¼
Xn

k¼m

p kð ÞRk tð Þ: (28)

They are the relative average density of susceptible nodes, exposed nodes, infected nodes, and
recovered nodes at time t, respectively.

First, Figures 1 and 2 show that the infection eventually disappears, whatever R0 < 1 or not,
and the outbreak of disease spreading appears when R0 > 1 and the outbreak of disease
spreading does not appear when R0 ≤ 1. Meanwhile, Figure 3 shows that phase trajectories on
SR-plane of system (2) with different initial values tend to be S(t) +R(t) = 1, i.e., ∑kp(k)(Sk(t)
+Rk(t)) = 1, which is consistent with the fact that the equilibrium M0 is globally attractive. The
numerical simulation results are identical with Theorems 2.1–2.2.
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Figure 3. (a) Phase trajectories on SR-plane of system (2) with different initial values, λ = 0.5,μ = 0.4, τ = 5 and R0 = 0.4006.
(b) Phase trajectories on SR-plane of system (2) with different initial values, λ = 1,μ = 0.1, τ = 5 and R0 = 3.2051.
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Figure 2. (a) The time evolutions for system (2) with λ = 1,μ = 0.1, τ = 5 and Ik(0) = 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k and
R0 = 3.2051. (b) The time evolutions for system (2) with different initial values, λ = 1,μ = 0.1, τ = 5 and R0 = 3.2051.
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Second, time delay τ has no effects on the basic reproductive number R0 according to (21),
but it has much impact on the of process of the disease; the slower the relative density of
infected nodes converges to zero, the larger τ gets, i.e., time delay may slow down the speed
of disappearing the disease spreading on network. Meanwhile, time delay may effectively
reduce the peak value of the relative density of infected nodes when R0 > 1. Thus, the delay
cannot be ignored.

At last, we know from Figure 5 that time evolutions of the average force of infection for
system (2) is consistent with time evolutions of the average relative density I(t). However,
there is only one outbreak, which is different from the phenomenon in [15].
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Figure 4. (a) The time evolutions of the average relative density I(t) for system (2) with different τ as well as Ik(0)
= 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k, λ = 0.5,μ = 0.4 and R0 = 0.4006. (b) The time evolutions of the average relative
I(t) for system (2) with different τ as well as Ik(0) = 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k, λ = 1,μ = 0.1 and
R0 = 3.2051.
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Figure 5. (a) The time evolutions of the average force of infection Θ(t) for system (2) with different τ as well as with Ik(0)
= 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k, λ = 0.5,μ = 0.4 and R0 = 0.4006. (b) The time evolutions of the average force of
infection Θ(t) for system (2) with different τ as well as Ik(0) = 0.2, k = 2, 3, 4, 5, Ik(0) = 0 for the other k, λ = 1,μ = 0.1 and
R0 = 3.2051.
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3. Analysis of the SEIRS model with time delays

3.1. The SEIRS model

Since some diseases confer temporary immunity, the recovered nodes cycle back into the
susceptive class after an immune period. Let ω be furthermore the immune period of the
recovered node, and the recovered node cycles back into the susceptive class after an immune
period ω. Denote that σ =max {τ,ω}. Based on the model (2), the relative densities Sk(t),Ek(t),
Ik(t) and Rk(t), at the mean-field level, satisfy the following set of coupled different equations
when t > 0:

_Sk tð Þ ¼ �λ kð ÞSk tð ÞΘ tð Þ þ μIk t� ωð Þ,
_Ek tð Þ ¼ λ kð ÞSk tð ÞΘ tð Þ � λ kð ÞSk t� τð ÞΘ t� τð Þ,
_I k tð Þ ¼ λ kð ÞSk t� τð ÞΘ t� τð Þ � μIk tð Þ,
_Rk tð Þ ¼ μIk tð Þ � μIk t� ωð Þ

8>>>><
>>>>:

(29)

with the normalization condition (3).

Furthermore, we obtain from the third equation and the fourth equation of system (29) that

Ek tð Þ ¼ λ kð Þ
ðt
t�τ

Sk sð ÞΘ sð Þds, Rk tð Þ ¼ μ
ðt
t�ω

Ik sð Þds: (30)

Hence, the normalization condition becomes the following mathematical form:

Sk tð Þ þ λ kð Þ
ðt
t�τ

Sk sð ÞΘ sð Þdsþ Ik tð Þ þ μ
ðt
t�ω

Ik sð Þds ¼ 1: (31)

Obviously, if we discuss the dynamical behaviors of system (29), we just need to discuss the
following system:

_Sk tð Þ ¼ �λ kð ÞSk tð ÞΘ tð Þ þ μIk t� ωð Þ,
_I k tð Þ ¼ λ kð ÞSk t� τð ÞΘ t� τð Þ � μIk tð Þ

(
(32)

with the normalization condition (31).

The initial conditions of system (32) are

Sk θð Þ ¼ φk θð Þ, Ik θð Þ ¼ Ψ k θð Þ,θ∈ �σ; 0½ �, (33)

which satisfy Sk 0ð Þ þ λ kð Þ Ð 0�τ Sk sð ÞΘ sð Þdsþ Ik 0ð Þ þ μ
Ð 0
�ω Ik sð Þds ¼ 1. Hence, the normalization

condition (31) holds. And,Φk = (ϕk(θ),Ψk(θ), k =m,m + 1,⋯,n�m + 1)∈C are nonnegative contin-
uous on [�σ, 0], ϕk(0) > 0,Ψk(0) > 0, and ζ(θ) = 0 for θ = 0. C denotes the Banach space C([�σ, 0],

R2(n�m +1)) with the norm ωk k ¼ Pn
i¼m Ψ i θð Þj j2σ þ φi θð Þ�� ��2

σ

� �1=2�
, where |f(θ)|σ=sup�τ≤θ≤0 ∣ f(θ)∣.

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals34

3.2. The main results for the model

Denote that

R0 ¼ 1
μ

λ kð Þφ kð Þh i
kh i , (34)

where f kð Þh i ¼Pn
k¼m f kð Þp kð Þ in which f(k) is a function.

Theorem 3.1. System (32) always has a disease-free equilibrium E0 (1, 1,⋯, 1, 0, 0,⋯, 0), and it has a
unique endemic equilibrium E∗ ¼ S∗m; S

∗
mþ1;⋯; S∗n; I

∗
m; I

∗
mþ1;⋯; I∗n

� �
when R0 > 1.

Proof.Obviously, the disease-free equilibrium E0 of system (32) always exists. Now, we discuss
the existence of the endemic equilibrium of system (32). Note that the equilibrium E∗ should
satisfy:

�λkS∗kΘ
∗ þ μI∗k ¼ 0,

S∗k þ λ kð ÞτS∗kΘ∗ þ I∗k þ ωμI∗k ¼ 1,
(35)

where

Θ∗ ¼ 1
kh i
X
k0

ϕ k0ð Þp k0ð ÞI∗k : (36)

We obtain from (35) that

I∗k ¼
λkΘ∗

μþ λk 1þ μτþ ωμ
� �

Θ∗ : (37)

Substituting it into Eq. (4), we obtain the self-consistency equality:

Θ∗ ¼ λ
kh i
Xn

k¼m

ϕ kð Þp kð Þ λkΘ∗

μþ λk 1þ μτþ ωμ
� �

Θ∗ ¼ f Θ∗ð Þ: (38)

Note that

f 0 Θ∗ð Þ��
Θ∗¼0 ¼

λ
kh i
Xn

k¼m

ϕ kð Þp kð Þ λkμ

μþ λk 1þ μτþ ωμ
� �

Θ∗
� �2

�����
Θ∗¼0

¼ λ kϕ kð Þ� �
μ kh i ¼ R0 (39)

and

f 00 Θ∗ð Þ ¼ �2λ
kh i
Xn

k¼m

ϕ kð Þp kð Þ λ2k2μ 1þ μτþ ωμ
� �

Θ∗

μþ λk 1þ μτþ ωμ
� �

Θ∗
� �3 < 0: (40)

Hence, if R0 > 1, Eq. (38) has a unique positive solution. Consequently, system (32) has a unique
endemic equilibrium E∗ S∗1; S

∗
2;⋯; S∗n; I

∗
1; I

∗
2;⋯; I∗n

� �
since (35) and (37) hold.
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Theorem 3.2. If R0 ≤ 1, the disease-free equilibrium E0 of system (32) is globally attractive.

Proof. We define a Lyapunov function V(t) as

V tð Þ ¼ 1
2
Θ2 tð Þ þ γ

ðt
t�τ

Θ2 μ
� �

dμ, (41)

where γ is a constant to be determined. Let G ¼ ϕ : _V ϕ
� � ¼ 0

� �
, and M is the largest set in G

which is invariant with respect to system (32). Clearly, M is not empty since E0∈M. Calculat-
ing the derivative of V(t) along the solution of (32), we get

_V tð Þ�� 3:3ð Þ ¼ Θ tð Þ 1
λ kð Þi

X
k

φ kð Þp kð Þ �λkSk t� τð ÞΘ t� τð Þ � μΘ tð Þ� �
" #

þ γΘ2 tð Þ � γΘ2 t� τð Þ

≤Θ tð Þ 1
kh i λ kð Þϕ kð Þ� �

Θ t� τð Þ � μΘ tð Þ
� �

þ γΘ2 tð Þ � γΘ2 t� τð Þ

≤
1

2 kh i λ kð Þϕ kð Þ� �
Θ2 tð Þ þ 1

2 kh i λ kð Þϕ kð Þ� �
Θ2 t� τð Þ � μΘ2 tð Þ þ γΘ2 tð Þ � γΘ2 t� τð Þ

¼ 1
2 kh i λ kð Þϕ kð Þ� �� μþ γ
� �

Θ2 tð Þ þ 1
2 kh i λ kð Þϕ kð Þ� �� γ
� �

Θ2 t� τð Þ:
(42)

Note that R0 ≤ 1 implies 1
kh i λ kð Þφ kð Þh i ≤μ < 0; if we let γ ¼ 1

2 kh i λ kð Þφ kð Þh i, we have from (42) that

_V tð Þ�� 3:3ð Þ ≤
1
kh i λ kð Þϕ kð Þ� �� μ

� �
Θ2 tð Þ ≤ 0: (43)

It follows from Sk(t) +Ek(t) + Ik(t) +Rk(t) = 1 that M =E0. Therefore, by the LaSalle invariance
principle [24], the disease-free equilibrium E0 is globally attractive.

Lemma 3.1. [28] Consider the following equation:

_x tð Þ ¼ a1x t� τð Þ � a2x tð Þ, (44)

where a1, a2, τ > 0; x(t) > 0 for �τ ≤ t ≤ 0. We have

i. if a1 < a2, then limt! +∞x(t) = 0,

ii. if a1 > a2, then limt! +∞x(t) = +∞.

Lemma 3.2. ([29], p 273–280) Let X be a complete metric space, X =X0 ∪ ∂X0, where ∂X0, assumed to
be nonempty, is the boundary of X0. Assume the C0 – semigroup T(t) on X satisfies T(x) :X0!X0,
T(x) : ∂X0! ∂X0 and

i. there is a t0 such that T(t) is compact for t > t0.

ii. T(t) is point dissipative in X.

iii. ~A∂ is isolated and has an acyclic covering M.
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Then, T(t) is uniformly persistent if and only if, for each Mi∈M,

Ws Mið Þ ∩X0 ¼ ∅, (45)

where ~A∂ ¼ ⋃
x∈A∂

ω xð Þ, ω(x) is the omega limit set of T(x) through x, and A∂ is global attractor of

T∂(t) in ∂X0 in which T∂(t) =T(t)|∂X0.

Theorem 3.3. For system (32), if R0 > 1, the disease is uniformly persistent, i.e., there exists a positive
constant ε such that limt! +∞ inf I(t) > ε, where I tð Þ ¼Pn

k¼m ϕ kð Þp kð ÞIk tð Þ.
Proof. Denote that

X ¼ S;Ψ
� �

: Ψ k θð Þ ≥ 0; for all θ∈ �ζ; 0½ �; k ¼ m;mþ 1;⋯; n
� �

, (46)

X0 ¼ S;Ψ
� �

: Ψ k θð Þ > 0; for some θ∈ �ζ; 0½ �; k ¼ m;mþ 1;⋯; n
� �

, (47)

and, consequently,

∂X0 ¼ X=X0 ¼ S;Ψ
� �

: Ψ i θð Þ ¼ 0; for all θ∈ �σ; 0½ �; i∈ m;mþ 1;⋯; nf g� �
, (48)

where S;Ψ
� � ¼ Sm; Smþ1;⋯; Sn;Ψm;Ψmþ1;⋯;Ψ nð Þ.

Let (Sm(t), Im(t),⋯,Sn, In(t)) = (Sm(t,ω), Im(t,ω),⋯, Sn(t,ω), In(t,ω)) be the solution of (32) with
initial function ω = (ζm(θ),Ψm(θ),⋯,Ψn(θ),ϕn(θ)) and

T(t)(ω)(θ) = (Sm(t +θ,ω), Im(t +θ,ω),⋯, Sn(t +θ,ω), In(t +θ,ω)), θ∈ [�σ, 0]. Obviously, X and
X0 are positively invariant sets for T(t). T(t) is completely continuous for t > 0. Also, it
follows from 0 < Sk(t), Ik(t) ≤ 1 for t > 0 that T(t) is point dissipative. E0 is the unique equilib-

rium of system (32) on ∂X0, and it is globally stable on ∂X0, ~A∂ ¼ E0f g, while E0 is isolated
and acyclic.

Finally, the proof will be done if we prove Ws(E0) ∩X
0 =∅, where Ws(E0) is the stable manifold

of E0. Suppose it is not true, then there exists a solution S; I
� �

in X0 such that

lim
t!þ∞

inf Sk tð Þ ¼ 1, lim
t!þ∞

inf Ik tð Þ ¼ 0, k ¼ 1, 2,⋯, n: (49)

Since R0 > 1, we may choose 0 < η < 1 such that α = η(λ(k)τ〈φ(k)〉 + 1 +μω) satisfies (1�α)R0 > 1.
At the same time, there exists a t1 > τ such that Ik(t) < η for t > t1 due to limt! +∞ inf Ik = 0.

When t > t1, we obtain from (32) that

Sk tð Þ ¼ 1� Ik tð Þ þ λ kð Þ
ðt
t�τ

Sk sð ÞΘ sð Þdsþ μ
ðt
t�ω

Ik sð Þds
� �

≥ 1� ηþ λ kð Þτη ϕ kð Þ� �þ μωη
� � ¼ 1� α:

(50)

On the other hand, for t > t1 we have from (4) and (50) that
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Theorem 3.2. If R0 ≤ 1, the disease-free equilibrium E0 of system (32) is globally attractive.
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� �

, (46)

X0 ¼ S;Ψ
� �

: Ψ k θð Þ > 0; for some θ∈ �ζ; 0½ �; k ¼ m;mþ 1;⋯; n
� �

, (47)

and, consequently,

∂X0 ¼ X=X0 ¼ S;Ψ
� �

: Ψ i θð Þ ¼ 0; for all θ∈ �σ; 0½ �; i∈ m;mþ 1;⋯; nf g� �
, (48)

where S;Ψ
� � ¼ Sm; Smþ1;⋯; Sn;Ψm;Ψmþ1;⋯;Ψ nð Þ.

Let (Sm(t), Im(t),⋯,Sn, In(t)) = (Sm(t,ω), Im(t,ω),⋯, Sn(t,ω), In(t,ω)) be the solution of (32) with
initial function ω = (ζm(θ),Ψm(θ),⋯,Ψn(θ),ϕn(θ)) and

T(t)(ω)(θ) = (Sm(t +θ,ω), Im(t +θ,ω),⋯, Sn(t +θ,ω), In(t +θ,ω)), θ∈ [�σ, 0]. Obviously, X and
X0 are positively invariant sets for T(t). T(t) is completely continuous for t > 0. Also, it
follows from 0 < Sk(t), Ik(t) ≤ 1 for t > 0 that T(t) is point dissipative. E0 is the unique equilib-

rium of system (32) on ∂X0, and it is globally stable on ∂X0, ~A∂ ¼ E0f g, while E0 is isolated
and acyclic.

Finally, the proof will be done if we prove Ws(E0) ∩X
0 =∅, where Ws(E0) is the stable manifold

of E0. Suppose it is not true, then there exists a solution S; I
� �

in X0 such that

lim
t!þ∞

inf Sk tð Þ ¼ 1, lim
t!þ∞

inf Ik tð Þ ¼ 0, k ¼ 1, 2,⋯, n: (49)

Since R0 > 1, we may choose 0 < η < 1 such that α = η(λ(k)τ〈φ(k)〉 + 1 +μω) satisfies (1�α)R0 > 1.
At the same time, there exists a t1 > τ such that Ik(t) < η for t > t1 due to limt! +∞ inf Ik = 0.

When t > t1, we obtain from (32) that

Sk tð Þ ¼ 1� Ik tð Þ þ λ kð Þ
ðt
t�τ

Sk sð ÞΘ sð Þdsþ μ
ðt
t�ω

Ik sð Þds
� �

≥ 1� ηþ λ kð Þτη ϕ kð Þ� �þ μωη
� � ¼ 1� α:

(50)

On the other hand, for t > t1 we have from (4) and (50) that
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Θ
̇
tð Þ ¼ 1

kh i
Xn

k¼m

ϕ kð Þp kð Þ _I k tð Þ

¼ 1
kh i
Xn

k¼m

ϕ kð Þp kð Þ λ kð ÞSk t� τð ÞΘ t� τð Þ � μIk tð Þ� �

≥ 1� αð Þ λ kð Þϕ kð Þ� �
kh i Θ t� τÞÞ � μΘ tð Þ�

(51)

Note that (1�α)R0 > 1, and it follows with 1� αð Þ λ kð Þφ kð Þh i
kh i > μ. Hence, we obtain from (51) that

limt! +∞Θ(t) = +∞ according to Lemma 3.1 contradicts limt! +∞Θ(t) = 0 due to limt! +∞Ik(t) = 0.
Then, Ws(E0) ∩X

0 =∅.

Hence, the infection is uniformly persistent according to Lemma 3.2, i.e., there exists a positive
constant ε such that limt! +∞ inf Ik > ε and, consequently, limt!þ∞infI tð Þ >Pn

k¼m p kð Þε ¼ ε. This
completes the proof.

In addition, Liu and Zhang discussed a simple SEIRS model without delay in [25], and the
basic productive number for the model in [25] is λA/γ, which is consistent with R0 for the
model (32) in which ϕ(k) =A in this paper.

3.3. Numerical simulations for the model

Now, we present the results of numerical simulations. The degree distribution of the scale-free
network is p(k) =Ck�γ, and C satisfies

Pn
k¼1 p kð Þ ¼ 1. Here, we set still the maximum degree

n = 100 and the minimum degree m = 1.

Consider system (32). Let φ(k = akα/(1 + bα) in which a = 0.5,α = 0.75, b = 0.02 and λ(k) =λk, and let
γ = 2.5 and μ = 0.06. Figures 1–4 show that the dynamic behaviors of system (32) with the initial
functions satisfy condition (33) in which Ik(s) = 0.45, k = 2, 3, 4, 5 for s∈ [�σ, 0] and Ik = 0,
k 6¼ 2, 3, 4, 5.

Although R0 is irrelative to τ and ω. Figures 6 and 7 show that both the delay τ and ω have
certain influence on the relative density of the infected nodes when R0 < 1, for example,
the faster the relative density of infected nodes converges to zero, the larger ω gets or the
smaller τ gets. In addition, Figures 6 and 7 show that the average relative density of the
infected nodes I(t) monotonically decreases to zero, whereas the relative density of infected
nodes of connectivity k always breaks out first and then decreases to zero; the reason of the
phenomenon appears that the spreading network is a scale-free one. Note that Figures 8
and 9 show that the delay τ and ω have much impact on the steady state of density of the
infected nodes when R0 > 1, the density of infected decreases as the delay τ and ω increase,
which is consistent with the formula (37). We also know from (37) that I(t)! 0 as ω! +∞
or τ! +∞.

Especially, system (29) reduces to the following SIRS model [26]:
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_Sk tð Þ ¼ �λ kð ÞSk tð ÞΘ tð Þ þ μIk t� ωð Þ,
_I k tð Þ ¼ λ kð ÞSk tð ÞΘ tð Þ � μIk tð Þ,
_Rk tð Þ ¼ μIk tð Þ � μIk t� ωð Þ:

8><
>:

(52)

with the normalization condition

Sk tð Þ þ Ik tð Þ þ Rk tð Þ ¼ 1: (53)

Figure 10 shows that when R0 > 1, the quarantine delay ω can impact the density of infected
nodes at the stationary state, and raising the quarantine period will suppress the viruses when
ω is not large enough, which coincides with formula (37). Moreover, there exists periodic
oscillation near the endemic equilibrium when ω is large enough. This is an interesting phe-
nomenon which means that a bifurcation may appear.
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Θ
̇
tð Þ ¼ 1

kh i
Xn

k¼m

ϕ kð Þp kð Þ _I k tð Þ

¼ 1
kh i
Xn

k¼m

ϕ kð Þp kð Þ λ kð ÞSk t� τð ÞΘ t� τð Þ � μIk tð Þ� �

≥ 1� αð Þ λ kð Þϕ kð Þ� �
kh i Θ t� τÞÞ � μΘ tð Þ�

(51)

Note that (1�α)R0 > 1, and it follows with 1� αð Þ λ kð Þφ kð Þh i
kh i > μ. Hence, we obtain from (51) that

limt! +∞Θ(t) = +∞ according to Lemma 3.1 contradicts limt! +∞Θ(t) = 0 due to limt! +∞Ik(t) = 0.
Then, Ws(E0) ∩X

0 =∅.

Hence, the infection is uniformly persistent according to Lemma 3.2, i.e., there exists a positive
constant ε such that limt! +∞ inf Ik > ε and, consequently, limt!þ∞infI tð Þ >Pn

k¼m p kð Þε ¼ ε. This
completes the proof.

In addition, Liu and Zhang discussed a simple SEIRS model without delay in [25], and the
basic productive number for the model in [25] is λA/γ, which is consistent with R0 for the
model (32) in which ϕ(k) =A in this paper.

3.3. Numerical simulations for the model

Now, we present the results of numerical simulations. The degree distribution of the scale-free
network is p(k) =Ck�γ, and C satisfies

Pn
k¼1 p kð Þ ¼ 1. Here, we set still the maximum degree

n = 100 and the minimum degree m = 1.

Consider system (32). Let φ(k = akα/(1 + bα) in which a = 0.5,α = 0.75, b = 0.02 and λ(k) =λk, and let
γ = 2.5 and μ = 0.06. Figures 1–4 show that the dynamic behaviors of system (32) with the initial
functions satisfy condition (33) in which Ik(s) = 0.45, k = 2, 3, 4, 5 for s∈ [�σ, 0] and Ik = 0,
k 6¼ 2, 3, 4, 5.

Although R0 is irrelative to τ and ω. Figures 6 and 7 show that both the delay τ and ω have
certain influence on the relative density of the infected nodes when R0 < 1, for example,
the faster the relative density of infected nodes converges to zero, the larger ω gets or the
smaller τ gets. In addition, Figures 6 and 7 show that the average relative density of the
infected nodes I(t) monotonically decreases to zero, whereas the relative density of infected
nodes of connectivity k always breaks out first and then decreases to zero; the reason of the
phenomenon appears that the spreading network is a scale-free one. Note that Figures 8
and 9 show that the delay τ and ω have much impact on the steady state of density of the
infected nodes when R0 > 1, the density of infected decreases as the delay τ and ω increase,
which is consistent with the formula (37). We also know from (37) that I(t)! 0 as ω! +∞
or τ! +∞.

Especially, system (29) reduces to the following SIRS model [26]:
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_Sk tð Þ ¼ �λ kð ÞSk tð ÞΘ tð Þ þ μIk t� ωð Þ,
_I k tð Þ ¼ λ kð ÞSk tð ÞΘ tð Þ � μIk tð Þ,
_Rk tð Þ ¼ μIk tð Þ � μIk t� ωð Þ:

8><
>:

(52)

with the normalization condition

Sk tð Þ þ Ik tð Þ þ Rk tð Þ ¼ 1: (53)

Figure 10 shows that when R0 > 1, the quarantine delay ω can impact the density of infected
nodes at the stationary state, and raising the quarantine period will suppress the viruses when
ω is not large enough, which coincides with formula (37). Moreover, there exists periodic
oscillation near the endemic equilibrium when ω is large enough. This is an interesting phe-
nomenon which means that a bifurcation may appear.
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Figure 8. (a) Evolutions of I(t) for system (32) with τ = 3, λ(k) = 0.14k, and R0 = 3.7505. (b) Evolutions of I15 and I85 for
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4. Conclusion and discussion

An SEIR model with time delay on the scale-free network, which formulated a disease or
computer virus transmission with constant latent period, is presented. For SEIR model, the
basic reproduction number is

R0 ¼ 1
μ

λ kð Þϕ kð Þ� �
kh i : (54)

When R0 ≤ 1, there is no outbreak of the disease spreading, and the infection eventually
disappears. When R0 > 1, there exists at least one outbreak for the spreading of epidemic,
and then limt! +∞Ik(t) = 0 due to global attractivity of M0. If the recovered nodes cycle back
into the susceptive class after an immune period, we obtain a SEIRS model with two time
delays on the scale-free network, which formulated a disease transmission with constant
latent and immune periods. For SEIRS model, the basic reproduction number is still R0

shown in (54). If R0 ≤ 1, although the equilibrium E0 is globally stable and the infection
eventually disappears, the equilibrium E0 may lose its stability when R0 > 1 and the infection
will always exists.

Although R0 is irrelevant to time delays, they influence the dynamical behaviors of the model
such as slowing down the speed disappear of disease spreading on network, depressing the
density of infected nodes at the stationary state.

In addition, forSEIRSmodel, numerical simulations showthat the endemic equilibriumE∗maybe
globally asymptotically stable under some conditions whenR0 > 1 (shown in Figures 8 and 9). We
would like to mention here that it is interesting but challenging to discuss the stability of equilib-
riumE∗whenR0 > 1.

Furthermore, more and more researchers realize the fundamental role of the stochastic nature of
diseases on their dynamics. In order to gain analytical insight into the behavior of the epidemic
spreading, we also may extend the models (2) and (29) to the ones with random perturbations,
i.e., stochastic differential equation models.
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computer virus transmission with constant latent period, is presented. For SEIR model, the
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When R0 ≤ 1, there is no outbreak of the disease spreading, and the infection eventually
disappears. When R0 > 1, there exists at least one outbreak for the spreading of epidemic,
and then limt! +∞Ik(t) = 0 due to global attractivity of M0. If the recovered nodes cycle back
into the susceptive class after an immune period, we obtain a SEIRS model with two time
delays on the scale-free network, which formulated a disease transmission with constant
latent and immune periods. For SEIRS model, the basic reproduction number is still R0

shown in (54). If R0 ≤ 1, although the equilibrium E0 is globally stable and the infection
eventually disappears, the equilibrium E0 may lose its stability when R0 > 1 and the infection
will always exists.

Although R0 is irrelevant to time delays, they influence the dynamical behaviors of the model
such as slowing down the speed disappear of disease spreading on network, depressing the
density of infected nodes at the stationary state.

In addition, forSEIRSmodel, numerical simulations showthat the endemic equilibriumE∗maybe
globally asymptotically stable under some conditions whenR0 > 1 (shown in Figures 8 and 9). We
would like to mention here that it is interesting but challenging to discuss the stability of equilib-
riumE∗whenR0 > 1.

Furthermore, more and more researchers realize the fundamental role of the stochastic nature of
diseases on their dynamics. In order to gain analytical insight into the behavior of the epidemic
spreading, we also may extend the models (2) and (29) to the ones with random perturbations,
i.e., stochastic differential equation models.
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Abstract

A 3-dimensional nutrient-prey-predator model with intratrophic predation is proposed
and studied. Some elementary properties such as invariance of nonnegativity, bounded-
ness and dissipativity of the system are presented. The purpose of this chapter is to study
the existence and stability of equilibria along with the effects of intratrophic predation
towards the positions and stability of those equilibria of the system. We also investigate
the occurrence of Hopf bifurcation. In the case when there is no presence of predator
organisms, intratrophic predation may not give impact on the stability of equilibria of the
system. We also analysed global stability of the equilibrium point. A suitable Lyapunov
function is defined for global stability analysis and some results of persistence analysis
are presented for the existence of positive interior equilibrium point. Besides that, Hopf
bifurcation analysis of the system are demonstrated.

Keywords: chemostat, intratrophic predation, local and global stability, Hopf
bifurcation

1. Introduction

Chemostat, a piece of laboratory apparatus is frequently used in mathematical ecology. This
device carries an important role for ecological studies because the mathematics are tractable,
and the relevant parameters are readily measurable. Chemostat also can be used for modelling
microorganism systems such as lake and wastewater treatment. For detailed information
regarding chemostat device, see [1].

There are abundant of research journals and papers for analysing chemostat models. One of them
is Li and Kuang [2], considered a simple food chain with distinct removal rate, which in this case,
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conservation law has failed. Therefore, to overcome the problem, they constructed a Lyapunov
function in global stability analysis of predator-free steady state. Local and global stability of
other steady states were shown in the paper along with persistence analysis of the system.

Another paper regarding chemostat model is by El-Sheikh and Mahrouf [3] that presented a
4-dimensional food chain in a chemostat with removal rates. They studied local and global
stability of equilibria along with elementary properties including boundedness of solutions,
invariance of nonnegativity, dissipativity and persistence analysis. Hopf bifurcation theory
was applied.

Recently, several analysis on chemostat models are carried out, for example, by Hamra and
Yadi [4] and Yang et al. [5]. In the work of [4], they studied a chemostat model with constant
recycle sludge concentration. Number of parameters are reduced by considering a dimension-
less model. Next, they successfully proved the existence of a positive uniform attractor for the
model with different removal rates by using dissipative theory. Hence, they used methods of
singular perturbation theory in order to investigate the asymptotic behaviour of the chemostat
model under small pertubations. Thus, it is shown that in the case of two species in competi-
tion, the positive unique equilibrium point is globally asymptotically stable.

In the research of Yang et al. [5], piecewise chemostat models which involve control strategy
with threshold window are proposed and analysed. They investigated the qualitative analysis
such as existence and stability of equilibrium points of the system and it is proved that the
regular equilibria and pseudo-equilibrium cannot coexist. The global stability analysis of both
the regular equilibria and pseudo-equilibrium have been studied using qualitative analysis
techniques of non-smooth Filippov dynamic systems. Furthermore, the bifurcation analysis of
the system is investigated with theoretical and numerical techniques.

Moreover, one of the interesting topic is the research involving intratrophic predation.
Intratrophic predation is a situation where members of a trophic group consume other mem-
bers of the same trophic group (for the purpose of mathematical modelling). Several previous
studies based on intratrophic predation have been discovered. One of them is by Pitchford and
Brindley [6]. They studied a predator-prey model with intratrophic predation and successfully
shown that the model had desirable and plausible features. Furthermore, to investigate the
effect of intratrophic predation towards the position and stability of equilibrium points of a
model, they had developed a simple asymptotic method.

For Hopf bifurcation analysis, a study by Mada Sanjaya et al. [7] has been carried out. They
introduced an ecological model of three species food chain with Holling Type-III functional
response. Two equilibrium points are obtained. They proved that the system has periodic
solutions around those equilibrium points. Not only that, they also investigated the dynamical
behaviours of the system and found that it was sensitive when the parameter values varied.

Tee and Salleh [8] investigated Hopf bifurcation of a nonlinear modified Lorenz system using
normal form theory that was the same technique used in Hassard et al. [9]. Then, the dynamics
on centre manifold of the system was presented as it will be applied in the technique of normal
form theory. Another research based on Hopf bifurcation analysis is carried out by [10]. They
considered a three-species food chain models with group defence. It is proved that the model
without delay undergone Hopf bifurcation by using the carrying capacity of the environment
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as the bifurcation parameter. In the analysis of Hopf bifurcation in a delay model, they used a
computer code BIFDD to determine the stability of bifurcation solutions.

Furthermore, a simple 3-dimensional food chain model in chemostat with variable yield for
prey population and constant yield for predator population is proposed by Rana et al. [11]. In
this model, the prey consumes the nutrient and the predator consumes the prey but the
predator does not consume the nutrient. The functional response functions are assumed in
Michaelis-Menton type. The stability of equilibrium points, the existence of limit cycles, the
Hopf bifurcation and the positive invariant set for the system are discussed by qualitative
analysis of differential equations. Finally, numerical simulations are carried out in support of
the theoretical results.

Our work is a modification of the models in Li and Kuang [2] and El-Sheikh and Mahrouf [3].
It should be emphasised that this work is different from [2, 3]. The modified model contains
parameter b, known as the measure of intensity of intratrophic predation which is not in their

models. The parameter b and term 1þ D1x
1þxþD1by

� �
are added to differential equations x0 and y0

in the interest of studying the behaviour of the modifiedmodel. By this motivation, we analysed
the stability and Hopf bifurcation of the model with intratrophic predation, as intratrophic
predation analysis is rarely considered in mathematical models of populations biologically [6].

The purpose of this chapter is to study the existence and stability of equilibria along with the
effects of intratrophic predation towards the positions and stability of those equilibria of the
system. We shall also investigate the occurrence of Hopf bifurcation towards the system.
Hence, we introduced a simple nutrient-prey-predator model in chemostat with intratrophic
predation. Some notations regarding the model will be explained. Not only that, several
elementary properties such as nonnegativity, boundedness and dissipativity along with defi-
nitions and several results will be presented. The local and global stability together with
existence of the equilibrium points are shown. For global stability analysis, a suitable
Lyapunov function is defined. Lastly, we applied Hopf bifurcation theorems (see [9]) in the
analysis of Hopf bifurcation.

2. The model

In this work, we consider a nutrient-prey-predator model with one prey organism and one
predator organism in chemostat with intratrophic predation. Biologically, the predator organ-
isms will feed upon the prey organisms, while the prey organisms will consume the nutrient in
the chemostat. Precisely, the modified model of [2, 3] is

s0 tð Þ ¼ s0 � s
� �

D0 � 1
β1

f 1 sð Þx,

x0 tð Þ ¼ f 1 sð Þ �D1
� �

x� 1
β2

f 2 xð Þ yþ D1xy
D2 þ xþ by

� �
,

y0 tð Þ ¼ f 2 xð Þ yþ D1xy
D2 þ xþ by

� �
� y,

8>>>>>>><
>>>>>>>:

(1)
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� �
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� �
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where s 0ð Þ ¼ s0 > 0, x 0ð Þ ¼ x0 > 0, y 0ð Þ ¼ y0 > 0, Di ¼ 1; i ¼ 0, 1, 2, βj ≤ 1; j ¼ 1, 2 and

0 ≤ b ≤ 1: This leads to the following assumptions on functional response f n, n ¼ 1, 2:

ið Þ f n : Rþ ! Rþ and f n, n ¼ 1, 2 are continuously differential equations,
iið Þ f n 0ð Þ ¼ 0,
iiið Þ f 01 sð Þ > 0, f 02 xð Þ > 0 for all s, x > 0:

(2)

Generally, functional response is a common component in predator-prey system. The term
‘functional response’ was first stated by Solomon [12] which defined the relationship between
the rate of predation, i.e., the number of prey organisms consumed per predator organism in
time, t with the density of prey organisms.

By referring to system (1), s represents the concentration of nutrient at time t while s0 is the
input nutrient concentration. The variables x and y represent the concentration of prey and
predator at time t, respectively. Parameters β1 and β2 denote the yield constants, D0 is the
washout rate of the chemostat while D1 and D2 are the removal rates of x and y, respectively.
Removal rate is the sum of washout rate and death rate θi, i.e., Di ¼ D0 þ θi, i ¼ 1, 2: f 1 sð Þ and
f 2 xð Þ denote the specific growth rate of prey x and predator y, respectively, while b is the
measure of intensity of intratrophic predation in predator organisms y: These observations
are based on numerical simulations. We can rescale system (1) by reducing the number of
parameters using standard change of variables such as.

To make our works more convenient, we just drop the bars and tildes. So after rescaling, the
system (1) becomes

s0 ¼ 1� s� f 1 sð Þx,
x0 ¼ f 1 sð Þ

D1
� 1

� �
x� f 2 xð Þy 1þ D1x

1þ xþD1by

� �
,

y0 ¼ f 2 xð Þy 1þ D1x
1þ xþD1by

� �
� y,

8>>>>><
>>>>>:

(3)

where

s 0ð Þ > 0, x 0ð Þ > 0, y 0ð Þ > 0 andD1 > 0: (4)

Now, the variables are non-dimensional and the discussion is in R3
þ ¼ s; x; yð Þ : s > 0;f

x > 0; y > 0g.

s ¼ s
s0
, x ¼ x

D0β1s0
, y ¼ y

D0D1β1β2s
0 ,

f 1 sð Þ ¼
~f 1 s0s
� �
D0

, f 2 xð Þ ¼
~f 2 D0β1s

0x
� �

D0
, b ¼ b

β2
,

t ¼ Dit, i ¼ 0, 1, D2 ¼ D0β1s
0:
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2.1. Elementary properties of system (3)

In this section, we present nonnegativity, boundedness and dissipativity of the system (3) with
respect to a region in R3

þ. Firstly, we consider dissipativity of the system (3).

Definition 1 [13]. A system with differential equations x0 ¼ f xð Þ is defined to be dissipative if
there exists a bounded subset Γ of R3, such that there is a time t0 for any x0 ∈R3 which depends
on x0 and Γ so that the solution of the system ϕ t; x0

� �
∈Γ for t ≥ t0:

Theorem 1. Let H be the region

H ¼ s; x; yð Þ∈R3
þ :

1
Pmax

� q ≤ sþ xþ y ≤
1

Pmin
þ q

� �
,

where Pmax ¼ max 1; f 1 sð Þ þ f 1 sð Þ
D1

� 1
n o

, Pmin ¼ min 1; f 1 sð Þ þ f 1 sð Þ
D1

� 1
n o

and q is a positive constant.

Then,

i. Η is positively invariant.

ii. All nonnegative solutions of (3) with initial values in R3
þ are uniformly bounded and they

eventually attracted into region Η:

iii. The system is dissipative.

Remark 1. We must show that the solutions of system (3) are nonnegative and bounded, so
that the system becomes biologically meaningful.

Proof of Theorem 1.

(i): First, we must show that 1
Pmax

� q ≤ sþ xþ y ≤ 1
Pmin

þ q: Let us define

Pmax ¼ max 1; f 1 sð Þ þ f 1 sð Þ
D1

� 1
� �

and Pmin ¼ min 1; f 1 sð Þ þ f 1 sð Þ
D1

� 1
� �

:

By adding those differential equations s0, x0 and y0 in (3), we shall get

s0 þ x0 þ y0 ¼ 1� sþ f 1 sð Þ þ f 1 sð Þ
D1

� 1
� �� �

xþ y
� �

:

Hence, this leads to

1� Pmax sþ xþ yð Þ ≤ 1� sþ f 1 sð Þ þ f 1 sð Þ
D1

� 1
� �� �

xþ y
� �

≤ 1� Pmin sþ xþ yð Þ:

Thus, solving the above inequality gives
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0 ≤ b ≤ 1: This leads to the following assumptions on functional response f n, n ¼ 1, 2:

ið Þ f n : Rþ ! Rþ and f n, n ¼ 1, 2 are continuously differential equations,
iið Þ f n 0ð Þ ¼ 0,
iiið Þ f 01 sð Þ > 0, f 02 xð Þ > 0 for all s, x > 0:
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� �
D0

, f 2 xð Þ ¼
~f 2 D0β1s

0x
� �

D0
, b ¼ b

β2
,

t ¼ Dit, i ¼ 0, 1, D2 ¼ D0β1s
0:

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals48

2.1. Elementary properties of system (3)

In this section, we present nonnegativity, boundedness and dissipativity of the system (3) with
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þ. Firstly, we consider dissipativity of the system (3).

Definition 1 [13]. A system with differential equations x0 ¼ f xð Þ is defined to be dissipative if
there exists a bounded subset Γ of R3, such that there is a time t0 for any x0 ∈R3 which depends
on x0 and Γ so that the solution of the system ϕ t; x0
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∈Γ for t ≥ t0:
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� �
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D1

� 1
n o
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D1

� 1
n o

and q is a positive constant.

Then,

i. Η is positively invariant.

ii. All nonnegative solutions of (3) with initial values in R3
þ are uniformly bounded and they

eventually attracted into region Η:

iii. The system is dissipative.

Remark 1. We must show that the solutions of system (3) are nonnegative and bounded, so
that the system becomes biologically meaningful.

Proof of Theorem 1.

(i): First, we must show that 1
Pmax

� q ≤ sþ xþ y ≤ 1
Pmin

þ q: Let us define

Pmax ¼ max 1; f 1 sð Þ þ f 1 sð Þ
D1

� 1
� �

and Pmin ¼ min 1; f 1 sð Þ þ f 1 sð Þ
D1

� 1
� �
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By adding those differential equations s0, x0 and y0 in (3), we shall get
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� 1
� �� �
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Hence, this leads to
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� 1
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� �
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1
Pmax

� q ≤ sþ xþ y ≤
1

Pmin
þ q,

as q is the positive constant

(ii) and (iii): Let 0 < s0 < 1 and consider.

s0 ¼ 1� s� f 1 sð Þx < 1� s:

Then s tð Þ < 1� e�t

1�s0
for 0 < s0 < 1, and hence limt!∞ sups tð Þ < 1 for 0 < s0 < 1:

Now, consider the x0 equation;

x0 ¼ f 1 sð Þ
D1

� 1
� �

x� f 2 xð Þy 1þ D1x
1þ xþD1by

� �
< f 1 sð Þ � 1
� �

x < α1x,

where α1 ¼ maxs∈Η f 1 sð Þ � 1
� �

: We assume that α1 ¼ maxs∈Η f 1 sð Þ � 1
� �� �

< 0: Hence,
x tð Þ < x0eα1t, α1 < 0, and thus, limt!∞ supx tð Þ < x0, for x0 > 0:

Similarly, consider the y0 equation,

y0 ¼ f 2 xð Þy 1þ D1x
1þ xþD1by

� �
� y < α2y,

where α2 ¼ maxx∈Η f 2 xð Þ þ f 2 xð ÞD1x
1þxþD1by

� �
: We shall assume that maxx∈Η f 2 xð Þ þ f 2 xð ÞD1x

1þxþD1by

� �
< 0:

Then, y tð Þ < y0e
α2t where α2 < 0: Hence, limt!∞ sup y tð Þ < y0 for y0 > 0: Thus, system (3) is

proved to be uniformly bounded and dissipative, following Definition 1. ∎

2.2. Existence of equilibrium points

According to Robinson [14], a point is termed ‘equilibrium point’ because of the forces are in
equilibrium and the mass did not move. Therefore, in order to find equilibrium points of the
system (3); E1, E2 and E3, we equate the differential equations s0, x0 and y0 to zero and solve the
resulting equations simultaneously. The possible equilibrium points are as follows;

i. E1 1; 0; 0ð Þwhere no predator organism y and prey x exist. By equating system (3) to zero, we
will get s ¼ 1 from the equation 1� s� f 1 sð Þx ¼ 0. Then, from equation x0 ¼ 0, we get
x ¼ 0 when y ¼ 0:

ii. E2 ζs;
1�ζs
D1

; 0
� �

. s ¼ ζs is the unique solution of f 1 sð Þ
D1

� 1 ¼ 0: Let y ¼ 0, then Eq. (3) give

1� s� f 1 sð Þx ¼ 0 and f 1 sð Þ
D1

� 1
� �

x ¼ 0: When x 6¼ 0, f 1 sð Þ
D1

� 1 ¼ 0. Therefore, f 1 sð Þ ¼ D1:

Next, we find x: From equation 1� s� f 1 sð Þx ¼ 0, x ¼ 1�s
f 1 sð Þ : By substituting f 1 sð Þ ¼ D1

and s ¼ ζs, we get x ¼ 1�ζs
D1

: Thus, E2 is the one possible equilibrium point that consists

only prey organisms and not predator organisms.

iii. E3 s∗; x∗; y∗ð Þ denotes the positive interior equilibrium point with s∗, x∗, y∗ > 0. s∗ is a
unique solution of 1� s� f 1 sð Þx ¼ 0: From this, we have x∗ ¼ 1�s∗

f 1 s∗ð Þ. Next, let the
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equation y0 ¼ 0. Since y 6¼ 0, f 2 xð Þ 1þ D1x
1þxþD1by

� �
¼ 1. We solve for y, and get y∗ ¼

2x∗þ1ð Þf 2 x∗ð Þ�x∗�1
bD1 1�f 2 x∗ð Þð Þ . Thus, the equilibrium point E3 s∗; x∗; y∗ð Þ is s∗; 1�s∗

f 1 s∗ð Þ ;
2x∗þ1ð Þf 2 x∗ð Þ�x∗�1
bD1 1�f 2 x∗ð Þð Þ

� �
,

where x∗ ¼ 1�s∗
f 1 s∗ð Þ.

To show the existence of E2, we let the system (3) be restricted to Rþ
sx as

s0 ¼ 1� s� f 1 sð Þx,

x0 ¼ f 1 sð Þ
D1

� 1
� �

x,

8><
>:

(5)

where s 0ð Þ > 0 and x 0ð Þ > 0. Thus, Lemma 1 below shows the existence of non-trivial equilib-
rium point E2:

Lemma 1. Suppose that a point ζs;bxð Þ exists in Rþ
sx such that ζs þD1bx � 1 ¼ 0 as time, t

approaches ∞: Then, the non-trivial equilibrium point E2 ζs;
1�ζs
D1

; 0
� �

exists.

Proof. We will get two surfaces by equating system (5) to zero;

1� s� f 1 sð Þx ¼ 0,

f 1 sð Þ
D1

� 1
� �

x ¼ 0:

Then,

1� s
x

¼ f 1 sð Þ and D1 ¼ f 1 sð Þ:

Thus, 1� s ¼ D1x, i.e., x ¼ 1�s
D1

. By taking s ¼ ζs, we will have x ¼ bx ¼ 1�ζs
D1

and

satisfying ζs þD1bx � 1 ¼ 0. Hence, the equilibrium point E2 ζs;
1�ζs
D1

; 0
� �

exists. ∎

2.3. Stability analysis of equilibrium points E1,E2 and E3

In this section, we analyse the stability of equilibrium points as it plays an important part in
ordinary differential equations with their applications. As we cannot easily identify the posi-
tions of equilibrium point in applications of dynamical system, but only approximately, so the
equilibrium point must be in stable state to be biologically meaningful [15]. Several definitions
and theorem from Ref. [14] are stated to make us understand clearly.

Definition 2. [14] A fixed point x∗ is Lyapunov stable or L-stable, provided that any solution
ϕ t; x0ð Þ stays near x∗ for all future time t ≥ 0 if the initial condition x0 starts near enough to x∗:
Specifically, a fixed point x∗ is L-stable, provided that for any E > 0, there is δ > 0, such that if
x0 � x∗k k < δ, then ϕ t; x0ð Þ � x∗

�� �� < E for all t ≥ 0.
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1
Pmax

� q ≤ sþ xþ y ≤
1

Pmin
þ q,

as q is the positive constant

(ii) and (iii): Let 0 < s0 < 1 and consider.

s0 ¼ 1� s� f 1 sð Þx < 1� s:

Then s tð Þ < 1� e�t

1�s0
for 0 < s0 < 1, and hence limt!∞ sups tð Þ < 1 for 0 < s0 < 1:

Now, consider the x0 equation;

x0 ¼ f 1 sð Þ
D1

� 1
� �

x� f 2 xð Þy 1þ D1x
1þ xþD1by

� �
< f 1 sð Þ � 1
� �

x < α1x,

where α1 ¼ maxs∈Η f 1 sð Þ � 1
� �

: We assume that α1 ¼ maxs∈Η f 1 sð Þ � 1
� �� �

< 0: Hence,
x tð Þ < x0eα1t, α1 < 0, and thus, limt!∞ supx tð Þ < x0, for x0 > 0:

Similarly, consider the y0 equation,

y0 ¼ f 2 xð Þy 1þ D1x
1þ xþD1by

� �
� y < α2y,

where α2 ¼ maxx∈Η f 2 xð Þ þ f 2 xð ÞD1x
1þxþD1by

� �
: We shall assume that maxx∈Η f 2 xð Þ þ f 2 xð ÞD1x

1þxþD1by

� �
< 0:

Then, y tð Þ < y0e
α2t where α2 < 0: Hence, limt!∞ sup y tð Þ < y0 for y0 > 0: Thus, system (3) is

proved to be uniformly bounded and dissipative, following Definition 1. ∎

2.2. Existence of equilibrium points

According to Robinson [14], a point is termed ‘equilibrium point’ because of the forces are in
equilibrium and the mass did not move. Therefore, in order to find equilibrium points of the
system (3); E1, E2 and E3, we equate the differential equations s0, x0 and y0 to zero and solve the
resulting equations simultaneously. The possible equilibrium points are as follows;

i. E1 1; 0; 0ð Þwhere no predator organism y and prey x exist. By equating system (3) to zero, we
will get s ¼ 1 from the equation 1� s� f 1 sð Þx ¼ 0. Then, from equation x0 ¼ 0, we get
x ¼ 0 when y ¼ 0:

ii. E2 ζs;
1�ζs
D1

; 0
� �

. s ¼ ζs is the unique solution of f 1 sð Þ
D1

� 1 ¼ 0: Let y ¼ 0, then Eq. (3) give

1� s� f 1 sð Þx ¼ 0 and f 1 sð Þ
D1

� 1
� �

x ¼ 0: When x 6¼ 0, f 1 sð Þ
D1

� 1 ¼ 0. Therefore, f 1 sð Þ ¼ D1:

Next, we find x: From equation 1� s� f 1 sð Þx ¼ 0, x ¼ 1�s
f 1 sð Þ : By substituting f 1 sð Þ ¼ D1

and s ¼ ζs, we get x ¼ 1�ζs
D1

: Thus, E2 is the one possible equilibrium point that consists

only prey organisms and not predator organisms.

iii. E3 s∗; x∗; y∗ð Þ denotes the positive interior equilibrium point with s∗, x∗, y∗ > 0. s∗ is a
unique solution of 1� s� f 1 sð Þx ¼ 0: From this, we have x∗ ¼ 1�s∗

f 1 s∗ð Þ. Next, let the
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equation y0 ¼ 0. Since y 6¼ 0, f 2 xð Þ 1þ D1x
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To show the existence of E2, we let the system (3) be restricted to Rþ
sx as

s0 ¼ 1� s� f 1 sð Þx,
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� 1
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x,
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(5)

where s 0ð Þ > 0 and x 0ð Þ > 0. Thus, Lemma 1 below shows the existence of non-trivial equilib-
rium point E2:

Lemma 1. Suppose that a point ζs;bxð Þ exists in Rþ
sx such that ζs þD1bx � 1 ¼ 0 as time, t

approaches ∞: Then, the non-trivial equilibrium point E2 ζs;
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D1
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exists.

Proof. We will get two surfaces by equating system (5) to zero;
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Then,
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. By taking s ¼ ζs, we will have x ¼ bx ¼ 1�ζs
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and

satisfying ζs þD1bx � 1 ¼ 0. Hence, the equilibrium point E2 ζs;
1�ζs
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; 0
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exists. ∎

2.3. Stability analysis of equilibrium points E1,E2 and E3

In this section, we analyse the stability of equilibrium points as it plays an important part in
ordinary differential equations with their applications. As we cannot easily identify the posi-
tions of equilibrium point in applications of dynamical system, but only approximately, so the
equilibrium point must be in stable state to be biologically meaningful [15]. Several definitions
and theorem from Ref. [14] are stated to make us understand clearly.

Definition 2. [14] A fixed point x∗ is Lyapunov stable or L-stable, provided that any solution
ϕ t; x0ð Þ stays near x∗ for all future time t ≥ 0 if the initial condition x0 starts near enough to x∗:
Specifically, a fixed point x∗ is L-stable, provided that for any E > 0, there is δ > 0, such that if
x0 � x∗k k < δ, then ϕ t; x0ð Þ � x∗

�� �� < E for all t ≥ 0.
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Another form of stability is asymptotically stable. This is stated in the following Definition 3.
below. Before going further to understand this concept, we need the definition of ω-limit set as
follows.

Definition 3. [14] A point k is an ω-limit point of the trajectory of x0, if ϕ t; x0ð Þ keeps coming
near k as t ! ∞ (i.e., there is a sequence of times tj, with tj ! ∞ as j ! ∞ such that ϕ tj; x0

� �

converges to k). Certainly, if ϕ t; x0ð Þ � x∗
�� ��! 0 as t ! ∞, then x∗ is the only ω-limit point of x0.

There can be more than one point that is an ω-limit point of x0. The set of all ω-limit points of x0
is denoted by ω x0ð Þ and is called the omega limit set of x0.

Definition 4. [14] A fixed point x∗ is weakly asymptotically stable, if there exists δ1 > 0
such that ω x0ð Þ ¼ x∗f g for all x0 � x∗k k < δ1 (i.e., ϕ t; x0ð Þ � x∗

�� ��! 0 as time t ! ∞ for
all x0 � x∗k k < δ1). Therefore, a fixed point is weakly asymptotically stable, if the stable man-
ifold contains all points in a neighbourhood of the fixed point (i.e., all points are sufficiently
close). A fixed point x∗ is asymptotically stable if it is both L-stable and weakly asymptotically
stable. An asymptotically stable fixed point is also called sink.

Moreover, Theorem 2 below clearly shows that if a fixed point x∗ is hyperbolic (the real parts of
all eigenvalues of the Jacobian matrix at x∗, i.e., DF x∗ð Þ are nonzero), then the stability type of
the fixed point for the nonlinear system is the same as for the linearized system at that fixed
point.

Theorem 2. [14] Let _x ¼ F xð Þ be a differential equation in n variables, with a hyperbolic fixed point x∗.

Suppose thal F, ∂Fi
∂xj

xð Þ and ∂2Fi
∂xj∂xk

xð Þ are all continuous. Then, the stability type of the fixed point for the
nonlinear system is the same as for the linearized system at that fixed point.

a. If the real parts of all the eigenvalues of DF x∗ð Þ are negative, then the fixed point is asymptotically
stable for the nonlinear equation (i.e., if the origin of the linearized system is asymptotically stable,
then x∗ is asymptotically stable for the nonlinear equation). In this case, the basin of attraction
WS x∗ð Þ is an open set that contains some solid ball about the fixed point.

b. If there is at least one eigenvalue of DF x∗ð Þ has positive real part, then the fixed point x∗ is unstable.
(For the linearized system, the fixed point can be a saddle, unstable node, unstable focus, etc.)

c. If one of the eigenvalues of DF x∗ð Þ has zero real part, then the situation is more complicated. In
particular, for n ¼ 2, if the fixed point is an elliptic center (eigenvalues �βi) or one eigenvalue is
zero of multiplicity one, then the linearized system does not determine the stability type of the fixed
point.

Now by utilising the Theorem 2, we are going to analyse the stability of the fixed points E1, E2

and E3.

(i) Stability analysis of E1:

Now, we will discuss the stability type of the equilibrium point E1 1; 0; 0ð Þ. The Jacobian matrix
of the system (3) is
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J ¼

�f 01 sð Þx� 1 �f 1 sð Þ
f 01 sð Þx
D1

f 1 sð Þ
D1

� f 2 xð Þy D1

1þ xþD1by

� �
� D1x

1þ xþD1byð Þ2
 !" #

� f 2
0 xð Þy D1x

1þ xþD1by

� �
þ 1

� �
� 1

0 f 2 xð Þy D1

1þ xþD1by

� �
� D1x

1þ xþD1byð Þ2
 !" #

þ f 02 xð Þy 1þ D1x
1þ xþD1by

� �

2
66666664

0
f 2 xð ÞD2

1bxy

1þ xþD1byð Þ2
 !

� f 2 xð Þ 1þ D1x
1þ xþD1by

� �

f 2 xð Þ 1þ D1x
1þ xþD1by

� �
� f 2 xð ÞD2

1bxy

1þ xþD1byð Þ2
 !

� 1

3
77777775

:

Then,

JE1
¼

�1 �f 1 1ð Þ 0

0
f 1 1ð Þ
D1

� 1 0

0 0 �1

0
BB@

1
CCA:

As Jacobian matrix JE1
above is an upper triangular, therefore the diagonal is the value of all of

its eigenvalues; λ1 ¼ �1,λ2 ¼ �1 and λ3 ¼ f 1 1ð Þ
D1

� 1: If all the eigenvalues of JE1 are negatives,

then this leads to the following result.

