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Preface

As stated previously in the preface of many famous textbooks in this subject, group theory or
discussion using symmetry or mathematical rules, may be a useful tool for chemists, though
it sometimes seems to be difficult to study completely for young students of chemistry.

Symmetry pervades many forms of arts and science, and group theory provides a systemat‐
ic way of thinking about symmetry. The mathematical concept of a group was invented in
1823 by Evariste Galois. Its applications in physical science developed rapidly during the
twentieth century, and today, it is considered as an indispensable aid in many branches of
physics and chemistry.

P. Jacob

For a contemporary chemist, group theory is not only a key element of the quantum mechani‐
cal methods of investigating the electronic structure of matter --- knowledge of symmetry
and its group theoretical implications is also widely applied in analyzing the results of practi‐
cally all spectroscopic techniques currently employed in organic and inorganic chemistry.

B. S. Tsukerblat

It aims to teach the use of symmetry arguments to the typical experimental chemist in a way
that he will find meaningful and useful. Too brief or too superficial a tuition in the use of
symmetry arguments in a waste of whatever time is devoted to it.

F. A. Cotton

Time is needed in order to assimilate the concepts of symmetry and to consolidate them into
a working knowledge of the subject. It is hoped that this book will be helpful to all those
meeting symmetry for the first time, whatever their specialization, and will prepare the
reader for study of the current definitive text on symmetry, the International tables for crys‐
tallography, Volumes A and A1.

M. Ladd

The International Tables for Crystallography (ITC) have steadily grown into eight ponder‐
ous volumes, to become the true ‘bible’ of crystallographers. Of course, information about
crystal symmetry is central to the ITC, but subjects such as the properties of radiations used
in crystallography, the physical properties of crystals and the proper format for crystallo‐
graphic software are also covered.

P. G. Radaelli



Chapter 9 Molecular Descriptors and Properties of Organic
Molecules   161
Amalia Stefaniu and Lucia Pintilie

ContentsVI

Preface

As stated previously in the preface of many famous textbooks in this subject, group theory or
discussion using symmetry or mathematical rules, may be a useful tool for chemists, though
it sometimes seems to be difficult to study completely for young students of chemistry.

Symmetry pervades many forms of arts and science, and group theory provides a systemat‐
ic way of thinking about symmetry. The mathematical concept of a group was invented in
1823 by Evariste Galois. Its applications in physical science developed rapidly during the
twentieth century, and today, it is considered as an indispensable aid in many branches of
physics and chemistry.

P. Jacob

For a contemporary chemist, group theory is not only a key element of the quantum mechani‐
cal methods of investigating the electronic structure of matter --- knowledge of symmetry
and its group theoretical implications is also widely applied in analyzing the results of practi‐
cally all spectroscopic techniques currently employed in organic and inorganic chemistry.

B. S. Tsukerblat

It aims to teach the use of symmetry arguments to the typical experimental chemist in a way
that he will find meaningful and useful. Too brief or too superficial a tuition in the use of
symmetry arguments in a waste of whatever time is devoted to it.

F. A. Cotton

Time is needed in order to assimilate the concepts of symmetry and to consolidate them into
a working knowledge of the subject. It is hoped that this book will be helpful to all those
meeting symmetry for the first time, whatever their specialization, and will prepare the
reader for study of the current definitive text on symmetry, the International tables for crys‐
tallography, Volumes A and A1.

M. Ladd

The International Tables for Crystallography (ITC) have steadily grown into eight ponder‐
ous volumes, to become the true ‘bible’ of crystallographers. Of course, information about
crystal symmetry is central to the ITC, but subjects such as the properties of radiations used
in crystallography, the physical properties of crystals and the proper format for crystallo‐
graphic software are also covered.

P. G. Radaelli



This book presents an introductory overview of mathematical treatments in chemistry with
three main topics: basic group theory and symmetry in chemistry, examples of computation‐
al chemistry, and applications for solid-state physics. Moreover, this book also provides a
comprehensive account on brief mathematical principle of group theory as well as materials
scientific applications. This book will be beneficial for the graduate students, teachers, re‐
searchers, chemists, solid-state physicists and other professionals, who are interested in
mathematics or group theory, and to expand their knowledge about symmetry in the field
of inorganic chemistry, physical or quantum chemistry, organic or polymer chemistry, solid-
state physics, etc.

This book comprises a total of nine chapters from multiple contributors around the world,
including Chile, Egypt, Japan, Morocco, Pakistan, Poland, Romania, Russia, and the United
States. I am grateful to all the contributors and leading experts for the submission of their
stimulating and inclusive chapters in the preparation of the edited volume to bring the book
on group theory and computational applications. I offer my special thanks and appreciation
to IntechOpen publishing process managers for their encouragement and help in bringing
out the book in the present form.

I express my heartfelt gratitude to Ms. Kristina Kardum et al. for their concern, efforts, and
support in the task of publishing this volume.

Takashiro Akitsu
Department of Chemistry

Faculty of Science
Tokyo University of Science

Tokyo, Japan
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Introductory Chapter: Mathematical or Theoretical
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1. Introduction

This book entitled Symmetry (Group Theory) and Mathematical Treatment in Chemistry deals with
not only basic mathematics associated with linear algebra and group theory describing chem-
ical symmetry about not only molecular shapes, molecular orbitals, and crystal structures but
also spectroscopic discussion, DFT calculations or other computational treatments of several
molecules or supramolecules, and symmetric structures of formula used in thermodynamics.
In this way, this aspect may be one of the important approaches in chemical studies (along
hierarchical structures group theory) [1] describing.

2. Results and discussion

Herein, as an example, a study on fire materials and possibility to apply these approaches is
mentioned. The flame retardants prevent the burning of the material by either cutting the air
supply or enhancing the requirements of oxygen. Some of the flame retardant used in the PVC
or polymers can be classified as follows: (a) phosphorous compounds, (b) halogen compounds,
(c) halogen phosphorous compounds, and (d) bicarbonates and inorganic oxides and borates.
Some of the flame retardants may be broadly classified as halogen, and the aim of this example
study is to prepare brominated (potential flame retardants) metal complexes to use as DSSC
dyes, too. Crystal structure (space group P21) of a brominated complex (Figure 1) [2] is relative
to crystal symmetry as condensed solid states or supramolecules. With the aid of DFT calcula-
tions [3], electronic states (UV-vis spectra) due to each transition between orbitals (of a certain
irreducible representation) of the related complexes (Figure 2) could be estimated based on
optimized molecular structures (coordination geometry is approximately C2v). Of course, their

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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vibrational (commonly infrared) spectra with normal modes (Figure 3) were relevant to
molecular symmetry.

However, TG-DTA (Figure 4), a typical thermal analysis with “temperature” of crystalline
complexes as well as hybrid materials dispersed in several types of polymer films was less

Figure 2. Electronic spectra.

Figure 1. Crystal structure of a chiral complex.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry2

Figure 3. IR spectra (with structure).

Figure 4. TG-DTA.
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relevant to merely molecular symmetry. Furthermore, chemical reactions changing chemical
species accompanying with “time” may be difficult to understand within the framework of
symmetry. To discuss time-dependent chemical reaction, molecular dynamics may be a useful
theoretical method of recently developed computations (Figure 5), while spectral detection of
product gases (Figure 6) is sometimes possible to investigate closely rather than materials of
solid states.

3. Conclusion

In this way, mathematical treatments of symmetry in chemistry can often lead to deep under-
standing, though it sometimes is not useless depending on conditions or phenomenon of
targets. Similarly, theoretical computation should be carried out considering their limitation
and frameworks (presupposition of theory).

Figure 5. Thermolysis step of the quantity of PET polymer by the quantum molecular dynamics calculation.

Figure 6. IR spectra of CO2. The fundamental vibrations of molecules belonging to the D∞h point group are similar in type
to those of the nonsymmetrical linear molecules, but in this instance, they may also be symmetric (νs) or antisymmetric
(νas) to the center of symmetry, and thus σg, σu, πg, and πu modes, two stretching and two bending (degenerate)
vibrations. The νas(CO) mode and the degenerate δ(OCO) mode involve changes in the dipole moment during the
vibration, and they are IR active. Thus, νas has been observed by IR as a very strong parallel-type band at 2349.3 cm�1,
while δ(OCO) appears as a strong perpendicular-type band at 667.3 cm�1.
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Abstract

The most important thing to consider when applying group theory is finding the mole-
cule’s point group or its particular symmetry operations. In order to identify a molecule’s
symmetry operations, one must first find the molecule’s symmetry elements. In other
words, the first stage in utilizing group theory with molecular properties is identifying a
molecule’s symmetry elements. For most beginners without experience this has proven to
be most difficult because it requires the individual to visually identify the elements of
symmetry in a 3D object. However, once this is overcome, applying group theory to
forefront point groups and symmetry operations becomes second nature.

Keywords: group theory, symmetry operation, point group, spectroscopy, molecular
energy levels

1. Introduction

Spectroscopy is defined as the scientific study of the many interactions between electromagnetic
radiation and matter. Previously, spectroscopy came from the study of visible light that is
dispersed with relation to its wavelength through a prism. As time progressed, the concept of
spectroscopy was explored further and eventually included any interaction with energy derived
from radiation that could be quantified and organized from its wavelength [1]. Max Planck’s
definition of blackbody radiation, Albert Einstein’s view of the photoelectric effect, and Niels
Bohr’s understanding of atomic structure and spectra collectively come together to define spec-
troscopic studies and develop what is known as quantum. Spectroscopy is utilized constantly in
both analytical and physical chemistry because unique spectra are found in atoms and mole-
cules. Therefore, spectroscopy is utilized often to discover, define, and quantify information
about the molecules and atoms. There are other fields that utilize spectroscopy as well such as
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astronomy, for remote sensing on Earth [2]. Spectroscopy is a sufficiently broad field that many
subdisciplines exist, each with numerous implementations of specific spectroscopic techniques.
The various implementations and techniques can be classified in several ways. Spectroscopy is a
very wide field that has multiple subcategories, each with its own application of techniques
unique to spectroscopy. The various implementations and techniques can be classified in several
ways. A few examples of the multitude of spectroscopy categories are scanning tunneling
microscopy spectroscopy (with Gerd Binnig and Heinrich Rohrer, 1981), electron paramagnetic
resonance (with Yevgeny Zavoisky, 1944), nuclear magnetic resonance (with Edward Mills
Purcell and Felix Bloch, 1940s), microwave spectroscopy (with James Clerk Maxwell, 1864), and
infrared spectroscopy (with Sir Frederick William Herschel, 1800). These are also the most
significant developments over the past three centuries [3].

This book chapter presents the treatment of group theory in spectroscopy. Group theory is a
powerful formal method for analyzing abstract and physical systems in which symmetry is
present and has surprising importance in physics, especially quantum mechanics. Gauss
developed group theory but did not publish parts of its mathematics. Therefore, Galois is
generally considered to have been the first to develop the theory. Group theory was developed
in the nineteenth century and found its first remarkable applications in physics in the twentieth
century by Bethe (1929), Wigner (1931), and Kohlrausch (1935). “It is often hard or even impossi-
ble to obtain a solution to the Schrödinger equation - however, a large part of qualitative results can be
obtained by group theory. Almost all the rules of spectroscopy follow from the symmetry of a problem”,
said Eugene Wigner (1931). Groups are very important in most fields, but especially in physics,
because they serve to illustrate the symmetries that the laws of physics obey as well. Continu-
ous symmetry of a physical system directly relates to a conservation law of the system,
according to Noether’s theorem. This is why many physicists become interested in group
representations, especially of Lie groups, because they often point the way to the potential
physical theories that may define them. The usages of these groups in physics include the
standard model, gauge theory, the Lorentz group, and the Poincare group [3]. Group theory is
used in other areas of science such as in chemistry and materials science where groups are used
to classify crystal structures, regular polyhedra, and the symmetries of molecules. The
assigned point groups can then be used to determine physical and spectroscopic properties
and to construct molecular orbitals. Molecular symmetry is responsible for many physical and
spectroscopic properties of compounds and provides relevant information about how chemi-
cal reactions occur.

The group theory has also been extensively utilized in many areas such as statistical mechan-
ics, music, and harmonic analysis. In statistical mechanics, group theory can be used to resolve
the incompleteness of the statistical interpretations of mechanics developed by Willard Gibbs,
relating to the summing of an infinite number of probabilities to yield a meaningful solution.
In music, the presence of the 12-periodicity in the circle of fifths yields applications of elemen-
tary group theory. In harmonic analysis, Haar measures, which are integrals invariant under
the translation in a Lie group, are used for pattern recognition and other image processing
techniques. Due to the various applications of group theory, it has proven to be one of the most
powerful mathematical tools utilized in the field of spectroscopy and in quantum chemistry. It
provides opportunities for individuals to adequately understand the molecule and make
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informed inferences, which helps to break down complex theory and information. The most
important understanding that this helps individuals to comprehend is that the set of operations
associated with the symmetry elements of a molecule, collectively constitute a mathematical set
called a group. What this serves to exemplify is that the application of mathematical theory can
be applied when working with symmetry operations [4].

It is worth mentioning that the application of group theory in spectroscopy shed light on a
molecule’s symmetry that pertains to physical characteristics. This is effective when attempting to
determine important physical data of a molecule. There are certain things that the symmetry of a
molecule can help to deduce such as the energy levels that the orbitals will be at. Additionally,
orbital symmetries in which unique transitions can occur between energy levels can also be
determined. Bond order is also relatively easier to determinewith tedious computation. The afore-
mentioned examples place an emphasis onwhat makes group theory a very important tool [5].

2. Symmetry operations

Symmetry and group theory are intertwined in a multitude of ways. For instance, a symmetry
group contains symmetry characteristics of common geometrical objects. The group contains
the set of transformations that leave the object unchanged and the operation of combining two
such transformations by performing one after the other. Lie groups are the symmetry groups
used in the Standard Model of particle physics. Poincaré groups, which are also Lie groups,
can express the physical symmetry underlying special relativity and point groups are also
used to help understand symmetry phenomena in molecular chemistry [6].

2.1. Definition of a group

A groupG is a finite or infinite set of elements together with a binary operation, that satisfy the
four fundamental properties called the group axioms, namely, closure, associativity, identity,
and invertibility [7].

2.1.1. Closure

For all elements A and B of the group G, we have

A B¼C (1)

The result C is also an element of the group G.

2.1.2. Associativity

The combination rule must be associative, such that

A B Cð Þ¼ A Bð Þ C (2)

Treatment of Group Theory in Spectroscopy
http://dx.doi.org/10.5772/intechopen.75735

9



astronomy, for remote sensing on Earth [2]. Spectroscopy is a sufficiently broad field that many
subdisciplines exist, each with numerous implementations of specific spectroscopic techniques.
The various implementations and techniques can be classified in several ways. Spectroscopy is a
very wide field that has multiple subcategories, each with its own application of techniques
unique to spectroscopy. The various implementations and techniques can be classified in several
ways. A few examples of the multitude of spectroscopy categories are scanning tunneling
microscopy spectroscopy (with Gerd Binnig and Heinrich Rohrer, 1981), electron paramagnetic
resonance (with Yevgeny Zavoisky, 1944), nuclear magnetic resonance (with Edward Mills
Purcell and Felix Bloch, 1940s), microwave spectroscopy (with James Clerk Maxwell, 1864), and
infrared spectroscopy (with Sir Frederick William Herschel, 1800). These are also the most
significant developments over the past three centuries [3].

This book chapter presents the treatment of group theory in spectroscopy. Group theory is a
powerful formal method for analyzing abstract and physical systems in which symmetry is
present and has surprising importance in physics, especially quantum mechanics. Gauss
developed group theory but did not publish parts of its mathematics. Therefore, Galois is
generally considered to have been the first to develop the theory. Group theory was developed
in the nineteenth century and found its first remarkable applications in physics in the twentieth
century by Bethe (1929), Wigner (1931), and Kohlrausch (1935). “It is often hard or even impossi-
ble to obtain a solution to the Schrödinger equation - however, a large part of qualitative results can be
obtained by group theory. Almost all the rules of spectroscopy follow from the symmetry of a problem”,
said Eugene Wigner (1931). Groups are very important in most fields, but especially in physics,
because they serve to illustrate the symmetries that the laws of physics obey as well. Continu-
ous symmetry of a physical system directly relates to a conservation law of the system,
according to Noether’s theorem. This is why many physicists become interested in group
representations, especially of Lie groups, because they often point the way to the potential
physical theories that may define them. The usages of these groups in physics include the
standard model, gauge theory, the Lorentz group, and the Poincare group [3]. Group theory is
used in other areas of science such as in chemistry and materials science where groups are used
to classify crystal structures, regular polyhedra, and the symmetries of molecules. The
assigned point groups can then be used to determine physical and spectroscopic properties
and to construct molecular orbitals. Molecular symmetry is responsible for many physical and
spectroscopic properties of compounds and provides relevant information about how chemi-
cal reactions occur.

The group theory has also been extensively utilized in many areas such as statistical mechan-
ics, music, and harmonic analysis. In statistical mechanics, group theory can be used to resolve
the incompleteness of the statistical interpretations of mechanics developed by Willard Gibbs,
relating to the summing of an infinite number of probabilities to yield a meaningful solution.
In music, the presence of the 12-periodicity in the circle of fifths yields applications of elemen-
tary group theory. In harmonic analysis, Haar measures, which are integrals invariant under
the translation in a Lie group, are used for pattern recognition and other image processing
techniques. Due to the various applications of group theory, it has proven to be one of the most
powerful mathematical tools utilized in the field of spectroscopy and in quantum chemistry. It
provides opportunities for individuals to adequately understand the molecule and make

Symmetry (Group Theory) and Mathematical Treatment in Chemistry8

informed inferences, which helps to break down complex theory and information. The most
important understanding that this helps individuals to comprehend is that the set of operations
associated with the symmetry elements of a molecule, collectively constitute a mathematical set
called a group. What this serves to exemplify is that the application of mathematical theory can
be applied when working with symmetry operations [4].

It is worth mentioning that the application of group theory in spectroscopy shed light on a
molecule’s symmetry that pertains to physical characteristics. This is effective when attempting to
determine important physical data of a molecule. There are certain things that the symmetry of a
molecule can help to deduce such as the energy levels that the orbitals will be at. Additionally,
orbital symmetries in which unique transitions can occur between energy levels can also be
determined. Bond order is also relatively easier to determinewith tedious computation. The afore-
mentioned examples place an emphasis onwhat makes group theory a very important tool [5].

2. Symmetry operations

Symmetry and group theory are intertwined in a multitude of ways. For instance, a symmetry
group contains symmetry characteristics of common geometrical objects. The group contains
the set of transformations that leave the object unchanged and the operation of combining two
such transformations by performing one after the other. Lie groups are the symmetry groups
used in the Standard Model of particle physics. Poincaré groups, which are also Lie groups,
can express the physical symmetry underlying special relativity and point groups are also
used to help understand symmetry phenomena in molecular chemistry [6].

2.1. Definition of a group

A groupG is a finite or infinite set of elements together with a binary operation, that satisfy the
four fundamental properties called the group axioms, namely, closure, associativity, identity,
and invertibility [7].

2.1.1. Closure

For all elements A and B of the group G, we have

A B¼C (1)

The result C is also an element of the group G.

2.1.2. Associativity

The combination rule must be associative, such that

A B Cð Þ¼ A Bð Þ C (2)

Treatment of Group Theory in Spectroscopy
http://dx.doi.org/10.5772/intechopen.75735

9



2.1.3. Identity

There must be an element called the identity I, such that,

I R¼R I¼R (3)

This is true for all elements R of the group G.

2.1.4. Invertibility

Each element R must have an inverse R�1, which is also a group element such that,

R R�1¼R�1 R¼I (4)

A group is a “monoid” if each of its elements is invertible. Group theory is the study of groups.
A group consisting of a fixed number of elements is known as a finite group, and the elements
are defined as the group order of the group. A group may contain subgroups. The elements of
a group that fall under group and inverse operations form a subgroup. Each subgroup is, in its
turn, a group, and many known groups are, in fact, distinct subgroups of larger groups. The
symmetric group Sn is a classic example of a finite group, while integers subjected to addition
are a basic example of an infinite group. For continuous groups, one can consider the real
numbers or the set of n x n invertible matrices [8]. The most well-known group is that of
integers subjected to addition, though the theoretical formalization of the group axioms
applies more widely if taken separately from the characteristics of any group and its governing
operation. It allows entities with highly diverse mathematical origins in abstract algebra and
beyond to be handled in a flexible way while retaining their essential structural aspects. The
ubiquity of groups in numerous areas within and outside mathematics makes them a central
organizing principle of contemporary mathematics [2]. The concept of a group arose from the
study of polynomial equations, starting with Evariste Galois in the 1830s. After contributions
from other fields such as number theory and geometry, the group notion was generalized and
firmly established around 1870.

In group theory, the elements considered are symmetry operations. For a given molecular
system described by the Hamiltonian H, there is a set of symmetry operations Oi, which
commute with the Hamiltonian H. H and Oi thus have a common set of Eigen functions, and
the eigenvalues of Oi can be used as labels for the Eigen functions. This set of operations
defines a symmetry group. In molecular physics and molecular spectroscopy, two types of
groups are particularly important: the point groups and the permutation-inversion groups.

2.2. Point group operations and point group symmetry

Each molecule has a set of symmetry operations that describes the molecule’s overall symme-
try. This set of operations defines the point group of the molecule. Since all the elements of
symmetry present in the molecule intersect at a common point, this point remains fixed under
all symmetry operations of the molecule and is known as point symmetry groups. Table 1
highlights the Common Point Groups and Symmetry Elements [9]. The point groups are
utilized to define molecules that are considered to be rigid when observed through the
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timescale of the particular spectroscopic experiment. Therefore, molecules that have a specific
equilibrium configuration with no observable tunneling between two or more similar configu-
rations can be used to define the point groups. There are five key symmetry operations for
point groups. The first is the identity E, which leaves all coordinates unaltered. Next is the
rotation Cn by an angle of 2π/n in the positive trigonometric sense. The symmetry axis with the
greatest n value is chosen as the principal axis. If a molecule has a specific Cn axis with the
greatest n value, then the molecule has a sustained dipole moment that lies along this axis. If a
molecule has several Cn axes with the greatest n value, the molecule has no permanent dipole
moment. The reflection through a plane is the next important key factor. These reflections are
organized into two main categories. The first is a reflection through a horizontal plane, and the
second the reflection through a vertical plane. Next on the list of key factors is the inversion,
typically represented by (i), of all coordinates through the inversion center. Through this
inversion, we discover the need for the next key factor for symmetry operation, which is the
improper rotation, typically denoted as “Sn” or referred to as “rotation-reflection”, which con-
sists of a rotation by an angle of 2π/n around the z-axis, followed by a reflection through the
plane perpendicular to the rotational axis. A molecule having an improper operation as
symmetry operation is not able to be optically active and is subsequently labeled as achiral, as
opposed to chiral. One example of symmetry is found within stereochemistry, more specifi-
cally, isomeric pairs of molecules called enantiomers. Enantiomers are mirror images of each

Point
group

Symmetry elements Simple description, chiral if
applicable

Illustrative species

C1 E No symmetry, chiral CFIBrH, Lysergic acid

C8 E σh Planar, no other symmetry Thionyl chloride, hypochlorous acid

Ci Ei Inversion center Anti 1,2-dichloro-1,2-dibromoethane

C∞v E2C∞ σv Linear Hydrogen chloride, carbon
monoxide

D∞h E2C∞ ∞σi i 2S∞ ∞C2 Linear with inversion center Dihydrogen, azide anion, carbon
dioxide

C2 EC2 “open book geometry,” chiral Hydrogen peroxide

C3 EC3 Propeller, chiral Triphenylphosphine

C2h E C2 i σh Planar with inversion center Trans-1,2- dichloroethylene

C3h EC3C3
2 σh S3S3

5 Propeller Boric acid

C2v E C2 σv(xz) σv’(yz) Angular (H2O) or see-saw (SF4) Water, sulfur tetrafluoride, sulfuryl
fluoride

C3v E2C
33σv Trigonal pyramidal Ammonia, phosphorus oxychloride

C4v E2C4C22σv 2σd Square pyramidal Xenon oxytetrafluoride

Td E8C33C26S46σd Tetrahedral Methane, phosphorus pentoxide.
Adamantine

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd Octahedral or cubic Cubane, sulfur hexafluoride

Ih E 12C5 12C5
2 20C3 15C2 i 12S10 12S10

3

20S6 15σ
Icosahedral C60, B12H12

2�

Table 1. Common point groups and symmetry elements.
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other, but, when superimposed, the images are not identical. A consequence of this symmetri-
cal relation is that they rotate the plane of polarized light passing through them in opposite
directions. Molecules that fit this description are referred to as chiral. These aforementioned
applications help to mitigate tedious research timescales and also place an emphasis on the
symmetrical allocation to specific molecules and molecular geometry shapes.

2.3. Permutation-inversion operations and CNPI groups

The point groups are appropriated to describe rigid molecules. However, for floppy systems or
when the transition between two states does not hold the same symmetry, another, more
general definition is required. Longuet-Higgins and Hougen developed the complete nuclear
permutation-inversion (CNPI) groups that rely on the fact that the symmetry operations leave
the Hamiltonian unaltered. There are several symmetry operations of the CNPI groups. The
first is the permuation (ij) of the coordinates of two identical nuclei. i and j denote the exchange
of the nucleus i with the nucleus j [7]. The second is the cyclic permutation (ijk) of the
coordinates of three identical nuclei i, j, and k. The nucleus i is replaced by the nucleus j, j by
k, and k by i. We have all possible circular permutations of n identical nuclei. Next we have the
inversion E∗ of all coordinates of all particles through the center of the lab-fixed frame. We also
have the permutation followed by an inversion (ij)∗ = E∗�(ij) of all coordinates of all particles
and the cyclic permutation followed by an inversion (ijk)∗ of all coordinates of all particles.
Finally, we have all possible circular permutations followed by an inversion of all coordinates
of n identical nuclei. The molecular Hamiltonian is left unchanged upon these operations
because the permutation operations affect identical nuclei. The CNPI groups represent a more
general description that can also be applied to rigid molecules. The point groups are com-
monly used in the case of rigid molecules. In the following, we will consider only rigid
molecules and restrict ourselves to point group symmetry, but all concepts can be extended to
the CNPI and MS groups [7]. The key to applying group theory is to be able to identify the
point group of the molecule that describes the molecule’s unique collection of symmetry
operations. The symmetry elements of a molecule reveal the molecule’s various symmetry
operations. Thus, the initial step in applying group theory to molecular properties is to
recognize the molecule’s specific set of symmetry elements. The process of identifying a
molecule’s symmetry elements has proven difficult for beginners, as they must observe the
elements of symmetry with the naked eye in a 3D object [4].

3. Applications of group theory in spectroscopy

Symmetry can help to solve many of the issues encountered in chemistry, and group theory is
the primary tool that is utilized to identify symmetry. If we know how to determine the
symmetry of small molecules, we can determine the symmetry of other targets. This is not
only limited to the symmetry of molecules but also to the symmetries of local atoms, molecular
orbitals, rotations, and vibrations of bonds. A typical example is the knowledge of the symme-
tries of molecular orbital wave functions allowing the identification of the nature and charac-
teristics of the binding. Also, the particular methods associated with certain symmetries allow
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us to decide if the transition is prohibited and to understand the bands observed in infrared or
Raman spectrum. A symmetry operation to a molecule is an operation that leaves the physical
proprieties of the molecule unchanged. This is equivalent to having the molecule unchanged
before and after the symmetry operation is performed [5]. In other words, when we do a
symmetry operation on a molecule, every point of the molecule will be in an equivalent
position.

The application of group theory in spectroscopy intends to investigate the way in which
symmetry considerations influence the interaction of light with matter. Group theory can be
used to understand the molecular orbitals in a molecule and to determine the possible elec-
tronic states accessible by absorption of a photon. Another important function of group theory
is the investigation of the light that excites different vibrational modes of a polyatomic mole-
cule [10]. A photon of the appropriate energy is able to excite an electronic transition in an
atom, subject to the following selection rules:

Δn ¼ Integer (5)

Δl ¼ �1 (6)

ΔL ¼ 0, � 1 (7)

ΔS ¼ 0 (8)

△J ¼ 0, � 1; J ¼ 0 (9)

In general, different types of spectroscopic transitions obey different selection rules. The
common transitions involve changing the electronic state of an atom and involve absorption
of a photon in the UV or visible part of the electromagnetic spectrum. There are analogous
electronic transitions in molecules, which we will consider here. The absorption of photons in
the infrared region of the spectrum controls the vibrational excitation in molecules and the
absorption of photons in the microwave region commands rotational excitation. Typically,
each excitation executes its own selection rules, but the general methodology for establishing
the selection rules is identical in all cases. The determination of the conditions under which the
probability of transition is not zero is a simple process. Therefore, the first step in understand-
ing the origins of selection rules is to learn how transition probabilities are computed, and this
requires some quantum mechanics concepts [10]. Overall, group theory plays a very important
role in spectroscopy, which we can see from various applications of group theory in spectros-
copy such as infrared spectrum, Raman spectrum, electronic spectrum, and so on. Typically,
the change in electronic energy is greater than in vibrational energy, which is also greater than
in rotational energy. Figure 1 illustrates the different energy levels in a molecule.

3.1. Electronic transitions in molecules

When an electron is excited from one electronic state to another, this is what is called an
electronic transition. The selection rules for electronic transitions are governed by the transi-
tion moment integral. Due to the fact that the electrons are coupled between two vibrational
states that are between two electronic states, it is important to consider both the electronic state
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Δn ¼ Integer (5)

Δl ¼ �1 (6)

ΔL ¼ 0, � 1 (7)

ΔS ¼ 0 (8)

△J ¼ 0, � 1; J ¼ 0 (9)
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3.1. Electronic transitions in molecules
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tion moment integral. Due to the fact that the electrons are coupled between two vibrational
states that are between two electronic states, it is important to consider both the electronic state
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symmetries and the vibration state symmetries. This modification of the transition moment
integral produces the symmetry of the initial electronic and vibrational states called “bra” and
the final electronic and vibrational states named “ket.”

This appears to be a modified version of the transition moment integral [5]. If we assume that
we have a molecule in an initial state, we can determine which final states can be accessed by
the absorption of a photon. So, we need to determine the symmetry of an electronic state. The
symmetry of an electronic state is obtained by identifying any unpaired electrons and taking
the direct product of the unrepresentative of the molecular orbitals in which they are detected.
The total symmetric unrepresentative always holds the ground state of a closed-shell molecule
in which all electrons are paired [10]. The determination of the unrepresentative electric dipole
operator allows obtaining the electronic states accessible by absorption of photons. Light that
is linearly polarized along the x, y, and z axes transforms in the same way as the functions x, y,
and z in the appropriate character table. From the C3v character table, we see that x- and y-
polarized light transforms as E, while z-polarized light transforms as in the appropriate
character table [10].

The excitation from one energy level to a higher energy level happens during the electronic
transitions in a molecule. The change of energy associated with these transitions gives struc-
tural information of the molecule and determines many other molecular properties such as
color. Planck’s relation provides the relationship between the energy involved in the electronic
transition and the frequency of radiation. Planck’s equation is sometimes termed the Planck-
Einstein:

E ¼ hγ (10)

where h ¼ 6:55� 10�34J:s is a Planck constant. Electronic transitions in molecules occur
between orbitals and they must cohere to angular momentum selection rules. Figure 2 shows

Figure 1. Molecular energy levels diagram.
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possible electronic transitions of p, s, and n electrons. In the process of transition σ ! σ∗,
electrons occupying a “HOMO” of a “sigma bond” can get excited to the “LUMO” of that
bond. Similarly, in the process of transition π ! π∗, electrons from a “pi-bonding orbital” can
get excited to the “antibonding-pi orbital” of that bond. Auxochromes with free electron pairs
denoted as n have their own transitions. The following molecular electronic transitions exist:

3.2. Vibrational transitions in molecules

All molecules vibrate. While these vibrations can originate from several events, the most basic
of these occurs when an electron is excited within the electronic state from one eigenstate to
another. When an electron is excited from one eigenstate to another within the electronic state,
there is a change in interatomic distance, which results in a vibration occurring. A vibration
occurs when an electron remains within the electronic state but changes from one eigenstate to
another. Just as in electronic transitions, the selection rules for Vibrational transitions are
dictated by the transition moment integral. Light polarized along the x, y, and z axes of the
molecule may be used to excite vibrations with the same symmetry as the x, y, and z functions
listed in the character table. For example, in the C2v point group, x-polarized light may be used
to excite vibrations of B1 symmetry, y-polarized light to excite vibrations of B2 symmetry, and
z-polarized light to excite vibrations of A1 symmetry. In H2O, we would use z-polarized light
to excite the symmetric stretch and bending modes, and x-polarized light to excite the asym-
metric stretch. Shining y-polarized light onto a molecule of H2O would not excite any vibra-
tional motion [10]. For instance, let us consider a simple case of a vibrating diatomic molecule
where the restoring force is proportional to the displacement,

F ¼ �kx: (11)

The potential energy is

V ¼ 1
2
kx2 (12)

and the allowed energy can be obtained from Schrodinger equation,

Figure 2. Absorbing species containing p, s, and n electrons.
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Eν ¼ νþ 1
2

� �
ℏω (13)

where

ω ¼ k
μ

� �1=2

, ν ¼ 0, 1, 2, 3, 4…, (14)

and

μ ¼ m1m2

m1 þm2
: (15)

The vibrational terms of the molecule can therefore be given by

Gν ¼ νþ 1
2

� �
1

2πc
k
μ

� �1=2

(16)

3.3. Raman scattering

Single photons often cannot reach vibrational modes in the molecule; however, it may still be
possible to excite them. To achieve excitement, scientists often utilize Raman scattering, which is
a two-photon process. These two photons utilized in Raman scattering might have different
polarizations. The first photon sends the molecule into an intermediate state known as a virtual
state, which is not a stationary state for the particular molecule. When considering the photon
and the molecule as a system, a stationary state can be said to exist, but it exists only for a short
period of time. Once the transition is over, a photon will be rapidly emitted back into the stable
molecule. It is important to note that the photon may return different from its original state. The
transition dipole for a particular Raman transition transforms as one of the Cartesian products. A
Raman transition has the potential to excite Cartesian products if they are the product of a
transformed vibrational mode. For example, modes that transform as x, y or z can be excited by
a one-photon vibrational transition. Simple one-photon vibrational transitions can access all of
the vibrational modes of water Raman transitions). The Cartesian products transform as follows
in the C2v point group. The stretch and the bending vibration of water are depictions of A1

symmetry. Consequently, Raman scattering processes involving two photons of identical polar-
ization (x-, y- or z-polarized) can excite both. Conversely, an asymmetric stretch can be excited if
one photon is x-polarized and the other is z-polarized.

As shown in Figure 3, Raman spectroscopy transition in resonance is the excitation from one
particular electronic state to another state. The rules for selection are determined by the
transition moment integral discussed in the electronic spectroscopy segment. Mechanically,
Raman does produce a vibration similar to infrared, but selection protocols for Raman state
that there must be a change in the polarization, which means that the volume occupied by the
molecule must change [5]. The utilization of group theory to identify whether or not a transi-
tion is permitted can also be done using the transition moment integral presented in the
electronic transition portion.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry16

Acknowledgements

The authors thank the CUNY Office Assistant Oana Teodorescu for reading and for editing
the manuscript. The first author acknowledges the support from the CUNY GRANT CCRG#
1517, the CUNY RESEARCH SCHOLAR PROGRAM-2017-2018 and THE NEXT BIIG
THING INQUIRY GRANT 2017. He also acknowledges the mentee’s student Francesca
Serrano for helping in editing the manuscript. The contents of this chapter are solely the
responsibility of the author and do not represent the official views of the NIH.

Author details

Eugene Stephane Mananga1,2,3*, Akil Hollington3,4 and Karen Registe5

*Address all correspondence to: emananga@gradcenter.cuny.edu

1 Program Physics and Program Chemistry, Graduate Center, The City University of
New York, New York, NY, USA

2 Department of Engineering, Physics, and Technology, BCC of CUNY, New York, USA

3 Department of Applied Physics, New York University, Brooklyn, NY, USA

4 Department of Chemistry, Syracuse University, Syracuse, NY, USA

5 Department of Mathematics, Lehman College, New York, USA

References

[1] Dixon JD. Problems in Group Theory. New York: Dover; 1973

[2] Horn K. Lecture note: “Introduction to Group Theory with Applications in Molecular and
Solid State Physics”. Fritz-Haber-Institut der Max-Planck-Gesellschaft

Figure 3. Raman scattering energy level diagram.

Treatment of Group Theory in Spectroscopy
http://dx.doi.org/10.5772/intechopen.75735

17



Eν ¼ νþ 1
2

� �
ℏω (13)

where

ω ¼ k
μ

� �1=2

, ν ¼ 0, 1, 2, 3, 4…, (14)

and

μ ¼ m1m2

m1 þm2
: (15)

The vibrational terms of the molecule can therefore be given by

Gν ¼ νþ 1
2

� �
1

2πc
k
μ

� �1=2

(16)

3.3. Raman scattering

Single photons often cannot reach vibrational modes in the molecule; however, it may still be
possible to excite them. To achieve excitement, scientists often utilize Raman scattering, which is
a two-photon process. These two photons utilized in Raman scattering might have different
polarizations. The first photon sends the molecule into an intermediate state known as a virtual
state, which is not a stationary state for the particular molecule. When considering the photon
and the molecule as a system, a stationary state can be said to exist, but it exists only for a short
period of time. Once the transition is over, a photon will be rapidly emitted back into the stable
molecule. It is important to note that the photon may return different from its original state. The
transition dipole for a particular Raman transition transforms as one of the Cartesian products. A
Raman transition has the potential to excite Cartesian products if they are the product of a
transformed vibrational mode. For example, modes that transform as x, y or z can be excited by
a one-photon vibrational transition. Simple one-photon vibrational transitions can access all of
the vibrational modes of water Raman transitions). The Cartesian products transform as follows
in the C2v point group. The stretch and the bending vibration of water are depictions of A1

symmetry. Consequently, Raman scattering processes involving two photons of identical polar-
ization (x-, y- or z-polarized) can excite both. Conversely, an asymmetric stretch can be excited if
one photon is x-polarized and the other is z-polarized.

As shown in Figure 3, Raman spectroscopy transition in resonance is the excitation from one
particular electronic state to another state. The rules for selection are determined by the
transition moment integral discussed in the electronic spectroscopy segment. Mechanically,
Raman does produce a vibration similar to infrared, but selection protocols for Raman state
that there must be a change in the polarization, which means that the volume occupied by the
molecule must change [5]. The utilization of group theory to identify whether or not a transi-
tion is permitted can also be done using the transition moment integral presented in the
electronic transition portion.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry16

Acknowledgements

The authors thank the CUNY Office Assistant Oana Teodorescu for reading and for editing
the manuscript. The first author acknowledges the support from the CUNY GRANT CCRG#
1517, the CUNY RESEARCH SCHOLAR PROGRAM-2017-2018 and THE NEXT BIIG
THING INQUIRY GRANT 2017. He also acknowledges the mentee’s student Francesca
Serrano for helping in editing the manuscript. The contents of this chapter are solely the
responsibility of the author and do not represent the official views of the NIH.

Author details

Eugene Stephane Mananga1,2,3*, Akil Hollington3,4 and Karen Registe5

*Address all correspondence to: emananga@gradcenter.cuny.edu

1 Program Physics and Program Chemistry, Graduate Center, The City University of
New York, New York, NY, USA

2 Department of Engineering, Physics, and Technology, BCC of CUNY, New York, USA

3 Department of Applied Physics, New York University, Brooklyn, NY, USA

4 Department of Chemistry, Syracuse University, Syracuse, NY, USA

5 Department of Mathematics, Lehman College, New York, USA

References

[1] Dixon JD. Problems in Group Theory. New York: Dover; 1973

[2] Horn K. Lecture note: “Introduction to Group Theory with Applications in Molecular and
Solid State Physics”. Fritz-Haber-Institut der Max-Planck-Gesellschaft

Figure 3. Raman scattering energy level diagram.