Theorem 3. If the eigenvalue λ3 such that

λ3 ¼ f 1 1ð Þ
D1

� 1 < 0,

then the trivial equilibrium point E1 1; 0; 0ð Þ is locally asymptotically stable.

(ii) Stability analysis of E2:

Next, we analyse the local stability of the system (3) that restricted to the neighbourhood of the

equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

. The Jacobian matrix at E2 ζs;
1�ζsð Þ
D1

; 0
� �

is given as

JE2
¼

� f 01 ζsð Þ 1� ζsð Þ
D1

� 1 �f 1 ζsð Þ 0

f 01 ζsð Þ 1� ζsð Þ
D2

1

f 1 ζsð Þ
D1

� 1 �f 2
1� ζs
D1

� �
1þ 1� ζs

1þ 1� ζS
D1

� �

0
BB@

1
CCA

0
BB@

1
CCA

0 0 f 2
1� ζs
D1

� �
1þ 1� ζs

1þ 1� ζS
D1

� �

0
BB@

1
CCA

0
BB@

1
CCA� 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

Stability and Hopf Bifurcation Analysis of a Simple Nutrient-Prey-Predator Model with Intratrophic Predation…
http://dx.doi.org/10.5772/intechopen.71624

53



Another form of stability is asymptotically stable. This is stated in the following Definition 3.
below. Before going further to understand this concept, we need the definition of ω-limit set as
follows.

Definition 3. [14] A point k is an ω-limit point of the trajectory of x0, if ϕ t; x0ð Þ keeps coming
near k as t ! ∞ (i.e., there is a sequence of times tj, with tj ! ∞ as j ! ∞ such that ϕ tj; x0

� �

converges to k). Certainly, if ϕ t; x0ð Þ � x∗
�� ��! 0 as t ! ∞, then x∗ is the only ω-limit point of x0.

There can be more than one point that is an ω-limit point of x0. The set of all ω-limit points of x0
is denoted by ω x0ð Þ and is called the omega limit set of x0.

Definition 4. [14] A fixed point x∗ is weakly asymptotically stable, if there exists δ1 > 0
such that ω x0ð Þ ¼ x∗f g for all x0 � x∗k k < δ1 (i.e., ϕ t; x0ð Þ � x∗

�� ��! 0 as time t ! ∞ for
all x0 � x∗k k < δ1). Therefore, a fixed point is weakly asymptotically stable, if the stable man-
ifold contains all points in a neighbourhood of the fixed point (i.e., all points are sufficiently
close). A fixed point x∗ is asymptotically stable if it is both L-stable and weakly asymptotically
stable. An asymptotically stable fixed point is also called sink.

Moreover, Theorem 2 below clearly shows that if a fixed point x∗ is hyperbolic (the real parts of
all eigenvalues of the Jacobian matrix at x∗, i.e., DF x∗ð Þ are nonzero), then the stability type of
the fixed point for the nonlinear system is the same as for the linearized system at that fixed
point.

Theorem 2. [14] Let _x ¼ F xð Þ be a differential equation in n variables, with a hyperbolic fixed point x∗.

Suppose thal F, ∂Fi
∂xj

xð Þ and ∂2Fi
∂xj∂xk

xð Þ are all continuous. Then, the stability type of the fixed point for the
nonlinear system is the same as for the linearized system at that fixed point.

a. If the real parts of all the eigenvalues of DF x∗ð Þ are negative, then the fixed point is asymptotically
stable for the nonlinear equation (i.e., if the origin of the linearized system is asymptotically stable,
then x∗ is asymptotically stable for the nonlinear equation). In this case, the basin of attraction
WS x∗ð Þ is an open set that contains some solid ball about the fixed point.

b. If there is at least one eigenvalue of DF x∗ð Þ has positive real part, then the fixed point x∗ is unstable.
(For the linearized system, the fixed point can be a saddle, unstable node, unstable focus, etc.)

c. If one of the eigenvalues of DF x∗ð Þ has zero real part, then the situation is more complicated. In
particular, for n ¼ 2, if the fixed point is an elliptic center (eigenvalues �βi) or one eigenvalue is
zero of multiplicity one, then the linearized system does not determine the stability type of the fixed
point.

Now by utilising the Theorem 2, we are going to analyse the stability of the fixed points E1, E2

and E3.

(i) Stability analysis of E1:

Now, we will discuss the stability type of the equilibrium point E1 1; 0; 0ð Þ. The Jacobian matrix
of the system (3) is
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J ¼

�f 01 sð Þx� 1 �f 1 sð Þ
f 01 sð Þx
D1

f 1 sð Þ
D1

� f 2 xð Þy D1

1þ xþD1by

� �
� D1x

1þ xþD1byð Þ2
 !" #

� f 2
0 xð Þy D1x

1þ xþD1by

� �
þ 1

� �
� 1

0 f 2 xð Þy D1

1þ xþD1by

� �
� D1x

1þ xþD1byð Þ2
 !" #

þ f 02 xð Þy 1þ D1x
1þ xþD1by

� �

2
66666664

0
f 2 xð ÞD2

1bxy

1þ xþD1byð Þ2
 !

� f 2 xð Þ 1þ D1x
1þ xþD1by

� �

f 2 xð Þ 1þ D1x
1þ xþD1by

� �
� f 2 xð ÞD2

1bxy

1þ xþD1byð Þ2
 !

� 1

3
77777775

:

Then,

JE1
¼

�1 �f 1 1ð Þ 0

0
f 1 1ð Þ
D1

� 1 0

0 0 �1

0
BB@

1
CCA:

As Jacobian matrix JE1
above is an upper triangular, therefore the diagonal is the value of all of

its eigenvalues; λ1 ¼ �1,λ2 ¼ �1 and λ3 ¼ f 1 1ð Þ
D1

� 1: If all the eigenvalues of JE1 are negatives,

then this leads to the following result.

Theorem 3. If the eigenvalue λ3 such that

λ3 ¼ f 1 1ð Þ
D1

� 1 < 0,

then the trivial equilibrium point E1 1; 0; 0ð Þ is locally asymptotically stable.

(ii) Stability analysis of E2:

Next, we analyse the local stability of the system (3) that restricted to the neighbourhood of the

equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

. The Jacobian matrix at E2 ζs;
1�ζsð Þ
D1

; 0
� �

is given as

JE2
¼

� f 01 ζsð Þ 1� ζsð Þ
D1

� 1 �f 1 ζsð Þ 0

f 01 ζsð Þ 1� ζsð Þ
D2

1

f 1 ζsð Þ
D1

� 1 �f 2
1� ζs
D1

� �
1þ 1� ζs

1þ 1� ζS
D1

� �

0
BB@

1
CCA

0
BB@

1
CCA

0 0 f 2
1� ζs
D1

� �
1þ 1� ζs

1þ 1� ζS
D1

� �

0
BB@

1
CCA

0
BB@

1
CCA� 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

Stability and Hopf Bifurcation Analysis of a Simple Nutrient-Prey-Predator Model with Intratrophic Predation…
http://dx.doi.org/10.5772/intechopen.71624

53



We can see from both Jacobian matrices JE1 and JE2 that there are no parameter b involved
when the predator organisms y is zero. This means that intratrophic predation does not affect
the local stability and existence of E1 and E2 when no predator organisms involved. The
characteristic equation is λ3 þ c1λ2 þ c2λþ c3 ¼ 0 where

c1 ¼ 1
D1 D1 � ζs þ 1ð Þ f 01 ζsð Þ þ 3D1 � f 1 ζsð Þ þ f 01 ζsð ÞD1 �D1f 2

1� ζs
D1

� ��

� 2ζsf
0
1 ζsð Þ � 3D1ζs � 2D2

1f 2
1� ζs
D1

� �
þ ζ2s f

0
1 ζsð Þ � f 1 ζsð ÞD1 þ ζsf 1 ζsð Þ þ 3D2

1 �D1ζsf
0
1 ζsð Þ

þD1ζsf 2
1� ζs
D1

� �
þD2

1ζsf 2
1� ζs
D1

� �Þ,
c2 ¼ 1

D1 D1 � ζS þ 1ð Þ 2f 1 ζsð Þ � 3D1 � 2f 01 ζsð Þ � 2D1f 01 ζsð Þ þ f 2
1� ζs
D1

� �
f 01 ζsð Þ

�

þ 2D1f 2
1� ζs
D1

� �
þ 4ζsf

0
1 ζsð Þ þ 3D1ζs þ 4D2

1f 2
1� ζs
D1

� �
� 2ζ2s f

0
1 ζsð Þ

þ 2D1f 1 ζsð Þ � f 1 ζsð Þf 2
1� ζs
D1

� �
� 2ζsf 1 ζsð Þ � 3D2

1 � 2D1f 1 ζsð Þf 2
1� ζs
D1

� �

þ ζsf 1 ζsð Þf 2
1� ζs
D1

� �
þ 2D1f 01 ζsð Þf 2

1� ζs
D1

� �
þ 2D1ζsf

0
1 ζsð Þ

� 2ζsf
0
1 ζsð Þf 2

1� ζs
D1

� �
� 2D1ζsf 2

1� ζs
D1

� �
þ ζ2s f

0
1 ζsð Þf 2

1� ζs
D1

� �

�2D2
1ζsf 2

1� ζs
D1

� �
� 3D1ζsf

0
1 ζsð Þf 2

1� ζs
D1

� �
þD1ζ

2
s f

0
1 ζsð Þf 2

1� ζs
D1

� �
þD1ζsf 1 ζsð Þf 2

1� ζs
D1

� ��
,

c3 ¼ 1
D1 D1 � ζs þ 1ð Þ f 1 ζsð Þ �D1 � f 01 ζsð Þ �D1f 01 ζsð Þ þ f 01 ζsð Þf 2

1� ζs
D1

� �
þD1f 2

1� ζs
D1

� ��

þ 2ζsf
0
1 ζsð Þ þD1ζs � ζ2s f

0
1 ζsð Þ þ f 1 ζsð ÞD1 � f 1 ζsð Þf 2

1� ζs
D1

� �
� ζsf 1 ζsð Þ

�D2
1 � 2D1f 1 ζsð Þf 2

1� ζs
D1

� �
þ ζsf 1 ζsð Þf 2

1� ζs
D1

� �
þ 2D1f 01 ζsð Þf 2

1� ζs
D1

� �

þD1ζsf
0
1 ζsð Þ � 2ζsf

0
1 ζsð Þf 2

1� ζs
D1

� �
�D1ζsf 2

1� ζs
D1

� �

þ ζ2s f
0
1 ζsð Þf 2

1� ζs
D1

� �
�D2

1ζsf 2
1� ζs
D1

� �
� 3D1ζsf

0
1 ζsð Þf 2

1� ζs
D1

� �

þD1ζ
2
s f

0
1 ζsð Þf 2

1� ζs
D1

� �
þD1ζsf 1 ζsð Þf 2

1� ζs
D1

� ��
:

Then, by using MATLAB R2015b, we get the eigenvalues of JE2
which are λ4 ¼ �1 ,

λ5 ¼ f 01 ζsð Þ ζs�1ð Þþf 1 ζsð Þ�D1

D1
and λ6 ¼

f 2
1�ζs
D1

� �
1þ2D1�ζs�D1ζsð Þ�1

D1�ζsþ1 where D1 � ζs þ 1 6¼ 0: We summarise

the above discussion in the following theorems.
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Theorem 4. Suppose the assumptions such as

f 01 ζsð Þ ζs�1ð Þþf 1 ζsð Þ�D1

D1
< 0 and

f 2
1�ζs
D1

� �
1þ2D1�ζs�D1ζsð Þ�1

D1�ζsþ1 < 0

are satisfied, then the equilibrium point, E2 ζs;
1�ζsð Þ
D1

; 0
� �

is locally asymptotically stable.

Theorem 5. If

f 01 ζsð Þ ζs�1ð Þþf 1 ζsð Þ�D1

D1
< 0 and

f 2
1�ζs
D1

� �
1þ2D1�ζs�D1ζsð Þ�1

D1�ζsþ1 < 0,

then the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

is a hyperbolic saddle and is repels locally in y-direction.

Particularly, the dimension of the stable manifold Ws E2ð Þ and the unstable manifold Wu E2ð Þ are given
by

dimWs E2ð Þ ¼ 2 and dimWu E2ð Þ ¼ 1.

Proof. The results follow from inspections of the eigenvalues of the matrix JE2
and Theorem 2

(see [16, 18]). ∎

Definition 4. [17] The flow F will be called uniformly persistent if there exists ε0 > 0 such that

for all x∈E0, limt!∞ d π x; tð Þ; ∂Eð Þ ≥ ε0:
The following theorem shows the existence of the equilibrium point E2 using persistence
analysis.
Theorem 6. Assume that

i. Lemma 1 being holds,

ii. E2 is a unique hyperbolic saddle point in Rþ
sxy and repels locally in y-direction (as in Theorem 5),

iii. no existence of periodic orbits in the planes of Rþ
sxy.

Then

lim
t!þ∞

inf s tð Þ > k, lim
t!þ∞

inf x tð Þ > k, lim
t!þ∞

inf y tð Þ > k,

where k > 0:

Particularly, the system (3) exhibits uniform persistence and the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

exists.

Proof. The result follows from the Definition 4, which defines uniform persistence by Butler
et al. [17] and Nani and Freedman [18]. ∎
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We can see from both Jacobian matrices JE1 and JE2 that there are no parameter b involved
when the predator organisms y is zero. This means that intratrophic predation does not affect
the local stability and existence of E1 and E2 when no predator organisms involved. The
characteristic equation is λ3 þ c1λ2 þ c2λþ c3 ¼ 0 where

c1 ¼ 1
D1 D1 � ζs þ 1ð Þ f 01 ζsð Þ þ 3D1 � f 1 ζsð Þ þ f 01 ζsð ÞD1 �D1f 2

1� ζs
D1

� ��

� 2ζsf
0
1 ζsð Þ � 3D1ζs � 2D2

1f 2
1� ζs
D1

� �
þ ζ2s f

0
1 ζsð Þ � f 1 ζsð ÞD1 þ ζsf 1 ζsð Þ þ 3D2

1 �D1ζsf
0
1 ζsð Þ

þD1ζsf 2
1� ζs
D1

� �
þD2

1ζsf 2
1� ζs
D1

� �Þ,
c2 ¼ 1

D1 D1 � ζS þ 1ð Þ 2f 1 ζsð Þ � 3D1 � 2f 01 ζsð Þ � 2D1f 01 ζsð Þ þ f 2
1� ζs
D1

� �
f 01 ζsð Þ

�

þ 2D1f 2
1� ζs
D1

� �
þ 4ζsf

0
1 ζsð Þ þ 3D1ζs þ 4D2

1f 2
1� ζs
D1

� �
� 2ζ2s f

0
1 ζsð Þ

þ 2D1f 1 ζsð Þ � f 1 ζsð Þf 2
1� ζs
D1

� �
� 2ζsf 1 ζsð Þ � 3D2

1 � 2D1f 1 ζsð Þf 2
1� ζs
D1

� �

þ ζsf 1 ζsð Þf 2
1� ζs
D1

� �
þ 2D1f 01 ζsð Þf 2

1� ζs
D1

� �
þ 2D1ζsf

0
1 ζsð Þ

� 2ζsf
0
1 ζsð Þf 2

1� ζs
D1

� �
� 2D1ζsf 2

1� ζs
D1

� �
þ ζ2s f

0
1 ζsð Þf 2

1� ζs
D1

� �

�2D2
1ζsf 2

1� ζs
D1

� �
� 3D1ζsf

0
1 ζsð Þf 2

1� ζs
D1

� �
þD1ζ

2
s f

0
1 ζsð Þf 2

1� ζs
D1

� �
þD1ζsf 1 ζsð Þf 2

1� ζs
D1

� ��
,

c3 ¼ 1
D1 D1 � ζs þ 1ð Þ f 1 ζsð Þ �D1 � f 01 ζsð Þ �D1f 01 ζsð Þ þ f 01 ζsð Þf 2

1� ζs
D1

� �
þD1f 2

1� ζs
D1

� ��

þ 2ζsf
0
1 ζsð Þ þD1ζs � ζ2s f

0
1 ζsð Þ þ f 1 ζsð ÞD1 � f 1 ζsð Þf 2

1� ζs
D1

� �
� ζsf 1 ζsð Þ

�D2
1 � 2D1f 1 ζsð Þf 2

1� ζs
D1

� �
þ ζsf 1 ζsð Þf 2

1� ζs
D1

� �
þ 2D1f 01 ζsð Þf 2

1� ζs
D1

� �

þD1ζsf
0
1 ζsð Þ � 2ζsf

0
1 ζsð Þf 2

1� ζs
D1

� �
�D1ζsf 2

1� ζs
D1

� �

þ ζ2s f
0
1 ζsð Þf 2

1� ζs
D1

� �
�D2

1ζsf 2
1� ζs
D1

� �
� 3D1ζsf

0
1 ζsð Þf 2

1� ζs
D1

� �

þD1ζ
2
s f

0
1 ζsð Þf 2

1� ζs
D1

� �
þD1ζsf 1 ζsð Þf 2

1� ζs
D1

� ��
:

Then, by using MATLAB R2015b, we get the eigenvalues of JE2
which are λ4 ¼ �1 ,

λ5 ¼ f 01 ζsð Þ ζs�1ð Þþf 1 ζsð Þ�D1

D1
and λ6 ¼

f 2
1�ζs
D1

� �
1þ2D1�ζs�D1ζsð Þ�1

D1�ζsþ1 where D1 � ζs þ 1 6¼ 0: We summarise

the above discussion in the following theorems.

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals54

Theorem 4. Suppose the assumptions such as

f 01 ζsð Þ ζs�1ð Þþf 1 ζsð Þ�D1

D1
< 0 and

f 2
1�ζs
D1

� �
1þ2D1�ζs�D1ζsð Þ�1

D1�ζsþ1 < 0

are satisfied, then the equilibrium point, E2 ζs;
1�ζsð Þ
D1

; 0
� �

is locally asymptotically stable.

Theorem 5. If

f 01 ζsð Þ ζs�1ð Þþf 1 ζsð Þ�D1

D1
< 0 and

f 2
1�ζs
D1

� �
1þ2D1�ζs�D1ζsð Þ�1

D1�ζsþ1 < 0,

then the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

is a hyperbolic saddle and is repels locally in y-direction.

Particularly, the dimension of the stable manifold Ws E2ð Þ and the unstable manifold Wu E2ð Þ are given
by

dimWs E2ð Þ ¼ 2 and dimWu E2ð Þ ¼ 1.

Proof. The results follow from inspections of the eigenvalues of the matrix JE2
and Theorem 2

(see [16, 18]). ∎

Definition 4. [17] The flow F will be called uniformly persistent if there exists ε0 > 0 such that

for all x∈E0, limt!∞ d π x; tð Þ; ∂Eð Þ ≥ ε0:
The following theorem shows the existence of the equilibrium point E2 using persistence
analysis.
Theorem 6. Assume that

i. Lemma 1 being holds,

ii. E2 is a unique hyperbolic saddle point in Rþ
sxy and repels locally in y-direction (as in Theorem 5),

iii. no existence of periodic orbits in the planes of Rþ
sxy.

Then

lim
t!þ∞

inf s tð Þ > k, lim
t!þ∞

inf x tð Þ > k, lim
t!þ∞

inf y tð Þ > k,

where k > 0:

Particularly, the system (3) exhibits uniform persistence and the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

exists.

Proof. The result follows from the Definition 4, which defines uniform persistence by Butler
et al. [17] and Nani and Freedman [18]. ∎
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(iii) Stability analysis of E3 s∗; x∗; y∗ð Þ:
The Jacobian matrix at E3 is

JE3
¼

� f 01 s∗ð Þx∗ � 1 �f 1 s∗ð Þ
f 01 s∗ð Þx∗

D1

f 1 s∗ð Þ
D1

� f 2 x∗ð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

� f 2
0 x∗ð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �
� 1

0 f 2 x∗ð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

þ f 02 x∗ð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �

2
66666664

0
f 2 x∗ð ÞD2

1bx
∗y∗

1þ x∗ þD1by∗ð Þ2
 !

� f 2 x∗ð Þ D1x∗

1þ x∗ þD1by∗
þ 1

� �

f 2 x∗ð Þ D1x∗

1þ x∗ þD1by∗
þ 1

� �
� f 2 x∗ð ÞD2

1bx
∗y∗

1þ x∗ þD1by∗ð Þ2
 !

� 1

3
77777775
:

The eigenvalues of JE3
are resulted from the characteristic equation below

λ3 þ c4λ2 þ c5λþ c6 ¼ 0, (6)

where

c4 ¼ f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 3� f 1 s∗ð Þ
D1

,

c5 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 2ð Þ þ f 1 s∗ð Þ Z� R� 2ð Þ
D1

þ 2Qþ 2Rþ 2V � 2Zþ 3,

c6 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 1ð Þ þ f 1 s∗ð Þ Z� R� 1ð Þ
D1

þQþ Rþ V � Zþ 1,

and

Q ¼ f 2 x∗ð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

,

R ¼ f 2 x∗ð ÞD2
1bx

∗y∗

1þ x∗ þD1by∗ð Þ2
 !

,

V ¼ f 02 x∗ð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �
,

Z ¼ f 2 x∗ð Þ D1x∗

1þ x∗ þD1by∗
þ 1

� �
:

From (6), we obtain the eigenvalues; λ7 ¼ �1, and λ8, λ9 are
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λ8 ¼ � 1
2D1

D1 f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 2
� �� f 1 s∗ð Þ�

þ



D1

Q2 þ 2QRþ 2QV � 2QZ� 2Q f 1 s∗ð Þ � f 01 s∗ð Þx∗ 2Qþ 2Rþ 2V � 2Z� f 01 s∗ð Þx∗� �þ R2þ

2RV � 2RZþ V2 � 2VZþ Z2

0
B@

1
CAþ

f 1 s∗ð Þ 2D1R� 2D1V � 2D1Z� f 01 s∗ð Þx∗� �þ f 1 s∗ð Þ2

vuuuuuuuut

0
BBBBBB@

1
CCCCCCA

þf 01 s∗ð ÞD1x∗
�
,

λ9 ¼ � 1
2D1

D1 f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 2
� �� f 1 s∗ð Þ�

�



D1

Q2 þ 2QRþ 2QV � 2QZ� 2Q f 1 s∗ð Þ � f 01 s∗ð Þx∗ 2Qþ 2Rþ 2V � 2Z� f 01 s∗ð Þx∗� �þ R2þ

2RV � 2RZþ V2 � 2VZþ Z2

0
B@

1
CAþ

f 1 s∗ð Þ 2D1R� 2D1V � 2D1Z� f 01 s∗ð Þx∗� �þ f 1 s∗ð Þ2

vuuuuuuuut

0
BBBBBB@

1
CCCCCCA

þf 01 s∗ð ÞD1x∗
�
:

These results lead to the following theorem.

Theorem 7. Suppose that λ8 < 0 and λ9 < 0, then the equilibrium point E3 is locally asymptotically
stable.

2.4. Global stability and uniform persistence analysis

Now we will analyse the global stability of the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

and the

existence of positive interior equilibrium point E3 s∗; x∗; y∗ð Þ. For global stability analysis, we
use the similar technique as in [3, 18].

(i) Global stability analysis of E2 ζs;
1�ζs
D1

; 0
� �

Consider system (3) restricted to Rþ
sx as in (5). Let N be a neighbourhood of equilibrium point

E2 ζs;
1�ζs
D1

; 0
� �

in Rþ
sx. To analyse the global stability of the equilibrium point E2, a suitable

Lyapunov function L ¼ 1
2 n1 s�bsð Þ2 þ n2 x� bxð Þ2
� �

is used, where bs and bx denote the compo-

nents of E2 bs;bxð Þ, i.e., bs ¼ ζs and bx ¼ 1�ζs
D1

, while n1 and n2 are positive constants. Note that L is a

positive definite function with respect to E2 in Rþ
sx and a Lyapunov function for system (5) in N .

By differentiating L with respect to time t, we get

dL
dt

¼ n1 s�bsð Þs0 þ n2 x� bxð Þx0, (7)

where bx ¼ 1�bs
D1

. From (5), we have
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(iii) Stability analysis of E3 s∗; x∗; y∗ð Þ:
The Jacobian matrix at E3 is

JE3
¼

� f 01 s∗ð Þx∗ � 1 �f 1 s∗ð Þ
f 01 s∗ð Þx∗

D1

f 1 s∗ð Þ
D1

� f 2 x∗ð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

� f 2
0 x∗ð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �
� 1

0 f 2 x∗ð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

þ f 02 x∗ð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �

2
66666664

0
f 2 x∗ð ÞD2

1bx
∗y∗

1þ x∗ þD1by∗ð Þ2
 !

� f 2 x∗ð Þ D1x∗

1þ x∗ þD1by∗
þ 1

� �

f 2 x∗ð Þ D1x∗

1þ x∗ þD1by∗
þ 1

� �
� f 2 x∗ð ÞD2

1bx
∗y∗

1þ x∗ þD1by∗ð Þ2
 !

� 1

3
77777775
:

The eigenvalues of JE3
are resulted from the characteristic equation below

λ3 þ c4λ2 þ c5λþ c6 ¼ 0, (6)

where

c4 ¼ f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 3� f 1 s∗ð Þ
D1

,

c5 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 2ð Þ þ f 1 s∗ð Þ Z� R� 2ð Þ
D1

þ 2Qþ 2Rþ 2V � 2Zþ 3,

c6 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 1ð Þ þ f 1 s∗ð Þ Z� R� 1ð Þ
D1

þQþ Rþ V � Zþ 1,

and

Q ¼ f 2 x∗ð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

,

R ¼ f 2 x∗ð ÞD2
1bx

∗y∗

1þ x∗ þD1by∗ð Þ2
 !

,

V ¼ f 02 x∗ð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �
,

Z ¼ f 2 x∗ð Þ D1x∗

1þ x∗ þD1by∗
þ 1

� �
:

From (6), we obtain the eigenvalues; λ7 ¼ �1, and λ8, λ9 are
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λ8 ¼ � 1
2D1

D1 f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 2
� �� f 1 s∗ð Þ�

þ



D1

Q2 þ 2QRþ 2QV � 2QZ� 2Q f 1 s∗ð Þ � f 01 s∗ð Þx∗ 2Qþ 2Rþ 2V � 2Z� f 01 s∗ð Þx∗� �þ R2þ

2RV � 2RZþ V2 � 2VZþ Z2

0
B@

1
CAþ

f 1 s∗ð Þ 2D1R� 2D1V � 2D1Z� f 01 s∗ð Þx∗� �þ f 1 s∗ð Þ2

vuuuuuuuut

0
BBBBBB@

1
CCCCCCA

þf 01 s∗ð ÞD1x∗
�
,

λ9 ¼ � 1
2D1

D1 f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 2
� �� f 1 s∗ð Þ�

�



D1

Q2 þ 2QRþ 2QV � 2QZ� 2Q f 1 s∗ð Þ � f 01 s∗ð Þx∗ 2Qþ 2Rþ 2V � 2Z� f 01 s∗ð Þx∗� �þ R2þ

2RV � 2RZþ V2 � 2VZþ Z2

0
B@

1
CAþ

f 1 s∗ð Þ 2D1R� 2D1V � 2D1Z� f 01 s∗ð Þx∗� �þ f 1 s∗ð Þ2

vuuuuuuuut

0
BBBBBB@

1
CCCCCCA

þf 01 s∗ð ÞD1x∗
�
:

These results lead to the following theorem.

Theorem 7. Suppose that λ8 < 0 and λ9 < 0, then the equilibrium point E3 is locally asymptotically
stable.

2.4. Global stability and uniform persistence analysis

Now we will analyse the global stability of the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

and the

existence of positive interior equilibrium point E3 s∗; x∗; y∗ð Þ. For global stability analysis, we
use the similar technique as in [3, 18].

(i) Global stability analysis of E2 ζs;
1�ζs
D1

; 0
� �

Consider system (3) restricted to Rþ
sx as in (5). Let N be a neighbourhood of equilibrium point

E2 ζs;
1�ζs
D1

; 0
� �

in Rþ
sx. To analyse the global stability of the equilibrium point E2, a suitable

Lyapunov function L ¼ 1
2 n1 s�bsð Þ2 þ n2 x� bxð Þ2
� �

is used, where bs and bx denote the compo-

nents of E2 bs;bxð Þ, i.e., bs ¼ ζs and bx ¼ 1�ζs
D1

, while n1 and n2 are positive constants. Note that L is a

positive definite function with respect to E2 in Rþ
sx and a Lyapunov function for system (5) in N .

By differentiating L with respect to time t, we get

dL
dt

¼ n1 s�bsð Þs0 þ n2 x� bxð Þx0, (7)

where bx ¼ 1�bs
D1

. From (5), we have
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1 ¼ bs þ bxf 1 bsð Þ and D1 ¼ f 1 bsð Þ:

Hence (7) can be written as

L0 ¼ n1 s�bsð Þ bs þ bxf 1 bsð Þ � s� f 1 sð Þx� �þ n2 x� bxð Þ f 1 sð Þ
f 1 bsð Þ � 1

� �
x

¼ �n1 s�bsð Þ2 þ n1 s�bsð Þ f 1 bsð Þbx � f 1 sð Þx� �þ n2 x� bxð Þx f 1 sð Þ
f 1 bsð Þ � 1

� �

¼ n11 s�bsð Þ2 þ 1
2
n12 s�bsð Þ x� bxð Þ þ 1

2
n21 s�bsð Þ x� bxð Þ þ n22 x� bxð Þ2,

where
n11 ¼ �n1 < 0,

n12 ¼ n21 ¼ n1
f 1 bsð Þbx � f 1 sð Þx

x� bx ,

n22 ¼ n2
x f 1 sð Þ � f 1 bsð Þ� �

x� bxð Þf 1 bsð Þ :

Clearly that L0 can be written as L0 ¼ XTNX, which T denotes the transpose and the matrixN is
particularly a real, symmetric 2� 2 matrix, where X and N can be represented by

X ¼ v1
v2

� �
¼ s�bs

x� bx
� �

and N ¼
n11

1
2
n12

1
2
n21 n22

0
B@

1
CA:

Thus, it leads to the following theorem.

Theorem 8. The equilibrium point E2 is global asymptotically stable with respect to solution trajecto-
ries are initiated from int Rþ

sx if the assumptions n22 < 0 and detN > 0 are satisfied.

Proof. By using the Frobenius Theorem in ([18], Lemma 6.2), we can see that n22 and det N are
the leading principal minors of the matrix N: It is shown that matrix N is negative definite if

n22 < 0, and detN ¼ det
n11

1
2
n12

1
2
n21 n22

0
B@

1
CA > 0:

This completes the proof of the theorem. ∎

(ii) Existence of positive interior equilibrium point E3

In this subsection, we present some results of persistence analysis, including uniform persis-
tence and state the necessary conditions for the existence of positive equilibrium point E3. The
following lemma from Ref. [19] is applied to obtain the persistence results.
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Lemma 2. [19] Let G be an isolated hyperbolic equilibrium point in the omega limit set, ω Xð Þ of
the orbit O Xð Þ: Then either ω Xð Þ ¼ G or there exist points Jþ and J� in ω Xð Þ with Jþ ∈Ws Gð Þ
and J� ∈Wu Gð Þ, where Ws Gð Þ and Wu Gð Þ denote stable and unstable manifolds of G.

Theorem 9. Assume that

i. E2 ζs;
1�ζsð Þ
D1

; 0
� �

is a hyperbolic saddle point and is repels locally in y direction (as in Theorem 5),

ii. system (3) is dissipative and all solutions with initial values in Rþ
sxy are uniformly bounded and

attracted into region Η (as in Theorem 1), and

iii. equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

is globally asymptotically stable with respect to Rþ
sx.

Then, the system (3) is uniformly persistence.

Proof. This proof strictly depends on Lemma 2. Suppose Η is the region as stated in Theorem
1. It showed that regionΗ is positive invariant set and any solutions of system (3) emanating at
a point in R3

þ is uniformly bounded. Despites that, the only compact invariant set on ∂R3
þ is

E2 ζs;
1�ζsð Þ
D1

; 0
� �

. Let P ¼ E3 s∗; x∗; y∗ð Þ belongs to the interior of R3
þ, i.e., P∈ int R3

þ. We shall

show that there is no points Ji ∈ ∂R3
þ where ∂R3

þ belongs to ω Pð Þ, the omega limit set of P:Now,

we prove that the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

∉ω Pð Þ: Assume that E2 ∈ω Pð Þ is true.

Then, there is a point Jþ1 ∈Ws E2ð Þ\ E2f g such that Jþ1 ∈ω Pð Þ by Lemma 2. But
Ws E2ð Þ ∩ R3

þ\ E2f g� �
is empty which is a contradiction for the positive invariance property of

Η⊂R3
þ: Thus, the equilibrium point E2 is not in the omega limit set of P; E2∉ω Pð Þ: Next, we

shall show ∂R3
þ ∩ω Pð Þ ¼ ∅: Assume that ∂R3

þ ∩ω Pð Þ 6¼ ∅, and let J∈ ∂R3
þ and J∈ω Pð Þ: Then

the closure of the orbit of the point J, i.e., cl O Jð Þð Þmust either contains E2 or unbounded. This is

a contradiction, and hence it is proved that ∂R3
þ ∩ω Pð Þ ¼ ∅: We deduce that if E2 ζs;

1�ζsð Þ
D1

; 0
� �

is unstable, then, for stable manifold Ws E2ð Þ;Ws E2ð Þ ∩ int R3
þ

� �� � ¼ ∅, and for unstable mani-

fold Wu E2ð Þ; Wu E2ð Þ ∩ int R3
þ

� �� � 6¼ ∅. Therefore, the result of uniform persistence follows

since the omega limit set of P, ω Pð Þ must be in int R3
þ

� �
: This completes the proof. ∎

Remark 2. Global stability of equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

with respect to Rþ
sx indicates

that the boundary flow is isolated and a cyclic with respect to region Η. Thus, the system (3)
undergoes uniform persistence and implies that a positive interior equilibrium point
E3 s∗; x∗; y∗ð Þ exists (see [20]).

2.5. Hopf bifurcation

In this section, we investigate Hopf bifurcation on the system (3) with a bifurcation real
parameter, σ: Particularly, σ is selected in such a way that the growth rate function f 2 is a
function of x and σ: Therefore, system (3) takes of the form
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1 ¼ bs þ bxf 1 bsð Þ and D1 ¼ f 1 bsð Þ:

Hence (7) can be written as

L0 ¼ n1 s�bsð Þ bs þ bxf 1 bsð Þ � s� f 1 sð Þx� �þ n2 x� bxð Þ f 1 sð Þ
f 1 bsð Þ � 1

� �
x

¼ �n1 s�bsð Þ2 þ n1 s�bsð Þ f 1 bsð Þbx � f 1 sð Þx� �þ n2 x� bxð Þx f 1 sð Þ
f 1 bsð Þ � 1

� �

¼ n11 s�bsð Þ2 þ 1
2
n12 s�bsð Þ x� bxð Þ þ 1

2
n21 s�bsð Þ x� bxð Þ þ n22 x� bxð Þ2,

where
n11 ¼ �n1 < 0,

n12 ¼ n21 ¼ n1
f 1 bsð Þbx � f 1 sð Þx

x� bx ,

n22 ¼ n2
x f 1 sð Þ � f 1 bsð Þ� �

x� bxð Þf 1 bsð Þ :

Clearly that L0 can be written as L0 ¼ XTNX, which T denotes the transpose and the matrixN is
particularly a real, symmetric 2� 2 matrix, where X and N can be represented by

X ¼ v1
v2

� �
¼ s�bs

x� bx
� �

and N ¼
n11

1
2
n12

1
2
n21 n22

0
B@

1
CA:

Thus, it leads to the following theorem.

Theorem 8. The equilibrium point E2 is global asymptotically stable with respect to solution trajecto-
ries are initiated from int Rþ

sx if the assumptions n22 < 0 and detN > 0 are satisfied.

Proof. By using the Frobenius Theorem in ([18], Lemma 6.2), we can see that n22 and det N are
the leading principal minors of the matrix N: It is shown that matrix N is negative definite if

n22 < 0, and detN ¼ det
n11

1
2
n12

1
2
n21 n22

0
B@

1
CA > 0:

This completes the proof of the theorem. ∎

(ii) Existence of positive interior equilibrium point E3

In this subsection, we present some results of persistence analysis, including uniform persis-
tence and state the necessary conditions for the existence of positive equilibrium point E3. The
following lemma from Ref. [19] is applied to obtain the persistence results.
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Lemma 2. [19] Let G be an isolated hyperbolic equilibrium point in the omega limit set, ω Xð Þ of
the orbit O Xð Þ: Then either ω Xð Þ ¼ G or there exist points Jþ and J� in ω Xð Þ with Jþ ∈Ws Gð Þ
and J� ∈Wu Gð Þ, where Ws Gð Þ and Wu Gð Þ denote stable and unstable manifolds of G.

Theorem 9. Assume that

i. E2 ζs;
1�ζsð Þ
D1

; 0
� �

is a hyperbolic saddle point and is repels locally in y direction (as in Theorem 5),

ii. system (3) is dissipative and all solutions with initial values in Rþ
sxy are uniformly bounded and

attracted into region Η (as in Theorem 1), and

iii. equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

is globally asymptotically stable with respect to Rþ
sx.

Then, the system (3) is uniformly persistence.

Proof. This proof strictly depends on Lemma 2. Suppose Η is the region as stated in Theorem
1. It showed that regionΗ is positive invariant set and any solutions of system (3) emanating at
a point in R3

þ is uniformly bounded. Despites that, the only compact invariant set on ∂R3
þ is

E2 ζs;
1�ζsð Þ
D1

; 0
� �

. Let P ¼ E3 s∗; x∗; y∗ð Þ belongs to the interior of R3
þ, i.e., P∈ int R3

þ. We shall

show that there is no points Ji ∈ ∂R3
þ where ∂R3

þ belongs to ω Pð Þ, the omega limit set of P:Now,

we prove that the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

∉ω Pð Þ: Assume that E2 ∈ω Pð Þ is true.

Then, there is a point Jþ1 ∈Ws E2ð Þ\ E2f g such that Jþ1 ∈ω Pð Þ by Lemma 2. But
Ws E2ð Þ ∩ R3

þ\ E2f g� �
is empty which is a contradiction for the positive invariance property of

Η⊂R3
þ: Thus, the equilibrium point E2 is not in the omega limit set of P; E2∉ω Pð Þ: Next, we

shall show ∂R3
þ ∩ω Pð Þ ¼ ∅: Assume that ∂R3

þ ∩ω Pð Þ 6¼ ∅, and let J∈ ∂R3
þ and J∈ω Pð Þ: Then

the closure of the orbit of the point J, i.e., cl O Jð Þð Þmust either contains E2 or unbounded. This is

a contradiction, and hence it is proved that ∂R3
þ ∩ω Pð Þ ¼ ∅: We deduce that if E2 ζs;

1�ζsð Þ
D1

; 0
� �

is unstable, then, for stable manifold Ws E2ð Þ;Ws E2ð Þ ∩ int R3
þ

� �� � ¼ ∅, and for unstable mani-

fold Wu E2ð Þ; Wu E2ð Þ ∩ int R3
þ

� �� � 6¼ ∅. Therefore, the result of uniform persistence follows

since the omega limit set of P, ω Pð Þ must be in int R3
þ

� �
: This completes the proof. ∎

Remark 2. Global stability of equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

with respect to Rþ
sx indicates

that the boundary flow is isolated and a cyclic with respect to region Η. Thus, the system (3)
undergoes uniform persistence and implies that a positive interior equilibrium point
E3 s∗; x∗; y∗ð Þ exists (see [20]).

2.5. Hopf bifurcation

In this section, we investigate Hopf bifurcation on the system (3) with a bifurcation real
parameter, σ: Particularly, σ is selected in such a way that the growth rate function f 2 is a
function of x and σ: Therefore, system (3) takes of the form
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s0 ¼ 1� s� f 1 sð Þx,

x0 ¼ f 1 sð Þ
D1

� 1
� �

x� f 2 x; σð Þy 1þ D1x
1þ xþD1by

� �
,

y0 ¼ f 2 x; σð Þy 1þ D1x
1þ xþD1by

� �
� y,

8>>>>>>>><
>>>>>>>>:

(8)

where s 0ð Þ > 0, x 0ð Þ > 0, y 0ð Þ > 0: Next, we do linearization on the system (8). First, let

S ¼ s� h1;

X ¼ x� h2;

Y ¼ y� h3;

)

s ¼ Sþ h1;

x ¼ Xþ h2;

y ¼ Y þ h3;

8>>>>><
>>>>>:

8>>>>><
>>>>>:

where h1; h2; h3ð Þ is the non-trivial equilibrium point. Then, we obtain the following differential
equations

S0 ¼ 1� S� h1 � f 1 Sþ h1ð Þ Xþ h2ð Þ,

X0 ¼ f 1 Sþ h1ð Þ
D1

� 1
� �

Xþ h2ð Þ � f 2 Xþ h2; σð Þ Y þ h3ð Þ 1þ D1 Xþ h2ð Þ
1þ Xþ h2ð Þ þD1b Y þ h3ð Þ

� �
,

Y0 ¼ f 2 Xþ h2; σð Þ Y þ h3ð Þ 1þ D1 Xþ h2ð Þ
1þ Xþ h2ð Þ þD1b Y þ h3ð Þ

� �
� Y þ h3ð Þ:

8>>>>>>>>><
>>>>>>>>>:

(9)

The Jacobian matrix of system (8) is given by

Jσ ¼

�f 01 sð Þx� 1 �f 1 sð Þ
f 01 sð Þx
D1

f 1 sð Þ
D1

� f 2 x;σð Þy D1

1þ xþD1by

� �
� D1x

1þ xþD1byð Þ2
 !" #

� f 2
0 x;σð Þy D1x

1þ xþD1by

� �
þ 1

� �
� 1

0 f 2 x; σð Þy D1

1þ xþD1by

� �
� D1x

1þ xþD1byð Þ2
 !" #

þ f 02 x;σð Þy 1þ D1x
1þ xþD1by

� �

2
66666664

0

f 2 x;σð Þ D2
1bxy

1þ xþD1byð Þ2
 !

� D1x
1þ xþD1by

þ 1
� �" #

f 2 x;σð Þ 1þ D1x
1þ xþD1by

� �
� D2

1bxy

1þ xþD1byð Þ2
 !" #

� 1

3
77777775

:

Thus, the Jacobian matrix of system (8) about E2 ζs;
1�ζsð Þ
D1

; 0; σ
� �

is
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Jσ E2ð Þ ¼

� f 01 ζsð Þ 1� ζsð Þ
D1

� 1 �f 1 ζsð Þ 0

f 01 ζsð Þ 1� ζsð Þ
D2

1

f 1 ζsð Þ
D1

� 1 �f 2
1� ζs
D1

; σ
� �

1þ 1� ζs

1þ 1� ζs
D1

� �

0
BB@

1
CCA

0
BB@

1
CCA

0 0 f 2
1� ζs
D1

; σ
� �

1þ 1� ζs

1þ 1� ζs
D1

� �

0
BB@

1
CCA

0
BB@

1
CCA� 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

(10)

The characteristic equation of (10) is given as

λ3 þ c1λ2 þ c2λþ c3 ¼ 0, (11)

where

c1 ¼ 1
D1 D1 � ζs þ 1ð Þ f 01 ζsð Þ 1þD1 � 2ζs þ ζ2s �D1ζs

� �þ f1 ζsð Þ ζs �D1 � 1ð Þ�

þ D1f2
1� ζs
D1

;σ

� �
ζs þD1ζs � 2D1 � 1ð Þ þ 3D1 1þD1 � ζsð ÞÞ,

c2 ¼ 1
D1 D1 � ζs þ 1ð Þ f 01 ζsð Þ 2ζ2s þ 2þ 2D1 � 4ζs � 2D1ζs

��

� f 2
1� ζs
D1

; σ
� �

1þ 2D1 � 2ζs þ ζ2s � 3D1ζs þD1ζ
2
s

� ��

� f 1 ζsð Þ 2þ 2D1 � 2ζs þ f 2
1� ζs
D1

; σ
� �

ζs � 2D1 � 1þD1ζsð Þ
� �

� f 2
1� ζs
D1

; σ
� �

2D1 þ 4D2
1 � 2D1ζs � 2D2

1ζs
� �þ 3D1ζs � 3D2

1 � 3D1Þ,

c3 ¼ 1
D1 D1 � ζs þ 1ð Þ f 01 ζsð Þ 1� 2ζs þD1 þ ζ2s �D1ζs

��

�f 2
1� ζs
D1

;σ

� �
1� 2ζs þ ζ2s �D1 þD1ζ

2
s

� ��

�f 1 ζsð Þ f 2
1� ζs
D1

;σ

� �
ζs � 1� 2D1 þD1ζsð Þ þ 1� ζs

� �

�f 2
1� ζs
D1

;σ

� �
D1 �D1ζsð Þ þD1ζs �D1 �D2

1Þ:

We applied Routh Hurwitz criterion (see [21, 22]) onto the characteristic equation (11) and
obtain the matrices
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s0 ¼ 1� s� f 1 sð Þx,

x0 ¼ f 1 sð Þ
D1

� 1
� �

x� f 2 x; σð Þy 1þ D1x
1þ xþD1by

� �
,

y0 ¼ f 2 x; σð Þy 1þ D1x
1þ xþD1by

� �
� y,

8>>>>>>>><
>>>>>>>>:

(8)

where s 0ð Þ > 0, x 0ð Þ > 0, y 0ð Þ > 0: Next, we do linearization on the system (8). First, let

S ¼ s� h1;

X ¼ x� h2;

Y ¼ y� h3;

)

s ¼ Sþ h1;

x ¼ Xþ h2;

y ¼ Y þ h3;

8>>>>><
>>>>>:

8>>>>><
>>>>>:

where h1; h2; h3ð Þ is the non-trivial equilibrium point. Then, we obtain the following differential
equations

S0 ¼ 1� S� h1 � f 1 Sþ h1ð Þ Xþ h2ð Þ,

X0 ¼ f 1 Sþ h1ð Þ
D1

� 1
� �

Xþ h2ð Þ � f 2 Xþ h2; σð Þ Y þ h3ð Þ 1þ D1 Xþ h2ð Þ
1þ Xþ h2ð Þ þD1b Y þ h3ð Þ

� �
,

Y0 ¼ f 2 Xþ h2; σð Þ Y þ h3ð Þ 1þ D1 Xþ h2ð Þ
1þ Xþ h2ð Þ þD1b Y þ h3ð Þ

� �
� Y þ h3ð Þ:

8>>>>>>>>><
>>>>>>>>>:

(9)

The Jacobian matrix of system (8) is given by

Jσ ¼

�f 01 sð Þx� 1 �f 1 sð Þ
f 01 sð Þx
D1

f 1 sð Þ
D1

� f 2 x;σð Þy D1

1þ xþD1by

� �
� D1x

1þ xþD1byð Þ2
 !" #

� f 2
0 x;σð Þy D1x

1þ xþD1by

� �
þ 1

� �
� 1

0 f 2 x; σð Þy D1

1þ xþD1by

� �
� D1x

1þ xþD1byð Þ2
 !" #

þ f 02 x;σð Þy 1þ D1x
1þ xþD1by

� �

2
66666664

0

f 2 x;σð Þ D2
1bxy

1þ xþD1byð Þ2
 !

� D1x
1þ xþD1by

þ 1
� �" #

f 2 x;σð Þ 1þ D1x
1þ xþD1by

� �
� D2

1bxy

1þ xþD1byð Þ2
 !" #

� 1

3
77777775

:

Thus, the Jacobian matrix of system (8) about E2 ζs;
1�ζsð Þ
D1

; 0; σ
� �

is
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Jσ E2ð Þ ¼

� f 01 ζsð Þ 1� ζsð Þ
D1

� 1 �f 1 ζsð Þ 0

f 01 ζsð Þ 1� ζsð Þ
D2

1

f 1 ζsð Þ
D1

� 1 �f 2
1� ζs
D1

; σ
� �

1þ 1� ζs

1þ 1� ζs
D1

� �

0
BB@

1
CCA

0
BB@

1
CCA

0 0 f 2
1� ζs
D1

; σ
� �

1þ 1� ζs

1þ 1� ζs
D1

� �

0
BB@

1
CCA

0
BB@

1
CCA� 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

(10)

The characteristic equation of (10) is given as

λ3 þ c1λ2 þ c2λþ c3 ¼ 0, (11)

where

c1 ¼ 1
D1 D1 � ζs þ 1ð Þ f 01 ζsð Þ 1þD1 � 2ζs þ ζ2s �D1ζs

� �þ f1 ζsð Þ ζs �D1 � 1ð Þ�

þ D1f2
1� ζs
D1

;σ

� �
ζs þD1ζs � 2D1 � 1ð Þ þ 3D1 1þD1 � ζsð ÞÞ,

c2 ¼ 1
D1 D1 � ζs þ 1ð Þ f 01 ζsð Þ 2ζ2s þ 2þ 2D1 � 4ζs � 2D1ζs

��

� f 2
1� ζs
D1

; σ
� �

1þ 2D1 � 2ζs þ ζ2s � 3D1ζs þD1ζ
2
s

� ��

� f 1 ζsð Þ 2þ 2D1 � 2ζs þ f 2
1� ζs
D1

; σ
� �

ζs � 2D1 � 1þD1ζsð Þ
� �

� f 2
1� ζs
D1

; σ
� �

2D1 þ 4D2
1 � 2D1ζs � 2D2

1ζs
� �þ 3D1ζs � 3D2

1 � 3D1Þ,

c3 ¼ 1
D1 D1 � ζs þ 1ð Þ f 01 ζsð Þ 1� 2ζs þD1 þ ζ2s �D1ζs

��

�f 2
1� ζs
D1

;σ

� �
1� 2ζs þ ζ2s �D1 þD1ζ

2
s

� ��

�f 1 ζsð Þ f 2
1� ζs
D1

;σ

� �
ζs � 1� 2D1 þD1ζsð Þ þ 1� ζs

� �

�f 2
1� ζs
D1

;σ

� �
D1 �D1ζsð Þ þD1ζs �D1 �D2

1Þ:

We applied Routh Hurwitz criterion (see [21, 22]) onto the characteristic equation (11) and
obtain the matrices
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M1 ¼ c1½ �;M2 ¼
c1 1
c3 c2

� �
; M3 ¼

c1 1 0
c3 c2 c1
0 0 c3

2
64

3
75:

Thus, the characteristic equation (11) has all negative real parts of λ if and only if

c1 > 0
c3 > 0

c1c2 � c3 > 0:

9>=
>;

(12)

When the assumptions on functional responses f 1 sð Þ ¼ f 1 ζsð Þ and f 2 xð Þ ¼ f 2
1�ζs
D1

; σ
� �

as in (2)

for the system (3), together with the hypotheses H1 until H3;

H1 : D1 � ζs þ 1 > 0,

H2 : f 01 ζsð Þ 1þD1 � 2ζs þ ζ2s �D1ζs
� �þ f 1 ζsð Þ ζs �D1 � 1ð Þ

þD1f 2
1� ζs
D1

; σ
� �

ζs þD1ζs � 2D1 � 1ð Þ þ 3D1 1þD1 � ζsð Þ > 0,

H3 : f 01 ζsð Þ 1� 2ζs þD1 þ ζ2s �D1ζs � f 2
1� ζs
D1

; σ
� �

1� 2ζs þ ζ2s �D1 þD1ζ
2
s

� �� �

� f 1 ζsð Þ f 2
1� ζs
D1

; σ
� �

ζs � 1� 2D1 þD1ζsð Þ þ 1� ζs

� �

� f 2
1� ζs
D1

; σ
� �

D1 �D1ζsð Þ þD1ζs �D1 �D2
1 > 0,

hold, we will have c1 > 0 and c3 > 0: We shall obtain two pure imaginary roots for the
characteristic equation (11) if and only if c1c2 ¼ c3 for some values of σ, say, σ∗1:

Since at σ ¼ σ∗1, there exists an interval σ∗1 � ε; σ∗1 þ ε
� �

containing σ∗1 for some ε > 0 such that

σ∈ σ∗1 � ε; σ∗1 þ ε
� �

. Thus, for σ∈ σ∗1 � ε; σ∗1 þ ε
� �

, the characteristic equation (11) cannot have
positive real roots. For σ ¼ σ∗1, we acquire (see [3, 10])

λ2 þ c2
� �

λþ c1ð Þ ¼ 0, (13)

that consist of three roots; λ1 ¼ ffiffiffiffi
c2

p
i,λ2 ¼ � ffiffiffiffi

c2
p

i, and λ3 ¼ �c1: As for σ∈ σ∗1 � ε; σ∗1 þ ε
� �

, all
the roots are in general of the form;

λ1 σð Þ ¼ α σð Þ þ β σð Þi,
λ2 σð Þ ¼ α σð Þ � β σð Þi,
λ3 σð Þ ¼ �c1 σð Þ:

In order to apply the Hopf bifurcation theorem as stated in [9, 23] towards the system (8), we
must verify the transversality condition
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Re
dλj

dσ

� �

σ¼σ∗1

6¼ 0, j ¼ 1, 2, 3: (14)

By substituting λ1 σð Þ ¼ α σð Þ þ β σð Þi and λ2 σð Þ ¼ α σð Þ � β σð Þi into characteristic equation (11)
and calculating the implicit derivative, we obtain the following equations

K σð Þα0 σð Þ � L σð Þβ0 σð Þ þM σð Þ ¼ 0,
L σð Þα0 σð Þ þ K σð Þβ0 σð Þ þN σð Þ ¼ 0,

�
(15)

where
K σð Þ ¼ 3α2 σð Þ þ 2c1 σð Þα σð Þ þ c2 σð Þ � 3β2 σð Þ;

M σð Þ ¼ α2 σð Þc01 σð Þ þ c02 σð Þα σð Þ � c01 σð Þβ2 σð Þ þ c03 σð Þ;
L σð Þ ¼ 6α σð Þβ σð Þ þ 2c1 σð Þβ σð Þ;

N σð Þ ¼ 2α σð Þβ σð Þc01 σð Þ þ c02 σð Þβ σð Þ:

Since K σ∗1
� �

M σ∗1
� �þ L σ∗1

� �
N σ∗1
� � 6¼ 0, we have

Re
dλj

dσ

� �

σ¼σ∗1

¼ K σ∗1
� �

M σ∗1
� �þ L σ∗1

� �
N σ∗1
� �

K2 σ∗1
� �þ L2 σ∗1

� � 6¼ 0, j ¼ 1, 2, 3,

and λ3 σ∗1
� � ¼ �c1 σ∗1

� � 6¼ 0: We conclude the details above in the following theorem.

Theorem 10. Suppose that the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0; σ
� �

exists and those assumptions

similar as in (2) for the system (3) together with hypothesis H1 until H3 hold. Then the system (8)
undergoes Hopf bifurcation in the first octant, which leads to a family of periodic solutions bifurcating

from E2 ζs;
1�ζsð Þ
D1

; 0; σ
� �

for some values of σ in the neighbourhood of σ∗1:

Next, we determine the Hopf bifurcation at the equilibrium point E3 s∗; x∗; y∗;σð Þ: The Jacobian
matrix of the system (8) about the equilibrium point E3 is given by

Jσ E3ð Þ ¼

� f 01 s∗ð Þx∗ � 1 �f 1 s∗ð Þ
f 01 s∗ð Þx∗

D1

f 1 s∗ð Þ
D1

� f 2 x∗; σð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

� f 2
0 x∗;σð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �
� 1

0 f 2 x∗; σð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

þ f 02 x∗;σð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �

2
66666664

0

f 2 x∗; σð Þ D2
1bx

∗y∗

1þ x∗ þD1by∗ð Þ2 �
D1x∗

1þ x∗ þD1by∗
� 1

 !

f 2 x∗; σð Þ D1x∗

1þ x∗ þD1by∗
� D2

1bx
∗y∗

1þ x∗ þD1by∗ð Þ2 þ 1

 !
� 1

3
77777775
:

Hence, the characteristic equation for the Jacobian matrix Jσ E3ð Þ is

λ3 þ c4λ2 þ c5λþ c6 ¼ 0, (16)
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M1 ¼ c1½ �;M2 ¼
c1 1
c3 c2

� �
; M3 ¼

c1 1 0
c3 c2 c1
0 0 c3

2
64

3
75:

Thus, the characteristic equation (11) has all negative real parts of λ if and only if

c1 > 0
c3 > 0

c1c2 � c3 > 0:

9>=
>;

(12)

When the assumptions on functional responses f 1 sð Þ ¼ f 1 ζsð Þ and f 2 xð Þ ¼ f 2
1�ζs
D1

; σ
� �

as in (2)

for the system (3), together with the hypotheses H1 until H3;

H1 : D1 � ζs þ 1 > 0,

H2 : f 01 ζsð Þ 1þD1 � 2ζs þ ζ2s �D1ζs
� �þ f 1 ζsð Þ ζs �D1 � 1ð Þ

þD1f 2
1� ζs
D1

; σ
� �

ζs þD1ζs � 2D1 � 1ð Þ þ 3D1 1þD1 � ζsð Þ > 0,

H3 : f 01 ζsð Þ 1� 2ζs þD1 þ ζ2s �D1ζs � f 2
1� ζs
D1

; σ
� �

1� 2ζs þ ζ2s �D1 þD1ζ
2
s

� �� �

� f 1 ζsð Þ f 2
1� ζs
D1

; σ
� �

ζs � 1� 2D1 þD1ζsð Þ þ 1� ζs

� �

� f 2
1� ζs
D1

; σ
� �

D1 �D1ζsð Þ þD1ζs �D1 �D2
1 > 0,

hold, we will have c1 > 0 and c3 > 0: We shall obtain two pure imaginary roots for the
characteristic equation (11) if and only if c1c2 ¼ c3 for some values of σ, say, σ∗1:

Since at σ ¼ σ∗1, there exists an interval σ∗1 � ε; σ∗1 þ ε
� �

containing σ∗1 for some ε > 0 such that

σ∈ σ∗1 � ε; σ∗1 þ ε
� �

. Thus, for σ∈ σ∗1 � ε; σ∗1 þ ε
� �

, the characteristic equation (11) cannot have
positive real roots. For σ ¼ σ∗1, we acquire (see [3, 10])

λ2 þ c2
� �

λþ c1ð Þ ¼ 0, (13)

that consist of three roots; λ1 ¼ ffiffiffiffi
c2

p
i,λ2 ¼ � ffiffiffiffi

c2
p

i, and λ3 ¼ �c1: As for σ∈ σ∗1 � ε; σ∗1 þ ε
� �

, all
the roots are in general of the form;

λ1 σð Þ ¼ α σð Þ þ β σð Þi,
λ2 σð Þ ¼ α σð Þ � β σð Þi,
λ3 σð Þ ¼ �c1 σð Þ:

In order to apply the Hopf bifurcation theorem as stated in [9, 23] towards the system (8), we
must verify the transversality condition
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Re
dλj

dσ

� �

σ¼σ∗1

6¼ 0, j ¼ 1, 2, 3: (14)

By substituting λ1 σð Þ ¼ α σð Þ þ β σð Þi and λ2 σð Þ ¼ α σð Þ � β σð Þi into characteristic equation (11)
and calculating the implicit derivative, we obtain the following equations

K σð Þα0 σð Þ � L σð Þβ0 σð Þ þM σð Þ ¼ 0,
L σð Þα0 σð Þ þ K σð Þβ0 σð Þ þN σð Þ ¼ 0,

�
(15)

where
K σð Þ ¼ 3α2 σð Þ þ 2c1 σð Þα σð Þ þ c2 σð Þ � 3β2 σð Þ;

M σð Þ ¼ α2 σð Þc01 σð Þ þ c02 σð Þα σð Þ � c01 σð Þβ2 σð Þ þ c03 σð Þ;
L σð Þ ¼ 6α σð Þβ σð Þ þ 2c1 σð Þβ σð Þ;

N σð Þ ¼ 2α σð Þβ σð Þc01 σð Þ þ c02 σð Þβ σð Þ:

Since K σ∗1
� �

M σ∗1
� �þ L σ∗1

� �
N σ∗1
� � 6¼ 0, we have

Re
dλj

dσ

� �

σ¼σ∗1

¼ K σ∗1
� �

M σ∗1
� �þ L σ∗1

� �
N σ∗1
� �

K2 σ∗1
� �þ L2 σ∗1

� � 6¼ 0, j ¼ 1, 2, 3,

and λ3 σ∗1
� � ¼ �c1 σ∗1

� � 6¼ 0: We conclude the details above in the following theorem.

Theorem 10. Suppose that the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0; σ
� �

exists and those assumptions

similar as in (2) for the system (3) together with hypothesis H1 until H3 hold. Then the system (8)
undergoes Hopf bifurcation in the first octant, which leads to a family of periodic solutions bifurcating

from E2 ζs;
1�ζsð Þ
D1

; 0; σ
� �

for some values of σ in the neighbourhood of σ∗1:

Next, we determine the Hopf bifurcation at the equilibrium point E3 s∗; x∗; y∗;σð Þ: The Jacobian
matrix of the system (8) about the equilibrium point E3 is given by

Jσ E3ð Þ ¼

� f 01 s∗ð Þx∗ � 1 �f 1 s∗ð Þ
f 01 s∗ð Þx∗

D1

f 1 s∗ð Þ
D1

� f 2 x∗; σð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

� f 2
0 x∗;σð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �
� 1

0 f 2 x∗; σð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

þ f 02 x∗;σð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �

2
66666664

0

f 2 x∗; σð Þ D2
1bx

∗y∗

1þ x∗ þD1by∗ð Þ2 �
D1x∗

1þ x∗ þD1by∗
� 1

 !

f 2 x∗; σð Þ D1x∗

1þ x∗ þD1by∗
� D2

1bx
∗y∗

1þ x∗ þD1by∗ð Þ2 þ 1

 !
� 1

3
77777775
:

Hence, the characteristic equation for the Jacobian matrix Jσ E3ð Þ is

λ3 þ c4λ2 þ c5λþ c6 ¼ 0, (16)
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where

c4 ¼ f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 3� f 1 s∗ð Þ
D1

,

c5 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 2ð Þ þ f 1 s∗ð Þ Z� R� 2ð Þ
D1

þ 2Qþ 2Rþ 2V � 2Zþ 3,

c6 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 1ð Þ þ f 1 s∗ð Þ Z� R� 1ð Þ
D1

þQþ Rþ V � Zþ 1,

and

Q ¼ f 2 x∗; σð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

,

R ¼ f 2 x∗; σð ÞD2
1bx

∗y∗

1þ x∗ þD1by∗ð Þ2
 !

,

V ¼ f 02 x∗; σð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �
,

Z ¼ f 2 x∗; σð Þ D1x∗

1þ x∗ þD1by∗
þ 1

� �
:

By applying the Routh-Hurwitz criterion (see [21, 22]) towards the characteristic equation (16),
we obtain the following Hurwitz matrices

M4 ¼ c4½ �; M5 ¼
c4 1
c6 c5

� �
; M6 ¼

c4 1 0
c6 c5 c4
0 0 c6

2
64

3
75:

Thus, the characteristic equation (16) has all negative real parts of λ if and only if

c4 > 0
c6 > 0

c4c5 � c6 > 0:

9>=
>;

(17)

Suppose the assumptions of functional response f 1 s∗ð Þ and f 2 x∗; σð Þ similar as in (2) for the
system (3), together with the hypotheses H4 until H6;

H4 : f 01 s∗ð Þx∗ þQþ Rþ V þ 3 >
f 1 s∗ð Þ
D1

þ Z,

H5 : Qþ Rþ V þ 1 > Z,

H6 : Z > Rþ 1,

hold, then clearly c4 > 0 and c6 > 0. In particular, we shall have two pure imaginary roots for the
characteristic equation (16) if and only if c4c5 ¼ c6 for some values of σ, say, σ∗2: Since at σ ¼ σ∗2,
there exists an interval σ∗2 � ε; σ∗2 þ ε

� �
containing σ∗2 for some ε > 0. Then, for σ∈ σ∗2 � ε; σ∗2

�
þεÞ, the characteristic Eq. (16) cannot have positive real roots. For σ ¼ σ∗2, we get (see [3, 10])
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i, λ3 ¼ �c4: As for σ∈ σ∗2 � ε; σ∗2 þ ε
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, all
roots are in general of the form;

λ1 σð Þ ¼ α σð Þ þ β σð Þi,
λ2 σð Þ ¼ α σð Þ � β σð Þi,
λ3 σð Þ ¼ �c4 σð Þ,

To establish Hopf bifurcation towards system (8), we must show that

Re
dλj

dσ

� �

σ¼σ∗2

6¼ 0, j ¼ 1, 2, 3: (19)

By substituting λ1 σð Þ ¼ α σð Þ þ β σð Þi and λ2 σð Þ ¼ α σð Þ � β σð Þi into characteristic equation (18)
and calculating the implicit derivative, we get the following equations;

A1 σð Þα0 σð Þ � A2 σð Þβ0 σð Þ þ B1 σð Þ ¼ 0,
A2 σð Þα0 σð Þ þ A1 σð Þβ0 σð Þ þ B2 σð Þ ¼ 0,

�
(20)

where

A1 σð Þ ¼ 3α2 σð Þ þ 2c1 σð Þα σð Þ þ c2 σð Þ � 3β2 σð Þ;
A2 σð Þ ¼ 6α σð Þβ σð Þ þ 2c1 σð Þβ σð Þ;

B1 σð Þ ¼ α2 σð Þc01 σð Þ þ c02 σð Þα σð Þ � c01 σð Þβ2 σð Þ þ c03 σð Þ;

B2 σð Þ ¼ 2α σð Þβ σð Þc01 σð Þ þ c02 σð Þβ σð Þ:

Since A1 σ∗2
� �

B1 σ∗2
� �þ A2 σ∗2

� �
B2 σ∗2
� � 6¼ 0, we have

Re
dλj

dσ

� �

σ¼σ∗2

¼ A1 σ∗2
� �

B1 σ∗2
� �þ A2 σ∗2

� �
B2 σ∗2
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� �� �2 þ A2 σ∗2

� �� �2 6¼ 0, j ¼ 1, 2, 3,

and λ3 σ∗2
� � ¼ �c4 σ∗2

� � 6¼ 0: We summarise the discussion above in the following theorem.
Theorem 11. Suppose that the equilibrium point

E3 s∗; x∗; y∗; σð Þ ¼ E3 s∗;
1� s∗

f 1 s∗ð Þ ;
2x∗ þ 1ð Þf 2 x∗ð Þ � x∗ � 1

bD1 1� f 2 x∗ð Þ� � ; σ

 !

exists and those assumptions similar as in (2) for the system (3) together with hypotheses H4 until H6

hold. Then the system (8) undergoes Hopf bifurcation in the first octant, which leads to a family of
periodic solutions bifurcating from E3 s∗; x∗; y∗; σð Þ for some values of σ in the neighbourhood of σ∗2:

2.6. Discussion

We have proposed and analysed a simple nutrient-predator-prey model in a chemostat with
intratrophic predation. This system consisted of the nutrient s, prey organisms x and predator
organisms y. We conclude that intratrophic predation denoted as b does not affected the local
stability and existence of E1 and E2 when no predator organisms involved. Next, we have
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where
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D1

,

c5 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 2ð Þ þ f 1 s∗ð Þ Z� R� 2ð Þ
D1

þ 2Qþ 2Rþ 2V � 2Zþ 3,

c6 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 1ð Þ þ f 1 s∗ð Þ Z� R� 1ð Þ
D1

þQþ Rþ V � Zþ 1,

and

Q ¼ f 2 x∗; σð Þy∗ D1

1þ x∗ þD1by∗

� �
� D1x∗

1þ x∗ þD1by∗ð Þ2
 !" #

,

R ¼ f 2 x∗; σð ÞD2
1bx

∗y∗

1þ x∗ þD1by∗ð Þ2
 !

,

V ¼ f 02 x∗; σð Þy∗ D1x∗

1þ x∗ þD1by∗
þ 1

� �
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1þ x∗ þD1by∗
þ 1

� �
:
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� �
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2
64

3
75:
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9>=
>;

(17)
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shown that the washout equilibrium point E1 1; 0; 0ð Þ (no prey and predator organisms present)

is locally asymptotically stable if λ3 ¼ f 1 1ð Þ
D1

� 1 < 0 holds. For stability of E2 and E3 of the

system (3), some sufficient criteria or conditions are derived and satisfied. The points E2 and
E3 are said to be asymptotically stable if all of their eigenvalues are less than zero.

In particular, we investigated the global stability analysis for E2: A suitable Lyapunov function
L is defined and E2 is globally asymptotically stable if and only if the conditions in Theorem 8
holds. Global stability of E2 indicates that predator organisms y might be washout in the
chemostat despites the initial prey and predator organisms’ density levels. Next, in the study
of the existence of positive interior equilibrium point E3, we presented some results regarding
uniform persistence analysis. It has shown that the system (3) is uniformly persistence and
thus, the positive interior equilibrium point E3 exists.

In the analysis of occurrence of Hopf bifurcation, Hopf bifurcation theorems in Hassard et al.
[9] are applied. We have shown that the system (8) undergoes Hopf bifurcation in the first

octant, which leads to a family of periodic solutions bifurcating from E2 ζs;
1�ζsð Þ
D1

; 0; σ
� �

and

E3 s∗; x∗; y∗; σð Þ for some values of σ in the neighbourhoods of σ∗1 and σ∗2, respectively. The
method used to obtain these results is similar to the method used in [3, 10].
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Abstract

Sensitivity analysis and bifurcation analysis are closely related to each other. In sensitivity
analysis, especially global sensitivity analysis the effects of input parameter spaces on
output quantities of interest are studied. On the other hand, in bifurcation analysis the
critical points within feasible regions of parameters are detected where the long-term
dynamics changes qualitatively. Prior to bifurcation analysis, it is important to identify
the bifurcation parameters. In complex and computationally expensive problems which
consist plenty of uncertain parameters, it is essential to find a set of bifurcation parameters
before bifurcation analysis. Global sensitivity analysis is a powerful tool to identify the
bifurcation parameters which contribute most on output uncertainty. Global sensitivity
analysis is the first step toward bifurcation analysis which helps in dimension reduction
during bifurcation analysis. As an example, in this chapter, a multi compartment, lumped-
parameter model of an arm artery is considered and global sensitivity analysis (Sobol’s
method) is applied to identify the bifurcation parameters of the arm arteries.

Keywords: lumped parameter model, arm arteries, sensitivity analysis, bifurcation
analysis, bifurcation parameters, Sobol’s method

1. Introduction

Sensitivity analysis and bifurcation analysis are closely related to each other. In sensitivity
analysis, we study how the uncertainty in the output of a mathematical model or system
(numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs
[1]. On the other hand, in bifurcation analysis the critical points within the feasible regions
of parameters are detected where the long-term dynamics changes qualitatively [2]. Prior to
the bifurcation analysis, it is important to identify the bifurcation parameters in complex and
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computationally expensive problems that consist plenty of uncertain parameters. Sensitivity
analysis is a powerful tool to identify the bifurcation parameters which contribute most on
output uncertainty. Also, sensitivity analysis helps in dimension reduction during the bifurca-
tion analysis by fixing less influential parameters on their nominal values.

Sensitivity analysis can be divided into two categories, local sensitivity analysis (LSA) and
global sensitivity analysis (GSA). In LSA a parameter value is perturbed around its nominal
values at a time, keeping other parameters fixed on their nominal values. The procedure is
repeated for all parameters one by one to study their impact on output variables. LSA tech-
niques are simple, easy to implement and computationally less expensive. On the other hand,
LSA is not suitable for non-linear models and does not explore the impact of entire parameter
spaces and their interactions effects on output variables [3, 4]. In order to overcome the
limitations associated with the LSA, GSA can be used. In GSA, the analysis is performed over
entire feasible regions of the input parameters and quantifies the impact of parameter interac-
tions on output variables. The only deficiency related to the GSA is its computational cost [5–12]
(Figure 1).

Figure 1. A simplified 5-step procedure to identify the bifurcation parameters using global sensitivity analysis.
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In this chapter, the main questions of interest are:

1. How to identify the bifurcation parameters in a model having plenty of input parameters?

2. Which parameters could be exempted from the bifurcation analysis (dimension reduction)?

This chapter seeks to answers the above-mentioned questions using a simplified 5-steps pro-
cedure of uncertainty and sensitivity analysis. As an example, a multi-compartment, lumped-
parameter model of arm arteries is considered [4] and global sensitivity analysis (Sobol’s
method) is applied to identify the bifurcation parameters (electrical) of the arm arteries.

2. Lumped-parameter model of the arm arteries

In this section, the major arteries of the arm are divided in to number of non-terminal and
terminal arterial segments (nodes). The total number of arterial segments, Ns ¼ 15 including 12
non-terminal and 3 terminal segments. Each non-terminal and terminal arterial segment is
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L11
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L13
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qi � qiþ1

Ci
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C6
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C11
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computationally expensive problems that consist plenty of uncertain parameters. Sensitivity
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(Figure 1).

Figure 1. A simplified 5-step procedure to identify the bifurcation parameters using global sensitivity analysis.
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where, Ri, Ci and Li is the blood flow resistance, compliance of the vessel and blood inertia of
ith segment of the arm arteries respectively. The electrical parameters Ri;Ci; Lið Þ of ith segments
are related with structural parameters Ei; li; di; hið Þ as,

Ri ¼ 8νli
π d

2

� �4 , Ci ¼ ρli
π d

2

� �2 , Li ¼
2π d

2

� �2li
Eili

(4)

where, Ei is the Young modulus, li denotes length of the vessel, d is the diameter of the vessel
and hi represents the wall thickness of ith segment of the vessel. Moreover, ν (0.004 Pa s) is the
blood viscosity and ρ (1050 kgm�3) is the blood density. The nominal values of all parameters
of arm segments are given in Table 1. The geometry along with the values of the parameters is
taken from [13, 14].

3. Uncertainty and sensitivity analysis

Uncertainty analysis (UA) and sensitivity analysis (SA) are closely related; however they
represent two different disciplines. Uncertainty analysis assesses the uncertainty in model

Nodes E l d h R C L

units kgm�2s�2 �105 m �10�2 m �10�3 m �10�4 kgs�1m�4 � 106 kg�1s2m4 � 10�11 kgm�4 � 106

1 4 6.1 7.28 6.2 3.539 7.454 1.539

2 4 5.6 6.28 5.7 5.868 4.778 1.898

3 4 6.3 5.64 5.5 10.15 4.035 2.648

4 4 6.3 5.32 5.3 12.82 3.514 2.976

5 4 6.3 5 5.2 16.43 2.974 3.369

6 4 4.6 4.72 5 15.10 1.9 2.76

7 8 7.1 3.48 4.4 78.90 0.667 7.838

8 8 7.1 3.24 4.3 105 0.531 9.042

9 8 7.1 3 4.2 142.9 0.448 10.55

10 8 2 2.84 4.1 55.11 0.1207 3.647

11 8 2 4.3 4.9 31.94 1.067 4.844

12 16 6.7 1.82 2.8 1173 0.0834 31.88

13 8 7.9 4.06 4.7 40.19 0.9366 5.434

14 8 6.7 3.48 4.6 50.22 0.80 6.075

15 8 3.7 3.66 4.5 33.60 0.3958 3.693

The value of boundary resistance Rbð Þ on three terminal nodes is 3:24� 109 kgs�1m�4, ν ¼ 0:004 kgs�1m�1 and
ρ ¼ 1050 kgm�3 [4, 5, 13, 14].

Table 1. Numerical values of parameters for each node of the arm arteries (shown in Figure 2).
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outputs caused by uncertainty of its inputs. Whereas, sensitivity analysis study the impact of
input quantities of interest (QoI) on output quantities of interest (QoI). In this study, the input
(QoI) are electrical parameters (Ri, Ci, Li) and output (QoI) are pressure and flow at each node of
the arm arteries. Further, for uncertainty analysis Latin hypercube sampling (LHS) is used and
variance-decomposition method (Sobol’s method) is used for global sensitivity analysis (GSA).

Compared to the high-dimensional cardiovascular models (3D, 2D, 1D), lumped-parameter
models of the cardiovascular system (CVS) are computationally less expensive, therefore they
are suitable for GSA. In our previous studies, we found that for lumped-parameter models of

Figure 2. Model geometry of arm artery (A), with total number of arterial segments, Ns = 15, including 12 non-terminal and 3
terminal segments. Each non-terminal and terminal segment is represented by its corresponding non-terminal (C) and
terminal electrical circuits (D). Pressure waves is used as an input boundary condition (B) and pout = 15 mmHg which is
mean venous pressure used to calculate boundary outflow. The parameter values of each arterial segment are given inTable 1.

Sensitivity Analysis: A Useful Tool for Bifurcation Analysis
http://dx.doi.org/10.5772/intechopen.72345

73



where, Ri, Ci and Li is the blood flow resistance, compliance of the vessel and blood inertia of
ith segment of the arm arteries respectively. The electrical parameters Ri;Ci; Lið Þ of ith segments
are related with structural parameters Ei; li; di; hið Þ as,

Ri ¼ 8νli
π d

2

� �4 , Ci ¼ ρli
π d

2

� �2 , Li ¼
2π d

2

� �2li
Eili

(4)

where, Ei is the Young modulus, li denotes length of the vessel, d is the diameter of the vessel
and hi represents the wall thickness of ith segment of the vessel. Moreover, ν (0.004 Pa s) is the
blood viscosity and ρ (1050 kgm�3) is the blood density. The nominal values of all parameters
of arm segments are given in Table 1. The geometry along with the values of the parameters is
taken from [13, 14].

3. Uncertainty and sensitivity analysis

Uncertainty analysis (UA) and sensitivity analysis (SA) are closely related; however they
represent two different disciplines. Uncertainty analysis assesses the uncertainty in model

Nodes E l d h R C L

units kgm�2s�2 �105 m �10�2 m �10�3 m �10�4 kgs�1m�4 � 106 kg�1s2m4 � 10�11 kgm�4 � 106

1 4 6.1 7.28 6.2 3.539 7.454 1.539

2 4 5.6 6.28 5.7 5.868 4.778 1.898

3 4 6.3 5.64 5.5 10.15 4.035 2.648

4 4 6.3 5.32 5.3 12.82 3.514 2.976

5 4 6.3 5 5.2 16.43 2.974 3.369

6 4 4.6 4.72 5 15.10 1.9 2.76

7 8 7.1 3.48 4.4 78.90 0.667 7.838

8 8 7.1 3.24 4.3 105 0.531 9.042

9 8 7.1 3 4.2 142.9 0.448 10.55

10 8 2 2.84 4.1 55.11 0.1207 3.647

11 8 2 4.3 4.9 31.94 1.067 4.844

12 16 6.7 1.82 2.8 1173 0.0834 31.88

13 8 7.9 4.06 4.7 40.19 0.9366 5.434

14 8 6.7 3.48 4.6 50.22 0.80 6.075

15 8 3.7 3.66 4.5 33.60 0.3958 3.693

The value of boundary resistance Rbð Þ on three terminal nodes is 3:24� 109 kgs�1m�4, ν ¼ 0:004 kgs�1m�1 and
ρ ¼ 1050 kgm�3 [4, 5, 13, 14].

Table 1. Numerical values of parameters for each node of the arm arteries (shown in Figure 2).

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals72

outputs caused by uncertainty of its inputs. Whereas, sensitivity analysis study the impact of
input quantities of interest (QoI) on output quantities of interest (QoI). In this study, the input
(QoI) are electrical parameters (Ri, Ci, Li) and output (QoI) are pressure and flow at each node of
the arm arteries. Further, for uncertainty analysis Latin hypercube sampling (LHS) is used and
variance-decomposition method (Sobol’s method) is used for global sensitivity analysis (GSA).

Compared to the high-dimensional cardiovascular models (3D, 2D, 1D), lumped-parameter
models of the cardiovascular system (CVS) are computationally less expensive, therefore they
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Figure 2. Model geometry of arm artery (A), with total number of arterial segments, Ns = 15, including 12 non-terminal and 3
terminal segments. Each non-terminal and terminal segment is represented by its corresponding non-terminal (C) and
terminal electrical circuits (D). Pressure waves is used as an input boundary condition (B) and pout = 15 mmHg which is
mean venous pressure used to calculate boundary outflow. The parameter values of each arterial segment are given inTable 1.
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the CVS, the Sobol’s method is computationally less expensive as compared to the other
variance-decomposition methods, like FAST and sparse grid stochastic collocation method
based on Smolyak algorithm [5, 12].

3.1. The method of Sobol

The method of Sobol is the variance-decomposition method used for global sensitivity analy-
sis. The method decomposes the output variance of a system or model into fractions and
assigns them to the inputs factors. For example, given a model of the form Y ¼ f Xð Þ ¼
f x1; x2;…; xkð Þ, where X is the vector of K uncertain parameters, which are independently

generated within a unit hypercube i.e. xi ∈ 0; 1½ �k for i ¼ 1, 2, 3,…, K. Compared to the other
GSA methods, the Sobol’s method is one of the most commonly used variance-decomposition
method, because of its ease of implementation. The method is primarily based on the decom-
position of output Y into summands of elementary functions in terms of increasing dimension-
ality [1, 8],

f x1; x2;…; xkð Þ ¼ f 0 þ
Xk

i

f i xið Þ þ
Xk

i

Xk

i<j

f ij xi; xj
� �þ…þ f 1,2,3,…, k x1; x2; x3;…; xkð Þ (5)

In Eq. (5), f is integrable, f 0 is a constant, f i is a function of xi, f ij is a function of xi and xj and so

on. Furthermore, all the terms in the functional decomposition are orthogonal, which leads
toward the following definitions of the terms of the functional decomposition in term of
conditional expected values.

f 0 ¼ E Yð Þ
f i xið Þ ¼ Ex�i Yjxið Þ � f 0
f ij xi; xj
� � ¼ Ex�ij Yjxi; xj

� �� f 0 � f i � f j
…

(6)

where, E describes the mathematical expectation and x�i denotes all parameters except xi and
so on. The total unconditional variance can be obtained by,

V ¼
ð

ΩK

f 2 Xð Þdx� f 20 (7)

From Eq. (7), the total unconditional variance can be decomposed in a similar manner like in
Eq. (5) as,

V ¼
Xk

i

Vi xið Þ þ
Xk

i

Xk

i<j

Vij xi; xj
� �þ…þ f 1,2,3,…, k x1; x2; x3;…; xkð Þ (8)
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where, V is the variance operator. The relationship between functions and partial variance are
given by,

Vi ¼ Vxi Ex�i Yjxið Þð Þ ¼ V f i xið Þ� �

Vij ¼ Vxi,xj Ex�ij Yjxi; xj
� �� �� Vi � V ¼ V f ij xi; xj

� �� �

…

(9)

Dividing both sides of the Eq. (8) by V, we get:

1 ¼
Xk

i

Si xið Þ þ
Xk

i

Xk

i<j

Sij xi; xj
� �þ…þ S1,2,3,…,K x1; x2; x3;…; xKð Þ (10)

Where,

Si ¼
Vij

V
, and

Sij ¼
Vij

V

(11)

where, Si is the main effect (first order sensitivity index) of the ith parameter on output
uncertainty and Sij is the interaction effect of ith and jth parameters on output uncertainty.
Further, the total sensitivity index, STi can be calculated as,

STi ¼
Ex�i Vxi Yjx � ið Þ� �

V
¼ 1� Vx�i Exi Yjx � ið Þ� �

V
(12)

In general, the main effect is used identify the most influential parameters (bifurcation param-
eters) and the total effect is taken into account for those parameters which are exempted from
bifurcation analysis (factor fixing). The total effect, STi of the ith parameter means main effect

plus higher-order effect due to interactions of the ith parameter. In this study, the interaction
effects of parameters on the output (QoI) are negligible, therefore the main effects are used for
factor fixing and ranking of bifurcation parameters.

3.2. Algorithm to compute sensitivity indices

In this section, a detailed working algorithm is presented to compute the main effect, Si using
the Monte Carlo simulations, we follow the steps, given in [1, 15].

1. Generate a random numbers matrix of row dimension 2K and column length N (the
sample size) and split into two independent sampling matrices, A N;Kð Þ and B N;Kð Þby
using LHS. Where, K is the number of uncertain model parameters.
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A N;Kð Þ ¼

x11 x12 … x1K
x21 x22 … x2K
… … … …

xN1 xN2 … xNK

2
6664

3
7775 (13)

B N;Kð Þ ¼

x1 Kþ1ð Þ x1 Kþ2ð Þ … x1 2Kð Þ
x2 Kþ1ð Þ x2 Kþ2ð Þ … x2 2Kð Þ
… … … …

xN Kþ1ð Þ xN Kþ2ð Þ … xN 2Kð Þ

2
6664

3
7775 (14)

2. Define matrix Ci, which is matrix A except the ith column of matrix B.

Ci N;Kð Þ ¼

x11 x12 … x1 K þ ið Þ … x1K
x21 x22 … x2 K þ ið Þ … x2K
… … … … … …

xN1 xN2 … xN K þ ið Þ … xNK

2
6664

3
7775 (15)

3. Compute and save model runs for all parameter spaces using matrices A, B and Ci i.e.
YA t;Ts;Nð Þ ¼ f Að Þ, YB t;Ts;Nð Þ ¼ f Bð Þ and YCi t;Ts;N;Kð Þ ¼ f Cið Þ, where, t are the time
points for one heart beat with period tp ¼ 0:8s, Ts represents the state variables (pressure
and flow time series at six locations of arm artery NTs ¼ 15ð Þ and Nis the total number of
model runs N ¼ 4000ð Þ.

4. For the time dependent model outputs, we compute the time dependent main sensitivity
index, of each parameter at each time-point of the pressure and flow waves, using the
estimator offered by Jansen [15–17].

Sti ¼
Vi

V
¼ Vxi Ex�i Yjxið Þð Þ

V
¼

V � 1
2N

PN
n¼1

Y nð Þ
B � Y nð Þ

Ci

� �2

V

¼ 1� 1
2N� V

XN
n¼1

Y nð Þ
B � Y nð Þ

Ci

� �2
(16)

where,

V ¼ 1
N

XN
n¼1

Y nð Þ
B

� �2
� E2 (17)

and

E ¼ 1
N

XN
n¼1

Y nð Þ
B

 !2

(18)

The total variance Vð Þ and the expectation Eð Þ are also calculated at each time-point of
pressure and flow waves with respect to each parameter.
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5. Finally, the main effect, Si of each parameter on the state variables is calculated.

Si ¼ 1
NTs

1
Nt

XNTs

j¼1

XNt

t¼0

Sti t; j; tð Þ, i ¼ 1, 2,…, K (19)

In Eq. (19), NTs is the number of output variables (pressure and flow time series at all
locations) and Nt is the number of time-points [12].

3.3. Input parameters distribution

The results of the UA and SA are greatly affected by the choice of input parameters distribu-
tions. In principle, the parameters distributions should be estimated using medical data.
Unfortunately, the medical data is not easy to obtained. The input parameters distributions
could be chosen according to the expert opinion or using the data from the literature. Due to
limited data availability, here in this work the input parameters are randomized within �10%
range of their base (nominal) values using Latin hypercube sampling (LHS).

3.4. Convergence of sensitivity indices

The method of Sobol requires N K þ 2ð Þ number of model simulations to compute Si. The main
effect, Si is computed for N = [500, 1000, 2000, 3000, 4000] model runs. It is observed that, when
the total number of simulations run N increases from 3000 then the sensitivity indices (Si)
become stable [18]. Therefore, the minimum number of simulations for each parameter to
achieve convergence of sensitivity indices is around 3000.

4. Results and discussion

In this section, the sensitivity results based on main effect Si are presented. In order to calculate
sensitivity time series, the method of Sobol is applied on each time point of the output QoI i.e.
pressure and flow waves at each location of the arm arteries. For each parameter, there are two
sensitivity time series at each segment of the arm arteries, one for the pressure and one for the
flow. In total, K �NTs ¼ 45� 33 ¼ 1485 sensitivity time series are obtained. In order to repre-
sent the sensitivity results in a compact way, mean absolute values of each pressure and flow
sensitivity time series per parameter is taken. In this way, a matrix of dimension 45� 33 is
acquired, where each entry of the matrix represents the mean absolute values of pressure and
flow sensitivity time series per parameter, see Figure 3. The numbers in the boxes show the
impact (%) on the output (pressure and flow) when input parameters Ri;Ci; Lið Þ are random-
ized within the feasible ranges of �10%. The parameters having main effect, Si > 10% on
output QoI are not shown in the Figure 3. Each row in Figure 3 represents the ranking of
influential (bifurcation) parameters. For convenience, the electrical parameters Ri;Ci; Lið Þ, i ¼
1, 2, 3,…, 15 that have impact greater than 10% on pressure and flow are considered as bifur-
cation parameters which further can be used in bifurcation analysis. For example, for pressure
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points for one heart beat with period tp ¼ 0:8s, Ts represents the state variables (pressure
and flow time series at six locations of arm artery NTs ¼ 15ð Þ and Nis the total number of
model runs N ¼ 4000ð Þ.

4. For the time dependent model outputs, we compute the time dependent main sensitivity
index, of each parameter at each time-point of the pressure and flow waves, using the
estimator offered by Jansen [15–17].

Sti ¼
Vi

V
¼ Vxi Ex�i Yjxið Þð Þ

V
¼

V � 1
2N

PN
n¼1

Y nð Þ
B � Y nð Þ

Ci

� �2

V

¼ 1� 1
2N� V

XN
n¼1

Y nð Þ
B � Y nð Þ

Ci

� �2
(16)

where,

V ¼ 1
N

XN
n¼1

Y nð Þ
B

� �2
� E2 (17)

and

E ¼ 1
N

XN
n¼1

Y nð Þ
B

 !2

(18)

The total variance Vð Þ and the expectation Eð Þ are also calculated at each time-point of
pressure and flow waves with respect to each parameter.
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5. Finally, the main effect, Si of each parameter on the state variables is calculated.

Si ¼ 1
NTs

1
Nt

XNTs

j¼1

XNt

t¼0

Sti t; j; tð Þ, i ¼ 1, 2,…, K (19)

In Eq. (19), NTs is the number of output variables (pressure and flow time series at all
locations) and Nt is the number of time-points [12].

3.3. Input parameters distribution

The results of the UA and SA are greatly affected by the choice of input parameters distribu-
tions. In principle, the parameters distributions should be estimated using medical data.
Unfortunately, the medical data is not easy to obtained. The input parameters distributions
could be chosen according to the expert opinion or using the data from the literature. Due to
limited data availability, here in this work the input parameters are randomized within �10%
range of their base (nominal) values using Latin hypercube sampling (LHS).

3.4. Convergence of sensitivity indices

The method of Sobol requires N K þ 2ð Þ number of model simulations to compute Si. The main
effect, Si is computed for N = [500, 1000, 2000, 3000, 4000] model runs. It is observed that, when
the total number of simulations run N increases from 3000 then the sensitivity indices (Si)
become stable [18]. Therefore, the minimum number of simulations for each parameter to
achieve convergence of sensitivity indices is around 3000.

4. Results and discussion

In this section, the sensitivity results based on main effect Si are presented. In order to calculate
sensitivity time series, the method of Sobol is applied on each time point of the output QoI i.e.
pressure and flow waves at each location of the arm arteries. For each parameter, there are two
sensitivity time series at each segment of the arm arteries, one for the pressure and one for the
flow. In total, K �NTs ¼ 45� 33 ¼ 1485 sensitivity time series are obtained. In order to repre-
sent the sensitivity results in a compact way, mean absolute values of each pressure and flow
sensitivity time series per parameter is taken. In this way, a matrix of dimension 45� 33 is
acquired, where each entry of the matrix represents the mean absolute values of pressure and
flow sensitivity time series per parameter, see Figure 3. The numbers in the boxes show the
impact (%) on the output (pressure and flow) when input parameters Ri;Ci; Lið Þ are random-
ized within the feasible ranges of �10%. The parameters having main effect, Si > 10% on
output QoI are not shown in the Figure 3. Each row in Figure 3 represents the ranking of
influential (bifurcation) parameters. For convenience, the electrical parameters Ri;Ci; Lið Þ, i ¼
1, 2, 3,…, 15 that have impact greater than 10% on pressure and flow are considered as bifur-
cation parameters which further can be used in bifurcation analysis. For example, for pressure
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at node-2, L1 and L2 are the bifurcation parameters, see in Figure 4 (top). Whereas, for flow at
node -2, L1 and L2 are considered as bifurcation parameters, see Figure 4 (bottom).

In a similar fashion, each row of Figure 3 represents the ranking of bifurcation parameters
which further can be used in bifurcation analysis. The parameters which have main effect
Si < 10% can be exempted from the bifurcation analysis. The criteria for factor fixing vary
from problem to problem.

5. Conclusion

In this chapter, a 5-step procedure of global sensitivity analysis is presented to identify the
bifurcation parameters in a lumped-parameter model of the arm arteries. Moreover, the pro-
posed procedure can be applied on any morphology or structure of the systemic circulation
(carotid bifurcation, aorta or complete systemic circulation). The results of sensitivity analysis
are useful to identify and rank the bifurcation parameters, as well as help which parameters
could be exempted from the bifurcation analysis. In this particular example of the arm arteries,
23 out of 45 parameters can be excluded from the bifurcation analysis. Whereas, 22 identified
as bifurcation parameters, which further can be used/studied in the bifurcation analysis.

Figure 3. Main effect sensitivity of 45-electrical parameters Ri;Ci;Lið Þ on pressure and flow time series pi; qi
� �

at
15-segments N1;N2;…;N15ð Þ of the arm arteries with number of simulations run per parameter, N is 4000. In total
N(K + 2) = 4000(45 + 2) = 188,000 = 0.188 million of simulations run are required to compute the main and total sensitivity
indices. The total time taken to compute the sensitivity indices is approximately 3 hours.
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Figure 4. Ranking of bifurcation parameters Ri;Ci; Lið Þ in complete arm arteries for pressure (top) and flow (bottom) at
node-2. It can be clearly seen that, L1, L2 and L1, L3 are considered as bifurcation parameters for pressure and flow at
node-2 respectively.
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Abstract

This chapter presents the idea of biological hypercomputation (BH) and discusses how 
and why it entails degrees of freedom. Crossing a biological and computational point of 
view, the claim is made that living beings cannot be considered as machines in any sense 
of the word, the arguments are provided, and the consequence is drawn: the complexity 
of life is the very process by which living beings gain degrees of freedom. The leading 
thread for the analysis here is the relationship between matter, energy and information.

Keywords: life, computation, freedom, nature, complexity

1. Introduction

Biological hypercomputation (BH) is the title that summarizes the fact that living systems are 
not machines, and hence, do not process information like any machine, no matter what. The 
leading thread, thereafter, is to understanding the very way in which living systems process 
information. For a living being processing information is after all a matter of life or death.

A normal understanding of the issue would claim that living systems receive information 
from the environment and then process it, so that they would be able to learn and adapt to 
the changing environment. This text claims that it is a wrong take. Instead, it will be argued 
that there is no information before the very act of processing, and as a consequence, there is 
no information after the processing. Reality is the outcome of the very process of information 
processing.

To be sure, ranging from the various Turing Machines (TM)—u-TM, o-TM, d-TM, and many 
others, up to the various levels of life, say, from bacteria to living cells to plants to animals, 
etc., there is a growing process by which new and previously unforeseen degrees of freedom 
are reached. Reality, nature and the world can be seen as an increasing process of degrees of 
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freedom. This view, however, should not be understood hierarchically. Rather, the architec-
ture is to be seen as a fractal organization. As the growing architecture of life increases, an 
amplification of previous lower layers is produced, that does not obliterate or supersedes the 
lower levels.

To be sure, the process by which the living systems gain degrees of freedom coincides with 
the entire weave of networks, fractal architectures, and interdependencies among layers, 
planes, and contexts. As a result, life and nature can be seen as a fantastic interweaving of 
times, layers, and interdependencies.

A number of works have been done that permit the approach of this text. The various authors, 
takes, and approaches will be discussed along the text, which brings a fresh state-of-the arte 
about biological hypercomputation and the weave of information processing in nature.

Throughout this chapter the basic argument is that life can be seen as a large cooperative 
game by which the increasing complexity of life lies on the very increasing processes of infor-
mation processing.

2. A serious problem: what is information (one more time!)

In order to explain nature band the universe, the eighteenth century invented or created a 
physical concept, namely mas or matter. Thanks to it, the entire universe could be explained 
in terms of three basic but elegant laws. This was I. Newton’s achievement. Anything that is or 
happens is the outcome of what happens to mass, thus: relationships of action-and-reaction, 
the relationship between two bodies based on a force equal in magnitude and opposite in 
direction with each other, and the heaviness or mass of a body so that the heavier body will 
always attract the lighter body to itself, i.e. gravity.

In the framework of the study of heat a brand new science originating both in physics and 
chemistry arose in the nineteenth century that introduced a quite different new concept 
to understand and explain nature and reality, namely energy. Whereas mass or matter is 
a univocal concept, energy shows a manifold of ways of existence: caloric energy, kinetic 
energy, potential energy, and others. The contributions of scientists such as Fourier, Carnot, 
Boltzmann, Lord Kelvin, and others, had as a result the identification of three laws of thermo-
dynamics. Those three laws were sufficient to explain not only the dynamics of the universe 
and nature, but also the arrow of time and the challenges it arose.

Now, the twentieth century discovered still another physical concept highly more complex 
and different form the two original ones. This was the concept of information, originally 
brought out by Shannon and Weaver, which, however, was to know still further develop-
ments manly due to the research on cryptography, quantum theory, quantum computation 
and quantum science, mainly. The crux here is that information is a physical and yet non-
tangential, non-material concept—in contrast with mass and energy [1].

Now, the relation among the three physical concepts can be adequately identified as follows:

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals84

  Matter ∊ Energy ∊ Information  (1)

Meaning that energy explains better and deeper what matter is supposed to explain, and 
that information explains still much better and deeper what energy was supposed to explain. 
Thus, the story from classical mechanics to thermodynamics to information theory is the 
very story by which a higher and more achieved understanding of reality is accomplished. 
This, however should not imply by any means a linear and necessarily accumulative pro-
cess, but a story of improving, gaining more knowledge and wisdom about the universe, 
nature, and society. The story of knowledge can very appropriately be grasped in terms of 
bifurcations [2].

The amount of information of a system depends on how probable an event is. In other words, 
the higher the probability that an event takes place, the lower the amount—and the qual-
ity—of the system. And vice versa: the lower the probability that an event happens, the 
higher—and better—the information of that event. Briefly said, the information is inversely 
proportional to the probability—of an event. This means that information is a measure of how 
surprising something is [3].

As it can be seen, the characterization I have provided about information does not necessar-
ily coincide with the standard view—say, Shannon- that identifies information and entropy. 
Rather, entropy can be adequately grasped as the quantification of randomness—of a system.

Therefore, it can be easily stated that the amount of information in the universe as a whole can 
only increase, which means that what was considered as an expanding universe in terms of 
the transition from energy to matter is really an expansion of information [4]. This coincides 
with Formula (1) presented above. Information is the concept or reality that encompasses 
and explains energy and matter (mass). Whereas matter presents a view of the world rather 
disconnected (indeed, it is the laws that gather and unify matter, according to Newton), and 
energy unfolds and transforms as a set of expressions and processes explained in terms of 
Fourier’s and Boltzmann’s laws, information set out a convergent, yet in-process, reality that 
allows for evolution [5]. Formula (2) expresses the unity of matter, energy, and information, 
showing hence that there are not three things but only one—read thereafter in terms of infor-
mation, according to Formula (1).

  Matter − Energy − Information  (2)

Formula (2) serves as a synthesis that claims that matter, energy, and information are one and 
the same thing that were historically discovered or brought out by stages. That story is exactly 
the story that leads from classical mechanics to thermodynamics to information theory.

Now, summarized, information theory is cryptography, quantum information, entanglement, 
and teleportation [6]. These are three different faces of one and the same development—an 
achievement that crosses the most conspicuous technologies nowadays, as well as spearhead 
science in any domain you wish. By and large information pervades both science and culture, 
currently.
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A short survey to the history of computation may be very helpful here. Indeed, information 
processing encounters five main levels of development, thus:

• Linear, sequential, top-down information processing. Amply, this is the largely predomi-
nant paradigm in computation and computing science. Ever since the first computers, 
Eniac I, Eniac II, etc., on until now, computers and computations are defined by the Von 
Neumann architecture, and the Church-Turing thesis. A programmer programs a program 
and the computer follows the indications and directions. Design, parametrization, control 
are the key operations and ways of working and dealing with computers and computation.

• Dynamic and evolving information processing. Genetic algorithms, time series, and the 
first steps in artificial intelligence (AI) such as the works by Ray, Conway, and neural net-
works, can be said to define the second layer of information processing. The shift toward 
bottom-up concerns and interests is produced that largely enhance computation as a dy-
namic process. Not eventually modeling and simulation come along with literal explosion 
of programming languages aimed at a variety of goals and abilities.

• Biologically inspired information processing. More recently bio-inspired computation 
takes as model or guide the behavior of living systems—say, DNA, proteins, ant colonies, 
etc.—and develops programs that come closer to the way living beings behave. This kind 
of information processing has shed so far brand new fresh lights on to the very way in 
which computing science had being previously conceived. Thus, computation and biology 
at large come closer and learn from each other making computation much more flexible 
and robust at the same time. Adaptive computation comes to the fore.

• Biological hypercomputation. On the basis of the third layer, trying to understand the way 
in which living beings process information clearly entails a distance from classical compu-
tation, no matter what. Such a computation has been named biological hypercomputation. 
This is the core of this text.

It is clear that throughout the four mentioned layers, the very technological capabilities are 
developed and enhanced, for example via the so-called Moore law (after G. Moore, then 
president of Intel), that deals with the speed of change of the processors in computers. 
Undoubtedly, information processing has been changing the very understanding of comput-
ing and information, as well as it has been the subject—ultimately of software engineering as 
well as from hardware engineering—the two basic domains of computation, roughly said.

From the standpoint of quantum theory, information sets out the ground to unify epistemol-
ogy and ontology. The link that allows such a connection is the wave function. Quantum 
science does not allow for the distinction, and even less the hierarchy, between ontology and 
epistemology, on either side. Instead, physics is about what we can say about nature—not 
about what nature is, any longer.

To be sure, the concept-behavior that allows for the unity of ontology and epistemology is the 
concept of entanglement, a concept firstly introduced by Schrödinger (Vershränkung), but truly 
implemented by J. Bell. When entangled, the unity of two or more particles becomes more 
important than the particles individually considered. Entanglement is not really  entanglement 
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of entities but of information [7]. Exactly in this sense, too, teleportation is not so much the 
transportation of a physical entity, what of what makes that entity as such, namely informa-
tion. It is information, indeed, what is teleported, not the thing as such, in its materiality. 
Matter is information, which brings us back to Formulas (1) and (2).

Rightly understood, we can safely say that there is information processing in nature. Briefly 
said, nature can be understood in terms of information.

3. Living beings process information: a complexity understanding

Living beings do not just read the environment; moreover, they accordingly unceasingly cre-
ate brand new information that was non-existing before. In other words, living beings read 
the environment but they also, at the same time, write on the environment they are reading 
on—if the analogy is permitted here.

Whereas any Turing Machine (TM) processes information top-down, sequentially, linearly, 
and mechanistically, according to the prevailing Von Neumann architecture of TM-computers, 
living beings, to say the least, process information in-non classical way if the framework is the 
Turing-Church thesis.

This text argues that the processing of information among living beings consists not only—
and not so much—in rightly reading and interpreting the environment and the surroundings, 
but also—and mainly—in introducing or creating brand new information into the world, 
correspondingly.

Thus, over against a popular understanding of the issue, information processing does not 
have anything to do with things such as “following a thread,” “analyzing,” nor even “under-
standing.” Processing information can rather be grasped in biological or medical terms as 
metabolizing, i.e., changing one thing—say A—into another, B, for instance -. Good metabo-
lizing, hence, transforms a nice meal into a poem or a scientific paper, or also a nice rest in the 
evening into insight and strength, for example.

For the living beings, processing information is a matter of life or death—in that a bad infor-
mation processing may entail danger, peril or death. Biologically or culturally speaking, infor-
mation processing might entail identifying a good male or female a god territory, the presence 
of a friend or an enemy, who truly loves you and who just pretends to love you, which food 
is healthy and which poisonous, for instance. Living beings that process information rightly 
may encounter better circumstances for adaptation and learning, and be literally the fittest. 
Evolution and adaptation are after all, it appears, a matter of good information processing.

Yet, life is not just an emergent property of the universe. A number of authors have claimed 
that the universe herself is alive and conscious [8–10]. The claim is hence about consciousness 
not as an epiphenomenon of the universe, and life as an emergent stance. In this take, life is an 
essential feature of the universe that can be traced back to the very processing of information, 
precisely. For the sake of brevity I shall put such a claim here into brackets and focus on the 
way in which living systems do process information.
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Whereas at the same time living beings—from bacteria to cells, from organisms to biomes, 
for example—continuously read the environment and the surroundings they create brand 
new information that is brought into the world in a variety of forms, thus: as acts and actions, 
as behaviors, as creation in same cases of tools and rods, as the use of tools as devices aimed 
for a certain goal, definitely as language and communication, and as forms of organization, 
whether individual or collective [11]. It is the very creation of new information into the world, 
which is usually grasped as adaptation. Adaptation is the biological concept that originally is 
the outcome of information processing.

As it can be easily seen, living beings compute. Moreover, life without computation is 
inconceivable.

Computation is therefore a concept that truly means interaction—with the environment, and 
with other living beings. Natural computation is much more than a metaphor, but the distin-
guishing feature of living beings. Life is a large weave of computation that takes place in a 
manifold of ways simultaneously, as follows:

There is classical computation in nature in either form of a Turing Machine. At the same time 
there is parallel computation, and multilevel computation, non-local computation as well as 
distributed computation, fuzzy and random computation very much as also quantum com-
putation and emergent computation, not to mention interactive computation. A typology of 
computation and computational models can be seen in [12]. A metaphor can be introduced 
here, namely a variety of computations corresponds to the diversity of life and living beings. 
It appears that ecology and biology go hand in hand with information theory and computing 
science, even though the two latter are more recent that the two before [13].

To be sure, biological hypercomputation is the way in which living beings process informa-
tion—is anything but machines. However, there are a number of explanations within the 
health sciences and the living sciences that still operate mechanically. Thus, for instance, 
the functioning of the brain many times is explained in terms of “on” and “off” switches or 
operations, and the very functioning of the heart is usually conceived as a pumping machine, 
period. Many other cases can be introduced here. The crux is that those explanations still 
owe a big deal to the past and remain very short vis-à-vis more contemporary and spearhead 
explanations. Computing sciences is such one of those frontline explanations, under the pro-
viso that it be not a Turing Machine one, in any concern.

Biological hypercomputation (BH) has been introduced [15] to mean that life and the living 
processes cannot be understood from lower stances: in other words, life is to be explained as it 
happens: life is an uncompressible “program.” The most crucial and basic problems of living 
beings are certainly not tackled in terms of mathematical functions, whatsoever. Instead, the 
problems living beings faced are normally solved in terms of non-classical logics, a field that 
has not deserved as much attention as its own value.

More fundamentally still, computationally speaking, the difference between software and 
hardware is irrelevant. More exactly, it does not exist. The phenotype expresses the genotype 
according to evolution and the environment. Epigenetics, for example behavioral epigenetics 
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or even symbolic epigenetics, becomes central here, for it most adequately expresses the idea 
that very much as there is no difference between software and hardware, in the same tenure, 
there is no difference between nature and culture. They are closely intertwined and cannot be 
divided or split.

As a consequence, computing (= BH) is for life one and the same thing with evolution. Evolving 
and computing are two faces of one and the same token. Evolution is the process through 
which living beings gain degrees of freedom.

4. Living beings gain degrees of freedom

Information processing among living beings takes place as an unceasing creation of informa-
tion that is introduced into the world. Thus, information processing is not just reading the 
environment and adequately interpreting it, but, moreover, correspondingly, bringing new 
information into the world in the form of actions, processes, behaviors, or achievements.

There is no information before the information processing by living beings, very much as 
there is no information after the information processing by living beings. Information exists 
in so far as it is processed, that is, both created and changed. In other words, there is no real-
ity previous to the processing of information, but neither is there any reality “outside” the 
information processing. Yet, the universe becomes increasingly complex precisely thanks to 
the unceasing processing of information, i.e. the reduction of entropy in the universe. Life is 
that system that creates order and exhibits the best form of order possible.

As a consequence, the universe is alive it appears. A number of interpretations in this sense 
can be mentioned that challenge the traditional view of the universe that goes as follows:

  PhysicsInorganic ChemistryOrganic ChemistryBiologyCulture  (3)

I argue that Formula (3) is erroneous because it is set on the physical predominance of physics 
over biochemistry or biology, for example. Formula (3) is really a translation of Formula (1),  
and thus, it sets out the ground for a reductionist view of nature and the universe. A clear 
reductionist approach serves as ground for that formula.

The increasing complexity of reality and the universe is one and the same process as the 
increasing complexity in the information processes [13, 14]. We have been gaining an enor-
mous field in understanding what life does and how it is made possible. Thus, for instance, 
regarding the realm of plants, Refs. [15, 16] have shed solid lights about how they think, 
literally. Down the scale, [17] did steadily study the way in which information processing 
takes place among bacteria. Furthermore, information processing has been studied addition-
ally among social insect networks [18]. The range of studies and the cope is always wider 
and deeper, encompassing animals at large [19], until of course we reach the level of human 
beings, and computers and computation.
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The concept “degrees of freedom” can be understood from a wide take that says that it con-
sists in the number of parameters a system exhibits or has that may vary independently 
(Wikipedia) until the calculation of the various scenarios in a system or the number of dimen-
sions that are needed to determine a full vector. In complexity science or theory the concept is 
pivotal and allows for crossing different approaches, sciences, discipline, and interpretations 
aiming at making explicit what complexity is all about.

We can safely say that the higher the degrees of freedom a system has the more complex it is. 
And vice versa, the lower the degrees of freedom, the less complex it is. Formula (4) synthe-
tizes this:

  > Degrees of Freedom > Complexity  (4)

Now, living beings are what they do. And the best they do is information processing, exactly. 
The better a living system processes information, the fittest it is. As a consequence, the more 
degrees of freedom it gains. Hence, living is a matter of gaining degrees of freedom. Death, it 
seems, is the complete loss of degrees of freedom. All possibilities are then closed.

Therefore the claim can be made that information plays an “active” role in the living systems, 
and a “passive” role in classical physics. Analogously as it happens with any Turing Machine, 
namely information is something that “happens” in the processor that is conceived as a black 
box. The audience or the researcher knows what enters (input) and knows what comes out 
(output), but ignores what and how happens in the black box. Classical computation seems 
to reduce the degrees of freedom by accepting or assessing the processing of information as a 
“black box.” On the contrary, (BH) is the process by which new degrees of freedom are gained 
in so far as new adaptations, networks and behaviors are made possible, for instance?

Information processing does not stand as a condition for evolution and adaptation. On the 
contrary, it is the very process of evolution both of the living beings and the environment. 
Coevolution is the name that best suits both stances in their entanglement. Living is noth-
ing else that coping with the information of the surroundings and accordingly changing that 
information in terms of brand new information brought into the world.

The better the living system processes information, the better it copes with challenges, solves 
problems, adapts to a continuously changing environment. Life ends when it “overdoses” of 
information and the living being is unable to process it. A saturation point is reached and the 
system can no longer process any further information [20].

Summarizing, life consists in the process by which information processing is carried out 
and hence unceasingly new degrees of freedom are reached. The system can be said to be 
“young.” Contrarily, death happens when the processing of information is not possible any 
longer—it becomes slow, saturated, new information cannot be processed accordingly, and 
the “screen” slows down in bringing out the information required.

Life is a matter of “controlling” the saturation of information, and thereafter, of information 
processing. Software and hardware are one and the same thing.
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5. The weave of life

Information is a continuous process that emerges as a result of intricate non-linear interac-
tions of living beings among themselves and with their environment that both creates nature 
and the world as it happens, and at the same time changes it unceasingly. This is exactly the 
story of learning, adaptation and coevolution.

As it is well known, living beings evolve in rugged adaptive landscapes—a concept originally 
introduced by Ch. Darwin in 1859, originally named as fitness landscape. Life is a wonderful 
complex weave that has no center, but many bubs, clusters and nodes, continuously changing 
on the ever-changing environment on earth. Only that the timescales in geology are vastly 
deeper than those of the living beings, not to mention human beings. Indeed, whereas the 
basic time-scale of life is the decade or even the month for some species, the basic time-scale 
in geology is 1000.000 years. Against all odds, this is the ultimate time-scale of life on earth.