Treatment of Group Theory in Spectroscopy
http://dx.doi.org/10.5772/intechopen.75735

17



[3] Carmichael RD. Introduction to the Theory of Groups of Finite Order. NewYork: Dover; 1956

[4] Alperin JL, Bell RB. Groups and Representations. New York: Springer-Verlag; 1995

[5] Vallance C. Lecture note: “Molecular Symmetry, Group Theory, and Applications”. Uni-
versity of Oxford

[6] BurrowM. Representation Theory of Finite Groups. New York: Dover; 1993

[7] Bunker PR, Jensen P. Molecular Symmetry and Spectroscopy. Ottawa: NRC Research
Press; 1998

[8] Burnside W. Theory of Groups of Finite Order. 2nd ed. New York: Dover; 1955

[9] Arfken G. Introduction to Group Theory. In: §4.8 in Mathematical Methods for Physicists.
3rd ed. Orlando: Academic Press; 1985. pp. 237-276

[10] Lecture Note Physical Chemistry, PCV - Spectroscopy of atoms and molecules. ETHZ

Symmetry (Group Theory) and Mathematical Treatment in Chemistry18

Chapter 3

Group Theory from a Mathematical Viewpoint

Takao Satoh

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72131

Provisional chapter

Group Theory from a Mathematical Viewpoint

Takao Satoh

Additional information is available at the end of the chapter

Abstract

In this chapter, for the reader who does not major in mathematics but chemistry, we
discuss general group theory from a mathematical viewpoint without proofs. The main
purpose of the chapter is to reduce reader’s difficulties for the abstract group theory and
to get used to dealing with it. In order to do this, we exposit definitions and theorems of
the field without rigorous and difficult arguments on the one hand and give lots of basic
and fundamental examples for easy to understand on the other hand. Our final goal is to
obtain well understandings about conjugacy classes, irreducible representations, and
characters of groups with easy examples of finite groups. In particular, we give several
character tables of finite groups of small order, including cyclic groups, dihedral groups,
symmetric groups, and their direct product groups. In Section 8, we deal with directed
graphs and their automorphism groups. It seems that some of ideas and techniques in
this section are useful to consider the symmetries of molecules in chemistry.

Keywords: group theory, finite groups, conjugacy classes, representation theory,
character tables, directed graphs, automorphisms of graphs

1. Introduction

To make a long story short, a group is a set equipped with certain binary operation, for
example, the set of all integers with the addition and the set of all nth power roots of unity
with the multiplication. One of the origins of the group theory goes back to the study of the
solvability of algebraic equations by Galois in the nineteenth century. He focused on the
permutations of the solutions of an equation and gave rise to a concept of permutation groups.
On the other hand, in 1872 Felix Klein proposed that every geometry is characterized by its
underlying transformation groups. Here the transformation group means the group that
comes from certain symmetries of the space. By using group theory, he classified Euclidean
geometry and non-Euclidean geometry. As is shown earlier, groups have been established as
important research objects on the study of permutations and symmetries of a given object. The
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group theory has achieved a good progress in modern mathematics and has various deep and
sophisticated theories itself.

Today, the group theory has multiple facets and widespread applications in a broad range of
science, including not only mathematics and physics but also chemistry. In chemistry, group
theory is used to study the symmetries and the crystal structures of molecules. For each
molecule, a certain group, which is called the point group, is defined by the symmetries on
the molecule. The structure of this group reflects many physical and chemical properties,
including the chirality and the spectroscopic property of the molecule. The group theory has
become a standard and a powerful tool to study various properties of the molecule from a
viewpoint of the molecular orbital theory, for example, the orbital hybridizations, the chemical
bonding, the molecular vibration, and so on. In general, although each of modern mathemat-
ical theories is quite abstract and sophisticated to apply to the other sciences, the group theory
has succeeded to achieve a good application by many authors, including Hans Bethe, Eugene
Wigner, László Tisza, and Robert Mulliken. It seems that such expansions of mathematics to
the other sciences are quite blessed facts for mathematicians.

Here we organize the contents of this chapter. First, we give mathematical notation and
conventions which we use in this chapter. The reader is assumed to be familiar with elemental
linear algebra and set theory. In Section 3, we review the definitions and some fundamental
and important properties of groups. In particular, we show several methods to make new
groups from known groups by considering subgroups and quotient groups. Then, we consider
to classify known groups by using the concept of group isomorphism. In Section 4, we discuss
and give many examples of finite groups, including symmetric groups, alternating groups,
and dihedral groups. Then we give the classification theorem for finite abelian groups, which
we can regard as an expansion of the Chinese remainder theorem. In Section 5, we consider to
classify elements of groups by the conjugation and discuss the decomposition of a group into
its conjugacy classes. In Section 6, we explain basic facts in representation theory of finite
groups. In particular, we review representations of groups, irreducible representations, and
characters. Finally, we give several examples of character tables of well-known finite groups. In
Section 8, we consider finite-oriented graphs and their automorphisms. The automorphism
group of a graph strongly reflects the symmetries of the graph. We remark that the reader can
read this section without the knowledge of the facts in Sections 5 and 6.

2. Notation and conventions

In this section, we fix some notation and conventions and review some definitions in the set
theory and the linear algebra:

N ≔ the set of natural numbers ¼ 1; 2; 3;…f g
Z ≔ the set of integers ¼ 0;�1;�2;�3;…f g
Q ≔ the set of rational numbers

R ≔ the set of real numbers

C ≔ the set of complex numbers ¼ aþ b
ffiffiffiffiffiffiffi
�1

p
ja; b∈R

n o
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• For any a, b∈Z\ 0f g, the greatest common divisor of a and b is denoted by gcd a; bð Þ.
• For a set X, the cardinality of X is denoted by ∣X∣. If X is a finite set, ∣X∣ means the number

of elements of X.

• For sets X and Y, the difference of sets X and Y is denoted by X\Y≔ x jx∈X; x∉Yf g.
• A map f : X ! Y is surjective if for any y∈Y; there exists some x∈X such that f xð Þ ¼ y.

• A map f : X ! Y is injective if f xð Þ ¼ f x0ð Þ for x, x0 ∈X; then x ¼ x0.

• A map f : X ! Y is bijective if f is surjective and injective. In other words, the bijective
map is one-to-one correspondence between X and Y.

• Let K be Q, R or C. For K-vector spaces V andW , a map f : V ! W is K-linear if f satisfies

f xþ yð Þ ¼ f xð Þ þ f yð Þ,
f kxð Þ ¼ kf xð Þ

for any x, y∈V and k∈K.

• A linear map f : V ! V is called a linear transformation on V.

3. General group theory

In this section, we review elemental and fundamental topics in group theory, based on the
authors’ book [1]. There are hundreds of textbooks for the group theory. Venture to say, if the
reader wants to learn more from a viewpoint of symmetries, it seems to be better to see [2]. For
high motivated readers, see [3, 4] for mathematical details.

3.1. Groups

Let G be a set. For any σ, τ∈G, if there exists the unique element σ � τ∈G, which is called the
product of σ and τ, such that the product satisfies the following three conditions, then the set G
is called a group:
• (Associativity) For any σ, τ, r∈G, σ � τð Þ � r ¼ σ � τ � rð Þ.
• (Unit) There exists some element e∈G such that for any σ∈G,

e � σ ¼ σ � e ¼ σ:

We call the element e the unit of G. According to the mathematical convention, we write 1G or
simply 1, for the unit.
• (Inverse element) For any σ∈G, there exists some element σ0 ∈G such that

σ � σ0 ¼ σ0 � σ ¼ e:

We call σ0 the inverse element of σ and write σ�1.
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science, including not only mathematics and physics but also chemistry. In chemistry, group
theory is used to study the symmetries and the crystal structures of molecules. For each
molecule, a certain group, which is called the point group, is defined by the symmetries on
the molecule. The structure of this group reflects many physical and chemical properties,
including the chirality and the spectroscopic property of the molecule. The group theory has
become a standard and a powerful tool to study various properties of the molecule from a
viewpoint of the molecular orbital theory, for example, the orbital hybridizations, the chemical
bonding, the molecular vibration, and so on. In general, although each of modern mathemat-
ical theories is quite abstract and sophisticated to apply to the other sciences, the group theory
has succeeded to achieve a good application by many authors, including Hans Bethe, Eugene
Wigner, László Tisza, and Robert Mulliken. It seems that such expansions of mathematics to
the other sciences are quite blessed facts for mathematicians.

Here we organize the contents of this chapter. First, we give mathematical notation and
conventions which we use in this chapter. The reader is assumed to be familiar with elemental
linear algebra and set theory. In Section 3, we review the definitions and some fundamental
and important properties of groups. In particular, we show several methods to make new
groups from known groups by considering subgroups and quotient groups. Then, we consider
to classify known groups by using the concept of group isomorphism. In Section 4, we discuss
and give many examples of finite groups, including symmetric groups, alternating groups,
and dihedral groups. Then we give the classification theorem for finite abelian groups, which
we can regard as an expansion of the Chinese remainder theorem. In Section 5, we consider to
classify elements of groups by the conjugation and discuss the decomposition of a group into
its conjugacy classes. In Section 6, we explain basic facts in representation theory of finite
groups. In particular, we review representations of groups, irreducible representations, and
characters. Finally, we give several examples of character tables of well-known finite groups. In
Section 8, we consider finite-oriented graphs and their automorphisms. The automorphism
group of a graph strongly reflects the symmetries of the graph. We remark that the reader can
read this section without the knowledge of the facts in Sections 5 and 6.

2. Notation and conventions

In this section, we fix some notation and conventions and review some definitions in the set
theory and the linear algebra:

N ≔ the set of natural numbers ¼ 1; 2; 3;…f g
Z ≔ the set of integers ¼ 0;�1;�2;�3;…f g
Q ≔ the set of rational numbers

R ≔ the set of real numbers

C ≔ the set of complex numbers ¼ aþ b
ffiffiffiffiffiffiffi
�1

p
ja; b∈R

n o
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• For any a, b∈Z\ 0f g, the greatest common divisor of a and b is denoted by gcd a; bð Þ.
• For a set X, the cardinality of X is denoted by ∣X∣. If X is a finite set, ∣X∣ means the number

of elements of X.

• For sets X and Y, the difference of sets X and Y is denoted by X\Y≔ x jx∈X; x∉Yf g.
• A map f : X ! Y is surjective if for any y∈Y; there exists some x∈X such that f xð Þ ¼ y.

• A map f : X ! Y is injective if f xð Þ ¼ f x0ð Þ for x, x0 ∈X; then x ¼ x0.

• A map f : X ! Y is bijective if f is surjective and injective. In other words, the bijective
map is one-to-one correspondence between X and Y.

• Let K be Q, R or C. For K-vector spaces V andW , a map f : V ! W is K-linear if f satisfies

f xþ yð Þ ¼ f xð Þ þ f yð Þ,
f kxð Þ ¼ kf xð Þ

for any x, y∈V and k∈K.

• A linear map f : V ! V is called a linear transformation on V.

3. General group theory

In this section, we review elemental and fundamental topics in group theory, based on the
authors’ book [1]. There are hundreds of textbooks for the group theory. Venture to say, if the
reader wants to learn more from a viewpoint of symmetries, it seems to be better to see [2]. For
high motivated readers, see [3, 4] for mathematical details.

3.1. Groups

Let G be a set. For any σ, τ∈G, if there exists the unique element σ � τ∈G, which is called the
product of σ and τ, such that the product satisfies the following three conditions, then the set G
is called a group:
• (Associativity) For any σ, τ, r∈G, σ � τð Þ � r ¼ σ � τ � rð Þ.
• (Unit) There exists some element e∈G such that for any σ∈G,

e � σ ¼ σ � e ¼ σ:

We call the element e the unit of G. According to the mathematical convention, we write 1G or
simply 1, for the unit.
• (Inverse element) For any σ∈G, there exists some element σ0 ∈G such that

σ � σ0 ¼ σ0 � σ ¼ e:

We call σ0 the inverse element of σ and write σ�1.
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If the definition of the product is clear from the content, we often omit the symbol � and write
στ instead of σ � τ for simplicity. The product is a binary operator on G and is also called the
multiplication of G.

Here we consider the following examples:

(E1) Each of the sets Z, Q, R, and C is a group with the usual addition. For the case Z, we see
that the unit is 0 and for any n∈Z, the inverse of n is �n. In general, if the product of a group G
is additive, then G is called an additive group. We remark thatN is not a group with the usual
addition since any element does not have its inverse.

(E2) The set R�≔R 0f g with the usual multiplication of real numbers forms a group. We see
that the unit is 1 and for any r∈R�, the inverse of r is 1=r. We remark that R with the usual
multiplication is not a group since 0 does not have its inverse. In general, if the product of a
group G is multiplicative, then G is called a multiplicative group. Similarly, Q�≔Q 0f g and
C�≔C 0f g are multiplicative groups.

(E3) For any n∈N n ≥ 1ð Þ, let Un be the set of nth power roots of unity:

Un≔ exp 2kπ
ffiffiffiffiffi�1

p
n

� �
∈C
��� 0 ≤ k ≤ n� 1

n o
,

where

exp
2kπ

ffiffiffiffiffiffiffi�1
p

n

 !
≔cos

2kπ
n

� �
þ

ffiffiffiffiffiffiffi
�1

p
sin

2kπ
n

� �
:

Then Un with the usual multiplication of C forms a group. Geometrically, Un is the set of
vertices of the regular n-gon on the unit circle in the complex plane C. For example, U6 consists

of the following points for ζ ¼ exp 2π
ffiffiffiffiffi�1

p
6

� �
in Figure 1.

In general, for a group G, if G consists of finitely many elements, then G is called a finite group.
The number of elements of a finite group G is called the order of G, denoted by ∣G∣. If G is not a
finite group, then G is called an infinite group. The group Un is a finite group of order n, and
the groups discussed in (E1) and (E2) are infinite groups.

(E4) Let K be Q, R, or C. We denote by M 2;Kð Þ the set of 2� 2 matrices with all entries in K:

M 2;Kð Þ≔ a b
c d

� � ����a; b; c; d∈K
� �

:

Furthermore, we denote by GL 2;Kð Þ the set of elements of M 2;Kð Þ whose determinant is not
equal to zero:

GL 2;Kð Þ≔ A∈M 2;Kð Þ j detA 6¼ 0f g:

Then M 2;Kð Þwith the usual addition of matrices forms an additive group. The unit of M 2;Kð Þ is
zero matrix, and for any A ¼ aij

� �
∈M 2;Kð Þ, its inverse is �A≔ �aij

� �
. Since GL 2;Kð Þ does not
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have the zero matrix, the set GL 2;Kð Þ is not an additive group. On the other hand, the set
GL 2;Kð Þ with the usual multiplication of matrices forms a multiplicative group. The unit of
GL 2;Kð Þ is the unit matrix E2, and for any A ¼ aij

� �
∈GL 2;Kð Þ, its inverse is the inverse matrix

A�1 as follows:

E2≔
1 0
0 1

� �
, A�1 ¼ 1

detA
a22 �a12
�a21 a11

� �
:

The group GL 2;Kð Þ is called the general linear group of degree 2. Similarly, we can consider
the general linear group GL n;Kð Þ of degree n for any n∈N.

Both M 2;Kð Þ and GL 2;Kð Þ are infinite groups. But the most significant difference between
them is the commutativity of the products. Although we see Aþ B ¼ Bþ A in M 2;Kð Þ for any
A, B∈M 2;Kð Þ, the equation AB ¼ BA does not hold in GL 2;Kð Þ in general. For example, if

A ¼ 1 1
0 1

� �
and B ¼ 1 0

1 1

� �
, then we see

AB ¼ 2 1
1 1

� �
, BA ¼ 1 1

1 2

� �
:

For a group G, if στ ¼ τσ holds for any σ, τ∈G, then G is called an abelian group. The group
GL 2;Kð Þ is a non-abelian group, and all the groups as mentioned before except for GL 2;Kð Þ are
abelian groups.

3.2. Subgroups

Since group theory is an abstract itself, it had better for beginners to have sufficiently enough
examples to understand it. In order to make further examples, we consider several methods to
make new groups from known groups. The first one is a subgroup.

Figure 1. The sixth roots of unity.
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If the definition of the product is clear from the content, we often omit the symbol � and write
στ instead of σ � τ for simplicity. The product is a binary operator on G and is also called the
multiplication of G.

Here we consider the following examples:

(E1) Each of the sets Z, Q, R, and C is a group with the usual addition. For the case Z, we see
that the unit is 0 and for any n∈Z, the inverse of n is �n. In general, if the product of a group G
is additive, then G is called an additive group. We remark thatN is not a group with the usual
addition since any element does not have its inverse.

(E2) The set R�≔R 0f g with the usual multiplication of real numbers forms a group. We see
that the unit is 1 and for any r∈R�, the inverse of r is 1=r. We remark that R with the usual
multiplication is not a group since 0 does not have its inverse. In general, if the product of a
group G is multiplicative, then G is called a multiplicative group. Similarly, Q�≔Q 0f g and
C�≔C 0f g are multiplicative groups.

(E3) For any n∈N n ≥ 1ð Þ, let Un be the set of nth power roots of unity:

Un≔ exp 2kπ
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n o
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p
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:

Then Un with the usual multiplication of C forms a group. Geometrically, Un is the set of
vertices of the regular n-gon on the unit circle in the complex plane C. For example, U6 consists

of the following points for ζ ¼ exp 2π
ffiffiffiffiffi�1

p
6

� �
in Figure 1.

In general, for a group G, if G consists of finitely many elements, then G is called a finite group.
The number of elements of a finite group G is called the order of G, denoted by ∣G∣. If G is not a
finite group, then G is called an infinite group. The group Un is a finite group of order n, and
the groups discussed in (E1) and (E2) are infinite groups.

(E4) Let K be Q, R, or C. We denote by M 2;Kð Þ the set of 2� 2 matrices with all entries in K:

M 2;Kð Þ≔ a b
c d

� � ����a; b; c; d∈K
� �

:

Furthermore, we denote by GL 2;Kð Þ the set of elements of M 2;Kð Þ whose determinant is not
equal to zero:

GL 2;Kð Þ≔ A∈M 2;Kð Þ j detA 6¼ 0f g:

Then M 2;Kð Þwith the usual addition of matrices forms an additive group. The unit of M 2;Kð Þ is
zero matrix, and for any A ¼ aij

� �
∈M 2;Kð Þ, its inverse is �A≔ �aij

� �
. Since GL 2;Kð Þ does not
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have the zero matrix, the set GL 2;Kð Þ is not an additive group. On the other hand, the set
GL 2;Kð Þ with the usual multiplication of matrices forms a multiplicative group. The unit of
GL 2;Kð Þ is the unit matrix E2, and for any A ¼ aij

� �
∈GL 2;Kð Þ, its inverse is the inverse matrix

A�1 as follows:

E2≔
1 0
0 1

� �
, A�1 ¼ 1

detA
a22 �a12
�a21 a11

� �
:

The group GL 2;Kð Þ is called the general linear group of degree 2. Similarly, we can consider
the general linear group GL n;Kð Þ of degree n for any n∈N.

Both M 2;Kð Þ and GL 2;Kð Þ are infinite groups. But the most significant difference between
them is the commutativity of the products. Although we see Aþ B ¼ Bþ A in M 2;Kð Þ for any
A, B∈M 2;Kð Þ, the equation AB ¼ BA does not hold in GL 2;Kð Þ in general. For example, if

A ¼ 1 1
0 1

� �
and B ¼ 1 0

1 1

� �
, then we see

AB ¼ 2 1
1 1

� �
, BA ¼ 1 1

1 2

� �
:

For a group G, if στ ¼ τσ holds for any σ, τ∈G, then G is called an abelian group. The group
GL 2;Kð Þ is a non-abelian group, and all the groups as mentioned before except for GL 2;Kð Þ are
abelian groups.

3.2. Subgroups

Since group theory is an abstract itself, it had better for beginners to have sufficiently enough
examples to understand it. In order to make further examples, we consider several methods to
make new groups from known groups. The first one is a subgroup.

Figure 1. The sixth roots of unity.
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Let G be a group. If a nonempty subset H of G satisfies the following two conditions, then H is
called a subgroup of G:

• For any σ, τ∈H, στ∈H.

• For any σ∈H, σ�1 ∈H.

We can consider H itself is a group by restricting the product of G to H. For any group G, the
one point subset 1Gf g is a subgroup of G. We call this subgroup the trivial subgroup of G. Let
us consider some other examples:

(E5) The additive group Z is a subgroup of Q, R, and Z. For any n∈Z, the subset

nZ≔ 0;�n;�2n;…f g⊂Z

of Z consisting of multiples of n is a subgroup of Z. Since 0Z ¼ 0f g is the trivial subgroup, and
since nZ ¼ �nð ÞZ, we usually consider the case n∈N.

(E6) Consider the group U6 consisting of 6th power roots of unity. Then we can consider U2

and U3 are subgroups of U6.

(E7) Let K be Q, R, or C. The subset

SL 2;Kð Þ≔ A∈GL 2;Kð Þ jdetA ¼ 1f g⊂GL 2;Kð Þ

of GL 2;Kð Þ consisting of matrices whose determinants are equal to one is a subgroup of
GL 2;Kð Þ. We call SL 2;Kð Þ the special linear group of degree 2.

In general, we can construct a subgroup from a subset of a group. Let S be a subset of a group
G. Then the subset

Sh i≔ se11 s
e2
2 ⋯semm jm∈Z ≥ 0; si ∈ S; ei ¼ �1

� �

of G consisting of elements which are written as a product of some elements in S, and their
inverses are a subgroup of G. Remark that if m ¼ 0, the product se11 ⋯semm means 1G and that for
any σ ¼ se11 s

e2
2 ⋯semm ∈ Sh i, its inverse is given by σ�1 ¼ s�em

m s�em�1
m�1 ⋯s�e1

1 . We call Sh i the subgroup
of G generated by S. The elements of S are called generators of the subgroup Sh i. Here we give
some examples:

(E8) The additive group Z is generated by 1. For any n ≥ 1, the group Un of nth power roots of

unity is generated by ζ ¼ exp 2π
ffiffiffiffiffiffiffi�1

p
=n

� �
. In general, a group generated by a single element is

called a cyclic group. Thus, Z is an infinite cyclic group, and Un is a finite cyclic group. Remark

that �1 and ζ�1 ¼ exp �2π
ffiffiffiffiffiffiffi�1

p
=n

� �
are also generators of Z and Un, respectively.

(E9) It is known that the additive groups Q, R, and C and the multiplicative groups GL 2;Kð Þ
and SL 2;Kð Þ for K ¼ Q,R,C are not finitely generated group.

Next, we consider a relation between the orders of a finite group and its subgroup. Let G be a
group and H a subgroup of G. For any σ∈G, the subset
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σH≔ στ∈G jτ∈Hf g

is called a left coset of H in G. We can see that σH ¼ τH if and only if there exists some h∈H
such that σ ¼ τh.

(E10) In the additive group Z, for any n∈N, consider the subgroup nZ. Then, since the product
of Z is written additively, a left coset of nZ is given by

σþ nZ ¼ σþ nτ jτ∈Zf g

for an element σ∈Z. On the other hand, if we take the remainder r of the division of σ by n,
then we see σþ nZ ¼ rþ nZ. Hence all left cosets of nZ in Z are given by

nZ, 1þ nZ, n� 1ð Þ þ nZ:

For simplicity, we write r½ �n for rþ nZ.

(E11) Consider the finite cyclic group U6 and its subgroup U2 ¼ �1f g of order 2. Set

ζ≔exp 2π
ffiffiffiffiffiffiffi�1

p
=6

� �
. Then we can see that

ζU2 ¼ �ζf g ¼ ζ; ζ4
� � ¼ ζ4U2, ζ2U2 ¼ ζ5U2, ζ3U2 ¼ U2:

Hence there exist three left cosets of U2.

In example (E11), we can see that the order of U2 times the number of left cosets of U2 is equal
to six, which is the order of U6. This is no coincidence. In general, for a finite group G and a
subgroup H of G, the number of left cosets of H is called the index of H in G and is denoted by
G : H½ �. Then we have the following:

Theorem 3.1 (Lagrange). As the above notation C, we have ∣G∣ ¼ ∣H∣ G : H½ �. Namely, the order of
any subgroup of a finite group G is a divisor of ∣G∣.

As a corollary, we obtain the following:

Corollary 3.2. If G is a finite group of prime order, then G is a cyclic group.

3.3. Quotient groups

For a group G and its subgroup H, the set of left cosets of H is denoted by

G=H≔ σH jσ∈Gf g:

In general, this set does not have a natural group structure. Here we consider a condition to
make it a group.

Let N be a subgroup of G. If σnσ�1 ∈N for any n∈N and any σ∈G, then N is called a normal
subgroup of G. If G is abelian group, any subgroup of G is a normal subgroup. For a normal
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Let G be a group. If a nonempty subset H of G satisfies the following two conditions, then H is
called a subgroup of G:

• For any σ, τ∈H, στ∈H.

• For any σ∈H, σ�1 ∈H.

We can consider H itself is a group by restricting the product of G to H. For any group G, the
one point subset 1Gf g is a subgroup of G. We call this subgroup the trivial subgroup of G. Let
us consider some other examples:

(E5) The additive group Z is a subgroup of Q, R, and Z. For any n∈Z, the subset

nZ≔ 0;�n;�2n;…f g⊂Z

of Z consisting of multiples of n is a subgroup of Z. Since 0Z ¼ 0f g is the trivial subgroup, and
since nZ ¼ �nð ÞZ, we usually consider the case n∈N.

(E6) Consider the group U6 consisting of 6th power roots of unity. Then we can consider U2

and U3 are subgroups of U6.

(E7) Let K be Q, R, or C. The subset

SL 2;Kð Þ≔ A∈GL 2;Kð Þ jdetA ¼ 1f g⊂GL 2;Kð Þ

of GL 2;Kð Þ consisting of matrices whose determinants are equal to one is a subgroup of
GL 2;Kð Þ. We call SL 2;Kð Þ the special linear group of degree 2.

In general, we can construct a subgroup from a subset of a group. Let S be a subset of a group
G. Then the subset

Sh i≔ se11 s
e2
2 ⋯semm jm∈Z ≥ 0; si ∈ S; ei ¼ �1

� �

of G consisting of elements which are written as a product of some elements in S, and their
inverses are a subgroup of G. Remark that if m ¼ 0, the product se11 ⋯semm means 1G and that for
any σ ¼ se11 s

e2
2 ⋯semm ∈ Sh i, its inverse is given by σ�1 ¼ s�em

m s�em�1
m�1 ⋯s�e1

1 . We call Sh i the subgroup
of G generated by S. The elements of S are called generators of the subgroup Sh i. Here we give
some examples:

(E8) The additive group Z is generated by 1. For any n ≥ 1, the group Un of nth power roots of

unity is generated by ζ ¼ exp 2π
ffiffiffiffiffiffiffi�1

p
=n

� �
. In general, a group generated by a single element is

called a cyclic group. Thus, Z is an infinite cyclic group, and Un is a finite cyclic group. Remark

that �1 and ζ�1 ¼ exp �2π
ffiffiffiffiffiffiffi�1

p
=n

� �
are also generators of Z and Un, respectively.

(E9) It is known that the additive groups Q, R, and C and the multiplicative groups GL 2;Kð Þ
and SL 2;Kð Þ for K ¼ Q,R,C are not finitely generated group.

Next, we consider a relation between the orders of a finite group and its subgroup. Let G be a
group and H a subgroup of G. For any σ∈G, the subset
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σH≔ στ∈G jτ∈Hf g

is called a left coset of H in G. We can see that σH ¼ τH if and only if there exists some h∈H
such that σ ¼ τh.

(E10) In the additive group Z, for any n∈N, consider the subgroup nZ. Then, since the product
of Z is written additively, a left coset of nZ is given by

σþ nZ ¼ σþ nτ jτ∈Zf g

for an element σ∈Z. On the other hand, if we take the remainder r of the division of σ by n,
then we see σþ nZ ¼ rþ nZ. Hence all left cosets of nZ in Z are given by

nZ, 1þ nZ, n� 1ð Þ þ nZ:

For simplicity, we write r½ �n for rþ nZ.

(E11) Consider the finite cyclic group U6 and its subgroup U2 ¼ �1f g of order 2. Set

ζ≔exp 2π
ffiffiffiffiffiffiffi�1

p
=6

� �
. Then we can see that

ζU2 ¼ �ζf g ¼ ζ; ζ4
� � ¼ ζ4U2, ζ2U2 ¼ ζ5U2, ζ3U2 ¼ U2:

Hence there exist three left cosets of U2.

In example (E11), we can see that the order of U2 times the number of left cosets of U2 is equal
to six, which is the order of U6. This is no coincidence. In general, for a finite group G and a
subgroup H of G, the number of left cosets of H is called the index of H in G and is denoted by
G : H½ �. Then we have the following:

Theorem 3.1 (Lagrange). As the above notation C, we have ∣G∣ ¼ ∣H∣ G : H½ �. Namely, the order of
any subgroup of a finite group G is a divisor of ∣G∣.

As a corollary, we obtain the following:

Corollary 3.2. If G is a finite group of prime order, then G is a cyclic group.

3.3. Quotient groups

For a group G and its subgroup H, the set of left cosets of H is denoted by

G=H≔ σH jσ∈Gf g:

In general, this set does not have a natural group structure. Here we consider a condition to
make it a group.

Let N be a subgroup of G. If σnσ�1 ∈N for any n∈N and any σ∈G, then N is called a normal
subgroup of G. If G is abelian group, any subgroup of G is a normal subgroup. For a normal
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subgroup N of G, we define the product on G=N by using that on G. Namely, for any
σN, τN∈G=N, define

σN � τN≔ στð ÞN:

Then this definition is well defined, and G=N with this product forms a group. The unit is

1GN ¼ N, and for any σN∈G=N, its inverse is given by σNð Þ�1 ¼ σ�1N. We call G=N the
quotient group of G by N.

(E12) The most important example for quotient groups is

Z=nZ ¼ 0½ �n; 1½ �n;…; n� 1½ �n
� �

for n∈N. For any a, b∈Z, we have

a½ �n þ b½ �n ¼ aþ b½ �n, � a½ �n ¼ �a½ �n:

For example, in the group Z=6Z, we have

1½ �6 þ 3½ �6 ¼ 4½ �6, 2½ �6 þ 7½ �6 ¼ 9½ �6 ¼ 3½ �6, � 4½ �6 ¼ �4½ �6 ¼ 2½ �6:

For any 0 ≤ r ≤ n� 1, since we see

r½ �n ¼ 1½ �n þ 1½ �n þ⋯þ 1½ �n ∈Z=nZ,

the group Z=nZ is a cyclic group of order n generated by 1½ �n.

3.4. Homomorphisms and isomorphisms

As mentioned above, we have many examples of groups. Here, we consider relations between
groups and examine which ones are essentially of the same type of groups. To say more
technically, we classify groups by using isomorphisms.

Let G and H be groups. If a map f : G ! H satisfies

f στð Þ ¼ f σð Þf τð Þ for any σ, τ∈G,

then f is called a homomorphism. A bijective homomorphism f : G ! H is called an isomor-
phism. Namely, an isomorphism is a map such that it is one-to-one correspondence between
the groups and that it preserves the products of the groups. If G and H are isomorphic, we
write G ffi H.

(E13) Set

R>0≔ x∈R jx > 0f g,

and consider it as a multiplicative subgroup of R�. The exponent map exp : R ! R>0 is an
isomorphism from the additive group R to R>0.
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(E14) Let K beQ, R, or C. Then the determinant map det GL 2;Kð Þ ! K� is a homomorphism. It
is, however, not an isomorphism since f is not injective. For example, det E2 ¼ det �E2ð Þ ¼ 1.

On the other hand, SL 2;Kð Þ is a normal subgroup of GL 2;Kð Þ. For any σ, τ∈GL 2;Kð Þ, we can
see that

σSL 2;Kð Þ ¼ τSL 2;Kð Þ ⇔ detσ ¼ detτ:

Define the map f : GL 2;Kð Þ=SL 2;Kð Þ ! K� by

σSL 2;Kð Þ↦detσ:

Then f is an isomorphism. Indeed f is injective. For any x∈K�, if we consider the element

σ≔
x 0
0 1

� �
∈GL 2;Kð Þ, we have f σSL 2;Kð Þð Þ ¼ x. Hence f is surjective. Moreover, we have

f σSL 2;Kð Þð Þ τSL 2;Kð Þð Þð Þ ¼ f στð ÞSL 2;Kð Þð Þ ¼ det στð Þ
¼ detσð Þ detτð Þ ¼ f σSL 2;Kð Þð Þf τSL 2;Kð Þð Þ:

(E15) For any n∈N, define the map f : Z=nZ ! Un by k½ �n ↦ exp 2kπ
ffiffiffiffiffiffiffi�1

p
=n

� �
. Then f is an

isomorphism since f is bijective, and

f k½ �n þ l½ �n
� � ¼ f kþ l½ �n

� � ¼ exp 2 kþ lð Þπ
ffiffiffiffiffiffiffi
�1

p
=n

� �

¼ exp 2kπ
ffiffiffiffiffiffiffi
�1

p
=n

� �
exp 2lπ

ffiffiffiffiffiffiffi
�1

p
=n

� �
¼ f k½ �n
� �

f l½ �n
� �

:

Let G and H be isomorphic groups. Then, even if G and H are different as a set, they have the
same structure as a group. This means that if one is abelian, finite or finitely generated, then so
is the other, respectively. In other words, for example, an abelian group is never isomorphic to
a non-abelian group and so on.

4. Finite groups

In this section, we give some examples of important finite groups.

4.1. Symmetric groups

For any n∈N, set X≔ 1; 2;…; nf g. A bijective map σ : X ! X is called a permutation on X. A
permutation σ is denoted by

σ ¼ 1 2 ⋯ n
σ 1ð Þ σ 2ð Þ ⋯ σ nð Þ

� �
:

Remark that this is not a matrix. We can omit a letter i 1 ≤ i ≤ nð Þ if the letter i is fixed. For
example, for n ¼ 4:
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subgroup N of G, we define the product on G=N by using that on G. Namely, for any
σN, τN∈G=N, define

σN � τN≔ στð ÞN:

Then this definition is well defined, and G=N with this product forms a group. The unit is

1GN ¼ N, and for any σN∈G=N, its inverse is given by σNð Þ�1 ¼ σ�1N. We call G=N the
quotient group of G by N.

(E12) The most important example for quotient groups is

Z=nZ ¼ 0½ �n; 1½ �n;…; n� 1½ �n
� �

for n∈N. For any a, b∈Z, we have

a½ �n þ b½ �n ¼ aþ b½ �n, � a½ �n ¼ �a½ �n:

For example, in the group Z=6Z, we have

1½ �6 þ 3½ �6 ¼ 4½ �6, 2½ �6 þ 7½ �6 ¼ 9½ �6 ¼ 3½ �6, � 4½ �6 ¼ �4½ �6 ¼ 2½ �6:

For any 0 ≤ r ≤ n� 1, since we see

r½ �n ¼ 1½ �n þ 1½ �n þ⋯þ 1½ �n ∈Z=nZ,

the group Z=nZ is a cyclic group of order n generated by 1½ �n.

3.4. Homomorphisms and isomorphisms

As mentioned above, we have many examples of groups. Here, we consider relations between
groups and examine which ones are essentially of the same type of groups. To say more
technically, we classify groups by using isomorphisms.

Let G and H be groups. If a map f : G ! H satisfies

f στð Þ ¼ f σð Þf τð Þ for any σ, τ∈G,

then f is called a homomorphism. A bijective homomorphism f : G ! H is called an isomor-
phism. Namely, an isomorphism is a map such that it is one-to-one correspondence between
the groups and that it preserves the products of the groups. If G and H are isomorphic, we
write G ffi H.

(E13) Set

R>0≔ x∈R jx > 0f g,

and consider it as a multiplicative subgroup of R�. The exponent map exp : R ! R>0 is an
isomorphism from the additive group R to R>0.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry26

(E14) Let K beQ, R, or C. Then the determinant map det GL 2;Kð Þ ! K� is a homomorphism. It
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see that

σSL 2;Kð Þ ¼ τSL 2;Kð Þ ⇔ detσ ¼ detτ:

Define the map f : GL 2;Kð Þ=SL 2;Kð Þ ! K� by

σSL 2;Kð Þ↦detσ:

Then f is an isomorphism. Indeed f is injective. For any x∈K�, if we consider the element

σ≔
x 0
0 1

� �
∈GL 2;Kð Þ, we have f σSL 2;Kð Þð Þ ¼ x. Hence f is surjective. Moreover, we have

f σSL 2;Kð Þð Þ τSL 2;Kð Þð Þð Þ ¼ f στð ÞSL 2;Kð Þð Þ ¼ det στð Þ
¼ detσð Þ detτð Þ ¼ f σSL 2;Kð Þð Þf τSL 2;Kð Þð Þ:

(E15) For any n∈N, define the map f : Z=nZ ! Un by k½ �n ↦ exp 2kπ
ffiffiffiffiffiffiffi�1

p
=n

� �
. Then f is an

isomorphism since f is bijective, and

f k½ �n þ l½ �n
� � ¼ f kþ l½ �n

� � ¼ exp 2 kþ lð Þπ
ffiffiffiffiffiffiffi
�1

p
=n

� �

¼ exp 2kπ
ffiffiffiffiffiffiffi
�1

p
=n

� �
exp 2lπ

ffiffiffiffiffiffiffi
�1

p
=n

� �
¼ f k½ �n
� �

f l½ �n
� �

:

Let G and H be isomorphic groups. Then, even if G and H are different as a set, they have the
same structure as a group. This means that if one is abelian, finite or finitely generated, then so
is the other, respectively. In other words, for example, an abelian group is never isomorphic to
a non-abelian group and so on.

4. Finite groups

In this section, we give some examples of important finite groups.

4.1. Symmetric groups

For any n∈N, set X≔ 1; 2;…; nf g. A bijective map σ : X ! X is called a permutation on X. A
permutation σ is denoted by

σ ¼ 1 2 ⋯ n
σ 1ð Þ σ 2ð Þ ⋯ σ nð Þ

� �
:

Remark that this is not a matrix. We can omit a letter i 1 ≤ i ≤ nð Þ if the letter i is fixed. For
example, for n ¼ 4:
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1 2 3 4
3 2 4 1

� �
¼ 1 3 4

3 4 1

� �

We call the permutation

ε≔
1 2 ⋯ n
1 2 ⋯ n

� �

the identity permutation.

Let Sn be the set of permutations on X. For any σ, τ∈Sn, define the product of σ and τ to be
the composition σ ∘ τ as a map. Then the set Sn with this product forms a group. We call it the
symmetric group of degree n. The unit is the identity permutation, and for any σ∈Sn, its
inverse is given by

σ�1 ¼ σ 1ð Þ σ 2ð Þ ⋯ σ nð Þ
1 2 ⋯ n

� �
:

The symmetric group Sn is a finite group of order n!.

Since S1 is the trivial group, and

S2 ¼ ε;
1 2
2 1

� �� �
,

we see that Sn is abelian if n ≤ 2. For n ¼ 3, we have

S3 ¼ ε;
1 2
2 1

� �
;

1 3
3 1

� �
;

2 3
3 2

� �
;

1 2 3
2 3 1

� �
;

1 2 3
3 1 2

� �� �
,

and

1 2
2 1

� �
2 3
3 2

� �
¼ 1 2 3

2 3 1

� �
6¼ 1 2 3

3 1 2

� �
¼ 2 3

3 2

� �
1 2
2 1

� �
:

Hence, S3 is non-abelian. Similarly, for any n ≥ 3, Sn is non-abelian.

Here we consider another description of permutations. For distinct letters a1,…, am ∈X, the
permutation

a1 a2 ⋯ am�1 am
a2 a3 ⋯ am a1

� �

is denoted by a1; a2;⋯; amð Þ and is called a cyclic permutation of length m. We call a cyclic
permutation of length 2 a transposition. Namely, any transposition is of type

i; jð Þ ¼ i j
j i

� �
:
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A cyclic permutation of length 1 is nothing but the identity permutation:

1ð Þ ¼ 2ð Þ ¼ ⋯ ¼ nð Þ ¼ ε:

In general, a permutation cannot be written as a single cyclic permutation but a product of
some cyclic permutations which do not have a common letter. For example, consider

σ ¼ 1 2 3 4 5
3 5 4 1 2

� �
:

Then we see

σ : 1↦ 3↦ 4↦ 1, 2↦ 5↦ 2,

and hence

σ ¼ 1; 3; 4ð Þ 2; 5ð Þ ¼ 2; 5ð Þ 1; 3; 4ð Þ:

Remark that two cyclic permutations which do not have a common letter are commutative. For
any cyclic permutation a1; a2;⋯; amð Þ, we have

a1; a2;⋯; amð Þ ¼ a1; a2ð Þ a2; a3ð Þ⋯ am�1; amð Þ:

By using the above facts, we see

Theorem 4.1. Every permutation can be written as a product of transpositions.

An expression of a permutation as a product of transpositions is not unique. For example,

1; 3; 2ð Þ ¼ 1; 2ð Þ 1; 3ð Þ ¼ 1; 3ð Þ 2; 3ð Þ:

However, we have

Theorem 4.2. For any permutation σ, consider expressions of σ as a product of transpositions. Then
the parity of the number of transpositions is invariant.

For a permutation σ, if σ is written as a product of even (resp. odd) numbers of transpositions,
then σ is called even permutation (resp. odd permutation). For example, the cyclic permuta-
tion a1; a2;⋯; amð Þ is even (resp. odd) permutation if m is odd (resp. even).