Life is a large and robust weave of cooperation, commensalism, and mutualism, rather than 
competition and predation. [20] has made on this subject a great contribution, namely the 
importance of symbiogenesis: a large network (instead than a chain) of mutual interdepen-
dency among living beings so that each organism and species benefits from others, and vice 
versa.

The story of life is a story of increasing complexity, i.e. biodiversity. Such diversity is said to 
be at three levels, thus: genetic, natural, and cultural. The countries that have the three kinds 
of biodiversity are called “megadiverse” and they are 17 countries, to-date—all of them place 
on or very near the equator.

The story of life pivots around six fantastic moments of increasing diversity followed by six 
massive extinctions. At each stage, life has made of herself a wonderful asset of possibili-
ties, forms, shapes, structures, behaviors, and characteristics that correspond with dynamics 
through which, as a whole, amazing degrees of freedom are been attained or reached. And 
yet, that story is non-teleological. In other words, life has no ends or goals, and evolution has 
no purpose whatsoever. Such was indeed the scandal that Darwin’s The origins of species by 
means of natural selection (1859) meant particularly vis-à-vis the cornerstone of the western 
civilization, namely teleology [21]. The western world needs believe that there are telos, and 
that telos are necessary.

To the discomfort of those who believe in goals end, whether their own or imposed or sug-
gested, the theory of evolution—namely the best theory ever developed to think about change 
and transformation—introduces the idea of the absence of goals or ends (telos). Well, the the-
ory of symbiogenesis comes to complete, so to speak, the theory of evolution by showing that 
the various stages of complexity of life, firstly, and secondly that the whole weave of life natu-
rally tends toward increasing complexity and hence to cooperation and interdependency.

As a consequence, living beings are symbiont: not only it is a cooperative interaction but also 
a prolonged one among different species and/or organisms. Mutualism and not competition 
is the rule in nature, it appears. Nature is the realm of freedom par excellence.
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5. The weave of life
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As a consequence, living beings are symbiont: not only it is a cooperative interaction but also 
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6. Conclusions

We have three concepts: matter, energy and information. However, a right understanding 
of them brings to the fore the fact that they are not three, but one and the same concept: 
matter-energy-information. Moreover, information can be rightly understood as fundamental 
(= grounding) energy and mass.

What happens to matter is truly a matter of energy and relations among various types of 
energy. And still the very processes, dynamics and configurations of energy are dynamics in 
and of information. Formula (4) expresses this understanding.

  Information ≤ Energy ≤ Matter  (Mass)   (5)

Formula (5) simply means that matter explains less (and worst) what energy does explain, 
and furthermore, information allows for a deeper and better understanding of what energy 
means to explain.

Now, when looked under the light of life and how life is possible, the three concepts are trans-
formed into one process, namely biological hypercomputation. In the processing of informa-
tion among the living beings matter, energy and information become one single unity: life. 
Thus, life allows for the overcoming three different layers of reality (physics, thermodynam-
ics, and information); such overcoming is also the non-differentiation between software and 
hardware. Processing information for life consists in gaining degrees of freedom.

Living beings process information much more than (just) matter and energy, which they defi-
nitely do. Evolution can be seen as the processing of information processing by living beings 
through which the world and nature are complexified. Information allows for the rejection of 
a reductionist approach of life and nature.
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Abstract

In the last decades, rapid progress in modern nonlinear science was marked by the dev-
elopment of the concept of dissipative soliton (DS). This concept is highly useful in many
different fields of science ranging from field theory, optics, and condensed matter physics
to biology, medicine, and even sociology. This chapter aims to present a DS appearance
from random fluctuations, development, and growth, the formation of the nontrivial
internal structure of mature DS and its breakup, in other words, a full life cycle of DS as
a self-organized object. Our extensive numerical simulations of the generalized cubic-
quintic nonlinear Ginzburg-Landau equation, which models, in particular, dynamics of
mode-locked fiber lasers, demonstrate a close analogy between the properties of DS and
the general properties of turbulent and chaotic systems. In particular, we show a disinte-
gration of DS into a noncoherent (or partially coherent) multisoliton complex. Thus, a DS
can be interpreted as a complex of nonlinearly coupled coherent “internal modes” that
allows developing the kinetic and thermodynamic theory of the nonequilibrious dissipa-
tive phenomena. Also, we demonstrate an improvement of DS integrity and, as a result,
its disintegration suppression due to noninstantaneous nonlinearity caused by the stimu-
lated Raman scattering. This effect leads to an appearance of a new coherent structure,
namely, a dissipative Raman soliton.

Keywords: optical turbulence, dissipative solitons, chaos in nonlinear optical
systems, generalized cubic-quintic nonlinear Ginzburg-Landau equation,
dissipative Raman soliton

1. Introduction

Coherent and partially coherent structures emerging in nonlinear systems far from the ther-
modynamic equilibrium play an important role in different research areas ranging from
hydrodynamics and plasma physics to biophysics and sociology. Nontrivial dynamics of such
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structures including chaos and turbulence is a challenge for modern nonlinear science and one
may assume that “the problem of turbulence is one of the central problems in theoretical
physics” [1]. The reasonable approach to this issue, which can translate some contra-intuitive
and obscure ideas in this area into explicit and verifiable concepts, is a realization of simpler
dynamics in quite different material context. Such an approach can be named metaphorical or
analog modeling [2], and a rapid progress of modern laser technology provides an ideal play-
ground for such enterprise due to high controllability, relative simplicity, and unique potential
of statistic gathering. Such progress was marked by the development of the concept of
a dissipative soliton (DS) [3]. The existence of DS under nonequilibrium conditions requires a
well-organized energy exchange with an environment so that this energy flow forms a
nontrivial internal structure of DS, which provides the energy redistribution inside it and can
distort the soliton coherence. Such a DS with nontrivial internal structure can develop in lasers,
and the DS dynamics can become chaotic and turbulent [3–5]. For instance, such emergent
structures can be considered as a classical analog of Bose-Einstein condensate in low dissipa-
tive limit and, contrariwise, as a primitive analog of cell in the case of extensive and well-
structured energy exchange with an environment. Formally, these inherently nonHamiltonian
entities mimic some features of Hamiltonian systems that remain an obscure and insufficiently
explored topic regarding the fundamental properties of coherent dissipative structures. The
range of turbulence, noise, and rogue wave phenomena emulated by the optical DS is so broad
that it turns them into a universal testbed for studies in the fields of nonlinear dynamical
systems and nonequilibrium thermodynamics.

In this work, we conjecture a spectacular analogy between the spectral structures of DS and
strong Langmuir turbulence. Such close relation leads to chaotization of DS dynamics with the
energy growth. This analogy is deepened by analysis of energy flows inside DS so that a DS
can be represented as a “glass of boiling water” or, mathematically, as an ensemble of inter-
acting quasi-particles or “nonlinear modes.” The phase decoupling of these “modes” leads to
turbulence or DS dissolving. Such a representation open the door for building the kinetic theory
of open (dissipative) semi-coherent structures which mimics, in particular, a quantum Bose-
Einstein condensate in a dissipative environment. Moreover, our preliminary investigations
demonstrated a mechanism of turbulence control provided by noninstantaneous nonlinearity
(stimulated Raman scattering in optical case) [6]. This phenomenon is especially interesting
because an inherently noisy process (Raman scattering) suppresses a turbulence under some
conditions that is the manifestation of stochastic resonance, which can be significant for a
dissipation control in coherent quantum systems (particularly, a quantum computer and a
quantum cryptography device).

2. Analogy between DS and turbulence

The phenomenon of turbulence appears in many areas of our experience ranging from atmo-
spheric and oceanic rogue events, aero- and hydrodynamics, optics to cardiology and neuro-
physiology [1, 5, 7–13]. Such a broad class of phenomena cannot be grasped by some single
and simple model. However, there are some comparatively simple equations which allow
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describing an extremely broad class of phenomena. It is possible that the most known one is
the famous nonlinear Schrödinger equation (NSE) which describes an evolution of slowly
varying wave in a nonlinear medium and can be considered as a “metaphoric” simulation tool
for a study of nonlinear phenomena far from equilibrium [14, 15]:

∂Ψ
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þ
Xd

j¼1

∂ω
∂kj

∂Ψ
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� i
2
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∂2ω
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þ i
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 !

Ψj j2Ψ ¼ 0: (1)

The dimensionality of this equation is relative: the evolutional coordinate can be a time T or a
propagation distance z (T$ z), the transverse coordinate can be transverse multidimensional
spatial xj (j = 1…d) one or a local time t (x$ t, d = 1). The Fourier representations of a “field”
slowly varying envelope Ψ are interchangeable between frequency and momentum domains
(ω$ k, d = 1). Eq. (1)may describe the propagation of optical pulses in a nonlinear medium (then
Ψ is a complex field amplitude and |Ψ|2 is proportional to a field power), the capillary waves on
a fluid surface, the Langmuir waves in plasma, or the weakly nonlinear Bose-gas in classic limit
(in the last case Eq. (1) represents the famous time-dependent Gross-Pitaevskii equation [16]).

HereΨ(x, t) is a slowly varying amplitude of wave propagating in dispersive (
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term in Eq. (1) can have the different forms; in particular, a nonlinear response can be non-
instantaneous.

The notion of turbulence is fuzzy in some sense. Here, the turbulence will be treated as a
phenomenon related to the excitation of a sufficiently large number of degrees of freedom that
causes a loss of their mutual phase information [15]. As a consequence, a wave package
decouples into a set of individual modes (“particles”) which interaction can be described in
the framework of kinetic theory as many-particle collisions in Bose-gas. In other words, as
some degrees of freedom become very large for sufficiently large energies, phase information
becomes irrelevant, and the waves decohere [8, 15]. Thus, a wave can be considered as a set of
decoupled “modes” nk in a spectral (or wave-number) space:

Ψ kð ÞΨ k0ð Þh i ¼ nkδ k� k0ð Þ: (2)

Thus, we come to a “kinetic” theory of turbulence, for example, to a model of four-boson
interaction described by the nonlinear Schrödinger equation:
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Such an equation becomes nontrivial in a dissipative environment [17, 18]. A simple general-
ization of NSE (1) taking into account the dissipative effects includes a saturable gain (energy
“source”) σ, dissipative nonlinearity (self-amplitude modulation, SAM) Ϝ(|Ψ|2), and spectral

dissipation (spectral in the sense of dissipation in the Fourier space)
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(stimulated Raman scattering in optical case) [6]. This phenomenon is especially interesting
because an inherently noisy process (Raman scattering) suppresses a turbulence under some
conditions that is the manifestation of stochastic resonance, which can be significant for a
dissipation control in coherent quantum systems (particularly, a quantum computer and a
quantum cryptography device).

2. Analogy between DS and turbulence

The phenomenon of turbulence appears in many areas of our experience ranging from atmo-
spheric and oceanic rogue events, aero- and hydrodynamics, optics to cardiology and neuro-
physiology [1, 5, 7–13]. Such a broad class of phenomena cannot be grasped by some single
and simple model. However, there are some comparatively simple equations which allow
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describing an extremely broad class of phenomena. It is possible that the most known one is
the famous nonlinear Schrödinger equation (NSE) which describes an evolution of slowly
varying wave in a nonlinear medium and can be considered as a “metaphoric” simulation tool
for a study of nonlinear phenomena far from equilibrium [14, 15]:
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The dimensionality of this equation is relative: the evolutional coordinate can be a time T or a
propagation distance z (T$ z), the transverse coordinate can be transverse multidimensional
spatial xj (j = 1…d) one or a local time t (x$ t, d = 1). The Fourier representations of a “field”
slowly varying envelope Ψ are interchangeable between frequency and momentum domains
(ω$ k, d = 1). Eq. (1)may describe the propagation of optical pulses in a nonlinear medium (then
Ψ is a complex field amplitude and |Ψ|2 is proportional to a field power), the capillary waves on
a fluid surface, the Langmuir waves in plasma, or the weakly nonlinear Bose-gas in classic limit
(in the last case Eq. (1) represents the famous time-dependent Gross-Pitaevskii equation [16]).
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term in Eq. (1) can have the different forms; in particular, a nonlinear response can be non-
instantaneous.

The notion of turbulence is fuzzy in some sense. Here, the turbulence will be treated as a
phenomenon related to the excitation of a sufficiently large number of degrees of freedom that
causes a loss of their mutual phase information [15]. As a consequence, a wave package
decouples into a set of individual modes (“particles”) which interaction can be described in
the framework of kinetic theory as many-particle collisions in Bose-gas. In other words, as
some degrees of freedom become very large for sufficiently large energies, phase information
becomes irrelevant, and the waves decohere [8, 15]. Thus, a wave can be considered as a set of
decoupled “modes” nk in a spectral (or wave-number) space:
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Thus, we come to a “kinetic” theory of turbulence, for example, to a model of four-boson
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Such an equation becomes nontrivial in a dissipative environment [17, 18]. A simple general-
ization of NSE (1) taking into account the dissipative effects includes a saturable gain (energy
“source”) σ, dissipative nonlinearity (self-amplitude modulation, SAM) Ϝ(|Ψ|2), and spectral

dissipation (spectral in the sense of dissipation in the Fourier space)
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Eqs. (1) and (4) called the generalized complex nonlinear Ginzburg-Landau equation have the
strongly localized (in x-space) steady-state (in T-space) solutions which are named dissipative
solitons (DS) [3]. A classical (nondissipative) soliton, which possesses the quite specific mathe-
matical properties [18–20], develops due to mutual compensation of dispersive spreading and

self-compression caused by the phase nonlinearity under the condition of ∂2ω
∂kj∂kl

� ∂ω
∂ Ψj j2 > 0 and is

stable in a (1 + 1)-dimensional (i.e., T plus d = 1 in Eq. (1)) case.1 The parameters of such
soliton are not fixed but only interrelated. One may say that a soliton “lives in solitude”
(“pratyekabuddha,” Figure 1).

Dissipation adds new bounds on the soliton parameters and fixes them so that one may say
that the DS lives in “the heart of nonlinear world” (“bodhisattva,” Figure 2).

The mutual balance of dispersion and phase nonlinearity remains a crucial factor for DS
formation, but its physical meaning differs substantially from that for nondissipative soliton.
The crucial factor here is a resonance between dispersive (linear) waves and DS: equality of
their wave-numbers defines the frequency window where DS can exist. Indeed, a wave-
number of DS is q = γP0 (P0�max(|Ψ|2)) [23]. The dispersion relation providing the reso-
nance with linear waves is k(ω) = βω2/2. To be stable (i.e., nonradiating), the DS spectrum has
to be localized within a frequency window �Δ: k(�Δ) = q, where Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γP0=β
p

(Figure 3).2

Formation of these “domain walls” [24–26] due to phase effects in a dissipative system
results in natural frequency cut-off, which is essential for inherent analogy between DS and
a turbulent entity.

However, sole dispersive balance is not sufficient for the DS stability. The spectral dissipa-
tion �αΔ2 plays a crucial role cutting the spectrum and defining the DS width (Figure 4). As

Figure 1. Soliton exists under a balance between phase nonlinearity and dispersion [21, 22].

Figure 2. DS parameters are fixed by both nondissipative and dissipative factors [21, 22].

1
Further, namely one-dimensional (d = 1) systems will be under consideration that is a quite precise approximation for
solid-state and fiber laser dynamics [21].
2
One has to remind the x$ t and k$ω dualities in Eq. (1).
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will be seen, this factor is crucial for dissipative soliton turbulence. A spectral dissipation
must be balanced by a nonlinear gain �κP0 (we assume Ϝ(|Ψ|2) ≈ κ|Ψ|2� ζ|Ψ|4 +…, where
the first term is leading) that results in the additional relation between soliton spectral width

and its peak power: Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
κP0=α

p
. In combination with the dispersive relation, it gives the

condition for the soliton existence which combines the dissipative and nondissipative fac-
tors: αγβκ ≤ 1=2.3 One has to note, that both considered mechanisms of DS formation act in the

spectral domain and, as was shown in [28], a transition to spectral domain is fruitful for
developing a DS theory.

The key feature of DS is its nontrivial internal structure revealing itself in the phase inhomo-
geneity4 and the internal energy redistribution (E is an energy flow):

Figure 3. Resonance conditions for DS and linear waves and DS spectra in dependence on DS energy (a); and the Wigner
(time-spectral) diagram of DS (b) [23].

Figure 4. Wigner representation of DS (a) and cut-off due to spectral dissipation defining the DS width (b).

3
More precise analysis [27] gives the conditions of asymptotical stability: αγβκ ≤

1=3 if E ! ∞

1=2 if E ! 0
, where E is a DS energy.

4
The measure of this inhomogeneity is a so-called chirp Θ∝ ∂2arg Ψð Þ

∂t2 .
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will be seen, this factor is crucial for dissipative soliton turbulence. A spectral dissipation
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. In combination with the dispersive relation, it gives the

condition for the soliton existence which combines the dissipative and nondissipative fac-
tors: αγβκ ≤ 1=2.3 One has to note, that both considered mechanisms of DS formation act in the

spectral domain and, as was shown in [28], a transition to spectral domain is fruitful for
developing a DS theory.

The key feature of DS is its nontrivial internal structure revealing itself in the phase inhomo-
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The third term in RHS of Eq. (5) is phase-sensitive and, thus, there is an energy flow from DS
center, where spectral components with minimal relative frequencies are located, to the DS
wings, where frequency components with maximum relative frequencies are located (Figure 5).
Here, energy dissipates. Such nontrivial internal “life” of DS intensifies with the growth of
phase inhomogeneity Θ. Simultaneously, DS becomes an energy scalable coherent concentrate
with the energy (“concentrate mass”) ∝Θ [5].

As a result of phase inhomogeneity and intensive internal energy flows, the internal coherence of
DS can become partially broken. Then, DS splits into partially coherent “internal modes” which
interact with each other as the independent “sub-solitons.” [29–31] Thus, DS becomes a strongly
localized “cloud” of interacting “quasi-particles” or “glass of boiling water” (Figure 6).

These figures demonstrate an affinity between the structures of DS and turbulence [8, 23]. Both
spectral structures are defined by dispersion relations: between soliton and dispersive waves
for the former and Langmuir dispersion relation for the latter (Figure 7). Secondly, both high-
energy DS and turbulence are characterized by spectral condensation at zero frequency
(wavenumber) with subsequent scattering to higher frequencies confined by cut-off at �Δ.

Such an analogy between DS and turbulence opens a door for building the kinetic and
quantum [5, 32–34] theory of open (dissipative) semi-coherent structures which mimics, in
particular, a quantum Bose-Einstein condensate in a dissipative environment.

Figure 5. Energy flows (left column) and corresponding spectral profiles (right column, ℱ is a Fourier image of Ψ) in
dependence on dispersion β and chirp Θ for a DS with the profile Ψ∝ sech(t)1 + iΘ [4].
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3. Transition to a DS turbulence

The mechanism of transition to turbulence for DS can be associated with the time/spectral
duality (Figure 8). When the energy increases (i.e., E!∞ that corresponds to a system with
“infinite capacity” [36]), the spectrum condensates around ω = 0 within a diapason of Ξ! 0
(Figure 7). Simultaneously, DS broadens in time domain ∝1/Ξ by analogy with a growth of
Bose-Einstein condensate “mass.”5 The DS peak power tends to some constant value P0∝ 1/ζ
defined by a saturation of dissipative nonlinearity (see above), and, thereby, the cut-off frequency

Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
κP0=α

p
tends to be constant. The last value defines the coherence scale ∝1/Δ (few picosec-

onds for a typical DS).6 As a result, DS becomes “decoupled,” and even small perturbations can

Figure 6. DS spectrum as a “glass of boiling water” (left) [30] demonstrating the dynamics of internal perturbation modes
(right) [31]. The last picture is obtained by a perturbation analysis in spectral domain with the Neumann series expansion.

Figure 7. DS spectrum (central red curve in the left picture) where the cut-off frequency Δ is defined by the resonance
condition between linear waves with a wave-number k and DS with a wave-number q (parabolic black curve in the left
picture; P0 is a DS peak power) [23]. The turbulence in the wave-number space is defined by the Langmuir dispersion
relation (parabolic black curve in the right picture). Spectral condensation at k = 0 is illustrated by shading and forms a
characteristic turbulence spectrum (central red curve; right picture) with the cut-off wave-number �kdiss defined by a
dissipation (adapted from [8]).

5
The value ∝1/Ξ can be treated as a measure of “long-range” correlation scale.

6
The value ∝1/Δ can be treated as a measure of “short-range” correlation scale.
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destroy its internal coherence and split (“nucleate”) it into a set of “internal modes” shown in
Figure 6.

More close insight into this mechanism can be provided by the adiabatic theory of DS in spectral
domain presented in [28]. As was shown, the DS spectrum can be expressed as follows:

p ωð Þ ¼ Υ

ω2 þ Ξ2 H Δ2 � ω2� �
, (6)

where p(ω) is a DS spectral power, and H is the Heaviside function. Eq. (6) represents the
spectra shown in Figures 7 and 8, and can be interpreted by analogy with the Rayleigh-Jeans
distribution, so that Ξ2 plays a role of negative “chemical potential” [8, 36, 37]. The parameter
Υ = 6πγ/κζ is an analog of “temperature” and is defined by both dissipative and nondissipative
nonlinear parameters.

Since the “chemical potential” Ξ2 decays with the energy growth (Figure 8), a system tends to
the state of “soliton gas” [38] with the characteristic “soliton size” ∝1/Δ. Thereby, a coherent
“condensate” with minimum entropy becomes a state of the decomposed “quasi-particles”
with the chaotically modulated powers because the required entropy growth is provided by
such modulation7 [40]. Thus, the energy growth (i.e., the growth of “condensate mass” ∝1/Ξ)
leads to extra-sensitivity to quantum-level noises [40, 41] that urges the quantum theory of
coherent and semi-coherent dissipative structures, which would weave largest and smallest
scales in the DS dynamics.

The example of such “DS decomposition” through a turbulence is shown in Figure 9. This
figure is obtained by numerical simulation of Eqs. (1) and (4) with taking into account of the
gain saturation in the form of σ = δ(1�E/Es) [27]. Figure 9 demonstrates clearly two stages of
DS evolution. The first stage corresponds to an incoherent and strongly turbulent DS, which is

Figure 8. DS spectrum (red curves) which cut-off frequency Δ defines the correlation scale ∝1/Δ. It tends to some constant
value with the DS energy growth. Simultaneously, DS broadens in time domain ∝1/Ξ (blue curves) in parallel with the
concentration of energy around ω = 0 in spectral domain [35].

7
Here, one may draw an analogy with Hamiltonian systems, where the gradient of field is a measure of the amount of
fluctuations [39].
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characterized by the short-range correlation time about of 1 ps. In the process of evolution, an
incoherent DS splits into three almost identical coherent solitons, which widths are lower
substantially and the corresponding long-range/short-range correlation times become
smaller/larger, respectively. Small long-range correlation time prevents the DSs merging and
larger short-range correlation time provides DS coherence.

An analysis of turbulent DS demonstrates its complicate internal structure which can be
interpreted as the complex of strongly interacting bright, dark, and gray DSs on a finite but
strongly self-localized background concentrating almost the entire part of the energy.8 In some
sense, an appearance of DS turbulence resembles the laminar-turbulent transition in a fiber
laser when a macroscopically coherent field (Ξ! 0) becomes chaotically self-modulated [45].

Nevertheless, such a scenario is not unique. The turbulent dynamics can result from the strong
interaction between “individual” DSs forming a “soliton gas” or turbulent “soliton cluster”
(Figure 10) [1, 5, 47]. Interaction of such cluster with a low-intensity background field can result
in permanent radiation or absorption of DSs in the form of so-called “soliton rains” [48, 49].

Separately, one may note the chaotization of DS dynamics caused by resonant interaction with
the dispersive waves in the presence of higher-order corrections to the dispersion term in
Eq. (1). In this case, the collisions between DS and dispersive wave, which radiates by it, results
in a chaotic dynamic preserving, nevertheless the DS integrity (Figure 11) [23].

Figure 9. Contour plot of the DS power evolution and the corresponding autocorrelation function on the turbulent stage.
The evolution coordinate is measured in the laser cavity round-trips, and the transverse coordinate corresponds to the
local time measured in picoseconds. The energy parameter Es normalized on γ/Δt is of 3� 105, where γ corresponds to a
fused silica nonlinear coefficient and Δt=1 femtosecond is a time discretization step. Other parameters are: κ = 0.1γ,
ζ = 0.05γ, δ = 0.05, and α = 40 nm (Yb-fiber laser) [6].

8
One has to distinguish such a structure from the breather-like structures on a continuous-wave background. Such
structures can demonstrate chaotic and rogue waves dynamics, as well (e.g., see [43, 44]).
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Separately, one may note the chaotization of DS dynamics caused by resonant interaction with
the dispersive waves in the presence of higher-order corrections to the dispersion term in
Eq. (1). In this case, the collisions between DS and dispersive wave, which radiates by it, results
in a chaotic dynamic preserving, nevertheless the DS integrity (Figure 11) [23].

Figure 9. Contour plot of the DS power evolution and the corresponding autocorrelation function on the turbulent stage.
The evolution coordinate is measured in the laser cavity round-trips, and the transverse coordinate corresponds to the
local time measured in picoseconds. The energy parameter Es normalized on γ/Δt is of 3� 105, where γ corresponds to a
fused silica nonlinear coefficient and Δt=1 femtosecond is a time discretization step. Other parameters are: κ = 0.1γ,
ζ = 0.05γ, δ = 0.05, and α = 40 nm (Yb-fiber laser) [6].

8
One has to distinguish such a structure from the breather-like structures on a continuous-wave background. Such
structures can demonstrate chaotic and rogue waves dynamics, as well (e.g., see [43, 44]).

Self-Organization, Coherence and Turbulence in Laser Optics
http://dx.doi.org/10.5772/intechopen.71478

105



4. Coherence of DS in the presence of nonlinearity with
nonlocal/noninstantaneous response

A nonlinearity with the nonlocal/noninstanteneous response, which is of interest in optical
context, can be taken into account by inclusion in Eq. (1) of the following term [50]

�iγΨ
ð
U x� x0ð Þ Ψj j2 T; x0ð Þdx0: (7)

In the case of nonstationarity (i.e., x! t replacement), this equation describes the stimulated
Raman scattering (SRS), for instance. Then, the response function is [6, 51]:

Figure 10. DS clusters in the form of a “persistent and coherent quasi-soliton” (left) [46] and a “sporadic rogue waves
events that emerge from turbulent fluctuations” (right) [41].

Figure 11. Wigner (time-spectral) diagram of the chaotic DS in the presence of third-order dispersion [23]. DS (dark-red
region around 2.3 µm) radiates a dispersive wave (blue tail around 2.4 µm). As a result of the difference between their
group velocities, DS collides permanently with a dispersive wave that causes chaotization of dynamics and modulation of
both DS spectrum and time-profile.
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Where T2 and T1 define the effective relaxation time and resonant frequency of phonons in a
nonlinear medium.

The simulations demonstrate [6, 35] that SRS suppresses the DS turbulence for the sufficiently
large dispersions β. The first scenario is formation of uncoupled complex of DS and the
dissipative Raman soliton (DRS) [6, 35, 42, 52] (Figure 12). One may assume, that such “energy
discharging” is like the turbulence decay shown in Figure 9.

DRS is characterized by large chirp Θ and frequency down-shift. The last results from intra-
pulse SRS which is possible due to a broad spectrum, which is a common characteristic of DS
and results from its large Θ. A sole DRS develops with growing β (Figure 13) [6, 35]. It is

Figure 12. Wigner (time-spectral) diagram of the DS + DRS complex (left) and its evolution (contour plot of the field
power; right) [35].

Figure 13. Wigner (time-spectral) diagram of a sole DRS developing for large β [6].
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turbulence-free and characterized by perturbed anti-Stokes component, which is clearly visible
on the Wigner diagram. Such perturbation induces a chaotic vibration of the DRS power [35].
Nevertheless, DRS exists within the parametric range, where an ordinary DS cannot develop in
the turbulence-free regime. One may assume that the DRS stability results from passive
negative feed-back based on interplay between nonlinear down-frequency shift due to SRS
and spectral dissipation.

Another spectacular manifestation of the effect of a noninstantaneous nonlinearity on an
incoherent field is an appearance of the spectral incoherent solitons (SIS) [53]. The spectrally
localized soliton-like structures appear without any time-localization due to the causality
property inherent to SRS so that a field cannot reach thermal equilibrium [54]. Formally, the
corresponding evolution equation in the Langmuir turbulence limit has soliton-like solutions
in the spectral domain [55, 56]. As a result, such structure localized in spectral domain pos-
sesses main properties of solitons including the property of elastic scattering.

5. Conclusions

The problem of DS coherence, chaotic, and turbulent dynamics has been outlined. A nontrivial
internal structure of DS caused by it intensive energy exchange with dissipative environment
allows conjecturing a close analogy with turbulent structure forming far from equilibrium. The
existence of long-range correlation scale provides the DS energy scaling (or mass scaling for
Bose-Einstein condensate). However, such “macroscopic” scaling is provided by strong phase
inhomogeneity (chirp) so that internal coherence of DS defined by short-range correlation scale
breaks and DS becomes a “cloud” of interacting “quasi-particles” or “glass of boiling water.”
Such structure is very sensitive to perturbation of even quantum level. Such extra-sensitivity
combines macro- and micro-scales that raises an issue of the quantum theory of the macro-
scopic coherent, partially, and incoherent dissipative structures.

In the context of this work, such DS “decomposition” leads to turbulent dynamics and DS
fragmentation. In particular, interactions inside such “soliton cluster” can result in the rogue
waves’ formation. An additional source of soliton destabilization is resonant interaction with a
dispersive wave that results in chaotization of dynamics and formation of “soliton rains.”

Nonlinearity with noninstanteneous response (e.g., SRS) leads to new interesting effect. In
particular, SRS suppresses the DS turbulence due to the formation of DS + DRS pairs or sole
DRS. Although DRS is turbulence-free within a broad parametric range, it has a perturbed
anti-Stokes component, which causes chaotic vibrations of DRS parameters.

Another and spectacular manifestation of the noninstantaneous response of nonlinearity is the
formation of SIS. This structure is a soliton in the spectral domain but incoherent and
delocalized in the time domain.

The above-considered phenomena and conjectures are of interest in the context of the devel-
opment of approaches to the self-consistent theory of nonequilibrium dissipative structures in
classical and quantum aspects, which would use the optical DSs as a testbed.
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Abstract

Solitary waves and solitons are briefly discussed in their historical context, especially 
regarding the motivation to use solitons for particle models in the nonlinear Klein-
Gordon (NKG) equation. Conservation equations for charge, energy, and momentum 
follow from Noether’s theorem in the usual way, and the NKG equation can be coupled 
to Maxwell’s equations in the standard, gauge invariant manner. A recently proposed 
model is summarized in which two NKG equations are coupled to the electromagnetic 
field. In that model, solitons mimic the dynamical behavior of electrons and protons. A 
new result is then presented that follows from that model. Although the model is purely 
classical, it turns out that the arc spectrum of hydrogen is emitted into the electromag-
netic field when small oscillations of one Klein-Gordon equation occur in the vicinity of 
a proton-like soliton. It is perhaps unexpected that a purely classical model can exhibit 
behavior suggestive of a phenomenon that is generally presumed to occur only in a 
quantum-mechanical context. Because of the way in which that result occurs, however, 
it is not clear whether there is any possible relevance to the actual physical phenomenon.

Keywords: nonlinear systems and models, solitons, nonlinear Klein-Gordon-Maxwell 
equations, particle models, hydrogen spectrum, nonlinear field theories

1. Introduction

When a term that acts as a restoring force is added to the usual linear wave equation, the equation

    
 ∂   2  ψ

 ___ ∂  t   2    −  ∇   2  ψ + ψ = 0  (1)

is obtained. Schweber ([1], p. 54) points out “When Schrödinger wrote down the nonrela-
tivistic equation now bearing his name, he also formulated the corresponding relativistic 
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equation.” Within the year of 1926, Klein, Gordon, and at least three others independently 
proposed the use of Eq. (1) as the relativistic generalization of Schrödinger’s equation. Eq. (1) 
has since become known as the Klein-Gordon equation. Instead of the original time and space 
variables    t ̂  ,  x ̂  ,  y ̂  ,  z ̂    that might be used in a quantum-mechanical context, we have chosen to write 
Eq. (1) using dimensionless variables t, x, y, z defined as

  t =   m  c   2  ____ ℏ    t ̂  ,    x =   mc ___ ℏ   x ̂  ,    y =   mc ___ ℏ   y ̂  ,    z =   mc ___ ℏ   z ̂  ,  (2)

where    t ̂  ,  x ̂  ,  y ̂  ,  z ̂    are time and space coordinates in customary units (e.g., seconds and meters). 
Similarly, m is the mass of the electron, c is the speed of light, and ℏ is Planck’s constant 
divided by 2π, also in customary units. Unit distance in our dimensionless coordinates cor-
responds to ℏ/(mc), which is about 3.86 × 10−13 m. That distance is known as the Compton 
wavelength of the electron (divided here by 2π), which is a fundamental unit of length for 
quantum-mechanical phenomena that involve electrons.

When one attempts to use the Klein-Gordon equation to describe the quantum-mechanical 
problem of an electron in the Coulomb field of a nucleus of atomic number Z, Eq. (1) becomes

   (  ∂ __ ∂ t   + i   
Z  α  fs   _________ r  )  (  ∂ __ ∂ t   + i   

Z  α  fs   _________ r  )  ψ −  ∇   2  ψ + ψ = 0,  (3)

where αfs is the fine structure constant (approximately 1/137), where  i =  √ 
___

 − 1   , and where 
r2 = x2 + y2 + z2. Unit distance for the dimensionless quantity r is thus also ℏ/(mc). Although 
Eq. (3) reduces properly to Schrödinger’s equation in the nonrelativistic approximation, it 
was realized almost immediately that Eq. (3) was in fact not appropriate for the quantum-
mechanical description of the electron, and the Klein-Gordon equation fell even into a degree 
of disrepute, especially after the remarkable insight that led to Dirac’s equation in 1928 [1, 2].

The Klein-Gordon equation is, nevertheless, a simple example of a relativistic partial differ-
ential equation and, as such, it is second in importance only to the wave equation. The rela-
tivistic invariance is preserved even when the ψ term is replaced with a term that depends 
nonlinearly on ψ, and the resulting equation can be used, for example, in the study of non-
linear waves [3, 4]. This chapter will deal primarily with the nonlinear Klein-Gordon (NKG) 
equation in the form

    
 ∂   2  ψ

 ___ ∂  t   2    −  ∇   2  ψ +  W   ′  (ψ ψ ¯   ) ψ = 0,  (4)

where ψ depends on time t and spatial coordinates x, y, z. Overbar denotes the complex con-
jugate since ψ will usually be taken as complex-valued. The real-valued function W is used 
to introduce an appropriate nonlinearity, and   W   ′  (ψ ψ ̄  )   denotes the derivative of  W (ψ ψ ̄  )   with 
respect to its argument  ψ ψ ̄   . Let us take W(0) = 0, and with suitable scaling we can also take 
W′(0) = 1, so that Eq. (4) will agree with Eq. (1) when ψ is small.

Here, we are interested in the soliton solutions that occur in the NKG equation, so Section 2 
is a brief historical overview of solitary waves and solitons, followed by the historical context 
in Section 3 that motivates the use of solitons in classical field theories. Before coupling the 
NKG equation to Maxwell’s equations in Section 8, we need to examine the NKG equation 
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itself in more detail in Sections 5 and 6. An explicit example of a soliton solution is given in 
Section 7. In Sections 9–11, we summarize a recently proposed model in which a second NKG 
equation is introduced so as to model solitons that can be thought of as protons as well as 
electrons. In that model, the proton and electron-like solitons attract and repel each other in 
the desired way. Finally, in Section 12, we present new results from the same model where 
it is shown that small oscillations in the neighborhood of a proton-like soliton emit the well-
known frequencies of the hydrogen spectrum into the electromagnetic field. Since emission 
of the hydrogen spectrum is a phenomenon that would normally be expected to occur only in 
a quantum-mechanical setting and not in the present classical field model, we interpret this 
result in Section 13 and suggest the future direction of the present research.

2. Historical background of solitary waves and solitons

The study of solitary waves has a long history [4], which originated with observations by Scott 
Russell ([5], [6, p. 118]), of an isolated wave moving in a canal. Following along on horseback, 
he was able to observe that the wave traveled a great distance with little change in form and 
only gradually died out. The linear theories of water waves available at that time predicted, 
however, that such waveshapes would necessarily disperse, so for some time Scott Russell’s 
observations were not taken seriously. The full equations for water waves, even in the irrota-
tional, inviscid case, present quite a formidable boundary value problem, so various simple 
model equations have been examined in much greater detail. Strangely in contrast to the lin-
ear theory, a certain nonlinear model of water waves for shallow water predicted that waves of 
all shapes would steepen and ultimately break. Eventually, various simple, nonlinear model 
equations such as the equation of Korteweg and deVries (often known as the KdV equation)

    
∂ η

 ___ ∂ t   +  ( c  0   +  c  1   η)    
∂ η

 ___ ∂ x   + ν   
 ∂   3  η

 ___ ∂  x   3    = 0,  (5)

were formulated, where both the dispersion and steepening effects are included. In these 
equations, the two effects balance each other and do, in fact, allow an isolated waveshape to 
propagate without change of form.

The term soliton was later introduced to emphasize that solitary waves, like particles, tend to 
maintain their identity. When a nonlinear term is introduced into the usual linear Schrödinger 
equation, the nonlinear Schrödinger equation

  i   
∂ ψ

 ___ ∂ t   −  ∇   2  ψ +  W   ′  (ψ ψ ¯  ) ψ = 0,  (6)

is obtained. It has soliton solutions and is of particular interest in relation to the ideas of de Broglie 
and Bohm [7, 8]. Soliton solutions occur in the NKG Eq. (4) and also in the related equation

    
 ∂   2  ψ

 ___ ∂  t   2    −   
 ∂   2  ψ

 ___ ∂  x   2    + sin ψ = 0  (7)

known (a bit flippantly) as the sine-Gordon equation.
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Remarkable methods, such as the inverse scattering method, have been devised for use with 
certain model equations. With these methods, it is possible to find exact solutions that show 
solitons colliding and passing through each other while still maintaining their identity. The 
subject of solitary waves and solitons has been extensively described in books and review 
articles [9–13]. For more recent work, see [14–24] and references therein.

3. Use of solitons as particle models

The motivation for the use of solitons as particle models can best be understood by com-
parison with the historical development of physical theories, especially electromagnetism 
and quantum mechanics. Despite the successes of Maxwell’s theory of electromagnetism in 
the late 1800s and the clarified understanding of its transformation properties according to 
Einstein’s special theory of relativity, classical physics seemed to reach an impasse at the 
beginning of the twentieth century. The notion of the electron as a point particle was immedi-
ately inconsistent with electromagnetism since the electromagnetic energy around a charged 
point particle is easily calculated to be infinite. Moreover, if an electron were to orbit a proton 
like a planet around the sun, it would radiate into the electromagnetic field at a frequency 
based on the orbital speed and quickly spiral inward toward the nucleus.

Early in the twentieth century, however, Planck, Einstein, and Bohr advanced daring new 
hypotheses to describe blackbody radiation, the photoelectric effect, and the hydrogen 
atom, respectively. Dirac, Heisenberg, and others later developed various versions of a new 
quantum mechanics more sophisticated but certainly no more intuitively comprehensible. 
Quantum mechanics has been perpetually troubled by divergences, as when Bethe [25] some-
what jokingly referred to a quantity that “…comes out infinite in all existing theories, and 
has therefore always been ignored.” Remarkable progress was later achieved in quantum 
electrodynamics by Tomonaga, Schwinger, Feynman, and others, but still only with the aid 
of a rather arbitrary (some would say procrustean) renormalization procedure. Dirac [2] con-
cludes his book with the thought that “It would seem that we have followed as far as possible 
the path of logical development of the ideas of quantum mechanics as they are at present 
understood. The difficulties, being of a profound character, can be removed only by some 
drastic change in the foundations of the theory, probably a change as drastic as the passage 
from Bohr's orbit theory to the present quantum mechanics.”

There have been various attempts, notably by de Broglie [7, 26], to gain insight into a pos-
sible “drastic change in the foundations of the theory” as envisioned by Dirac, but so far 
such attempts have had little success. One possible approach, which apparently occurred to 
many people, is to ask whether solitons could be used to model actual particles as localized 
regions where the field is large. If point particles were replaced by solitons one could hope for 
a theory along more classical lines where problems with infinite, divergent integrals would 
be avoided in a natural way. The line of research described here is meant to be a step, if only 
a tiny step, in that direction. A recently proposed model is summarized in Sections 9–11. A 
new result is presented in Section 12, where a phenomenon suggestive of quantum-mechanics 
occurs, but in an unexpected context.
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4. Topological and nontopological solitons

It was found early on that if one tries to use the NKG Eq. (4) to form a localized, particle-like 
solution, where ψ is a static, real-valued function of spatial coordinates x, y, z, that such a 
solution turns out to be wildly unstable. Even the linear stability analysis shows that there is 
a mode that grows in time, so the solution either tends to collapse or to grow arbitrarily large. 
Hobart [27] and Derrick [28] concluded from energy considerations that a wide class of field 
equations would turn out to be unstable in this way. One possible way around this difficulty 
is for the solution to have a suitable topological property. Scott [29] and Rubinstein [30] have 
examined a simple example of such a topological soliton in the sine-Gordon Eq. (7). Scott’s 
interpretation by means of a mechanical model is especially easy to visualize, where ψ repre-
sents an angle in the y, z plane, and the solution loops around the x-axis.

Here, however, we will be concerned with another approach to stability that uses the NKG 
Eq. (4) but with a complex-valued variable ψ that has a time-dependent phase. Thus, we will 
be interested in possible solutions of the form

  ψ = U (r)   e   i𝜔𝜔t  , (8)

where r2 = x2 + y2 + z2 and where the real-valued function U(r) is exponentially small for large r. 
The solution is stationary in the sense that U does not depend on t, but it is not static since ψ 
is in effect rotating with angular frequency ω in the complex plane. Some of the early works 
along these lines were done by Glasko et al. [31], Zastavenko [32], and Rosen [33]. It turns out 
that orbital stability can be achieved in suitable circumstances. Roughly speaking, the rotation 
allows stability to occur just as a spinning gyroscope can be stable in a situation that would 
otherwise be unstable from energetic considerations. Solitons of this nature are often called 
nontopological solitons, in contrast to the topological solitons that occur in examples such as 
the sine-Gordon Eq. (7). The term soliton is sometimes reserved for particle-like solutions that 
have been shown to be orbitally stable; but here, we will allow the use of the term for particle-
like solutions in general. One difficulty with the use of nontopological solitons as particle 
models is that a whole family of particle-like solutions typically occurs, as will be seen in the 
example of Section 7. This problem will be discussed further in Section 10. Existence and sta-
bility questions have been extensively studied for the NKG equation [15, 34]. More recently, 
soliton solutions with nonzero angular momentum have also been of interest [18, 19].

5. Conservation equations for the NKG equation

To understand soliton solutions for the NKG equation, it is important first to see that the NKG 
equation can be derived from a variational principle. The Lagrangian density is

  L =   1 __ 2     
∂ ψ

 ___ ∂ t     
∂ ψ ¯  

 ___ ∂ t   −   1 __ 2   ∇ψ ∙ ∇ ψ ¯   −   1 __ 2   W (ψ ψ ¯  ) ,  (9)

and the corresponding Euler operator (with respect to ψ) is

Interaction of Solitons with the Electromagnetic Field in Classical Nonlinear Field Models
http://dx.doi.org/10.5772/intechopen.71215

117



Remarkable methods, such as the inverse scattering method, have been devised for use with 
certain model equations. With these methods, it is possible to find exact solutions that show 
solitons colliding and passing through each other while still maintaining their identity. The 
subject of solitary waves and solitons has been extensively described in books and review 
articles [9–13]. For more recent work, see [14–24] and references therein.

3. Use of solitons as particle models

The motivation for the use of solitons as particle models can best be understood by com-
parison with the historical development of physical theories, especially electromagnetism 
and quantum mechanics. Despite the successes of Maxwell’s theory of electromagnetism in 
the late 1800s and the clarified understanding of its transformation properties according to 
Einstein’s special theory of relativity, classical physics seemed to reach an impasse at the 
beginning of the twentieth century. The notion of the electron as a point particle was immedi-
ately inconsistent with electromagnetism since the electromagnetic energy around a charged 
point particle is easily calculated to be infinite. Moreover, if an electron were to orbit a proton 
like a planet around the sun, it would radiate into the electromagnetic field at a frequency 
based on the orbital speed and quickly spiral inward toward the nucleus.

Early in the twentieth century, however, Planck, Einstein, and Bohr advanced daring new 
hypotheses to describe blackbody radiation, the photoelectric effect, and the hydrogen 
atom, respectively. Dirac, Heisenberg, and others later developed various versions of a new 
quantum mechanics more sophisticated but certainly no more intuitively comprehensible. 
Quantum mechanics has been perpetually troubled by divergences, as when Bethe [25] some-
what jokingly referred to a quantity that “…comes out infinite in all existing theories, and 
has therefore always been ignored.” Remarkable progress was later achieved in quantum 
electrodynamics by Tomonaga, Schwinger, Feynman, and others, but still only with the aid 
of a rather arbitrary (some would say procrustean) renormalization procedure. Dirac [2] con-
cludes his book with the thought that “It would seem that we have followed as far as possible 
the path of logical development of the ideas of quantum mechanics as they are at present 
understood. The difficulties, being of a profound character, can be removed only by some 
drastic change in the foundations of the theory, probably a change as drastic as the passage 
from Bohr's orbit theory to the present quantum mechanics.”

There have been various attempts, notably by de Broglie [7, 26], to gain insight into a pos-
sible “drastic change in the foundations of the theory” as envisioned by Dirac, but so far 
such attempts have had little success. One possible approach, which apparently occurred to 
many people, is to ask whether solitons could be used to model actual particles as localized 
regions where the field is large. If point particles were replaced by solitons one could hope for 
a theory along more classical lines where problems with infinite, divergent integrals would 
be avoided in a natural way. The line of research described here is meant to be a step, if only 
a tiny step, in that direction. A recently proposed model is summarized in Sections 9–11. A 
new result is presented in Section 12, where a phenomenon suggestive of quantum-mechanics 
occurs, but in an unexpected context.
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4. Topological and nontopological solitons

It was found early on that if one tries to use the NKG Eq. (4) to form a localized, particle-like 
solution, where ψ is a static, real-valued function of spatial coordinates x, y, z, that such a 
solution turns out to be wildly unstable. Even the linear stability analysis shows that there is 
a mode that grows in time, so the solution either tends to collapse or to grow arbitrarily large. 
Hobart [27] and Derrick [28] concluded from energy considerations that a wide class of field 
equations would turn out to be unstable in this way. One possible way around this difficulty 
is for the solution to have a suitable topological property. Scott [29] and Rubinstein [30] have 
examined a simple example of such a topological soliton in the sine-Gordon Eq. (7). Scott’s 
interpretation by means of a mechanical model is especially easy to visualize, where ψ repre-
sents an angle in the y, z plane, and the solution loops around the x-axis.

Here, however, we will be concerned with another approach to stability that uses the NKG 
Eq. (4) but with a complex-valued variable ψ that has a time-dependent phase. Thus, we will 
be interested in possible solutions of the form

  ψ = U (r)   e   i𝜔𝜔t  , (8)

where r2 = x2 + y2 + z2 and where the real-valued function U(r) is exponentially small for large r. 
The solution is stationary in the sense that U does not depend on t, but it is not static since ψ 
is in effect rotating with angular frequency ω in the complex plane. Some of the early works 
along these lines were done by Glasko et al. [31], Zastavenko [32], and Rosen [33]. It turns out 
that orbital stability can be achieved in suitable circumstances. Roughly speaking, the rotation 
allows stability to occur just as a spinning gyroscope can be stable in a situation that would 
otherwise be unstable from energetic considerations. Solitons of this nature are often called 
nontopological solitons, in contrast to the topological solitons that occur in examples such as 
the sine-Gordon Eq. (7). The term soliton is sometimes reserved for particle-like solutions that 
have been shown to be orbitally stable; but here, we will allow the use of the term for particle-
like solutions in general. One difficulty with the use of nontopological solitons as particle 
models is that a whole family of particle-like solutions typically occurs, as will be seen in the 
example of Section 7. This problem will be discussed further in Section 10. Existence and sta-
bility questions have been extensively studied for the NKG equation [15, 34]. More recently, 
soliton solutions with nonzero angular momentum have also been of interest [18, 19].

5. Conservation equations for the NKG equation

To understand soliton solutions for the NKG equation, it is important first to see that the NKG 
equation can be derived from a variational principle. The Lagrangian density is

  L =   1 __ 2     
∂ ψ

 ___ ∂ t     
∂ ψ ¯  

 ___ ∂ t   −   1 __ 2   ∇ψ ∙ ∇ ψ ¯   −   1 __ 2   W (ψ ψ ¯  ) ,  (9)

and the corresponding Euler operator (with respect to ψ) is
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   O  p  ψ   = −   
 ∂   2  ψ ¯  

 ___ ∂  t   2    +  ∇   2 ψ ̶ −  W   ′  (ψ ψ ¯  )  ψ ¯  .  (10)

When we set the Euler operator (10) to zero (and take the negative of the complex conjugate), 
we obtain the NKG Eq. (4). It is well known from Noether’s theorem [4, 35, 36] that each sym-
metry of the variational principle leads to an equation in what is referred to as conservation 
form. Once the equation is in conservation form, it is straightforward to integrate in order 
to show that a certain quantity is conserved. Symmetry with respect to time translation thus 
leads to conservation of energy, and symmetry with respect to translation in x, y, z space leads 
to conservation of momentum.

Since the variational principle that follows from Eq. (9) is unchanged under time translation, 
it follows that energy is conserved. Specifically, we can rewrite the expression

 −  (O  p  
ψ
  ∂ψ / ∂t +   ̄  O  p  

ψ
    ∂ ψ ̄  / ∂t)  / 2  in the following conservation form:

  −   1 __ 2   (O  p  ψ     
∂ ψ

 ___ ∂ t   +   ̄  O  p  ψ       
∂  ψ ¯  

 ___ ∂ t   )  =   ∂ __ ∂ t     
1 __ 2   (  

∂ ψ
 ___ ∂ t     
∂  ψ ¯  

 ___ ∂ t   + ∇ψ ∙ ∇ ψ ¯   + W (ψ ψ ¯  ) )   

                                 −   1 __ 2  ∇∙ (  
∂ ψ

 ___ ∂ t   ∇ ψ ¯¯   +   
∂  ψ ¯¯  

 ___ ∂ t  ∇ψ) .  (11)

Let

  ℰ = ∫   1 __ 2   (  
∂ ψ

 ___ ∂ t     
∂  ψ ¯¯  

 ___ ∂ t   + ∇ψ ∙ ∇ ψ ¯¯   + W (ψ ψ ¯¯  ) )   d   3  x,  (12)

where the integral is to be taken over a certain region in x, y, z space and where d3x denotes a 
volume element. Then,  ℰ  is defined as the energy in that region. Let us suppose that Eq. (4) 
is satisfied, so that the right-hand side of Eq. (11) must be equal to zero. Then, if Eq. (11) is 
integrated over the region in question, it is clear from the divergence theorem that the energy 
within that region will remain constant in time, except for any energy that enters or leaves the 
region through the outer surface.

Similarly, since the variational principle is invariant under translation in the x direction, a 
conservation equation can be found for momentum in the x direction. We can thus rewrite the 
expression   (O p  

ψ
   ∂ψ / ∂x +   ̄  O  p  

ψ
    ∂ ψ ¯  / ∂x)  / 2  in the following conservation form:

   

  1 __ 2   (O  p  ψ     
∂ ψ

 ___ ∂ x   +   ̄  O  p  ψ      
∂  ψ ¯¯  

 ___ ∂ x  )  =   ∂ __ ∂ t   (−   1 __ 2     
∂ ψ

 ___ ∂ t     
∂  ψ ¯¯  

 ___ ∂ x   −   1 __ 2     
∂  ψ ¯¯  

 ___ ∂ t     
∂ ψ

 ___ ∂ x  ) 

     +   ∂ ___ ∂ x   (  1 __ 2     
∂ ψ

 ___ ∂ t     
∂  ψ ¯¯  

 ___ ∂ t   −   1 __ 2   ∇ψ ∙ ∇ ψ ¯¯   −   1 __ 2  W (ψ ψ ¯¯  ) )     

+ ∇∙ (  1 __ 2     
∂  ψ ¯¯  

 ___ ∂ x   ∇ψ +   1 __ 2     
∂ ψ

 ___ ∂ x   ∇ ψ ¯¯  ) .

    (13)

Then

   P  x   = ∫  (−   1 __ 2     
∂ ψ

 ___ ∂ t     
∂  ψ ¯¯  

 ___ ∂ x   −   1 __ 2     
∂  ψ ¯¯  

 ___ ∂ t     
∂ ψ

 ___ ∂ x  )   d   3  x  (14)

is defined as the momentum in the x direction (as contained within the region in ques-
tion). Again, the use of the divergence theorem shows that momentum within the region 
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is conserved, except for any momentum that enters or leaves through the outer surface. 
Conservation of momentum in the y and z directions is similar.

Next, because the variational principle is invariant when ψ is rotated in the complex plane, the 
quantity  i (ψ O  p  

ψ
   −   ̄ ¯¯  ψ O  p  

ψ
    )  / 2  can be put in the conservation form

    i __ 2    (ψ O  p  ψ   −   ̄ ¯¯  ψ O  p  ψ    )  =   ∂ __ ∂ t   (  
i ψ ¯¯  

 __ 2     
∂ ψ

 ___ ∂ t   −   
iψ

 __ 2     
∂  ψ ¯¯  

 ___ ∂ t  )  + ∇∙  (  
iψ

 __ 2   ∇ ψ ¯¯   −   
i ψ ¯¯  

 __ 2   ∇ψ) .  (15)

The quantity

  Q = ∫  (  
i ψ ¯¯  

 __ 2     
∂ ψ

 ___ ∂ t   −   
iψ

 __ 2     
∂  ψ ¯¯  

 ___ ∂ t  )   d   3  x  (16)

will be defined as the charge (contained within the region in question), for reasons that will 
become clear when the NKG equation is coupled to Maxwell’s equations. Again, by the diver-
gence theorem, the charge within the region must remain constant in time except for any 
charge that enters or leaves through the outer surface.

6. Rotating nonlinear solutions for the NKG equation

Now let us look for solutions of the NKG equation that are rotating in the complex plane with 
angular frequency ω, that is

  ψ = U  e   i𝜔𝜔t ,  (17)

where U is a real function that depends on x, y, z, but is independent of t. Then, U needs to 
satisfy

   ∇   2  U +  ω   2  U −  W   ′  ( U   2 ) U = 0.  (18)

Generally, we will be interested in localized solutions, and U will typically be exponentially 
small when r is large. Substitution of expression (17) in Eqs. (16) and (12) shows that the 
charge of such a solution is

  Q = − ω∫  U   2   d   3 x,  (19)

and the energy is

  ℰ    = ∫   1 __ 2   ( ω   2   U   2  + ∇U ∙ ∇U + W ( U   2 ) )   d   3 x,  (20)

where the integrals are now taken over all of x, y, z space. From Eq. (19), it is clear that the 
charge will be positive or negative depending on the sign of ω. We are not interested here in 
the case where Q is zero since we want U to be nontrivial, and ω needs to be nonzero when 
we try for an orbitally stable soliton solution.
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   O  p  ψ   = −   
 ∂   2  ψ ¯  

 ___ ∂  t   2    +  ∇   2 ψ ̶ −  W   ′  (ψ ψ ¯  )  ψ ¯  .  (10)

When we set the Euler operator (10) to zero (and take the negative of the complex conjugate), 
we obtain the NKG Eq. (4). It is well known from Noether’s theorem [4, 35, 36] that each sym-
metry of the variational principle leads to an equation in what is referred to as conservation 
form. Once the equation is in conservation form, it is straightforward to integrate in order 
to show that a certain quantity is conserved. Symmetry with respect to time translation thus 
leads to conservation of energy, and symmetry with respect to translation in x, y, z space leads 
to conservation of momentum.