4.2. Alternating groups

In this subsection, we consider important normal subgroups of the symmetric groups. Let An

be the set of even permutations of Sn. For any σ∈An, if we write σ as a product of trans-
positions, σ ¼ τ1⋯τk, then we see

σ�1 ¼ τkτk�1⋯τ1 ∈An:
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1 2 3 4
3 2 4 1

� �
¼ 1 3 4

3 4 1

� �

We call the permutation

ε≔
1 2 ⋯ n
1 2 ⋯ n

� �

the identity permutation.

Let Sn be the set of permutations on X. For any σ, τ∈Sn, define the product of σ and τ to be
the composition σ ∘ τ as a map. Then the set Sn with this product forms a group. We call it the
symmetric group of degree n. The unit is the identity permutation, and for any σ∈Sn, its
inverse is given by

σ�1 ¼ σ 1ð Þ σ 2ð Þ ⋯ σ nð Þ
1 2 ⋯ n

� �
:

The symmetric group Sn is a finite group of order n!.

Since S1 is the trivial group, and

S2 ¼ ε;
1 2
2 1

� �� �
,

we see that Sn is abelian if n ≤ 2. For n ¼ 3, we have

S3 ¼ ε;
1 2
2 1

� �
;

1 3
3 1

� �
;

2 3
3 2

� �
;

1 2 3
2 3 1

� �
;

1 2 3
3 1 2

� �� �
,

and

1 2
2 1

� �
2 3
3 2

� �
¼ 1 2 3

2 3 1

� �
6¼ 1 2 3

3 1 2

� �
¼ 2 3

3 2

� �
1 2
2 1

� �
:

Hence, S3 is non-abelian. Similarly, for any n ≥ 3, Sn is non-abelian.

Here we consider another description of permutations. For distinct letters a1,…, am ∈X, the
permutation

a1 a2 ⋯ am�1 am
a2 a3 ⋯ am a1

� �

is denoted by a1; a2;⋯; amð Þ and is called a cyclic permutation of length m. We call a cyclic
permutation of length 2 a transposition. Namely, any transposition is of type

i; jð Þ ¼ i j
j i

� �
:
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A cyclic permutation of length 1 is nothing but the identity permutation:

1ð Þ ¼ 2ð Þ ¼ ⋯ ¼ nð Þ ¼ ε:

In general, a permutation cannot be written as a single cyclic permutation but a product of
some cyclic permutations which do not have a common letter. For example, consider

σ ¼ 1 2 3 4 5
3 5 4 1 2

� �
:

Then we see

σ : 1↦ 3↦ 4↦ 1, 2↦ 5↦ 2,

and hence

σ ¼ 1; 3; 4ð Þ 2; 5ð Þ ¼ 2; 5ð Þ 1; 3; 4ð Þ:

Remark that two cyclic permutations which do not have a common letter are commutative. For
any cyclic permutation a1; a2;⋯; amð Þ, we have

a1; a2;⋯; amð Þ ¼ a1; a2ð Þ a2; a3ð Þ⋯ am�1; amð Þ:

By using the above facts, we see

Theorem 4.1. Every permutation can be written as a product of transpositions.

An expression of a permutation as a product of transpositions is not unique. For example,

1; 3; 2ð Þ ¼ 1; 2ð Þ 1; 3ð Þ ¼ 1; 3ð Þ 2; 3ð Þ:

However, we have

Theorem 4.2. For any permutation σ, consider expressions of σ as a product of transpositions. Then
the parity of the number of transpositions is invariant.

For a permutation σ, if σ is written as a product of even (resp. odd) numbers of transpositions,
then σ is called even permutation (resp. odd permutation). For example, the cyclic permuta-
tion a1; a2;⋯; amð Þ is even (resp. odd) permutation if m is odd (resp. even).

4.2. Alternating groups

In this subsection, we consider important normal subgroups of the symmetric groups. Let An

be the set of even permutations of Sn. For any σ∈An, if we write σ as a product of trans-
positions, σ ¼ τ1⋯τk, then we see

σ�1 ¼ τkτk�1⋯τ1 ∈An:
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Clearly, if σ, τ∈An, then στ∈An. Thus, the subset An is a subgroup of Sn. We call An the
alternating group of degree n. It is easily seen that An is a normal subgroup of Sn. For
example, for n ¼ 3 and 4, we have

A3 ¼ ε; 1; 2; 3ð Þ; 1; 3; 2ð Þf g,
A4 ¼ ε; 1; 2; 3ð Þ; 1; 3; 2ð Þ; 1; 2; 4ð Þ; 1; 4; 2ð Þ; 1; 3; 4ð Þ; 1; 4; 3ð Þ; 2; 3; 4ð Þ; 2; 4; 3ð Þ;f

1; 2ð Þ 3; 4ð Þ; 1; 3ð Þ 2; 4ð Þ; 1; 4ð Þ 2; 3ð Þg:

For any σ∈Sn, we have

σAn ¼ 1; 2ð ÞAn, if σ is odd permutation,
An, if σ is even permutation:

�

Hence Sn : An½ � ¼ 2. Therefore, from Lagrange’s theorem, we see that An is a finite group of
order n!=2.

4.3. Dihedral groups

For any n∈N n ≥ 3ð Þ, consider a regular polygon Vn with n sides, and fix it. A map σ : Vn ! Vn

is called a congruent transformation on Vn if σ preserves the distance between any two points
in Vn. Namely, σ is considered as a symmetry on Vn. Set

Dn≔ σ : Vn ! Vn j σ is a congruent transformationf g:

For any σ, τ∈Dn, define the product of σ and τ to be the composition σ ∘ τ as a map. Then the
set Dn with this product forms a group. We call it the dihedral group of degree n. The unit is
the identity transformation.

Each congruent transformation on Vn is determined by the correspondence between vertices of
Vn. Indeed, attach the number 1, 2,…, n to vertices of Vn in counterclockwise direction. For any
σ∈Dn, if σ 1ð Þ ¼ i, then the vertices 2, 3,…, n are mapped to iþ 1, iþ 2,…, n, 1, 2,…i� 1,
respectively, Cor mapped to i� 1, i� 2,…, 1, n, n� 1,…, iþ 1, respectively. If we express this
by using the notation for permutations, we have

σ ¼ 1 2 ⋯ n� 1 n
i iþ 1 ⋯ i� 2 i� 1

� �
or

1 2 ⋯ n� 1 n
i i� 1 ⋯ iþ 2 iþ 1

� �
:

The former case is a rotation, and the latter case is the composition of a rotation and a
reflection. For n ¼ 3, see Figure 2. Thus the dihedral group Dn is a finite group of order 2n
and is naturally considered as a subgroup of Sn. For n ¼ 3, since D3 is a subgroup of S3, and
since both groups are of order 6, we see that D3 ¼ S3.

Let σ∈Dn be the rotation of Vn with angle 2π
n in the counterclockwise direction and τ∈Dn be

the reflection of Vn which fixes the vertex 1. Namely,

σ ¼ 1 2 ⋯ n� 1 n
2 3 ⋯ n 1

� �
, τ ¼ 1 2 ⋯ n� 1 n

1 n ⋯ 3 2

� �
:
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Then the reflection of Vn which fixes the vertex i is written as σi�1τσ� i�1ð Þ. Hence Dn is
generated by σ and τ. Moreover, we have

Dn ¼ 1; σ; σ2;…; σn�1; τ; στ; σ2τ;…; σn�1τ
� �

:

4.4. The structure theorem for finite abelian groups

In this subsection, we give a complete classification of finite abelian groups up to isomor-
phism. To begin with, we review the direct product of groups.

Let G and H be groups. Consider the direct product set

G�H≔ g; hð Þ jg∈G; h∈Hf g,

and define the product of elements g; hð Þ, g0; h0ð Þ∈G�H to be

g; hð Þ � g0; h0ð Þ≔ gg0; hh0ð Þ:

Then G�H with this product forms a group. The unit is 1G; 1Hð Þ, and for any g; hð Þ∈G�H, its

inverse is given by g�1; h�1� �
∈G�H. We call the group G�H the direct product group of G

and H. Similarly, for finitely many groups G1, G2,…, Gn, we can define its direct product group
G1 �⋯� Gn. For each 1 ≤ i ≤ n, if Gi is a finite group of order mi, then G1 �⋯� Gn is a finite
group of order m1m2⋯mn. The following theorem is famous in elementary number theory.

Theorem 4.3 (Chinese remainder theorem). For any m, n∈N such that gcd m; nð Þ ¼ 1. Then we
have

Z=mnZ ffi Z=mZ� Z=nZ:

An isomorphism f : Z=mnZ ! Z=mZ� Z=nZ is given by

x½ �mn ↦ x½ �m; x½ �n
� �

:

Figure 2. The transformations of the regular triangle.
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Clearly, if σ, τ∈An, then στ∈An. Thus, the subset An is a subgroup of Sn. We call An the
alternating group of degree n. It is easily seen that An is a normal subgroup of Sn. For
example, for n ¼ 3 and 4, we have

A3 ¼ ε; 1; 2; 3ð Þ; 1; 3; 2ð Þf g,
A4 ¼ ε; 1; 2; 3ð Þ; 1; 3; 2ð Þ; 1; 2; 4ð Þ; 1; 4; 2ð Þ; 1; 3; 4ð Þ; 1; 4; 3ð Þ; 2; 3; 4ð Þ; 2; 4; 3ð Þ;f

1; 2ð Þ 3; 4ð Þ; 1; 3ð Þ 2; 4ð Þ; 1; 4ð Þ 2; 3ð Þg:

For any σ∈Sn, we have

σAn ¼ 1; 2ð ÞAn, if σ is odd permutation,
An, if σ is even permutation:

�

Hence Sn : An½ � ¼ 2. Therefore, from Lagrange’s theorem, we see that An is a finite group of
order n!=2.

4.3. Dihedral groups

For any n∈N n ≥ 3ð Þ, consider a regular polygon Vn with n sides, and fix it. A map σ : Vn ! Vn

is called a congruent transformation on Vn if σ preserves the distance between any two points
in Vn. Namely, σ is considered as a symmetry on Vn. Set

Dn≔ σ : Vn ! Vn j σ is a congruent transformationf g:

For any σ, τ∈Dn, define the product of σ and τ to be the composition σ ∘ τ as a map. Then the
set Dn with this product forms a group. We call it the dihedral group of degree n. The unit is
the identity transformation.

Each congruent transformation on Vn is determined by the correspondence between vertices of
Vn. Indeed, attach the number 1, 2,…, n to vertices of Vn in counterclockwise direction. For any
σ∈Dn, if σ 1ð Þ ¼ i, then the vertices 2, 3,…, n are mapped to iþ 1, iþ 2,…, n, 1, 2,…i� 1,
respectively, Cor mapped to i� 1, i� 2,…, 1, n, n� 1,…, iþ 1, respectively. If we express this
by using the notation for permutations, we have

σ ¼ 1 2 ⋯ n� 1 n
i iþ 1 ⋯ i� 2 i� 1

� �
or

1 2 ⋯ n� 1 n
i i� 1 ⋯ iþ 2 iþ 1

� �
:

The former case is a rotation, and the latter case is the composition of a rotation and a
reflection. For n ¼ 3, see Figure 2. Thus the dihedral group Dn is a finite group of order 2n
and is naturally considered as a subgroup of Sn. For n ¼ 3, since D3 is a subgroup of S3, and
since both groups are of order 6, we see that D3 ¼ S3.

Let σ∈Dn be the rotation of Vn with angle 2π
n in the counterclockwise direction and τ∈Dn be

the reflection of Vn which fixes the vertex 1. Namely,

σ ¼ 1 2 ⋯ n� 1 n
2 3 ⋯ n 1

� �
, τ ¼ 1 2 ⋯ n� 1 n

1 n ⋯ 3 2

� �
:
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Then the reflection of Vn which fixes the vertex i is written as σi�1τσ� i�1ð Þ. Hence Dn is
generated by σ and τ. Moreover, we have

Dn ¼ 1; σ; σ2;…; σn�1; τ; στ; σ2τ;…; σn�1τ
� �

:

4.4. The structure theorem for finite abelian groups

In this subsection, we give a complete classification of finite abelian groups up to isomor-
phism. To begin with, we review the direct product of groups.

Let G and H be groups. Consider the direct product set

G�H≔ g; hð Þ jg∈G; h∈Hf g,

and define the product of elements g; hð Þ, g0; h0ð Þ∈G�H to be

g; hð Þ � g0; h0ð Þ≔ gg0; hh0ð Þ:

Then G�H with this product forms a group. The unit is 1G; 1Hð Þ, and for any g; hð Þ∈G�H, its

inverse is given by g�1; h�1� �
∈G�H. We call the group G�H the direct product group of G

and H. Similarly, for finitely many groups G1, G2,…, Gn, we can define its direct product group
G1 �⋯� Gn. For each 1 ≤ i ≤ n, if Gi is a finite group of order mi, then G1 �⋯� Gn is a finite
group of order m1m2⋯mn. The following theorem is famous in elementary number theory.

Theorem 4.3 (Chinese remainder theorem). For any m, n∈N such that gcd m; nð Þ ¼ 1. Then we
have

Z=mnZ ffi Z=mZ� Z=nZ:

An isomorphism f : Z=mnZ ! Z=mZ� Z=nZ is given by

x½ �mn ↦ x½ �m; x½ �n
� �

:

Figure 2. The transformations of the regular triangle.
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(E16) Consider the case m ¼ 2 and n ¼ 3. Each element x½ �6 of Z=6Z is mapped to the following
element by the above isomorphism f :

1½ �6 ↦ 1½ �2; 1½ �3
� �

, 2½ �6 ↦ 2½ �2; 2½ �3
� � ¼ 0½ �2; 2½ �3

� �
, 3½ �6 ↦ 3½ �2; 3½ �3

� � ¼ 1½ �2; 0½ �3
� �

,
4½ �6, ↦ 4½ �2; 4½ �3

� � ¼ 0½ �2; 1½ �3
� �

, 5½ �6 ↦ 5½ �2; 5½ �3
� � ¼ 1½ �2; 2½ �3

� �
, 0½ �6 ↦ 0½ �2; 0½ �3

� �
:

(E17) If gcd m; nð Þ 6¼ 1, the theorem does not hold. For example, consider the case of m ¼ n ¼ 2.
Any element x∈Z=2Z� Z=2Z satisfies that xþ x is equal to zero. On the other hand, for the
element y≔ 1½ �4 ∈Z=4Z, yþ y is not equal to zero. Hence the group structures of Z=2Z� Z=2Z
and Z=4Z are different.

Now, we show one of the most important theorems in finite group theory.

Theorem 4.4 (structure theorem for finite abelian groups). Let G be a nontrivial finite abelian
group. Then G is isomorphic to a direct product of finite cyclic groups of prime power order:

G ffi Z=pe11 Z�⋯� Z=perr Z:

The tuple pe11 ; p
e2
2 ;…; perr

� �
is uniquely determined by G, up to the order of the factors.

(E18) The list of finite abelian groups of order 72 up to isomorphism is given by

Z=9Z� Z=8Z, Z=9Z� Z=4Z� Z=2Z, Z=9Z� Z=2Z� Z=2Z� Z=2Z,

Z=3Z� Z=3Z� Z=8Z, Z=3Z� Z=3Z� Z=4Z� Z=2Z,

Z=3Z� Z=3Z� Z=2Z� Z=2Z� Z=2Z:

5. Conjugacy classes

In this section, we consider the classification of elements of a group by using the conjugation.
The results of this section are used in Section 6.

Let G a group. For elements x, y∈G, if there exists some g∈G such that x ¼ gyg�1; then we say
that x is conjugate to y and write x � y. This is an equivalence relation on G. Namely, for any
x∈G, we have x � x by observing x ¼ 1Gx1�1

G . If x � y, then x ¼ gyg�1 for some g∈G. Thus

y ¼ g�1x g�1
� ��1, and hence y � x. If x � y and y � z, then x ¼ gyg�1 and y ¼ hzh�1 for some

g, h∈G. Thus x ¼ ghð Þz ghð Þ�1, and hence x � z. For any x∈G, the set

C xð Þ≔ y∈G jy � xf g

is called the conjugacy class of x in G. If G is abelian group, for any x∈G, there exists no
element conjugate to x except for x, and hence C xð Þ ¼ xf g. Here we give a few examples.

(E19) (Dihedral groups) For n ≥ 3, the conjugacy classes of Dn are as follows:

1. If n is even:
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1f g, σ; σ�1
� �

, σ2; σ�2
� �

,…, σ
n�2
2 ; σ

2�n
2

n o
, σ

n
2

� �
,

τ; σ2τ;…; σn�2τ
� �

, στ; σ3τ;…; σn�1τ
� �

:

2. If n is odd:

1f g, σ; σ�1
� �

, σ2; σ�2
� �

,…, σ
n�1
2 ; σ

1�n
2

n o
,

τ; στ;…; σn�1τ
� �

:

Indeed, for the case where n is even, we can see the above from the following observation. For
any x∈Dn, since

xσix�1 ¼ σjσiσ�j ¼ σi, if x ¼ σj,
σjτσiτσ�j ¼ σ�i, if x ¼ σjτ,

(

the conjugates of σi are σ�i. On the other hand, for any x∈Dn, since

xσiτx�1 ¼ σjσiτσ�j ¼ σiþ2jτ, if x ¼ σj,
σjτσiττσ�j ¼ σiþ2 j�ið Þτ, if x ¼ σjτ,

(

the conjugates of σiτ are σkτ for any k such that k � i mod2ð Þ. These facts induce Part (1).
(E20) (Symmetric groups) For any σ∈Sn, we can write σ as a product of cyclic permutations
which do not have a common letter, like

σ ¼ a1⋯akð Þ b1⋯blð Þ⋯ c1⋯cmð Þ:

Furthermore, we may assume k ≥ l ≥⋯ ≥m since the cyclic permutations appeared in the right
hand side are commutative. Then we call k; l;…;mð Þ is the cycle type of σ.

Theorem 5.1. Elements σ, σ0 ∈Sn are conjugate if and only if the cycle types of σ and σ0 are equal.

For example, conjugacy classes of S4 are given by

Cycle type Conjugacy class

1; 1; 1; 1ð Þ 1S4f g
2; 1; 1ð Þ 1; 2ð Þ; 1; 3ð Þ; 1; 4ð Þ; 2; 3ð Þ; 2; 4ð Þ; 3; 4ð Þf g
2; 2ð Þ 1; 2ð Þ 3; 4ð Þ; 1; 3ð Þ 2; 4ð Þ; 1; 4ð Þ 2; 3ð Þf g
3; 1ð Þ 1; 2; 3ð Þ, 1; 2; 4ð Þ, 1; 3; 2ð Þ, 1; 3; 4ð Þf , 1; 4; 2ð Þ, 1; 4; 3ð Þ, 2; 3; 4ð Þ, 2; 4; 3ð Þg
4ð Þ 1; 2; 3; 4ð Þ, 1; 2; 4; 3ð Þ, 1; 3; 2; 4ð Þf , 1; 3; 4; 2ð Þ, 1; 4; 2; 3ð Þ, 1; 4; 3; 2ð Þg
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(E16) Consider the case m ¼ 2 and n ¼ 3. Each element x½ �6 of Z=6Z is mapped to the following
element by the above isomorphism f :

1½ �6 ↦ 1½ �2; 1½ �3
� �

, 2½ �6 ↦ 2½ �2; 2½ �3
� � ¼ 0½ �2; 2½ �3

� �
, 3½ �6 ↦ 3½ �2; 3½ �3

� � ¼ 1½ �2; 0½ �3
� �

,
4½ �6, ↦ 4½ �2; 4½ �3

� � ¼ 0½ �2; 1½ �3
� �

, 5½ �6 ↦ 5½ �2; 5½ �3
� � ¼ 1½ �2; 2½ �3

� �
, 0½ �6 ↦ 0½ �2; 0½ �3

� �
:

(E17) If gcd m; nð Þ 6¼ 1, the theorem does not hold. For example, consider the case of m ¼ n ¼ 2.
Any element x∈Z=2Z� Z=2Z satisfies that xþ x is equal to zero. On the other hand, for the
element y≔ 1½ �4 ∈Z=4Z, yþ y is not equal to zero. Hence the group structures of Z=2Z� Z=2Z
and Z=4Z are different.
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Theorem 4.4 (structure theorem for finite abelian groups). Let G be a nontrivial finite abelian
group. Then G is isomorphic to a direct product of finite cyclic groups of prime power order:

G ffi Z=pe11 Z�⋯� Z=perr Z:

The tuple pe11 ; p
e2
2 ;…; perr

� �
is uniquely determined by G, up to the order of the factors.

(E18) The list of finite abelian groups of order 72 up to isomorphism is given by

Z=9Z� Z=8Z, Z=9Z� Z=4Z� Z=2Z, Z=9Z� Z=2Z� Z=2Z� Z=2Z,

Z=3Z� Z=3Z� Z=8Z, Z=3Z� Z=3Z� Z=4Z� Z=2Z,

Z=3Z� Z=3Z� Z=2Z� Z=2Z� Z=2Z:

5. Conjugacy classes

In this section, we consider the classification of elements of a group by using the conjugation.
The results of this section are used in Section 6.

Let G a group. For elements x, y∈G, if there exists some g∈G such that x ¼ gyg�1; then we say
that x is conjugate to y and write x � y. This is an equivalence relation on G. Namely, for any
x∈G, we have x � x by observing x ¼ 1Gx1�1

G . If x � y, then x ¼ gyg�1 for some g∈G. Thus

y ¼ g�1x g�1
� ��1, and hence y � x. If x � y and y � z, then x ¼ gyg�1 and y ¼ hzh�1 for some

g, h∈G. Thus x ¼ ghð Þz ghð Þ�1, and hence x � z. For any x∈G, the set

C xð Þ≔ y∈G jy � xf g

is called the conjugacy class of x in G. If G is abelian group, for any x∈G, there exists no
element conjugate to x except for x, and hence C xð Þ ¼ xf g. Here we give a few examples.

(E19) (Dihedral groups) For n ≥ 3, the conjugacy classes of Dn are as follows:

1. If n is even:
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2. If n is odd:
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Indeed, for the case where n is even, we can see the above from the following observation. For
any x∈Dn, since

xσix�1 ¼ σjσiσ�j ¼ σi, if x ¼ σj,
σjτσiτσ�j ¼ σ�i, if x ¼ σjτ,

(

the conjugates of σi are σ�i. On the other hand, for any x∈Dn, since

xσiτx�1 ¼ σjσiτσ�j ¼ σiþ2jτ, if x ¼ σj,
σjτσiττσ�j ¼ σiþ2 j�ið Þτ, if x ¼ σjτ,

(

the conjugates of σiτ are σkτ for any k such that k � i mod2ð Þ. These facts induce Part (1).
(E20) (Symmetric groups) For any σ∈Sn, we can write σ as a product of cyclic permutations
which do not have a common letter, like

σ ¼ a1⋯akð Þ b1⋯blð Þ⋯ c1⋯cmð Þ:

Furthermore, we may assume k ≥ l ≥⋯ ≥m since the cyclic permutations appeared in the right
hand side are commutative. Then we call k; l;…;mð Þ is the cycle type of σ.

Theorem 5.1. Elements σ, σ0 ∈Sn are conjugate if and only if the cycle types of σ and σ0 are equal.

For example, conjugacy classes of S4 are given by

Cycle type Conjugacy class

1; 1; 1; 1ð Þ 1S4f g
2; 1; 1ð Þ 1; 2ð Þ; 1; 3ð Þ; 1; 4ð Þ; 2; 3ð Þ; 2; 4ð Þ; 3; 4ð Þf g
2; 2ð Þ 1; 2ð Þ 3; 4ð Þ; 1; 3ð Þ 2; 4ð Þ; 1; 4ð Þ 2; 3ð Þf g
3; 1ð Þ 1; 2; 3ð Þ, 1; 2; 4ð Þ, 1; 3; 2ð Þ, 1; 3; 4ð Þf , 1; 4; 2ð Þ, 1; 4; 3ð Þ, 2; 3; 4ð Þ, 2; 4; 3ð Þg
4ð Þ 1; 2; 3; 4ð Þ, 1; 2; 4; 3ð Þ, 1; 3; 2; 4ð Þf , 1; 3; 4; 2ð Þ, 1; 4; 2; 3ð Þ, 1; 4; 3; 2ð Þg
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In the above examples, we verify that the number of elements of any conjugacy class is a
divisor of the order of the group. In general, we have

Theorem 5.2. Let G be a finite group. For any x∈G, ∣C xð Þ∣ is a divisor of ∣G∣.

6. Representation theory of finite groups

In this section, we give a brief introduction to representation theory of finite groups. There are
also hundreds of textbooks for the representation theory. One of the most famous and standard
textbooks is [5]. For high motivated readers, see [6–8] for mathematical details.

6.1. Representations

In this subsection, we assume that G is a finite group. Let V be a finite-dimensional C-vector
space. Consider the following situation. For any σ∈G and any v∈V, there exists a unique
element σ � v∈V such that

1. σ � vþwð Þ ¼ σ � vþ σ �w,

2. σ � αvð Þ ¼ α σ � vð Þ,
3. σ � τ � vð Þ ¼ στð Þ � v,
4. 1G � v ¼ v

for any σ, τ∈G, α∈C and v,w∈V . Then we say that G acts on V and V is called a G-vector
space.

The conditions (1) and (2) mean that for any σ∈G, the map r σð Þ : V ! V defined by v↦σ � v is
a linear transformation on V. Furthermore, from the conditions (3) and (4), we see that for any
σ∈G, the linear transformation r σ�1

� �
is the inverse linear transformation of r σð Þ. Namely,

each r σð Þ is a bijective. Set

GL Vð Þ≔ f : V ! V j f is abijective linear transformationf g,

and consider it as a group with the product given by the composition of maps. Then we obtain
the group homomorphism r : G ! GL Vð Þ by σ↦ r σð Þ. In general, for a finite group G and for a
finite-dimensional C-vector space V , a homomorphism r : G ! GL Vð Þ is called a representa-
tion of G. Then V is a G-vector space by the action of G on V given by

σ � v≔ r σð Þð Þ vð Þ

for any σ∈G and v∈V. The dimension dimCV of V as a C-vector space is called the degree of
the representation r. Observe the following examples:

(E21) For any finite group G, and any C-vector space V, we can consider the trivial action of G
on V by σ � v≔v for any σ∈G and v∈V. Namely, we can consider the homomorphism
triv : G ! GL Vð Þ by assigning σ to the identity map on V for any σ∈G. This is called the
trivial representation of G.
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(E22) For any n∈N, consider the cyclic group Un and the action of Un on C given by the usual

multiplication exp 2kπ
ffiffiffiffiffiffiffi�1

p
=n

� � � z≔exp 2kπ
ffiffiffiffiffiffiffi�1

p
=n

� �
z of the complex numbers for any k∈Z

and z∈C. The action of exp 2kπ
ffiffiffiffiffiffiffi�1

p
=n

� �
on C is the rotation on C in the counterclockwise

direction centered at the origin with angle 2kπð Þ=n. If we take 1∈C as a basis of the C-vector
space C, we can identify GL Cð Þ with the general linear group GL 1;Cð Þ ¼ C� by considering
the matrix representation. Under this identification, the corresponding representation
r : Un ! GL Cð Þ ¼ C� is given by the natural inclusion map Un

´C�.

(E23) Consider the symmetric group S3 and the numerical vector space C3. The group S3

naturally acts on C3 by the permutation of the components given by

σ �
x1
x2
x3

0
B@

1
CA≔

xσ�1 1ð Þ
xσ�1 2ð Þ
xσ�1 3ð Þ

0
B@

1
CA:

If we take the standard basis e1, e2, e3 as a basis of C3, we can identify GL C3� �
with the general

linear group GL 3;Cð Þ by considering the matrix representation. Under this identification, the
corresponding representation r : S3 ! GL C3� � ¼ GL 3;Cð Þ is given by σ↦ eσ 1ð Þ eσ 2ð Þeσ 3ð Þ

� �
.

Similarly, we can obtain the representation r : Sn ! GL Cnð Þ ¼ GL n;Cð Þ that is given by

σ↦ eσ 1ð Þ eσ 2ð Þ⋯eσ nð Þ
� �

:

This is called the permutation representation of Sn.

Next we consider subrepresentations of a representation. Let r : G ! GL Vð Þ a representation.
If there exists a subspace W of V such that

σ �w∈W ⇔ r σð Þð Þ wð Þ∈Wð Þ

for any σ∈G and w∈W , then W is called a G-subspace of V. For any σ∈G, the restriction
r σð ÞjW : W ! W of r σð Þ is a bijective linear transformation on W , and we obtain the represen-
tation rjW : G ! GL Wð Þ given by σ↦ r σð ÞjW. It is called a subrepresentation of r.

(E24) Consider the permutation representation r : S3 ! GL C3� � ¼ GL 3;Cð Þ as in (E23). Let us
consider subspaces

W1≔
x
x
x

0
B@

1
CA

�������
x∈C

8><
>:

9>=
>;
, W2≔

x
y
z

0
B@

1
CA

�������
x; y; z∈C; xþ yþ z ¼ 0

8><
>:

9>=
>;

of C3. It is easily seen that these are S3-subspaces and the subrepresentation rjW1
is the trivial

representation. Geometrically,W1 andW2 in C3 are drawn in Figure 3. In a precise sense, if we
naturally consider R3 as a subset of C3, then Figure 3 shows W1 ∩R3 and W2 ∩R3 in R3.

For a G-vector space V, if there exist G-subspaces W1 and W2 of V such that any element v∈V
can be uniquely written as
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In the above examples, we verify that the number of elements of any conjugacy class is a
divisor of the order of the group. In general, we have

Theorem 5.2. Let G be a finite group. For any x∈G, ∣C xð Þ∣ is a divisor of ∣G∣.

6. Representation theory of finite groups

In this section, we give a brief introduction to representation theory of finite groups. There are
also hundreds of textbooks for the representation theory. One of the most famous and standard
textbooks is [5]. For high motivated readers, see [6–8] for mathematical details.

6.1. Representations

In this subsection, we assume that G is a finite group. Let V be a finite-dimensional C-vector
space. Consider the following situation. For any σ∈G and any v∈V, there exists a unique
element σ � v∈V such that

1. σ � vþwð Þ ¼ σ � vþ σ �w,

2. σ � αvð Þ ¼ α σ � vð Þ,
3. σ � τ � vð Þ ¼ στð Þ � v,
4. 1G � v ¼ v

for any σ, τ∈G, α∈C and v,w∈V . Then we say that G acts on V and V is called a G-vector
space.

The conditions (1) and (2) mean that for any σ∈G, the map r σð Þ : V ! V defined by v↦σ � v is
a linear transformation on V. Furthermore, from the conditions (3) and (4), we see that for any
σ∈G, the linear transformation r σ�1

� �
is the inverse linear transformation of r σð Þ. Namely,

each r σð Þ is a bijective. Set

GL Vð Þ≔ f : V ! V j f is abijective linear transformationf g,

and consider it as a group with the product given by the composition of maps. Then we obtain
the group homomorphism r : G ! GL Vð Þ by σ↦ r σð Þ. In general, for a finite group G and for a
finite-dimensional C-vector space V , a homomorphism r : G ! GL Vð Þ is called a representa-
tion of G. Then V is a G-vector space by the action of G on V given by

σ � v≔ r σð Þð Þ vð Þ

for any σ∈G and v∈V. The dimension dimCV of V as a C-vector space is called the degree of
the representation r. Observe the following examples:

(E21) For any finite group G, and any C-vector space V, we can consider the trivial action of G
on V by σ � v≔v for any σ∈G and v∈V. Namely, we can consider the homomorphism
triv : G ! GL Vð Þ by assigning σ to the identity map on V for any σ∈G. This is called the
trivial representation of G.
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direction centered at the origin with angle 2kπð Þ=n. If we take 1∈C as a basis of the C-vector
space C, we can identify GL Cð Þ with the general linear group GL 1;Cð Þ ¼ C� by considering
the matrix representation. Under this identification, the corresponding representation
r : Un ! GL Cð Þ ¼ C� is given by the natural inclusion map Un
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(E23) Consider the symmetric group S3 and the numerical vector space C3. The group S3

naturally acts on C3 by the permutation of the components given by
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corresponding representation r : S3 ! GL C3� � ¼ GL 3;Cð Þ is given by σ↦ eσ 1ð Þ eσ 2ð Þeσ 3ð Þ
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.

Similarly, we can obtain the representation r : Sn ! GL Cnð Þ ¼ GL n;Cð Þ that is given by

σ↦ eσ 1ð Þ eσ 2ð Þ⋯eσ nð Þ
� �

:

This is called the permutation representation of Sn.

Next we consider subrepresentations of a representation. Let r : G ! GL Vð Þ a representation.
If there exists a subspace W of V such that

σ �w∈W ⇔ r σð Þð Þ wð Þ∈Wð Þ

for any σ∈G and w∈W , then W is called a G-subspace of V. For any σ∈G, the restriction
r σð ÞjW : W ! W of r σð Þ is a bijective linear transformation on W , and we obtain the represen-
tation rjW : G ! GL Wð Þ given by σ↦ r σð ÞjW. It is called a subrepresentation of r.

(E24) Consider the permutation representation r : S3 ! GL C3� � ¼ GL 3;Cð Þ as in (E23). Let us
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of C3. It is easily seen that these are S3-subspaces and the subrepresentation rjW1
is the trivial

representation. Geometrically,W1 andW2 in C3 are drawn in Figure 3. In a precise sense, if we
naturally consider R3 as a subset of C3, then Figure 3 shows W1 ∩R3 and W2 ∩R3 in R3.

For a G-vector space V, if there exist G-subspaces W1 and W2 of V such that any element v∈V
can be uniquely written as
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v ¼ w1 þw2 w1 ∈W1;w2 ∈W2ð Þ,

then V is called the direct sum ofW1 andW2 and is written as V ¼ W1 ⊕W2. Similarly, we can
define the direct sum of G-subspaces W1,W2,…,Wm for any m ≥ 3. Let r, rjW1

, and rjW2
be the

correspondent representations of G to V, W1, and W2, respectively. We also say that the
representation r is the direct sum of rjW1

and rjW2
.

(E25) As the notation in (E24), V is the direct sum ofW1 andW2. Indeed, for the standard basis
e1, e2, e3 of V, we see that e1 þ e2 þ e3 and e1 � e2, e1 � e3 are bases of W1 and W2, respectively.
Thus, for any x ¼ x1e1 þ x2e2 þ x3e3 ∈C3, we can rewrite

x ¼ x1 þ x2 þ x3
3

e1 þ e2 þ e3ð Þ þ x1 � 2x2 þ x3
3

e1 � e2ð Þ þ x1 þ x2 � 2x3
3

e1 � e3ð Þ:

Furthermore, we verify that this expression is unique by direct calculations.

In general, we have

Theorem 6.1 (Maschke). Let r : G ! GL Vð Þ a representation and W a G-subspace of V. Then there
exists a G-subspace W 0 such that V ¼ W⊕W 0.

6.2. Irreducible representations

In subsection 4.4, we have discussed the classification of finite abelian groups by using the
concept of group isomorphisms. Here we consider the classification of finite-dimensional
representations of finite groups by using irreducible representations and equivalence relations
among representations.

Figure 3. The subspaces W1 and W2 in C3.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry36

Let G be a finite group and r : G ! GL Vð Þ its representation. The trivial subspaces 0f g and V
are G-subspaces of V. If V has no G subspace other than these, V is called the irreducible G-
space, and r is called the irreducible representation of G.

(E26) Any one-dimensional representation is trivial. For example, the representation r : Un !
GL Cð Þ ¼ C� in (E23) is irreducible. Let us consider the other example. For any σ∈Sn, set

sgn σð Þ≔ 1 if σ is even permutation,
�1 if σ is odd permutation:

�

Then we can easily see that the map sgn : Sn ! C� ¼ GL Cð Þ is a homomorphism and, hence, is
a representation ofSn. This irreducible representation is called the signature representation ofSn.

(E27) As the notation in (E24), rjW1
is irreducible since it is one-dimensional. The representa-

tion rjW2
is also irreducible. Indeed, if W2 is not irreducible, there exists a one-dimensional G-

subspace W in W2 since W2 is a 2-dimensional G-vector space. Take w∈W (w 6¼ 0). Then w is
an eigenvector of rjW2

σð Þ for any σ∈S3. However, we can see that there is no such vector in
W2 by direct calculations.

By observing (E25), (E26), and (E27), we see that C3 is a direct sum of the irreducible G-
subspaces W1 and W2. In general, by using Maschke’s theorem above, we obtain.

Theorem 6.2. For any representation r : G ! GL Vð Þ of a finite group G, the G-vector space V can be
written as a direct sum of some irreducible G-subspaces. Namely, r can be written as sum of some
irreducible representations of G.

Remark that the expression of a direct sum of irreducible representations is not unique in
general. For example, let r : G ! GL C2� �

be the trivial representation. Then for the standard

basis e1, e2 of C2, we have

C2 ¼ Ce1 ⊕Ce2 ¼ Ce1 ⊕C e1 þ e2ð Þ ¼ Ce1 ⊕C e1 þ 2e2ð Þ ¼ ⋯:

In order to do the classification of representations, we consider the equivalency of representa-
tions. Let r1 : G ! GL V1ð Þ and r2 : G ! GL V2ð Þ be representations of G. If there exists a
bijective linear map ι : V1 ! V2 such that

ι σ � vð Þ ¼ σ � ι vð Þ, σ∈G, v∈V1,

then we say that V1 is isomorphic to V2 as a G-vector space and write V1 ffi V2. We also say that
r1 is equivalent to r2 and write r1 � r2.

(E28) For any group G. let unit : G ! GL Cð Þ ¼ C� be the trivial representation of G. Then any
trivial representation r : G ! GL Vð Þ is equivalent to unit. The representation unit is called the
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The following theorem is one of the most important theorems in representation theory of finite
groups.
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Figure 3. The subspaces W1 and W2 in C3.
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�
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then we say that V1 is isomorphic to V2 as a G-vector space and write V1 ffi V2. We also say that
r1 is equivalent to r2 and write r1 � r2.

(E28) For any group G. let unit : G ! GL Cð Þ ¼ C� be the trivial representation of G. Then any
trivial representation r : G ! GL Vð Þ is equivalent to unit. The representation unit is called the
unit representation of G.
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Theorem 6.3. Let G be a finite group.

1. The number of irreducible representations of G up to equivalent is finite. Furthermore, it is equal to
the number of the conjugacy classes of G.

2. For any representation r : G ! GL Vð Þ, r is equivalent to a direct sum of some irreducible
representations:

V ffi W1 ⊕W2 ⊕⋯⊕Wm.

Furthermore, the tuple of the components is uniquely determined by G, up to the order.

6.3. Characters

In this subsection, for a given representation, we give a method to determine whether it is
irreducible or not by using characters. Let r : G ! GL Vð Þ be a representation. Take a basis
v1,…,vn of V, and fix it. By using this basis, we can consider r σð Þ as an n� nð Þ-matrix
Aσ ¼ aij

� �
, which is the matrix representation of r σð Þ. Then set

χr σð Þ≔Tr Aσð Þ ¼ a11 þ a22 þ⋯þ ann ∈C

for any σ∈G. Remark that this definition is well defined since it does not depend on the choice
of a basis of V . Indeed, ifw1,…,wn is another basis of V, the matrix representation of r σð Þwith
respect to this basis is given by P�1AσP for a some regular matrix P. Hence
Tr P�1AσP
� � ¼ Tr Aσð Þ. We call the map χr : G ! C the character of r. Remark that for elements

σ, τ∈G, if σ � τ, then r σð Þ � r τð Þ in GL Vð Þ. Thus, χr σð Þ ¼ χr τð Þ. Namely, χr is constant on
each of the conjugacy classes of G.

(E29) Consider the example (E25). Let r : S3 ! GL C3� �
be the permutation representation of

S3. The conjugacy classes of S3 are as follows:

Hence, in order to calculate the values of the character χr of r, it suffices to calculate its values

on 1S3 , 1; 2ð Þ, and 1; 2; 3ð Þ. If we take the standard basis e1, e2, e3 of C3, we have
r σð Þ ¼ eσ 1ð Þ eσ 2ð Þ eσ 3ð Þ

� �
, and hence

χr 1S3ð Þ ¼ 3, χr 1; 2ð Þð Þ ¼ 1, χr 1; 2; 3ð Þð Þ ¼ 0:

In general, as in (E29), for a representation r : G ! GL Vð Þ, χr 1Gð Þ is the degree of the repre-
sentation, which is equal to dimC Vð Þ.

Cycle type Conjugacy class

1; 1; 1ð Þ 1S3f g
2; 1ð Þ 1; 2ð Þ; 1; 3ð Þ; 2; 3ð Þf g
3ð Þ 1; 2; 3ð Þ; 1; 3; 2ð Þf g

Symmetry (Group Theory) and Mathematical Treatment in Chemistry38

Now, we define the inner product of characters. For complex functions φ,ψ : G ! C on G, set

φ;ψh i ¼ 1
∣G∣

X
σ∈G

φ σð Þψ σð Þ

where z means the complex conjugation of z∈C. We call it the inner product of ϕ and ψ. The
following theorems are quite important and useful from the viewpoint to find and to calculate
all of the irreducible representations.

Theorem 6.4.

1. (Orthogonality) Let ri : G ! GL Við Þ (i ¼ 1, 2) be irreducible representations. Then

χr1
;χr2

D E
¼ 1 if r1 � r2,

0 if r1= � r2:

�

2. For a representation r : G ! GL Vð Þ,

r is irreducible⇔ χr;χr

� � ¼ 1:

(E30) We have the three irreducible representations of S3. By direct calculations, we obtain the
following list:

Hence we see that in each of cases, we have χr;χr

� � ¼ 1.

By Theorem 6.3, we see that for any representation r : G ! GL Vð Þ, V can be written as

V ffi W ⊕m1
1 ⊕W ⊕m2

2 ⊕⋯⊕W ⊕mk
k

where each Wi is an irreducible G-vector space and Wi is not isomorphic to Wj as a G-vector
space if i 6¼ j. For each 1 ≤ i ≤ k, the number mi is called the multiplicity of Wi in V.

Theorem 6.5. As the notation above, let ri be the irreducible representation of G correspond to the G-
vector space Wi. Then we have

1. χr ¼ m1χr1
þ⋯þmkχrk

.

2. χr;χri

D E
¼ mi.

Namely, each of the multiplicity of the irreducible G-vector spaces in V is calculated by the inner
product of the characters

3. ∣G∣ ¼Pk
i¼1 χri

1ð Þ2.

σ 1S3 1; 2ð Þ 1; 3ð Þ 2; 3ð Þ 1; 2; 3ð Þ 1; 3; 2ð Þ

χunit σð Þ 1 1 1 1 1 1

χsgn σð Þ 1 �1 �1 �1 1 1

χrjW2
σð Þ 2 0 0 0 �1 �1
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Theorem 6.3. Let G be a finite group.

1. The number of irreducible representations of G up to equivalent is finite. Furthermore, it is equal to
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Furthermore, the tuple of the components is uniquely determined by G, up to the order.

6.3. Characters

In this subsection, for a given representation, we give a method to determine whether it is
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v1,…,vn of V, and fix it. By using this basis, we can consider r σð Þ as an n� nð Þ-matrix
Aσ ¼ aij

� �
, which is the matrix representation of r σð Þ. Then set

χr σð Þ≔Tr Aσð Þ ¼ a11 þ a22 þ⋯þ ann ∈C

for any σ∈G. Remark that this definition is well defined since it does not depend on the choice
of a basis of V . Indeed, ifw1,…,wn is another basis of V, the matrix representation of r σð Þwith
respect to this basis is given by P�1AσP for a some regular matrix P. Hence
Tr P�1AσP
� � ¼ Tr Aσð Þ. We call the map χr : G ! C the character of r. Remark that for elements

σ, τ∈G, if σ � τ, then r σð Þ � r τð Þ in GL Vð Þ. Thus, χr σð Þ ¼ χr τð Þ. Namely, χr is constant on
each of the conjugacy classes of G.

(E29) Consider the example (E25). Let r : S3 ! GL C3� �
be the permutation representation of

S3. The conjugacy classes of S3 are as follows:

Hence, in order to calculate the values of the character χr of r, it suffices to calculate its values

on 1S3 , 1; 2ð Þ, and 1; 2; 3ð Þ. If we take the standard basis e1, e2, e3 of C3, we have
r σð Þ ¼ eσ 1ð Þ eσ 2ð Þ eσ 3ð Þ

� �
, and hence

χr 1S3ð Þ ¼ 3, χr 1; 2ð Þð Þ ¼ 1, χr 1; 2; 3ð Þð Þ ¼ 0:

In general, as in (E29), for a representation r : G ! GL Vð Þ, χr 1Gð Þ is the degree of the repre-
sentation, which is equal to dimC Vð Þ.

Cycle type Conjugacy class

1; 1; 1ð Þ 1S3f g
2; 1ð Þ 1; 2ð Þ; 1; 3ð Þ; 2; 3ð Þf g
3ð Þ 1; 2; 3ð Þ; 1; 3; 2ð Þf g
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Now, we define the inner product of characters. For complex functions φ,ψ : G ! C on G, set

φ;ψh i ¼ 1
∣G∣

X
σ∈G

φ σð Þψ σð Þ

where z means the complex conjugation of z∈C. We call it the inner product of ϕ and ψ. The
following theorems are quite important and useful from the viewpoint to find and to calculate
all of the irreducible representations.

Theorem 6.4.

1. (Orthogonality) Let ri : G ! GL Við Þ (i ¼ 1, 2) be irreducible representations. Then

χr1
;χr2

D E
¼ 1 if r1 � r2,

0 if r1= � r2:

�

2. For a representation r : G ! GL Vð Þ,

r is irreducible⇔ χr;χr

� � ¼ 1:

(E30) We have the three irreducible representations of S3. By direct calculations, we obtain the
following list:

Hence we see that in each of cases, we have χr;χr

� � ¼ 1.

By Theorem 6.3, we see that for any representation r : G ! GL Vð Þ, V can be written as

V ffi W ⊕m1
1 ⊕W ⊕m2

2 ⊕⋯⊕W ⊕mk
k

where each Wi is an irreducible G-vector space and Wi is not isomorphic to Wj as a G-vector
space if i 6¼ j. For each 1 ≤ i ≤ k, the number mi is called the multiplicity of Wi in V.

Theorem 6.5. As the notation above, let ri be the irreducible representation of G correspond to the G-
vector space Wi. Then we have

1. χr ¼ m1χr1
þ⋯þmkχrk

.

2. χr;χri

D E
¼ mi.

Namely, each of the multiplicity of the irreducible G-vector spaces in V is calculated by the inner
product of the characters

3. ∣G∣ ¼Pk
i¼1 χri

1ð Þ2.

σ 1S3 1; 2ð Þ 1; 3ð Þ 2; 3ð Þ 1; 2; 3ð Þ 1; 3; 2ð Þ

χunit σð Þ 1 1 1 1 1 1

χsgn σð Þ 1 �1 �1 �1 1 1

χrjW2
σð Þ 2 0 0 0 �1 �1
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Namely, the sum of the squares of the degrees of the irreducible representations is equal to the order of G.

From the above theorems, we verify that if we want to know all irreducible representations of
G, it suffices to calculate its characters. The list of all values of all characters is called the
character table of G. Finally, we give a few examples of the character tables of finite groups.

(E31) Observe (E30). Since we have

χunit 1ð Þ2 þ χsgn 1ð Þ2 þ χrjW2
1ð Þ2 ¼ 4þ 1þ 1 ¼ 6 ¼ ∣S3∣,

it turns out that unit, sgn , and rjW2
are all irreducible representations ofS3 up to equivalence.

Hence the list in (E30) is the character table of S3.

(E32) Consider the cyclic group Un. Since Un is abelian, any conjugacy class consists of a single
element, and there exist n conjugacy classes. Hence there exist n distinct irreducible represen-
tations. Now, for any 0 ≤ l ≤n� 1, define the map rl : Un ! GL Cð Þ ¼ C� by

ζk ↦ ζkl 0 ≤ k ≤ n� 1ð Þ

where ζ ¼ exp 2π
ffiffiffiffiffiffiffi�1

p
=n

� �
. Then we obtain

Hence we see that r0, r1,…, rn�1 are nonequivalent one-dimensional representations, and
hence the above list is the character table of Un. In general, all irreducible representations of
an abelian group are of degree 1.

(E33) (Dihedral groups) For n ≥ 3, consider the dihedral groups Dn. First, for any a, b ¼ �1,
there exist the four one-dimensional representations εa,b : Dn ! C� defined by

εa,b xð Þ ¼ �1ð Þak if x ¼ σk,

�1ð Þakþb if x ¼ σkτ:

(

These maps are characterized by the images of σ and τ, which are �1ð Þa and �1ð Þb, respec-
tively. Next, for any 1 ≤ l ≤n� 1, we can consider the two-dimensional representations
rl : Dn ! GL 2;Cð Þ given by

σ 1Un ζ ζ2 ⋯ ζn�1

χr0
σð Þ 1 1 1 1 1

χr1
σð Þ 1 ζ ζ2 ⋯ ζn�1

⋮ ⋮

χrn�1
σð Þ 1 ζn�1 ζn�2 ⋯ ζ
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rl xð Þ ¼

cos 2klπ=n � sin 2klπ=n

sin 2klπ=n cos 2klπ=n

 !
if x ¼ σk,

cos 2klπ=n � sin 2klπ=n

sin 2klπ=n cos 2klπ=n

 !
0 1

1 0

 !
if x ¼ σkτ:

8>>>>><
>>>>>:

i. The case where n is even. For any 1 ≤ l ≤ n�2
2 , since we can see χrl

;χrl

D E
¼ 1 by direct

calculation, rls are irreducible representations of Dn. Since we have

χε1,1 1ð Þ2þ χε1,�1
1ð Þ2 þ χε�1,1 1ð Þ2 þ χε�1,�1

1ð Þ2

þχr1
1ð Þ2 þ⋯þ χrn�2

2

1ð Þ2 ¼ 2n ¼ ∣Dn∣,

it turns out that εa,b and rl for a, b ¼ �1 and 1 ≤ l ≤ n�2
2 are all irreducible representations of Dn

up to equivalence. The character table of D4 is give as follows:

ii. The case where n is odd. Similarly, we can see that ε1, b and rl for b ¼ �1 and 1 ≤ l ≤ n�1
2 are all

irreducible representations ofDn up to equivalence. The character table ofD5 is give as follows:

7. Direct products

In chemistry, groups appear in symmetries of molecules. The structures of some of them are
given by direct products of finite groups. Here we consider direct product groups and its
irreducible representations.

x 1D4f g σ,σ3
�

σ2f g στ; σ3τ
� �

τ; σ2τf g

χε1,1 xð Þ 1 1 1 1 1

χε1,�1
xð Þ 1 1 1 �1 �1

χε�1,1 xð Þ 1 �1 1 �1 1

χε�1,�1
xð Þ 1 �1 1 1 �1

χr1
σð Þ 2 0 �2 0 0

x 1D5f g σ; σ4
� �

σ2; σ3
� �

τ; στ;…; σ4τ
� �

χε1,1 xð Þ 1 1 1 1

χε1,�1
xð Þ 1 1 1 �1

χr1
σð Þ 2 2 cos 2π=5 2 cos 4π=5 0

χr2
σð Þ 2 2 cos 4π=5 2 cos 2π=5 0
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Namely, the sum of the squares of the degrees of the irreducible representations is equal to the order of G.

From the above theorems, we verify that if we want to know all irreducible representations of
G, it suffices to calculate its characters. The list of all values of all characters is called the
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p
=n
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. Then we obtain

Hence we see that r0, r1,…, rn�1 are nonequivalent one-dimensional representations, and
hence the above list is the character table of Un. In general, all irreducible representations of
an abelian group are of degree 1.
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there exist the four one-dimensional representations εa,b : Dn ! C� defined by

εa,b xð Þ ¼ �1ð Þak if x ¼ σk,

�1ð Þakþb if x ¼ σkτ:

(

These maps are characterized by the images of σ and τ, which are �1ð Þa and �1ð Þb, respec-
tively. Next, for any 1 ≤ l ≤n� 1, we can consider the two-dimensional representations
rl : Dn ! GL 2;Cð Þ given by
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χr0
σð Þ 1 1 1 1 1

χr1
σð Þ 1 ζ ζ2 ⋯ ζn�1

⋮ ⋮

χrn�1
σð Þ 1 ζn�1 ζn�2 ⋯ ζ
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rl xð Þ ¼

cos 2klπ=n � sin 2klπ=n

sin 2klπ=n cos 2klπ=n

 !
if x ¼ σk,

cos 2klπ=n � sin 2klπ=n

sin 2klπ=n cos 2klπ=n

 !
0 1
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 !
if x ¼ σkτ:
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i. The case where n is even. For any 1 ≤ l ≤ n�2
2 , since we can see χrl
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D E
¼ 1 by direct

calculation, rls are irreducible representations of Dn. Since we have
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1ð Þ2
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2

1ð Þ2 ¼ 2n ¼ ∣Dn∣,

it turns out that εa,b and rl for a, b ¼ �1 and 1 ≤ l ≤ n�2
2 are all irreducible representations of Dn

up to equivalence. The character table of D4 is give as follows:

ii. The case where n is odd. Similarly, we can see that ε1, b and rl for b ¼ �1 and 1 ≤ l ≤ n�1
2 are all

irreducible representations ofDn up to equivalence. The character table ofD5 is give as follows:

7. Direct products

In chemistry, groups appear in symmetries of molecules. The structures of some of them are
given by direct products of finite groups. Here we consider direct product groups and its
irreducible representations.
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Let G and H be finite groups. Set

G�H≔ g; hð Þ jg∈G; h∈Hf g,

and define the product on G�H by

g; hð Þ � g0; h0ð Þ≔ gg0; hh0ð Þ:

Then G�H with this product forms a group. This is called the direct product group of G and
H. The unit is 1G; 1Hð Þ, and the inverse of g; hð Þ is g�1; h�1� �

. If G andH are finite groups, then it
is clear that ∣G�H∣ ¼ ∣G∣ ∣H∣. For conjugacy classes C and C0 of G and H, respectively, the
direct product set C� C0 is a conjugacy class of G�H, and any conjugacy class of G�H is
obtained by this way.

In order to construct irreducible representations of G�H, we consider tensor products of
vector spaces. For G-vector space V and H-vector space W , let F be the vector space with basis
v;wð Þjv∈V; w∈Wf g and R the subspace of F generated by

v1 þ v2;wð Þ � v1;wð Þ � v2;wð Þ,
v;w1 þw2ð Þ � v;w1ð Þ � v;w2ð Þ,
αv;wð Þ � α v;wð Þ, v;αwð Þ � α v;wð Þ,

for any v, v1, v2 ∈V, w,w1,w2 ∈W , and α∈C. The quotient vector space F=R is called the
tensor product of V and W and is denoted by V⊗W. The coset class of v;wð Þ is denoted by
v⊗w. If v1,…, vm and w1,…,wn are bases of V and W , respectively, then elements vi ⊗wj

(1 ≤ i ≤m and 1 ≤ j ≤n) form a basis of V⊗W . Hence dim V⊗Wð Þ ¼ dimVð Þ dimWð Þ.
For any g∈G and h∈H, we can define the action of G�H on V⊗W by

g; hð Þ �
Xm

i¼1

Xn

j¼1

αijvi ⊗wj≔
Xm

i¼1

Xn

j¼1

αij gvið Þ⊗ hwj
� �

,

and hence, V⊗W is a G�H-vector space. For the representations r : G ! GL Vð Þ and
r0 : G ! GL Wð Þ corresponding to the G-vector spaces V and W , respectively, we denote by
r⊗ r0 : G ! GL V⊗Wð Þ the representation corresponding to the G�Hð Þ-vector space V⊗W .
Then we have

Theorem 7.1. (1) As the notation above, if r and r0 are irreducible, so is r⊗ r0.

(2) If r1,…, rk (resp. r
0
1,…, r0l) are all irreducible representations of G (resp. H) up to equivalence, then

ri ⊗ rj0 (1 ≤ i ≤m and 1 ≤ j ≤ n) are all irreducible representations of G�H up to equivalence.

(E34) For V ¼ C and W ¼ C, the tensor product V⊗W of V and W is a one-dimensional C-
vector space with basis 1⊗ 1. Thus, we have a bijective linear map V⊗W ! C given by

a 1⊗ 1ð Þ↦ a:

In general, we identify C⊗C with C through this map.
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Let us consider the direct product U2 � U3. Under the identification C⊗C ¼ C, the character
table is given as follows:

where ζ ¼ exp 2π
ffiffiffiffiffiffiffi�1

p
=3.

(E35) Consider the direct product U2 �S3. Its character table is given as follows:

8. Graphs and their automorphisms

In this section, we consider directed graphs and their automorphism groups. Here we do not
assume for the reader to know the facts in Sections 5 and 6.

8.1. Graphs

According to literatures, there are several different definitions of a graph. Briefly Ca directed
graph Γ consists of vertices and oriented edges whose endpoints are vertices. (For details for
the definition of graphs, see page 14 of [9].) For an oriented edge e, we denote by i eð Þ and t eð Þ
the initial vertex and the terminal vertex of e. Each oriented edge e has the inverse edge e such
that e 6¼ e and e ¼ e. It is clear that i eð Þ ¼ t eð Þ and t eð Þ ¼ i eð Þ. An oriented edge e such that
i eð Þ ¼ t eð Þ is called a loop. For any v, w∈V Γð Þ, we assume that there may exist more than one
oriented edge whose initial vertex is v and terminal vertex w. If this is the case, we say that Γ
has multiple oriented edges.

(E36) A directed graph is easy to understand if it is drawn by a picture. See Figure 4. The
vertices v, w, x, y, z are depicted by small circles. The oriented edges a, b, c, d, e, f , g, h are

σ 1; 1ð Þf g 1;ζð Þf g 1; ζ2
� �� � �1; 1ð Þf g �1;ζð Þf g �1; ζ2

� �� �

χr0 ⊗ r0
σð Þ 1 1 1 1 1 1

χr0 ⊗ r1
σð Þ 1 ζ ζ2 1 ζ ζ2

χr0 ⊗ r2
σð Þ 1 ζ2 ζ 1 ζ2 ζ

χr1 ⊗ r0
σð Þ 1 1 1 �1 �1 �1

χr1 ⊗ r1
σð Þ 1 ζ ζ2 �1 �ζ �ζ2

χr1 ⊗ r2
σð Þ 1 ζ2 ζ �1 �ζ2 �ζ

σ 1; 1S3ð Þf g 1; i; j
� �� �� �

1; i; j; k
� �� �� � �1; 1S3ð Þf g �1; i; j

� �� �� � �1; i; j;k
� �� �� �

χr0 ⊗unit σð Þ 1 1 1 1 1 1

χr0 ⊗ sgn σð Þ 1 �1 1 1 �1 1

χr0 ⊗ rjW2
σð Þ 2 0 �1 2 0 �1

χr1 ⊗unit σð Þ 1 1 1 �1 �1 �1

χr1 ⊗ sgn σð Þ 1 �1 1 �1 1 �1

χr1 ⊗ rjW2
σð Þ 2 0 �1 �2 0 1
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Let G and H be finite groups. Set

G�H≔ g; hð Þ jg∈G; h∈Hf g,

and define the product on G�H by

g; hð Þ � g0; h0ð Þ≔ gg0; hh0ð Þ:

Then G�H with this product forms a group. This is called the direct product group of G and
H. The unit is 1G; 1Hð Þ, and the inverse of g; hð Þ is g�1; h�1� �

. If G andH are finite groups, then it
is clear that ∣G�H∣ ¼ ∣G∣ ∣H∣. For conjugacy classes C and C0 of G and H, respectively, the
direct product set C� C0 is a conjugacy class of G�H, and any conjugacy class of G�H is
obtained by this way.

In order to construct irreducible representations of G�H, we consider tensor products of
vector spaces. For G-vector space V and H-vector space W , let F be the vector space with basis
v;wð Þjv∈V; w∈Wf g and R the subspace of F generated by

v1 þ v2;wð Þ � v1;wð Þ � v2;wð Þ,
v;w1 þw2ð Þ � v;w1ð Þ � v;w2ð Þ,
αv;wð Þ � α v;wð Þ, v;αwð Þ � α v;wð Þ,

for any v, v1, v2 ∈V, w,w1,w2 ∈W , and α∈C. The quotient vector space F=R is called the
tensor product of V and W and is denoted by V⊗W. The coset class of v;wð Þ is denoted by
v⊗w. If v1,…, vm and w1,…,wn are bases of V and W , respectively, then elements vi ⊗wj

(1 ≤ i ≤m and 1 ≤ j ≤n) form a basis of V⊗W . Hence dim V⊗Wð Þ ¼ dimVð Þ dimWð Þ.
For any g∈G and h∈H, we can define the action of G�H on V⊗W by

g; hð Þ �
Xm

i¼1

Xn

j¼1

αijvi ⊗wj≔
Xm

i¼1

Xn

j¼1

αij gvið Þ⊗ hwj
� �

,

and hence, V⊗W is a G�H-vector space. For the representations r : G ! GL Vð Þ and
r0 : G ! GL Wð Þ corresponding to the G-vector spaces V and W , respectively, we denote by
r⊗ r0 : G ! GL V⊗Wð Þ the representation corresponding to the G�Hð Þ-vector space V⊗W .
Then we have

Theorem 7.1. (1) As the notation above, if r and r0 are irreducible, so is r⊗ r0.

(2) If r1,…, rk (resp. r
0
1,…, r0l) are all irreducible representations of G (resp. H) up to equivalence, then

ri ⊗ rj0 (1 ≤ i ≤m and 1 ≤ j ≤ n) are all irreducible representations of G�H up to equivalence.

(E34) For V ¼ C and W ¼ C, the tensor product V⊗W of V and W is a one-dimensional C-
vector space with basis 1⊗ 1. Thus, we have a bijective linear map V⊗W ! C given by

a 1⊗ 1ð Þ↦ a:

In general, we identify C⊗C with C through this map.
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Let us consider the direct product U2 � U3. Under the identification C⊗C ¼ C, the character
table is given as follows:

where ζ ¼ exp 2π
ffiffiffiffiffiffiffi�1

p
=3.

(E35) Consider the direct product U2 �S3. Its character table is given as follows:

8. Graphs and their automorphisms

In this section, we consider directed graphs and their automorphism groups. Here we do not
assume for the reader to know the facts in Sections 5 and 6.

8.1. Graphs

According to literatures, there are several different definitions of a graph. Briefly Ca directed
graph Γ consists of vertices and oriented edges whose endpoints are vertices. (For details for
the definition of graphs, see page 14 of [9].) For an oriented edge e, we denote by i eð Þ and t eð Þ
the initial vertex and the terminal vertex of e. Each oriented edge e has the inverse edge e such
that e 6¼ e and e ¼ e. It is clear that i eð Þ ¼ t eð Þ and t eð Þ ¼ i eð Þ. An oriented edge e such that
i eð Þ ¼ t eð Þ is called a loop. For any v, w∈V Γð Þ, we assume that there may exist more than one
oriented edge whose initial vertex is v and terminal vertex w. If this is the case, we say that Γ
has multiple oriented edges.

(E36) A directed graph is easy to understand if it is drawn by a picture. See Figure 4. The
vertices v, w, x, y, z are depicted by small circles. The oriented edges a, b, c, d, e, f , g, h are

σ 1; 1ð Þf g 1;ζð Þf g 1; ζ2
� �� � �1; 1ð Þf g �1;ζð Þf g �1; ζ2

� �� �

χr0 ⊗ r0
σð Þ 1 1 1 1 1 1

χr0 ⊗ r1
σð Þ 1 ζ ζ2 1 ζ ζ2

χr0 ⊗ r2
σð Þ 1 ζ2 ζ 1 ζ2 ζ

χr1 ⊗ r0
σð Þ 1 1 1 �1 �1 �1

χr1 ⊗ r1
σð Þ 1 ζ ζ2 �1 �ζ �ζ2

χr1 ⊗ r2
σð Þ 1 ζ2 ζ �1 �ζ2 �ζ

σ 1; 1S3ð Þf g 1; i; j
� �� �� �

1; i; j; k
� �� �� � �1; 1S3ð Þf g �1; i; j

� �� �� � �1; i; j;k
� �� �� �

χr0 ⊗unit σð Þ 1 1 1 1 1 1

χr0 ⊗ sgn σð Þ 1 �1 1 1 �1 1

χr0 ⊗ rjW2
σð Þ 2 0 �1 2 0 �1

χr1 ⊗unit σð Þ 1 1 1 �1 �1 �1

χr1 ⊗ sgn σð Þ 1 �1 1 �1 1 �1

χr1 ⊗ rjW2
σð Þ 2 0 �1 �2 0 1
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depicted by arrows from the initial vertex to the terminal vertex, and their inverse edges are
omitted for simplicity.

We denote by V Γð Þ and E Γð Þ the sets of the vertices and the oriented edges of Γ, respectively. If
both V Γð Þ and E Γð Þ are finite set, we call Γ a finite graph. Here, we consider only finite graphs.
Remark that ∣E Γð Þ∣ is always even since E Γð Þ is written as e1; e1;…; em; emf g. For any v, w∈V Γð Þ,
if there exists a successive sequence of oriented edges such that the initial vertex of the first
edge is v and the terminal vertex of the last edge w, then the graph is called a connected graph.
For example, see Figure 5. In the following, we assume that all graphs are connected.

8.2. Automorphisms of graphs

Let Γ and Γ0 be graphs. A morphism of directed graphs from Γ to Γ0 is a map

σ : V Γð Þ∪E Γð Þ ! V Γ0ð Þ∪E Γ0ð Þ

which maps vertices to vertices and edges to edges, such that

σ i eð Þð Þ ¼ i σ eð Þð Þ, σ t eð Þð Þ ¼ t σ eð Þð Þ, σ eð Þ ¼ σ eð Þ

for any e∈E Γð Þ. Namely, σ maps the initial vertex, the terminal vertex, and the inverse edge of
an oriented edge to those of the corresponding oriented edge, respectively. For simplicity, we
write σ : Γ ! Γ0. If σ is bijective, then it is called an isomorphism. An isomorphism from Γ to Γ
is called an automorphism of Γ. Let Aut Γð Þ be the set of all automorphisms of Γ. Then Aut Γð Þ
with the composition of maps forms a group. We call it the automorphism group of Γ. Let us
consider a few easy examples of Aut Γð Þ.
(E37) See Figure 6. The graph Γ1 consists of one vertex v and two oriented edges e and e. Hence
all morphisms from Γ1 to Γ1 are automorphisms since if σ : Γ ! Γ is a morphism, then
σ vð Þ ¼ v, and σ eð Þ ¼ e or σ eð Þ ¼ e. If σ eð Þ ¼ e, then σ eð Þ ¼ e as a consequence, and hence σ is
the identity map on Γ. If σ eð Þ ¼ e, then σ eð Þ ¼ e as a consequence, and hence σ is the

Figure 4. An example of a graph.
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orientation-reversing automorphism on Γ. Thus, Aut Γ1ð Þ ¼ σ1; σ2f g ffi Z=2Z where σ1 eð Þ ¼ e
and σ2 eð Þ ¼ e.

On the other hand, the graph Γ2 consists of one vertex v and four oriented edges e, e, f , and f . It
is easily seen that there are eight possible automorphisms on Γ2. Namely, all of them map v to
v, and the correspondences of edges are given by

σ1 : e; fð Þ↦ e; fð Þ, σ2 : e; fð Þ↦ e; fð Þ, σ3 : e; fð Þ↦ e; f
� �

, σ4 : e; fð Þ↦ e; f
� �

,

σ5 : e; fð Þ↦ f ; eð Þ, σ6 : e; fð Þ↦ f ; e
� �

, σ7 : e; fð Þ↦ f ; eð Þ, σ8 : e; fð Þ↦ f ; e
� �

:

Hence Aut Γ2ð Þ ¼ σ1;…; σ8f g. It turns out that σ2, σ3, and σ5 are generators of Aut Γ2ð Þ. In (E41),
we study the structure of Aut Γ2ð Þ more.

Next, in order to describe the group structure of Aut Γð Þ more simply, we consider semidirect
products of groups. For high motivated readers, see [10] for details and more examples. The

Figure 5. Examples of a connected and a non-connected graph.

Figure 6. Graphs which have one vertex.
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depicted by arrows from the initial vertex to the terminal vertex, and their inverse edges are
omitted for simplicity.

We denote by V Γð Þ and E Γð Þ the sets of the vertices and the oriented edges of Γ, respectively. If
both V Γð Þ and E Γð Þ are finite set, we call Γ a finite graph. Here, we consider only finite graphs.
Remark that ∣E Γð Þ∣ is always even since E Γð Þ is written as e1; e1;…; em; emf g. For any v, w∈V Γð Þ,
if there exists a successive sequence of oriented edges such that the initial vertex of the first
edge is v and the terminal vertex of the last edge w, then the graph is called a connected graph.
For example, see Figure 5. In the following, we assume that all graphs are connected.

8.2. Automorphisms of graphs

Let Γ and Γ0 be graphs. A morphism of directed graphs from Γ to Γ0 is a map

σ : V Γð Þ∪E Γð Þ ! V Γ0ð Þ∪E Γ0ð Þ

which maps vertices to vertices and edges to edges, such that

σ i eð Þð Þ ¼ i σ eð Þð Þ, σ t eð Þð Þ ¼ t σ eð Þð Þ, σ eð Þ ¼ σ eð Þ

for any e∈E Γð Þ. Namely, σ maps the initial vertex, the terminal vertex, and the inverse edge of
an oriented edge to those of the corresponding oriented edge, respectively. For simplicity, we
write σ : Γ ! Γ0. If σ is bijective, then it is called an isomorphism. An isomorphism from Γ to Γ
is called an automorphism of Γ. Let Aut Γð Þ be the set of all automorphisms of Γ. Then Aut Γð Þ
with the composition of maps forms a group. We call it the automorphism group of Γ. Let us
consider a few easy examples of Aut Γð Þ.
(E37) See Figure 6. The graph Γ1 consists of one vertex v and two oriented edges e and e. Hence
all morphisms from Γ1 to Γ1 are automorphisms since if σ : Γ ! Γ is a morphism, then
σ vð Þ ¼ v, and σ eð Þ ¼ e or σ eð Þ ¼ e. If σ eð Þ ¼ e, then σ eð Þ ¼ e as a consequence, and hence σ is
the identity map on Γ. If σ eð Þ ¼ e, then σ eð Þ ¼ e as a consequence, and hence σ is the

Figure 4. An example of a graph.
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orientation-reversing automorphism on Γ. Thus, Aut Γ1ð Þ ¼ σ1; σ2f g ffi Z=2Z where σ1 eð Þ ¼ e
and σ2 eð Þ ¼ e.

On the other hand, the graph Γ2 consists of one vertex v and four oriented edges e, e, f , and f . It
is easily seen that there are eight possible automorphisms on Γ2. Namely, all of them map v to
v, and the correspondences of edges are given by

σ1 : e; fð Þ↦ e; fð Þ, σ2 : e; fð Þ↦ e; fð Þ, σ3 : e; fð Þ↦ e; f
� �

, σ4 : e; fð Þ↦ e; f
� �

,

σ5 : e; fð Þ↦ f ; eð Þ, σ6 : e; fð Þ↦ f ; e
� �

, σ7 : e; fð Þ↦ f ; eð Þ, σ8 : e; fð Þ↦ f ; e
� �

:

Hence Aut Γ2ð Þ ¼ σ1;…; σ8f g. It turns out that σ2, σ3, and σ5 are generators of Aut Γ2ð Þ. In (E41),
we study the structure of Aut Γ2ð Þ more.

Next, in order to describe the group structure of Aut Γð Þ more simply, we consider semidirect
products of groups. For high motivated readers, see [10] for details and more examples. The

Figure 5. Examples of a connected and a non-connected graph.
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semidirect product groups are kinds of generalizations of direct product groups. Let G be a
group, K a subgroup of G, and H a normal subgroup of G. Furthermore, if we have

G ¼ hk jh∈H; k∈Kf g, H ∩K ¼ 1Gf g,

then we call G the semidirect product group of H and K and denote it by G ¼ H⋊K.

(E38) Recall the dihedral group Dn ¼ 1; σ; σ2;…; σn�1; τ; στ; σ2τ;…; σn�1τ
� �

. Set H≔
1; σ; σ2;…; σn�1
� �

and K≔ 1; τf g. Then we can see that the subset H is a normal subgroup of
Dn, H ∩K ¼ 1f g, and Dn ¼ hk jh∈H; k∈Kf g. Thus Dn ¼ H⋊K.

Remark that for any g∈G, we can write g ¼ hk for some h∈H and k∈K and that this expres-
sion is unique. Namely, if g ¼ hk ¼ h0k0 for h, h0 ∈H and k, k0 ∈K, then we have

h0ð Þ�1h ¼ k0k�1 ∈H ∩K. Hence h0ð Þ�1h ¼ k0k�1 ¼ 1G, and hence h ¼ h0 and k ¼ k0. Therefore, if
∣G∣ < ∞, we see that ∣G∣ ¼ ∣HkK∣. We also remark that if hk ¼ kh for any h∈H and k∈K, then G
is isomorphic to the direct product group of H and K, namely, G ffi H � K. Thus, the semidirect
product is a generalization of the direct product.

Now, let Γ be a graph. For any v, w∈V Γð Þ, we number the oriented edges of Γ with v as initial
vertex and w as terminal vertex. Then every oriented edge e can be uniquely represented as
e ¼ v;w; kð Þ. In particular, we can arrange the numbering such that e ¼ w; v; kð Þ for any
e ¼ v;w; kð Þ∈E Γð Þ.
(E39) See Figure 7. We can arrange a numbering of the oriented edges as

e ¼ v;w; 1ð Þ, e ¼ w; v; 1ð Þ, f ¼ v;w; 2ð Þ, f ¼ w; v; 2ð Þ, g ¼ v;w; 3ð Þ, g ¼ w; v; 3ð Þ,
h ¼ w;w; 1ð Þ, h ¼ w;w; 2ð Þ:

Let T be the subgroup of Aut Γð Þ consisting of automorphisms that fix all vertices pointwise:

T≔ t∈Aut Γð Þ j t vð Þ ¼ v; v∈V Γð Þf g:

Let M be the subgroup of Aut Γð Þ consisting of automorphisms that fix the numberings of
edges:

M≔ m∈Aut Γð Þ j m v;w; kð Þ ¼ v0;w0; kð Þ for any v;w∈V and any number k
� �

:

Then we have Aut Γð Þ ¼ T⋊M

Figure 7. An example of a graph.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry46

(E40) Recall the graph Γ1 in (E37). Since every automorphism fixes the vertex v, we see that
Aut Γ1ð Þ ¼ T and M ¼ 1f g. Similarly, if a graph Γ has only one vertex, then Aut Γð Þ ¼ T.

(E41) Recall the graph Γ2 in (E37). We have Aut Γ2ð Þ ¼ T and M ¼ 1f g. Set H≔ σ2; σ3h i and
K≔ σ5h i. Then it is seen that H ffi Z=2Z� Z=2Z, K ffi Z=2Z, and Aut Γ2ð Þ ffi H⋊K.

(E42) Consider the directed graph Γ depicted as the regular n-gon. Then we see that T ¼ 1f g
since if an automorphism fixes all vertices then it must fix all edges. Thus, Aut Γð Þ ¼ M.
Furthermore, we can see that M ffi Dn ¼ σ; τh i where σ is the 2π=n-angled rotation and τ is
the reflection.

(E43) Consider the directed graph Γ in Figure 8. We arrange a numbering of the oriented edges as

e ¼ w; v; 1ð Þ, e ¼ v;w; 1ð Þ, f ¼ w; v; 2ð Þ, f ¼ v;w; 2ð Þ, g ¼ w; v; 3ð Þ, g ¼ v;w; 3ð Þ:

The subgroup T consists of automorphisms which permute the oriented edges e, f , g, and hence
T ffi S3. On the other hand, the subgroup Q consists of two automorphisms given by the
identity map and

σ : v;wð Þ↦ w; vð Þ, e; f ; gð Þ↦ e; f ; g
� �

,

and hence Q ffi Z=2Z. Therefore Aut Γð Þ ffi S3⋊Z=2Z.

The readers are strongly encouraged to consider further examples by oneself. It makes their
understandings better and deeper.

As a remark, we mention the irreducible representations of a semidirect product group. As
mentioned in Section 7, the irreducible representations of a direct product group G�H can be
calculated with those of G and H. The situation for semidirect products groups, however, is
much more complicated. In general, in order to study the irreducible representations of
semidirect product groups, we require some arguments in advanced algebra.

Figure 8. An example of a graph.
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semidirect product groups are kinds of generalizations of direct product groups. Let G be a
group, K a subgroup of G, and H a normal subgroup of G. Furthermore, if we have

G ¼ hk jh∈H; k∈Kf g, H ∩K ¼ 1Gf g,

then we call G the semidirect product group of H and K and denote it by G ¼ H⋊K.

(E38) Recall the dihedral group Dn ¼ 1; σ; σ2;…; σn�1; τ; στ; σ2τ;…; σn�1τ
� �

. Set H≔
1; σ; σ2;…; σn�1
� �

and K≔ 1; τf g. Then we can see that the subset H is a normal subgroup of
Dn, H ∩K ¼ 1f g, and Dn ¼ hk jh∈H; k∈Kf g. Thus Dn ¼ H⋊K.

Remark that for any g∈G, we can write g ¼ hk for some h∈H and k∈K and that this expres-
sion is unique. Namely, if g ¼ hk ¼ h0k0 for h, h0 ∈H and k, k0 ∈K, then we have

h0ð Þ�1h ¼ k0k�1 ∈H ∩K. Hence h0ð Þ�1h ¼ k0k�1 ¼ 1G, and hence h ¼ h0 and k ¼ k0. Therefore, if
∣G∣ < ∞, we see that ∣G∣ ¼ ∣HkK∣. We also remark that if hk ¼ kh for any h∈H and k∈K, then G
is isomorphic to the direct product group of H and K, namely, G ffi H � K. Thus, the semidirect
product is a generalization of the direct product.

Now, let Γ be a graph. For any v, w∈V Γð Þ, we number the oriented edges of Γ with v as initial
vertex and w as terminal vertex. Then every oriented edge e can be uniquely represented as
e ¼ v;w; kð Þ. In particular, we can arrange the numbering such that e ¼ w; v; kð Þ for any
e ¼ v;w; kð Þ∈E Γð Þ.
(E39) See Figure 7. We can arrange a numbering of the oriented edges as

e ¼ v;w; 1ð Þ, e ¼ w; v; 1ð Þ, f ¼ v;w; 2ð Þ, f ¼ w; v; 2ð Þ, g ¼ v;w; 3ð Þ, g ¼ w; v; 3ð Þ,
h ¼ w;w; 1ð Þ, h ¼ w;w; 2ð Þ:

Let T be the subgroup of Aut Γð Þ consisting of automorphisms that fix all vertices pointwise:

T≔ t∈Aut Γð Þ j t vð Þ ¼ v; v∈V Γð Þf g:

Let M be the subgroup of Aut Γð Þ consisting of automorphisms that fix the numberings of
edges:

M≔ m∈Aut Γð Þ j m v;w; kð Þ ¼ v0;w0; kð Þ for any v;w∈V and any number k
� �

:

Then we have Aut Γð Þ ¼ T⋊M

Figure 7. An example of a graph.
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(E40) Recall the graph Γ1 in (E37). Since every automorphism fixes the vertex v, we see that
Aut Γ1ð Þ ¼ T and M ¼ 1f g. Similarly, if a graph Γ has only one vertex, then Aut Γð Þ ¼ T.

(E41) Recall the graph Γ2 in (E37). We have Aut Γ2ð Þ ¼ T and M ¼ 1f g. Set H≔ σ2; σ3h i and
K≔ σ5h i. Then it is seen that H ffi Z=2Z� Z=2Z, K ffi Z=2Z, and Aut Γ2ð Þ ffi H⋊K.

(E42) Consider the directed graph Γ depicted as the regular n-gon. Then we see that T ¼ 1f g
since if an automorphism fixes all vertices then it must fix all edges. Thus, Aut Γð Þ ¼ M.
Furthermore, we can see that M ffi Dn ¼ σ; τh i where σ is the 2π=n-angled rotation and τ is
the reflection.

(E43) Consider the directed graph Γ in Figure 8. We arrange a numbering of the oriented edges as

e ¼ w; v; 1ð Þ, e ¼ v;w; 1ð Þ, f ¼ w; v; 2ð Þ, f ¼ v;w; 2ð Þ, g ¼ w; v; 3ð Þ, g ¼ v;w; 3ð Þ:

The subgroup T consists of automorphisms which permute the oriented edges e, f , g, and hence
T ffi S3. On the other hand, the subgroup Q consists of two automorphisms given by the
identity map and

σ : v;wð Þ↦ w; vð Þ, e; f ; gð Þ↦ e; f ; g
� �

,

and hence Q ffi Z=2Z. Therefore Aut Γð Þ ffi S3⋊Z=2Z.

The readers are strongly encouraged to consider further examples by oneself. It makes their
understandings better and deeper.

As a remark, we mention the irreducible representations of a semidirect product group. As
mentioned in Section 7, the irreducible representations of a direct product group G�H can be
calculated with those of G and H. The situation for semidirect products groups, however, is
much more complicated. In general, in order to study the irreducible representations of
semidirect product groups, we require some arguments in advanced algebra.