Since the variational principle that follows from Eq. (9) is unchanged under time translation, 
it follows that energy is conserved. Specifically, we can rewrite the expression

 −  (O  p  
ψ
  ∂ψ / ∂t +   ̄  O  p  

ψ
    ∂ ψ ̄  / ∂t)  / 2  in the following conservation form:

  −   1 __ 2   (O  p  ψ     
∂ ψ

 ___ ∂ t   +   ̄  O  p  ψ       
∂  ψ ¯  

 ___ ∂ t   )  =   ∂ __ ∂ t     
1 __ 2   (  

∂ ψ
 ___ ∂ t     
∂  ψ ¯  

 ___ ∂ t   + ∇ψ ∙ ∇ ψ ¯   + W (ψ ψ ¯  ) )   

                                 −   1 __ 2  ∇∙ (  
∂ ψ

 ___ ∂ t   ∇ ψ ¯¯   +   
∂  ψ ¯¯  

 ___ ∂ t  ∇ψ) .  (11)

Let

  ℰ = ∫   1 __ 2   (  
∂ ψ

 ___ ∂ t     
∂  ψ ¯¯  

 ___ ∂ t   + ∇ψ ∙ ∇ ψ ¯¯   + W (ψ ψ ¯¯  ) )   d   3  x,  (12)

where the integral is to be taken over a certain region in x, y, z space and where d3x denotes a 
volume element. Then,  ℰ  is defined as the energy in that region. Let us suppose that Eq. (4) 
is satisfied, so that the right-hand side of Eq. (11) must be equal to zero. Then, if Eq. (11) is 
integrated over the region in question, it is clear from the divergence theorem that the energy 
within that region will remain constant in time, except for any energy that enters or leaves the 
region through the outer surface.

Similarly, since the variational principle is invariant under translation in the x direction, a 
conservation equation can be found for momentum in the x direction. We can thus rewrite the 
expression   (O p  

ψ
   ∂ψ / ∂x +   ̄  O  p  

ψ
    ∂ ψ ¯  / ∂x)  / 2  in the following conservation form:

   

  1 __ 2   (O  p  ψ     
∂ ψ

 ___ ∂ x   +   ̄  O  p  ψ      
∂  ψ ¯¯  

 ___ ∂ x  )  =   ∂ __ ∂ t   (−   1 __ 2     
∂ ψ

 ___ ∂ t     
∂  ψ ¯¯  

 ___ ∂ x   −   1 __ 2     
∂  ψ ¯¯  

 ___ ∂ t     
∂ ψ

 ___ ∂ x  ) 

     +   ∂ ___ ∂ x   (  1 __ 2     
∂ ψ

 ___ ∂ t     
∂  ψ ¯¯  

 ___ ∂ t   −   1 __ 2   ∇ψ ∙ ∇ ψ ¯¯   −   1 __ 2  W (ψ ψ ¯¯  ) )     

+ ∇∙ (  1 __ 2     
∂  ψ ¯¯  

 ___ ∂ x   ∇ψ +   1 __ 2     
∂ ψ

 ___ ∂ x   ∇ ψ ¯¯  ) .

    (13)

Then

   P  x   = ∫  (−   1 __ 2     
∂ ψ

 ___ ∂ t     
∂  ψ ¯¯  

 ___ ∂ x   −   1 __ 2     
∂  ψ ¯¯  

 ___ ∂ t     
∂ ψ

 ___ ∂ x  )   d   3  x  (14)

is defined as the momentum in the x direction (as contained within the region in ques-
tion). Again, the use of the divergence theorem shows that momentum within the region 
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is conserved, except for any momentum that enters or leaves through the outer surface. 
Conservation of momentum in the y and z directions is similar.

Next, because the variational principle is invariant when ψ is rotated in the complex plane, the 
quantity  i (ψ O  p  

ψ
   −   ̄ ¯¯  ψ O  p  

ψ
    )  / 2  can be put in the conservation form

    i __ 2    (ψ O  p  ψ   −   ̄ ¯¯  ψ O  p  ψ    )  =   ∂ __ ∂ t   (  
i ψ ¯¯  

 __ 2     
∂ ψ

 ___ ∂ t   −   
iψ

 __ 2     
∂  ψ ¯¯  

 ___ ∂ t  )  + ∇∙  (  
iψ

 __ 2   ∇ ψ ¯¯   −   
i ψ ¯¯  

 __ 2   ∇ψ) .  (15)

The quantity

  Q = ∫  (  
i ψ ¯¯  

 __ 2     
∂ ψ

 ___ ∂ t   −   
iψ

 __ 2     
∂  ψ ¯¯  

 ___ ∂ t  )   d   3  x  (16)

will be defined as the charge (contained within the region in question), for reasons that will 
become clear when the NKG equation is coupled to Maxwell’s equations. Again, by the diver-
gence theorem, the charge within the region must remain constant in time except for any 
charge that enters or leaves through the outer surface.

6. Rotating nonlinear solutions for the NKG equation

Now let us look for solutions of the NKG equation that are rotating in the complex plane with 
angular frequency ω, that is

  ψ = U  e   i𝜔𝜔t ,  (17)

where U is a real function that depends on x, y, z, but is independent of t. Then, U needs to 
satisfy

   ∇   2  U +  ω   2  U −  W   ′  ( U   2 ) U = 0.  (18)

Generally, we will be interested in localized solutions, and U will typically be exponentially 
small when r is large. Substitution of expression (17) in Eqs. (16) and (12) shows that the 
charge of such a solution is

  Q = − ω∫  U   2   d   3 x,  (19)

and the energy is

  ℰ    = ∫   1 __ 2   ( ω   2   U   2  + ∇U ∙ ∇U + W ( U   2 ) )   d   3 x,  (20)

where the integrals are now taken over all of x, y, z space. From Eq. (19), it is clear that the 
charge will be positive or negative depending on the sign of ω. We are not interested here in 
the case where Q is zero since we want U to be nontrivial, and ω needs to be nonzero when 
we try for an orbitally stable soliton solution.
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If we look for a radially symmetric solution U(r), where r2 = x2 + y2 + z2, we note that

   ∇   2  U =   1 __ r     
 d   2  (rU)  _____ d  r   2     (21)

so that Eq. (18) can be rewritten as

     d   2 𝒰𝒰 ____ d r   2    +  ω   2  𝒰𝒰 −  W   ′  ( U   2 ) 𝒰𝒰 = 0,  (22)

with  𝒰𝒰 = rU .

7. An explicit soliton solution for the NKG equation

To fix ideas, let us derive the following standard result in somewhat more than the usual 
detail. An expedient that has been frequently used [37–40] is to let W′ be a step function, in 
which case a simple example of a soliton solution can be worked out explicitly. Let us sup-
pose that W′ has a fixed value aW when r is greater than a certain r0. Then, we want aW − ω2 > 0, 
so we can find a solution of Eq. (22) of the form  𝒰𝒰 = B  e   −b (r− r  

0
  )    for r > r0, where B is a constant and 

b2 = aW − ω2 . To satisfy an appropriate boundary condition at infinity, we have chosen the solu-
tion where  𝒰𝒰  approaches 0 for large r. Next, let us suppose that W′ has a somewhat smaller fixed 
value aW − bW when r < r0. We want the constant bW to be a suitable value so that aW − bW − ω2 will 
be negative. Then, we can find a solution of Eq. (22) in the form  𝒰𝒰  = A sin(ar) for r < r0,where 
A is a constant and a2 = ω2 − aW + bW . We have chosen the sine rather than the cosine solution so 
as to satisfy an appropriate boundary condition at r = 0. Then, we note that

   a   2  +  b   2  =  b  W  .  (23)

We need A sin(ar0) = B to make  𝒰𝒰  continuous at r0, and we need Aa cos(ar0) =  − Bb to make  d𝒰𝒰 / dr  
continuous at r0, so, altogether, we want

  a cos  (a  r  0  )  = − b sin  (a  r  0  ) .  (24)

There will be a whole family of rotating solutions for Eq. (18), as was mentioned in Section 4. 
It is convenient to use θ0 = ar0 as a parameter for this family. Using Eqs. (23) and (24), we find 
that a2 = bW sin2 θ0 and b2 = bW  cos2 θ0. We will be looking for solutions with θ0 between π/2 and 
π (where sin θ0 is positive but cos θ0 is negative) so we find

  a =  √ 
___

  b  W       sin  θ  0  ,     b = −  √ 
___

  b  W     cos  θ  0  .  (25)

If we wish to have U take the value UW at r0, then

   B =   
 U  W    θ  0   _____ a  ,     A =   

 U  W    θ  0   ___________ a sin  θ  0  
  .  (26)

Collecting the above results, we have
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  U =   𝒰𝒰 __ r   =   
 θ  0    U  W   sin  ( r ̂   sin  θ  0  )   _____________  r ̂    sin   2   θ  0  

    (27)

for    r ̂   ≤    r ̂    
0
    and

  U =   𝒰𝒰 __ r   =   
 θ  0    U  W    e   ( r ̂  −  r ̂    0  )cos θ  0   

 ___________  r ̂   sin  θ  0  
      (28)

for    r ̂   >    r ̂    
0
   . The result has been written in terms of scaled quantities

   r ̂   =  √ 
___

  b  W     r,        r ̂    0   =  √ 
___

  b  W      r  0   =  θ  0   / sin  θ  0  .  (29)

Then, we need W′(U2) = aW for   U   2  <  U  
W

  2    and W′(U2) = aW − bW for   U   2  >  U  
W

  2   . Given values of aW and 
bW , as well as a value of the parameter θ0, we find that ω is to be determined from the equation

   ω   2  =  a  W   −  b  W    cos   2   θ  0  .  (30)

The shape of the solution, as given by the dependence of U on    r ̂    in Eqs. (27) and (28), depends 
on θ0 but not on aW or bW

. For now, let us take aW = 1. It is easy to obtain U in terms of the origi-
nal variable r using Eq. (29). Eq. (29) shows that the physical size of the soliton, i.e., its size in 
x, y, z space, will be larger when bW is smaller.

The charge Q and energy  ℰ  of such a soliton solution follow from the integrals (19) and (20). 
It turns out that the integral for the charge can be worked out explicitly as

   Q = − ω  ∫  0    ∞     U   2  4π  r   2  dr  

         = −  √ 
___________

  1 −  b  W    cos   2   θ  0       
2π ( θ  0   cos  θ  0   − sin  θ  0  )    b  W     −3/2   U  W  2    θ  0  2    __________________________________    (sin  θ  0  )    5  cos  θ  0  

  .  (31)

If a graph of charge Q is plotted (say for bW = 0.1) with respect to the parameter θ0, it is seen 
that a minimum value of ∣Q∣ occurs. Expressed in another way, the family of solutions bifur-
cates as ∣Q∣ is increased.

8. Coupling of the NKG equation to the electromagnetic field

Next, we want to couple the NKG equation to electromagnetism to obtain the nonlinear Klein-
Gordon-Maxwell (NKGM) system of equations, as has been done by Rosen [37], Morris [41], 
and others. Again it is important to express the coupling of the NKG equation to the electro-
magnetic field in terms of a variational principle so that the conservation laws of interest can 
be obtained from Noether’s theorem. Although Maxwell’s equations are usually expressed 
in terms of the quantities E, D, H, B, it turns out that, to get a suitable variational principle, 
we need to work instead with the scalar potential A0 and the vector potential A, which are 
defined in terms of the relations

  ∇ A  0   −   ∂ A ___ ∂ t   = E,     ∇ × A = B.  (32)
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If we look for a radially symmetric solution U(r), where r2 = x2 + y2 + z2, we note that

   ∇   2  U =   1 __ r     
 d   2  (rU)  _____ d  r   2     (21)
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     d   2 𝒰𝒰 ____ d r   2    +  ω   2  𝒰𝒰 −  W   ′  ( U   2 ) 𝒰𝒰 = 0,  (22)
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0
  )    for r > r0, where B is a constant and 
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  a =  √ 
___

  b  W       sin  θ  0  ,     b = −  √ 
___

  b  W     cos  θ  0  .  (25)

If we wish to have U take the value UW at r0, then

   B =   
 U  W    θ  0   _____ a  ,     A =   

 U  W    θ  0   ___________ a sin  θ  0  
  .  (26)

Collecting the above results, we have

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals120

  U =   𝒰𝒰 __ r   =   
 θ  0    U  W   sin  ( r ̂   sin  θ  0  )   _____________  r ̂    sin   2   θ  0  

    (27)

for    r ̂   ≤    r ̂    
0
    and
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Next, we want to couple the NKG equation to electromagnetism to obtain the nonlinear Klein-
Gordon-Maxwell (NKGM) system of equations, as has been done by Rosen [37], Morris [41], 
and others. Again it is important to express the coupling of the NKG equation to the electro-
magnetic field in terms of a variational principle so that the conservation laws of interest can 
be obtained from Noether’s theorem. Although Maxwell’s equations are usually expressed 
in terms of the quantities E, D, H, B, it turns out that, to get a suitable variational principle, 
we need to work instead with the scalar potential A0 and the vector potential A, which are 
defined in terms of the relations
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Here, the notation A0 is used for the scalar potential to emphasize that it can be thought of as 
the time component of a Lorentz 4-vector, while A = (A1, A2, A3) gives the three spatial compo-
nents. The gauge condition can then be taken in the form

    
∂  A  0   ____ ∂ t   − ∇ ∙ A = 0.  (33)

It should be noted that A0 = −Φ has the opposite sign from the symbol Φ that is often used to 
designate the scalar potential [42]. Eq. (4) can be coupled to the electromagnetic field in the 
usual gauge invariant way by replacing ∂/∂t by ∂/∂t − iA0 and by replacing ∇ by ∇ − iA, where  
i =  √ 

_________
 − 1    . The resulting equation for ψ is

   (  ∂ __ ∂ t   − i  A  0  )  (  ∂ __ ∂ t   − i  A  0  ) ψ −  (∇ − iA)  ∙  (∇ − iA)  ψ +  W   ′  (ψ ψ ¯¯  ) ψ = 0.  (34)

When oscillations of ψ are small so that   W   ′  (ψ ψ ¯¯  )   is effectively 1, we want Eq. (34) to reduce to 
the linear Klein-Gordon equation. In particular, for the example of the Coulomb field of a 
nucleus of atomic number Z, where A will be 0, we find that Eq. (34) reduces to

   (  ∂ __ ∂ t   − i  A  0  )  (  ∂ __ ∂ t   − i  A  0  ) ψ −  ∇   2  ψ + ψ = 0.  (35)

Then by comparison with Eq. (3), it is clear that a nucleus of atomic number Z should generate 
a potential well

   A  0   = −    
Z  α  fs   _________ r  .  (36)

The Lagrangian density for the electromagnetic field can be expressed in terms of A0 and A, 
as mentioned, but it involves a tensor quantity that is not convenient to express in terms of 
the usual vector notation. Details are given in [24]. When the equations for ψ, A0, and A are 
derived as Euler equations of a variational principle, as in [24], it turns out that A0 and A are 
to satisfy

    
 ∂   2   A  0   ____ ∂  t   2    −  ∇   2   A  0   =   i𝜓𝜓 __ 2     

∂  ψ ¯¯  
 ___ ∂ t   −   

i ψ ¯¯  
 __ 2     
∂ ψ

 ___ ∂ t   −  A  0   ψ ψ ¯¯    (37)

and

     ∂   2  A ____ ∂  t   2    −  ∇   2  A =   i𝜓𝜓 __ 2   ∇ ψ ¯¯   −   
i ψ ¯¯  

 __ 2   ∇ψ − Aψ ψ ¯¯  ,  (38)

respectively. Substantial work has been done regarding existence of solitons in the NKGM 
system [43–45], in some cases even with nonzero angular momentum [16]. Stability of soli-
tons in the NKGM system is a difficult subject, but some progress has been made [17, 21, 44], 
especially in the case of small coupling of the NKG equation to the electromagnetic field. The 
effect of an external field on a soliton has also been examined in the NKGM context by several 
authors [20, 46, 47].
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9. A model with interacting solitons

Recently, a model (call it Model One) has been proposed [24] in which a second NKG equation

    
 ∂   2  φ

 ___ ∂  t   2    −  ∇   2  φ +  M   2   W   ′  (  
φ φ ¯¯  

 ___  M   2   ) φ = 0,  (39)

is also coupled to the electromagnetic field, but scaled with the constant M so that solitons in 
the φ field can be thought of as protons, whereas solitons in the ψ field are to be regarded as 
electrons. It must be stated at the outset that Model One is a very primitive model that clearly 
does not represent the universe in which we live; nevertheless, as an example in applied 
mathematics it has interesting features that seem worth examining. Although Model One is 
purely classical in nature, we will show in Section 12 that it exhibits behavior suggestive of 
a phenomenon that is generally presumed to occur only in a quantum-mechanical context.

In addition to Eq. (34) for ψ, we now have an equation

   (  ∂ __ ∂ t   − i  A  0  )  (  ∂ __ ∂ t   − i  A  0  ) φ −  (∇ − iA)  ∙  (∇ − iA) φ +  M   2   W   ′  (  
φ φ ¯¯  

 ___  M   2   ) φ = 0  (40)

for  φ, and Eqs. (37) and (38) are to be replaced by

    
 ∂   2  A  0   ____ ∂  t   2    −  ∇   2  A  0   =   

iψ
 __ 2     
∂  ψ ¯¯  

 ___ ∂ t   −   
i ψ ¯¯  

 __ 2     
∂ ψ

 ___ ∂ t   −  A  0   ψ ψ ¯¯   +   
iφ

 __ 2     
∂ φ ¯¯   

 ___ ∂ t   −   
i φ ¯¯  

 __ 2     
∂ φ

 ___ ∂ t   −  A  0   φ φ ¯¯    (41)

and

     ∂   2 A ____ ∂  t   2    −  ∇   2 A =   
iψ

 __ 2   ∇ ψ ¯¯   −   
i ψ ¯¯  

 __ 2   ∇ψ − Aψ ψ ¯¯   +   
iφ

 __ 2   ∇ ϕ ¯¯   −   i ϕ ¯¯   __ 2   ∇φ − Aφ ϕ ¯¯  ,  (42)

respectively.

10. Electron-like solitons

Let us first investigate solutions of the system (34), (40)–(42) where ψ rotates in the complex 
plane and  φ = 0. Also, we will take the scalar field A0 to be constant in time and set A to zero, 
that is

   ψ = U (x, y, z)   e   i𝜔𝜔t ,    φ = 0,     A  0   = V (x, y, z) ,    A = 0,  (43)

where U and V are real-valued. Then, Eqs. (34) and (40)–(42) reduce to

   ∇   2  U +   (ω − V)    2  U −  W   ′  ( U   2 ) U = 0,  (44)

   ∇   2  V =  (− ω + V)   U   2 .  (45)
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Here, the notation A0 is used for the scalar potential to emphasize that it can be thought of as 
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nents. The gauge condition can then be taken in the form
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It should be noted that A0 = −Φ has the opposite sign from the symbol Φ that is often used to 
designate the scalar potential [42]. Eq. (4) can be coupled to the electromagnetic field in the 
usual gauge invariant way by replacing ∂/∂t by ∂/∂t − iA0 and by replacing ∇ by ∇ − iA, where  
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 − 1    . The resulting equation for ψ is
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When oscillations of ψ are small so that   W   ′  (ψ ψ ¯¯  )   is effectively 1, we want Eq. (34) to reduce to 
the linear Klein-Gordon equation. In particular, for the example of the Coulomb field of a 
nucleus of atomic number Z, where A will be 0, we find that Eq. (34) reduces to
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Then by comparison with Eq. (3), it is clear that a nucleus of atomic number Z should generate 
a potential well

   A  0   = −    
Z  α  fs   _________ r  .  (36)

The Lagrangian density for the electromagnetic field can be expressed in terms of A0 and A, 
as mentioned, but it involves a tensor quantity that is not convenient to express in terms of 
the usual vector notation. Details are given in [24]. When the equations for ψ, A0, and A are 
derived as Euler equations of a variational principle, as in [24], it turns out that A0 and A are 
to satisfy
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and
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 __ 2   ∇ψ − Aψ ψ ¯¯  ,  (38)

respectively. Substantial work has been done regarding existence of solitons in the NKGM 
system [43–45], in some cases even with nonzero angular momentum [16]. Stability of soli-
tons in the NKGM system is a difficult subject, but some progress has been made [17, 21, 44], 
especially in the case of small coupling of the NKG equation to the electromagnetic field. The 
effect of an external field on a soliton has also been examined in the NKGM context by several 
authors [20, 46, 47].
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9. A model with interacting solitons

Recently, a model (call it Model One) has been proposed [24] in which a second NKG equation
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Let us first investigate solutions of the system (34), (40)–(42) where ψ rotates in the complex 
plane and  φ = 0. Also, we will take the scalar field A0 to be constant in time and set A to zero, 
that is

   ψ = U (x, y, z)   e   i𝜔𝜔t ,    φ = 0,     A  0   = V (x, y, z) ,    A = 0,  (43)

where U and V are real-valued. Then, Eqs. (34) and (40)–(42) reduce to
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We want to find a soliton solution that satisfies both Eqs. (44) and (45) and can be thought of 
as an electron. Suppose that we start with a soliton solution for Eq. (18) of the kind that was 
previously discussed. We want the coupling to the electromagnetic field in Eqs. (44) and (45) 
to result in only a small change, so that U will still be spherically symmetric and localized, 
with U exponentially small for large r. The right-hand side of Eq. (45) is then nearly zero for 
large r, so the solution for V will be nearly proportional to 1/r for large r. If we can arrange for 
V to approach α fs /r for large r we see by comparison with Eq. (36) that the soliton will have one 
negative unit of elementary charge, so we can think of it as an electron-like soliton.

In the present NKGM context, it turns out Eq. (16) is to be replaced by

  Q = ∫  (  
i ψ ¯¯  

 __ 2     
∂ ψ

 ___ ∂ t   −   
iψ

 __ 2     
∂  ψ ¯¯  

 ___ ∂ t   + ψ ψ ¯¯    A  0  )   d   3  x  (46)

so for a solution of the form (43), the charge is now

  Q = ∫  (− ω + V)   U   2   d   3  x.  (47)

The divergence theorem together with Eq. (45) shows that for large r, where U is small, V is 
approximately −Q/(4πr), and so, by comparison with Eq. (36), Q = 4παfs corresponds to one 
unit of elementary charge. Positive ω in a solution of the form (43), which gives counterclock-
wise rotation in the complex plane, thus gives negative Q in agreement with the usual conven-
tion for electron charge. There will be a corresponding solution with negative ω and clockwise 
rotation which can then be thought of as a positron.

As mentioned in Section 4, there is a fundamental difficulty with the use of nontopological 
solitons as particle models. A whole family of soliton solutions typically exists, and the differ-
ent solutions will have various values of charge, as was illustrated in the example of Section 7. 
Thus, it is not yet clear whether a preferred solution occurs in practice that could be regarded 
as defining one unit of elementary charge. Morris [41] has made a suggestion in this regard, but 
it seems that the resolution of the question is beyond the scope of present research on models 
of this nature since it may well involve complex, possibly chaotic, interactions of many soli-
tons. A second problem is that the stability proofs currently available apply only in the limit of 
small coupling, so it is not clear whether orbital stability is achieved when the coupling is suf-
ficient to correspond to a meaningful physical case. Future research should resolve this ques-
tion, although perhaps in a somewhat nonrigorous manner based at least in part on numerical 
calculation. Despite these two difficulties let us assume for present purposes that a suitable 
orbitally stable solution of the form (43) is available which can then be thought of as an electron.

11. Proton-like solitons

Now let us look for solutions of the form

  ψ = 0,     φ =  U ~   (x, y, z)   e   −i  ω ~  t ,      A  0   =  V ~   (x, y, z) ,     A = 0,  (48)
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for real-valued functions    U ~    and    V ~   . Then    U ~    and    V ~    need to satisfy

   ∇   2  U ~   +   (  ω ~   +  V ~  )    
2
  U ~   −  M   2   W′     (    U ~     

2
  ___  M   2   )  U ~   = 0,    ∇   2  V ~   =  (  ω ~   +  V ~  )    U ~     

2
 .  (49)

If a solution U = f(r) and V = g(r) has been found for Eqs. (44) and (45) with a certain value of 
ω, then

   U ~   = M f (Mr) ,    V ~   = − M g (Mr)   (50)

gives a solution for Eq. (49) with    ω ~   = M𝜔𝜔 . We are now looking for a positively charged soliton, 
so we have purposely introduced the minus sign in the solution form (48) so as to obtain 
clockwise rotation in the complex plane but still allow    ω ~    to be taken as positive. The new 
solution has one positive unit of elementary charge, but its energy is larger by a factor of 
M than that of the electron-like soliton (43). We want to interpret a solution of the form (48) 
as a proton, so we will refer to φ as the proton field, and take M to be the appropriate value, 
approximately 1836, to give the desired mass ratio between the proton and electron.

Solitons in the electron field ψ and the proton field φ interact at a distance through the elec-
tromagnetic field. It turns out that, as desired, like charges repel and opposite charges attract, 
and the magnitude of the interaction agrees with Coulomb’s law to a good approximation 
when W satisfies an appropriate condition. Details are available in [24]. By contrast, some 
early attempts to investigate interaction of solitons [48, 49] led to obviously undesired results 
such as attraction of like charges.

12. An unexpected result of the model

Although Model One was set up from purely classical considerations to describe the dynami-
cal interaction of electron and proton-like solitons, a startling and perhaps unexpected result 
occurs. When small oscillations in the electron field occur in the vicinity of a proton-like soli-
ton, it turns out that, because of the nature of the coupling to the electromagnetic field, only 
the difference frequencies are radiated, and it will be seen that the radiation is just the familiar 
arc spectrum of hydrogen.

Because of the scaling (50) needed for Eq. (39), the spatial size of a proton-like soliton is much 
smaller (by a factor of 1836) than that of an electron-like soliton even though the magnitude 
of the charge is the same. Consequently, in the vicinity of a proton-like soliton, Eq. (36) with 
Z = 1 will be a good approximation, and the electric potential V will be nearly equal to −αfs /r 
except for very small values of r.

Now let us suppose that small oscillations are excited in the ψ field in the vicinity of a proton-
like soliton, so that various modes of oscillation occur. Since the oscillations are small, we can 
set W′(U2) = 1 and factor Eq. (44) to get

   ∇   2  U +  (ω − V − 1)  (ω − V + 1) U = 0,  (51)
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We want to find a soliton solution that satisfies both Eqs. (44) and (45) and can be thought of 
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large r, so the solution for V will be nearly proportional to 1/r for large r. If we can arrange for 
V to approach α fs /r for large r we see by comparison with Eq. (36) that the soliton will have one 
negative unit of elementary charge, so we can think of it as an electron-like soliton.

In the present NKGM context, it turns out Eq. (16) is to be replaced by

  Q = ∫  (  
i ψ ¯¯  

 __ 2     
∂ ψ

 ___ ∂ t   −   
iψ

 __ 2     
∂  ψ ¯¯  

 ___ ∂ t   + ψ ψ ¯¯    A  0  )   d   3  x  (46)

so for a solution of the form (43), the charge is now

  Q = ∫  (− ω + V)   U   2   d   3  x.  (47)
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ent solutions will have various values of charge, as was illustrated in the example of Section 7. 
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  ψ = 0,     φ =  U ~   (x, y, z)   e   −i  ω ~  t ,      A  0   =  V ~   (x, y, z) ,     A = 0,  (48)
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for real-valued functions    U ~    and    V ~   . Then    U ~    and    V ~    need to satisfy
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2
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2
 .  (49)
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so we have purposely introduced the minus sign in the solution form (48) so as to obtain 
clockwise rotation in the complex plane but still allow    ω ~    to be taken as positive. The new 
solution has one positive unit of elementary charge, but its energy is larger by a factor of 
M than that of the electron-like soliton (43). We want to interpret a solution of the form (48) 
as a proton, so we will refer to φ as the proton field, and take M to be the appropriate value, 
approximately 1836, to give the desired mass ratio between the proton and electron.

Solitons in the electron field ψ and the proton field φ interact at a distance through the elec-
tromagnetic field. It turns out that, as desired, like charges repel and opposite charges attract, 
and the magnitude of the interaction agrees with Coulomb’s law to a good approximation 
when W satisfies an appropriate condition. Details are available in [24]. By contrast, some 
early attempts to investigate interaction of solitons [48, 49] led to obviously undesired results 
such as attraction of like charges.

12. An unexpected result of the model

Although Model One was set up from purely classical considerations to describe the dynami-
cal interaction of electron and proton-like solitons, a startling and perhaps unexpected result 
occurs. When small oscillations in the electron field occur in the vicinity of a proton-like soli-
ton, it turns out that, because of the nature of the coupling to the electromagnetic field, only 
the difference frequencies are radiated, and it will be seen that the radiation is just the familiar 
arc spectrum of hydrogen.

Because of the scaling (50) needed for Eq. (39), the spatial size of a proton-like soliton is much 
smaller (by a factor of 1836) than that of an electron-like soliton even though the magnitude 
of the charge is the same. Consequently, in the vicinity of a proton-like soliton, Eq. (36) with 
Z = 1 will be a good approximation, and the electric potential V will be nearly equal to −αfs /r 
except for very small values of r.

Now let us suppose that small oscillations are excited in the ψ field in the vicinity of a proton-
like soliton, so that various modes of oscillation occur. Since the oscillations are small, we can 
set W′(U2) = 1 and factor Eq. (44) to get
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Interaction of Solitons with the Electromagnetic Field in Classical Nonlinear Field Models
http://dx.doi.org/10.5772/intechopen.71215

125



where V now represents the potential well caused by the φ field of the proton-like soliton. 
Any contribution to the V field caused by the ψ field can be neglected if the oscillations in the 
ψ field are sufficiently small. Let us suppose that ∣V∣ is typically much smaller than 1 and that 
ω is near to 1. Then, we can approximate ω − V + 1 as 2 in the Klein-Gordon Eq. (51) to obtain 
the usual Schrödinger equation approximation:

  −   1 __ 2    ∇   2  U + VU =  (ω − 1) U.  (52)

Here, V describes a potential well, but the quantity ω − 1 is related to an actual oscillation fre-
quency ω, which is unlike the traditional use of Schrödinger’s equation, where the right-hand 
side of the equation is regarded as related to an energy.

The main point of interest here is that solutions of the soliton equations lead in a natural way 
to Eq. (52), which of course results in frequencies of the hydrogen spectrum. For the V =  − αfs /r 
potential well of a proton-like soliton, it is then straightforward to solve Eq. (52) according to the 
well-known solution of Schrödinger’s equation for a hydrogen atom [50]. Eigenfunctions occur 
in the form

   U = R (r)   P  l  m  (cos θ)  (cos  (m𝜑𝜑)  + sin  (m𝜑𝜑) ) ,  (53)

where the spherical harmonics are written here in terms of the associated Legendre polynomi-
als   P  

l
  m   and the usual spherical coordinates θ and  𝜑𝜑 . In Eq. (53), the usual factor eim 𝜑𝜑  has been 

replaced by sinusoids since a real-valued formulation for U is desired. A real-valued solution 
for the radial function R(r) can be obtained in the standard way. The corresponding frequen-
cies are

   ω = 1 −   
 α  fs  2  

 ___ 2  n   2   ,   n = 1, 2, … ,  (54)

with l = 0, 1, …, n − 1 and m =  − l, …, l.

When small oscillations in the electron field ψ are allowed in the vicinity of a proton-like 
soliton, the overall solution (48) will be slightly changed, so we need to investigate how the 
electron field source terms

   S  0   =   
iψ

 __ 2     
∂  ψ ¯¯  

 ___ ∂ t   −   
i ψ ¯¯  

 __ 2     
∂ ψ

 ___ ∂ t   −  A  0   ψ ψ ¯¯    (55)

and

  S =   
iψ

 __ 2   ∇ ψ ¯¯   −   
i ψ ¯¯  

 __ 2   ∇ψ − Aψ ψ ¯¯    (56)

in Eqs. (41) and (42) affect the electromagnetic field A0, A. First, let us try ψ = U(x, y, z)eiωt, where 
U is a solution of the form (53) and ω is the corresponding frequency given by Eq. (54). Since 
the oscillation is to be small, we will assume that an appropriate small constant is absorbed in 
R(r). Substitution in Eqs. (55) and (56) shows that S0 = (ω − V)U2 and S = 0. Since the time depen-
dence has canceled out, we conclude that no radiation into the electromagnetic field occurs 
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when the ψ field is restricted to a single mode of oscillation. The nonzero value of S0 causes 
a change in the static V potential field, but the change in the potential well is small since the 
ψ oscillation is taken as small (in the evaluation of Eqs. (55) and (56) for present purposes, we 
have used the original values of A0 and A from the proton solution (48) since any change in A0 
and A caused by the ψ oscillation will be of higher order).

Next, let us consider the case where small oscillations occur in two different modes in the ψ 
field, so that

  ψ = U (x, y, z)   e   i𝜔𝜔t  +  U ̂   (x, y, z)   e   i ω ̂  t .  (57)

Substitution in Eqs. (55) and (56) shows

   S  0   =  (ω − V)   U   2  +  ( ω ̂   − V)    U ̂     
2
  +  (ω +  ω ̂   − 2V)  U U ̂   cos  (ω −  ω ̂  ) t,  (58)

  S =  ( U ̂   ∇U − U ∇ U ̂  )  sin  (ω −  ω ̂  ) t.  (59)

Since S0 and S are now time-varying it is clear that radiation into the electromagnetic field is 
a possibility, but from the form of the sine and cosine terms it turns out that the radiation can 
only occur at the difference frequency  ω −  ω ̂   .

It should be noted that charge is not necessarily quantized in Model One, and that the small 
oscillations in the ψ field indeed represent a small amount of charge. In this example, the 
V field is not to be noticeably changed from that of the proton-like soliton, however, so the 
small oscillations in the ψ field must correspond to only a minuscule amount of charge, much 
less than one elementary charge. Then, Eqs. (41) and (42) are to be solved using the source 
terms (55), (56) in the form (58), (59). Since charge cannot be radiated into the electromagnetic 
field, small amounts of charge must be transferred between the trapped modes in the ψ field, 
and the charge must go to those modes in which the ratio of energy to charge is smaller. It is 
expected that there will be a selection rule since the two modes in question will not effectively 
radiate into the electromagnetic field in some cases because of their relative symmetry.

Thus, we find in Model One that radiation is emitted into the electromagnetic field when 
small oscillations in the ψ field occur in the potential well created by a proton-like soliton. 
That radiation turns out to be the well-known spectrum of hydrogen, namely, difference fre-
quencies of the form  ω −  ω ̂   , where ω and   ω ̂    are given by Eq. (54) with different values of n.

13. Interpretation and summary

Although Model One, Eqs. (34) and (40)–(42), was set up to let solitons mimic the dynami-
cal behavior of electrons and protons, it turns out that small oscillations of the electron field 
ψ in the vicinity of a proton-like soliton have modes of oscillation that correspond to the 
various terms in the Grotrian diagram for hydrogen. Thus, a quantum-like phenomenon 
automatically occurs even though the model is of a purely classical nature. It has seemed 
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where V now represents the potential well caused by the φ field of the proton-like soliton. 
Any contribution to the V field caused by the ψ field can be neglected if the oscillations in the 
ψ field are sufficiently small. Let us suppose that ∣V∣ is typically much smaller than 1 and that 
ω is near to 1. Then, we can approximate ω − V + 1 as 2 in the Klein-Gordon Eq. (51) to obtain 
the usual Schrödinger equation approximation:

  −   1 __ 2    ∇   2  U + VU =  (ω − 1) U.  (52)

Here, V describes a potential well, but the quantity ω − 1 is related to an actual oscillation fre-
quency ω, which is unlike the traditional use of Schrödinger’s equation, where the right-hand 
side of the equation is regarded as related to an energy.

The main point of interest here is that solutions of the soliton equations lead in a natural way 
to Eq. (52), which of course results in frequencies of the hydrogen spectrum. For the V =  − αfs /r 
potential well of a proton-like soliton, it is then straightforward to solve Eq. (52) according to the 
well-known solution of Schrödinger’s equation for a hydrogen atom [50]. Eigenfunctions occur 
in the form

   U = R (r)   P  l  m  (cos θ)  (cos  (m𝜑𝜑)  + sin  (m𝜑𝜑) ) ,  (53)

where the spherical harmonics are written here in terms of the associated Legendre polynomi-
als   P  

l
  m   and the usual spherical coordinates θ and  𝜑𝜑 . In Eq. (53), the usual factor eim 𝜑𝜑  has been 

replaced by sinusoids since a real-valued formulation for U is desired. A real-valued solution 
for the radial function R(r) can be obtained in the standard way. The corresponding frequen-
cies are

   ω = 1 −   
 α  fs  2  

 ___ 2  n   2   ,   n = 1, 2, … ,  (54)

with l = 0, 1, …, n − 1 and m =  − l, …, l.

When small oscillations in the electron field ψ are allowed in the vicinity of a proton-like 
soliton, the overall solution (48) will be slightly changed, so we need to investigate how the 
electron field source terms
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iψ

 __ 2     
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i ψ ¯¯  
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∂ ψ
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in Eqs. (41) and (42) affect the electromagnetic field A0, A. First, let us try ψ = U(x, y, z)eiωt, where 
U is a solution of the form (53) and ω is the corresponding frequency given by Eq. (54). Since 
the oscillation is to be small, we will assume that an appropriate small constant is absorbed in 
R(r). Substitution in Eqs. (55) and (56) shows that S0 = (ω − V)U2 and S = 0. Since the time depen-
dence has canceled out, we conclude that no radiation into the electromagnetic field occurs 
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when the ψ field is restricted to a single mode of oscillation. The nonzero value of S0 causes 
a change in the static V potential field, but the change in the potential well is small since the 
ψ oscillation is taken as small (in the evaluation of Eqs. (55) and (56) for present purposes, we 
have used the original values of A0 and A from the proton solution (48) since any change in A0 
and A caused by the ψ oscillation will be of higher order).

Next, let us consider the case where small oscillations occur in two different modes in the ψ 
field, so that

  ψ = U (x, y, z)   e   i𝜔𝜔t  +  U ̂   (x, y, z)   e   i ω ̂  t .  (57)

Substitution in Eqs. (55) and (56) shows

   S  0   =  (ω − V)   U   2  +  ( ω ̂   − V)    U ̂     
2
  +  (ω +  ω ̂   − 2V)  U U ̂   cos  (ω −  ω ̂  ) t,  (58)

  S =  ( U ̂   ∇U − U ∇ U ̂  )  sin  (ω −  ω ̂  ) t.  (59)

Since S0 and S are now time-varying it is clear that radiation into the electromagnetic field is 
a possibility, but from the form of the sine and cosine terms it turns out that the radiation can 
only occur at the difference frequency  ω −  ω ̂   .

It should be noted that charge is not necessarily quantized in Model One, and that the small 
oscillations in the ψ field indeed represent a small amount of charge. In this example, the 
V field is not to be noticeably changed from that of the proton-like soliton, however, so the 
small oscillations in the ψ field must correspond to only a minuscule amount of charge, much 
less than one elementary charge. Then, Eqs. (41) and (42) are to be solved using the source 
terms (55), (56) in the form (58), (59). Since charge cannot be radiated into the electromagnetic 
field, small amounts of charge must be transferred between the trapped modes in the ψ field, 
and the charge must go to those modes in which the ratio of energy to charge is smaller. It is 
expected that there will be a selection rule since the two modes in question will not effectively 
radiate into the electromagnetic field in some cases because of their relative symmetry.

Thus, we find in Model One that radiation is emitted into the electromagnetic field when 
small oscillations in the ψ field occur in the potential well created by a proton-like soliton. 
That radiation turns out to be the well-known spectrum of hydrogen, namely, difference fre-
quencies of the form  ω −  ω ̂   , where ω and   ω ̂    are given by Eq. (54) with different values of n.

13. Interpretation and summary

Although Model One, Eqs. (34) and (40)–(42), was set up to let solitons mimic the dynami-
cal behavior of electrons and protons, it turns out that small oscillations of the electron field 
ψ in the vicinity of a proton-like soliton have modes of oscillation that correspond to the 
various terms in the Grotrian diagram for hydrogen. Thus, a quantum-like phenomenon 
automatically occurs even though the model is of a purely classical nature. It has seemed 
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in the past that such a result was beyond the realm of a possible classical model since 
physical oscillation of a charge would presumably radiate away energy at the actual oscil-
lation frequency, whereas only difference frequencies are in fact observed in the hydrogen 
spectrum.

Here, it should be noted that three circumstances intrinsic to Model One contribute to allow 
this quantum-like result to occur. First, the standard, i.e., gauge invariant, coupling of the 
ψ and φ fields to the electromagnetic field dictates that the electric potential created by the 
proton-like soliton is experienced by the ψ field as a potential well that allows trapped oscil-
lations. Secondly, the great difference in scale (by a factor of 1836) needed in Eq. (50) assures 
that the ψ field automatically experiences almost a pure V =  − αfs /r potential well, which leads 
to frequencies that correspond to the well-known terms in the Grotrian diagram for hydro-
gen. Finally, standard coupling of the ψ field to the electromagnetic field again automatically 
implies that only the difference frequencies are radiated.

The emission of the hydrogen spectrum in Model One has some interesting aspects but it 
occurs in an unexpected context. When oscillations of the ψ field occur in the vicinity of a 
proton-like soliton, only small oscillations are allowed or the V =  − αfs /r potential well created 
by the proton-like soliton would be substantially changed and the spectrum typical of hydro-
gen would not be observed. Thus, in the situation in question, an electron-like soliton need 
not, indeed must not, be in the vicinity at all. When we investigate Model One, then, whether 
we like it or not, within that model the hydrogen spectrum is emitted from the vicinity of 
an isolated proton-like soliton. In other words, in Model One, the hydrogen arc spectrum is 
emitted from the equivalent of a hydrogen ion rather than a neutral hydrogen atom, which 
is in startling contrast to the accepted understanding of the actual physical phenomenon. It 
remains to be seen whether such a result might have any possible physical significance, but it 
seems of interest, nevertheless, to see how a purely classical model can behave in a way sug-
gestive of a quantum mechanical phenomenon.

Relativistic effects have not been considered in the above treatment of Model One since it is 
well-known that the Klein-Gordon equation gives wrong answers for fine-structure correc-
tions, especially those that involve the anomalous Zeeman effect. It is contemplated that the 
NKG equations might be replaced with nonlinear Dirac equations in a more advanced Model 
Two. Such a model will be comparatively difficult to examine, however, so it seems that fur-
ther study of Model One will still be of interest.
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in the past that such a result was beyond the realm of a possible classical model since 
physical oscillation of a charge would presumably radiate away energy at the actual oscil-
lation frequency, whereas only difference frequencies are in fact observed in the hydrogen 
spectrum.

Here, it should be noted that three circumstances intrinsic to Model One contribute to allow 
this quantum-like result to occur. First, the standard, i.e., gauge invariant, coupling of the 
ψ and φ fields to the electromagnetic field dictates that the electric potential created by the 
proton-like soliton is experienced by the ψ field as a potential well that allows trapped oscil-
lations. Secondly, the great difference in scale (by a factor of 1836) needed in Eq. (50) assures 
that the ψ field automatically experiences almost a pure V =  − αfs /r potential well, which leads 
to frequencies that correspond to the well-known terms in the Grotrian diagram for hydro-
gen. Finally, standard coupling of the ψ field to the electromagnetic field again automatically 
implies that only the difference frequencies are radiated.

The emission of the hydrogen spectrum in Model One has some interesting aspects but it 
occurs in an unexpected context. When oscillations of the ψ field occur in the vicinity of a 
proton-like soliton, only small oscillations are allowed or the V =  − αfs /r potential well created 
by the proton-like soliton would be substantially changed and the spectrum typical of hydro-
gen would not be observed. Thus, in the situation in question, an electron-like soliton need 
not, indeed must not, be in the vicinity at all. When we investigate Model One, then, whether 
we like it or not, within that model the hydrogen spectrum is emitted from the vicinity of 
an isolated proton-like soliton. In other words, in Model One, the hydrogen arc spectrum is 
emitted from the equivalent of a hydrogen ion rather than a neutral hydrogen atom, which 
is in startling contrast to the accepted understanding of the actual physical phenomenon. It 
remains to be seen whether such a result might have any possible physical significance, but it 
seems of interest, nevertheless, to see how a purely classical model can behave in a way sug-
gestive of a quantum mechanical phenomenon.

Relativistic effects have not been considered in the above treatment of Model One since it is 
well-known that the Klein-Gordon equation gives wrong answers for fine-structure correc-
tions, especially those that involve the anomalous Zeeman effect. It is contemplated that the 
NKG equations might be replaced with nonlinear Dirac equations in a more advanced Model 
Two. Such a model will be comparatively difficult to examine, however, so it seems that fur-
ther study of Model One will still be of interest.
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1. Introduction

We consider the problem of propagation and interaction of soliton-type solutions of nonlin-
ear equations. Our basic example is the nonhomogeneous version of the generalized KdV 
equation
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where μ ∈ (1, 5), ε ≪ 1, f(u, z) is a known smooth function such that f(0, 0) = 0. Note that the 
restriction on μ implies both the soliton-type solution and the stability of the equation with 
respect to initial data (see, for example [1, 2]).

In the special case f ≡ 0 and μ = 2 (μ = 3), Eq. (1) is the famous KdV (modified KdV) equation. 
It is well known that KdV (mKdV) solitons are stable and interact in the elastic manner: after 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 8

A Perturbation Theory for Nonintegrable Equations
with Small Dispersion

Georgy Omel’yanov

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71030

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

DOI: 10.5772/intechopen.71030

A Perturbation Theory for Nonintegrable Equations 
with Small Dispersion

Georgy Omel’yanov

Additional information is available at the end of the chapter

Abstract

We describe an approach called the “weak asymptotics method” to construct multisoliton 
asymptotic solutions for essentially nonintegrable equations with small dispersion. This 
paper contains a detailed review of the method and a perturbation theory to describe the 
interaction of distorted solitons for equations with small perturbations. All constructions 
have been realized for the gKdV equation with the nonlinearity uμ, μ ∈ (1, 5).

Keywords: generalized Korteweg-de Vries equation, soliton, interaction, perturbation, 
weak asymptotics method 
  
2010 Mathematics Subject Classification: 35D30, 35Q53, 46F10

1. Introduction

We consider the problem of propagation and interaction of soliton-type solutions of nonlin-
ear equations. Our basic example is the nonhomogeneous version of the generalized KdV 
equation

    ∂ u ___ ∂ t   +   ∂  u   μ  ___ ∂ x   +  ε   2     ∂   3  u ___ ∂  x   3    = f  (u, ε   ∂ u ___ ∂ x  ) , x ∈  R   1 , t > 0,  (1)

where μ ∈ (1, 5), ε ≪ 1, f(u, z) is a known smooth function such that f(0, 0) = 0. Note that the 
restriction on μ implies both the soliton-type solution and the stability of the equation with 
respect to initial data (see, for example [1, 2]).

In the special case f ≡ 0 and μ = 2 (μ = 3), Eq. (1) is the famous KdV (modified KdV) equation. 
It is well known that KdV (mKdV) solitons are stable and interact in the elastic manner: after 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



the collision, they preserve the original amplitudes and velocities shifting the trajectories only 
(see [3] and other bibliographies devoted to the inverse scattering transform (IST) method). In 
the case of μ = 2 (μ = 3) but with f ≠ 0, Eq. (1) is a nonintegrable one. However, using the small-
ness of ε (or of f for other scaling), it is possible to create a perturbation theory that describes 
the evolution of distorted solitons (see the approaches by Karpman and E. Maslov [4] and 
Kaup and Newell [5] on the basis of the IST method, and the “direct” method by V. Maslov 
and Omel’yanov [6]). Moreover, the approach by V. Maslov and Omel’yanov [6] can be easily 
extended to essentially nonintegrable equations (μ ≠ 2, 3), but for a single soliton only. In fact, 
it is impossible to use any direct method in the classical sense for the general problem of the 
wave interaction. To explain this proposition, let us consider the homogeneous gKdV equation

    ∂ u ___ ∂ t   +   ∂  u   μ  ___ ∂ x   +  ε   2     ∂   3  u ___ ∂  x   3    = 0, x ∈  R   1 , t > 0.  (2)

It is easy to find the explicit soliton solution of (2),

  u (x, t, ε)  = A𝜔𝜔 (β (x − Vt)  / ε) , ω (η)  =  cosh   −γ  (η / γ) ,  (3)

  γ = 2 /  (μ − 1) , V =  β   2 ,  A   μ−1  = V (μ + 1)  / 2.  (4)

Next let us consider two-soliton initial data

    u|   t=0   =  ∑ 
i=1

  
2
     A  i   ω ( β  i   (x −  x   (i,0)   )  / ε) ,  (5)

where x(1, 0) > x(2, 0) and A2 > A1. Obviously, since (x(2, 0) − x(1, 0))/ε → ∞ as ε → 0, the sum of the 
waves (3)

  u =  ∑ 
i=1

  
2
     A  i   ω ( β  i   (x −  V  i   t −  x   (i,0)   )  / ε)   (6)

approximates the problem (2), (5) solution with the precision O(ε∞) but for t ≪ 1 only. 
Conversely, the sum (6) does not satisfy the gKdV equation for t ∼ O(1) in view of the trajec-
tories x = Vit + x(i, 0) intersection at a point (x*, t*).

Let us consider shortly how it is possible to analyze the problem (2), (5). There are some 
 different cases:

1. Let A1 ≪ A2. Then, one can construct an asymptotic solution

  u = W ( (x −  ϕ  2   (t) )  / ε, t, x, ε, ν) ,  (7)

where ν = A1/A2 ≪ 1 and W((x − ϕ2(t))/ε, t, x, ε, ν) = A2ω(β2(x − V2t − x(2, 0))/ε) + O(ν + ε). Thus, to 
find the leading term of the asymptotics, we obtain an equation with nonlinear ordinary dif-
ferential operator; whereas to construct the corrections, it is enough to analyze the lineariza-
tion of this operator. This construction (with a little bit of other viewpoints) has been realized 
by Ostrovsky et al. [7].

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals134

2. Let A2 − A1 ≪ 1. We write again the ansatz in the form (7), where ν = A2 − A1 ≪ 1 now, and 
we assume ν/ε ≪ 1. In fact, this case coincides with the problem considered in [7].

3. The amplitudes A2 > A1 are arbitrary numbers. Then, we should write a two-phase ansatz

  u (x, t, ε)  = W ( (x −  ϕ  1   (t) )  / ε,  (x −  ϕ  2   (t) )  / ε, t, x, ε)   (8)

without any additional parameter. Substituting (8) into equation (2), we obtain for the leading 
term W0(τ1, τ2, t):

   A ̂   W  0   +  B ̂   W  0  μ  +   B ̂     
3
  W  0   = 0,  A  ̂   = −  ∑ 

i=1
  

2
      ϕ   ̇    i     

∂ ___ ∂  τ  i  
  ,  B ̂   =  ∑ 

i=1
  

2
      ∂ ___ ∂  τ  i  

  .  (9)

Since    ϕ   ̇    
1
   ≠   ϕ   ̇    

2
   , we can pass to new variables,  η =  ( τ  

1
   −  τ  

2
  )  /  (  ϕ   ̇    

2
   −   ϕ   ̇    

1
  )  ,  ζ =  (  ϕ   ̇    

1
    τ  

2
   −   ϕ   ̇    

2
    τ  

1
  )  /  (  ϕ   ̇    

1
   −   ϕ   ̇    

2
  )  , and trans-

form equation (9) to the gKdV form (2) again

    
∂  W  0   ____ ∂ η   +   

∂  W  0  μ 
 ____ ∂ ζ   +   

 ∂   3   W  0   _____ ∂  ζ   3    = 0.  (10)

Therefore, to construct two-phase asymptotics, we should solve (10) explicitly what is impos-
sible for any essentially nonintegrable case.

This difficulty can be overcome by using the weak asymptotics method. The main point here is 
that solitons tend to distributions as ε → 0. Thus, it is possible to pass to the weak description 
of the problem, ignore the actual shape of the multiwave solutions, and find only the main 
solution characteristics, that is, the time dynamics of wave amplitudes and velocities. The 
weak asymptotics method has been proposed at first for shock wave type solutions [8] and for 
soliton-type solutions [9] many years ago. Further generalizations, modifications, and adap-
tations to other problems can be found in publications by M. Colombeau, Danilov, Mitrovic, 
Omel’yanov, Shelkovich, and others, see, for example, [10–20] and references therein.

The contents of the paper are the following: in Section 2, we present a detailed survey of the 
weak asymptotics method application to the problem of multisoliton asymptotics and Section 3  
contains new results, namely a perturbation theory to describe the evolution and collision of 
distorted solitons for equation (1).

2. Weak asymptotics method

2.1. Main definitions

Let us associate equation (2) with first two conservation laws written in the differential form:

    
∂  Q  j   ___ ∂ t   +   

∂  P  j   ___ ∂ x   =  ε   2    
 ∂   3   R  j   ____ ∂  x   3   , j = 1, 2,  (11)

   Q  1   = u,  P  1   =  u   μ ,  Q  2   =  u   2 ,  P  2   = 2μ  u   μ+1  /  (μ + 1)  − 3   (ε  u  x  )    2 ,  (12)

and R1 = u, R2 = u2. Next, we define smallness in the weak sense:
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it is impossible to use any direct method in the classical sense for the general problem of the 
wave interaction. To explain this proposition, let us consider the homogeneous gKdV equation

    ∂ u ___ ∂ t   +   ∂  u   μ  ___ ∂ x   +  ε   2     ∂   3  u ___ ∂  x   3    = 0, x ∈  R   1 , t > 0.  (2)

It is easy to find the explicit soliton solution of (2),

  u (x, t, ε)  = A𝜔𝜔 (β (x − Vt)  / ε) , ω (η)  =  cosh   −γ  (η / γ) ,  (3)

  γ = 2 /  (μ − 1) , V =  β   2 ,  A   μ−1  = V (μ + 1)  / 2.  (4)

Next let us consider two-soliton initial data

    u|   t=0   =  ∑ 
i=1

  
2
     A  i   ω ( β  i   (x −  x   (i,0)   )  / ε) ,  (5)

where x(1, 0) > x(2, 0) and A2 > A1. Obviously, since (x(2, 0) − x(1, 0))/ε → ∞ as ε → 0, the sum of the 
waves (3)

  u =  ∑ 
i=1

  
2
     A  i   ω ( β  i   (x −  V  i   t −  x   (i,0)   )  / ε)   (6)

approximates the problem (2), (5) solution with the precision O(ε∞) but for t ≪ 1 only. 
Conversely, the sum (6) does not satisfy the gKdV equation for t ∼ O(1) in view of the trajec-
tories x = Vit + x(i, 0) intersection at a point (x*, t*).

Let us consider shortly how it is possible to analyze the problem (2), (5). There are some 
 different cases:

1. Let A1 ≪ A2. Then, one can construct an asymptotic solution

  u = W ( (x −  ϕ  2   (t) )  / ε, t, x, ε, ν) ,  (7)

where ν = A1/A2 ≪ 1 and W((x − ϕ2(t))/ε, t, x, ε, ν) = A2ω(β2(x − V2t − x(2, 0))/ε) + O(ν + ε). Thus, to 
find the leading term of the asymptotics, we obtain an equation with nonlinear ordinary dif-
ferential operator; whereas to construct the corrections, it is enough to analyze the lineariza-
tion of this operator. This construction (with a little bit of other viewpoints) has been realized 
by Ostrovsky et al. [7].
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2. Let A2 − A1 ≪ 1. We write again the ansatz in the form (7), where ν = A2 − A1 ≪ 1 now, and 
we assume ν/ε ≪ 1. In fact, this case coincides with the problem considered in [7].

3. The amplitudes A2 > A1 are arbitrary numbers. Then, we should write a two-phase ansatz

  u (x, t, ε)  = W ( (x −  ϕ  1   (t) )  / ε,  (x −  ϕ  2   (t) )  / ε, t, x, ε)   (8)

without any additional parameter. Substituting (8) into equation (2), we obtain for the leading 
term W0(τ1, τ2, t):

   A ̂   W  0   +  B ̂   W  0  μ  +   B ̂     
3
  W  0   = 0,  A  ̂   = −  ∑ 

i=1
  

2
      ϕ   ̇    i     

∂ ___ ∂  τ  i  
  ,  B ̂   =  ∑ 

i=1
  

2
      ∂ ___ ∂  τ  i  

  .  (9)

Since    ϕ   ̇    
1
   ≠   ϕ   ̇    

2
   , we can pass to new variables,  η =  ( τ  

1
   −  τ  

2
  )  /  (  ϕ   ̇    

2
   −   ϕ   ̇    

1
  )  ,  ζ =  (  ϕ   ̇    

1
    τ  

2
   −   ϕ   ̇    

2
    τ  

1
  )  /  (  ϕ   ̇    

1
   −   ϕ   ̇    

2
  )  , and trans-

form equation (9) to the gKdV form (2) again

    
∂  W  0   ____ ∂ η   +   

∂  W  0  μ 
 ____ ∂ ζ   +   

 ∂   3   W  0   _____ ∂  ζ   3    = 0.  (10)

Therefore, to construct two-phase asymptotics, we should solve (10) explicitly what is impos-
sible for any essentially nonintegrable case.