Figure 8. An example of a graph.
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Chemical species are structurally classified by symmetry. The preliminary classification 
takes into account only translational properties, the lattice of a crystal structure. But iden-
tical lattices may be described by an infinite number of different unit cells (a,b,c, α,β,γ or 
corresponding metric tensor G) and thus it is important to select finally the reference cell 
called the Bravais cell, which symmetry reflects the lattice symmetry. While the derivation 
of unit cell parameters from good X-ray diffraction data is generally straightforward, the 
problem of symmetry-standardization is challenging [1], especially in the presence of ran-
dom errors, pseudo-symmetry caused by the vicinity of Bravais type boundaries, textures, 
etc. Stable algorithms should recognize admittable symmetry and pseudo-symmetry(-tries) 
and calculate the distance(s) from the experimental unit-cell data to the Bravais lattice(s) 
subspace. Conceptually, a similar problem arises in the determination of distances between 
pairs of unit cells for database searching. A concise review of commonly used lengths (met-
rics) and its application to protein database search [2] showed that there is still room for 
improvements to characterize better the lattice on the symmetry borders. Advances in X-ray 
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diffraction techniques as well as improvements in data analyzing procedures allow to con-
clude that some of the previously obtained results may be based on pseudo-symmetry rather 
than on true symmetry (typical dilemma: hR or mC?). Some new diffraction data suggest, 
for example, that generally accepted trigonal crystal structures α-Cr2O3, α-Fe2O3, and CaCO3 
show monoclinic distortions [3, 4]. In consequence, the importance of border problems has a 
growing-up tendency.

Classifications of unique lattice representatives obtained by the Niggli reduction or Delaunay 
reduction are commonly used techniques to assign the Bravais symmetry to a given lattice. 
Another approach, called the matrix method, directly derives isometric transformations from 
the lattices by B-matrices, which transform a lattice onto itself [1, 5, 6], or by the space distribu-
tion of orthogonalities [7], or by filtering predefined set V of 480 potential symmetry matrices 
[8, 9]. The latter technique is applicable to a wide class of semi-reduced lattice descriptions, 
additionally forced by a geometric interpretation of symmetry operations. The following 
advantages seem to be apparent: (i) the filtering process is extremely simple, (ii) semi-reduced 
lattices after a small deformation are generally still semi-reduced, (iii) symmetry axes and 
planes are automatically indexed, (iv) a lattice deformation, which retains the given symme-
try, is easily deduced. The property (iv) can be utilized as a ‘distortion index’, a new measure 
of the distance between symmetrical lattices. The aim of this chapter is to carefully look at 
the border problems frequently occurring in hR lattices (hR-cF, hR-cP, hR-cI, hR-mC), but in 
the less-known semi-reduced lattice representations. Two appended real-life examples explain 
deeper the proposed technique and its possibilities.

2. Semi-reduced lattice descriptions

The concept of a semi-reduced lattice description (s.r.d.) has been given elsewhere [9]. The 
emphasis on the crystallographic features of lattices was obtained by shifting the focus (i) from 
the analysis of a lattice metric to the analysis of symmetry matrices [6], (ii) from the geometric 
interpretation of isometric transformation based on invariant subspaces to the orthogonality 
concept [7] extended to splitting indices [8], (iii) and from predefined cell transformations 
to transformations derivable via geometric information [6, 7]. It was shown that both cor-
responding arithmetic and geometric holohedries share the space distribution of symmetry 
elements and thus simplify the crystallographic description of structural phase transitions, 
especially those observed with the use of powder diffraction. Moreover, the completeness of 
s.r.d. types revealed a combinatorial structure of V (see below).

The main result of introduced semi-reduced lattice representations consists in the extension 
of the famous characterization of Bravais lattices according to their metrical, algebraic, and 
geometric properties onto a wide class of primitive, less restrictive lattices (including Niggli-
reduced, Buerger-reduced, nearly Buerger-reduced, and a substantial part of Delaunay-
reduced). While the geometric operations in Bravais lattices map the basis vectors onto 
themselves, the arithmetic operators in s.r.d. transform the basis vectors into cell vectors (basis 
vectors, face or space diagonals) and are represented by matrices from the set V of 480 matri-
ces with the determinant 1 and elements {0, ±1} of the matrix powers. A lattice is in s.r.d. if the 
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absolute values of off-diagonal elements in both metric tensors G and G−1 are smaller than the 
corresponding two diagonal elements sharing the same column and sharing the same row. 
The experimental s.r.d. metric G must be unchanged (with some relaxation) by the symmetry 
operation from V, thus by simple filtering:

   G   ′  =  V   T  GV, V ϵ V and  (a, b, c, α, β, γ) G~ G   ′   ( a   ′ ,  b   ′ ,  c   ′ ,  α   ′ ,  β   ′ ,  γ   ′ )   (1)

and the subsequent geometric interpretation of the filtered matrices leads to mathematically sta-
ble and rich information on the individual transformation bringing the lattice into coincidence 
with itself (known as an isometry or a symmetry operation) and deviations from the exact match:

  Δa / a % , Δb / b %, Δc / c %, Δ  α   ° , Δ  β   ° , Δ  γ   ° ,  δ   ° ,  (2)

where Δa/a% denotes (a’-a)/a·100[%], Δα° = α’-α[°] and δ° is Le Page parameter [7]. For exact iso-
metric transformation, all such discrepancy parameters should be zero (or very close to zero).

It is obvious that symmetry operations fulfill the closure, associative, identity, and inverse 
axioms and form a group: an arithmetic holohedry or in other words a lattice group. The set V 
of all possible transformations in s.r.d. is covered by the arithmetic holohedries of 39 highest 
symmetry lattices (Table 1).

In the s.r.d. approach, the primitive-to-Bravais transformations are not stored, but dynami-
cally constructed, based on the geometric interpretation of symmetry matrices. Unfortunately, 
the classical symbol of a point or space symmetry operation bears information on an opera-
tion type and a 1D subspace (or 2D in the case of symmetry planes) of points invariant under 
this operation [10], but the information on the complement orthogonal subspace, invariant 
as a whole, is lost. In the developed splitting or dual symbol introduced in [8], orientation of 

Lattice Metric Lattice Metric Lattice Metric Lattice Metric

hP1 2,2,1,0,0,−1 hP4 2,2,1,0,0,1 cF7 2,2,2,0,−1,−1 cI7 4,3,3,1,2,2

hP2 2,1,2,0,−1,0 hP5 2,1,2,0,1,0 cF8 2,2,2,1,1,0 cI8 3,3,4,−2,−2,1

hP3 1,2,2,−1,0,0 hP6 1,2,2,1,0,0 cF9 2,2,2,1,0,1 cI9 3,4,3,−2,1,−2

cP0 1,1,1,0,0,0 cF10 2,2,2,0,1,1 cI10 4,3,3,1,−2,−2

cF1 2,2,2,1,1,1 cI1 3,3,3,−1,−1,−1 cF11 2,2,2,1,−1,0 cI11 3,3,4,−2,2,−1

cF2 2,2,2,−1,−1,1 cI2 3,3,3,1,1,−1 cF12 2,2,2,1,0,−1 cI12 3,4,3,−2,−1,2

cF3 2,2,2,−1,1,−1 cI3 3,3,3,1,−1,1 cF13 2,2,2,0,1,−1 cI13 4,3,3,−1,−2,2

cF4 2,2,2,1,−1,−1 cI4 3,3,3,−1,1,1 cF14 2,2,2,−1,1,0 cI14 3,3,4,2,−2,−1

cF5 2,2,2,−1,−1,0 cI5 3,3,4,2,2,1 cF15 2,2,2,−1,0,1 cI15 3,4,3,2,−1,−2

cF6 2,2,2,−1,0,−1 cI6 3,4,3,2,1,2 cF16 2,2,2,0,−1,1 cI16 4,3,3,−1,2,−2

Metrics corresponding to lattice descriptions cI5–cI16 determine non-Buerger cells.

Table 1. Complete set M of metrical tensors of highest-symmetry lattices referred to semi-reduced bases [8].

Symmetry of hR and Pseudo-hR Lattices
http://dx.doi.org/10.5772/intechopen.72314

51



diffraction techniques as well as improvements in data analyzing procedures allow to con-
clude that some of the previously obtained results may be based on pseudo-symmetry rather 
than on true symmetry (typical dilemma: hR or mC?). Some new diffraction data suggest, 
for example, that generally accepted trigonal crystal structures α-Cr2O3, α-Fe2O3, and CaCO3 
show monoclinic distortions [3, 4]. In consequence, the importance of border problems has a 
growing-up tendency.

Classifications of unique lattice representatives obtained by the Niggli reduction or Delaunay 
reduction are commonly used techniques to assign the Bravais symmetry to a given lattice. 
Another approach, called the matrix method, directly derives isometric transformations from 
the lattices by B-matrices, which transform a lattice onto itself [1, 5, 6], or by the space distribu-
tion of orthogonalities [7], or by filtering predefined set V of 480 potential symmetry matrices 
[8, 9]. The latter technique is applicable to a wide class of semi-reduced lattice descriptions, 
additionally forced by a geometric interpretation of symmetry operations. The following 
advantages seem to be apparent: (i) the filtering process is extremely simple, (ii) semi-reduced 
lattices after a small deformation are generally still semi-reduced, (iii) symmetry axes and 
planes are automatically indexed, (iv) a lattice deformation, which retains the given symme-
try, is easily deduced. The property (iv) can be utilized as a ‘distortion index’, a new measure 
of the distance between symmetrical lattices. The aim of this chapter is to carefully look at 
the border problems frequently occurring in hR lattices (hR-cF, hR-cP, hR-cI, hR-mC), but in 
the less-known semi-reduced lattice representations. Two appended real-life examples explain 
deeper the proposed technique and its possibilities.

2. Semi-reduced lattice descriptions

The concept of a semi-reduced lattice description (s.r.d.) has been given elsewhere [9]. The 
emphasis on the crystallographic features of lattices was obtained by shifting the focus (i) from 
the analysis of a lattice metric to the analysis of symmetry matrices [6], (ii) from the geometric 
interpretation of isometric transformation based on invariant subspaces to the orthogonality 
concept [7] extended to splitting indices [8], (iii) and from predefined cell transformations 
to transformations derivable via geometric information [6, 7]. It was shown that both cor-
responding arithmetic and geometric holohedries share the space distribution of symmetry 
elements and thus simplify the crystallographic description of structural phase transitions, 
especially those observed with the use of powder diffraction. Moreover, the completeness of 
s.r.d. types revealed a combinatorial structure of V (see below).

The main result of introduced semi-reduced lattice representations consists in the extension 
of the famous characterization of Bravais lattices according to their metrical, algebraic, and 
geometric properties onto a wide class of primitive, less restrictive lattices (including Niggli-
reduced, Buerger-reduced, nearly Buerger-reduced, and a substantial part of Delaunay-
reduced). While the geometric operations in Bravais lattices map the basis vectors onto 
themselves, the arithmetic operators in s.r.d. transform the basis vectors into cell vectors (basis 
vectors, face or space diagonals) and are represented by matrices from the set V of 480 matri-
ces with the determinant 1 and elements {0, ±1} of the matrix powers. A lattice is in s.r.d. if the 

Symmetry (Group Theory) and Mathematical Treatment in Chemistry50

absolute values of off-diagonal elements in both metric tensors G and G−1 are smaller than the 
corresponding two diagonal elements sharing the same column and sharing the same row. 
The experimental s.r.d. metric G must be unchanged (with some relaxation) by the symmetry 
operation from V, thus by simple filtering:

   G   ′  =  V   T  GV, V ϵ V and  (a, b, c, α, β, γ) G~ G   ′   ( a   ′ ,  b   ′ ,  c   ′ ,  α   ′ ,  β   ′ ,  γ   ′ )   (1)

and the subsequent geometric interpretation of the filtered matrices leads to mathematically sta-
ble and rich information on the individual transformation bringing the lattice into coincidence 
with itself (known as an isometry or a symmetry operation) and deviations from the exact match:

  Δa / a % , Δb / b %, Δc / c %, Δ  α   ° , Δ  β   ° , Δ  γ   ° ,  δ   ° ,  (2)

where Δa/a% denotes (a’-a)/a·100[%], Δα° = α’-α[°] and δ° is Le Page parameter [7]. For exact iso-
metric transformation, all such discrepancy parameters should be zero (or very close to zero).

It is obvious that symmetry operations fulfill the closure, associative, identity, and inverse 
axioms and form a group: an arithmetic holohedry or in other words a lattice group. The set V 
of all possible transformations in s.r.d. is covered by the arithmetic holohedries of 39 highest 
symmetry lattices (Table 1).

In the s.r.d. approach, the primitive-to-Bravais transformations are not stored, but dynami-
cally constructed, based on the geometric interpretation of symmetry matrices. Unfortunately, 
the classical symbol of a point or space symmetry operation bears information on an opera-
tion type and a 1D subspace (or 2D in the case of symmetry planes) of points invariant under 
this operation [10], but the information on the complement orthogonal subspace, invariant 
as a whole, is lost. In the developed splitting or dual symbol introduced in [8], orientation of 

Lattice Metric Lattice Metric Lattice Metric Lattice Metric

hP1 2,2,1,0,0,−1 hP4 2,2,1,0,0,1 cF7 2,2,2,0,−1,−1 cI7 4,3,3,1,2,2

hP2 2,1,2,0,−1,0 hP5 2,1,2,0,1,0 cF8 2,2,2,1,1,0 cI8 3,3,4,−2,−2,1

hP3 1,2,2,−1,0,0 hP6 1,2,2,1,0,0 cF9 2,2,2,1,0,1 cI9 3,4,3,−2,1,−2

cP0 1,1,1,0,0,0 cF10 2,2,2,0,1,1 cI10 4,3,3,1,−2,−2

cF1 2,2,2,1,1,1 cI1 3,3,3,−1,−1,−1 cF11 2,2,2,1,−1,0 cI11 3,3,4,−2,2,−1

cF2 2,2,2,−1,−1,1 cI2 3,3,3,1,1,−1 cF12 2,2,2,1,0,−1 cI12 3,4,3,−2,−1,2

cF3 2,2,2,−1,1,−1 cI3 3,3,3,1,−1,1 cF13 2,2,2,0,1,−1 cI13 4,3,3,−1,−2,2

cF4 2,2,2,1,−1,−1 cI4 3,3,3,−1,1,1 cF14 2,2,2,−1,1,0 cI14 3,3,4,2,−2,−1

cF5 2,2,2,−1,−1,0 cI5 3,3,4,2,2,1 cF15 2,2,2,−1,0,1 cI15 3,4,3,2,−1,−2

cF6 2,2,2,−1,0,−1 cI6 3,4,3,2,1,2 cF16 2,2,2,0,−1,1 cI16 4,3,3,−1,2,−2

Metrics corresponding to lattice descriptions cI5–cI16 determine non-Buerger cells.

Table 1. Complete set M of metrical tensors of highest-symmetry lattices referred to semi-reduced bases [8].

Symmetry of hR and Pseudo-hR Lattices
http://dx.doi.org/10.5772/intechopen.72314

51



both subspaces is given by specifying direction [uvw] orthogonal to the family of planes (hkl). 
The centering in the [uvw] direction as well as the crystallographic orthogonality between a 
lattice direction and a lattice plane, hidden in the symmetry matrix, is enclosed in this new 
geometric symbol n+(−) [uvw](hkl). Some properties of [uvw](hkl) are mathematically obvious; 
splitting indices specify the same vector, or more strictly, a pair of parallel directions in direct 
and reciprocal spaces. Others, like calculations of the interplanar distance d(hkl), the distance 
between lattice points l[uvw], deriving Le Page angle δ [7] between [uvw] and (hkl), or even using 
indices to predict deformations, which retain a given cyclic group, need additionally G data. 
In a lattice given by G, the uniaxial deformation along symmetry [uvw] direction

   G   '  = G + ε 
(

 
hh

  
hk

  
hl

  kh  kk  kl  
lh

  
lk

  
ll

  
)

   (3)

modifies only 1D subspace and in consequence retains the symmetry axis in [uvw] direction 
and also axes orthogonal to this direction, if any. Other symmetries will be broken.

3. Rhombohedral lattices in s.r.d.

It is difficult to classify or compare lattices that drastically change their class-dependent descrip-
tions as a result of small deformations, structural phase transitions, or experimental errors. Such 
discontinuities in the Niggli-reduced space can be overcome by a deep mathematical treatment 
like in [11] or by applying a less restrictive method of Bravais cell assignment: Niggli reduction 
 Delaunay reduction  s.r.d. A wide class of lattices, including a trigonal and three cubic 
lattices, is considered here as ‘rhombohedral’ lattices. The actual form of a cell has no meaning, 
but a given lattice can be represented by a rhombohedron with equal sides a = b = c and angles 
α = β = γ. The symmetry does not depend on the scale, so we can assume that all sides are equal 
to 1 and thus the class is one-parametric with the rhombohedral angle α, 0° < α < 120°. Symmetry 
matrices of ‘rhombohedral’ lattices cover V nearly completely (excluding 6 hexagonal groups). 
As mentioned earlier, every symmetry matrix describes an isometric transformation of basis 
vectors into cell vectors. Neglecting the vector sense, there are 13 cell vectors grouped in the 
rhombohedral case into four triads <001>, <011>, <01–1>, <1–1-1 > of directions related by three-
fold axis along [111]. Triad <01–1 > corresponds to twofold axes. Moreover, lattice vector [111] is 
orthogonal to coplanar vectors <01–1>, which interaxial angle is 60°. Thus, symmetry matrices 
of hR lattice in the Bravais description (a = b = c, α = β = γ < 120°) are characterized by dual sym-
bols: 3+[111](111), 3⁻[111](111), 2[01–1](01–1), 2[1–10](1–10), 2[−101](−101) and this geometric 
property is exposed in the hexagonal description with c/a = l[111]/l<01–1>. Metrical relationships 
between lengths of cell vectors as functions of α are drawn in Figure 1.

The angle α = 90° and a cubic shape can be considered as the central point of the sketch. Both 
left and right parts separated by 90° are connected by the lattice inversion. Other characteristic 
points (i.e., intersection of curves) are collected in Table 2.

Information contained in both Figure 1 and Table 2 explains discontinuities in descrip 
tions of rhombohedral lattices. Descriptions of Niggli- or Buerger-reduced lattices must be 
changed during crossing characteristic angles 60° and 109.47°, since they are based on the shortest 
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non-coplanar lattice vectors. Similarly, Bravais descriptions should reflect the increased sym-
metry for these angles (directions <001> reveal extra twofold and threefold symmetry). In sharp 
contrast to the above lattice representations, no drastic changes is necessary in semi-reduced 
descriptions of rhombohedral lattices, without losing relation with Bravais standardization.

4. Distance to the higher symmetry border: ε concept

In crystallography, it is crucial to standardize lattice descriptions and to assign one from the 
fourteen 3D Bravais types differentiated by symmetry. The process is straightforward for 
good quality data and faraway from the Bravais borders but in opposite cases, especially in 

Figure 1. Lengths of cell vectors as a function of rhombohedral angle. Intersections of curves define characteristic points 
(e.g., higher symmetry lattices: cF, cP, and cI).

No. cos(α) α[°] Description

1 1 0 1D

2 1/2 60 cF

3 1/4 75.5225 c/a = √(3)

4 0 90 cP

5 −1/8 97.1808 c/a = √(3/3)

6 −1/4 104.4775 c/a = √(3/5)

7 −1/3 109.4712 cI

8 −1/2 120 2D

Lattice cP (point 4) maximally extended along [111] reduces 3D space to the 1D (point 1); maximal compression leads to 
2D space (point 8). Intermediate points (2, 7) correspond to centered lattices: cF, cI. Other intersections (points 5 and 6) 
have no influence on symmetry.

Table 2. Characteristic points (intersections of curves) in Figure 1.
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both subspaces is given by specifying direction [uvw] orthogonal to the family of planes (hkl). 
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property is exposed in the hexagonal description with c/a = l[111]/l<01–1>. Metrical relationships 
between lengths of cell vectors as functions of α are drawn in Figure 1.

The angle α = 90° and a cubic shape can be considered as the central point of the sketch. Both 
left and right parts separated by 90° are connected by the lattice inversion. Other characteristic 
points (i.e., intersection of curves) are collected in Table 2.

Information contained in both Figure 1 and Table 2 explains discontinuities in descrip 
tions of rhombohedral lattices. Descriptions of Niggli- or Buerger-reduced lattices must be 
changed during crossing characteristic angles 60° and 109.47°, since they are based on the shortest 

Symmetry (Group Theory) and Mathematical Treatment in Chemistry52
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the presence of unavoidable experimental errors, the solution cannot be unique. Usable dis-
tances should be defined to rank positive candidates. Most considerations about the calcula-
tion of such distances are devoted to the Niggli reduction, for example, see [11] and references 
contained therein; only some discuss the Buerger reduction [1, 7].

The geometric properties of matrices that transform an s.r.d. lattice into itself are utilized in the 
presented approach to the greatest degree, which form the geometric image of the filtered trans-
formation. Each isometric or pseudo-isometric action on the current lattice is estimated by three 
metrical and four angular parameters (2) and oriented in the lattice space by dual indices [uvw]
(hkl). Deviations are controlled by two thresholds: metrical tol1 and angular tol2. The maxdev (that 
is maximal value of all unsigned deviations for all isometric transformations grouped in the lattice 
symmetry) was selected as an introductory concept of similarity between the probe cell and a cell 
with given symmetry. For exact symmetry, maxdev should be zero (or very close to zero). In the 
vicinity of symmetry borders, high values of tol1 and tol2 (e.g., 5) reveal higher pseudo- (in another 
words ‘approximate’) symmetry—with greater maxdev values and standard group-subgroup 
relations (Table 3). For reasonable thresholds, the number of filtered matrices cannot exceed 24.

The filtering of symmetry matrices near cubic borders results in a rather big number (7 × 24)  
of quantitative data. As Table 3 shows, deviations are interrelated, not random. A maxi-
mal unsigned deviation well reflects this situation. Moreover, strict hR symmetry including  
2 isometries denoted geometrically as 3+(−)[−1–13](001) and pseudo-cF symmetry suggest that 
all deviations can be explained by a rhombohedral deformation. According to (3), the uniaxial 
deformation along direction [−1–13] orthogonal to planes (001) modifies metric G:

  G   ′  =   (   
2
  

1
  

1
  1  2  1  

1
  

1
  

2.1
  )    + ε  (   

0
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0
  

0
  

1
  )    .

It is clear from Table 1 that G’ with cF symmetry should be cF1 = (2, 2, 2, 1, 1, 1). The above 
symmetric matrix equation can be rewritten in a vector form:

(2, 2, 2, 1, 1, 1) = (2, 2, 2.1, 1, 1, 1) + ε(0, 0, 1, 0, 0, 0)

with the solution ε = −0.1. As a result, distance ε between hR and cF cells is −0.1. This new 
concept is more informative in comparison with maxdev parameter; the deformation type is 
explicitly given by ε·(hkl) and can be converted into Δd(hkl)/d(hkl), shortly Δd/d, and related with 
diffraction line shifts in XRD patterns. The ε distances depend not only on a rhombohedral 
angle but also on the lattice scale, and thus for practical purposes, the Δd/d distance is more 
appropriate, since it can be compared with experimental Δd/d resolution. The interplanar 
distance may be calculated from the following formula:

   d   (hkl)    = 1 /   [ (hkl)  · G ·   (hkl)    T )    1/2   (4)

The sign of ε or Δd is also important; it informs on which side of the higher symmetry border 
the analyzed lattice is located.

For rhombohedral lattices, two kinds of ε distances to the border (based on rhombohedral or 
monoclinic deformations) are generally analyzed. In more complicated cases, like cubic lattices 
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modified by simultaneous rhombohedral and tetragonal distortions, few ε distances can be 
derived. Calculations are also possible in the presence of experimental errors, if they are smaller 
than distortions.

The concept of a quantitative measure between the probe cell and cells with higher symmetry 
based on monoaxial deformations is thus outlined, but for practical applications this idea 
should be thoroughly investigated in s.r.d. This study provides analyses and two real-life 
examples limited to rhombohedral lattices.

Δa/a% Δb/b% Δc/c% Δα° Δβ° Δγ° δ° Operation

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1[]()

0.00 0.00 0.00 0.00 0.00 0.00 0.00 2[010](121)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 2[1–10](1–10)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 2[100](211)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 + [−1–13](001)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 3-[−1–13](001)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.95 2[01–1](01–1)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.95 2[001](112)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.95 2[−101](−1–1)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.95 2[−111](011)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.95 2[1–11](101)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.95 2[11–1](110)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.30 3 + [111](111)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.30 3-[111](111)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.30 3+ [3-1-1](100)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.30 3-[3-1-1](100)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.30 3 + [−13–1](010)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.30 3-[−13–1](010)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.95 4 + [−111](011)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.95 4-[−111](011)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.95 4 + (1–11](101)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.95 4-[1-11](101)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.95 4+ [11-1](110)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.95 4-[11-1](110)

Items with zero deviations define true hR symmetry (a,b,c = 1.41421, α,β,γ = 60.7941°) with maxdev = 0, while all 24 
operations correspond to pseudo-cF symmetry (a,b,c = 2.025, α,β,γ = 91.3976°) with maxdev = 2.47.

Table 3. Geometric images (7 discrepancy parameters + geometric description) of filtered matrices for the lattice 
G = (2, 2, 2.1, 1, 1, 1) and illustration of maxdev distances.
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the presence of unavoidable experimental errors, the solution cannot be unique. Usable dis-
tances should be defined to rank positive candidates. Most considerations about the calcula-
tion of such distances are devoted to the Niggli reduction, for example, see [11] and references 
contained therein; only some discuss the Buerger reduction [1, 7].

The geometric properties of matrices that transform an s.r.d. lattice into itself are utilized in the 
presented approach to the greatest degree, which form the geometric image of the filtered trans-
formation. Each isometric or pseudo-isometric action on the current lattice is estimated by three 
metrical and four angular parameters (2) and oriented in the lattice space by dual indices [uvw]
(hkl). Deviations are controlled by two thresholds: metrical tol1 and angular tol2. The maxdev (that 
is maximal value of all unsigned deviations for all isometric transformations grouped in the lattice 
symmetry) was selected as an introductory concept of similarity between the probe cell and a cell 
with given symmetry. For exact symmetry, maxdev should be zero (or very close to zero). In the 
vicinity of symmetry borders, high values of tol1 and tol2 (e.g., 5) reveal higher pseudo- (in another 
words ‘approximate’) symmetry—with greater maxdev values and standard group-subgroup 
relations (Table 3). For reasonable thresholds, the number of filtered matrices cannot exceed 24.

The filtering of symmetry matrices near cubic borders results in a rather big number (7 × 24)  
of quantitative data. As Table 3 shows, deviations are interrelated, not random. A maxi-
mal unsigned deviation well reflects this situation. Moreover, strict hR symmetry including  
2 isometries denoted geometrically as 3+(−)[−1–13](001) and pseudo-cF symmetry suggest that 
all deviations can be explained by a rhombohedral deformation. According to (3), the uniaxial 
deformation along direction [−1–13] orthogonal to planes (001) modifies metric G:
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It is clear from Table 1 that G’ with cF symmetry should be cF1 = (2, 2, 2, 1, 1, 1). The above 
symmetric matrix equation can be rewritten in a vector form:

(2, 2, 2, 1, 1, 1) = (2, 2, 2.1, 1, 1, 1) + ε(0, 0, 1, 0, 0, 0)

with the solution ε = −0.1. As a result, distance ε between hR and cF cells is −0.1. This new 
concept is more informative in comparison with maxdev parameter; the deformation type is 
explicitly given by ε·(hkl) and can be converted into Δd(hkl)/d(hkl), shortly Δd/d, and related with 
diffraction line shifts in XRD patterns. The ε distances depend not only on a rhombohedral 
angle but also on the lattice scale, and thus for practical purposes, the Δd/d distance is more 
appropriate, since it can be compared with experimental Δd/d resolution. The interplanar 
distance may be calculated from the following formula:

   d   (hkl)    = 1 /   [ (hkl)  · G ·   (hkl)    T )    1/2   (4)

The sign of ε or Δd is also important; it informs on which side of the higher symmetry border 
the analyzed lattice is located.

For rhombohedral lattices, two kinds of ε distances to the border (based on rhombohedral or 
monoclinic deformations) are generally analyzed. In more complicated cases, like cubic lattices 
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modified by simultaneous rhombohedral and tetragonal distortions, few ε distances can be 
derived. Calculations are also possible in the presence of experimental errors, if they are smaller 
than distortions.

The concept of a quantitative measure between the probe cell and cells with higher symmetry 
based on monoaxial deformations is thus outlined, but for practical applications this idea 
should be thoroughly investigated in s.r.d. This study provides analyses and two real-life 
examples limited to rhombohedral lattices.

Δa/a% Δb/b% Δc/c% Δα° Δβ° Δγ° δ° Operation
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 2[1–10](1–10)
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0.00 2.47 −2.41 0.00 −0.79 0.79 1.95 2[01–1](01–1)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.95 2[001](112)
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0.00 2.47 −2.41 0.00 −0.79 0.79 1.95 2[−111](011)
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Items with zero deviations define true hR symmetry (a,b,c = 1.41421, α,β,γ = 60.7941°) with maxdev = 0, while all 24 
operations correspond to pseudo-cF symmetry (a,b,c = 2.025, α,β,γ = 91.3976°) with maxdev = 2.47.

Table 3. Geometric images (7 discrepancy parameters + geometric description) of filtered matrices for the lattice 
G = (2, 2, 2.1, 1, 1, 1) and illustration of maxdev distances.
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5. Distances between hR and cubic lattices

In the case being considered, the semi-reduced hR lattice should be viewed as a rhombohe-
drally distorted cF, cI, or cP pseudo-lattice with exact hR symmetry. It is also assumed that 
every equivalent description is equally distanced from a cubic lattice, and thus only one rep-
resentation of a lattice is necessary to properly derive such distance. This assumption validity 
may be carefully checked by creating all semi-reduced variants of hR lattices in the neighbor-
hood of cubic lattices.

5.1. hR-cF border

Let us have hR lattice in a standard description (a,b,c = 1,449,138; α,β,γ = 58,41,186°). It is obvi-
ously relatively close to cF lattice. The analysis of pseudo-symmetry outlined in Section 4 reveals 
that the distance ε to the higher symmetry is equal to −0.1. An opposite deformation of 16 cF 
descriptions in Table 1 according to 4 threefold axes allows to generate all 64 semi-reduced hR 
variants of the given lattice and thus relations in Table 4 ‘hR metric’ + ‘deformation’ = cF are 
obvious. But, as verified by computer tests, the same deformations can be extracted also from 
the geometric images of pseudo-symmetry without any relation to the predefined cF metrics.

The interpretation of 4 × 16 items in Table 4 is very easy due to the fact that Miller indices of 
planes perpendicular to the unique threefold axis are given explicitly in the deformation sym-
bols. In the considered situation, the operation on G vectors is as follows: GcF = GhR - 0.1·(hh, kk, 
ll, kl, hl, hk). For example, the last three items give:

(2.1, 2, 2.1, 0, −1.1, 1) - 0.1·(−1·-1, 0·0, 1·1, 1·0, 1·-1, −1·0) = (2, 2, 2, 0, −1, 1)

(2, 2.1, 2, 0. -1, 1) - 0.1·(0·0, 1·1, 0·0, 0·1, 0·0, 0·1) = (2, 2, 2, 0, −1, 1)

(2, 2, 2.1, 0, −1, 1) - 0.1·(0·0, 0·0, 1·1, 1·0, 1·0, 0·1) = (2, 2, 2, 0, −1, 1)

Assigning the symmetry group to the final G metric or comparing it with Table 1 reveals cF sym-
metry in cF16 description. In consequence, distance ε from hR(a,b,c = 1.449138; α,β,γ = 58.41186°) 
to cF(a,b,c = 2; α,β,γ = 90°) is equal to −0.1 and does not depend on the actual description. The 
original d spacing along threefold axis is changed from 1.1972 (hR lattice) to 1.1577 (cF lattice) 
and Δd/d = −0.0355. Such values characterize not only each item in Table 4 but also all hR lattices 
with rhombohedral angle 58.41186°. Since ε corresponds with the rational part of G components 
in Table 4, similar tables of equivalent descriptions of hR (other ε) can be simply constructed. 
For example, the modification of rational parts from 0.1 to −0.01 will result in obtaining new 
hR lattice (a,b,c = 1.410674; α,β,γ = 60.1661°) with a shorter ε distance to cF border equal to 0.01.

5.2. hR-cI border

The hR lattice close to cI border seems to be less populated. The metrical relationships between 
the length of cell vectors look more complicated in comparison with cF neighborhood (Figure 1), 
but the analysis of pseudo-symmetries is similar. The same distance ε = −0.1 gives hR lattice with 
the rhombohedral angle 106.8773°. All semi-reduced descriptions together with deformations 
needed in order to obtain higher cI symmetry are compiled in Table 5.
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hR metric deformation hR metric deformation

2.1 2.1 2.1 1.1 1.1 1.1 −0.1·(111) 2.1 2.1 2 1 0 1.1 −0.1·(110)

2 2 2.1 1 1 1 −0.1·(001) 2 2.1 2.1 1.1 0 1 −0.1·(011)

2 2.1 2 1 1 1 −0.1·(010) 2 2 2.1 1 0 1 −0.1·(001)

2.1 2 2 1 1 1 −0.1·(100) 2.1 2 2 1 0 1 −0.1·(100)

2.1 2.1 2.1 −1 −1 1.1 −0.1·(−1–11) 2.1 2.1 2 0 1 1.1 −0.1·(110)

2 2 2.1 −1 −1 1 −0.1·(001) 2.1 2 2.1 0 1.1 1 −0.1·(101)

2 2.1 2 −1 −1 1 −0.1·(010) 2 2.1 2 0 1 1 −0.1·(010)

2.1 2 2 −1 −1 1 −0.1·(100) 2 2 2.1 0 1 1 −0.1·(001)

2.1 2.1 2.1 −1 1.1 −1 −0.1·(1–1 − 1) 2 2.1 2.1 1.1 -1 0 −0.1·(011)

2 2 2.1 −1 1 −1 −0.1·(001) 2.1 2 2.1 1 −1.1 0 −0.1·(−101)

2 2.1 2 −1 1 −1 −0.1·(010) 2 2.1 2 1 −1 0 −0.1·(010)

2.1 2 2 −1 1 −1 −0.1·(100) 2.1 2 2 1 −1 0 −0.1·(100)

2.1 2.1 2.1 1.1 −1 −1 −0.1·(−11–1) 2 2.1 2.1 1.1 0 −1 −0.1·(011)

2 2 2.1 1 −1 −1 −0.1·(001) 2.1 2.1 2 1 0 −1.1 −0.1·(1–10)

2 2.1 2 1 −1 −1 −0.1·(100) 2.1 2 2 1 0 −1 −0.1·(100)

2.1 2 2 1 −1 −1 −0.1·(010) 2 2 2.1 1 0 −1 −0.1·(001)

2 2.1 2.1 −1 −1 0 −0.1·(01–1) 2.1 2 2.1 0 1.1 −1 −0.1·(101)

2.1 2 2.1 −1 −1 0 −0.1·(−101) 2.1 2.1 2 0 1 −1.1 −0.1·(1–10)

2 2.1 2 −1 −1 0 −0.1·(010) 2 2.1 2 0 1 −1 −0.1·(010)

2.1 2 2 −1 −1 0 −0.1·(100) 2 2 2.1 0 1 −1 −0.1·(001)

2 2.1 2.1 −1 0 −1 −0.1·(01–1) 2.1 2 2.1 −1 1.1 0 −0.1·(101)

2.1 2.1 2 −1 0 −1 −0.1·(1–10) 2 2.1 2.1 −1.1 1 0 −0.1·(01–1)

2.1 2 2 −1 0 −1 −0.1·(001) 2 2.1 2 −1 1 0 −0.1·(010)

2 2 2.1 −1 0 −1 −0.1·(100) 2.1 2 2 −1 1 0 −0.1·(100)

2.1 2.1 2 0 −1 −1 −0.1·(1–10) 2.1 2.1 2 −1 0 1.1 −0.1·(110)

2.1 2 2.1 0 −1 −1 −0.1·(−101) 2 2.1 2.1 −1.1 0 1 −0.1·(01–1)

2 2.1 2 0 −1 −1 −0.1·(010) 2.1 2 2 −1 0 1 −0.1·(100)

2 2 2.1 0 −1 −1 −0.1·(001) 2 2 2.1 −1 0 1 −0.1·(001)

2 2.1 2.1 1.1 1 0 −0.1·(011) 2.1 2.1 2 0 −1 1.1 −0.1·(110)

2.1 2 2.1 1 1.1 0 −0.1·(101) 2.1 2 2.1 0 −1.1 1 −0.1·(−101)

2.1 2 2 1 1 0 −0.1·(100) 2 2.1 2 0 −1 1 −0.1·(010)

2 2.1 2 1 1 0 −0.1·(010) 2 2 2.1 0 −1 1 −0.1·(001)

The illustration of hR lattice is represented by semi-reduced descriptions. Every four descriptions are close to one of the 
cF lattice variants given in Table 1, what is easily seen by rejecting a rational part in metric elements. The distance to the 
border hR – cF is −0.1, or −0.035514356 given in Δd/d units, where d is an interplanar distance between a family of planes 
perpendicular to the threefold axis.

Table 4. Sixty-four semi-reduced descriptions of the same hR lattice (a,b,c = 1,449,138; α,β,γ = 58,41,186°) and its 
rhombohedral deformations to the cF lattice (a,b,c = 2; α,β,γ = 90°).
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5. Distances between hR and cubic lattices

In the case being considered, the semi-reduced hR lattice should be viewed as a rhombohe-
drally distorted cF, cI, or cP pseudo-lattice with exact hR symmetry. It is also assumed that 
every equivalent description is equally distanced from a cubic lattice, and thus only one rep-
resentation of a lattice is necessary to properly derive such distance. This assumption validity 
may be carefully checked by creating all semi-reduced variants of hR lattices in the neighbor-
hood of cubic lattices.

5.1. hR-cF border

Let us have hR lattice in a standard description (a,b,c = 1,449,138; α,β,γ = 58,41,186°). It is obvi-
ously relatively close to cF lattice. The analysis of pseudo-symmetry outlined in Section 4 reveals 
that the distance ε to the higher symmetry is equal to −0.1. An opposite deformation of 16 cF 
descriptions in Table 1 according to 4 threefold axes allows to generate all 64 semi-reduced hR 
variants of the given lattice and thus relations in Table 4 ‘hR metric’ + ‘deformation’ = cF are 
obvious. But, as verified by computer tests, the same deformations can be extracted also from 
the geometric images of pseudo-symmetry without any relation to the predefined cF metrics.

The interpretation of 4 × 16 items in Table 4 is very easy due to the fact that Miller indices of 
planes perpendicular to the unique threefold axis are given explicitly in the deformation sym-
bols. In the considered situation, the operation on G vectors is as follows: GcF = GhR - 0.1·(hh, kk, 
ll, kl, hl, hk). For example, the last three items give:

(2.1, 2, 2.1, 0, −1.1, 1) - 0.1·(−1·-1, 0·0, 1·1, 1·0, 1·-1, −1·0) = (2, 2, 2, 0, −1, 1)

(2, 2.1, 2, 0. -1, 1) - 0.1·(0·0, 1·1, 0·0, 0·1, 0·0, 0·1) = (2, 2, 2, 0, −1, 1)

(2, 2, 2.1, 0, −1, 1) - 0.1·(0·0, 0·0, 1·1, 1·0, 1·0, 0·1) = (2, 2, 2, 0, −1, 1)

Assigning the symmetry group to the final G metric or comparing it with Table 1 reveals cF sym-
metry in cF16 description. In consequence, distance ε from hR(a,b,c = 1.449138; α,β,γ = 58.41186°) 
to cF(a,b,c = 2; α,β,γ = 90°) is equal to −0.1 and does not depend on the actual description. The 
original d spacing along threefold axis is changed from 1.1972 (hR lattice) to 1.1577 (cF lattice) 
and Δd/d = −0.0355. Such values characterize not only each item in Table 4 but also all hR lattices 
with rhombohedral angle 58.41186°. Since ε corresponds with the rational part of G components 
in Table 4, similar tables of equivalent descriptions of hR (other ε) can be simply constructed. 
For example, the modification of rational parts from 0.1 to −0.01 will result in obtaining new 
hR lattice (a,b,c = 1.410674; α,β,γ = 60.1661°) with a shorter ε distance to cF border equal to 0.01.

5.2. hR-cI border

The hR lattice close to cI border seems to be less populated. The metrical relationships between 
the length of cell vectors look more complicated in comparison with cF neighborhood (Figure 1), 
but the analysis of pseudo-symmetries is similar. The same distance ε = −0.1 gives hR lattice with 
the rhombohedral angle 106.8773°. All semi-reduced descriptions together with deformations 
needed in order to obtain higher cI symmetry are compiled in Table 5.
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hR metric deformation hR metric deformation

2.1 2.1 2.1 1.1 1.1 1.1 −0.1·(111) 2.1 2.1 2 1 0 1.1 −0.1·(110)

2 2 2.1 1 1 1 −0.1·(001) 2 2.1 2.1 1.1 0 1 −0.1·(011)

2 2.1 2 1 1 1 −0.1·(010) 2 2 2.1 1 0 1 −0.1·(001)

2.1 2 2 1 1 1 −0.1·(100) 2.1 2 2 1 0 1 −0.1·(100)

2.1 2.1 2.1 −1 −1 1.1 −0.1·(−1–11) 2.1 2.1 2 0 1 1.1 −0.1·(110)

2 2 2.1 −1 −1 1 −0.1·(001) 2.1 2 2.1 0 1.1 1 −0.1·(101)

2 2.1 2 −1 −1 1 −0.1·(010) 2 2.1 2 0 1 1 −0.1·(010)

2.1 2 2 −1 −1 1 −0.1·(100) 2 2 2.1 0 1 1 −0.1·(001)

2.1 2.1 2.1 −1 1.1 −1 −0.1·(1–1 − 1) 2 2.1 2.1 1.1 -1 0 −0.1·(011)

2 2 2.1 −1 1 −1 −0.1·(001) 2.1 2 2.1 1 −1.1 0 −0.1·(−101)

2 2.1 2 −1 1 −1 −0.1·(010) 2 2.1 2 1 −1 0 −0.1·(010)

2.1 2 2 −1 1 −1 −0.1·(100) 2.1 2 2 1 −1 0 −0.1·(100)

2.1 2.1 2.1 1.1 −1 −1 −0.1·(−11–1) 2 2.1 2.1 1.1 0 −1 −0.1·(011)

2 2 2.1 1 −1 −1 −0.1·(001) 2.1 2.1 2 1 0 −1.1 −0.1·(1–10)

2 2.1 2 1 −1 −1 −0.1·(100) 2.1 2 2 1 0 −1 −0.1·(100)

2.1 2 2 1 −1 −1 −0.1·(010) 2 2 2.1 1 0 −1 −0.1·(001)

2 2.1 2.1 −1 −1 0 −0.1·(01–1) 2.1 2 2.1 0 1.1 −1 −0.1·(101)

2.1 2 2.1 −1 −1 0 −0.1·(−101) 2.1 2.1 2 0 1 −1.1 −0.1·(1–10)

2 2.1 2 −1 −1 0 −0.1·(010) 2 2.1 2 0 1 −1 −0.1·(010)

2.1 2 2 −1 −1 0 −0.1·(100) 2 2 2.1 0 1 −1 −0.1·(001)

2 2.1 2.1 −1 0 −1 −0.1·(01–1) 2.1 2 2.1 −1 1.1 0 −0.1·(101)

2.1 2.1 2 −1 0 −1 −0.1·(1–10) 2 2.1 2.1 −1.1 1 0 −0.1·(01–1)

2.1 2 2 −1 0 −1 −0.1·(001) 2 2.1 2 −1 1 0 −0.1·(010)

2 2 2.1 −1 0 −1 −0.1·(100) 2.1 2 2 −1 1 0 −0.1·(100)

2.1 2.1 2 0 −1 −1 −0.1·(1–10) 2.1 2.1 2 −1 0 1.1 −0.1·(110)

2.1 2 2.1 0 −1 −1 −0.1·(−101) 2 2.1 2.1 −1.1 0 1 −0.1·(01–1)

2 2.1 2 0 −1 −1 −0.1·(010) 2.1 2 2 −1 0 1 −0.1·(100)

2 2 2.1 0 −1 −1 −0.1·(001) 2 2 2.1 −1 0 1 −0.1·(001)

2 2.1 2.1 1.1 1 0 −0.1·(011) 2.1 2.1 2 0 −1 1.1 −0.1·(110)

2.1 2 2.1 1 1.1 0 −0.1·(101) 2.1 2 2.1 0 −1.1 1 −0.1·(−101)

2.1 2 2 1 1 0 −0.1·(100) 2 2.1 2 0 −1 1 −0.1·(010)

2 2.1 2 1 1 0 −0.1·(010) 2 2 2.1 0 −1 1 −0.1·(001)

The illustration of hR lattice is represented by semi-reduced descriptions. Every four descriptions are close to one of the 
cF lattice variants given in Table 1, what is easily seen by rejecting a rational part in metric elements. The distance to the 
border hR – cF is −0.1, or −0.035514356 given in Δd/d units, where d is an interplanar distance between a family of planes 
perpendicular to the threefold axis.

Table 4. Sixty-four semi-reduced descriptions of the same hR lattice (a,b,c = 1,449,138; α,β,γ = 58,41,186°) and its 
rhombohedral deformations to the cF lattice (a,b,c = 2; α,β,γ = 90°).
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The last three lines give:

(4.4, 3.9, 3.1, −1.3, 2.2, −2.6) − 0.1·(−2·−2, 3·3, −1·−1, −1·3, −1·−2, −2·3) = (4, 3, 3, −1, 2, −2)
(4.4, 3.1, 3.1, −0.9, 1.8, −2.2) − 0.1·(−2·−2, 1·1, 1·1, 1·1, 1·−2, −2·1) = (4, 3, 3, −1, 2, −2)
(4.4, 3.1, 3.1, −0.9, 2.2, −1.8) − 0.1·(2·2, 1·1, 1·1, 1·1, 1·2, 2·1) = (4, 3, 3, −1, 2, −2)

hR metric deformation hR metric deformation

3.1 3.1 3.1 −1 −1 −1 −0.1·(111) 3.1 4.4 3.9 −2.6 1.3 −2.2 −0.1·(1–23)

3.1 3.9 3.1 −1 −1 −1 −0.1·(−13–1) 3.1 4.4 3.1 −1.8 0.9 −2.2 −0.1·(−121)

3.1 3.1 3.9 −1 −1 −1 −0.1·(−1–13) 3.1 4.4 3.1 −2.2 0.9 −1.8 −0.1·(12–1)

3.9 3.1 3.1 −1 −1 −1 −0.1·(3–1-1) 3.9 4.4 3.1 −2.2 1.3 −2.6 −0.1·(3–21)

3.1 3.1 3.1 0.9 0.9 −1 −0.1·(−1–11) 4.4 3.9 3.1 1.3 −2.2 −2.6 −0.1·(−231)

3.1 3.1 3.9 1.3 1.3 −1 −0.1·(113) 4.4 3.1 3.9 1.3 −2.6 −2.2 −0.1·(−213)

3.1 3.9 3.1 1.3 0.9 −1 −0.1·(−131) 4.4 3.1 3.1 0.9 −2.2 −1.8 −0.1·(21–1)

3.9 3.1 3.1 0.9 1.3 −1 −0.1·(3–11) 4.4 3.1 3.1 0.9 −1.8 −2.2 −0.1·(2–11)

3.1 3.1 3.1 0.9 −1 0.9 −0.1·(−11–1) 3.1 3.1 4.4 −1.8 2.2 −0.9 −0.1·(112)

3.1 3.1 3.9 1.3 −1 0.9 −0.1·(−113) 3.1 3.1 4.4 −2.2 1.8 −0.9 −0.1·(−1–12)

3.1 3.9 3.1 1.3 −1 1.3 −0.1·(131) 3.1 3.9 4.4 −2.6 2.2 −1.3 −0.1·(−13–2)

3.9 3.1 3.1 0.9 −1 1.3 −0.1·(31–1) 3.9 3.1 4.4 −2.2 2.6 −1.3 −0.1·(3–12)

3.1 3.1 3.1 −1 0.9 0.9 −0.1·(1–1-1) 3.1 4.4 3.9 −2.6 −1.3 2.2 −0.1·(−1–23)

3.1 3.1 3.9 −1 1.3 0.9 −0.1·(1–13) 3.1 4.4 3.1 −1.8 −0.9 2.2 −0.1·(121)

3.1 3.9 3.1 −1 0.9 1.3 −0.1·(13–1) 3.1 4.4 3.1 −2.2 −0.9 1.8 −0.1·(1–21)

3.9 3.1 3.1 −1 1.3 1.3 −0.1·(311) 3.9 4.4 3.1 −2.2 −1.3 2.6 −0.1·(32–1)

3.1 3.1 4.4 2.2 1.8 0.9 −0.1·(−112) 4.4 3.1 3.9 −1.3 −2.6 2.2 −0.1·(−2–13)

3.1 3.9 4.4 2.6 2.2 1.3 −0.1·(132) 4.4 3.9 3.1 −1.3 −2.2 2.6 −0.1·(23–1)

3.1 3.1 4.4 1.8 2.2 0.9 −0.1·(−11–2) 4.4 3.1 3.1 −0.9 −1.8 2.2 −0.1·(211)

3.9 3.1 4.4 2.2 2.6 1.3 −0.1·(312) 4.4 3.1 3.1 −0.9 −2.2 1.8 −0.1·(2–1-1)

3.1 4.4 3.9 2.6 1.3 2.2 −0.1·(123) 3.1 3.9 4.4 2.6 −2.2 −1.3 −0.1·(−132)

3.1 4.4 3.1 2.2 0.9 1.8 −0.1·(1–2-1) 3.1 3.1 4.4 1.8 −2.2 −0.9 −0.1·(11–2)

3.1 4.4 3.1 1.8 0.9 2.2 −0.1·(12–1) 3.1 3.1 4.4 2.2 −1.8 −0.9 −0.1·(112)

3.9 4.4 3.1 2.2 1.3 2.6 −0.1·(321) 3.9 3.1 4.4 2.2 −2.6 −1.3 −0.1·(3–1-2)

4.4 3.1 3.9 1.3 2.6 2.2 −0.1·(213) 3.1 4.4 3.1 1.8 −0.9 −2.2 −0.1·(−12–1)

4.4 3.1 3.1 0.9 2.2 1.8 −0.1·(2–11) 3.1 4.4 3.9 2.6 −1.3 −2.2 −0.1·(−123)

4.4 3.1 3.1 0.9 1.8 2.2 −0.1·(−2–11) 3.1 4.4 3.1 2.2 −0.9 −1.8 −0.1·(121)

4.4 3.9 3.1 1.3 2.2 2.6 −0.1·(231) 3.9 4.4 3.1 2.2 −1.3 −2.6 −0.1·(3–2-1)

3.1 3.1 4.4 −2 −2 0.9 −0.1·(−112) 4.4 3.1 3.9 −1.3 2.6 −2.2 −0.1·(2–13)

3.1 3.9 4.4 −3 −2 1.3 −0.1·(13–2) 4.4 3.9 3.1 −1.3 2.2 −2.6 −0.1·(−23–1)

3.1 3.1 4.4 −2 −2 0.9 −0.1·(−112) 4.4 3.1 3.1 −0.9 1.8 −2.2 −0.1·(−211)

3.9 3.1 4.4 −2 −3 1.3 −0.1·(31–2) 4.4 3.1 3.1 −0.9 2.2 −1.8 −0.1·(211)

The illustration of hR lattice is represented by semi-reduced descriptions. The distance to the border hR – cI is −0.1, which 
corresponds to −0.123 given in Δd/d units.

Table 5. Sixty-four semi-reduced descriptions of hR lattice (a,b,c = 1.7607; α,β,γ = 106.8773°) and its deformations to the 
cI lattice (a,b,c = 2; α,β,γ = 90°).
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The assigning of a symmetry group to a modified metric or comparing it with Table 1 reveals 
cI symmetry in cI16 description. As a result, the distance from hR lattice (a,b,c = 1.760682; 
α,β,γ = 106.8773°) to cI lattice (a,b,c = 2; α,β,γ = 90°) is equal to −0.1 (Δd/d = −0.123) and as 
expected does not depend on the selected description. Theoretical descriptions of other hR lat-
tices may be easily obtained: for example, by lowering ε 10 times (4, 3, 3, −1, 2, −2) + 0.01·(2·2, 
1·1, 1·1, 1·1, 1·2, 2·1) = (4.04, 3.01, 3.01, −0.99, 2.02; −1.98), which corresponds to the Bravais 
description: (a,b,c = 1.734935; α,β,γ = 109.2022°), ε = −0.01 and Δd/d = −0.01467.

The presence of random errors complicates the derivation of ε and Δd/d. If G approximately 
describes hR lattice, the distances to the borders will be also approximate. Assuming that 
G = (4.41, 3.08, 3.12, −0.98, 2.23, −1.9) a threefold pseudo-symmetry axis can be found parallel 
to the [110] direction, which is nearly orthogonal to (211) planes. Least squares “best solution” 
of following equation

(4.41, 3.08, 3.12, −0,98, 2,23, −1.9) + ε·(2·2, 1·1, 1·1, 1·1, 1·2, 2·1) = (4, 3, 3, −1, 2, −2)

gives ε = −0,093, which can be considered as a rather interesting result.

5.3. hR-cP border

To all cells contained in Tables 4, 5 exact hR and approximate cF or cI symmetries are easily 
assigned by filtering V set only. No additional process of cell manipulation is necessary. But 
it is not true near hR – cP border: the exact hR symmetry can be recognized, but pseudo cP 
symmetry generally not. This discontinuity on the hR– cP border is caused by the fact that 
there is a unique semi-reduced description of cP lattice, namely, cP0 (metric = 1,1,1,0,0,0). Any 
additional description of this lattice is not semi-reduced and its symmetry group contains 
symmetry matrices outside the considered V set. We are interested in finding such descrip-
tions, which contain at least one hR subgroup in V. The problem, attacked from the cF and cI 
sides, leads to results included in Table 6.

Symbol cP metric Symbol cP metric

cP1 1 1 2 −1 0 0 cP49 1 1 2 −1 0 0

cP2 1 1 2 0 −1 0 cP50 1 1 2 0 −1 0

cP3 1 1 2 0 1 0 cP51 1 1 2 0 1 0

cP4 1 1 2 1 0 0 cP52 1 1 2 1 0 0

cP5 1 2 1 −1 0 0 cP53 1 2 1 −1 0 0

cP6 1 2 1 1 0 0 cP54 1 2 1 0 0 −1

cP7 1 2 1 0 0 −1 cP55 1 2 1 0 0 1

cP8 1 2 1 0 0 1 cP56 1 2 1 1 0 0

cP9 2 1 1 0 1 0 cP57 2 1 1 0 −1 0

cP10 2 1 1 0 0 1 cP58 2 1 1 0 0 −1

cP11 2 1 1 0 0 −1 cP59 2 1 1 0 0 1

cP12 2 1 1 0 −1 0 cP60 2 1 1 0 1 0

cP13 1 2 2 1 1 1 cP61 1 1 3 −1 −1 0

cP14 1 2 2 −1 −1 1 cP62 1 1 3 −1 1 0

cP15 1 2 2 −1 1 −1 cP63 1 1 3 1 −1 0
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The last three lines give:

(4.4, 3.9, 3.1, −1.3, 2.2, −2.6) − 0.1·(−2·−2, 3·3, −1·−1, −1·3, −1·−2, −2·3) = (4, 3, 3, −1, 2, −2)
(4.4, 3.1, 3.1, −0.9, 1.8, −2.2) − 0.1·(−2·−2, 1·1, 1·1, 1·1, 1·−2, −2·1) = (4, 3, 3, −1, 2, −2)
(4.4, 3.1, 3.1, −0.9, 2.2, −1.8) − 0.1·(2·2, 1·1, 1·1, 1·1, 1·2, 2·1) = (4, 3, 3, −1, 2, −2)

hR metric deformation hR metric deformation

3.1 3.1 3.1 −1 −1 −1 −0.1·(111) 3.1 4.4 3.9 −2.6 1.3 −2.2 −0.1·(1–23)

3.1 3.9 3.1 −1 −1 −1 −0.1·(−13–1) 3.1 4.4 3.1 −1.8 0.9 −2.2 −0.1·(−121)

3.1 3.1 3.9 −1 −1 −1 −0.1·(−1–13) 3.1 4.4 3.1 −2.2 0.9 −1.8 −0.1·(12–1)

3.9 3.1 3.1 −1 −1 −1 −0.1·(3–1-1) 3.9 4.4 3.1 −2.2 1.3 −2.6 −0.1·(3–21)

3.1 3.1 3.1 0.9 0.9 −1 −0.1·(−1–11) 4.4 3.9 3.1 1.3 −2.2 −2.6 −0.1·(−231)

3.1 3.1 3.9 1.3 1.3 −1 −0.1·(113) 4.4 3.1 3.9 1.3 −2.6 −2.2 −0.1·(−213)

3.1 3.9 3.1 1.3 0.9 −1 −0.1·(−131) 4.4 3.1 3.1 0.9 −2.2 −1.8 −0.1·(21–1)

3.9 3.1 3.1 0.9 1.3 −1 −0.1·(3–11) 4.4 3.1 3.1 0.9 −1.8 −2.2 −0.1·(2–11)

3.1 3.1 3.1 0.9 −1 0.9 −0.1·(−11–1) 3.1 3.1 4.4 −1.8 2.2 −0.9 −0.1·(112)

3.1 3.1 3.9 1.3 −1 0.9 −0.1·(−113) 3.1 3.1 4.4 −2.2 1.8 −0.9 −0.1·(−1–12)

3.1 3.9 3.1 1.3 −1 1.3 −0.1·(131) 3.1 3.9 4.4 −2.6 2.2 −1.3 −0.1·(−13–2)

3.9 3.1 3.1 0.9 −1 1.3 −0.1·(31–1) 3.9 3.1 4.4 −2.2 2.6 −1.3 −0.1·(3–12)

3.1 3.1 3.1 −1 0.9 0.9 −0.1·(1–1-1) 3.1 4.4 3.9 −2.6 −1.3 2.2 −0.1·(−1–23)

3.1 3.1 3.9 −1 1.3 0.9 −0.1·(1–13) 3.1 4.4 3.1 −1.8 −0.9 2.2 −0.1·(121)

3.1 3.9 3.1 −1 0.9 1.3 −0.1·(13–1) 3.1 4.4 3.1 −2.2 −0.9 1.8 −0.1·(1–21)

3.9 3.1 3.1 −1 1.3 1.3 −0.1·(311) 3.9 4.4 3.1 −2.2 −1.3 2.6 −0.1·(32–1)

3.1 3.1 4.4 2.2 1.8 0.9 −0.1·(−112) 4.4 3.1 3.9 −1.3 −2.6 2.2 −0.1·(−2–13)

3.1 3.9 4.4 2.6 2.2 1.3 −0.1·(132) 4.4 3.9 3.1 −1.3 −2.2 2.6 −0.1·(23–1)

3.1 3.1 4.4 1.8 2.2 0.9 −0.1·(−11–2) 4.4 3.1 3.1 −0.9 −1.8 2.2 −0.1·(211)

3.9 3.1 4.4 2.2 2.6 1.3 −0.1·(312) 4.4 3.1 3.1 −0.9 −2.2 1.8 −0.1·(2–1-1)

3.1 4.4 3.9 2.6 1.3 2.2 −0.1·(123) 3.1 3.9 4.4 2.6 −2.2 −1.3 −0.1·(−132)

3.1 4.4 3.1 2.2 0.9 1.8 −0.1·(1–2-1) 3.1 3.1 4.4 1.8 −2.2 −0.9 −0.1·(11–2)

3.1 4.4 3.1 1.8 0.9 2.2 −0.1·(12–1) 3.1 3.1 4.4 2.2 −1.8 −0.9 −0.1·(112)

3.9 4.4 3.1 2.2 1.3 2.6 −0.1·(321) 3.9 3.1 4.4 2.2 −2.6 −1.3 −0.1·(3–1-2)

4.4 3.1 3.9 1.3 2.6 2.2 −0.1·(213) 3.1 4.4 3.1 1.8 −0.9 −2.2 −0.1·(−12–1)

4.4 3.1 3.1 0.9 2.2 1.8 −0.1·(2–11) 3.1 4.4 3.9 2.6 −1.3 −2.2 −0.1·(−123)

4.4 3.1 3.1 0.9 1.8 2.2 −0.1·(−2–11) 3.1 4.4 3.1 2.2 −0.9 −1.8 −0.1·(121)

4.4 3.9 3.1 1.3 2.2 2.6 −0.1·(231) 3.9 4.4 3.1 2.2 −1.3 −2.6 −0.1·(3–2-1)

3.1 3.1 4.4 −2 −2 0.9 −0.1·(−112) 4.4 3.1 3.9 −1.3 2.6 −2.2 −0.1·(2–13)

3.1 3.9 4.4 −3 −2 1.3 −0.1·(13–2) 4.4 3.9 3.1 −1.3 2.2 −2.6 −0.1·(−23–1)

3.1 3.1 4.4 −2 −2 0.9 −0.1·(−112) 4.4 3.1 3.1 −0.9 1.8 −2.2 −0.1·(−211)

3.9 3.1 4.4 −2 −3 1.3 −0.1·(31–2) 4.4 3.1 3.1 −0.9 2.2 −1.8 −0.1·(211)

The illustration of hR lattice is represented by semi-reduced descriptions. The distance to the border hR – cI is −0.1, which 
corresponds to −0.123 given in Δd/d units.

Table 5. Sixty-four semi-reduced descriptions of hR lattice (a,b,c = 1.7607; α,β,γ = 106.8773°) and its deformations to the 
cI lattice (a,b,c = 2; α,β,γ = 90°).
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The assigning of a symmetry group to a modified metric or comparing it with Table 1 reveals 
cI symmetry in cI16 description. As a result, the distance from hR lattice (a,b,c = 1.760682; 
α,β,γ = 106.8773°) to cI lattice (a,b,c = 2; α,β,γ = 90°) is equal to −0.1 (Δd/d = −0.123) and as 
expected does not depend on the selected description. Theoretical descriptions of other hR lat-
tices may be easily obtained: for example, by lowering ε 10 times (4, 3, 3, −1, 2, −2) + 0.01·(2·2, 
1·1, 1·1, 1·1, 1·2, 2·1) = (4.04, 3.01, 3.01, −0.99, 2.02; −1.98), which corresponds to the Bravais 
description: (a,b,c = 1.734935; α,β,γ = 109.2022°), ε = −0.01 and Δd/d = −0.01467.

The presence of random errors complicates the derivation of ε and Δd/d. If G approximately 
describes hR lattice, the distances to the borders will be also approximate. Assuming that 
G = (4.41, 3.08, 3.12, −0.98, 2.23, −1.9) a threefold pseudo-symmetry axis can be found parallel 
to the [110] direction, which is nearly orthogonal to (211) planes. Least squares “best solution” 
of following equation

(4.41, 3.08, 3.12, −0,98, 2,23, −1.9) + ε·(2·2, 1·1, 1·1, 1·1, 1·2, 2·1) = (4, 3, 3, −1, 2, −2)

gives ε = −0,093, which can be considered as a rather interesting result.

5.3. hR-cP border

To all cells contained in Tables 4, 5 exact hR and approximate cF or cI symmetries are easily 
assigned by filtering V set only. No additional process of cell manipulation is necessary. But 
it is not true near hR – cP border: the exact hR symmetry can be recognized, but pseudo cP 
symmetry generally not. This discontinuity on the hR– cP border is caused by the fact that 
there is a unique semi-reduced description of cP lattice, namely, cP0 (metric = 1,1,1,0,0,0). Any 
additional description of this lattice is not semi-reduced and its symmetry group contains 
symmetry matrices outside the considered V set. We are interested in finding such descrip-
tions, which contain at least one hR subgroup in V. The problem, attacked from the cF and cI 
sides, leads to results included in Table 6.

Symbol cP metric Symbol cP metric

cP1 1 1 2 −1 0 0 cP49 1 1 2 −1 0 0

cP2 1 1 2 0 −1 0 cP50 1 1 2 0 −1 0

cP3 1 1 2 0 1 0 cP51 1 1 2 0 1 0

cP4 1 1 2 1 0 0 cP52 1 1 2 1 0 0

cP5 1 2 1 −1 0 0 cP53 1 2 1 −1 0 0

cP6 1 2 1 1 0 0 cP54 1 2 1 0 0 −1

cP7 1 2 1 0 0 −1 cP55 1 2 1 0 0 1

cP8 1 2 1 0 0 1 cP56 1 2 1 1 0 0

cP9 2 1 1 0 1 0 cP57 2 1 1 0 −1 0

cP10 2 1 1 0 0 1 cP58 2 1 1 0 0 −1

cP11 2 1 1 0 0 −1 cP59 2 1 1 0 0 1

cP12 2 1 1 0 −1 0 cP60 2 1 1 0 1 0

cP13 1 2 2 1 1 1 cP61 1 1 3 −1 −1 0

cP14 1 2 2 −1 −1 1 cP62 1 1 3 −1 1 0

cP15 1 2 2 −1 1 −1 cP63 1 1 3 1 −1 0
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Symbol cP metric Symbol cP metric

cP16 1 2 2 1 −1 −1 cP64 1 1 3 1 1 0

cP17 1 2 2 −1 −1 0 cP65 1 3 1 −1 0 −1

cP18 1 2 2 −1 0 −1 cP66 1 3 1 −1 0 1

cP19 1 2 2 1 1 0 cP67 1 3 1 1 0 −1

cP20 1 2 2 1 0 1 cP68 1 3 1 1 0 1

cP21 1 2 2 1 −1 0 cP69 3 1 1 0 −1 −1

cP22 1 2 2 1 0 −1 cP70 3 1 1 0 −1 1

cP23 1 2 2 −1 1 0 cP71 3 1 1 0 1 −1

cP24 1 2 2 −1 0 1 cP72 3 1 1 0 1 1

cP25 2 1 2 1 1 1 cP73 2 1 3 −1 −2 1

cP26 2 1 2 −1 −1 1 cP74 2 1 3 −1 2 −1

cP27 2 1 2 −1 1 −1 cP75 2 1 3 1 −2 −1

cP28 2 1 2 1 −1 −1 cP76 2 1 3 1 2 1

cP29 2 1 2 −1 −1 0 cP77 2 3 1 −1 −1 2

cP30 2 1 2 0 −1 −1 cP78 2 3 1 −1 1 −2

cP31 2 1 2 1 1 0 cP79 2 3 1 1 −1 −2

cP32 2 1 2 0 1 1 cP80 2 3 1 1 1 2

cP33 2 1 2 1 −1 0 cP81 3 1 2 −1 −2 1

cP34 2 1 2 0 1 −1 cP82 3 1 2 −1 2 −1

cP35 2 1 2 −1 1 0 cP83 3 1 2 1 −2 −1

cP36 2 1 2 0 −1 1 cP84 3 1 2 1 2 1

cP37 2 2 1 1 1 1 cP85 1 2 3 −2 −1 1

cP38 2 2 1 −1 −1 1 cP86 1 2 3 −2 1 −1

cP39 2 2 1 −1 1 −1 cP87 1 2 3 2 −1 −1

cP40 2 2 1 1 −1 −1 cP88 1 2 3 2 1 1

cP41 2 2 1 −1 0 −1 cP89 1 3 2 −2 −1 1

cP42 2 2 1 0 −1 −1 cP90 1 3 2 2 −1 −1

cP43 2 2 1 1 0 1 cP91 1 3 2 2 1 1

cP44 2 2 1 0 1 1 cP92 1 3 2 −2 1 −1

cP45 2 2 1 1 0 −1 cP93 3 2 1 −1 −1 2

cP46 2 2 1 0 1 −1 cP94 3 2 1 −1 1 −2

cP47 2 2 1 −1 0 1 cP95 3 2 1 1 −1 −2

cP48 2 2 1 0 0 1 cP96 3 2 1 1 1 2

Small rhombohedral deformations change descriptions in the table into semi-reduced forms of hR lattices. Positive 
deformations allow to continuously transform cP into cF (cP1 – cP48cF1 – cF16). Similarly, negative deformations 
transform cP into cI (cP49 – cP96cF1 – cF16). Twelve metrics (cP1 – cP12 and cP49 – cP60) coincide. The cP0 case links 
all primitive and centered cubic lattices by rhombohedral deformations.

Table 6. Non-semi-reduced descriptions of cP lattices close to semi-reduced hR.
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For all cP descriptions in Table 6, the filtering of V fails in obtaining a complete set of symme-
try matrices and assigning cP Bravais type, but in all cases the matrices comprise at least one 
complete hR group, indicated geometrically by symbols of threefold axes with correspond-
ing directions and Miller indices. Rhombohedral deformations based on obtained (hkl)’s and 
assumed ε > 0 transform cP1-cP48 into 60 semi-reduced variants of some hR lattice. Together 
with 4 variants arising from cP0 (1,1,1,0,0,0), the total number is again 64. All are equi-dis-
tanced from the cP lattice. Similar analysis leads to 64 semi-reduced hR descriptions obtained 
from cP49-cP96 and cP0 by rhombohedral distortion with ε < 0.

In the neighborhood of cubic symmetry, the semi-reduced hR lattices reveal distorted 
rhombohedral cF, cI, or cP pseudo-symmetries and exact hR symmetry. The distortion can 
be extracted from the lattice metric using the geometric information from the ‘strict’ three-
fold axis. The distance to the border given by ε or Δd/d value does not depend on the lattice 
description (64 semi-reduced variants). Such distance corresponds to the angular differences: 
α-60°, α-90°, α-109.47° for a conventional description of hR lattice.

6. Distances between hR and monoclinic lattices: composed 
deformations

As mentioned earlier, the symmetry axis splits orthogonally 3D lattice into union of 1D lattice 
and 2D lattice and is stable during uniaxial deformation in 1D direction. But a twofold axis 
is less restrictive in comparison with higher order axes, and in this case 2D lattice can also 
be modified. This complicates the modeling of mC–hR border and the calculation of distance 
from mC to hR lattices. The modeling is simplified if the hR lattice description is restricted to 
the conventional form (a = b = c, α = β = γ < 120°). The geometric interpretation of symmetry is 
characterized by dual symbols: 3+[111](111), 3⁻[111](111), 2[01–1](01–1), 2[1–10](1–10), 2[−101]
(−101). The dot product [uvw]·(hkl) is 2 for all twofold axes, which means that deformation ε 
(hkl), where (hkl) = (01–1), (1–10), (−101), transforms an hR lattice to the centered monoclinic, for 
example, mC. Other ε deformations are also possible. For a twofold axis in [uvw] direction, any 
deformation ε (hkl), where [uvw]·(hkl) = 0, retains the given twofold symmetry. Moreover, small 
deformations are additive and their (hkl)-type can be recognized by geometric images (Table 7).

Δa/a [%] Δb/b [%] Δc/c [%] Δα [°] Δβ [°] Δγ [°] δ [°] Operation

Deformation 0.001·(01–1) mC (1, 1.0320, 1.7143, 90°, 123.2094°, 90°)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2[01–1](01–1)

0.0500 −0.0500 0.0000 −0.0800 0.0800 0.0000 0.0934 2[1–10](1–10)

0.0500 0.0000 −0.0500 −0.0800 0.0000 0.0800 0.0934 2[−101](−101)

0.0500 0.0000 −0.0500 −0.0800 0.0000 0.0800 0.0000 3 + [111](111)

0.0500 −0.0500 0.0000 −0.0800 0.0800 0.0000 0.0000 3-[111](111)

Deformation 0.001·(011) mC (1, 1.0301, 1.7155, 90°, 123.1840°, 90°)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2[01–1](01–1)

0.0500 −0.0500 0.0000 0.0496 −0.0496 0.0000 0.0556 2[1–10](1–10)
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Symbol cP metric Symbol cP metric

cP16 1 2 2 1 −1 −1 cP64 1 1 3 1 1 0

cP17 1 2 2 −1 −1 0 cP65 1 3 1 −1 0 −1

cP18 1 2 2 −1 0 −1 cP66 1 3 1 −1 0 1

cP19 1 2 2 1 1 0 cP67 1 3 1 1 0 −1

cP20 1 2 2 1 0 1 cP68 1 3 1 1 0 1

cP21 1 2 2 1 −1 0 cP69 3 1 1 0 −1 −1

cP22 1 2 2 1 0 −1 cP70 3 1 1 0 −1 1

cP23 1 2 2 −1 1 0 cP71 3 1 1 0 1 −1

cP24 1 2 2 −1 0 1 cP72 3 1 1 0 1 1

cP25 2 1 2 1 1 1 cP73 2 1 3 −1 −2 1

cP26 2 1 2 −1 −1 1 cP74 2 1 3 −1 2 −1

cP27 2 1 2 −1 1 −1 cP75 2 1 3 1 −2 −1

cP28 2 1 2 1 −1 −1 cP76 2 1 3 1 2 1

cP29 2 1 2 −1 −1 0 cP77 2 3 1 −1 −1 2

cP30 2 1 2 0 −1 −1 cP78 2 3 1 −1 1 −2

cP31 2 1 2 1 1 0 cP79 2 3 1 1 −1 −2

cP32 2 1 2 0 1 1 cP80 2 3 1 1 1 2

cP33 2 1 2 1 −1 0 cP81 3 1 2 −1 −2 1

cP34 2 1 2 0 1 −1 cP82 3 1 2 −1 2 −1

cP35 2 1 2 −1 1 0 cP83 3 1 2 1 −2 −1

cP36 2 1 2 0 −1 1 cP84 3 1 2 1 2 1

cP37 2 2 1 1 1 1 cP85 1 2 3 −2 −1 1

cP38 2 2 1 −1 −1 1 cP86 1 2 3 −2 1 −1

cP39 2 2 1 −1 1 −1 cP87 1 2 3 2 −1 −1

cP40 2 2 1 1 −1 −1 cP88 1 2 3 2 1 1

cP41 2 2 1 −1 0 −1 cP89 1 3 2 −2 −1 1

cP42 2 2 1 0 −1 −1 cP90 1 3 2 2 −1 −1

cP43 2 2 1 1 0 1 cP91 1 3 2 2 1 1

cP44 2 2 1 0 1 1 cP92 1 3 2 −2 1 −1

cP45 2 2 1 1 0 −1 cP93 3 2 1 −1 −1 2

cP46 2 2 1 0 1 −1 cP94 3 2 1 −1 1 −2

cP47 2 2 1 −1 0 1 cP95 3 2 1 1 −1 −2

cP48 2 2 1 0 0 1 cP96 3 2 1 1 1 2

Small rhombohedral deformations change descriptions in the table into semi-reduced forms of hR lattices. Positive 
deformations allow to continuously transform cP into cF (cP1 – cP48cF1 – cF16). Similarly, negative deformations 
transform cP into cI (cP49 – cP96cF1 – cF16). Twelve metrics (cP1 – cP12 and cP49 – cP60) coincide. The cP0 case links 
all primitive and centered cubic lattices by rhombohedral deformations.

Table 6. Non-semi-reduced descriptions of cP lattices close to semi-reduced hR.
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For all cP descriptions in Table 6, the filtering of V fails in obtaining a complete set of symme-
try matrices and assigning cP Bravais type, but in all cases the matrices comprise at least one 
complete hR group, indicated geometrically by symbols of threefold axes with correspond-
ing directions and Miller indices. Rhombohedral deformations based on obtained (hkl)’s and 
assumed ε > 0 transform cP1-cP48 into 60 semi-reduced variants of some hR lattice. Together 
with 4 variants arising from cP0 (1,1,1,0,0,0), the total number is again 64. All are equi-dis-
tanced from the cP lattice. Similar analysis leads to 64 semi-reduced hR descriptions obtained 
from cP49-cP96 and cP0 by rhombohedral distortion with ε < 0.

In the neighborhood of cubic symmetry, the semi-reduced hR lattices reveal distorted 
rhombohedral cF, cI, or cP pseudo-symmetries and exact hR symmetry. The distortion can 
be extracted from the lattice metric using the geometric information from the ‘strict’ three-
fold axis. The distance to the border given by ε or Δd/d value does not depend on the lattice 
description (64 semi-reduced variants). Such distance corresponds to the angular differences: 
α-60°, α-90°, α-109.47° for a conventional description of hR lattice.

6. Distances between hR and monoclinic lattices: composed 
deformations

As mentioned earlier, the symmetry axis splits orthogonally 3D lattice into union of 1D lattice 
and 2D lattice and is stable during uniaxial deformation in 1D direction. But a twofold axis 
is less restrictive in comparison with higher order axes, and in this case 2D lattice can also 
be modified. This complicates the modeling of mC–hR border and the calculation of distance 
from mC to hR lattices. The modeling is simplified if the hR lattice description is restricted to 
the conventional form (a = b = c, α = β = γ < 120°). The geometric interpretation of symmetry is 
characterized by dual symbols: 3+[111](111), 3⁻[111](111), 2[01–1](01–1), 2[1–10](1–10), 2[−101]
(−101). The dot product [uvw]·(hkl) is 2 for all twofold axes, which means that deformation ε 
(hkl), where (hkl) = (01–1), (1–10), (−101), transforms an hR lattice to the centered monoclinic, for 
example, mC. Other ε deformations are also possible. For a twofold axis in [uvw] direction, any 
deformation ε (hkl), where [uvw]·(hkl) = 0, retains the given twofold symmetry. Moreover, small 
deformations are additive and their (hkl)-type can be recognized by geometric images (Table 7).

Δa/a [%] Δb/b [%] Δc/c [%] Δα [°] Δβ [°] Δγ [°] δ [°] Operation

Deformation 0.001·(01–1) mC (1, 1.0320, 1.7143, 90°, 123.2094°, 90°)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2[01–1](01–1)

0.0500 −0.0500 0.0000 −0.0800 0.0800 0.0000 0.0934 2[1–10](1–10)

0.0500 0.0000 −0.0500 −0.0800 0.0000 0.0800 0.0934 2[−101](−101)

0.0500 0.0000 −0.0500 −0.0800 0.0000 0.0800 0.0000 3 + [111](111)

0.0500 −0.0500 0.0000 −0.0800 0.0800 0.0000 0.0000 3-[111](111)

Deformation 0.001·(011) mC (1, 1.0301, 1.7155, 90°, 123.1840°, 90°)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2[01–1](01–1)

0.0500 −0.0500 0.0000 0.0496 −0.0496 0.0000 0.0556 2[1–10](1–10)
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The ε-deformations are additive by the definition, but this feature is also valid for geo-
metric images (excluding δ) in the vicinity of a border, as was exemplified in Table 7. This 
feature means that more complicated images can be decomposed and explained by a few 
ε-deformations, at least in theory. In this situation, the goal is to obtain maxdev ≈ 0 by uniaxial 
deformations of a probe cell, where deformation types (hkl)’s can be predicted from the geo-
metric images. The introductory application of such analysis is shown in the following two 
real-life examples.

7. The distances for phospolipase A2

For a comparative study of different distances between a probe cell and the items in protein 
database (PDB), McGill and others [2] used unit cells of phospolipase A2 discussed in [12], 
which concluded that items 1g2x, 1u4j, and 1fe5 describe the same structure. Study, among 
other interesting conclusions, showed a similarity only between 1g2x and 1u4j cells for all 
applied distances. This result is also confirmed by analysis based on ε distances (Table 8).

Δa/a [%] Δb/b [%] Δc/c [%] Δα [°] Δβ [°] Δγ [°] δ [°] Operation

0.0500 0.0000 −0.0500 0.0496 0.0000 −0.0496 0.0556 2[−101](−101)

0.0500 0.0000 −0.0500 0.0496 0.0000 −0.0496 0.0532 3 + [111](111)

0.0500 −0.0500 0.0000 0.0496 −0.0496 0.0000 0.0532 3-[111](111)

Deformation 0.001·(01–1) + 0.001·(011) mC (1, 1.0320, 1.7155, 90°, 123.1840°, 90°)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2[01–1](01–1)

0.1000 −0.0999 0.0000 −0.0304 0.0304 0.0000 0.0774 2[1–10](1–10)

0.1000 0.0000 −0.0999 −0.0304 0.0000 0.0304 0.0774 2[−101](−101)

0.1000 0.0000 −0.0999 −0.0304 0.0000 0.0304 0.0532 3 + [111](111)

0.1000 −0.0999 0.0000 −0.0304 0.0304 0.0000 0.0532 3-[111](111)

Geometric images of monoclinic simple deformations 0.001·(01–1), 0.001·(011) and composed deformation 0.001·(01–1) 
+ 0.001·(011) = 0.002·(010). Resulting monoclinic lattice parameters are given explicitly.

Table 7. Examples of the border hR-mC models for hR lattice (a,b,c = 1, α,β,γ = 62°).