This difficulty can be overcome by using the weak asymptotics method. The main point here is 
that solitons tend to distributions as ε → 0. Thus, it is possible to pass to the weak description 
of the problem, ignore the actual shape of the multiwave solutions, and find only the main 
solution characteristics, that is, the time dynamics of wave amplitudes and velocities. The 
weak asymptotics method has been proposed at first for shock wave type solutions [8] and for 
soliton-type solutions [9] many years ago. Further generalizations, modifications, and adap-
tations to other problems can be found in publications by M. Colombeau, Danilov, Mitrovic, 
Omel’yanov, Shelkovich, and others, see, for example, [10–20] and references therein.

The contents of the paper are the following: in Section 2, we present a detailed survey of the 
weak asymptotics method application to the problem of multisoliton asymptotics and Section 3  
contains new results, namely a perturbation theory to describe the evolution and collision of 
distorted solitons for equation (1).

2. Weak asymptotics method

2.1. Main definitions

Let us associate equation (2) with first two conservation laws written in the differential form:

    
∂  Q  j   ___ ∂ t   +   

∂  P  j   ___ ∂ x   =  ε   2    
 ∂   3   R  j   ____ ∂  x   3   , j = 1, 2,  (11)

   Q  1   = u,  P  1   =  u   μ ,  Q  2   =  u   2 ,  P  2   = 2μ  u   μ+1  /  (μ + 1)  − 3   (ε  u  x  )    2 ,  (12)

and R1 = u, R2 = u2. Next, we define smallness in the weak sense:
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Definition 1. A function v(t, x, ε) is said to be of the value   O  
𝒟𝒟'

   ( ε   ϰ )   if the relation   ∫ 
−∞

  ∞    v (t, x, ε) Ψ (x) dx = O ( ε   ϰ )    
holds uniformly in t for any test function  Ψ ∈ 𝒟𝒟 ( ℝ  

x
  1 )  . The right-hand side here is a   𝒞𝒞   ∞  -function for 

ε = const > 0 and a piecewise continuous function uniformly in ε ≥ 0.

Following [9, 17, 18], we define two-soliton weak asymptotics:

Definition 2. A sequence u(t, x, ε), belonging to   𝒞𝒞   ∞  (0, T;  𝒞𝒞   ∞  ( ℝ  
x
  1 ) )   for ε = const > 0 and belonging to  𝒞𝒞 

(0, T;  𝒟𝒟   '  ( ℝ  
x
  1 ) )   uniformly in ε, is called a weak asymptotic mod   O  

𝒟𝒟'
   ( ε   2 )   solution of (2) if the relations (11) 

hold uniformly in t with the accuracy   O  
𝒟𝒟'

   ( ε   2 )  .

Let us consider the interaction of two solitary waves for the model (2) with the initial data (5).

Following [9, 17, 18] again, we write the asymptotic ansatz in the form:

  u =  ∑ 
i=1

  
2
     G  i   (τ) ω ( β  i   (x −  ϕ  i   (t, τ, ε) )  / ε) ,  G  i   (τ)  =  A  i   +  S  i   (τ) .  (13)

Here ϕi = ϕi0(t) + εϕi1(τ), where ϕi0 = Vit + x(i, 0) are the trajectories of noninteracting solitary 
waves, τ = ψ0(t)/ε denotes the “fast time”, ψ0(t) = β1(ϕ20(t) − ϕ10(t)), and the phase and ampli-
tude corrections ϕi1, Si are smooth functions such that with exponential rates

   ϕ  i1   (τ)  → 0 as τ → − ∞,  ϕ  i1   (τ)  →  ϕ  i1  ∞  =  const  i   as τ → +∞,  (14)

   S  i   (τ)  → 0 as τ → ±∞.  (15)

2.2. Two-wave asymptotic construction

To construct the asymptotics, we should calculate the weak expansions of the terms from the 
left-hand sides of the relations (11). It is easy to check that

  u = ε  ∑ 
i=1

  
2
     a  1     

 G  i   __  β  i  
   δ (x −  ϕ  i  )  +  O  𝒟𝒟'   ( ε   3 ) ,  (16)

where δ(x) is the Dirac delta-function. Here and in what follows, we use the notation

   a  k     =   def   ∫ −∞   ∞       (ω (η) )    k  d𝜂𝜂, k > 0,  a  2  ′     =   def   ∫ −∞  ∞     ( ω   ′  (η) )    2  d𝜂𝜂.  (17)

At the same time for any F(u, ε∂u/∂x) ∈ C1, we have

     

 ∫ −∞  ∞    F ( ∑ 
i=1

  
2
     G  i   ω ( β  i     

x −  ϕ  i   ____ ε  ) ,  ∑ 
i=1

  
2
     β  i    G  i    ω   ′  ( β  i     

x −  ϕ  i   ____ ε  ) ) ψ (x) dx

      
= ε  ∑ 

i=1
  

2
      1 __  β  i  

    ∫ −∞  ∞    F ( A  i   ω (η) ,  β  i    A  i    ω   ′  (η) ) ψ ( ϕ  i   + ε    
η
 __ β    
i
  ) d𝜂𝜂

     
    +   ε     _  β  2  

    ∫ −∞  ∞    {  F ( ∑ 
i=1

  
2
     G  i   ω ( η  i2  ) ,  ∑ 

i=1
  

2
     β  i    G  i    ω   ′  ( η  i2  ) )  

     

    −  ∑ 
i=1

  
2
    F ( A  i   ω ( η  i2  ) ,  β  i    A  i    ω   ′  ( η  i2  ) )  }  ψ ( ϕ  2   + ε    

η
 _ β    
2
  ) d𝜂𝜂, 

    (18)

where
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    η  12   = 𝜃𝜃𝜃𝜃 − σ,  η  22   = η, σ =  β  1   ( ϕ  1   −  ϕ  2  )  / ε, θ =  β  1   /  β  2  .   (19)

We take into account that the second integrand in the right-hand side of (18) vanishes expo-
nentially fast as ∣ϕ1 − ϕ2∣ grows; thus, its main contribution is at the point x*. We write

   ϕ  i0   =  x   *  +  V  i   (t −  t   * )  =  x   *  + ε  V  i   τ /   ψ   ̇    0   and  ϕ  i   =  x   *  +  𝜀𝜀𝜀𝜀  i  ,  (20)

where    ψ   ̇    
0
   =  β  

1
   ( V  

2
   −  V  

1
  )  ,   χ  

i
   =  V  

i
   τ /   ψ   ̇    

0
   +  ϕ  

i1
   . It remains to apply the formula

  f (τ) δ (x −  ϕ  i  )  = f (τ) δ (x −  x   * )  −  𝜀𝜀𝜀𝜀  i   f (τ)   δ   ′  (x −  x   * )  +  O  𝒟𝒟'   ( ε   2 ) ,  (21)

which holds for each ϕi of the form (20) with slowly increasing χi and for f(τ) from the 
Schwartz space. Moreover, the second term in the right-hand side of (21) is   O  

𝒟𝒟'
   (ε)  . Thus, under 

the assumptions (14) and (15), we obtain the weak asymptotic expansion of F(u, ε∂u/∂x) in the 
final form:

 F (u, ε  u  x  )  = ε  ∑ 
i=1

  
2
    {  

 a  F,i   (0)  
 ___  β  i  
   δ (x −  ϕ  i  )  − ε   

 a  F,i   (1)  
 ___  β  i  
    δ   ′  (x −  x   * ) }  +   ε __  β  2  

   { ℜ  F   (0)   δ (x −  x   * )  − ε   ℜ ¯¯    F    δ   ′  (x −  x   * ) }   

     +  O  𝒟𝒟'   ( ε   3 ) ,   ℜ ¯¯    F   =  χ  2    ℜ  F   (0)   +  ℜ  F   (1)   /  β  2  ,  (22)

where

   a  F,i   (n)   =  ∫ −∞  ∞     η   n  F ( A  i   ω (η) ,  β  i    A  i    ω   ′  (η) ) d𝜃𝜃,  (23)

   ℜ  F   (n)   =  ∫ −∞  ∞     η   n  {F ( ∑ 
i=1

  
2
     G  i   ω ( η  i2  ) ,  ∑ 

i=1
  

2
     β  i    G  i    ω   ′  ( η  i2  ) )  −  ∑ 

i=1
  

2
    F ( A  i   ω ( η  i2  ) ,  β  i    A  i    ω   ′  ( η  i2  ) ) } d𝜃𝜃.  (24)

Here, we take into account that to define  ∂  u   2  / ∂t mod  O  
𝒟𝒟'

   ( ε   2 )  , it is necessary to calculate u2 with the 
precision   O  

𝒟𝒟'
   ( ε   3 )  . Thus, using (22) with F(u) = u2 and transforming (16) with the help of (21), we 

obtain modulo   O  
𝒟𝒟'

   ( ε   3 )  :

  u = ε  ∑ 
i=1

  
2
     a  1    K  i0   (1)   δ (x −  ϕ  i  )  + ε  ∑ 

i=1
  

2
     a  1    K  i1   (1)   {δ (x −  x   * )  −  𝜀𝜀𝜀𝜀  i    δ   ′  (x −  x   * ) } ,  (25)

   u   2  = ε  ∑ 
i=1

  
2
     a  2    K  i0   (2)   δ (x −  ϕ  i  )  +   ε __  β  2  

   { ℜ   u   2    (0)   δ (x −  x   * )  − ε  ℜ ¯¯     u   2     δ   ′  (x −  x   * ) } ,  (26)

where
   K  i   

(n)   =  G  i  n  /  β  i  ,  K  i0   (n)   =  A  i  n  /  β  i  ,  K  i1   (n)   =  K  i   
(n)   −  K  i0   (n)  .  (27)

Calculating weak expansions for other terms from Definition 2 and substituting them into  
(11), we obtain linear combinations of εδ′(x − ϕi), i = 1, 2, δ(x − x*), and εδ′(x − x*). Therefore, we  
pass to the system:

   a  1    V  i    K  i0   (1)   −  a   P  1  ,i
   (0)    /  β  i   = 0,  a  2    V  i    K  i0   (2)   −  a   P  2  ,i

   (0)    /  β  i   = 0, i = 1, 2,  (28)

   ∑ 
i=1

  
2
     K  i1   (1)   = 0,  ℜ   u   2    (0)   = 0, i = 1, 2,  (29)
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Definition 1. A function v(t, x, ε) is said to be of the value   O  
𝒟𝒟'

   ( ε   ϰ )   if the relation   ∫ 
−∞

  ∞    v (t, x, ε) Ψ (x) dx = O ( ε   ϰ )    
holds uniformly in t for any test function  Ψ ∈ 𝒟𝒟 ( ℝ  

x
  1 )  . The right-hand side here is a   𝒞𝒞   ∞  -function for 

ε = const > 0 and a piecewise continuous function uniformly in ε ≥ 0.

Following [9, 17, 18], we define two-soliton weak asymptotics:

Definition 2. A sequence u(t, x, ε), belonging to   𝒞𝒞   ∞  (0, T;  𝒞𝒞   ∞  ( ℝ  
x
  1 ) )   for ε = const > 0 and belonging to  𝒞𝒞 

(0, T;  𝒟𝒟   '  ( ℝ  
x
  1 ) )   uniformly in ε, is called a weak asymptotic mod   O  

𝒟𝒟'
   ( ε   2 )   solution of (2) if the relations (11) 

hold uniformly in t with the accuracy   O  
𝒟𝒟'

   ( ε   2 )  .

Let us consider the interaction of two solitary waves for the model (2) with the initial data (5).

Following [9, 17, 18] again, we write the asymptotic ansatz in the form:

  u =  ∑ 
i=1

  
2
     G  i   (τ) ω ( β  i   (x −  ϕ  i   (t, τ, ε) )  / ε) ,  G  i   (τ)  =  A  i   +  S  i   (τ) .  (13)

Here ϕi = ϕi0(t) + εϕi1(τ), where ϕi0 = Vit + x(i, 0) are the trajectories of noninteracting solitary 
waves, τ = ψ0(t)/ε denotes the “fast time”, ψ0(t) = β1(ϕ20(t) − ϕ10(t)), and the phase and ampli-
tude corrections ϕi1, Si are smooth functions such that with exponential rates

   ϕ  i1   (τ)  → 0 as τ → − ∞,  ϕ  i1   (τ)  →  ϕ  i1  ∞  =  const  i   as τ → +∞,  (14)

   S  i   (τ)  → 0 as τ → ±∞.  (15)

2.2. Two-wave asymptotic construction

To construct the asymptotics, we should calculate the weak expansions of the terms from the 
left-hand sides of the relations (11). It is easy to check that

  u = ε  ∑ 
i=1

  
2
     a  1     

 G  i   __  β  i  
   δ (x −  ϕ  i  )  +  O  𝒟𝒟'   ( ε   3 ) ,  (16)

where δ(x) is the Dirac delta-function. Here and in what follows, we use the notation

   a  k     =   def   ∫ −∞   ∞       (ω (η) )    k  d𝜂𝜂, k > 0,  a  2  ′     =   def   ∫ −∞  ∞     ( ω   ′  (η) )    2  d𝜂𝜂.  (17)

At the same time for any F(u, ε∂u/∂x) ∈ C1, we have

     

 ∫ −∞  ∞    F ( ∑ 
i=1

  
2
     G  i   ω ( β  i     

x −  ϕ  i   ____ ε  ) ,  ∑ 
i=1

  
2
     β  i    G  i    ω   ′  ( β  i     

x −  ϕ  i   ____ ε  ) ) ψ (x) dx

      
= ε  ∑ 

i=1
  

2
      1 __  β  i  

    ∫ −∞  ∞    F ( A  i   ω (η) ,  β  i    A  i    ω   ′  (η) ) ψ ( ϕ  i   + ε    
η
 __ β    
i
  ) d𝜂𝜂

     
    +   ε     _  β  2  

    ∫ −∞  ∞    {  F ( ∑ 
i=1

  
2
     G  i   ω ( η  i2  ) ,  ∑ 

i=1
  

2
     β  i    G  i    ω   ′  ( η  i2  ) )  

     

    −  ∑ 
i=1

  
2
    F ( A  i   ω ( η  i2  ) ,  β  i    A  i    ω   ′  ( η  i2  ) )  }  ψ ( ϕ  2   + ε    

η
 _ β    
2
  ) d𝜂𝜂, 

    (18)

where
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    η  12   = 𝜃𝜃𝜃𝜃 − σ,  η  22   = η, σ =  β  1   ( ϕ  1   −  ϕ  2  )  / ε, θ =  β  1   /  β  2  .   (19)

We take into account that the second integrand in the right-hand side of (18) vanishes expo-
nentially fast as ∣ϕ1 − ϕ2∣ grows; thus, its main contribution is at the point x*. We write

   ϕ  i0   =  x   *  +  V  i   (t −  t   * )  =  x   *  + ε  V  i   τ /   ψ   ̇    0   and  ϕ  i   =  x   *  +  𝜀𝜀𝜀𝜀  i  ,  (20)

where    ψ   ̇    
0
   =  β  

1
   ( V  

2
   −  V  

1
  )  ,   χ  

i
   =  V  

i
   τ /   ψ   ̇    

0
   +  ϕ  

i1
   . It remains to apply the formula

  f (τ) δ (x −  ϕ  i  )  = f (τ) δ (x −  x   * )  −  𝜀𝜀𝜀𝜀  i   f (τ)   δ   ′  (x −  x   * )  +  O  𝒟𝒟'   ( ε   2 ) ,  (21)

which holds for each ϕi of the form (20) with slowly increasing χi and for f(τ) from the 
Schwartz space. Moreover, the second term in the right-hand side of (21) is   O  

𝒟𝒟'
   (ε)  . Thus, under 

the assumptions (14) and (15), we obtain the weak asymptotic expansion of F(u, ε∂u/∂x) in the 
final form:

 F (u, ε  u  x  )  = ε  ∑ 
i=1

  
2
    {  

 a  F,i   (0)  
 ___  β  i  
   δ (x −  ϕ  i  )  − ε   

 a  F,i   (1)  
 ___  β  i  
    δ   ′  (x −  x   * ) }  +   ε __  β  2  

   { ℜ  F   (0)   δ (x −  x   * )  − ε   ℜ ¯¯    F    δ   ′  (x −  x   * ) }   

     +  O  𝒟𝒟'   ( ε   3 ) ,   ℜ ¯¯    F   =  χ  2    ℜ  F   (0)   +  ℜ  F   (1)   /  β  2  ,  (22)

where

   a  F,i   (n)   =  ∫ −∞  ∞     η   n  F ( A  i   ω (η) ,  β  i    A  i    ω   ′  (η) ) d𝜃𝜃,  (23)

   ℜ  F   (n)   =  ∫ −∞  ∞     η   n  {F ( ∑ 
i=1

  
2
     G  i   ω ( η  i2  ) ,  ∑ 

i=1
  

2
     β  i    G  i    ω   ′  ( η  i2  ) )  −  ∑ 

i=1
  

2
    F ( A  i   ω ( η  i2  ) ,  β  i    A  i    ω   ′  ( η  i2  ) ) } d𝜃𝜃.  (24)

Here, we take into account that to define  ∂  u   2  / ∂t mod  O  
𝒟𝒟'

   ( ε   2 )  , it is necessary to calculate u2 with the 
precision   O  

𝒟𝒟'
   ( ε   3 )  . Thus, using (22) with F(u) = u2 and transforming (16) with the help of (21), we 

obtain modulo   O  
𝒟𝒟'

   ( ε   3 )  :

  u = ε  ∑ 
i=1

  
2
     a  1    K  i0   (1)   δ (x −  ϕ  i  )  + ε  ∑ 

i=1
  

2
     a  1    K  i1   (1)   {δ (x −  x   * )  −  𝜀𝜀𝜀𝜀  i    δ   ′  (x −  x   * ) } ,  (25)

   u   2  = ε  ∑ 
i=1

  
2
     a  2    K  i0   (2)   δ (x −  ϕ  i  )  +   ε __  β  2  

   { ℜ   u   2    (0)   δ (x −  x   * )  − ε  ℜ ¯¯     u   2     δ   ′  (x −  x   * ) } ,  (26)

where
   K  i   

(n)   =  G  i  n  /  β  i  ,  K  i0   (n)   =  A  i  n  /  β  i  ,  K  i1   (n)   =  K  i   
(n)   −  K  i0   (n)  .  (27)

Calculating weak expansions for other terms from Definition 2 and substituting them into  
(11), we obtain linear combinations of εδ′(x − ϕi), i = 1, 2, δ(x − x*), and εδ′(x − x*). Therefore, we  
pass to the system:

   a  1    V  i    K  i0   (1)   −  a   P  1  ,i
   (0)    /  β  i   = 0,  a  2    V  i    K  i0   (2)   −  a   P  2  ,i

   (0)    /  β  i   = 0, i = 1, 2,  (28)

   ∑ 
i=1

  
2
     K  i1   (1)   = 0,  ℜ   u   2    (0)   = 0, i = 1, 2,  (29)
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    ψ   ̇    0     
d ___ d𝜏𝜏    ∑ 

i=1
  

2
    { K  i0   (1)    ϕ  i1   +  χ  i    K  i1   (1)  }  = f,   ψ   ̇    0     

d ___ d𝜏𝜏   { ∑ 
i=1

  
2
     a  2    K  i0   (2)    ϕ  i1   +   ℜ ¯¯     u   2   }  = F,  (30)

where

  f =   1 ____  a  1    β  2  
    ℜ   P  1  

   (0)  , F =   1 __  β  2  
    ℜ   P  2  

   (0)   −  a  1     ψ   ̇    0    ∑ 
i=1

  
2
     ϕ  i1     

 dK  i1   (2)  
 ____ d𝜏𝜏  .  (31)

The first four algebraic equations (28) imply again the relation (4) among Ai, βi, and Vi. 
Furthermore, there exists a number θ* ∈ (0, 1) such that equations (29), (30) have the required 
solution Si, ϕi1 with the properties (14) and (15) under the sufficient condition θ ≤ θ* (see [9, 
17]). It is obvious that the existence of the weak asymptotics (13) with the properties (14) and 
(15) implies that the solitary waves interact like the KdV solitons at least in the leading term.

Theorem 1. Let θ ≤ θ*. Then (13) describes  mod  O  
𝒟𝒟'

   ( ε   2 )   the elastic scenario of the solitary waves interac-
tion for the μ-gKdV equation (2).

Numerical simulations ([14, 15, 17]) confirm the traced analysis, see Figure 1. Note that a 
small oscillating tail appears after the soliton collision, see [15] for detail. Obviously, this 
effect is similar to the “radiation” appearance for the perturbed KdV [21].

2.3. Multisoliton interaction

N-wave solutions of the form similar to waves (13) contain 2N free functions Si, ϕi1. Thus, to 
describe an N-soliton collision, we should consider N conservation laws. However, noninte-
grability implies the existence of a finite number of conservation laws only. For this reason, 
we need to involve into the consideration balance laws. For the gKdV-4 equation, the first 
conservation and balance laws have the form

    
∂  Q  j   ___ ∂ t   +   

∂  P  j   ___ ∂ x   +  ε   −1   K  j   =  O  𝒟𝒟'   ( ε   2 ) ,  (32)

Figure 1. Evolution of two solitary waves for μ = 4 and ε = 0.1.

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals138

where Qj, Pj, j = 1, 2, coincide with (12) for μ = 4, Ki = 0, i = 1, 2, 3,

   Q  3   =   (ε u  x  )    2  −   2 __ 5    u   5 ,  P  3   = 16  u   3    (ε u  x  )    2  −  u   8  − 3   ( ε   2   u  xx  )    2 ,  (33)

   Q  4   =   1 __ 2     ( ε   2  u  xx  )    2  +   5 __ 21    u   8  −   10 __ 3    u   3    (ε u  x  )    2 ,  K  4   = −   (ε u  x  )    5 ,  (34)

   P  4   = 12 u   3    ( ε   2  u  xx  )    2  − 19u   (ε  u  x  )    4  −   3 __ 2     ( ε   3  u  xxx  )    2  +   160 ___ 231    u   11  −   100 ___ 3    u   6    (ε u  x  )    2 .  (35)

Note that the nondivergent “production” ε−1K4 has the same value O(ε−1) (in the C-sense and 
for rapidly varying functions) as the first ones in (32).

The formal scheme of the asymptotic construction is similar to the one described above: we 
write the ansatz of the form (13) but with N summands, found weak representations for all 
terms in (32), and pass to a system similar to (28)–(30). The main obstacle here is the proof that 
this system admits a solution with the properties of (14), (15). This idea has been realized in 
[18, 19] for the problem of three soliton collisions for the gKdV-4 equation.

Theorem 2. Let us denote Ai the amplitudes of the original solitons and x(i, 0) their initial positions such 
that Ai + 1 > Ai, x(i, 0) > x(i + 1, 0), and i = 1, 2. Let all trajectories x = ϕi0(t) have an intersection point (x*, t*). 
Then, under the assumption

   β  2   /  β  3   =  ν   3 ,  β  1   /  β  3   =  ν   3 (3+α) /2 , α ∈  [0, 1)   (36)

with sufficiently small ν < 1, the three-phase asymptotic solution exists and describes  mod  O  
𝒟𝒟'

   ( ε   2 )   the 
elastic scenario of the solitary waves interaction.

Figure 2 depicts the evolution of a three-wave solution [14].

Figure 2. Evolution of the soliton triplet with μ = 4, ε = 0.1.
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    ψ   ̇    0     
d ___ d𝜏𝜏    ∑ 

i=1
  

2
    { K  i0   (1)    ϕ  i1   +  χ  i    K  i1   (1)  }  = f,   ψ   ̇    0     

d ___ d𝜏𝜏   { ∑ 
i=1

  
2
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where
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i=1

  
2
     ϕ  i1     
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 ____ d𝜏𝜏  .  (31)

The first four algebraic equations (28) imply again the relation (4) among Ai, βi, and Vi. 
Furthermore, there exists a number θ* ∈ (0, 1) such that equations (29), (30) have the required 
solution Si, ϕi1 with the properties (14) and (15) under the sufficient condition θ ≤ θ* (see [9, 
17]). It is obvious that the existence of the weak asymptotics (13) with the properties (14) and 
(15) implies that the solitary waves interact like the KdV solitons at least in the leading term.

Theorem 1. Let θ ≤ θ*. Then (13) describes  mod  O  
𝒟𝒟'

   ( ε   2 )   the elastic scenario of the solitary waves interac-
tion for the μ-gKdV equation (2).

Numerical simulations ([14, 15, 17]) confirm the traced analysis, see Figure 1. Note that a 
small oscillating tail appears after the soliton collision, see [15] for detail. Obviously, this 
effect is similar to the “radiation” appearance for the perturbed KdV [21].

2.3. Multisoliton interaction

N-wave solutions of the form similar to waves (13) contain 2N free functions Si, ϕi1. Thus, to 
describe an N-soliton collision, we should consider N conservation laws. However, noninte-
grability implies the existence of a finite number of conservation laws only. For this reason, 
we need to involve into the consideration balance laws. For the gKdV-4 equation, the first 
conservation and balance laws have the form

    
∂  Q  j   ___ ∂ t   +   

∂  P  j   ___ ∂ x   +  ε   −1   K  j   =  O  𝒟𝒟'   ( ε   2 ) ,  (32)

Figure 1. Evolution of two solitary waves for μ = 4 and ε = 0.1.
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where Qj, Pj, j = 1, 2, coincide with (12) for μ = 4, Ki = 0, i = 1, 2, 3,

   Q  3   =   (ε u  x  )    2  −   2 __ 5    u   5 ,  P  3   = 16  u   3    (ε u  x  )    2  −  u   8  − 3   ( ε   2   u  xx  )    2 ,  (33)
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   P  4   = 12 u   3    ( ε   2  u  xx  )    2  − 19u   (ε  u  x  )    4  −   3 __ 2     ( ε   3  u  xxx  )    2  +   160 ___ 231    u   11  −   100 ___ 3    u   6    (ε u  x  )    2 .  (35)

Note that the nondivergent “production” ε−1K4 has the same value O(ε−1) (in the C-sense and 
for rapidly varying functions) as the first ones in (32).

The formal scheme of the asymptotic construction is similar to the one described above: we 
write the ansatz of the form (13) but with N summands, found weak representations for all 
terms in (32), and pass to a system similar to (28)–(30). The main obstacle here is the proof that 
this system admits a solution with the properties of (14), (15). This idea has been realized in 
[18, 19] for the problem of three soliton collisions for the gKdV-4 equation.

Theorem 2. Let us denote Ai the amplitudes of the original solitons and x(i, 0) their initial positions such 
that Ai + 1 > Ai, x(i, 0) > x(i + 1, 0), and i = 1, 2. Let all trajectories x = ϕi0(t) have an intersection point (x*, t*). 
Then, under the assumption

   β  2   /  β  3   =  ν   3 ,  β  1   /  β  3   =  ν   3 (3+α) /2 , α ∈  [0, 1)   (36)

with sufficiently small ν < 1, the three-phase asymptotic solution exists and describes  mod  O  
𝒟𝒟'

   ( ε   2 )   the 
elastic scenario of the solitary waves interaction.

Figure 2 depicts the evolution of a three-wave solution [14].

Figure 2. Evolution of the soliton triplet with μ = 4, ε = 0.1.
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2.4. Asymptotic equivalence

Let us come back to the case of two-phase asymptotics and transform the ansatz (13) to the 
following form:

   u ˜   =  ∑ 
i=1

  
2
    { G  i   (τ) ω ( β  i     

x −  ϕ  i   (t, τ, ε) 
 _________ ε  )  +  𝔖𝔖  i   (τ) W ( β  i     

x −  ϕ  i   (t, τ, ε) 
 _________ ε  ) } ,  (37)

where   𝔖𝔖  
i
   (τ)  , i = 1, 2 are arbitrary functions from the Schwartz space,

  W (η)  =  d   2l+1  ω (η)  / d  η   2l+1 ,  (38)

and l ≥ 1 is an arbitrary integer. Calculating the weak representations for   u ˜    and    u ˜     2  , we obtain

   
 u ˜   = u +  O  𝒟𝒟'   ( ε   2l+2 ) ,

   
  u ˜     2  = ε  ∑ 

i=1
  

2
     a  2    K  i0   (2)   δ (x −  ϕ  i  )  +   ε __  β  2  

    ℜ    u ˜     2   
 (0)   δ (x −  x   * )  +  O  𝒟𝒟'   ( ε   2 ) ,

   (39)

where

   ℜ    u ˜     2   
 (0)   =  ∫ −∞  ∞    {  ( ∑ 

i=1
  

2
    ( G  i   ω ( η  i2  )  +  𝔖𝔖  i   W ( η  i2  ) ) )    2  −  ∑ 

i=1
  

2
      ( A  i   ω ( η  i2  ) )    2 } d𝜂𝜂,  (40)

and u in the right-hand side in (39) is the representation (25). Thus, the difference between u 
of the forms (13) and (37) is arbitrarily small in the sense   𝒟𝒟   '  ( ℝ  

x
  )  . At the same time, instead of 

(29), (30), we obtain

   ∑ 
i=1

  
2
     K  i1   (1)   = 0,  ℜ    u ˜     2   

 (0)   = 0, i = 1, 2,  (41)

    ψ   ̇    0     
d ___ d𝜏𝜏    ∑ 

i=1
  

2
    { K  i0   (1)    ϕ  i1   +  χ  i    K  i1   (1)  }  =  f ̃  ,   ψ   ̇    0     

d ___ d𝜏𝜏   { ∑ 
i=1

  
2
     a  2    K  i0   (2)    ϕ  i1   +   ℜ ¯¯      u ˜     2   }  =  F ˜  ,  (42)

where   f ̃   ,   F ˜    differ from f, F in the same manner as   ℜ    u ˜     2   
 (0)    differs from   ℜ   u   2   

 (0)   . The system (41) and 
(42) have again a solution with the properties (14) and (15) [9, 12]; however, it differs from 
the solution of Eqs. (29) and (30) with the value O(1) in the C-sense. Moreover, the asymptotic 
solutions (13) and (37) differ with the precision   O  

𝒟𝒟'
   (ε)   in the sense of Definition 1. This implies 

the principal impossibility to describe explicitly neither the real shape of the waves at the time 
instant of the collision nor the real ε-size displacements of the trajectories after the interaction. 
However, the nonuniqueness of the value O(ε) is concentrated within O(ε1 − ν)-neighborhood 
of the time instant t* of the interaction, ν > 0. Thus, it is small in the   𝒟𝒟   '  ( R  

x,t
  2  )   sense. We set

Definition 3. Functions u1(x, t, ε) and u2(x, t, ε) are said to be asymptotically equivalent if for any test 
function  ψ ∈ 𝒟𝒟 ( R   2 )  

   ∫ −∞  ∞     ∫ −∞  ∞    { u  1   (x, t, ε)  −  u  2   (x, t, ε) } ψ (x, t) dx dt = O ( ε   2 ) .  (43)

In this sense, the solutions (13) and (37) are asymptotically equivalent.

We now focus attention on another question: how to choose, from the set of all possible conserva-
tion and balance laws, those that allow to construct a multiphase asymptotic solution? It seems 
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that there is not any rule and it is possible to use arbitrary combination of the laws. Thus, there 
appears the next question: what is the difference between such solutions? This problem has been 
discussed in [20] for two-phase asymptotic solutions of the gKdV-4 equation. Let us define two-
phase asymptotics in the following manner:

Definition 4. Let 1 ≤ k0 < k1 ≤ 4 and let a sequence uk0, k1 = uk0, k1(t, x, ε) belong to the same functional 
space as u(t, x, ε) in Definition 2. Then, uk0, k1 is called a weak asymptotic mod   O  

𝒟𝒟'
   ( ε   2 )   solution of (2) if 

the relations (32) hold for j = k0 and j = k1 uniformly in t.

A detailed analysis implies the assertion [20].

Theorem 3. Let θ be sufficiently small. Then, the weak asymptotic solutions u1, k1 and   u  
1, k  

1
  ′      of the problem  

(2), (5) exist and they are asymptotically equivalent for all   k  
1
  ,  k  

1
  ′   ∈  {2, 3, 4}  .

3. Collision of distorted solitons

We consider now the nonhomogeneous version of the gKdV equation (1). It is easy to verify 
that, in the case of rapidly varying solutions, the right-hand side f can be treated as a “small 
perturbation.”

An approach to construct one-phase self-similar asymptotic solutions for (1) had been created 
in [6] (see also [17]). Let us generalize this approach to the multiphase case. From the begin-
ning, we state that equation (1) is associated with balance laws, the first two of which are

    
∂  Q  j   ___ ∂ t   +   

∂  P  j   ___ ∂ x   +  K  j   =  O  𝒟𝒟'   ( ε   2 ) , j = 1, 2,  (44)

where Qj and Pj coincide with ones described in (12),

   K  1   = − f (u, ε  u  x  ) ,  K  2   = − uf (u, ε  u  x  ) .  (45)

Note that, in contrast to Kj in (32), productions here are regularly degenerating functions with 
the value O(1) in the C-sense.

Let us first construct a two-phase version of self-similar asymptotics, which assumes a special 
initial data for (1) and discuss afterward how to treat it for more realistic initial data. By anal-
ogy with Definition 2, we write:

Definition 5. Let a sequence u = u(t, x, ε) belong to the same functional space as in Definition 2. 
Then u is called a weak asymptotic mod   O  

𝒟𝒟'
   ( ε     q ¯¯   )   solution of (1) if the relation (44) hold uniformly in 

t ∈ (0, T),    q ¯¯   = min  {μ, 2}  .

Generalizing one-phase asymptotics, we write the ansatz as

  u =  ∑ 
i=1

  
2
    { G  i   (τ, t) ω ( η  i  )  + ε ( z  i   (x, t) ℌ ( η  i  )  +  𝔊𝔊  i   (τ) ω ( η  i  ) ) } ,  (46)

   G  i   (τ, t)  =  A  i   (t)  +  S  i   (τ) ,  η  i   =  β  i   (t)  (x −  ϕ  i  )  / ε,  ϕ  i   (t, τ, ε)  =  ϕ  i0   +  𝜀𝜀𝜀𝜀  i1  .  (47)
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2.4. Asymptotic equivalence
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and l ≥ 1 is an arbitrary integer. Calculating the weak representations for   u ˜    and    u ˜     2  , we obtain

   
 u ˜   = u +  O  𝒟𝒟'   ( ε   2l+2 ) ,

   
  u ˜     2  = ε  ∑ 

i=1
  

2
     a  2    K  i0   (2)   δ (x −  ϕ  i  )  +   ε __  β  2  

    ℜ    u ˜     2   
 (0)   δ (x −  x   * )  +  O  𝒟𝒟'   ( ε   2 ) ,

   (39)

where

   ℜ    u ˜     2   
 (0)   =  ∫ −∞  ∞    {  ( ∑ 

i=1
  

2
    ( G  i   ω ( η  i2  )  +  𝔖𝔖  i   W ( η  i2  ) ) )    2  −  ∑ 

i=1
  

2
      ( A  i   ω ( η  i2  ) )    2 } d𝜂𝜂,  (40)
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 (0)   . The system (41) and 
(42) have again a solution with the properties (14) and (15) [9, 12]; however, it differs from 
the solution of Eqs. (29) and (30) with the value O(1) in the C-sense. Moreover, the asymptotic 
solutions (13) and (37) differ with the precision   O  
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Definition 3. Functions u1(x, t, ε) and u2(x, t, ε) are said to be asymptotically equivalent if for any test 
function  ψ ∈ 𝒟𝒟 ( R   2 )  
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In this sense, the solutions (13) and (37) are asymptotically equivalent.

We now focus attention on another question: how to choose, from the set of all possible conserva-
tion and balance laws, those that allow to construct a multiphase asymptotic solution? It seems 
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that there is not any rule and it is possible to use arbitrary combination of the laws. Thus, there 
appears the next question: what is the difference between such solutions? This problem has been 
discussed in [20] for two-phase asymptotic solutions of the gKdV-4 equation. Let us define two-
phase asymptotics in the following manner:

Definition 4. Let 1 ≤ k0 < k1 ≤ 4 and let a sequence uk0, k1 = uk0, k1(t, x, ε) belong to the same functional 
space as u(t, x, ε) in Definition 2. Then, uk0, k1 is called a weak asymptotic mod   O  

𝒟𝒟'
   ( ε   2 )   solution of (2) if 

the relations (32) hold for j = k0 and j = k1 uniformly in t.

A detailed analysis implies the assertion [20].

Theorem 3. Let θ be sufficiently small. Then, the weak asymptotic solutions u1, k1 and   u  
1, k  

1
  ′      of the problem  

(2), (5) exist and they are asymptotically equivalent for all   k  
1
  ,  k  

1
  ′   ∈  {2, 3, 4}  .

3. Collision of distorted solitons

We consider now the nonhomogeneous version of the gKdV equation (1). It is easy to verify 
that, in the case of rapidly varying solutions, the right-hand side f can be treated as a “small 
perturbation.”

An approach to construct one-phase self-similar asymptotic solutions for (1) had been created 
in [6] (see also [17]). Let us generalize this approach to the multiphase case. From the begin-
ning, we state that equation (1) is associated with balance laws, the first two of which are

    
∂  Q  j   ___ ∂ t   +   

∂  P  j   ___ ∂ x   +  K  j   =  O  𝒟𝒟'   ( ε   2 ) , j = 1, 2,  (44)

where Qj and Pj coincide with ones described in (12),

   K  1   = − f (u, ε  u  x  ) ,  K  2   = − uf (u, ε  u  x  ) .  (45)

Note that, in contrast to Kj in (32), productions here are regularly degenerating functions with 
the value O(1) in the C-sense.

Let us first construct a two-phase version of self-similar asymptotics, which assumes a special 
initial data for (1) and discuss afterward how to treat it for more realistic initial data. By anal-
ogy with Definition 2, we write:

Definition 5. Let a sequence u = u(t, x, ε) belong to the same functional space as in Definition 2. 
Then u is called a weak asymptotic mod   O  

𝒟𝒟'
   ( ε     q ¯¯   )   solution of (1) if the relation (44) hold uniformly in 

t ∈ (0, T),    q ¯¯   = min  {μ, 2}  .

Generalizing one-phase asymptotics, we write the ansatz as

  u =  ∑ 
i=1

  
2
    { G  i   (τ, t) ω ( η  i  )  + ε ( z  i   (x, t) ℌ ( η  i  )  +  𝔊𝔊  i   (τ) ω ( η  i  ) ) } ,  (46)

   G  i   (τ, t)  =  A  i   (t)  +  S  i   (τ) ,  η  i   =  β  i   (t)  (x −  ϕ  i  )  / ε,  ϕ  i   (t, τ, ε)  =  ϕ  i0   +  𝜀𝜀𝜀𝜀  i1  .  (47)
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Here Ai(t), ϕi0 = ϕi0(t),   β  
i
  2  (t)  = γ  A   μ−1  (t)  , ω(η), Si(τ), ϕi1(τ) are the same as in (13); τ = ψ0(t)/ε with 

ψ0(t) = ϕ20(t) − ϕ10(t) denotes the “fast time” again;    z  
i
   (x, t)  ∈  𝒞𝒞   ∞  ; and   𝔊𝔊  

i
   , ℌ are smooth functions 

such that

   𝔊𝔊  i   (τ)  → 0 as τ → − ∞ ,  𝔊𝔊  i   (τ)  →  𝔊𝔊  i  ∞  =  const  i   as τ → +∞ ,  (48)

  ℌ (η)  → 1 as η → − ∞ , ℌ (η)  → 0 as η → +∞  (49)

with exponential rates. We assume also the intersection of the trajectories x = ϕi0(t), i = 1, 2 at a 
point x* = ϕi0(t*) namely,

    ∃ t   *  > 0 such that  ϕ  10   ( t   * )  =  ϕ  20   ( t   * ) ,   ψ   ̇    0     =   def    d __ dt   ( ϕ  20   (t)  −  ϕ  10   (t) ) |   
t= t   * 

   ≠ 0.  (50)

It is easy to verify the weak representations with the precision   O  
𝒟𝒟'

   ( ε   2 )  :

  u = ε  ∑ 
i=1

  
2
    { a  1    K  i0   (1)   δ (x −  ϕ  i  )  +  a  1    K  i1   (1) *  δ (x −  x   * )  +  z  i   (x, t) H ( ϕ  i   − x) } ,  (51)

   

  ∂ u ___ ∂ t   =  a  1     ψ   ̇    0     
∂ __ ∂ τ    ∑ 

i=1
  

2
     K  i1   (1) *  δ (x −  x   * )  + ε  ∑ 

i=1
  

2
      

∂  z  i   ___ ∂ t   H ( ϕ  i   − x) 

     

       +ε  a  1    ∑ 
i=1

  
2
    {  

 dK  i1   (1)  
 ____ dt   +  z  i   ( ϕ  i  , t)    

d  ϕ  i0   ____ dt  } δ (x −  ϕ  i  )  − ε  a  1    ∑ 
i=1

  
2
     K  i0   (1)     

d  ϕ  i0   ____ dt    δ   ′  (x −  ϕ  i  ) 

       
         +ε  ∑ 

i=1
  

2
    {  ψ   ̇    0     

∂ __ ∂ t   ( a  1     
 𝔖𝔖  i   __  β  i  

   +  z  i   ( x   * , t)   ϕ  i1  )  −   
 a  1   __  β  i  2 

    S  i     
d  β  i   ___ dt  } |   

t= t   * 

   δ (x −  x   * ) 
      

         − ε  a  1    ∑ 
i=1

  
2
    { K  i1   (1)     

d  ϕ  i0   ____ dt   +   ψ   ̇    0   ( K  i   
(1)     

∂  ϕ  i1   ____ ∂ τ   +   
 χ  i   __  β  i  

     
∂  K  i   

(1)  
 ____ ∂ τ  ) } |   

t= t   * 

    δ   ′  (x −  x   * ) ,

    (52)

where H(x) is the Heaviside function, H(x) = 0 for x < 0 and H(x) = 1 for x > 0;     g   *    =   
def  g (τ, t) |   

t= t   *    ,   χ  
i
     =   
def   

ϕ  
i
   (Φ (𝜀𝜀𝜀𝜀,  t   * ) , τ, ε)  −  x   *  , and Φ(ετ, t*) is the solution of the equation ϕ20(t* + Φ) − ϕ10(t* + Φ) = ετ, which 

exists in accordance with (50).

Next, the existence of nonsoliton summands in (51) implying a correction of formula (22), 
namely

 F (u, ε u  x  )  = ε  ∑ 
i=1

  
2
     a  F,i   (0)    β  i  −1  δ (x −  ϕ  i  )  +  𝜀𝜀𝜀𝜀  2  −1   ℜ  F   (0)   δ (x −  x   * )   

               + ε  F  u  ′   (0, 0)   ∑ 
i=1

  
2
     z  i   (x, t) H ( ϕ  i   − x)  +  O  𝒟𝒟'   ( ε     q ¯¯   ) ,  (53)

where   a  
F,i

   (0)    and   ℜ  
F
   (0)    are defined in (23), (24),      F  

u
  ′   (0, 0)  = ∂F(u ,  0) / ∂u |   

u=0
   .

Repeating the same calculations as above, we obtain linear combinations of εδ(x − ϕi), 
εδ′(x − ϕi), εH(ϕi − x), i = 1, 2; δ(x − x*), εδ(x − x*), and εδ′(x − x*). Equating zero, the coefficients of 
εδ(x − ϕi) and εδ′(x − ϕi) yield

   a  1    A  i     
d  ϕ  i0   ____ dt   =  a   P  1  ,i

   (0)   ,  a  2     
d __ dt     

 A  i  2  ___  β  i  
   =   

 a   K  2  ,i
   (0)   
 ___  β  i  

  ,  (54)
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   a  2    A  i  2    
d  ϕ  i0   ____ dt   =  a   P  2  ,i

   (0)   ,  a  1     
d __ dt     

 A  i   __  β  i  
   +  z  i   ( ϕ  i  , t)    

d  ϕ  i0   ____ dt   =   
 a  f,i   (0)  

 ___  β  i  
  .  (55)

Equation (54) forms the closed system to define Ai(t) and ϕi0(t). To simplify it, let us use the 
equalities (4) and rewrite the model equation for ω(η) as follows:

    d ___ d𝜂𝜂   {− ω +   
μ + 1

 ____ 2    ω   μ  +    d   2  ω ____ d  η   2   }  = 0.  (56)

Simple manipulations with (56) allow us to find relations between structural constants:

   a  1   =  (μ + 1)   a  μ   / 2,  a  2   =  (μ + 3)   a  μ+1   / 4,  a  2  ′   =  (μ − 1)   a  μ+1   / 4.  (57)

Next, we use (57), the equality   β  
i
  2  = γ  A  

i
  μ−1  , add the initial conditions, and obtain from (54) the 

Cauchy problem

    
 dA  i   ___ dt   = −  c  1    a   K  2  ,i

   (0)     A  i  −1 ,   
d  ϕ  i0   ____ dt   =   

 a  μ  
 __  a  1      A  i  μ−1 , t > 0,  (58)

   A  i     |    t=0   =  A  i  0 ,   ϕ  i0  |   
t=0

   =  x   (i,0)   ,  (59)

where c1 = 2/(a2(5 − μ));   A  
i
  0  > 0  and x(i, 0) are arbitrary numbers; and i = 1, 2. Note also that the first 

equalities in equations (54) and (55) are equivalent.

Next, equating zero the coefficients of the Heaviside functions, we obtain the equations

    
∂  z  i   ___ ∂ t   =  f  u  ′   (0, 0)   z  i  , x <  ϕ  i0   (t) , t > 0, i = 1, 2.  (60)

In view of (58) dϕi0/dt > 0, so we use the second equality in (55) to state the correct initial condi-
tion for (60)

     z  i   (x, t) |   
x= ϕ  i0   (t) 

   =  √ 
__

 γ    a  f,i   (0)    A  i   (3−4μ) /2  (t)  +  c  2    a   K  2  ,i
   (0)     A  i   (1−3μ) /2  (t) , t > 0,  (61)

     z  i   (x, t) |   
t=0

   =  z  i  0  (x) , x ≤  x   (i,0)   ,  (62)

where c2 = a1(3 − μ)(1 + μ)/(2a2(5 − μ)),   z  
i
  0  (x)   is an arbitrary smooth function, which satisfies the 

consistency condition

     z  i  0  ( x   (i,0)   )  =  { √ 
__

 γ    a  f,i   (0)    A  i   (3−4μ) /2  +  c  2    a   K  2  ,i
   (0)     A  i   (1−3μ) /2 } |   

t=0
  .  (63)

We should note that the nonlinearity uμ in (1) can require the inequality u ≥ 0. To this end, we 
will assume

     A  i   (t)  > 0,    z  i   (  x ,  t )   |   
x= ϕ  i0   (t) 

   ≥ 0 for t ≥ 0.  (64)

Furthermore, equating zero the coefficients of δ(x − x*) and εδ′(x − x*) yield (29), (30) again. 
Consequently, the condition θ ≤ θ* guaranties the existence of Si, ϕi1 with the properties of 
(14), (15). In particular
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Here Ai(t), ϕi0 = ϕi0(t),   β  
i
  2  (t)  = γ  A   μ−1  (t)  , ω(η), Si(τ), ϕi1(τ) are the same as in (13); τ = ψ0(t)/ε with 

ψ0(t) = ϕ20(t) − ϕ10(t) denotes the “fast time” again;    z  
i
   (x, t)  ∈  𝒞𝒞   ∞  ; and   𝔊𝔊  

i
   , ℌ are smooth functions 

such that

   𝔊𝔊  i   (τ)  → 0 as τ → − ∞ ,  𝔊𝔊  i   (τ)  →  𝔊𝔊  i  ∞  =  const  i   as τ → +∞ ,  (48)

  ℌ (η)  → 1 as η → − ∞ , ℌ (η)  → 0 as η → +∞  (49)

with exponential rates. We assume also the intersection of the trajectories x = ϕi0(t), i = 1, 2 at a 
point x* = ϕi0(t*) namely,

    ∃ t   *  > 0 such that  ϕ  10   ( t   * )  =  ϕ  20   ( t   * ) ,   ψ   ̇    0     =   def    d __ dt   ( ϕ  20   (t)  −  ϕ  10   (t) ) |   
t= t   * 

   ≠ 0.  (50)

It is easy to verify the weak representations with the precision   O  
𝒟𝒟'

   ( ε   2 )  :

  u = ε  ∑ 
i=1

  
2
    { a  1    K  i0   (1)   δ (x −  ϕ  i  )  +  a  1    K  i1   (1) *  δ (x −  x   * )  +  z  i   (x, t) H ( ϕ  i   − x) } ,  (51)

   

  ∂ u ___ ∂ t   =  a  1     ψ   ̇    0     
∂ __ ∂ τ    ∑ 

i=1
  

2
     K  i1   (1) *  δ (x −  x   * )  + ε  ∑ 

i=1
  

2
      

∂  z  i   ___ ∂ t   H ( ϕ  i   − x) 

     

       +ε  a  1    ∑ 
i=1

  
2
    {  

 dK  i1   (1)  
 ____ dt   +  z  i   ( ϕ  i  , t)    

d  ϕ  i0   ____ dt  } δ (x −  ϕ  i  )  − ε  a  1    ∑ 
i=1

  
2
     K  i0   (1)     

d  ϕ  i0   ____ dt    δ   ′  (x −  ϕ  i  ) 

       
         +ε  ∑ 

i=1
  

2
    {  ψ   ̇    0     

∂ __ ∂ t   ( a  1     
 𝔖𝔖  i   __  β  i  

   +  z  i   ( x   * , t)   ϕ  i1  )  −   
 a  1   __  β  i  2 

    S  i     
d  β  i   ___ dt  } |   

t= t   * 

   δ (x −  x   * ) 
      

         − ε  a  1    ∑ 
i=1

  
2
    { K  i1   (1)     

d  ϕ  i0   ____ dt   +   ψ   ̇    0   ( K  i   
(1)     

∂  ϕ  i1   ____ ∂ τ   +   
 χ  i   __  β  i  

     
∂  K  i   

(1)  
 ____ ∂ τ  ) } |   

t= t   * 

    δ   ′  (x −  x   * ) ,

    (52)

where H(x) is the Heaviside function, H(x) = 0 for x < 0 and H(x) = 1 for x > 0;     g   *    =   
def  g (τ, t) |   

t= t   *    ,   χ  
i
     =   
def   

ϕ  
i
   (Φ (𝜀𝜀𝜀𝜀,  t   * ) , τ, ε)  −  x   *  , and Φ(ετ, t*) is the solution of the equation ϕ20(t* + Φ) − ϕ10(t* + Φ) = ετ, which 

exists in accordance with (50).

Next, the existence of nonsoliton summands in (51) implying a correction of formula (22), 
namely

 F (u, ε u  x  )  = ε  ∑ 
i=1

  
2
     a  F,i   (0)    β  i  −1  δ (x −  ϕ  i  )  +  𝜀𝜀𝜀𝜀  2  −1   ℜ  F   (0)   δ (x −  x   * )   

               + ε  F  u  ′   (0, 0)   ∑ 
i=1

  
2
     z  i   (x, t) H ( ϕ  i   − x)  +  O  𝒟𝒟'   ( ε     q ¯¯   ) ,  (53)

where   a  
F,i

   (0)    and   ℜ  
F
   (0)    are defined in (23), (24),      F  

u
  ′   (0, 0)  = ∂F(u ,  0) / ∂u |   

u=0
   .

Repeating the same calculations as above, we obtain linear combinations of εδ(x − ϕi), 
εδ′(x − ϕi), εH(ϕi − x), i = 1, 2; δ(x − x*), εδ(x − x*), and εδ′(x − x*). Equating zero, the coefficients of 
εδ(x − ϕi) and εδ′(x − ϕi) yield

   a  1    A  i     
d  ϕ  i0   ____ dt   =  a   P  1  ,i

   (0)   ,  a  2     
d __ dt     

 A  i  2  ___  β  i  
   =   

 a   K  2  ,i
   (0)   
 ___  β  i  

  ,  (54)
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   a  2    A  i  2    
d  ϕ  i0   ____ dt   =  a   P  2  ,i

   (0)   ,  a  1     
d __ dt     

 A  i   __  β  i  
   +  z  i   ( ϕ  i  , t)    

d  ϕ  i0   ____ dt   =   
 a  f,i   (0)  

 ___  β  i  
  .  (55)

Equation (54) forms the closed system to define Ai(t) and ϕi0(t). To simplify it, let us use the 
equalities (4) and rewrite the model equation for ω(η) as follows:

    d ___ d𝜂𝜂   {− ω +   
μ + 1

 ____ 2    ω   μ  +    d   2  ω ____ d  η   2   }  = 0.  (56)

Simple manipulations with (56) allow us to find relations between structural constants:

   a  1   =  (μ + 1)   a  μ   / 2,  a  2   =  (μ + 3)   a  μ+1   / 4,  a  2  ′   =  (μ − 1)   a  μ+1   / 4.  (57)

Next, we use (57), the equality   β  
i
  2  = γ  A  

i
  μ−1  , add the initial conditions, and obtain from (54) the 

Cauchy problem

    
 dA  i   ___ dt   = −  c  1    a   K  2  ,i

   (0)     A  i  −1 ,   
d  ϕ  i0   ____ dt   =   

 a  μ  
 __  a  1      A  i  μ−1 , t > 0,  (58)

   A  i     |    t=0   =  A  i  0 ,   ϕ  i0  |   
t=0

   =  x   (i,0)   ,  (59)

where c1 = 2/(a2(5 − μ));   A  
i
  0  > 0  and x(i, 0) are arbitrary numbers; and i = 1, 2. Note also that the first 

equalities in equations (54) and (55) are equivalent.

Next, equating zero the coefficients of the Heaviside functions, we obtain the equations

    
∂  z  i   ___ ∂ t   =  f  u  ′   (0, 0)   z  i  , x <  ϕ  i0   (t) , t > 0, i = 1, 2.  (60)

In view of (58) dϕi0/dt > 0, so we use the second equality in (55) to state the correct initial condi-
tion for (60)

     z  i   (x, t) |   
x= ϕ  i0   (t) 

   =  √ 
__

 γ    a  f,i   (0)    A  i   (3−4μ) /2  (t)  +  c  2    a   K  2  ,i
   (0)     A  i   (1−3μ) /2  (t) , t > 0,  (61)

     z  i   (x, t) |   
t=0

   =  z  i  0  (x) , x ≤  x   (i,0)   ,  (62)

where c2 = a1(3 − μ)(1 + μ)/(2a2(5 − μ)),   z  
i
  0  (x)   is an arbitrary smooth function, which satisfies the 

consistency condition

     z  i  0  ( x   (i,0)   )  =  { √ 
__

 γ    a  f,i   (0)    A  i   (3−4μ) /2  +  c  2    a   K  2  ,i
   (0)     A  i   (1−3μ) /2 } |   

t=0
  .  (63)

We should note that the nonlinearity uμ in (1) can require the inequality u ≥ 0. To this end, we 
will assume

     A  i   (t)  > 0,    z  i   (  x ,  t )   |   
x= ϕ  i0   (t) 

   ≥ 0 for t ≥ 0.  (64)

Furthermore, equating zero the coefficients of δ(x − x*) and εδ′(x − x*) yield (29), (30) again. 
Consequently, the condition θ ≤ θ* guaranties the existence of Si, ϕi1 with the properties of 
(14), (15). In particular
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   S  1   = − θ  S  2    S  1   =  𝜃𝜃𝜃𝜃  1  γ  λ (σ)  (1 + O ( θ   q ) ) ,  (65)

where

  q = min  {1, γ} , λ (σ)  =  a  2  −1   ∫ 
−∞

  ∞    ω (η) ω ( η  12  ) d𝜂𝜂.  (66)

The last step of the construction is the determination of   𝔊𝔊  
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where    i ¯¯   = 2  for i = 1 and    i ¯¯   = 1  for i = 2,
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Calculating the determinant Δ of the matrix in the left-hand part of (67) and using (65), we 
conclude
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Obviously, Δ ≠ 0 for sufficiently small θ. Since the right-hand sides   𝔉𝔉  
i
    belong to the Schwartz 

space, the functions   𝔊𝔊  
i
    exist and satisfy the assumption (48).