1g2x 80.949 80.572 57.098 90° 90.35° 90° C

1u4j 80.36 80.36 99.44 90° 90° 120° R

1fe5 57.98 57.98 57.98 92.02° 92.02° 92,02° P

1g2x 3260.18 3261.15 3261.15 15.22 14.12 14.12 original

ε = −1.04·(011) +0.07·(01–1) deformation: monoclinic

3260.18 3260.18 3260.18 14.12 14.12 14.12 hR

ε = −14.12·(111) deformation: rhombohedral

3246.06 3246.06 3246.06 0.00 0.00 0.00 cP
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The monoclinic deformation of 1g2x cell is very small. Rhombohedral distances ε to the cubic 
border are similar for 1g2x and 1u4j, but drastically different in comparison with that in 1fe5. 
Moreover, the different sign suggests that if one agrees that all three items describe the same 
structure it must also allow the possibility that the true symmetry is cubic. It is also visible that 
this method is sensitive for much smaller (then analyzed) deviations from the symmetry borders.

8. hR-mC dilemma in α-Cr2O3, α-Fe2O3, CaCO3

The crystal structures of BiFeO3, as well as of α-Cr2O3, α-Fe2O3, CaCO3 are usually described 
as trigonal, but there are motivations that come from systematic (hkl) peak broadening and 
anisotropic microstrains, indicating monoclinic deformations, to assume that an average met-
ric structure reveals monoclinic, that is, broken symmetry. [3, 4] Such broadening is system-
atic and increases with the crushing polycrystalline powders in a planetary mill and thus, at 
least in theory, can modify symmetry. High-resolution synchrotron radiation powder diffrac-
tions and Rietveld refinement were used in [3, 4] to obtain precise cell parameters. Values of 
agreement factors obtained with the Rietveld refinement of the trigonal and monoclinic mod-
els were very similar. The authors concluded that the lowering of symmetry should result in 
splitting some diffraction lines, which was not observed.

Let us look at the published data obtained for the monoclinic model [3, 4]. Cell parameters 
were recalculated to the primitive form, which was not Niggli. The strict symmetry had geo-
metric description 2 [1–10](1–10). Therefore, it was assumed that composite deformation ε1·(1–
10) + ε2·(110) brings these monoclinic cells to the rhombohedral ones. The BiFeO3 cell data were 
not available but all the data for α-Cr2O3, α-Fe2O3, CaCO3 and different milling times reveal 
similar values ε1 = ε2 ≈ −0.004. Values do not depend on the milling time, even if systematically 
broadened peaks are shown. Deviations from hR borders in the form of Δd/d ≈ −0.0004 mean 
that it is practically not possible to observe the line splitting. A strict and systematic relation-
ship ε1 = ε2 seems to be nonphysical, rather a result of the monoclinic constrains in Rietveld 
refinements. Despite the high precision of synchrotron powder diffraction, a monoclinic lat-
tice deformation was not metrically determined.

1u4j 3251.28 3251.28 3251.28 22.41 22.41 22.41 original

ε = −22,41·(111) deformation: rhombohedral

3228.87 3228.87 3228.87 0.00 0.00 0.00 cP

1fe5 3361.68 3361.68 3361.68 −118.49 −118.49 −118.49 original

ε = 118,49·(111) deformation: rhombohedral

3480.17 3480.17 3480.17 0.00 0.00 0.00 cP

Upper lines give standard Bravais descriptions for three items. Corresponding three parts compare original metric 
tensors, ε distances to higher symmetry borders, and metric tensors of these borders for each item.

Table 8. Original cell data for PDB items (1g2x, 1u4j, 1fe5) and ε distances to higher symmetry borders.
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The ε-deformations are additive by the definition, but this feature is also valid for geo-
metric images (excluding δ) in the vicinity of a border, as was exemplified in Table 7. This 
feature means that more complicated images can be decomposed and explained by a few 
ε-deformations, at least in theory. In this situation, the goal is to obtain maxdev ≈ 0 by uniaxial 
deformations of a probe cell, where deformation types (hkl)’s can be predicted from the geo-
metric images. The introductory application of such analysis is shown in the following two 
real-life examples.

7. The distances for phospolipase A2

For a comparative study of different distances between a probe cell and the items in protein 
database (PDB), McGill and others [2] used unit cells of phospolipase A2 discussed in [12], 
which concluded that items 1g2x, 1u4j, and 1fe5 describe the same structure. Study, among 
other interesting conclusions, showed a similarity only between 1g2x and 1u4j cells for all 
applied distances. This result is also confirmed by analysis based on ε distances (Table 8).

Δa/a [%] Δb/b [%] Δc/c [%] Δα [°] Δβ [°] Δγ [°] δ [°] Operation

0.0500 0.0000 −0.0500 0.0496 0.0000 −0.0496 0.0556 2[−101](−101)

0.0500 0.0000 −0.0500 0.0496 0.0000 −0.0496 0.0532 3 + [111](111)

0.0500 −0.0500 0.0000 0.0496 −0.0496 0.0000 0.0532 3-[111](111)

Deformation 0.001·(01–1) + 0.001·(011) mC (1, 1.0320, 1.7155, 90°, 123.1840°, 90°)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2[01–1](01–1)

0.1000 −0.0999 0.0000 −0.0304 0.0304 0.0000 0.0774 2[1–10](1–10)

0.1000 0.0000 −0.0999 −0.0304 0.0000 0.0304 0.0774 2[−101](−101)

0.1000 0.0000 −0.0999 −0.0304 0.0000 0.0304 0.0532 3 + [111](111)

0.1000 −0.0999 0.0000 −0.0304 0.0304 0.0000 0.0532 3-[111](111)

Geometric images of monoclinic simple deformations 0.001·(01–1), 0.001·(011) and composed deformation 0.001·(01–1) 
+ 0.001·(011) = 0.002·(010). Resulting monoclinic lattice parameters are given explicitly.

Table 7. Examples of the border hR-mC models for hR lattice (a,b,c = 1, α,β,γ = 62°).

1g2x 80.949 80.572 57.098 90° 90.35° 90° C

1u4j 80.36 80.36 99.44 90° 90° 120° R

1fe5 57.98 57.98 57.98 92.02° 92.02° 92,02° P

1g2x 3260.18 3261.15 3261.15 15.22 14.12 14.12 original

ε = −1.04·(011) +0.07·(01–1) deformation: monoclinic

3260.18 3260.18 3260.18 14.12 14.12 14.12 hR

ε = −14.12·(111) deformation: rhombohedral

3246.06 3246.06 3246.06 0.00 0.00 0.00 cP
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The monoclinic deformation of 1g2x cell is very small. Rhombohedral distances ε to the cubic 
border are similar for 1g2x and 1u4j, but drastically different in comparison with that in 1fe5. 
Moreover, the different sign suggests that if one agrees that all three items describe the same 
structure it must also allow the possibility that the true symmetry is cubic. It is also visible that 
this method is sensitive for much smaller (then analyzed) deviations from the symmetry borders.

8. hR-mC dilemma in α-Cr2O3, α-Fe2O3, CaCO3

The crystal structures of BiFeO3, as well as of α-Cr2O3, α-Fe2O3, CaCO3 are usually described 
as trigonal, but there are motivations that come from systematic (hkl) peak broadening and 
anisotropic microstrains, indicating monoclinic deformations, to assume that an average met-
ric structure reveals monoclinic, that is, broken symmetry. [3, 4] Such broadening is system-
atic and increases with the crushing polycrystalline powders in a planetary mill and thus, at 
least in theory, can modify symmetry. High-resolution synchrotron radiation powder diffrac-
tions and Rietveld refinement were used in [3, 4] to obtain precise cell parameters. Values of 
agreement factors obtained with the Rietveld refinement of the trigonal and monoclinic mod-
els were very similar. The authors concluded that the lowering of symmetry should result in 
splitting some diffraction lines, which was not observed.

Let us look at the published data obtained for the monoclinic model [3, 4]. Cell parameters 
were recalculated to the primitive form, which was not Niggli. The strict symmetry had geo-
metric description 2 [1–10](1–10). Therefore, it was assumed that composite deformation ε1·(1–
10) + ε2·(110) brings these monoclinic cells to the rhombohedral ones. The BiFeO3 cell data were 
not available but all the data for α-Cr2O3, α-Fe2O3, CaCO3 and different milling times reveal 
similar values ε1 = ε2 ≈ −0.004. Values do not depend on the milling time, even if systematically 
broadened peaks are shown. Deviations from hR borders in the form of Δd/d ≈ −0.0004 mean 
that it is practically not possible to observe the line splitting. A strict and systematic relation-
ship ε1 = ε2 seems to be nonphysical, rather a result of the monoclinic constrains in Rietveld 
refinements. Despite the high precision of synchrotron powder diffraction, a monoclinic lat-
tice deformation was not metrically determined.

1u4j 3251.28 3251.28 3251.28 22.41 22.41 22.41 original

ε = −22,41·(111) deformation: rhombohedral

3228.87 3228.87 3228.87 0.00 0.00 0.00 cP

1fe5 3361.68 3361.68 3361.68 −118.49 −118.49 −118.49 original

ε = 118,49·(111) deformation: rhombohedral

3480.17 3480.17 3480.17 0.00 0.00 0.00 cP

Upper lines give standard Bravais descriptions for three items. Corresponding three parts compare original metric 
tensors, ε distances to higher symmetry borders, and metric tensors of these borders for each item.

Table 8. Original cell data for PDB items (1g2x, 1u4j, 1fe5) and ε distances to higher symmetry borders.
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9. Summary

Generally, border problems cannot be overlooked in s.r.d. Small, but not negligible, values 
of discrepancy parameters indicate the border problem and give some measure to the higher 
symmetry border. Deviations in isometric actions on the investigated cell can be explained by 
monoaxial deformations measured by parameter ε or by Δd/d, which is more informative for 
powder diffraction investigations.

Moreover, ε is not dependent on the choice of lattice representation in s.r.d. It was explicitly 
shown in Tables 4 and 5. These data can be also used for testing other definitions of distances, 
because 64 items describe the same rhombohedral lattice (distances between items should 
be zero and between each item and the cubic cF and cI lattices should be fixed).The situation 
is more complicated in the vicinity of cP border. Pseudo-cP symmetry cannot be recognized 
for most s.r.d representations of hR lattices, since they are similar to non-semi-reduced cP 
descriptions listed in Table 6. But there is still a possibility to select such hR description, which 
is simultaneously Niggli-reduced, and to find the distance to cP0.

The concept is outlined and tested for hR lattices, but for wider applications other lattice types 
(especially cubic) should be investigated.
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Abstract

In this chapter, we briefly introduce the evolution of symmetry as a mathematical concept
applied to physical systems and lay the mathematical groundwork for discussion of
topological physics. We explain how topological phases, like the Berry phase, can be
obtained from a gauge symmetry of a quantum system. Also, we introduce numerical
tools (e.g., Chern numbers, Wilson loops) for topological analysis of chemical solids based
on the crystal structure and corresponding electronic structure.

Keywords: topological physics, topological quantum chemistry, Weyl semimetals, Dirac
semimetals, Hall effects, Berry phase, Berry curvature

1. Introduction

This past century saw a dramatic advancement of our understanding of the physical world
driven by the dethronement of classical physics by the combined discoveries of relativistic and
quantum mechanics. From those revelations, and the subsequent intensive fundamental inves-
tigations, a new age of unprecedented rapid technological progress was ushered in. These
physical theories were heavily inspired by differential geometry and linear algebra, like in the
case of reinterpreting gravitation as a curvature of space or in the case of reimagining objects as
both particles and waves. Today, another evolution in our understanding of physics is under-
way, this time inspired by the ideas of topology and symmetry. While the application of these
concepts is slowly beginning to extend to all branches of science, the recent ramifications of
their adaptation to crystal structures, electronic structures, and electronic properties have been
profound. So much so, the 2016 Nobel Prize in Physics was awarded to Duncan Haldane,
J. Michael Kosterlitz, and David J. Thouless for theoretical discoveries in topological phase
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transitions and topological phases of matter. Ranging from superconductivity, superfluidity,
quantized Hall effects and now to new quasiparticles, the ideas of topology and symmetry are
revealing new, unexpected properties and states of matter.

The evolution of physical theories matches well with the evolution of symmetry as a mathe-
matical concept. At first, symmetry was considered just as a transformation of space which
conserves certain qualities. However, mathematicians later realized that all such transforma-
tions can form a group which can be a characterization of the quality. Crystallographic groups
were born from this understanding of symmetry. Conserved, in this case, are the relative
positions of atoms in space because the only allowed transformations are linear transforms
(rotations and translations, i.e., Galilean transformations), which saves distances between
points in space. Such an approach was enough for the dominant idea, at the time, of linear
space and was consistent with Newton’s classical mechanics. After Einstein’s revolution,
however, it turned out that distances between points are not necessarily conserved in real life.
Since particles in crystals can move with velocities close to the speed of light, modern transport
theory in crystals cannot ignore relativistic effects, requiring an expanded conceptualization of
symmetry.

This issue was mitigated in quantum mechanics with the idea of nonhomogeneous space. The
main equations there are written not for a vector in space but for a wave function, i.e., one does
not have to deal with a real space of points but with a Hilbert space of possible transformations
of all points in the space. Used in this way, the properties of the space itself are less important
than the properties of the transformations. This transformation of space can include real
numbers as well as complex numbers. Since complex numbers cannot be measured and
observed, physicists consider the square of the wave function at some point as a probability
to detect a particle at that point. Since the idea of a fixed position in space is not valid anymore,
a new understanding of symmetry is required. Previously, symmetry transformations affected
points in space; however, in quantum mechanics, the transforming object is a function, and
symmetry operations are actually maps between functions a.k.a. an operator. In general, an
operator is not required to have an expression, but for certain special functions, an action of the
operator can be expressed as simply as, for example, a multiplication by a number. This
number is called an eigenvalue, and this function is called eigenfunction (also often referred
to as eigenvector or eigenstate). Both are characteristic of the operator. In the case where the
eigenvalue is one (or is a strictly unitary operator), the operator will, of course, not change the
eigenfunction. So if the wave function is an eigenfunction of the corresponding unitary opera-
tor of a transformation, the wave function can be considered to have a symmetry based on the
transformation. In practice, the determination of eigenvalues is not typically such a trivial task,
especially when the operator does not have an expression. However for linearly bounded
operators in a Hilbert space, there is always a representation via the scalar product. Due to
the Riesz representation theorem, any linearly bounded operator can be represented as a scalar
product with another function. Note that here the scalar product is not the same as the usual
product of numbers. For quantum mechanical operators, it can be written using integral
notation, which is part of why physicists consider these kinds of operators as observable.
Another important note to remember is that a wave function in quantum mechanics is also a
map to complex space. As mentioned earlier, a symmetry operator’s eigenvalue should be 1,
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but the complex plane has two ways to achieve this: a unit in the real part which is, of course, 1
and also a unit in the imaginary part which is i. Thus the symmetry operator can be unitary or
anti-unitary, respectively. Since the wave function is the solution of Schrodinger equation, the
symmetry operator must also commute with the Hamiltonian of the system (this ensures that
the operator acting on the wave function returns an eigenfunction of the Hamiltonian). In this
way, a symmetry group of the wave function can be generalized to a group of operators, which
have eigenvalues with an absolute value equal to one. This group is called a gauge group, and
this symmetry causes topological phases of the wave function, which will be explained in this
chapter.

2. Preliminaries

In order to use a consistent description, we first formulate basic mathematical definitions. The
set G ¼ g1; g2;…; gn

� �
with the operation denoted by “ � ” is called a “group” if the following

conditions hold:

• Every element g ¼ gi � gj belongs to G.

• There exist unique unitary element e∈G such that e � g ¼ g � e ¼ g, ∀g∈G.

• For every element g∈G, there exist inverse element g�1 such that g�1 � g ¼ g � g�1 ¼ e.

• We can combine elements of G in pair in any order gi � gj
� �

� gk ¼ gi � gj � gk
� �

.

If in addition, if the order of the operation does not matter, i.e., gi � gj ¼ gj � gi, the group is

called commutative or abelian, otherwise it is called non-commutative or non-abelian.

If we have the commutative group V with the operation “+”, we also can multiply every
element x∈V by a number, either real or complex, in the following way:

• 1x ¼ x, ∀x∈V,

• aþ bð Þx ¼ axþ bx, ∀a, b� numbers, ∀x∈V,

• a xþ yð Þ ¼ axþ ay, ∀a� number, ∀x, y∈V:

In this case, V is called a vector space (real or complex, respectively), and any element x∈V is
called a vector. The mapping A : V ! V which sets the relationship between elements of the
space V is called an operator. If the operator A satisfies the following properties,

A cxð Þ ¼ cA xð Þ, A xþ yð Þ ¼ A xð Þ þ A yð Þ, ∀c� number, ∀x, y∈V, (1)

then it is called a linear operator, or linear transformation, of the space V. The linear transforma-
tion between two different vector spaces V1, V2 is defined in the same way. A set of invertible
linear transformations form a group with operation A1 ∘A2, which is the composition of the
operators, and this group is called a general linear group on V and denoted by GL Vð Þ.
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transitions and topological phases of matter. Ranging from superconductivity, superfluidity,
quantized Hall effects and now to new quasiparticles, the ideas of topology and symmetry are
revealing new, unexpected properties and states of matter.

The evolution of physical theories matches well with the evolution of symmetry as a mathe-
matical concept. At first, symmetry was considered just as a transformation of space which
conserves certain qualities. However, mathematicians later realized that all such transforma-
tions can form a group which can be a characterization of the quality. Crystallographic groups
were born from this understanding of symmetry. Conserved, in this case, are the relative
positions of atoms in space because the only allowed transformations are linear transforms
(rotations and translations, i.e., Galilean transformations), which saves distances between
points in space. Such an approach was enough for the dominant idea, at the time, of linear
space and was consistent with Newton’s classical mechanics. After Einstein’s revolution,
however, it turned out that distances between points are not necessarily conserved in real life.
Since particles in crystals can move with velocities close to the speed of light, modern transport
theory in crystals cannot ignore relativistic effects, requiring an expanded conceptualization of
symmetry.

This issue was mitigated in quantum mechanics with the idea of nonhomogeneous space. The
main equations there are written not for a vector in space but for a wave function, i.e., one does
not have to deal with a real space of points but with a Hilbert space of possible transformations
of all points in the space. Used in this way, the properties of the space itself are less important
than the properties of the transformations. This transformation of space can include real
numbers as well as complex numbers. Since complex numbers cannot be measured and
observed, physicists consider the square of the wave function at some point as a probability
to detect a particle at that point. Since the idea of a fixed position in space is not valid anymore,
a new understanding of symmetry is required. Previously, symmetry transformations affected
points in space; however, in quantum mechanics, the transforming object is a function, and
symmetry operations are actually maps between functions a.k.a. an operator. In general, an
operator is not required to have an expression, but for certain special functions, an action of the
operator can be expressed as simply as, for example, a multiplication by a number. This
number is called an eigenvalue, and this function is called eigenfunction (also often referred
to as eigenvector or eigenstate). Both are characteristic of the operator. In the case where the
eigenvalue is one (or is a strictly unitary operator), the operator will, of course, not change the
eigenfunction. So if the wave function is an eigenfunction of the corresponding unitary opera-
tor of a transformation, the wave function can be considered to have a symmetry based on the
transformation. In practice, the determination of eigenvalues is not typically such a trivial task,
especially when the operator does not have an expression. However for linearly bounded
operators in a Hilbert space, there is always a representation via the scalar product. Due to
the Riesz representation theorem, any linearly bounded operator can be represented as a scalar
product with another function. Note that here the scalar product is not the same as the usual
product of numbers. For quantum mechanical operators, it can be written using integral
notation, which is part of why physicists consider these kinds of operators as observable.
Another important note to remember is that a wave function in quantum mechanics is also a
map to complex space. As mentioned earlier, a symmetry operator’s eigenvalue should be 1,
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but the complex plane has two ways to achieve this: a unit in the real part which is, of course, 1
and also a unit in the imaginary part which is i. Thus the symmetry operator can be unitary or
anti-unitary, respectively. Since the wave function is the solution of Schrodinger equation, the
symmetry operator must also commute with the Hamiltonian of the system (this ensures that
the operator acting on the wave function returns an eigenfunction of the Hamiltonian). In this
way, a symmetry group of the wave function can be generalized to a group of operators, which
have eigenvalues with an absolute value equal to one. This group is called a gauge group, and
this symmetry causes topological phases of the wave function, which will be explained in this
chapter.

2. Preliminaries

In order to use a consistent description, we first formulate basic mathematical definitions. The
set G ¼ g1; g2;…; gn

� �
with the operation denoted by “ � ” is called a “group” if the following

conditions hold:

• Every element g ¼ gi � gj belongs to G.

• There exist unique unitary element e∈G such that e � g ¼ g � e ¼ g, ∀g∈G.

• For every element g∈G, there exist inverse element g�1 such that g�1 � g ¼ g � g�1 ¼ e.

• We can combine elements of G in pair in any order gi � gj
� �

� gk ¼ gi � gj � gk
� �

.

If in addition, if the order of the operation does not matter, i.e., gi � gj ¼ gj � gi, the group is
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linear transformations form a group with operation A1 ∘A2, which is the composition of the
operators, and this group is called a general linear group on V and denoted by GL Vð Þ.
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If a physical system is described by some vector v, then a map defining the relationship
between a real number and that vector is called a functional. Note that since we can only add
vectors and multiply them by a number, the functionals f : V ! R which are useful for phys-
ical applications are the linear transformations, called linear functionals. The space of all such
linear functionals on V is called a dual space and is denoted by V∗. Note that without the
multiplication of two vectors in V, we cannot define analogues of polynomial functions on V.
To obtain nonlinear functionals on V, we will define the multiplication of two vectors that give
a number as a result. This makes functionals acting on V similar to the functions acting on the
space of real numbers R. The multiplication denoted by “< x, y >” is called the scalar product
and satisfies the following conditions (assuming that V is a complex vector space and x is the
complex conjugation):

• < x, y >¼ < y, x >, ∀x, y∈V,

• < x, x > ≥ 0 , and < x, x >¼ 0 $ x ¼ 0, ∀x∈V,

• < a xþ yð Þ, z >¼ a < x, z > þa < y, z > , ∀a∈C, ∀x, y, z∈V:

The vector space with the scalar product is called a Hilbert space. The two vectors x and y are
called orthogonal if < x, y >¼ 0. The

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< x, x >

p � ∥x∥ is called the norm of the vector x, and it
returns magnitude of the vector x, like the length of a vector in real space. Usually Hilbert spaces
consist of functions; therefore, elements of Hilbert spaces are denoted simply by Greek letters.

The maximal set of vectors φi

� �
all i in a Hilbert space such that

X
i

ai < φi,φj >¼ 0 $ ai ¼ 0, ∀i, (2)

is called a basis. If the following conditions also hold:

∥φi∥ ¼ 1, < φi,φj >¼ δij, ∀i, j, (3)

then it is called an orthonormal basis. In this case, any vector ψ∈V can be decomposed into the
sum

ψ ¼
X
i

ai � φi, (4)

where ai are numbers. If the number of basis vectors is finite, e.g., n, then ψ can be written just
as a vector a1; a2…; anð Þ. Note that space V can have different bases and ψ can be represented as
vectors in different ways. The operator on V in this case can be written just as an n� n matrix.

In general, the symmetry of the physical system described by the vectors from V should make a
group G composed of operators on V which are not necessarily linear. Of course it is easier to
deal with linear operators; therefore, we introduce the concept of a representation of the group.
The representation of the group G ¼ g1; g2;…; gn

� �
with the operation “ � ” on the vector space V

is the mapping p : G ! GL Vð Þ, which preserves the group operation “ � ” in the following way:
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p g1 � g2
� � ¼ p g1

� �
∘ p g2
� �

: (5)

For example, the spatial symmetries of a crystal belong to a subgroup of group GL R3� �
, but the

symmetries of quantum objects are usually represented as a subgroup of GL Cnð Þ. The relation-
ships between those representations give rise to many interesting properties of crystals.

3. Spacial symmetries

Assume we have a point x∈R3 and we have a group Gx ¼ g1; g2;…; gm
� �

, where gi is a linear
transformation of space that leaves x fixed. The group Gx is called a point group. Now if we act
on the point x by translating by a lattice vector R:

TR xð Þ ¼ xþ R, x∈R3, (6)

we obtain the set of points:

OTR xð Þ ¼ y∈R3 : y ¼ gx; ∀g∈TR
� �

, (7)

which is called the orbit of the action of the group of translations TR on the element x.

If then we act by every element gi on the point y∈OTR , we obtain a crystal lattice, i.e., the set of
points in space that remain unchanged under the action of the group G ¼ Gx � TR. In this case,
G is called a symmorphic space group. It means the quotient space

R\TR ¼ x∈R3 : y ¼ gx; ∀g∈TR; ∀y∈R3� �
(8)

has a point, x, with site group symmetry that is isomorphic to the original point group Gx [1].

Otherwise, if the lattice is invariant under the action of the group of linear transformations of a
space that cannot be decomposed into G ¼ Gx � TR at least for one point x inside the unit cell, G
is called nonsymmorphic. In this case, some operations of the group G are not separable into a
combination of rotation and translation by lattice vectors, i.e., they should be complex operations
like glide or skew operations. Examples of nonsymmorphic symmetry are shown in Figure 1.
The converse, in general, is not true, because some particular combinations of glides or screws
can leave one point inside unit cell fixed.

Any linear transformation L of R3 can be expressed in the following form:

L ¼ Axþ b,∀x∈R3, (9)

where A is 3� 3 matrix and b is a vector in R3. All 3� 3 matrices with a nonzero determinant
and the multiplication operation form a group GL R3� �

. The matrix A should have a determi-
nant of 1 or �1, where 1 corresponds to proper rotations and �1 corresponds to improper
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If a physical system is described by some vector v, then a map defining the relationship
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nant of 1 or �1, where 1 corresponds to proper rotations and �1 corresponds to improper
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rotations or reflections. All such matrices form a subgroup of GL R3� �
, which is called an

orthogonal group and is denoted by O R3� �
. Thus, the point group Gx is a subgroup of the

group O R3� �
[2].

4. Quantum observables

Now consider a function ψ xð Þ : R3 ! C that sets a correspondence between every point R3 and
point C. This function is called a wave function and represents a state of quantum system, like
an electronic state in a crystal.

We can also define the sum and product of such functions and use multiplication by a number
to represent interaction of the particles with each other or external forces:

ψþ ϕ
� �

xð Þ ¼ ψ xð Þ þ ϕ xð Þ; αψð Þ xð Þ ¼ α � ψ xð Þ, ∀x∈R3,α∈C (10)

ψϕ
� �

xð Þ �< ψ xð Þ,ϕ xð Þ >¼
ð

R3

ψ xð Þϕ xð Þdx: (11)

The space of all such functions and operations is called L2 R3;C
� �

. The product is a scalar

product, and thus, L2 R3;C
� �

is a Hilbert space.

When an observation of a physical state is carried out, it sets a correspondence between the wave
function and a real number, i.e., the observation is a linear bounded functional f : L2 R3;C

� �! R.
Thus, any observable property of particles should be an operator A : L2∗ R3;C

� �! L2∗ R3;C
� �

.

Luckily, Hilbert space is self-dual, i.e., L2∗ R3;C
� � ¼ L2 R3;C

� �
, and thus, A is acting on L2 R3;C

� �
.

In this case, due to the Riesz representation theorem [3], A can be represented as scalar product
A ψ xð Þð Þ ¼< a xð Þ,ψ xð Þ >. Thus any element of L2 R3;C

� �
can be considered as a wave function

and also as a functional; to distinguish this, the so-called “bra-ket” language is used—the wave
functions are called “ket” vectors and denoted by ∣ψ xð Þ > ∈ L2 R3;C

� �
, while the functionals are

called “bra” vectors and denoted by < ψ xð Þ∣ ∈L2∗ R3;C
� �

—the scalar in this case is denoted by
< ψ xð Þ∣ψ xð Þ >, and the action of an operator A is denoted by< ψ xð Þ∣A∣ψ xð Þ >. Schematically the
relationship between these spaces is shown in Figure 2.

Figure 1. Symmorphic and nonsymmorphic symmetry.
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For some functions the actions of the operator can be written as multiplication by the number

A φð Þ ¼ λφ, λ∈C: (12)

The number λ is called the eigenvalue, and the function φ xð Þ is called the eigenfunction or eigen-
vector. All operators considered in quantummechanics are assumed to be Hermitian, meaning the
operator has real eigenvalues and the set of its eigenfunctions φi

� �
i form an orthogonal basis [4].

Assume the operator has finite number of eigenvalues; in this case, the action of the operator on the
function from the subspace spanned by eigenfunctions is expressed by the followingmatrix:

A ¼

λ1 0 … 0
0 λ2 … 0
… … … …

0 0 … λn

0
BBB@

1
CCCA: (13)

One of the most important operators in quantum mechanics is the momentum operator iℏ d
dt,

which is particularly used when analyzing a material’s electronic structure or electronic energy
vs. momentum map. Its eigenfunctions φn xð Þ are called eigenstates and denoted by ∣n >. Thus,
we can decompose the wave function as ψ xð Þ ¼Pncnφn xð Þ ¼Pncn∣n >. The eigenvalues form
a matrix which is called the Hamiltonian of the quantum system, and they correspond to the
measured energy of the system.

If we also add the normalization condition ∥ψ xð Þ∥ ¼ 1, we can consider ψ xð Þ as a probabilistic
measure. That means the functional

< ψ xð Þ∣x∣ψ xð Þ >¼
ð

R3

ψ xð Þxψ xð Þdx (14)

Figure 2. Different spaces used in quantum mechanics.
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defines a probability to observe the particle in the position x. The ψj j2 in this case defines a
probability density [4]. As we can see from Figure 3, different symmetries between real and
imaginary parts of the wave function define different types of symmetries of the probability
density.

Consider now all possible transformations of the function which preserve it as an eigenfunction
of the Hamiltonian with the same eigenvalue. For the eigenfunctionφn, the Hamiltonian acts just
as multiplication by the function λnφn, i.e.,

Hφn ¼< λnφn,φn >¼ λn < φn,φn >¼ λn∥φn∥
2 (15)

Thus such a transformation should not change ∥φn∥
2; if one wave function can be obtained

from another via such a transformation, those wave functions are not distinguishable through
observation. This group is called a gauge group and represents the symmetry group of the
wave function [4]. Since

∀a∈C, ∥aφn xð Þ∥2 ¼ aa � ∥φn xð Þ∥2 ¼ aj j2 � ∥φn xð Þ∥2, (16)

multiplication by complex numbers with ∣a∣ ¼ 1 forms the group of such transformations.
These numbers lie on a unit circle in the complex plane, and the group of multiplications by
such numbers is called U 1ð Þ or the group of unitary transformations of the complex plane. The
complex number a ¼ ∣a∣ cos αð Þ þ i � sin αð Þð Þ can be represented as an exponential function in
the following way:

a ¼ ∣a∣eiα (17)

∣a∣ ¼ 1 ! a ¼ eiα: (18)

Thus the action of the U (1) gauge is just a multiplication by the function eiα. If we represent the
complex plane as a stereographic projection of Riemann sphere, we can illustrate U (1) action
as rotation of the sphere. Schematically, it is shown in Figure 4.

If the wave function corresponds to a fermion, according to the Pauli principle, only two
fermions with opposite sign spins can occupy the same energy state. So it is convenient to

Figure 3. Symmetry of the wave function.
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consider ψ xð Þ as having two components ψ ¼ ψup;ψdown

� �
, i.e., ψ is acting to C2. In this case

the transformation of the vector ψup;ψdown

� �
in the two-dimensional complex space C2 is

described by a 2� 2 complex matrix A. For the same reasons as above, this matrix should be

unitary, i.e., AA† ¼ I (where A† is a Hermitian conjugated matrix). All such matrices form a
group U (2). The eigenvalues of such matrices lie on the unit circle that implies any matrix A
from U (2) can be represented in the following form:

A ¼
eiα1 0
0 eiα2

0
B@

1
CA (19)

Aψ ¼
eiα1 0
0 eiα2

0
B@

1
CA

ψup

ψdown

0
B@

1
CA ¼

eiα1ψup

eiα2ψdown

0
B@

1
CA: (20)

Figure 4. Action of the U (1) gauge on complex space.

Figure 5. Action of the U (2) gauge on complex space.
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Thus, if we represent ψup;ψdown

� �
as two different points on the Riemann sphere, then the

action U (2) is a simultaneous rotation of the point ψup, by angle α1 and the point ψdown, by

angle α2. After the full circle rotation, we arrive at the initial point making the space of
parameters α1;α2ð Þ a torus. This is shown schematically in Figure 5.

5. Geometrical phases of the Bloch states

The dynamics of the ψ xð Þ, i.e., changing ψ xð Þ in time, is defined by the time-dependent
Schrödinger equation:

iℏ
∂ψ t; xð Þ

∂t
¼ Hψ t; xð Þ, (21)

where H is the Hamiltonian and consists of all possible physical interactions (ideally) that the
particle can be involved in. The wave function can be determined by solving this equation. The
solution of the Eq. (21) for the eigenstates of theHamiltonian can be written in the following form:

φn t; xð Þ ¼ e
� i

ℏ

Ðt
0

dt0λn t0ð Þ
φn 0; xð Þ, (22)

For a free electron, H consists only of the kinetic energy term � ℏ2

2m∇
2. Its eigenfunctions are

well known as s, p, d, f, etc. (the atomic orbitals). If the electron is moving in crystal, an
external periodic potential, formed by ion cores, and the average potential of all of the other
electrons must be included. In this case, due to the Bloch theorem [5], the eigenfunctions of the
Hamiltonian can be written as

φn
k 0; xð Þ ¼ φn

k xð Þ ¼ eikxunk xð Þ, unk xþ Rð Þ ¼ unk xð Þ: (23)

The value ℏk is called the crystal momentum and is associated with an electron in the lattice. If
the lattice consists ofN atoms and every atom has n electrons, the full lattice Hamiltonian is the
Nn�Nnmatrix for the Nn electron system. Working with such high dimensional objects is not
convenient. Therefore, the wave functions are categorized into bands φk

n

� �
k¼1::N according to

the local symmetry of the wave function (like shown previously in Figure 3), which is
described by quantum numbers of the atom. After Fourier transformation, φn becomes a
function represented in a new basis of functions which depend on crystal momentum (sche-
matically, it is shown in Figure 6). This makes up the energy versus momentum band structure
that is a more convenient representation of the full lattice Hamiltonian, compared with matrix
notation. The band in reciprocal space, however, is not really a function; it consists of discrete
points and is neither smooth nor continuous. However this band structure contains all infor-
mation about the original function ψ xð Þ. Roughly speaking, the band is made up of the

coordinates of the function φn xð Þ in the basis of harmonics ei
2πn
l x

n o
n¼1::N

(eigenfunctions of the

translation operator [6]) where N is the number of unit cells and l is the lattice parameter.
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According to the quantum adiabatic theorem during the time evolution, the system remains in
the eigenstates φn 0; xð Þ ¼ ∣n 0ð Þ > up to phase factor or in other words ∣n 0ð Þ >¼ e�iαn ∣n tð Þ >. If
we consider k as a parameter changing in time then

dφ k tð Þ; xð Þ
dt

¼ eikx ixuk xð Þ dk
dt

þ ∂kuk xð Þ dk
dt

� �
(24)

that gives rise to an additional phase factor to the solution of Schrodinger equation [7]:

φn t; xð Þ ¼ eiγn e
� i

ℏ

Ðt
0

dt0λn k t0ð Þð Þ
∣n k tð Þð Þ > , (25)

γn ¼ i
ð

path C

dk < n kð Þ∣ ∂
∂k

∣n kð Þ > : (26)

If the path C is closed, then γn tð Þ is called the Berry phase. The expression

An kð Þ ¼ i < n kð Þ∣ ∂
∂k

∣n kð Þ > (27)

is called the Berry connection, and it is the vector field over all reciprocal space. We also can
define a curl of this vector field which is called the Berry curvature:

Ωn
i, j kð Þ ¼ ∂

∂ki
An

j kð Þ � ∂
∂kj

An
i kð Þ (28)

Origin of the Berry curvature in the reciprocal space is schematically demonstrated in Figure 7.

Figure 6. Representation of a function in the Fourier space.

Linking Symmetry, Crystallography, Topology, and Fundamental Physics in Crystalline Solids
http://dx.doi.org/10.5772/intechopen.74175

77



Thus, if we represent ψup;ψdown

� �
as two different points on the Riemann sphere, then the

action U (2) is a simultaneous rotation of the point ψup, by angle α1 and the point ψdown, by

angle α2. After the full circle rotation, we arrive at the initial point making the space of
parameters α1;α2ð Þ a torus. This is shown schematically in Figure 5.

5. Geometrical phases of the Bloch states

The dynamics of the ψ xð Þ, i.e., changing ψ xð Þ in time, is defined by the time-dependent
Schrödinger equation:

iℏ
∂ψ t; xð Þ

∂t
¼ Hψ t; xð Þ, (21)

where H is the Hamiltonian and consists of all possible physical interactions (ideally) that the
particle can be involved in. The wave function can be determined by solving this equation. The
solution of the Eq. (21) for the eigenstates of theHamiltonian can be written in the following form:

φn t; xð Þ ¼ e
� i

ℏ

Ðt
0

dt0λn t0ð Þ
φn 0; xð Þ, (22)

For a free electron, H consists only of the kinetic energy term � ℏ2

2m∇
2. Its eigenfunctions are

well known as s, p, d, f, etc. (the atomic orbitals). If the electron is moving in crystal, an
external periodic potential, formed by ion cores, and the average potential of all of the other
electrons must be included. In this case, due to the Bloch theorem [5], the eigenfunctions of the
Hamiltonian can be written as

φn
k 0; xð Þ ¼ φn

k xð Þ ¼ eikxunk xð Þ, unk xþ Rð Þ ¼ unk xð Þ: (23)

The value ℏk is called the crystal momentum and is associated with an electron in the lattice. If
the lattice consists ofN atoms and every atom has n electrons, the full lattice Hamiltonian is the
Nn�Nnmatrix for the Nn electron system. Working with such high dimensional objects is not
convenient. Therefore, the wave functions are categorized into bands φk

n

� �
k¼1::N according to

the local symmetry of the wave function (like shown previously in Figure 3), which is
described by quantum numbers of the atom. After Fourier transformation, φn becomes a
function represented in a new basis of functions which depend on crystal momentum (sche-
matically, it is shown in Figure 6). This makes up the energy versus momentum band structure
that is a more convenient representation of the full lattice Hamiltonian, compared with matrix
notation. The band in reciprocal space, however, is not really a function; it consists of discrete
points and is neither smooth nor continuous. However this band structure contains all infor-
mation about the original function ψ xð Þ. Roughly speaking, the band is made up of the

coordinates of the function φn xð Þ in the basis of harmonics ei
2πn
l x

n o
n¼1::N

(eigenfunctions of the

translation operator [6]) where N is the number of unit cells and l is the lattice parameter.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry76

According to the quantum adiabatic theorem during the time evolution, the system remains in
the eigenstates φn 0; xð Þ ¼ ∣n 0ð Þ > up to phase factor or in other words ∣n 0ð Þ >¼ e�iαn ∣n tð Þ >. If
we consider k as a parameter changing in time then

dφ k tð Þ; xð Þ
dt

¼ eikx ixuk xð Þ dk
dt

þ ∂kuk xð Þ dk
dt

� �
(24)

that gives rise to an additional phase factor to the solution of Schrodinger equation [7]:

φn t; xð Þ ¼ eiγn e
� i

ℏ

Ðt
0

dt0λn k t0ð Þð Þ
∣n k tð Þð Þ > , (25)

γn ¼ i
ð

path C

dk < n kð Þ∣ ∂
∂k

∣n kð Þ > : (26)

If the path C is closed, then γn tð Þ is called the Berry phase. The expression

An kð Þ ¼ i < n kð Þ∣ ∂
∂k

∣n kð Þ > (27)

is called the Berry connection, and it is the vector field over all reciprocal space. We also can
define a curl of this vector field which is called the Berry curvature:

Ωn
i, j kð Þ ¼ ∂

∂ki
An

j kð Þ � ∂
∂kj

An
i kð Þ (28)

Origin of the Berry curvature in the reciprocal space is schematically demonstrated in Figure 7.

Figure 6. Representation of a function in the Fourier space.

Linking Symmetry, Crystallography, Topology, and Fundamental Physics in Crystalline Solids
http://dx.doi.org/10.5772/intechopen.74175

77



The Berry curvature is involved in the semiclassical equation of motion of the particle [8]:

dxi
dt

¼ ∂λn kð Þ
ℏ � ∂ki �

dkj
dt

�Ωn
i, j kð Þ, (29)

which makes the Berry curvature fundamental to various Hall effects, i.e., quantum (integer
and fractional) Hall effects (QHE), the quantum anomalous Hall effect (QAHE), and the
quantum spin Hall effect (QSHE) [9–11]. The QAHE is where an anomalously large current is
generated orthogonal to the applied electric field without application of an external magnetic
field. The QSHE is where a spin current is generated orthogonal to the applied electric field
also without application of an external magnetic field.