Henceforth, we pass to the final result:

Theorem 4. Let θ be sufficiently small and let the assumptions (50), (63), and (64), if it is necessary, be 
fulfilled. Then, the self-similar two-wave weak asymptotic mod  O ( ε     q ¯¯   )   solution of the equation (1) exists 
and has the form (46).

Let us finally stress that the self-similarity implies a special choice of the initial data: for the 
classical asymptotics in the C-sense, there appears a very restrictive condition for small cor-
rection of the soliton A(0)ω((x − x0)/ε) (see [6, 17]), and for weak asymptotics, there appears 
the restriction (63). If it is violated, then the perturbed soliton generates a rapidly oscillat-
ing tail of the amplitude o(1) (“radiation”) instead of the smooth tails εu−(x, t) (see [21] and 
numerical results [14, 15, 17]). Nowadays, this radiation phenomenon can be described ana-
lytically only for integrable equations, so that we should use self-similar approximation for 
essentially nonintegrable equations. However, the smooth tail εu−(x, t), which can be treated 
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as an average of the radiation, describes sufficiently well the tendency of the radiation  
amplitude behavior, see graphics depicted in Figures 3 and 4, and other numerical results 
in [15, 17]).
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Abstract

In this chapter, we present a weakly nonlinear stability analysis of the flow of a nanofluid
in a porous medium with stress-free boundary conditions. Some previous studies have
investigated cross-diffusion in a nanofluid layer although in most cases these studies
mostly deal with linear stability analysis. It is important to study the nonlinear stability in
flows subject to cross-diffusion due to the wide range of applications where such flows
arise such as in hydrothermal growth, compact heat exchanges, the solidification of binary
mixtures, geophysical systems, solar pond, etc. Here we consider flow between parallel
plates with an applied magnetic field and zero nanoparticle flux at the boundaries. A
truncated Fourier series is introduced reducing the flow equations to a Lorenz-type system
of nonlinear evolution equations. The multidomain spectral method is used to solve the
equations that describe the growth of the convection amplitudes. The solutions are
obtained as sets of trajectories in the phase space. Some interesting spiral trajectories and
their sensitivity to the Rayleigh number are given.

Keywords: nonlinear instability, nanofluid flow, porous medium, multidomain spectral
collocation method

1. Introduction

The enhancement of thermal conductivity of a fluid is a matter of supreme interest to engineers
due to the important applications of fluids in heat transfer processes. Natural and forced convec-
tion plays an important role in heat transfer processes due to continuous molecular movements
in fluid. Recent studies show that the suspension of solid nanoparticles in a fluid can substan-
tially improve the fluid’s thermophysical properties, including thermal conductivity.
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The term nanofluid describes a liquid containing a suspension of nanometer sized 1–100 nm
solid particles [1]. Examples of commonly used nanoparticles include metallic particles such as
Al, Cu and Ag, and oxides such as Al2O3 and CuO. The base fluid is often a common liquid
such as water, ethylene, glycol, or oil. The enhancement of thermochemical properties of a
fluid due to the addition of nanoparticles has been observed in experimental studies such as in
[2, 3]. Researchers have investigated the influence of seven slip mechanisms, namely, inertia,
Brownian diffusion, thermophoresis, diffusiophoresis, magnus effect, fluid drainage, and
gravity in nanofluids. It has been shown that, in the absence of turbulence, the most significant
among these mechanisms are the Brownian diffusion and thermophoresis.

The classical Rayleigh-Benard convection problem in a heated horizontal layer has been exten-
sively studied in the literature. Among recent studies on nanofluids, Tzou [4] studied the
thermal instability and natural convection in nanofluid flow using an eigenfunction expansion
method. Narayana et al. [5, 6] studied convection and the stability of aMaxwell fluid in a porous
medium. Yadav et al. [7] investigated thermal instability of a rotating nanofluid layer. The
studies by Kuznetsov and Nield [8–11] focused on thermal instability in a porous layer satu-
rated with a nanofluid. They investigated the onset of instability in a horizontal porous layer
using a model for the nanofluid that incorporated particle Brownian motion and thermo-
phoresis. Related studies with various assumptions on the geometry and flow structure have
been made by [12–15]. In the last few decades, researchers have also investigated thermal
instability in a horizontal nanofluid layer subject to an applied magnetic field [16, 17]. The
effects of a magnetic field on convection and the onset of instability have important applications
in problems such as in cooling systems, pumps, magnetohydrodynamics and generators. The
experimental study by Heris et al. [18] showed that thermal efficiency could be achieved by
subjecting the flow to a magnetic field. The studies by Ghasemi et al. [19] and Hamad et al. [20]
focused on the flow behavior and heat transfer in an electrically conducting nanofluid under the
influence of a magnetic field and subject to Brownian diffusion and thermophoresis. They used
a water-based nanofluid containing different types of nanoparticles such as copper, alumina and
silver in their numerical simulations. Related studies of interest include [21–24]. Rana et al. [25]
studied thermal convection in a Walters (Model B) fluid in a porous medium. They showed that
a magnetic field may introduce oscillatory instability modes and acts to stabilize the system.

In this chapter, we give a weakly nonlinear stability analysis of a nanofluid layer with an
applied magnetic field, stress free boundary conditions and under the assumption of zero
nanoparticle flux at the boundary. The studies by Kuznetsov and Nield [9] and Nield and
Kuznetsov [10, 11] investigated cross-diffusion in a nanofluid layer. However, these studies
mostly presented a linear stability analysis. It is important to study the nonlinear regime for a
nanofluid flow subject to cross-diffusion due to the wide range of applications where such
flows may arise. Typical examples may be found in hydrothermal growth, compact heat
exchanges, solidification of binary mixtures, geophysical systems, and so on. Hence, with this
in mind, we studied the finite amplitude convection in a nanofluid flows subject to cross-
diffusion. By introducing a truncated Fourier series, a Lorenz-type system of seven nonlinear
differential equations is obtained. The recent multidomain spectral method is used to solve the
nonlinear equations. This method is accurate and very easy to implement compared to older
methods such as finite difference methods. An analysis of heat and mass transfer for different
parameters such as the Prandtl number, the Dufour and thermophoresis is presented.
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2. Mathematical formulation

Consider viscous incompressible MHD nanofluid flow in an infinitely extended horizontal
porous layer, confined between two boundaries at z ¼ 0 and z ¼ h. The layer is heated from
below and cooled from above, see Figure 1. A Cartesian frame of reference is chosen in which
the z-axis is vertically upward. The boundaries are perfectly conducting. The temperature at
the lower and upper walls is Tc and Th, respectively with Th > Tc. The Oberbeck-Boussinesq
approximation and the Darcy law are assumed to be applicable. The continuity equation,
momentum equation, energy equation, concentration equation and volumetric fraction nano-
particle equation, which describe the above configuration in dimensionless form, are given as

∇ � V ¼ 0, (1)

Da
Pr

∂V
∂t

¼ �∇PþDa∇2V � V þQVbez � Rmbez þ RaTbez þ RsCbez � Rnϕbez, (2)

∂T
∂t

þ V � ∇T ¼ ∇2T þ NB

Les
∇ϕ � ∇T þNANB

Les
∇T � ∇T þDu∇2C, (3)

∂C
∂t

þ V � ∇C ¼ 1
Le

∇2Cþ Sr∇2T, (4)

1
σ
∂ϕ
∂t

þ 1
ε
V � ∇ϕ ¼ 1

Les
∇2ϕþNA

Les
∇2T, (5)

subject to the boundary conditions

V ¼ 0, T ¼ 1, C ¼ 1
∂ϕ
∂z

þNA
∂T
∂z

¼ 0 at z ¼ 0, (6)

V ¼ 0, T ¼ 0, C ¼ 0
∂ϕ
∂z

þNA
∂T
∂z

¼ 0 at z ¼ 1, (7)

where V is the fluid velocity, T is the temperature, C is the solute concentration and ϕ is the
volumetric fraction of nanoparticles. The dimensionless parameters are the Darcy number
(modified by the viscosity ratio) Da, Prandtl number Pr, Hartmann-Darcy number Q, thermal
Rayleigh-Darcy number Ra, nanoparticle Rayleigh number Rn and the basic density Rayleigh
number Rm. The parameter NA is a modified diffusivity ratio, Le is the Lewis number, Rs is
solutal Rayleigh number, NB is a modified nanoparticle density increment and Du is a modi-
fied Dufour parameter. The parameter Les is the thermo-nanofluid Lewis number, ν is the
kinematic viscosity and Sr is a modified Soret parameter. These parameters have the form

Da ¼ ~μK
μh2

, Pr ¼ μ
rfαm

, Q ¼ δB2
0K
μ

, Ra ¼ rf βKhg T∗
h � T∗

c

� �

μαm
, Les ¼ αm

DB
, (8)

Rn ¼
rp � rf

� �
ϕ∗
1 � ϕ∗

0

� �
gKh

μαm
, Rm ¼ rpϕ

∗
0 þ 1� ϕ∗

0

� �
rf gKh

μαm
, Le ¼ αm

DS
, (9)
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In this chapter, we give a weakly nonlinear stability analysis of a nanofluid layer with an
applied magnetic field, stress free boundary conditions and under the assumption of zero
nanoparticle flux at the boundary. The studies by Kuznetsov and Nield [9] and Nield and
Kuznetsov [10, 11] investigated cross-diffusion in a nanofluid layer. However, these studies
mostly presented a linear stability analysis. It is important to study the nonlinear regime for a
nanofluid flow subject to cross-diffusion due to the wide range of applications where such
flows may arise. Typical examples may be found in hydrothermal growth, compact heat
exchanges, solidification of binary mixtures, geophysical systems, and so on. Hence, with this
in mind, we studied the finite amplitude convection in a nanofluid flows subject to cross-
diffusion. By introducing a truncated Fourier series, a Lorenz-type system of seven nonlinear
differential equations is obtained. The recent multidomain spectral method is used to solve the
nonlinear equations. This method is accurate and very easy to implement compared to older
methods such as finite difference methods. An analysis of heat and mass transfer for different
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where V is the fluid velocity, T is the temperature, C is the solute concentration and ϕ is the
volumetric fraction of nanoparticles. The dimensionless parameters are the Darcy number
(modified by the viscosity ratio) Da, Prandtl number Pr, Hartmann-Darcy number Q, thermal
Rayleigh-Darcy number Ra, nanoparticle Rayleigh number Rn and the basic density Rayleigh
number Rm. The parameter NA is a modified diffusivity ratio, Le is the Lewis number, Rs is
solutal Rayleigh number, NB is a modified nanoparticle density increment and Du is a modi-
fied Dufour parameter. The parameter Les is the thermo-nanofluid Lewis number, ν is the
kinematic viscosity and Sr is a modified Soret parameter. These parameters have the form
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NB ¼
ε rcð Þp
rcð Þf

ϕ∗
1 � ϕ∗

0

� �
, NA ¼ DT T∗

h � T∗
c

� �

DBT∗
c ϕ∗

1 � ϕ∗
0

� � , Rs ¼ rf βKhg C∗
h � C∗

c

� �

μαm
, (10)

Du ¼ σDTC C∗
h � C∗

c

� �

αm T∗
h � T∗

c

� � , Sr ¼ σDCT T∗
h � T∗

c

� �

αm C∗
h � C∗

c

� � , (11)

where rf , rp, ~μ, β1, β2,κm, δ, ε and K are the fluid density, nanoparticle density, effective viscos-

ity of porous medium, thermal volumetric expansion coefficient of the fluid, solutal volumetric
expansion coefficient, the thermal conductivity of porous medium, the electrical conductivity,
the porosity, and permeability of porous medium, respectively. The gravitational acceleration
is denoted by g and DB is the Brownian diffusion coefficient, DT is the thermophoresis diffu-
sion coefficient, DS is the solutal diffusion coefficient, DTC is the Dufour parameter and DCT is
the Soret parameter. The heat capacity of the fluid is rcð Þf , rcð Þp is the effective heat capacity of

the nanoparticle, rcð Þm is the effective heat capacity of the porous medium and B0 is the
uniform magnetic field strength.

The basic state is the time independent solution of Eqs. (1)–(5). Solving these equations with
boundary conditions, we obtain

Tb ¼ 1� z, Cb ¼ 1� z, ϕb ¼ ϕ0 þNAz: (12)

3. Weakly nonlinear stability analysis

In this section, we restrict the analysis to the case of two-dimensional disturbances. We define
the stream function Ψ by the equations

Figure 1. A schematic diagram of the problem.
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u ¼ ∂Ψ
∂z

, w ¼ � ∂Ψ
∂x

:

Eqs. (1)–(5) may now be simplified by introducing the truncated Fourier series

Ψ 0 ¼ A11 sinαx sinπz, T0 ¼ B11 cosαx sinπzþ B02 sin 2πz, (13)

C0 ¼ C11 cosαx sinπzþ C02 sin 2πz, ϕ0 ¼ �NA D11 cosαx sinπzþD02 sin 2πzð Þ, (14)

where A11, B11, B02, C11, C02, D11 and D02 are amplitudes that depend on time. This leads to the
Lorenz-type system of nonlinear ordinary differential equations

_Y1 ¼ Pr
Da

�BY1 �N Y2 þ Y4ð Þ þNARn
R

Y6

� �
(15)

_Y2 ¼ RY1 � Y2 �DuY4 � Y1Y3 (16)

_Y3 ¼ 1
2
Y1Y2 � G Y3 þDuY5ð Þ (17)

_Y4 ¼ RY1 � 1
Les

Y4 � SrY2 � Y1Y5 (18)

_Y5 ¼ 1
2
Y1Y2 � G

1
Les

Y5 þ SrY3

� �
(19)

_Y6 ¼ σR
ε

Y1 � σ
Le

Y6 � Y2ð Þ �NAσ
ε

Y1Y7 (20)

_Y7 ¼ NAσ
2ε

Y1Y7 � G
Le

Y7 � Y3ð Þ (21)

subject to Yn 0ð Þ ¼ Y0
n for n ¼ 1, 2,⋯, 7: The following variables have been introduced in the

equations above:

Y1 ¼ απ
γ

A11, Y2 ¼ �πRB11, Y3 ¼ �πRB02, Y4 ¼ �πRC11, Y5 ¼ �πRC20,

Y6 ¼ �πRD11, Y7 ¼ �πRD20, t∗ ¼ γt, R ¼ α2

γ3 Ra, G ¼ 4π2

γ
and N ¼ Rs

Ra
,

B ¼ Daγ2 þ γ� α2Q
γ2 :

Eqs. (15)–(21) give an approximate description of the full dimensional nonlinear system. An
analytical solution of the system of nonlinear ordinary differential Eqs. (15)–(21) is not possible
for the general time variable t. However, it is possible to discuss the stability of the nonlinear
system of equations. The system of equations is uniformly bounded in time and dissipative in
the phase space. We can easily show that
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Eqs. (15)–(21) give an approximate description of the full dimensional nonlinear system. An
analytical solution of the system of nonlinear ordinary differential Eqs. (15)–(21) is not possible
for the general time variable t. However, it is possible to discuss the stability of the nonlinear
system of equations. The system of equations is uniformly bounded in time and dissipative in
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X7

i¼1

∂ _Yi

∂Yi
¼ � DaB

Pr
þ 1þ Gþ Les�1 þ GLes�1 þ σLe�1 þ GLe�1

� �
: (22)

This is always true if B ≥ 0. As has been shown in previous studies, the trajectories may be
attracted to a fixed point, limit cycle or other attractor. For a set of initial points in the phase space
occupying a region V 0ð Þ at time t ¼ 0, after a time t > 0, the end point of the corresponding
trajectories fills a volume

V tð Þ ¼ V 0ð Þexp � DaB
Pr

þ 1þ Gþ Les�1 þ GLes�1 þ σLe�1 þ GLe�1
� �

t
� �

: (23)

Eq. (23) shows that the volume decays exponentially with time. Further, it can be noted that
the system of Eqs. (15)–(21) are invariant under the transformation

S Y1;Y2;Y3;Y4;Y5;Y6;Y7ð Þ ! �S Y1;Y2;Y3;Y4;Y5;Y6;Y7ð Þ: (24)

We obtain the possible stationary points of the nonlinear system of equations by setting _Yi ¼ 0
for i ¼ 1, 2,⋯, 7. One of these stationary points is Yi ¼ 0 and by linearizing about this point, we
obtain the Jacobian matrix

A ¼

�PrB
Da

� Pr
Da

0
PrN
Da

0
PrNARn
DaR

0

R �1 0 �Du 0 0 0
0 0 �G 0 �GDu 0 0
R �Sr 0 �Les�1 0 0 0
0 0 �GSr 0 �GLes�1 0 0
σR
ε

σLe�1 0 0 0 �σLe�1 0

0 0 GLe�1 0 0 0 �GLe�1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: (25)

The eigenvalues of the above matrix depend on the various parameters. For the specific param-
eters R ¼ 103, Da ¼ 20,Pr ¼ 10, N ¼ 25, Du ¼ 0:2, Sr ¼ 3, Les ¼ 10, Le ¼ 5, σ ¼ 0:05, G ¼ 3 and
ε ¼ 0:04, the characteristic polynomial is

P λð Þ ¼ λ7 þ 21:41λ6 þ 651:5λ5 þ 5391:7λ4 þ 12772:232λ3 � 370:962λ2 � 2996:712λþ 545:8

with eigenvalues

λ1 ¼ 0:2955056985, λ2 ¼ 0:2402382976, λ3 ¼ �0:6139990637, λ4 ¼ �4:886000936,
λ5 ¼ �5, λ6 ¼ �5:7228719981� 21:9033954659i, λ7 ¼ �5:7228719981þ 21:9033954659i:

This stationary point is a saddle point. Nonetheless, because the eigenvalues depend on
various parameters, we cannot make general conclusions as to the stability of the system. We
note, however, that if we denote the trace of the matrix A by T and the determinant d, then
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T ¼ � DaB
Pr

þ 1þ Gþ Les�1 þ GLes�1 þ σLe�1 þ GLe�1
� �

, (26)

and

d ¼ σPrG3

DaLeLes
�DuNRSr

Le
�DuNRSr

ε
þ BDuSr

Le
þDuRSr

Le
þ NR
LeLes

þ NR
Lesε

� B
LeLes

� R
LeLes

�
:

�
(27)

The trace is always negative, but the sign of determinant depends on the parameter values. If
d < 0 then

1�Nð ÞεDuSrRLesþ εB�NRLeð ÞDuSrLesþ εþ Leð ÞNLe < Bþ Rð Þε, (28)

suggesting a saddle point.

4. Method of solution

To study the influence of various physical parameters on the average Nusselt and Sherwood
numbers, we solved the nonlinear system of Eqs. (15)–(21) numerically using the multidomain
spectral collocation method. This is a novel technique for solving nonlinear initial value problems
and parabolic equations with large time domains. It has been suggested in the literature that the
method gives better accuracy compared to other methods such as finite difference and Runge-
Kutta methods [26]. To apply the multidomain spectral collocation to the nonlinear system of
equations, we first divide the interval 0;T½ � into subintervals Ωi ¼ ti�1; ti½ � for i ¼ 1, 2,⋯, p. The
transformation

t ¼ ti � ti�1

2
τþ ti þ ti�1

2
(29)

is used to transform each subinterval Ωi into the interval �1; 1½ �. The system of Eqs. (15)–(21)
can be written in the form

dYi
1

dt
¼ Pr

Da
�BYi

1 �N Yi
2 þ Y4

� �þNARn
Ra

Yi
6

� �
, (30)

dYi
2

dt
¼ RYi

1 � Yi
2 �DuYi

4 � Yi
1Y

i
3, (31)

dYi
3

dt
¼ 1

2
Yi
1Y

i
2 � G Yi

3 þDuYi
5

� �
, (32)

dYi
4

dt
¼ RYi

1 �
1
Les

Yi
4 � SrYi

2 � Yi
1Y

i
5, (33)

dYi
5

dt
¼ 1

2
Yi

1Y
i
2 � G

1
Les

Yi
5 þ SrYi

3

� �
, (34)
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Eq. (23) shows that the volume decays exponentially with time. Further, it can be noted that
the system of Eqs. (15)–(21) are invariant under the transformation

S Y1;Y2;Y3;Y4;Y5;Y6;Y7ð Þ ! �S Y1;Y2;Y3;Y4;Y5;Y6;Y7ð Þ: (24)

We obtain the possible stationary points of the nonlinear system of equations by setting _Yi ¼ 0
for i ¼ 1, 2,⋯, 7. One of these stationary points is Yi ¼ 0 and by linearizing about this point, we
obtain the Jacobian matrix

A ¼

�PrB
Da

� Pr
Da

0
PrN
Da

0
PrNARn
DaR

0

R �1 0 �Du 0 0 0
0 0 �G 0 �GDu 0 0
R �Sr 0 �Les�1 0 0 0
0 0 �GSr 0 �GLes�1 0 0
σR
ε

σLe�1 0 0 0 �σLe�1 0

0 0 GLe�1 0 0 0 �GLe�1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: (25)

The eigenvalues of the above matrix depend on the various parameters. For the specific param-
eters R ¼ 103, Da ¼ 20,Pr ¼ 10, N ¼ 25, Du ¼ 0:2, Sr ¼ 3, Les ¼ 10, Le ¼ 5, σ ¼ 0:05, G ¼ 3 and
ε ¼ 0:04, the characteristic polynomial is

P λð Þ ¼ λ7 þ 21:41λ6 þ 651:5λ5 þ 5391:7λ4 þ 12772:232λ3 � 370:962λ2 � 2996:712λþ 545:8

with eigenvalues

λ1 ¼ 0:2955056985, λ2 ¼ 0:2402382976, λ3 ¼ �0:6139990637, λ4 ¼ �4:886000936,
λ5 ¼ �5, λ6 ¼ �5:7228719981� 21:9033954659i, λ7 ¼ �5:7228719981þ 21:9033954659i:

This stationary point is a saddle point. Nonetheless, because the eigenvalues depend on
various parameters, we cannot make general conclusions as to the stability of the system. We
note, however, that if we denote the trace of the matrix A by T and the determinant d, then
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T ¼ � DaB
Pr

þ 1þ Gþ Les�1 þ GLes�1 þ σLe�1 þ GLe�1
� �

, (26)

and

d ¼ σPrG3

DaLeLes
�DuNRSr

Le
�DuNRSr

ε
þ BDuSr

Le
þDuRSr

Le
þ NR
LeLes

þ NR
Lesε

� B
LeLes

� R
LeLes

�
:

�
(27)

The trace is always negative, but the sign of determinant depends on the parameter values. If
d < 0 then

1�Nð ÞεDuSrRLesþ εB�NRLeð ÞDuSrLesþ εþ Leð ÞNLe < Bþ Rð Þε, (28)

suggesting a saddle point.

4. Method of solution

To study the influence of various physical parameters on the average Nusselt and Sherwood
numbers, we solved the nonlinear system of Eqs. (15)–(21) numerically using the multidomain
spectral collocation method. This is a novel technique for solving nonlinear initial value problems
and parabolic equations with large time domains. It has been suggested in the literature that the
method gives better accuracy compared to other methods such as finite difference and Runge-
Kutta methods [26]. To apply the multidomain spectral collocation to the nonlinear system of
equations, we first divide the interval 0;T½ � into subintervals Ωi ¼ ti�1; ti½ � for i ¼ 1, 2,⋯, p. The
transformation

t ¼ ti � ti�1

2
τþ ti þ ti�1

2
(29)

is used to transform each subinterval Ωi into the interval �1; 1½ �. The system of Eqs. (15)–(21)
can be written in the form

dYi
1

dt
¼ Pr

Da
�BYi

1 �N Yi
2 þ Y4

� �þNARn
Ra

Yi
6

� �
, (30)

dYi
2

dt
¼ RYi

1 � Yi
2 �DuYi

4 � Yi
1Y

i
3, (31)

dYi
3

dt
¼ 1

2
Yi
1Y

i
2 � G Yi

3 þDuYi
5

� �
, (32)

dYi
4

dt
¼ RYi

1 �
1
Les

Yi
4 � SrYi

2 � Yi
1Y

i
5, (33)

dYi
5

dt
¼ 1

2
Yi

1Y
i
2 � G

1
Les

Yi
5 þ SrYi

3

� �
, (34)
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dYi
6

dt
¼ σR

ε
Yi
1 �

σ
Le

Yi
6 � Yi

2

� ��NAσ
ε

Yi
1Y

i
7, (35)

dYi
7

dt
¼ NAσ

2ε
Yi
1Y

i
7 �

G
Le

Yi
7 � Yi

3

� �
, (36)

subject to

Yi
n ti�1ð Þ ¼ Yi�1

n ti�1ð Þ for n ¼ 1, 2,⋯, 7: (37)

The first step in using the multidomain spectral collocation method (MDSCM) concerns the
quasilinearization of Eqs. (30)–(36) leading to a system of equations in the form

X7
n¼1

ai j;nð ÞrY
i
n, rþ1 �

dYi
j, rþ1

dt
¼ Ri

jr, (38)

subject to

Yi
n, rþ1 ti�1ð Þ ¼ Yi�1

n, rþ1 ti�1ð Þ for n ¼ 1, 2,⋯, 7: (39)

where ai j;nð Þr and Ri
jr for j ¼ 1, 2,…, 7 are given in the Appendix. Having linearized the equa-

tions, the second step is to integrate Eqs. (30)–(36). To this end, we use the Gauss-Lobatto nodes

τij ¼ cos
πj
Nc

, for j ¼ 0, 1,⋯, Nc: (40)

We approximate the derivatives of the unknown functions Yi
n,rþ1 tð Þ at the collocation points by

dYi
n, rþ1

dt
τij
� �

¼
XNc

k¼0
DjkYi

n, rþ1 τjj
� �

¼ DUi
n, rþ1

h i
j
, (41)

where D ¼ 2D= ti � ti�1ð Þ, D is the Chebyshev differentiation matrix and

Ui
n, rþ1 ¼ Yi

n,rþ1 τi0
� �

;⋯Yi
n,rþ1 τiNc

� �� �T
,

is a vector of the unknown functions at the collocation points. Substituting Eq. (41) into
Eqs. (38) and reducing the result into matrix form, we obtain

AUi
n, rþ1 ¼ Ri

n,

Ui
n, rþ1 τi�1

Nc

� �
¼ Ui

n τi�1
Nc

� �
, n ¼ 1, 2,⋯, 7:

(42)

where the matrices A ¼ Aij
� �

and Ri
n are given in the Appendix.
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5. Heat and mass transfer

The study of heat and mass transfer in a horizontal nanofluid layer heated from below and
cooled from above has important engineering applications. We define the rate of heat transfer
by the average Nusselt number Nu tð Þ where

Nu tð Þ ¼ 1þ
α
2π

Ð 2π
α
0

∂T
∂z dx

α
2π

Ð 2π
α
0

∂Tb
∂z dx

2
4

3
5
z¼0

þDu 1þ
α
2π

Ð 2π
α
0

∂C
∂z dx

α
2π

Ð 2π
α
0

∂Cb
∂z dx

2
4

3
5
z¼0

8<
:

9=
;: (43)

Substituting Eqs. (12) and (13) into Eq. (43), we obtain

Nu tð Þ ¼ 1þ 2
R
Y3 þDu 1þ 2

R
Y5

� �
: (44)

Similarly, the rate of mass transfer stated in terms of the average Sherwood number is

Sh tð Þ ¼ 1þ 2
R
Y5 þ Sr 1þ 2

R
Y3

� �
(45)

6. Results and discussion

We have studied the weakly nonlinear instability of nanofluid flow in a horizontal layer with
stress free boundary conditions. For numerical simulations, the parameter values were chosen
from the literature on nanofluid flow such as [4, 7]. In the literature, the critical Rayleigh
number is found when the Darcy number is very large. In this study, we investigated the
critical Rayleigh number for low Darcy numbers.

The method of solution described in Section 4 was used to solve Eqs. (15)–(21). All computations
are carried out up to a value of maximum time tmax ¼ 1, and solutions are obtained using initial
conditions selected in the neighborhood of stationary points. Periodic solution sets were
obtained for the system of nonlinear equations. We determined the rate of heat andmass transfer
as functions of time for different parameter values. The results are shown in Figures 2–4. Figure 2
shows the effect of the Dufour and Soret parameters on the Nusselt and Sherwood numbers with
time t. Figure 2(a) shows how the heat transfer coefficient changes with both the Dufour
parameter and time. The heat transfer coefficient increases with the Dufour parameter but
eventually settles to a steady value with time. In Figure 2(b), the Soret parameter is similarly
shown to enhance the mass transfer coefficient. We investigated the effect of the Prandtl and
Lewis numbers (see Figures 3 and 4). An increase in the Lewis number enhances both heat and
mass transfer in a nanofluid layer heated from below. However, Figure 3 shows that increasing
the Prandtl number reduces the amplitude of oscillatory heat and mass transfer. The Prandtl
number can lead to both positive and negative contributions to the Nusselt and Sherwood
numbers. It is interesting to note that our investigation shows that the magnetic field parameter
has very little effect on the heat and mass transfer for this type of flow.
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subject to

Yi
n ti�1ð Þ ¼ Yi�1

n ti�1ð Þ for n ¼ 1, 2,⋯, 7: (37)

The first step in using the multidomain spectral collocation method (MDSCM) concerns the
quasilinearization of Eqs. (30)–(36) leading to a system of equations in the form

X7
n¼1
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n, rþ1 �

dYi
j, rþ1

dt
¼ Ri

jr, (38)

subject to

Yi
n, rþ1 ti�1ð Þ ¼ Yi�1

n, rþ1 ti�1ð Þ for n ¼ 1, 2,⋯, 7: (39)

where ai j;nð Þr and Ri
jr for j ¼ 1, 2,…, 7 are given in the Appendix. Having linearized the equa-

tions, the second step is to integrate Eqs. (30)–(36). To this end, we use the Gauss-Lobatto nodes

τij ¼ cos
πj
Nc

, for j ¼ 0, 1,⋯, Nc: (40)

We approximate the derivatives of the unknown functions Yi
n,rþ1 tð Þ at the collocation points by

dYi
n, rþ1

dt
τij
� �

¼
XNc

k¼0
DjkYi

n, rþ1 τjj
� �

¼ DUi
n, rþ1

h i
j
, (41)

where D ¼ 2D= ti � ti�1ð Þ, D is the Chebyshev differentiation matrix and

Ui
n, rþ1 ¼ Yi

n,rþ1 τi0
� �

;⋯Yi
n,rþ1 τiNc

� �� �T
,

is a vector of the unknown functions at the collocation points. Substituting Eq. (41) into
Eqs. (38) and reducing the result into matrix form, we obtain

AUi
n, rþ1 ¼ Ri

n,

Ui
n, rþ1 τi�1

Nc

� �
¼ Ui

n τi�1
Nc

� �
, n ¼ 1, 2,⋯, 7:

(42)

where the matrices A ¼ Aij
� �

and Ri
n are given in the Appendix.
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5. Heat and mass transfer

The study of heat and mass transfer in a horizontal nanofluid layer heated from below and
cooled from above has important engineering applications. We define the rate of heat transfer
by the average Nusselt number Nu tð Þ where

Nu tð Þ ¼ 1þ
α
2π

Ð 2π
α
0

∂T
∂z dx

α
2π

Ð 2π
α
0
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2
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Substituting Eqs. (12) and (13) into Eq. (43), we obtain

Nu tð Þ ¼ 1þ 2
R
Y3 þDu 1þ 2

R
Y5

� �
: (44)

Similarly, the rate of mass transfer stated in terms of the average Sherwood number is

Sh tð Þ ¼ 1þ 2
R
Y5 þ Sr 1þ 2

R
Y3

� �
(45)

6. Results and discussion

We have studied the weakly nonlinear instability of nanofluid flow in a horizontal layer with
stress free boundary conditions. For numerical simulations, the parameter values were chosen
from the literature on nanofluid flow such as [4, 7]. In the literature, the critical Rayleigh
number is found when the Darcy number is very large. In this study, we investigated the
critical Rayleigh number for low Darcy numbers.

The method of solution described in Section 4 was used to solve Eqs. (15)–(21). All computations
are carried out up to a value of maximum time tmax ¼ 1, and solutions are obtained using initial
conditions selected in the neighborhood of stationary points. Periodic solution sets were
obtained for the system of nonlinear equations. We determined the rate of heat andmass transfer
as functions of time for different parameter values. The results are shown in Figures 2–4. Figure 2
shows the effect of the Dufour and Soret parameters on the Nusselt and Sherwood numbers with
time t. Figure 2(a) shows how the heat transfer coefficient changes with both the Dufour
parameter and time. The heat transfer coefficient increases with the Dufour parameter but
eventually settles to a steady value with time. In Figure 2(b), the Soret parameter is similarly
shown to enhance the mass transfer coefficient. We investigated the effect of the Prandtl and
Lewis numbers (see Figures 3 and 4). An increase in the Lewis number enhances both heat and
mass transfer in a nanofluid layer heated from below. However, Figure 3 shows that increasing
the Prandtl number reduces the amplitude of oscillatory heat and mass transfer. The Prandtl
number can lead to both positive and negative contributions to the Nusselt and Sherwood
numbers. It is interesting to note that our investigation shows that the magnetic field parameter
has very little effect on the heat and mass transfer for this type of flow.
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Figures 5–11 show the effect of the Rayleigh number on the trajectories projected onto the Yi;Yj
� �

phase planes. The solution sets provide a visual representation of the system’s behavior with
every phase point on the phase space representing the physical state of the system. The convective
solution sets for different values of R have been presented with the trajectories projected onto the
Yi;Yj
� �

phase planes. These trajectories spiral toward the fixed point for Rayleigh numbers from

102 to 104. The solution sets give spiral phase portraits as R increases and for the high Rayleigh
numbers, the trajectories spiral many times before they reach a fixed point.

Figures 5–8 show the phase portraits projected onto the Yi;Yj
� �

- plane correspond to a
simple spiral for R ¼ 100. As R is increased to 104, the complexity of the trajectories

Figure 2. The effect of cross-diffusive parameters on (a) the Nusselt number Nu and (b) the Sherwood number Sh for
Da ¼ 0:05, Le ¼ 2, Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5, Ra ¼ 1000 and various values of the Dufour and Soret
parameters.

Figure 3. The effect of Prandtl number Pr on (a) the Nusselt number Nu and (b) the Sherwood number Sh when
Da ¼ 0:05, Le ¼ 2, Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5 and Ra ¼ 1000.
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increases leading to certain chaotic forms. Figures 8–11 show the trajectories in the three-
dimensional phase space. Here, we observe similar solution sets as in the two-dimensional
phase portraits.

Figure 5. The trajectories of the system of nonlinear equations projected on the Y1, Y2-plane when revised Rayleigh
number (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 when Da ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2,
Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.

Figure 4. The effect of Lewis number on (a) the Nusselt number Nu and (b) the Sherwood number Sh when Da ¼ 0:05,
Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5 and Ra ¼ 1000.

Figure 6. Trajectories of the system of nonlinear equations projected on the Y1;Y3ð Þ plane when the revised Rayleigh
number (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 whenDa ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04,Q ¼ 10,Du ¼ 0:2, Sr ¼ 0:3,
Le ¼ 2, N ¼ 25 and Rn ¼ 5.
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phase planes. The solution sets provide a visual representation of the system’s behavior with
every phase point on the phase space representing the physical state of the system. The convective
solution sets for different values of R have been presented with the trajectories projected onto the
Yi;Yj
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phase planes. These trajectories spiral toward the fixed point for Rayleigh numbers from

102 to 104. The solution sets give spiral phase portraits as R increases and for the high Rayleigh
numbers, the trajectories spiral many times before they reach a fixed point.
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Figure 2. The effect of cross-diffusive parameters on (a) the Nusselt number Nu and (b) the Sherwood number Sh for
Da ¼ 0:05, Le ¼ 2, Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5, Ra ¼ 1000 and various values of the Dufour and Soret
parameters.

Figure 3. The effect of Prandtl number Pr on (a) the Nusselt number Nu and (b) the Sherwood number Sh when
Da ¼ 0:05, Le ¼ 2, Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5 and Ra ¼ 1000.
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increases leading to certain chaotic forms. Figures 8–11 show the trajectories in the three-
dimensional phase space. Here, we observe similar solution sets as in the two-dimensional
phase portraits.

Figure 5. The trajectories of the system of nonlinear equations projected on the Y1, Y2-plane when revised Rayleigh
number (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 when Da ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2,
Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.

Figure 4. The effect of Lewis number on (a) the Nusselt number Nu and (b) the Sherwood number Sh when Da ¼ 0:05,
Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5 and Ra ¼ 1000.

Figure 6. Trajectories of the system of nonlinear equations projected on the Y1;Y3ð Þ plane when the revised Rayleigh
number (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 whenDa ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04,Q ¼ 10,Du ¼ 0:2, Sr ¼ 0:3,
Le ¼ 2, N ¼ 25 and Rn ¼ 5.
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Figures 12 and 13 show the streamline, isotherm and isoconcentration contours in the nanofluid
flow for different values of the Darcy number and buoyancy ratio. Figure 12 displays the stream-
lines for various values of the buoyancy ratio term. Two different eddies are observed. The
clockwise and anticlockwise flows are shown via negative and positive stream function values,
respectively. The anticlockwise rotating flow occupies the largest area of the nanofluid layer.

For low buoyancy ratio parameters, the flow structure is significantly influenced by the buoyancy
within the whole enclosure. Increasing the buoyancy ratio causes the boundary layer thickness to

Figure 7. Trajectories of the system of nonlinear equations projected on the Y1;Y5ð Þ-plane showing the sensitive depen-
dence of the trajectories on the revised Rayleigh number for (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 when Da ¼ 0:05,
Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2, Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.

Figure 8. Trajectories of the system of nonlinear equations projected on the Y1;Y6ð Þ-plane showing the sensitive depen-
dence of the trajectories on the revised Rayleigh number for (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 when Da ¼ 0:05,
Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2, Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5:

Figure 9. The bifurcations in the three-dimension solution space Y1;Y2;Y3ð Þ for (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104

when Da ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2, Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.
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become thinner. Also, a high buoyancy ratio changes the flow structure, and this impacts signif-
icantly on the concentration field, which builds up a vertical stratification in the enclosure. It is
interesting to note that for N ¼ �25, the effect of the solutal buoyancy force is in the opposite
direction of the thermal buoyancy force. The isothermal and isoconcentration profiles are situated
toward the left wall, while for N ¼ 1, the thermal and solutal buoyancy forces are equal. For
N ¼ 25, the effect of solutal buoyancy force is in the same direction as the thermal buoyancy force.
In such cases, the isothermal and isoconcentration contours are mostly toward the right wall.

We observe that when N ¼ �25, the stream function values in the central eddies increase
because the thickness of the boundary layer increases with the buoyancy ratio. The streamlines
and the flow behavior are affected by the change in the buoyancy ratio, but the flow pattern
remains unaltered. As N decreases from 1 to�25, the streamlines become very dense to the left
side of nanofluid layer while when N increases from 1 to 25, the streamlines are less so. The
buoyancy forces that drive the nanofluid motion are mainly due to the temperature gradient.

Three different types of eddies are observed for the isoconcentration contours when N ¼ 25. Of
these, two have a clockwise rotation and one is anticlockwise. It is seen that the small eddy at the
right bottom edge is diminished asN decreases from 1 to�25. Here, the concentration boundary
layer decreases due to increasing N values, hence the buoyancy ratio has a significant influence
on the concentration gradient. As the buoyancy ratio N increases from 1 to 25 the isoconcen-
trations become very dense at the bottom of nanofluid layer.

Figure 10. Flow trajectories and bifurcations in the three-dimensional space Y1;Y2;Y6ð Þ for Rayleigh numbers (a)
R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104.

Figure 11. Flow trajectories and bifurcations in the three-dimensional space Y1;Y6;Y7ð Þ for Rayleigh numbers (a)
R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104.
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when Da ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2, Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.
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become thinner. Also, a high buoyancy ratio changes the flow structure, and this impacts signif-
icantly on the concentration field, which builds up a vertical stratification in the enclosure. It is
interesting to note that for N ¼ �25, the effect of the solutal buoyancy force is in the opposite
direction of the thermal buoyancy force. The isothermal and isoconcentration profiles are situated
toward the left wall, while for N ¼ 1, the thermal and solutal buoyancy forces are equal. For
N ¼ 25, the effect of solutal buoyancy force is in the same direction as the thermal buoyancy force.
In such cases, the isothermal and isoconcentration contours are mostly toward the right wall.

We observe that when N ¼ �25, the stream function values in the central eddies increase
because the thickness of the boundary layer increases with the buoyancy ratio. The streamlines
and the flow behavior are affected by the change in the buoyancy ratio, but the flow pattern
remains unaltered. As N decreases from 1 to�25, the streamlines become very dense to the left
side of nanofluid layer while when N increases from 1 to 25, the streamlines are less so. The
buoyancy forces that drive the nanofluid motion are mainly due to the temperature gradient.
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Figure 10. Flow trajectories and bifurcations in the three-dimensional space Y1;Y2;Y6ð Þ for Rayleigh numbers (a)
R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104.

Figure 11. Flow trajectories and bifurcations in the three-dimensional space Y1;Y6;Y7ð Þ for Rayleigh numbers (a)
R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104.
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The effect of the Darcy number on the nanofluid flow in the porous medium is shown in detail in
Figure 13. The streamline patterns are similar to those depicted in Figure 12. However, as Da
increases from 0.05 to 0.07, the rotation of the streamlines changes. Similarly, the isotherm
patterns change with increasing Darcy numbers. The value of the center eddies increases with
increasingDa. IncreasingDa has the effect of increasing the effective fluid viscosity and reducing
the thermal and solutal boundary layers.

7. Conclusion

We have investigated the onset of thermal instability in a horizontal porous layer of infinite
extent in a cross-diffusive nanofluid flow. The focus of the study has been on stress free
boundary conditions with zero nanoparticle flux at the wall. A multidomain spectral colloca-
tion method was used to solve the system of nonlinear evolution equations. As the Rayleigh

Figure 12. The pattern of streamlines (top), isotherms (middle) and isoconcentration (bottom) for different values of the
buoyancy ratio N.
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number increases to 104, the trajectories spiral many times before reaching a fixed point. The
nanofluid convection regime is complex for Rayleigh numbers higher than R ¼ 104, and the
flow pattern presents difficulties in interpreting correctly.

Additionally, a change in system parameters, such as an increase in the flow Lewis number,
improves the rate of heat and mass transfer in the nanofluid saturated porous media. The
Dufour parameter has the effect of increasing heat transfer, while increasing the Soret param-
eter increases the rate of mass transfer.
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A. Appendix

The terms ai j;nð Þr and Ri
jr for j ¼ 1, 2,…, 7 in Eq. (38) are given by
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where γ1 ¼ σR
ε , γ2 ¼ NAσ

ε and γ3 ¼ Pr
Da.

B. Appendix

The matrices Aij in Eq. (42) are given by

Ann ¼ diag an,nÞri
� ��D, A12 ¼ diag ai1;2ð Þr

� �
, A16 ¼ diag ai1;6ð Þr

� �
,

A13 ¼ A14 ¼ A15 ¼ A17 ¼ O,

A21 ¼ diag ai2;1ð Þr
� �

, A23 ¼ diag ai2;3ð Þr
� �

, A24 ¼ diag ai2;4ð Þr
� �

, A25 ¼ A26 ¼ A27 ¼ O,

A31 ¼ diag ai3;1ð Þr
� �

, A32 ¼ diag ai3;2ð Þr
� �

, A35 ¼ diag ai3;5ð Þr
� �

, A34 ¼ A36 ¼ A37 ¼ O,

A41 ¼ diag ai4;1ð Þr
� �

, A42 ¼ diag ai4;2ð Þr
� �

, A45 ¼ diag ai4;5ð Þr
� �

, A43 ¼ A46 ¼ A47 ¼ O,

A51 ¼ diag ai5;1ð Þr
� �

, A53 ¼ diag ai5;3ð Þr
� �

, A54 ¼ diag ai5;4ð Þr
� �

, A52 ¼ A56 ¼ A57 ¼ O,

A61 ¼ diag ai6;1ð Þr
� �

, A62 ¼ diag ai6;2ð Þr
� �

, A67 ¼ diag ai6;7ð Þr
� �

, A63 ¼ A64 ¼ A65 ¼ O,
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A71 ¼ diag ai7;1ð Þr
� �

, A73 ¼ diag ai7;3ð Þr
� �

, A76 ¼ diag ai7;6ð Þr
� �

, A72 ¼ A74 ¼ A75 ¼ O,

where O is an N þ 1ð Þ � N þ 1ð Þ matrix of zeros and diag is an N þ 1ð Þ � N þ 1ð Þ diagonal
matrix.
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Abstract

The concepts of mass and surface fractals are introduced, and the corresponding small-
angle scattering (SAS; X-rays, neutrons) intensities are computed. It is shown how to
resolve the fractal structure of various complex systems from experimental scattering
measurements, and how obtained data are related to specific features of the fractal models.
We present and discuss various mass and surface fractal structures, including fractals
generated from iterated function systems and cellular automata. In addition to the fractal
dimension and the overall fractal size, the suggested analysis allows us to obtain the
iteration number, the number of basic units which form the fractal and the scaling factor.

Keywords: small-angle scattering, form factor, structure factor, fractals, iterated
function system, cellular automata

1. Introduction

A great number of natural systems provide us with examples of nano- and micro- structures,
which appear similar under a change of scale. These structures are called fractals [1], and can be
observed in various disordered materials, rough surfaces, aggregates, metals, polymers, gels,
colloids, thin films, etc. Quite often, the physical properties (mechanical, optical, statistical,
thermodynamical, etc.) depend on their spatial configurations, and a great deal of activity has
been performed in elucidating such correlations [2–4]. To this aim, in the last decade, important
steps have been performed in three directions: instrumentation [5–7], computer programs [8, 9],
and the development of new methods for sample preparation [10–14]. The first two have been
proved to be very useful for the physical execution and data analysis, and the third one for
preparation of nano- and micro-materials with the pre-defined structure and functions.

These achievements have stimulated a great interest in the development of theoretical investi-
gations for structural modeling of self-similar objects at nano- and micro-scale. In particular,
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every point, such as the Koch snowflake, Cantor set, or Mandelbrot cube) have been frequently

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.70870

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 10

Small-Angle Scattering from Mass and Surface Fractals

Eugen Mircea Anitas

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.70870

Provisional chapter

Small-Angle Scattering from Mass and Surface Fractals

Eugen Mircea Anitas

Additional information is available at the end of the chapter

Abstract

The concepts of mass and surface fractals are introduced, and the corresponding small-
angle scattering (SAS; X-rays, neutrons) intensities are computed. It is shown how to
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measurements, and how obtained data are related to specific features of the fractal models.
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Keywords: small-angle scattering, form factor, structure factor, fractals, iterated
function system, cellular automata
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used, since this type of fractals allows an analytical representation of various geometrical
parameters (radius of gyration) or of the scattering intensity spectrum. Although for most
fractals generated by natural processes, this is only an approximation, in the case of determin-
istic nano- and micro-materials obtained recently such as 2D Sierpinski gaskets [15] and
Cantor sets [16], or 3D Menger sponge [17] and octahedral structures [18], this approximation
becomes exact.

Small-angle scattering of X-rays (SAXS) and/or neutrons (SANS) are well established tech-
niques for probing the nano/micro scale structure in disordered materials [19–21]. While in
the case of X-rays, the scattering is mostly determined by the interaction of the incident
radiation with electrons, in the case of neutrons, the scattering is determined by their interac-
tion with the atomic nuclei and with the magnetic moments in magnetic materials. Since the
wavelengths of X-rays (0.5–2 Å) are of the same order of magnitude as those of thermal
neutrons (1–10 Å), often, the data analysis and interpretation procedures for SANS can be
interchanged with SAXS, and the developed theoretical models can be applied, generally, to
both techniques [22]. However, using neutrons is very important in studying magnetic prop-
erties of materials as well as in emphasizing or concealing certain features of the investigated
sample [23]. In the later case, the possibility of wide variations in the neutron scattering lengths
(which can be negative sometimes) is exploited, and this is a unique feature of SANS, which
makes it a preferred method over SAXS in structural analysis of biological materials [24, 25].

As compared with other methods of structural investigations, SAXS/SANS have the advantage
that they are noninvasive, the physical quantities of interest (specific surface, radius of gyra-
tion, volume, or the fractal dimension) are averaged over a macroscopic volume and they can
be extracted with almost no approximation [26]. In particular, for self-similar objects (either
exact or statistical), the most important advantage is that SAXS/SANS can distinguish between
mass [27] and surface fractals [28]. Experimentally, the difference is revealed through the value
of the scattering exponent τ in the region where the scattering intensity I(q) decays as a power-
law, i.e., I(q)∝ q�τ, where q = (4π/λ) sinθ is the scattering vector, λ is the wavelength of the
incident radiation, and 2θ is the scattering angle. For mass fractals τ =Dm, where Dm is the
mass fractal dimension with 0 <Dm< 3. For surface fractals τ = 6�Ds, where Ds is the surface
fractal dimension with 2 <Ds < 3. Thus, in practice if the absolute value of the measured
scattering exponent is smaller than 3, the sample is a mass fractal with fractal dimension τ (in
the measured q-range), and if the exponent is between 3 and 4, the sample is a surface fractal
with fractal dimension 6� τ.

Besides the fractal dimension (either mass or surface one), traditionally from SAXS/SANS pat-
terns, we can also obtain the overall size of the fractal, as well as the size of the basic structural
units composing the fractal. The last years have brought a breakthrough in the theoretical
analysis of SAXS/SANS experimental data, allowing for the extraction of additional structural
information and detailed modeling of fractals using a deterministic approach [29–40]. This
progress was stimulated by recent advances in nanotechnology, which allows preparation of
both mass and surface deterministic fractals at sub-micrometer scale [15–18, 41, 42], as well as by
instrumentation which allows novel structural features to be recorded in experimental data [43].
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This chapter focuses on the interpretation of SAXS/SANS data from deterministic mass and
surface fractals. First, a brief theoretical background on the basics of SAS theory, and on
description of mass and surface fractals, is presented. Here, we also include the theory of some
well-known methods of generating fractals, such as iterated function system of cellular autom-
ata. Novel data analysis methods for extracting additional structural information are presented
and illustrated by applications to various models of mass and surface fractals.

2. Theoretical background

In this section, some important concepts for the analysis of SAXS/SANS are reviewed, and
analytical and numerical procedures for calculating the scattering intensity from some basic
geometrical shapes are described. As we will see in the next section, these geometrical shapes
will form the “scattering units” of the fractals. Then, the basic notions of fractal theory includ-
ing fractal dimension, mass, and surface fractals are presented and defined in a rigorous
manner, and two general methods for generating fractal structures are presented. These con-
cepts are then applied in calculating the SAXS/SANS patterns from several theoretical models
of mass and surface fractals.

2.1. Small-angle scattering

2.1.1. General remarks

In a SAS experiment, a beam of X-rays or neutrons is emitted from a source and strikes the
sample. A small fraction is scattered by the sample and is recorded by the detector. In Figure 1,
the incident beam has a wave vector ki, and the scattered beam with the wave vector ks makes
the angle 2θ with the direction of the incoming or transmitted beam.

To describe the scattering from assemblies of objects with scattering length bj, we write the

scattering length density SLD as ρ(r) =∑jbj(r� rj) [21], where r!j is the object positions. Then, the

total scattering amplitude is defined by the Fourier transform of ρ r!
� �

:

A qð Þ �
ð

v
ρ rð Þe�iq:rd3r, (1)

where v is the total volume irradiated by the beam. In the following, we consider scattering
occurring in a particulate system where particles of density ρm are dispersed in a uniform
solid matrix of density ρp. Then, the excess scattering SLD is defined by Δρ = ρm� ρp. We also
consider that the objects are fractals that are randomly distributed and with uncorrelated
positions and orientations. Thus, the scattering intensities of each object are added, and the
intensity from the entire sample can be obtained from a single object averaged over all
orientations, according to [29]:
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I qð Þ ¼ n Δρ
�� ��2V2 F qð Þj j2

D E
, (2)

where n is the concentration of objects, V is the volume of each object, and F q!
� �

is the

normalized scattering amplitude given by:

F qð Þ ¼ 1
V

ð

V
e�iq:rd3r: (3)

The symbol 〈⋯〉 stands for ensemble averaging over all orientations, and for an arbitrary
function f, it is calculated according to:

f qx; qy; qz
� �D E

¼ 1
4π

ðπ
0
dθ sinθ

ð2π
0

dϕf q;θ;ϕ
� �

, (4)

where, in spherical coordinates qx = q cosϕ sinθ, qy = q sinϕ sinθ, qz = q cosθ.

Another useful form of the scattering intensity, as a function of the correlation function, is the
following [21]:

I qð Þ ¼ 4π
ðD
0
γ rð Þ sin qr

qr
r2dr, (5)

where γ(r)� 〈ρ(r) ∗ρ(�r)〉 is the correlation function of the object, with γ(r) = 0 for r >D and D
is the largest dimension in the object. The symbol ∗ denotes a convolution, and thus, the
correlation function can be seen as an averaged self-convolution of density distribution.

Figure 1. Schematic representation of a small-angle scattering experiment. 2θ is the scattering angle and λ is the
wavelength of incident beam. The sample shown is a two-phase system of polydisperse scatterers with the same shape
and random orientations, embedded in a matrix or solution.
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At low values of the scattering vector (q≲ 2π/D), the above expression can be further exploited.
By considering first the MacLaurin series

sin qrð Þ
qr

≃ 1� q2r2

6
þ q4r4

120
�⋯, (6)

and then using only the first two terms of this approximation into Eq. (5), the Guinier equation
is obtained:

I qð Þ ¼ I 0ð Þ 1� q2R2
g

3
þ⋯

 !
, (7)

where I 0ð Þ ¼ 4π
ÐD
0 γ rð Þr2dr, and

Rg ¼ 1
2

ðD
0
γ rð Þr4dr=

ðD
0
γ rð Þr2dr, (8)

is the radius of gyration of the object. In practice, a plot of logI(q) vs. q2 is used to obtain the
slope R2

g=3, and then an overall size of the object. For a ball of radius R, it is known that

R ¼ Rg
ffiffiffiffiffiffiffiffi
5=3

p
[21]. If a scattering experiment is performed on an absolute scale, molecular

weight can also be obtained.

However, as we shall see in the next sections, inside a fractal, the scattering units have defined
positions and correlations, and the interference among rays scattered by different units may no
longer be ignored, so that the scattering amplitudes of individual units have to be added. By
considering that the fractal is composed of N balls of size R, its form factor becomes [29]:

F qð Þ ¼ ρqF0 qRð Þ=N, (9)

where ρq ¼
P

je
�iq. rj is the Fourier component of the density of units centers, F0 is the form

factor of each scattering unit composing the fractal, and r!j are their positions. By introducing
Eq. (9) into Eq. (2), the scattering intensity can be written as [29]:

I qð Þ ¼ I 0ð ÞS qð Þ F0 qRð Þj j2=N, (10)

where I(0) =n|Δρ|2V2, and S qð Þ � ρqρ-q
D E

=N is the structure factor and it describes the corre-

lations between the scattering units inside the fractal.

A physical sample almost always consists of fractals that have different sizes, which is called
polydispersity. An exception to this rule is protein solutions, in which all have the same size
and shape. Thus, the corresponding scattering intensity from polydisperse fractals can be
regarded as the sum of each individual form factor weighted with the corresponding volume
V and contrast Δρ. We consider here a continuous distribution DN(l) of fractals with different
sizes l, defined in such a way that DN(l)dl gives the probability of finding a fractal with
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dimension l lying in the range (l, l + dl). Although any kind of broad distribution can be used,
we take here, as an application, a log-normal distribution of fractal sizes, such as:

DN lð Þ ¼ 1

σl 2πð Þ1=2
e�

log l=μ0ð Þþσ2=2ð Þ2
2σ2 , (11)

where σ ¼ log 1þ σ2r
� �� �1=2, μ0 = 〈l〉D is the mean length, σr ¼ l2

� �� μ2
0

� �1=2
=μ0 is the relative

variance, and ⋯h iD ¼ Ð∞0 ⋯DN lð Þdl. Since for a polydisperse fractal dispersion, the volume of
each fractal has a continuous variation with its size, the polydisperse scattering intensity becomes:

I qð Þ ¼ n Δρ
�� ��2

ð∞
0

F qð Þj j2
D E

V2 lð ÞDN lð Þdl, (12)

where the form factor F(q) is given by Eq. (9). The effect of polydispersity is to smooth the
scattering curves [20, 21] (see also Figure 2a).

2.1.2. Debye-Pantos formula

In the next section, we shall make use of chaos game representation (CGR) and cellular
automata (CA) to generate positions of the N scattering units/points. Thus, we can start with
the Debye formula [44]

ID qð Þ ¼ NIs qð Þ þ 2Fs qð Þ2
XN�1

i¼1

XN

j¼iþ1

sin qrij
qrij

, (13)

where Is(q) is the intensity scattered by each fractal unit, and rij is the distance between units i and j.
When the number of units exceeds few thousands, the computation of the term sin(qrij)/(qrij)
is time consuming, and thus it is handled via a pair-distance histogram g(r), with a bin-width
commensurate with the experimental resolution [45]. Thus, Eq. (13) becomes

ID qð Þ ¼ NIs qð Þ þ 2F2s qð Þ
XNbins

i¼1

g rið Þ sin qri
qri

, (14)

where g(ri) is the pair-distance histogram at pair distance ri. For determining fractal properties,
we can neglect the form factor, and consider Is qð Þ ¼ F2s qð Þ ¼ 1. Thus, Eq. (14) gives the struc-
ture factor:

ID qð Þ � SD qð Þ ¼ N þ 2
XNbins

i¼1

g rið Þ sin qri
qri

: (15)

2.1.3. Scattering from a ball and from a triangle

As a first example, we derive the scattering intensity of a ball with unit density, radius R, and
volume V = (4π/3)R3. To do so, we can rewrite the normalized scattering amplitude given by
Eq. (3), in spherical coordinates, such as:
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F0 qð Þ ¼ 1
V

ð2π
ϕ¼0

ðπ
θ¼0

ð∞
r¼0

e�iq. rr2 sinθdrdθdϕ: (16)

Note that since balls represent here the basic units of the fractal, we have chosen the notation
F0(q) instead of F(q), in spirit of Eq. (9). We can choose the polar axis to coincide with the direction
of q, and therefore q. r ¼ qr cosθ. By denoting u= cosθ, in the new variable, Eq. (16) becomes:

F0 qð Þ � 1
V

ð2π
ϕ¼0

ð1
u¼�1

ð∞
r¼0

e�iqrur2 sinθdrdθdϕ ¼ 1
V

ðR
r¼0

4πr2
sin qrð Þ

qr
dr: (17)

By performing an integration by parts of the last expression, the normalized scattering ampli-
tude of the ball of radius R becomes:

F0 qRð Þ ¼ 3 sin qRð Þ � qRð Þ cos qRð Þð Þ
qRð Þ3 : (18)

Thus, the total scattering intensity (see also Eq. (2)) becomes:

I qð Þ � F0 qRð Þ½ �2 ¼ 32 sin qRð Þ � qRð Þ cos qRð Þð Þ2
qRð Þ6 : (19)

Figure 2a shows the scattering intensity of a ball of radiusR = 10 nm. The scattering is represented
on a double logarithmic scale and shows the presence of two main regions. At low values of the
scattering vector (q≲π/R), we have the Guinier region, which is a plateau with I(q)∝ q0, and from
which one can obtain the radius of gyration, as described in the previous section. At higher values
(i.e., q≳π/R), there is apower-lawdecayof the type I(q)∝ q�4 andwithmanyminima. This is called
the Porod region and generally it gives information about the specific surface of the investigated
object. The main feature here is that by increasing the relative variance σr, the scattering curve

Figure 2. (a) SAS intensity from a ball of radius R = 10 nm from Eq. (19) (lowest curve). The higher the relative variance, the
smoother the curve. Polydisperse SAS intensity, according to Eq. (12) at various values of relative variances. (b) SAS
intensities from a ball of radius R = 10 nm (left curve), and R = 1 nm (right curve).
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dimension l lying in the range (l, l + dl). Although any kind of broad distribution can be used,
we take here, as an application, a log-normal distribution of fractal sizes, such as:

DN lð Þ ¼ 1

σl 2πð Þ1=2
e�

log l=μ0ð Þþσ2=2ð Þ2
2σ2 , (11)

where σ ¼ log 1þ σ2r
� �� �1=2, μ0 = 〈l〉D is the mean length, σr ¼ l2

� �� μ2
0

� �1=2
=μ0 is the relative

variance, and ⋯h iD ¼ Ð∞0 ⋯DN lð Þdl. Since for a polydisperse fractal dispersion, the volume of
each fractal has a continuous variation with its size, the polydisperse scattering intensity becomes:

I qð Þ ¼ n Δρ
�� ��2

ð∞
0

F qð Þj j2
D E

V2 lð ÞDN lð Þdl, (12)

where the form factor F(q) is given by Eq. (9). The effect of polydispersity is to smooth the
scattering curves [20, 21] (see also Figure 2a).

2.1.2. Debye-Pantos formula

In the next section, we shall make use of chaos game representation (CGR) and cellular
automata (CA) to generate positions of the N scattering units/points. Thus, we can start with
the Debye formula [44]

ID qð Þ ¼ NIs qð Þ þ 2Fs qð Þ2
XN�1

i¼1

XN

j¼iþ1

sin qrij
qrij

, (13)

where Is(q) is the intensity scattered by each fractal unit, and rij is the distance between units i and j.
When the number of units exceeds few thousands, the computation of the term sin(qrij)/(qrij)
is time consuming, and thus it is handled via a pair-distance histogram g(r), with a bin-width
commensurate with the experimental resolution [45]. Thus, Eq. (13) becomes

ID qð Þ ¼ NIs qð Þ þ 2F2s qð Þ
XNbins

i¼1

g rið Þ sin qri
qri

, (14)

where g(ri) is the pair-distance histogram at pair distance ri. For determining fractal properties,
we can neglect the form factor, and consider Is qð Þ ¼ F2s qð Þ ¼ 1. Thus, Eq. (14) gives the struc-
ture factor:

ID qð Þ � SD qð Þ ¼ N þ 2
XNbins

i¼1

g rið Þ sin qri
qri

: (15)

2.1.3. Scattering from a ball and from a triangle

As a first example, we derive the scattering intensity of a ball with unit density, radius R, and
volume V = (4π/3)R3. To do so, we can rewrite the normalized scattering amplitude given by
Eq. (3), in spherical coordinates, such as:
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F0 qð Þ ¼ 1
V

ð2π
ϕ¼0

ðπ
θ¼0

ð∞
r¼0

e�iq. rr2 sinθdrdθdϕ: (16)

Note that since balls represent here the basic units of the fractal, we have chosen the notation
F0(q) instead of F(q), in spirit of Eq. (9). We can choose the polar axis to coincide with the direction
of q, and therefore q. r ¼ qr cosθ. By denoting u= cosθ, in the new variable, Eq. (16) becomes:

F0 qð Þ � 1
V

ð2π
ϕ¼0

ð1
u¼�1

ð∞
r¼0

e�iqrur2 sinθdrdθdϕ ¼ 1
V

ðR
r¼0

4πr2
sin qrð Þ

qr
dr: (17)

By performing an integration by parts of the last expression, the normalized scattering ampli-
tude of the ball of radius R becomes:

F0 qRð Þ ¼ 3 sin qRð Þ � qRð Þ cos qRð Þð Þ
qRð Þ3 : (18)

Thus, the total scattering intensity (see also Eq. (2)) becomes:

I qð Þ � F0 qRð Þ½ �2 ¼ 32 sin qRð Þ � qRð Þ cos qRð Þð Þ2
qRð Þ6 : (19)

Figure 2a shows the scattering intensity of a ball of radiusR = 10 nm. The scattering is represented
on a double logarithmic scale and shows the presence of two main regions. At low values of the
scattering vector (q≲π/R), we have the Guinier region, which is a plateau with I(q)∝ q0, and from
which one can obtain the radius of gyration, as described in the previous section. At higher values
(i.e., q≳π/R), there is apower-lawdecayof the type I(q)∝ q�4 andwithmanyminima. This is called
the Porod region and generally it gives information about the specific surface of the investigated
object. The main feature here is that by increasing the relative variance σr, the scattering curve

Figure 2. (a) SAS intensity from a ball of radius R = 10 nm from Eq. (19) (lowest curve). The higher the relative variance, the
smoother the curve. Polydisperse SAS intensity, according to Eq. (12) at various values of relative variances. (b) SAS
intensities from a ball of radius R = 10 nm (left curve), and R = 1 nm (right curve).
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becomes smoother, and the value of the scattering exponent is preserved. Figure 2b shows that by
decreasing the size of the ball, the corresponding scattering curve has the same characteristics and
the Porod region is shifted to the rightwith the corresponding factor (here by 10).

The second example is an equilateral triangle of edge size a. This is a slightly more complicated
structure since it does not have a center of symmetry as a ball, and thus an orientational

averaging is required. Thus, its height is h ¼ a
ffiffiffi
3

p
=2 and its surface area is:

Area að Þ ¼ a2
ffiffiffi
3

p

4
: (20)

We choose a Cartesian coordinate system where one edge is parallel to the x-axis and the
opposite vertex coincides with the origin. Thus, Eq. (3) becomes a surface integral given by:

F0 qð Þ ¼ 1
Area að Þ

ða
0
dy
ðya

2h

�ya
2h

dxe�i xqxþyqyð Þ, (21)

which can be calculated and transformed into:

F0 qð Þ ¼ 2e�iα βe
iα � β cos β� iα sin β

β β2 � α2
� � , (22)

where α = hqx and β = hqy. As we shall see in next sections, the scattering amplitude of a system of
triangles can be obtained by properly taking into account their scaling, rotation, and translations.

The averaging over all orientations is performed by allowing the triangle to rotate in a 2D
space, and thus the average given by Eq. (4) for 3D case, becomes now:

f qx; qy
� �D E

¼ 1
2π

ð2π
0

dϕf q;ϕ
� �

, (23)

with qx = q cosϕ and qy = q sinϕ.

Similarly to scattering from a ball, the intensity curve of a triangle also shows the Guinier
region at low-q (q≲ 2π/a), and a Porod region at high-q (q≳ 2π/a) as shown in Figure 3a.
However, for a triangle, the absolute value of the scattering exponent in the Porod region is
equal to 3. This is in contrast to the value of 4 obtained for the ball in the previous example (see
Figure 3b). The difference arises due to the fact that the triangle is a 2D object while the ball is a
3D one. In addition, due to the lack of symmetry, scattering from a triangle does not show
pronounced minima as in the case of scattering from a ball.

2.1.4. Scattering from systems of triangles

In the previous section, we have seen that regardless of the shape and Euclidean dimension, the
SAS intensity from basic geometrical structures always reproduces a Guinier region followed by
a Porod one. Without loosing from generality, we will restrict in the following to calculate SAS
intensity from systems of triangles. In principle, any geometrical shape can be chosen but we
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prefer here triangles due to the fact that the both well-known techniques for generating fractal
structures: iteration function systems and cellular automata, in their basic form, involve triangles
in the construction process.

We start first with a simple model consisting of three triangles of edge size a/2, with a = 1 nm,
as shown in Figure 4a. For this configuration, we can write [40]:

Area a=3ð ÞF qð Þ ¼
X2

j¼0

β2sArea að ÞF0 βsq
� �

e�iqaj , (24)

where βs is the scaling factor, F0(q) is given by Eq. (22), and the translation vectors are given by:

aj ¼ a
ffiffiffi
3

p

6
cos

π
3

2jþ 3
2

� �
; sin

π
3

2jþ 3
2

� �� �
(25)

The corresponding scattering intensity is shown in Figure 4b, and as expected, it consists of a
Guinier region followed by a Porod one with scattering exponent �3. For comparison, the
same figure shows the scattering intensity of a single of edge size a = 1 nm.

The second example is a system of 6 triangles of edge sizes a/3 arranged in such a way that
they form a hexagon as shown in Figure 5a in black. For this configuration, the translation
vectors can be written as [38]:

bj ¼ 2a
3
ffiffiffi
3

p cos
π
3
j; sin

π
3
j

n o
: (26)

The corresponding scattering intensity is shown in Figure 5b and shows a superposition of
maxima and minima. Excepting the distribution of minima in the Porod region, there is no
significant difference between this scattering curve and the one corresponding to the system of
three triangles shown in Figure 4b.

Figure 3. (a) SAS intensity from an equilateral triangle of edge size a = 1 nm (right curve), and a = 3 nm (left curve),
respectively. (b) A comparison between the SAS intensity of a ball of radius R = 1 nm (left curve) and a triangle of edge size
a = 1 nm (right curve).
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becomes smoother, and the value of the scattering exponent is preserved. Figure 2b shows that by
decreasing the size of the ball, the corresponding scattering curve has the same characteristics and
the Porod region is shifted to the rightwith the corresponding factor (here by 10).

The second example is an equilateral triangle of edge size a. This is a slightly more complicated
structure since it does not have a center of symmetry as a ball, and thus an orientational

averaging is required. Thus, its height is h ¼ a
ffiffiffi
3

p
=2 and its surface area is:

Area að Þ ¼ a2
ffiffiffi
3

p

4
: (20)

We choose a Cartesian coordinate system where one edge is parallel to the x-axis and the
opposite vertex coincides with the origin. Thus, Eq. (3) becomes a surface integral given by:

F0 qð Þ ¼ 1
Area að Þ

ða
0
dy
ðya

2h

�ya
2h

dxe�i xqxþyqyð Þ, (21)

which can be calculated and transformed into:

F0 qð Þ ¼ 2e�iα βe
iα � β cos β� iα sin β

β β2 � α2
� � , (22)

where α = hqx and β = hqy. As we shall see in next sections, the scattering amplitude of a system of
triangles can be obtained by properly taking into account their scaling, rotation, and translations.

The averaging over all orientations is performed by allowing the triangle to rotate in a 2D
space, and thus the average given by Eq. (4) for 3D case, becomes now:

f qx; qy
� �D E

¼ 1
2π

ð2π
0

dϕf q;ϕ
� �

, (23)

with qx = q cosϕ and qy = q sinϕ.

Similarly to scattering from a ball, the intensity curve of a triangle also shows the Guinier
region at low-q (q≲ 2π/a), and a Porod region at high-q (q≳ 2π/a) as shown in Figure 3a.
However, for a triangle, the absolute value of the scattering exponent in the Porod region is
equal to 3. This is in contrast to the value of 4 obtained for the ball in the previous example (see
Figure 3b). The difference arises due to the fact that the triangle is a 2D object while the ball is a
3D one. In addition, due to the lack of symmetry, scattering from a triangle does not show
pronounced minima as in the case of scattering from a ball.

2.1.4. Scattering from systems of triangles

In the previous section, we have seen that regardless of the shape and Euclidean dimension, the
SAS intensity from basic geometrical structures always reproduces a Guinier region followed by
a Porod one. Without loosing from generality, we will restrict in the following to calculate SAS
intensity from systems of triangles. In principle, any geometrical shape can be chosen but we
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prefer here triangles due to the fact that the both well-known techniques for generating fractal
structures: iteration function systems and cellular automata, in their basic form, involve triangles
in the construction process.

We start first with a simple model consisting of three triangles of edge size a/2, with a = 1 nm,
as shown in Figure 4a. For this configuration, we can write [40]:

Area a=3ð ÞF qð Þ ¼
X2

j¼0

β2sArea að ÞF0 βsq
� �

e�iqaj , (24)

where βs is the scaling factor, F0(q) is given by Eq. (22), and the translation vectors are given by:

aj ¼ a
ffiffiffi
3

p

6
cos

π
3

2jþ 3
2

� �
; sin

π
3

2jþ 3
2

� �� �
(25)

The corresponding scattering intensity is shown in Figure 4b, and as expected, it consists of a
Guinier region followed by a Porod one with scattering exponent �3. For comparison, the
same figure shows the scattering intensity of a single of edge size a = 1 nm.

The second example is a system of 6 triangles of edge sizes a/3 arranged in such a way that
they form a hexagon as shown in Figure 5a in black. For this configuration, the translation
vectors can be written as [38]:

bj ¼ 2a
3
ffiffiffi
3

p cos
π
3
j; sin

π
3
j

n o
: (26)

The corresponding scattering intensity is shown in Figure 5b and shows a superposition of
maxima and minima. Excepting the distribution of minima in the Porod region, there is no
significant difference between this scattering curve and the one corresponding to the system of
three triangles shown in Figure 4b.

Figure 3. (a) SAS intensity from an equilateral triangle of edge size a = 1 nm (right curve), and a = 3 nm (left curve),
respectively. (b) A comparison between the SAS intensity of a ball of radius R = 1 nm (left curve) and a triangle of edge size
a = 1 nm (right curve).
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The last example is slightly more complicated and it consists of one hexagon of edge size a/3
(black) and six triangles of edge size a/3 (gray), with a = 1 nm arranged as in Figure 5a. This
configuration is equivalent to a system of one triangle of edge size a and three triangles of edge
size a/3. This is known in the literature, also as the Star of David. The translation vectors of the
three triangles can be obtained in a similar way, as in the case of the first example. The
corresponding scattering intensity is shown in Figure 5b (red). It can be seen that due to
various sizes of the triangles involved in the construction, an intermediate regime emerges
between the Guinier and Porod regions, approximately at 2≲ q≲ 8 nm�1. As we shall see later,
for even more complex structures, this intermediate region will evolve into a fractal one.
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Figure 4. (a) A model of three triangles (gray) of edge size a/2, with a = 1 nm; (b) the corresponding SAS intensity (highly
oscillating curve). The smoother curve is the SAS intensity corresponding to a single triangle of edge size a = 1 nm and
whose center coincides with the center of white triangle in part (a).

Figure 5. (a) Two models consisting only of equilateral triangles: hexagon (black color) and Star of David (black and gray
colors); (b) the corresponding SAS intensities of the hexagon (continuous curve) and Star of David (dashed curve).
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In particular, if the triangles composing the system are arranged in such a way that they form a
Sierpinski gasket, the intermediate region will correspond to a mass fractal region [29–31]. When
the triangles have a power-law distribution in their sizes, the intermediate region will correspond
to a surface fractal one [37, 38]. The great advantage of the SAS technique consists in the possibility
to differentiate these two types of fractal regimes, as discussed at the beginning of this chapter.

2.2. Mass and surface fractals

As it was already pointed out before, the main characteristic of fractals obtained from a SAS
experiment is the fractal dimension. Mathematically, the α-dimensional Hausdorff measure is
defined by [29]

mα Að Þ ¼ lim
a!0

inf
Vif g

X
i

aαi ,α > 0 (27)

where A is a subset of an n-dimensional Euclidean space, {Vi} is a covering of A with ai = diam
(Vi) ≤ a, and the infimum is on all possible coverings. Then, the Hausdorff dimension D of the
set A is given by:

D � inf αi;mα Að Þ ¼ 0f g ¼ sup α;mα Að Þ ¼ ∞f g, (28)

and it represents the value of α for which the Hausdorff measure changes its value from zero to
infinity.

However, in practice, this definition is quite inconvenient to be used, and here we shall use the
“mass-radius” relation for calculating the Hausdorff dimension of the fractals [1]. In this
approach, the total fractal measure (i.e., mass, surface area, volume) of the fractal within a ball
of radius r centered on the fractal is given by:

M rð Þ ¼ A rð ÞrD, (29)

where logA(r)/ log r! 0 for r!∞.

As an application, for a deterministic mass fractal of length L, scaling factor βs, and k structural
units in the first iteration, we can write [1]:

M Lð Þ ¼ kM βsL
� �

, (30)

and using Eq. (29), one obtains a formula for calculating the fractal dimension of the mass
fractal:

kβDs ¼ 1: (31)

Thus, if a finite iteration of the fractal consists of N scattering balls of radius a, the fractal
dimension is given by the asymptotic:

N∝
L
a

� �D

, (32)

in the limit of large number of iterations.
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The last example is slightly more complicated and it consists of one hexagon of edge size a/3
(black) and six triangles of edge size a/3 (gray), with a = 1 nm arranged as in Figure 5a. This
configuration is equivalent to a system of one triangle of edge size a and three triangles of edge
size a/3. This is known in the literature, also as the Star of David. The translation vectors of the
three triangles can be obtained in a similar way, as in the case of the first example. The
corresponding scattering intensity is shown in Figure 5b (red). It can be seen that due to
various sizes of the triangles involved in the construction, an intermediate regime emerges
between the Guinier and Porod regions, approximately at 2≲ q≲ 8 nm�1. As we shall see later,
for even more complex structures, this intermediate region will evolve into a fractal one.
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Figure 4. (a) A model of three triangles (gray) of edge size a/2, with a = 1 nm; (b) the corresponding SAS intensity (highly
oscillating curve). The smoother curve is the SAS intensity corresponding to a single triangle of edge size a = 1 nm and
whose center coincides with the center of white triangle in part (a).

Figure 5. (a) Two models consisting only of equilateral triangles: hexagon (black color) and Star of David (black and gray
colors); (b) the corresponding SAS intensities of the hexagon (continuous curve) and Star of David (dashed curve).
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In particular, if the triangles composing the system are arranged in such a way that they form a
Sierpinski gasket, the intermediate region will correspond to a mass fractal region [29–31]. When
the triangles have a power-law distribution in their sizes, the intermediate region will correspond
to a surface fractal one [37, 38]. The great advantage of the SAS technique consists in the possibility
to differentiate these two types of fractal regimes, as discussed at the beginning of this chapter.

2.2. Mass and surface fractals

As it was already pointed out before, the main characteristic of fractals obtained from a SAS
experiment is the fractal dimension. Mathematically, the α-dimensional Hausdorff measure is
defined by [29]

mα Að Þ ¼ lim
a!0

inf
Vif g

X
i

aαi ,α > 0 (27)

where A is a subset of an n-dimensional Euclidean space, {Vi} is a covering of A with ai = diam
(Vi) ≤ a, and the infimum is on all possible coverings. Then, the Hausdorff dimension D of the
set A is given by:

D � inf αi;mα Að Þ ¼ 0f g ¼ sup α;mα Að Þ ¼ ∞f g, (28)

and it represents the value of α for which the Hausdorff measure changes its value from zero to
infinity.

However, in practice, this definition is quite inconvenient to be used, and here we shall use the
“mass-radius” relation for calculating the Hausdorff dimension of the fractals [1]. In this
approach, the total fractal measure (i.e., mass, surface area, volume) of the fractal within a ball
of radius r centered on the fractal is given by:

M rð Þ ¼ A rð ÞrD, (29)

where logA(r)/ log r! 0 for r!∞.

As an application, for a deterministic mass fractal of length L, scaling factor βs, and k structural
units in the first iteration, we can write [1]:

M Lð Þ ¼ kM βsL
� �

, (30)

and using Eq. (29), one obtains a formula for calculating the fractal dimension of the mass
fractal:

kβDs ¼ 1: (31)

Thus, if a finite iteration of the fractal consists of N scattering balls of radius a, the fractal
dimension is given by the asymptotic:

N∝
L
a

� �D

, (32)

in the limit of large number of iterations.
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If the quantity to be measured is themass M(r) embedded in a disk of radius r, Eq. (30) becomes
M(r)∝ rDm

, which leads to I(q)∝ q�Dm. The lower the value of mass fractal dimension Dm, the
less compact is the structure. In a similar way, for a surface fractal of fractal dimension Ds, its
surface obeys S(r)∝ r2�Ds and thus the scattering intensity decays as I(q)∝ q�(2d�Ds).

More generally, in a two-phase system where one phase is of dimension Dm and the second
phase is its complement set of dimension Dp (“pores”), the “boundary” between the two phases
also forms a set of dimension Ds (“surface”). Thus, for a mass fractal, we have Ds =Dm< d and
Dp = d, while for a surface fractal we have Dm=Dp = d and d� 1 <Ds < d [37, 38]. The possibility of
differentiating between mass and surface fractals makes SAS a very convenient technique for
measuring fractal dimensions of materials at nano- and micro-scales.

2.3. Iterated function system

As a first method of generating fractals, we consider an iterated function system (IFS). By
definition, an IFS is a complete metric space (X, d) together with a finite set wn :X!X of
contraction mappings and contractivity factors sn,n > 1, 2,⋯,N. In general, a transformation
f : X!X on a metric space (X, d) is a contraction mapping if there is a constant (contractivity
factor) 0 ≤ s < 1 such that

d f xð Þ; f yð Þð Þ ≤ s. d x; yð Þ ∀x, y∈X. (33)

By considering a hyperbolic IFS and if we denote by (H(X), h(d)), the space of nonempty
compact subsets with the Hausdorff metric h(d), then the transformations W :H(X)!H(X)
defined by W Bð Þ ¼ ∪Nn¼1wn Bð Þ, ∀B∈H Xð Þ is a contraction mapping on the complete metric
space H Xð Þ; h dð Þð Þ with the contractivity factor s [46], i.e.,

h W Bð Þ;W Cð Þð Þ ≤ s � h B;Cð Þ∀B, C∈H Xð Þ: (34)

The unique fix point A∈H(X) obeys A ¼ ∪Nn¼1wn Að Þ and is called the attractor of the IFS, which
is a deterministic fractal [46].

We generate here the attractor by using random iteration algorithm, and thus we assign the

probability pn > 0 to wn for n = 1, 2,⋯where
PN

n¼1 pn ¼ 1. Then, a point x0∈X is chosen, and we
build recursively the sequence xk∈ {w1(xk� 1),w2(xk� 1),⋯,wN(xk� 1)}, where the probability of
the event xk =wn(xk� 1) is pn, and k = 1, 2,⋯. This leads to the sequence {xk� 1 : k = 0, 1,⋯}, which
converges to the attractor of IFS.

2.4. Cellular automata

Another important method to generate exact self-similar fractals is by using cellular automata
(CA) [47–49]. They provide simple models for dynamical systems dealing with the emergence
of collective phenomena such as chaos, turbulence, or fractals. Basically, a cellular automaton is
a set of cells on a grid (rectangular, hexagonal, etc.) that evolves through a number of discrete
steps according to a set of rules based on the states of neighboring cells. The rules are then
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applied alternatively for as many times as needed. The grid is n-dimensional but for our
purposes, we will choose n = 1.

In this chapter, we shall present Rule 90 [49] together with the corresponding structure
factor based on Pantos formula given by Eq. (15). For particular values of the number of
steps, Rule 90 generates exact shapes of the Sierpinski gasket (SG). However, for most of the
number of steps, it generates intermediate structures between two consecutive iterations of
SG. Thus, for Rule 90, CA extends considerably the number of structures generated, and
therefore new classes of materials consisting of a “mixture” of SG at various iterations can
be investigated.

More generally, SAS from CA could be used to check whether a generated structure is a mass or
surface fractal (or none of them), i.e., whether there exists a power-law distribution of some
entities (collections of cells). In addition, through the oscillations of the scattering curve in the
fractal region, SAS from CA can shed some light on the randomness of the generated structures.
This could be of particular interest since some rules like Rule 30 generates so-called pseudo-
random structures. However, this is beyond the scope of this chapter. Here, we shall restrict
ourselves to calculation and interpretation of SAS intensities from basic structures, such as those
based on SG. This shall facilitate a quick comparison with the theoretical model based on SG
presented in the next section, and thus to support the validity of the obtained results.

3. Small-angle scattering from mass fractals

As an example of a deterministic mas fractal, we calculate the scattering from a two dimen-
sional Sierpinski gasket (SG), generated by three different methods. In order to calculate the
scattering intensities of an ensemble of triangles, we use the following properties:

• When the size of a triangle is scaled as a! βsa, then the form factor scales as F(q)! F(βsq);

• When the triangle is translated by a vector b such as r!rþr, then F(q)!F(q)e�iq. b.

Zero-th iteration of SG consists of a single triangle of edge size a (here, a = 1 nm). First iteration
(m = 1) consists of four smaller triangles, each of the edge length a/2 as shown in Figure 3a.
At second iteration (m = 2), the same operation is repeated for each of the triangles of edge
length a/2. In the limit of large number of iterations m, the total number of triangles of edge size
am = a/2m is:

N ¼ 3m: (35)

Therefore using Eq. (31), one obtains the fractal dimension of SG as:

D ¼ lim
m!∞

logN
log a=amð Þ ≈ 1:585: (36)

At m-th iteration, the positions of the triangles forming the SG are given by:
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If the quantity to be measured is themass M(r) embedded in a disk of radius r, Eq. (30) becomes
M(r)∝ rDm

, which leads to I(q)∝ q�Dm. The lower the value of mass fractal dimension Dm, the
less compact is the structure. In a similar way, for a surface fractal of fractal dimension Ds, its
surface obeys S(r)∝ r2�Ds and thus the scattering intensity decays as I(q)∝ q�(2d�Ds).

More generally, in a two-phase system where one phase is of dimension Dm and the second
phase is its complement set of dimension Dp (“pores”), the “boundary” between the two phases
also forms a set of dimension Ds (“surface”). Thus, for a mass fractal, we have Ds =Dm< d and
Dp = d, while for a surface fractal we have Dm=Dp = d and d� 1 <Ds < d [37, 38]. The possibility of
differentiating between mass and surface fractals makes SAS a very convenient technique for
measuring fractal dimensions of materials at nano- and micro-scales.

2.3. Iterated function system

As a first method of generating fractals, we consider an iterated function system (IFS). By
definition, an IFS is a complete metric space (X, d) together with a finite set wn :X!X of
contraction mappings and contractivity factors sn,n > 1, 2,⋯,N. In general, a transformation
f : X!X on a metric space (X, d) is a contraction mapping if there is a constant (contractivity
factor) 0 ≤ s < 1 such that

d f xð Þ; f yð Þð Þ ≤ s. d x; yð Þ ∀x, y∈X. (33)

By considering a hyperbolic IFS and if we denote by (H(X), h(d)), the space of nonempty
compact subsets with the Hausdorff metric h(d), then the transformations W :H(X)!H(X)
defined by W Bð Þ ¼ ∪Nn¼1wn Bð Þ, ∀B∈H Xð Þ is a contraction mapping on the complete metric
space H Xð Þ; h dð Þð Þ with the contractivity factor s [46], i.e.,

h W Bð Þ;W Cð Þð Þ ≤ s � h B;Cð Þ∀B, C∈H Xð Þ: (34)

The unique fix point A∈H(X) obeys A ¼ ∪Nn¼1wn Að Þ and is called the attractor of the IFS, which
is a deterministic fractal [46].

We generate here the attractor by using random iteration algorithm, and thus we assign the

probability pn > 0 to wn for n = 1, 2,⋯where
PN

n¼1 pn ¼ 1. Then, a point x0∈X is chosen, and we
build recursively the sequence xk∈ {w1(xk� 1),w2(xk� 1),⋯,wN(xk� 1)}, where the probability of
the event xk =wn(xk� 1) is pn, and k = 1, 2,⋯. This leads to the sequence {xk� 1 : k = 0, 1,⋯}, which
converges to the attractor of IFS.

2.4. Cellular automata

Another important method to generate exact self-similar fractals is by using cellular automata
(CA) [47–49]. They provide simple models for dynamical systems dealing with the emergence
of collective phenomena such as chaos, turbulence, or fractals. Basically, a cellular automaton is
a set of cells on a grid (rectangular, hexagonal, etc.) that evolves through a number of discrete
steps according to a set of rules based on the states of neighboring cells. The rules are then
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applied alternatively for as many times as needed. The grid is n-dimensional but for our
purposes, we will choose n = 1.

In this chapter, we shall present Rule 90 [49] together with the corresponding structure
factor based on Pantos formula given by Eq. (15). For particular values of the number of
steps, Rule 90 generates exact shapes of the Sierpinski gasket (SG). However, for most of the
number of steps, it generates intermediate structures between two consecutive iterations of
SG. Thus, for Rule 90, CA extends considerably the number of structures generated, and
therefore new classes of materials consisting of a “mixture” of SG at various iterations can
be investigated.

More generally, SAS from CA could be used to check whether a generated structure is a mass or
surface fractal (or none of them), i.e., whether there exists a power-law distribution of some
entities (collections of cells). In addition, through the oscillations of the scattering curve in the
fractal region, SAS from CA can shed some light on the randomness of the generated structures.
This could be of particular interest since some rules like Rule 30 generates so-called pseudo-
random structures. However, this is beyond the scope of this chapter. Here, we shall restrict
ourselves to calculation and interpretation of SAS intensities from basic structures, such as those
based on SG. This shall facilitate a quick comparison with the theoretical model based on SG
presented in the next section, and thus to support the validity of the obtained results.

3. Small-angle scattering from mass fractals

As an example of a deterministic mas fractal, we calculate the scattering from a two dimen-
sional Sierpinski gasket (SG), generated by three different methods. In order to calculate the
scattering intensities of an ensemble of triangles, we use the following properties:

• When the size of a triangle is scaled as a! βsa, then the form factor scales as F(q)! F(βsq);

• When the triangle is translated by a vector b such as r!rþr, then F(q)!F(q)e�iq. b.

Zero-th iteration of SG consists of a single triangle of edge size a (here, a = 1 nm). First iteration
(m = 1) consists of four smaller triangles, each of the edge length a/2 as shown in Figure 3a.
At second iteration (m = 2), the same operation is repeated for each of the triangles of edge
length a/2. In the limit of large number of iterationsm, the total number of triangles of edge size
am = a/2m is:

N ¼ 3m: (35)

Therefore using Eq. (31), one obtains the fractal dimension of SG as:

D ¼ lim
m!∞

logN
log a=amð Þ ≈ 1:585: (36)

At m-th iteration, the positions of the triangles forming the SG are given by:
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Pm q!
� �

�
Ym

i¼1

Gi q!
� �

, (37)

where Gi q!
� �

is known as the generative function [29, 31, 38], and is given by

G1 q!
� �

¼ 1
3

X2

j¼0

e�i q!� a!j , (38)

where the translation vectors are given by Eq. (25), Gm q!
� �

¼ G1 βm�1
s q!

� �
, and βs = 1/2. Figure 5

left part, shows first three iterations of SG.

By using the property given in Eq. (37), the fractal structure factor can be written as [29]:

S qð Þ=N ¼
Ym

i¼1

Gi q!
� ����

���
2
:

* +
(39)

Thus, by introducing Eqs. (39) and (22) into Eq. (10), we obtain an analytical expression for the
scattering intensity:

I qð Þ=I 0ð Þ ¼ F0 βms a q
!� ����
���
2

� �
S qð Þ=N: (40)

By ignoring the form factor F0 in Eq. (40), an analytical expression of the structure factor is
obtained. This case is discussed in [40].

The corresponding scattering intensities are shown in Figure 5 right part, for a triangle (m = 0)
and for the first three iterations of SG (m = 1, 2, 3). At low q-values (q≲ 2 nm�1), all the scatter-
ing curves are characterized by a Guinier region. A main feature of scattering from determin-
istic mass fractals is that after the Guinier region, it follows a fractal regime in which the
absolute value of the scattering exponent equals the fractal dimension of the fractal. The length
of the fractal regime increases with increasing the iteration number since the distances between
the scattering units of the fractals (here triangles) decrease. In Figure 5 right part, the fractal
regime is clearly seen within the range 2≲ q≲ 14 nm�1 for m = 3. It is characterized by a
succession of maxima and minima superimposed on a power-law decay (also known as a
generalized power-law decay [29]). The number of minima in the fractal regime is equal with
the fractal iteration number and from their periodicity, we can extract the value of the scaling
factor [29]. Beyond the fractal regime, one obtain as expected, the Porod region where the
exponent of the power-law decay is �3 (or �4 for three-dimensional objects). In Figure 5 right
part, at m = 3 the Porod regime begins near q≳ 14 nm�1.

By taking into account, the effect of polydispersity or the random distribution of the scattering
units, the scattering curve is smoothed and thus the maxima and minima are smeared out. The
“smoothness” of the curve increases with increasing the relative variance of the distribution
function, and they can be completely smeared out when a threshold is reached. Experimentally,
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most of the times, SAS experiments give this type of behavior, when the curve is completely
smeared out. Please note that if we neglect the contribution of the form factor F0 in Eq. (40), then
the Porod region is replaced by an asymptotic region, from which the number of scattering units
inside the fractal can be obtained (see Figure 6). This case is presented and discussed in the
following, for the SG generated using CGR and IFS, respectively.

CGR representation gives directly the positions of the scattering units in the fractal. Figure 6
left part, shows the SG generated from CGR for N = 30, 130, 230, and for 430 points, respec-
tively. The figure clearly shows that by increasing the number of points, the obtained structure
approaches better the structure of SG. From the same figure, we can see that for N = 430 points,
the second iteration of SG can be quite clearly distinguished. Thus, a convenient way to
calculate the scattering intensity is to use Pantos formula given by Eq. (15), since we neglect
the shape of the scattering units.

Figure 6 right part shows the scattering structure factor of SG built from the CGR, for the four
structures in the left part. Generally, all scattering curves are characterized by the presence of
the three main regions specific to SG, obtained using the analytic representation (Figure 5)
right part: Guinier region at low q, fractal region at intermediate q, and here an asymptotic
region instead of a Porod one, since we neglect the form factor. The same figure shows that by
increasing the number of particles, the length of the fractal region also increases. This is to be
expected, since increasing the number of points leads to a better approximation of the deter-
ministic SG. However, for SG generated using CGR, a transition region appears (at
40≲ q≲ 200), since in this region, the pair distance distribution function does not follow a
power-law decay distribution of the number of distances. Finally, in the asymptotic region,
the curves are proportional to 1/N, and thus, the number of points can be recovered. The
asymptotic values of the curves are marked by horizontal dashes lines in Figure 5 right part.

Rule 90 (Figure 7 left part) is an elementary cellular automaton rule, and it produces SG for
particular values of the number of steps. Although the system is generated on a rectangular

Figure 6. Left part: first four iterations of the Sierpinski gasket generated using a deterministic algorithm; right part: The
corresponding SAS intensities of the Sierpinski gasket. The curves are shifted vertically by a factor 10m, for clarity. The
lowest curve corresponds to m = 0, and the highest one corresponds to m = 3.
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Thus, by introducing Eqs. (39) and (22) into Eq. (10), we obtain an analytical expression for the
scattering intensity:

I qð Þ=I 0ð Þ ¼ F0 βms a q
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� �
S qð Þ=N: (40)

By ignoring the form factor F0 in Eq. (40), an analytical expression of the structure factor is
obtained. This case is discussed in [40].

The corresponding scattering intensities are shown in Figure 5 right part, for a triangle (m = 0)
and for the first three iterations of SG (m = 1, 2, 3). At low q-values (q≲ 2 nm�1), all the scatter-
ing curves are characterized by a Guinier region. A main feature of scattering from determin-
istic mass fractals is that after the Guinier region, it follows a fractal regime in which the
absolute value of the scattering exponent equals the fractal dimension of the fractal. The length
of the fractal regime increases with increasing the iteration number since the distances between
the scattering units of the fractals (here triangles) decrease. In Figure 5 right part, the fractal
regime is clearly seen within the range 2≲ q≲ 14 nm�1 for m = 3. It is characterized by a
succession of maxima and minima superimposed on a power-law decay (also known as a
generalized power-law decay [29]). The number of minima in the fractal regime is equal with
the fractal iteration number and from their periodicity, we can extract the value of the scaling
factor [29]. Beyond the fractal regime, one obtain as expected, the Porod region where the
exponent of the power-law decay is �3 (or �4 for three-dimensional objects). In Figure 5 right
part, at m = 3 the Porod regime begins near q≳ 14 nm�1.

By taking into account, the effect of polydispersity or the random distribution of the scattering
units, the scattering curve is smoothed and thus the maxima and minima are smeared out. The
“smoothness” of the curve increases with increasing the relative variance of the distribution
function, and they can be completely smeared out when a threshold is reached. Experimentally,
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most of the times, SAS experiments give this type of behavior, when the curve is completely
smeared out. Please note that if we neglect the contribution of the form factor F0 in Eq. (40), then
the Porod region is replaced by an asymptotic region, from which the number of scattering units
inside the fractal can be obtained (see Figure 6). This case is presented and discussed in the
following, for the SG generated using CGR and IFS, respectively.

CGR representation gives directly the positions of the scattering units in the fractal. Figure 6
left part, shows the SG generated from CGR for N = 30, 130, 230, and for 430 points, respec-
tively. The figure clearly shows that by increasing the number of points, the obtained structure
approaches better the structure of SG. From the same figure, we can see that for N = 430 points,
the second iteration of SG can be quite clearly distinguished. Thus, a convenient way to
calculate the scattering intensity is to use Pantos formula given by Eq. (15), since we neglect
the shape of the scattering units.

Figure 6 right part shows the scattering structure factor of SG built from the CGR, for the four
structures in the left part. Generally, all scattering curves are characterized by the presence of
the three main regions specific to SG, obtained using the analytic representation (Figure 5)
right part: Guinier region at low q, fractal region at intermediate q, and here an asymptotic
region instead of a Porod one, since we neglect the form factor. The same figure shows that by
increasing the number of particles, the length of the fractal region also increases. This is to be
expected, since increasing the number of points leads to a better approximation of the deter-
ministic SG. However, for SG generated using CGR, a transition region appears (at
40≲ q≲ 200), since in this region, the pair distance distribution function does not follow a
power-law decay distribution of the number of distances. Finally, in the asymptotic region,
the curves are proportional to 1/N, and thus, the number of points can be recovered. The
asymptotic values of the curves are marked by horizontal dashes lines in Figure 5 right part.

Rule 90 (Figure 7 left part) is an elementary cellular automaton rule, and it produces SG for
particular values of the number of steps. Although the system is generated on a rectangular

Figure 6. Left part: first four iterations of the Sierpinski gasket generated using a deterministic algorithm; right part: The
corresponding SAS intensities of the Sierpinski gasket. The curves are shifted vertically by a factor 10m, for clarity. The
lowest curve corresponds to m = 0, and the highest one corresponds to m = 3.
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grid with cells of finite size, we consider here (as in the previous example) that the scattering
units are points centered in the cells. Figure 7 left part, shows the structure generated by Rule
90 for p = 31, 41, 51, and for p = 63 steps, respectively. Note that p = 31 and p = 63 correspond to
SG at iterations m = 3, and m = 4, respectively, while p = 41 and p = 52 correspond to some
intermediate structures between the two consecutive iterations.

The corresponding structure factors are shown in Figure 7 right part. In the scattering curve,
all the three main regions are present: Guinier, fractal, and asymptotic regions. However, as
opposed to the Guinier region of the SG generated deterministically, or through CGR, here its
length decreases with increasing the number of steps. This is a consequence of the construction
algorithm used, namely the structure increases its size at every step. Decreasing the length of
the Guinier region leads to an increase of the fractal one, since the smallest distances between
scattering points remain the same. This is indicated in the scattering curve, by approximately
equal positions (q≃ 360 nm�1) of the first minima, for each of the four steps. As expected, the
absolute value of the scattering exponent in the fractal region coincides with the fractal
dimension of the structure, and the asymptotic behavior at large q (shown by horizontal dotted
lines in Figure 7 right part) tens to 1/N, where N is the total number of scattering points.

4. Small-angle scattering from surface fractals

Recently, it has been shown that surface fractals can be built as a sum of mass fractals [37, 38]. As
an example, we consider here a generalized version of the Koch snowflake (KS). The construc-
tion algorithm starts from an equilateral triangle with edge length a, which is the zero-th mas
fractal iteration (black triangle in Figure 8 left part). At the second step, each side is divided into
three segments, each of length a/3, and a new triangle pointing outward is added. The base of the
new triangle coincides with the central segment. This is the first mass fractal iteration (three

Figure 7. Left part: Sierpinski gasket generated using CGR, for different values of the number of scattering units; right
part: the corresponding SAS intensities of the Sierpinski gasket from CGR. The highest curve corresponds to N = 30 and
the lowest one corresponds to N = 430.
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orange triangles in Figure 8 left part). By repeating the same procedure for each of the new
triangles, one obtains the KS having the fractal dimension:

Ds ¼ lim
m!∞

log 3 � 4m
log a=amð Þ ¼

log 4
log 3

≈ 1:26, (41)

where am is the side length at mth iteration. In Figure 8, each of the triangle is scaled down by a
factor of 0.6 � am. The case when the triangles are not scaled down corresponds exactly to the
well-known KS and its scattering properties have been extensively studied in [38].

Since a surface fractal can be constructed as a sum of mass fractals, the normalized scattering
amplitude is written as a sum of the scattering amplitudes of mass fractals. If we denote

Am q!
� �

� Area að ÞFm q!
� �

, then a recurrence formula for the scattering amplitude of the surface

fractal at arbitrarily iteration can be written as [38]:

Am q!
� �

¼ 6G3 q!
� �

β2sAm�1 βs q!
� �

� 6G2 βs q!
� �

β4sAm�2 β2s q!
� �h i

þ β2sAm�1 βs q!
� �

1þ 6G2 q!
� �h i

:

(42)

Here, the scaling factor is βs = 3/10, and the generative functions are given by:

G2 q!
� �

¼ 1
6

X5

j¼0

e�i q!� c!j , (43)

and respectively by:

G3 q!
� �

¼ 1
6

X5

j¼0

e�i q!�b!j : (44)

The translation vectors are defined as:

Figure 8. Left part: Rule 90 for p = 31, 41, 52 and p = 63 number of steps, respectively; right part: the corresponding
scattering intensities. The leftmost curve corresponds to p = 63 and the rightmost one corresponds to p = 31.
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grid with cells of finite size, we consider here (as in the previous example) that the scattering
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90 for p = 31, 41, 51, and for p = 63 steps, respectively. Note that p = 31 and p = 63 correspond to
SG at iterations m = 3, and m = 4, respectively, while p = 41 and p = 52 correspond to some
intermediate structures between the two consecutive iterations.

The corresponding structure factors are shown in Figure 7 right part. In the scattering curve,
all the three main regions are present: Guinier, fractal, and asymptotic regions. However, as
opposed to the Guinier region of the SG generated deterministically, or through CGR, here its
length decreases with increasing the number of steps. This is a consequence of the construction
algorithm used, namely the structure increases its size at every step. Decreasing the length of
the Guinier region leads to an increase of the fractal one, since the smallest distances between
scattering points remain the same. This is indicated in the scattering curve, by approximately
equal positions (q≃ 360 nm�1) of the first minima, for each of the four steps. As expected, the
absolute value of the scattering exponent in the fractal region coincides with the fractal
dimension of the structure, and the asymptotic behavior at large q (shown by horizontal dotted
lines in Figure 7 right part) tens to 1/N, where N is the total number of scattering points.

4. Small-angle scattering from surface fractals

Recently, it has been shown that surface fractals can be built as a sum of mass fractals [37, 38]. As
an example, we consider here a generalized version of the Koch snowflake (KS). The construc-
tion algorithm starts from an equilateral triangle with edge length a, which is the zero-th mas
fractal iteration (black triangle in Figure 8 left part). At the second step, each side is divided into
three segments, each of length a/3, and a new triangle pointing outward is added. The base of the
new triangle coincides with the central segment. This is the first mass fractal iteration (three

Figure 7. Left part: Sierpinski gasket generated using CGR, for different values of the number of scattering units; right
part: the corresponding SAS intensities of the Sierpinski gasket from CGR. The highest curve corresponds to N = 30 and
the lowest one corresponds to N = 430.
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orange triangles in Figure 8 left part). By repeating the same procedure for each of the new
triangles, one obtains the KS having the fractal dimension:

Ds ¼ lim
m!∞

log 3 � 4m
log a=amð Þ ¼

log 4
log 3

≈ 1:26, (41)

where am is the side length at mth iteration. In Figure 8, each of the triangle is scaled down by a
factor of 0.6 � am. The case when the triangles are not scaled down corresponds exactly to the
well-known KS and its scattering properties have been extensively studied in [38].

Since a surface fractal can be constructed as a sum of mass fractals, the normalized scattering
amplitude is written as a sum of the scattering amplitudes of mass fractals. If we denote

Am q!
� �

� Area að ÞFm q!
� �

, then a recurrence formula for the scattering amplitude of the surface

fractal at arbitrarily iteration can be written as [38]:
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β2sAm�1 βs q!
� �

� 6G2 βs q!
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Here, the scaling factor is βs = 3/10, and the generative functions are given by:
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¼ 1
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and respectively by:
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The translation vectors are defined as:

Figure 8. Left part: Rule 90 for p = 31, 41, 52 and p = 63 number of steps, respectively; right part: the corresponding
scattering intensities. The leftmost curve corresponds to p = 63 and the rightmost one corresponds to p = 31.
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c!j ¼ 2a
9

cosπ jþ 1=2ð Þ=3; sinπ jþ 1=2ð Þ=3f g, (45)

and the vectors b
!

j are given by Eq. (26). Thus, using Eq. (2), the non-normalized scattering

amplitude is I qð Þ∝ Am q!
� ����

���
2

� �
, provided the amplitudes at m = 0 and m = 1 are known.

Figures 8 and 9 left parts show the construction of the generalized KS when the ratio between
the sizes of the triangles and the distances between them are 0.6 and 0.4, respectively. Figures 8
and 9 right parts show the corresponding scattering intensities. The general feature is that when
the ratio is 0.4, in the fractal region the overall agreement between the total scattering intensity
and the intensity corresponding to uncorrelated triangles is slightly better. The curve also shows
that the absolute value of the scattering exponent is now 6�Ds, with Ds = 1.26 given by Eq. (41),
which is a “signature” of scattering from surface fractals. The reason for such behavior is that at a
given iteration, the surface fractal consists of scattering units of different sizes following a power-
law distribution (see Figure 8 left part), while mass fractals consist of scattering units of the same
size (see Figure 5 left part). A mathematical derivation of the value of the scattering exponent in
the case of scattering from surface fractals can be found in [37, 38].

The centers of triangles in Figure 8 left part coincide with the centers of triangles of the regular
KS. From another hand, it has been recently shown that the scattering intensity corresponding to
a system of triangles whose sizes follow a power-law distribution and whose positions are
uncorrelated, approximates under certain conditions the scattering intensity of the same system
but when the positional correlations are not considered [38]. Figure 8 right part, shows also the
scattering intensity of a system of triangles whose positions are uncorrelated (red curve). We can
observe that in the fractal region (20≲ q≲ 400 nm�1), the approximation is not quite satisfactory.
The reason of this behavior is that here the scaling factor is βs, and thus the distances between the
centers of the triangles is of the same order as their size. However, when the distances between

Figure 9. Left part: a generalized Koch snowflake model. Right part: highly oscillating curve—the corresponding scatter-
ing intensity, smoother curve—the scattering intensity from a system containing the same number of triangles but whose
positions are randomly.
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the scattering units are much bigger than the sizes of the units, the approximation of the
uncorrelated positions of the triangles works fairy well in the fractal region [38] (Figure 10).

5. Conclusions

In this chapter, we have presented and discussed some general concepts in small-angle scat-
tering (SAS; neutrons, X-ray, light) from deterministic mass and surface fractals. To do so, we
have considered the Sierpinski gasket (SG) as a model for deterministic mass fractals, and a
generalized version of Koch snowflake (KS) as a model for deterministic surface fractals. The
model for SG has been introduced through three main algorithms: deterministic and random
iteration function system (IFS), and through cellular automata (CA). KS has been constructed
in the framework of deterministic IFS.

The SAS intensities (fractal and structure factor) has been calculated from a system of 2D,
monodisperse diluted (i.e., spatial correlation can be neglected) and randomly oriented frac-
tals. They are characterized by the presence of three main regions: Guinier (at low q), fractal (at
intermediate q), and Porod/asymptotic (at high q). We have shown that in the case of mass
fractals, we can extract structural information about the fractal dimension (from the exponent
of the SAS curve in the fractal region), scaling factor (from the periodicity of minima in the
fractal region), iteration number (from the number of minima in the fractal region), and the
total number of scattering units inside a fractal (from the value of the structure factor in the
asymptotic region). In addition, mass fractals generated using IFS are able to reproduce fairly
well the scattering curve of deterministic IFS under the proper conditions. Mass fractals
generated from CA increase their size with increasing the number of steps. This growing
process is also reflected by a decrease of the length of Guinier region. We have also shown that

Figure 10. Left part: a generalized Koch snowflake model. Right part: highly oscillating curve—the total scattering
intensity, smoother curve—the scattering intensity from a system containing the same number of triangles but whose
positions are random.
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c!j ¼ 2a
9

cosπ jþ 1=2ð Þ=3; sinπ jþ 1=2ð Þ=3f g, (45)

and the vectors b
!

j are given by Eq. (26). Thus, using Eq. (2), the non-normalized scattering

amplitude is I qð Þ∝ Am q!
� ����

���
2

� �
, provided the amplitudes at m = 0 and m = 1 are known.

Figures 8 and 9 left parts show the construction of the generalized KS when the ratio between
the sizes of the triangles and the distances between them are 0.6 and 0.4, respectively. Figures 8
and 9 right parts show the corresponding scattering intensities. The general feature is that when
the ratio is 0.4, in the fractal region the overall agreement between the total scattering intensity
and the intensity corresponding to uncorrelated triangles is slightly better. The curve also shows
that the absolute value of the scattering exponent is now 6�Ds, with Ds = 1.26 given by Eq. (41),
which is a “signature” of scattering from surface fractals. The reason for such behavior is that at a
given iteration, the surface fractal consists of scattering units of different sizes following a power-
law distribution (see Figure 8 left part), while mass fractals consist of scattering units of the same
size (see Figure 5 left part). A mathematical derivation of the value of the scattering exponent in
the case of scattering from surface fractals can be found in [37, 38].

The centers of triangles in Figure 8 left part coincide with the centers of triangles of the regular
KS. From another hand, it has been recently shown that the scattering intensity corresponding to
a system of triangles whose sizes follow a power-law distribution and whose positions are
uncorrelated, approximates under certain conditions the scattering intensity of the same system
but when the positional correlations are not considered [38]. Figure 8 right part, shows also the
scattering intensity of a system of triangles whose positions are uncorrelated (red curve). We can
observe that in the fractal region (20≲ q≲ 400 nm�1), the approximation is not quite satisfactory.
The reason of this behavior is that here the scaling factor is βs, and thus the distances between the
centers of the triangles is of the same order as their size. However, when the distances between

Figure 9. Left part: a generalized Koch snowflake model. Right part: highly oscillating curve—the corresponding scatter-
ing intensity, smoother curve—the scattering intensity from a system containing the same number of triangles but whose
positions are randomly.
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the scattering units are much bigger than the sizes of the units, the approximation of the
uncorrelated positions of the triangles works fairy well in the fractal region [38] (Figure 10).

5. Conclusions

In this chapter, we have presented and discussed some general concepts in small-angle scat-
tering (SAS; neutrons, X-ray, light) from deterministic mass and surface fractals. To do so, we
have considered the Sierpinski gasket (SG) as a model for deterministic mass fractals, and a
generalized version of Koch snowflake (KS) as a model for deterministic surface fractals. The
model for SG has been introduced through three main algorithms: deterministic and random
iteration function system (IFS), and through cellular automata (CA). KS has been constructed
in the framework of deterministic IFS.

The SAS intensities (fractal and structure factor) has been calculated from a system of 2D,
monodisperse diluted (i.e., spatial correlation can be neglected) and randomly oriented frac-
tals. They are characterized by the presence of three main regions: Guinier (at low q), fractal (at
intermediate q), and Porod/asymptotic (at high q). We have shown that in the case of mass
fractals, we can extract structural information about the fractal dimension (from the exponent
of the SAS curve in the fractal region), scaling factor (from the periodicity of minima in the
fractal region), iteration number (from the number of minima in the fractal region), and the
total number of scattering units inside a fractal (from the value of the structure factor in the
asymptotic region). In addition, mass fractals generated using IFS are able to reproduce fairly
well the scattering curve of deterministic IFS under the proper conditions. Mass fractals
generated from CA increase their size with increasing the number of steps. This growing
process is also reflected by a decrease of the length of Guinier region. We have also shown that

Figure 10. Left part: a generalized Koch snowflake model. Right part: highly oscillating curve—the total scattering
intensity, smoother curve—the scattering intensity from a system containing the same number of triangles but whose
positions are random.
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a surface fractal can be considered as a superposition of mass fractals at various iterations and
the range of structural information which can be extracted is similar to the case of scattering
from mass fractals.

The IFS and CA algorithms used to generate the mass fractals models can be easily extended to
more general structures and can be used to address various questions. For example, in the case
of CA, SAS could be used to determine the fractal dimension of an arbitrary structure gener-
ated using one dimensional rules, it can shed some light on the randomness of some structures,
or it can reveal the existence of a power-law distribution of some entities (of arbitrarily shape)
generated by a specific rule.
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