Notice that if we change direction of time t ¼ �t, we change the route from counterclockwise
to clockwise in the path integrals. If time reversal symmetry is broken and the clockwise
integral is not equal to the counterclockwise integral, it requires the Berry connection to have
a nonzero curl, i.e., nonzero Berry curvature.

If time reversal symmetry is not broken, the Berry curvature still can be nonzero due to spacial
symmetries. In this case, analysis can be done using topological indices resulting from the
band structure.

6. Gauge action on the reciprocal space

First consider a one-dimensional case. As it was shown before, the U (1) gauge action can be
represented as multiplication by the factor eiα. For an electron in a crystal, it has the following
form:

eiαφ xð Þ ¼ eiαeikxuk xð Þ ¼ ei kxþαð Þuk xð Þ: (30)

Figure 7. Berry curvature in the reciprocal space.
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Thus the action of the gauge can be considered as an additional phase factor or shift by α in
reciprocal space. So the gauge allows the change of parameter k in time, and all geometrical
phases described above can be considered a result of the gauge symmetry. Schematically this is
shown in Figure 8.

The gauge symmetry is the conservation of the eigenvalues and eigenstates of the momentum
operator. The eigenstates of the momentum operator in a crystal are assumed to also be
eigenstates of the operator of translation by a lattice vector. Orthogonality of the eigenstates
implies that bands in the band structure should not intersect, i.e., not have identical E and k
values. If two bands intersect that means that the corresponding eigenstates ∣n > , ∣nþ 1 > are
not orthogonal and the corresponding matrix representing the action of the Hamiltonian has
off-diagonal terms. This is contradictory to the Hermitian rules of the Hamiltonian, i.e., its
eigenstates should be orthogonal. This can happen when the eigenstates of the translation
operator are not a suitable set of functions to form a basis. But how can this occur?

The Hamiltonian for electrons in the crystal lattice is usually constructed from a tight-binding
model and the linear combination of the atomic orbitals (LCAO) [12]. Since the crystal Hamil-
tonian has the following form:

H ¼ � ℏ2

2m
∇2 þ terms representing interactionsð Þ, (31)

it is reasonable to assume that eigenstates of the electrons in the lattice do not differ strongly

from the eigenstates of the free electron Hamiltonian � ℏ2

2 ∇
2 which are s, p, d, f, etc. orbitals.

Thus we can represent the full lattice Hamiltonian as linear combinations of atomic orbitals
according to the space group symmetry, which is the basic logic of molecular orbital theory. If
the space group is nonsymmorphic, then there is also translation by a fraction of a lattice vector
that generates additional eigenstates that, in combination with other symmetries, give rise to
degeneracies in the band structure.

Figure 8. Gauge connection on the band structure.
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To understand this we can introduce Wannier functions as bases for representation of the
eigenstates of the Hamiltonian, instead of eigenstates of a translation operator, as basis. The
Wannier functions can be obtained from the Bloch eigenstates in the following way [13]:

ϕn
R xð Þ ¼ V

2π3

ð

BZ

dke�ikRψn
k xð Þ, (32)

where V is the real space primitive cell volume. The Wannier functions essentially let one trans-
form the band structure back from reciprocal space to real space, allowing relatively easy appli-
cation of symmetry and the calculation of real space properties like the quantum spin Hall effect.

Now let us consider higher dimensions. The 1D band structure is the cross section of a higher-
dimensional picture. In this case the anti-crossing point can remain a point in higher dimen-
sions but may also be a line or even surface in a 3D space as illustrated below. While for the 2D
case, we can still plot a 2D band structure and distinguish points from a line just visually, in 3D
it becomes quite complicated. The typical procedure is to project full 3D band structure on
various surfaces and analyze the series of projections. Schematically, this is shown in Figure 9.
A degenerate point in the band structure, which remains a point on the Fermi surface, is called
Dirac point or in spinful case Weyl point. An example of the calculated Dirac point ofHgTe [14]
and the measured Dirac point (via ARPES) of Sb2Te3 [15] is shown in Figure 10.

There are ways to avoid degeneracy, however. If we consider the spinful case with U (2) gauge
and include a spin orbit coupling (SOC) term in the Hamiltonian, the two degenerate states
become one connected state in terms of the two-component wave function. In this case, the
Dirac point becomes a source of Berry curvature and thus gives nontrivial spin-dependent
transport properties like the anomalous and spin Hall effect.

Figure 9. Degenerate manifolds in the band structure.
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Another way to do anti-crossing analysis is to use topological indices. This numerical method
is the basis for the algorithmic analysis of space group symmetry and their possibilities of
yielding varying topologically nontrivial band structures.

7. Topological indices

It turns out that existence of Hall conductance can be checked directly from the band structure
and that it is an internal property of the bands. The indicator that physicists use to identify this
topological property of the band structure is called the Chern number, which is the integral of
the Berry curvature of the band over the entire Brillouin zone:

Cn
ij ¼

1
2π

ð

BZ

Ωn
i, j kð Þdkidkj (33)

In this case, the Hall conductance of the nth band is proportional to the Chern number,

quantized in units of e2
ℏ and can be calculated by the formula:

σnij ¼
e2

ℏ
� Cn

ij (34)

The Chern number is a very powerful tool; it can be used not only for calculation of the Hall
conductance but also to indicate a surface state. For example, the Chern number described
above is the “first” Chern number, and this nonzero number indicates surface conductance for
a 2D bulk insulator. For a 3D bulk insulator, higher Chern numbers can be used to indicate
surface states [16].

Figure 10. Numerical and experimental observation of Dirac cone [16].
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Another way to obtain a topological index is using the Wilson loop [17]:

W lð Þ ¼ e
Ð

l
A kð Þdl (35)

where l is a loop in k-space and Aij kð Þ ¼< ui,k,∇kuj, k > is a Berry-Wilczek-Zee connection.

Note for this connection we need at least a two-band system, like ψup;ψdown

� �
. The Wilson

loop describes a parallel transport of the gauge field along the closed loop.

Mathematically, a path between two points k1, k2 in k-space can be parametrized by an argu-
ment t in the following way—kt ¼ tk1 þ 1� tð Þk2, t∈ 0; 1½ �—when loop k1 ¼ k2. The Wilson
loop shows how the gauge varies with crystal momentum along a closed path in k-space; the
final gauge phase should be the same as initial. For example, the parameter space of the U (1)
gauge is a circle; thus, moving along a loop in k-space the gauge phase can be either
unchanged or equal to an integer number of full circles (2πn). We can consider also the class
of equivalent loops: loops that give one circle of phase, two circles, etc. These classes of
equivalent loops form a group, called a fundamental group [18]. As it was shown before, the
parameter space of the U (2) gauge is a torus. The torus has two types of loops: one which
shrinks into a point and one which does not. This is known as fundamental group of the torus.
TheWilson loop distinguishes those cases and yields a Z2 topological classification. In Figure 10,
an example of a calculated Wilson loop for the Se2Te3 is shown. The connection between red
dashed lines indicated an index of 1 in the Z2 topological classification.

The gauge transformation is a transformation that preserves the eigenfunction, and the crystal
eigenfunction is represented as a band in electronic structures. In the LCAO approach, bands

Figure 11. Connectivity of bands.
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in the electronic structure can be considered also as representations of the spacial symmetry of
corresponding orbitals and space group symmetry operations. Recently, a monumental and
soon-to-be defining work of this field was carried out where topological analysis and classifi-
cation were done for all 230 crystallographic space groups that describe all possible arrange-
ments of atoms in space [19]. In their work, Bradlyn et al. use the fact that bands can form a
connected group of bands in the band structure corresponding to Wannier functions centered
at maximal Wyckoff positions. If the Fermi level occurs inside such a set of bands, the com-
pound should be topological. If the real compound’s set of bands is connected but filled by
only a fraction of the number of electrons required to fully occupy the set of bands, the
compound is a symmetry enforced semimetal. If such set of bands should be connected but in
the real compound’s band structure, the set splits into a gapped state with the Fermi level
inside the gap, the compound must be a topological insulator, and the bands become
connected though surface states. Schematically, this is shown in Figure 11.

8. Conclusion

We began this chapter by asserting that evolutions in our understanding of the physical
universe have been driven by the reimagining of physical theories with different mathematical
concepts and that we are currently undergoing another such evolution inspired by ideas from
topology and symmetry. Starting from basic mathematical and physical concepts, we
constructed the ideas of eigenfunctions, eigenstates, gauge transformations, and how symme-
tries affect/define them. We then showed how electrons (and their wave functions) in crystals
can be understood in this manner. Finally, the power of this type of understanding was
illustrated by the classification of topological phases of matter with Bradlyn’s effort being the
pinnacle of the body of work in the field over the last decade. Such a general work outlining the
possibilities for topological phases as a matter of symmetry group will drastically change how
chemists and physicists search for new topological materials; they will now be able to defini-
tively start from a set of known possible topological outcomes, given a space group, and adjust
the Fermi level using chemical/physical control to realize the type of topological state desired.

The time is arriving for topological physics to reach technological application. To this end,
researchers are attempting to take advantage of the intrinsic quantum anomalous and quantum
spin Hall effects (QSHE) both of which have their basis in Berry curvature which, as described
earlier, can be understood from a symmetry perspective. The QSHE in particular has immediate
applications to the field of spintronics, which requires large spin currents for switching the states
of devices. Since anti-crossings can be sources of Berry curvature and since large Berry curvature
can result in a large spin Hall effect, it follows that topological materials (which commonly have
demanded or gapped anti-crossings) will be ideal candidates for spin Hall materials.

In the last 10 years, materials scientists have realized topological insulators, Dirac semimetals,
Weyl semimetals, Dirac/Weyl line nodes, and compounds with three, six, and eightfold degen-
erate fermions Na3Bi, Cd3As2 [20], ZrSiS [21], WTe2 [22], Bi2Te3 [23], LuPtBi, YPtBi [24], and
Ta3Sb [25]. However almost all of this work has been done on nonmagnetic systems; the
inclusion of magnetism is difficult in current density function theory calculations. For accurate
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only a fraction of the number of electrons required to fully occupy the set of bands, the
compound is a symmetry enforced semimetal. If such set of bands should be connected but in
the real compound’s band structure, the set splits into a gapped state with the Fermi level
inside the gap, the compound must be a topological insulator, and the bands become
connected though surface states. Schematically, this is shown in Figure 11.

8. Conclusion

We began this chapter by asserting that evolutions in our understanding of the physical
universe have been driven by the reimagining of physical theories with different mathematical
concepts and that we are currently undergoing another such evolution inspired by ideas from
topology and symmetry. Starting from basic mathematical and physical concepts, we
constructed the ideas of eigenfunctions, eigenstates, gauge transformations, and how symme-
tries affect/define them. We then showed how electrons (and their wave functions) in crystals
can be understood in this manner. Finally, the power of this type of understanding was
illustrated by the classification of topological phases of matter with Bradlyn’s effort being the
pinnacle of the body of work in the field over the last decade. Such a general work outlining the
possibilities for topological phases as a matter of symmetry group will drastically change how
chemists and physicists search for new topological materials; they will now be able to defini-
tively start from a set of known possible topological outcomes, given a space group, and adjust
the Fermi level using chemical/physical control to realize the type of topological state desired.

The time is arriving for topological physics to reach technological application. To this end,
researchers are attempting to take advantage of the intrinsic quantum anomalous and quantum
spin Hall effects (QSHE) both of which have their basis in Berry curvature which, as described
earlier, can be understood from a symmetry perspective. The QSHE in particular has immediate
applications to the field of spintronics, which requires large spin currents for switching the states
of devices. Since anti-crossings can be sources of Berry curvature and since large Berry curvature
can result in a large spin Hall effect, it follows that topological materials (which commonly have
demanded or gapped anti-crossings) will be ideal candidates for spin Hall materials.

In the last 10 years, materials scientists have realized topological insulators, Dirac semimetals,
Weyl semimetals, Dirac/Weyl line nodes, and compounds with three, six, and eightfold degen-
erate fermions Na3Bi, Cd3As2 [20], ZrSiS [21], WTe2 [22], Bi2Te3 [23], LuPtBi, YPtBi [24], and
Ta3Sb [25]. However almost all of this work has been done on nonmagnetic systems; the
inclusion of magnetism is difficult in current density function theory calculations. For accurate
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electronic structure calculations, magnetic ordering needs to be experimentally determined
and verified because competing magnetically ordered states can be energetically similar. Soon,
Bradlyn’s type of analysis will be expanded for the 1651 magnetic space groups in three
dimensions, which opens an even larger and more diverse world of possible compounds with
ever more interesting properties to explore.
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“A theory is the more impressive the greater the simplicity of its premises are, the more
different kinds of things it relates, and the more extended is its area of applicability.
Therefore the deep impression that classical thermodynamics made upon me. It is the
only physical theory of universal content concerning which I am convinced that, within
the framework of applicability of its basic concepts, it will never be overthrown.”

(Albert Einstein, 1946)

Abstract

A variety of thermodynamic variables are properly arranged at vertices of an extended
concentric multi-polyhedron diagram based on their physical meanings. A symmetric func-
tion with “patterned self-similarity” is precisely be defined as the function, which is
unchanged not only in function form but also in variable’s nature and neighbor relationship
under symmetric operations. Thermodynamic symmetry roots in the symmetric reversible
Legendre transforms of the potentials. The specific thermodynamic symmetries revealed by
the diagram are only one C3 symmetry about the U � Φ diagonal direction and C4 and σ
symmetries on threeU-containing squares. Based on the equivalence principle of symmetry,
numerous equations of the 12 families can concisely be depicted by overlapping 12 specifi-
cally created rigid, movable graphic patterns on fixed {1, 0, 0} diagrams through σ and/or C4

symmetric operations. Any desired partial derivatives can be derived in terms of several
available quantities by a foolproof graphic method. It is the symmetry that made possible to
build up the diagram as a model like the Periodic Table of the Elements to exhibit an
integration of the entire structure of the thermodynamic variables into a coherent and
complete exposition of thermodynamics and to facilitate the subject significantly.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72839

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 6

Thermodynamic Symmetry and Its Applications ‐
Search for Beauty in Science

Zhen-Chuan Li

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72839

Provisional chapter

Thermodynamic Symmetry and Its Applications -
Search for Beauty in Science

Zhen-Chuan Li

Additional information is available at the end of the chapter

“A theory is the more impressive the greater the simplicity of its premises are, the more
different kinds of things it relates, and the more extended is its area of applicability.
Therefore the deep impression that classical thermodynamics made upon me. It is the
only physical theory of universal content concerning which I am convinced that, within
the framework of applicability of its basic concepts, it will never be overthrown.”

(Albert Einstein, 1946)

Abstract

A variety of thermodynamic variables are properly arranged at vertices of an extended
concentric multi-polyhedron diagram based on their physical meanings. A symmetric func-
tion with “patterned self-similarity” is precisely be defined as the function, which is
unchanged not only in function form but also in variable’s nature and neighbor relationship
under symmetric operations. Thermodynamic symmetry roots in the symmetric reversible
Legendre transforms of the potentials. The specific thermodynamic symmetries revealed by
the diagram are only one C3 symmetry about the U � Φ diagonal direction and C4 and σ
symmetries on threeU-containing squares. Based on the equivalence principle of symmetry,
numerous equations of the 12 families can concisely be depicted by overlapping 12 specifi-
cally created rigid, movable graphic patterns on fixed {1, 0, 0} diagrams through σ and/or C4

symmetric operations. Any desired partial derivatives can be derived in terms of several
available quantities by a foolproof graphic method. It is the symmetry that made possible to
build up the diagram as a model like the Periodic Table of the Elements to exhibit an
integration of the entire structure of the thermodynamic variables into a coherent and
complete exposition of thermodynamics and to facilitate the subject significantly.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72839

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Keywords: thermodynamic symmetry, thermodynamics, symmetry, graphic method,
Legendre transforms, polyhedrons, physical chemistry, chemical physics

1. Introduction

An interpretation of thermodynamics being a science of symmetry was proposed by Herbert
Callen [1, 2]. While an integration of the entire structure into a coherent and complete exposi-
tion of thermodynamics was not undertaken, since it would require repetition of an elaborate
formalism with which the reader presumably is familiar. Such an abstract conceptual interpre-
tation has not widely been recognized.

Symmetry generally conveys two primary meanings: beauty and “patterned self-similarity.” A
symmetric function with “patterned self-similarity” can precisely be defined as the function,
which is unchanged not only in function form but also in variable’s nature and relationship
under symmetric operations. Many works, such as an important class of thermodynamic
equations being resolved by “standard form” into families [3, 4] and expressed by geometric
diagrams (square [5], cub octahedron [6], concentric multi-circle [7], cube [8], and Venn dia-
gram [9]), have revealed symmetry existing in thermodynamics, a keen sense of which is
helpful to every one of the subject.

You might wonder about a series of following questions: Why does symmetry exist in thermo-
dynamics? What are specific thermodynamic symmetries? How can we apply the specific
symmetries for different purposes? What are significant results of its applications? In this
chapter, you will gradually find out answers of all questions above.

2. Configuration of 3D diagram

2.1. Thermodynamic variables

From a mathematical point of view, thermodynamic properties behave like multi-variable
functions and can usually be differentiated and integrated. A variety of thermodynamic vari-
ables can be classified into natural variables, thermodynamic potentials, and all of the thermo-
dynamic properties of a system, which can be found by taking partial derivatives of a
thermodynamic potential of the system with respect to its natural variables if the thermody-
namic potential can be determined as a function of its natural variables.

2.1.1. Natural variables and thermodynamic potentials

A thermodynamic potential is a scalar function used to represent the thermodynamic state of a
system. One main thermodynamic potential, which has a physical interpretation, is the inter-
nal energy, U. The variables that are held constant in this process are termed the natural
variables of that potential.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry88

For a single component one phase system, the number of natural variables (independent vari-
ables to describe the extensive state) of the system is three. A set of three natural variables for
the internal energy are entropy (S), volume (V), and particle number (N), and they are all
extensive variables. The integration (Euler’s equation) of the fundamental equation for internal
energy, dU ¼ TdS� PdV þ μdN, at constant values of the intensive variables [temperature (T),
pressure (P), and chemical potential (μ)] yields

U S;V;Nð Þ ¼ TS� PV þ μN (1)

Since S and V are often inconvenient natural variables from an experimental point of view, the
Legendre transforms are used to define further thermodynamic potentials. Each Legendre
transform is a linear change in variables in which one or more products of conjugate variables
are subtracted from the internal energy to define a new thermodynamic potential.

2.1.2. Complete set of the thermodynamic potentials

A complete set of Legendre transforms initially from the internal energy U(S, V, N) for the
system is shown below [10]. There are no generally accepted symbols for all of the eight
thermodynamic potentials, and so a suggestion published in [8] is utilized here.

H S;P;Nð Þ ¼ U S;V;Nð Þ � �P ·Vð Þ ¼ TSþ μN (2)

A T;V;Nð Þ ¼ U S;V;Nð Þ � T ·Sð Þ ¼ �PV þ μN (3)

ψ S;V;μ
� � ¼ U S;V;Nð Þ � μ ·N

� � ¼ TS� PV (4)

G T;P;Nð Þ ¼ U S;V;Nð Þ � �P ·Vð Þ � Tð Þ · SÞ ¼ μN (5)

Ω T;V;μ
� � ¼ U S;V;Nð Þ � T ·Sð Þ � μ ·N

� � ¼ �PV (6)

χ S;P;μ
� � ¼ U S;V;Nð Þ � �P ·Vð Þ � μ ·N

� � ¼ TS (7)

Φ T;P;μ
� � ¼ U S;V;Nð Þ � T ·Sð Þ � �P ·Vð Þ � μ ·N

� � ¼ 0 (8)

2.1.3. Thermodynamic properties

The thermodynamic properties can be expressed in terms of the derivatives of the potentials
with respect to their natural variables. These equations are known as equations of state, since
they specify the properties of the thermodynamic state.

First-order partial derivative variables:

T ¼ ∂U
∂S

� �

VN
¼ ∂H

∂S

� �

PN
¼ ∂ψ

∂S

� �

Vμ
¼ ∂χ

∂S

� �

Pμ
(9)

�P ¼ ∂U
∂V

� �

SN
¼ ∂A

∂V

� �

TN
¼ ∂Ω

∂V

� �

Tμ
¼ ∂ψ

∂V

� �

Sμ
(10)
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μ ¼ ∂U
∂N

� �

SV
¼ ∂H

∂N

� �

SP
¼ ∂A

∂N

� �

TV
¼ ∂G

∂N

� �

TP
(11)

�S ¼ ∂G
∂T

� �

PN
¼ ∂A

∂T

� �

VN
¼ ∂Ω

∂T

� �

Vμ
(12)

V ¼ ∂G
∂P

� �

TN
¼ ∂H

∂P

� �

SN
¼ ∂χ

∂P

� �

Sμ
(13)

�N ¼ ∂Ω
∂μ

� �

TV
¼ ∂χ

∂μ

� �

SP
¼ ∂ψ

∂μ

� �

SV
(14)

Each first-order partial derivative of a potential is associated (or conjugated) with its
corresponding independent (or natural) variable of the potential to comprise a pair of
conjugate variables. Above six symbols of the first-order partial derivatives are almost the
same as the symbols of the six natural variables, except for three of them (�S, �P, and �N)
holding a negative sign (�). The negative sign in front of those three variables indicates
that they physically seek a maximum, rather than a minimum, during spontaneous
changes and equilibriums. The six different symbols of the variables can make three
intensive versus extensive conjugate variable pairs (T � S, P � V, and μ � N), within three
products of the conjugate variable pairs (T � S, P � V, and μ � N) have the same units as the
potentials (U, H, A, ψ, G, Ω, χ, and Φ), and they also significantly comprise three opposite
sign conjugate variable pairs (T � �S, �P � V, and μ � �N) if the negative sign (�) in front
of those three variables (�S, �P, and �N) must be taken into account for an essential
necessity explained later.

Second-order partial derivative variables:

CP (isobaric thermal capacity) and CV (isochoric thermal capacity)

CPN ¼ ∂H
∂T

� �

PN
¼ T

∂S
∂T

� �

PN
¼ �T

∂2G
∂T2

� �

PN
¼ CP (15)

CVN ¼ ∂U
∂T

� �

VN
¼ T

∂S
∂T

� �

VN
¼ �T

∂2A
∂T2

� �

VN
¼ CV (16)

Other partial derivative variables:

The isobaric expansion coefficient: α ¼ 1
V

∂V
∂T

� �

P
(17)

The isothermal compressibility: κT ¼ � 1
V

∂V
∂P

� �

T
(18)

etc.
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2.1.4. A 3D diagram of the thermodynamic variables

A variety of thermodynamic variables including three conjugate pairs of natural variables, eight
thermodynamic potentials, and six first-order partial derivatives can properly be arranged in a
concentric multi-polyhedron diagram (Figure 1) based on their physical meanings as follows:

1. The natural variables: Three conjugate (intensive � extensive) pairs of natural variables,
i.e., temperature (T) � entropy (S), pressure (P) � volume (V), and chemical potential (μ) �
particle number (N), are arranged at vertices of a small octahedron with the Cartesian
coordinates: T[1,0,0] � S[�1,0,0], P[0,�1,0] � V[0,1,0], and μ[0,0,1] � N[0,0,�1].

Figure 1. 3D concentric multi-polyhedron diagram.
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Each first-order partial derivative of a potential is associated (or conjugated) with its
corresponding independent (or natural) variable of the potential to comprise a pair of
conjugate variables. Above six symbols of the first-order partial derivatives are almost the
same as the symbols of the six natural variables, except for three of them (�S, �P, and �N)
holding a negative sign (�). The negative sign in front of those three variables indicates
that they physically seek a maximum, rather than a minimum, during spontaneous
changes and equilibriums. The six different symbols of the variables can make three
intensive versus extensive conjugate variable pairs (T � S, P � V, and μ � N), within three
products of the conjugate variable pairs (T � S, P � V, and μ � N) have the same units as the
potentials (U, H, A, ψ, G, Ω, χ, and Φ), and they also significantly comprise three opposite
sign conjugate variable pairs (T � �S, �P � V, and μ � �N) if the negative sign (�) in front
of those three variables (�S, �P, and �N) must be taken into account for an essential
necessity explained later.

Second-order partial derivative variables:

CP (isobaric thermal capacity) and CV (isochoric thermal capacity)

CPN ¼ ∂H
∂T

� �

PN
¼ T

∂S
∂T

� �

PN
¼ �T

∂2G
∂T2

� �

PN
¼ CP (15)

CVN ¼ ∂U
∂T

� �

VN
¼ T

∂S
∂T

� �

VN
¼ �T

∂2A
∂T2

� �

VN
¼ CV (16)

Other partial derivative variables:

The isobaric expansion coefficient: α ¼ 1
V

∂V
∂T

� �

P
(17)

The isothermal compressibility: κT ¼ � 1
V

∂V
∂P

� �

T
(18)

etc.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry90

2.1.4. A 3D diagram of the thermodynamic variables

A variety of thermodynamic variables including three conjugate pairs of natural variables, eight
thermodynamic potentials, and six first-order partial derivatives can properly be arranged in a
concentric multi-polyhedron diagram (Figure 1) based on their physical meanings as follows:

1. The natural variables: Three conjugate (intensive � extensive) pairs of natural variables,
i.e., temperature (T) � entropy (S), pressure (P) � volume (V), and chemical potential (μ) �
particle number (N), are arranged at vertices of a small octahedron with the Cartesian
coordinates: T[1,0,0] � S[�1,0,0], P[0,�1,0] � V[0,1,0], and μ[0,0,1] � N[0,0,�1].

Figure 1. 3D concentric multi-polyhedron diagram.

Thermodynamic Symmetry and Its Applications ‐ Search for Beauty in Science
http://dx.doi.org/10.5772/intechopen.72839

91



2. The thermodynamic potentials: In order to exhibit a close relationship between each
thermodynamic potential and its three correlated natural valuables, let four pairs of ther-
modynamic potentials {internal energy U(S, V, N) � Φ(T, P, μ), enthalpy H(S, P, N) �
grand canonical potential Ω (T, V, μ), Gibbs free energy G(T, P, N) � ψ(S, V, μ), and
Helmholtz free energy A(T, V, N) � χ(S, P, μ)} be located at the opposite ends of four
diagonals of a cube with the Cartesian coordinates: U[�1, 1, �1] � Φ[1, �1, 1],
H[�1,�1,�1] � Ω [1, 1, 1], G[1, �1, �1] � ψ[�1, 1, 1], and A[1, 1, �1] � χ[�1, �1, 1].

3. The first-order partial derivatives: Let the six first-order partial derivatives (T, �S, �P, V, μ,
and �N) similarly be located at vertices of a large octahedron with the Cartesian coordi-
nates: T[3,0,0], �S[�3,0,0], �P[0,�3,0], V[0,3,0], μ[0,0,3], and �N[0,0,�3].

2.2. Variable’s neighbor relationship in the diagram

2.2.1. To simplify the diagram

Different categories of the variables are located at different polyhedrons, whereas symbols of
the variables at two octahedrons are almost same except for �S, �P, and �N. Therefore, it is
possible for us to simplify two octahedrons into the large one (Figure 1)(4) if the negative sign
(“�”) in front of those variables (�S, �P, and �N) could be taken into account by a specific
way, which will be described later.

2.2.2. Variable’s neighbor relationship

Relations between any two variables can be visually determined by their neighbor relationship
in the diagram. Neighbors can be classified as first, second, and third ones based on distances
between them. Correlated or conjugate relation between two variables can easily be deter-
mined by the neighbor relationship. A pair of conjugate variables are always located at oppo-
site ends of a diagonal of the polyhedron, for example, T� �S,�P � V, μ��N, or U�Φ. The
correlated relation between each potential and its natural variables is always the closest (first)
neighbor relationship shown in the diagram.

3. Thermodynamic symmetry

3.1. Symmetry roots in the Legendre transforms

3.1.1. The Legendre transforms

Each Legendre transform (ELT or E) is a leaner conversion between a pair of multiple variable
functions [M = m(x, y, w) and F = f(x, y, z)], which is associated with a transform from one to
another between a pair of conjugate variables (w and z) [11].

The Legendre transform (E: F ! M and z ! w) is defined as:
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m x; y;wð Þ ¼ f x; y; zð Þ � w · z (19)

where the two functions (M and F) and a product term (w � z) of the two conjugate variables
(w and z) have same units.

Every Legendre transform (E) has its own reverse Legendre transform (RLT or R: M ! F and
w ! z). The reverse Legendre transform (R) is therefore written as:

f x; y; zð Þ ¼ m x; y;wð Þ þ z ·w (20)

E and R are reversible each other. Reversible Legendre transforms are associated with a pair of
the conjugate variables (w and z), a pair of the functions [M = m(x, y, w) and F = f(x, y, z), or
M = m(w) and F = f(z), or M and F], and a pair of the reversible conversions (E and R). The
reversible Legendre transforms can be written as (E $ R), where a double arrow symbol ($)
stands for “reversible”. There are (M $ F) and (w $ z) in the reversible (E $ R).

3.1.2. Symmetry of the Legendre transforms

3.1.2.1. The Legendre transforms with a pair of same sign conjugate variables

It can be seen by comparing Eq. (19) with Eq. (20) that although they are basically same, but
not exactly same since there is a slight difference in an opposite sign (negative or positive) in
front of the product term of the two conjugate variables (w � z) in the reversible (E$ R) under a
pair of the same sign conjugate variables (w and z). Therefore, the reversible (E$ R), without a
general formula, are asymmetric if the two conjugate variables (w and z) have same sign.

3.1.2.2. The Legendre transforms with a pair of opposite sign conjugate variables

Although the reversible (E $ R) are asymmetric under a pair of the same sign conjugate
variables (w and z), however, if the negative sign (�) in front of the product term can be taken
into account by a pair of opposite sign conjugate variables (z and �w or �z and w), and if the
negative sign (�) in front of either negative conjugate variable (�w or �z) can be controlled by
a pair of opposite conjugate variable treatments (either canceling or keeping the negative sign),
which are symbolized as [ ] and { }, respectively, the asymmetric reversible (E $ R) is able to
become symmetric reversible Legendre transforms (E* $ R*), where an asterisk symbol (*)
stands for symmetric. In other words, the asymmetric (E$ R) can become symmetric (E*$ R*)
under two required conditions: a pair of the opposite sign conjugate variables (z and �w or �z
and w) and a pair of the opposite conjugate variable treatments ([ ] and { }) are involved in the
symmetric (E*$ R*).

3.1.2.3. A general formula for the symmetric reversible Legendre transforms

The general formula for the symmetric (E* $ R*) must be generalized from the two reversible
equations, Eqs. (19) and (20). It can be seen in their common writing order, from left to right,
that the two equations commonly consist of two kinds of symbols: one kind of a series of
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2. The thermodynamic potentials: In order to exhibit a close relationship between each
thermodynamic potential and its three correlated natural valuables, let four pairs of ther-
modynamic potentials {internal energy U(S, V, N) � Φ(T, P, μ), enthalpy H(S, P, N) �
grand canonical potential Ω (T, V, μ), Gibbs free energy G(T, P, N) � ψ(S, V, μ), and
Helmholtz free energy A(T, V, N) � χ(S, P, μ)} be located at the opposite ends of four
diagonals of a cube with the Cartesian coordinates: U[�1, 1, �1] � Φ[1, �1, 1],
H[�1,�1,�1] � Ω [1, 1, 1], G[1, �1, �1] � ψ[�1, 1, 1], and A[1, 1, �1] � χ[�1, �1, 1].

3. The first-order partial derivatives: Let the six first-order partial derivatives (T, �S, �P, V, μ,
and �N) similarly be located at vertices of a large octahedron with the Cartesian coordi-
nates: T[3,0,0], �S[�3,0,0], �P[0,�3,0], V[0,3,0], μ[0,0,3], and �N[0,0,�3].

2.2. Variable’s neighbor relationship in the diagram

2.2.1. To simplify the diagram

Different categories of the variables are located at different polyhedrons, whereas symbols of
the variables at two octahedrons are almost same except for �S, �P, and �N. Therefore, it is
possible for us to simplify two octahedrons into the large one (Figure 1)(4) if the negative sign
(“�”) in front of those variables (�S, �P, and �N) could be taken into account by a specific
way, which will be described later.

2.2.2. Variable’s neighbor relationship

Relations between any two variables can be visually determined by their neighbor relationship
in the diagram. Neighbors can be classified as first, second, and third ones based on distances
between them. Correlated or conjugate relation between two variables can easily be deter-
mined by the neighbor relationship. A pair of conjugate variables are always located at oppo-
site ends of a diagonal of the polyhedron, for example, T� �S,�P � V, μ��N, or U�Φ. The
correlated relation between each potential and its natural variables is always the closest (first)
neighbor relationship shown in the diagram.

3. Thermodynamic symmetry

3.1. Symmetry roots in the Legendre transforms

3.1.1. The Legendre transforms

Each Legendre transform (ELT or E) is a leaner conversion between a pair of multiple variable
functions [M = m(x, y, w) and F = f(x, y, z)], which is associated with a transform from one to
another between a pair of conjugate variables (w and z) [11].

The Legendre transform (E: F ! M and z ! w) is defined as:
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m x; y;wð Þ ¼ f x; y; zð Þ � w · z (19)

where the two functions (M and F) and a product term (w � z) of the two conjugate variables
(w and z) have same units.

Every Legendre transform (E) has its own reverse Legendre transform (RLT or R: M ! F and
w ! z). The reverse Legendre transform (R) is therefore written as:

f x; y; zð Þ ¼ m x; y;wð Þ þ z ·w (20)

E and R are reversible each other. Reversible Legendre transforms are associated with a pair of
the conjugate variables (w and z), a pair of the functions [M = m(x, y, w) and F = f(x, y, z), or
M = m(w) and F = f(z), or M and F], and a pair of the reversible conversions (E and R). The
reversible Legendre transforms can be written as (E $ R), where a double arrow symbol ($)
stands for “reversible”. There are (M $ F) and (w $ z) in the reversible (E $ R).

3.1.2. Symmetry of the Legendre transforms

3.1.2.1. The Legendre transforms with a pair of same sign conjugate variables

It can be seen by comparing Eq. (19) with Eq. (20) that although they are basically same, but
not exactly same since there is a slight difference in an opposite sign (negative or positive) in
front of the product term of the two conjugate variables (w � z) in the reversible (E$ R) under a
pair of the same sign conjugate variables (w and z). Therefore, the reversible (E$ R), without a
general formula, are asymmetric if the two conjugate variables (w and z) have same sign.

3.1.2.2. The Legendre transforms with a pair of opposite sign conjugate variables

Although the reversible (E $ R) are asymmetric under a pair of the same sign conjugate
variables (w and z), however, if the negative sign (�) in front of the product term can be taken
into account by a pair of opposite sign conjugate variables (z and �w or �z and w), and if the
negative sign (�) in front of either negative conjugate variable (�w or �z) can be controlled by
a pair of opposite conjugate variable treatments (either canceling or keeping the negative sign),
which are symbolized as [ ] and { }, respectively, the asymmetric reversible (E $ R) is able to
become symmetric reversible Legendre transforms (E* $ R*), where an asterisk symbol (*)
stands for symmetric. In other words, the asymmetric (E$ R) can become symmetric (E*$ R*)
under two required conditions: a pair of the opposite sign conjugate variables (z and �w or �z
and w) and a pair of the opposite conjugate variable treatments ([ ] and { }) are involved in the
symmetric (E*$ R*).

3.1.2.3. A general formula for the symmetric reversible Legendre transforms

The general formula for the symmetric (E* $ R*) must be generalized from the two reversible
equations, Eqs. (19) and (20). It can be seen in their common writing order, from left to right,
that the two equations commonly consist of two kinds of symbols: one kind of a series of
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conventional mathematical symbols, which are an equal sign (=) located between the two
functions, an uncertain changeable sign (� or +) located between a pair the functions and the
product term, and a product sign (�) located between the two opposite sign conjugate vari-
ables, respectively, and another kind of a series of symbols associated with given information,
which are a pair of the reversible functions (M and F) and a pair of the involved opposite sign
conjugate variables. The given information symbols can be called as first, second, third, and
fourth one in the writing order from left to right, respectively.

If we use a pair of square symbols (□ and □) symbolizing a pair of the known functions (M and F),
and a pair of different symbols ([ ] and { }) symbolizing a pair of the opposite treatments
(canceling and keeping), and put an empty space for the uncertain (or unknown) sign (� or +)
located between the functions and the product term, the general formula may be created for the
symmetric (E*$ R*) to be

either □ ¼ □ ½ � · f g or □ ¼ □ f g · ½ � (21)

It can be seen in Eq. (21) that the two different possible orders of the opposite treatments, [ ] � { }
and { }� [ ], would make the general formula uncertain, not unique. The general formula for the
symmetric (E* $ R*) must be unique.

3.1.2.4. The order of the opposite treatments on a pair of the opposite sign conjugate variables

It is found out during my thinking about above problem that only one of two possible opposite
signs (either positive or negative) could be bestowed on each conjugate variable to make sense,
whereas another opposite sign makes no sense, and similarly that only one of two possible
treatment orders (either [ ] � { } or { } � [ ]) can make sense, whereas another opposite order
makes no sense. Therefore, a unique opposite treatment order can be determined only by
checking against the well-known basic conclusions and formulas in the subject.

After a series of serious checks against some well-known basic conclusions and formulas in
thermodynamics, such as the entropy (S) seeks for a maximum, rather than a minimum,
during any spontaneous processes and equilibriums, the first-order partial derivative of the
potentials (G, A, and Ω) with respect to their natural variable of temperature (T) equals �S in
Eq. (12), rather than S (no sign means positive), if the negative sign is bestowed only on those
three conjugate natural variables (S, P, and N), respectively, rather than oppositely on T, V, and
μ, then a set of the three opposite sign conjugate natural variable pairs (T � �S, �P � V, and
μ � �N) will exactly be same as those six first-order partial derivatives of the potentials in
Eqs. (9)–(14) and so on, then it is found out that the right unique order of the two opposite
treatments in the general formula must be [ ] � { }, rather than { }� [ ]; therefore, the general
formula for the symmetric (E* $ R*) must be symbolized as:

□ ¼ □ ½ � · f g (22)

rather than □ = □ { } � [ ], since Eq. (22) makes sense.
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3.1.2.5. A general procedure for using the symbolized general formula

If we knew a pair of the two opposite sign conjugate variables (either �w and z or w and �z), a
pair of the two associated functions (M and F), and a direction of the Legendre transform
(either F ! M or M ! F), thus we would be able to find out the unknown (uncertain) sign of
the product term (either w � z or z � w) in Eq. (22) for the symmetric (E* $ R*). The general
procedure of a created specific method comprises the following four steps, here take a given
Legendre transform (U ! H) as an example.

Step 1: Obtain information about a pair of given potentials {U(�S, V, �N) and H(�S, �P, �N)}
and a pair of associated opposite sign conjugate natural variables (V and �P) as well as the
conversion direction (!) involved in the given conversion (U ! H);

Step 2: Use the first square symbol (□) in Eq. (22) to select the converted (ended) potential H
(�S, �P, �N), the second square symbol (□) to select the converting (starting) potential U(�S,
V, �N), the third canceling symbol [ ] to cancel any negative sign of the conjugate variable (�P)
of the potential H(�S, �P, �N) located in the first place, and the fourth keeping symbol { } to
keep any negative sign of the conjugate variable (V) of the potentialU(�S, V,�N) located in the
second place, respectively;

Step 3: Find out an unknown sign of the product term between the two pairs of the symbols
in the general formula, the unknown sign is found out to be positive (+), in this case, since no
sign in front of the conjugate variable (V), which is associated with the potential U(�S, V,
�N) located in the second place, is kept by the keeping symbol { };

Step 4: Write down a series of results of both the known and the unknown obtained above
in the writing order of the general formula from left to right, and double check it for sure
as below:

H �S;�P;�Nð Þ ¼ U �S;V;�Nð Þ þ P ·V (23)

3.1.3. Symmetry of the thermodynamic potentials

The Legendre transforms are used to define thermodynamic potentials from one to another,
thus the exchangeable (reversible) potentials are symmetric when a pair of opposite sign
conjugate variables (T � �S, V � �P or μ � �N) are treated under a pair of opposite ways
(canceling [ ] or keeping { }). Based on the general procedure of the specific method described
above, we can write down the reversible Legendre transforms for any pair of the closest
neighbor potentials.

For example, take V and �P as a pair of the opposite sign conjugate natural variables, which
are exactly same as a pair of the first-order partial derivatives, and exchange the two conjugate
natural variables (V $ �P), thus four parallel potential pairs like (U $ H), (A $ G), (Ω $ Φ),
and (ψ $ χ), shown in Figure 1, will mirror-symmetrically be exchanged in each pair, respec-
tively. Some symmetric exchangeable equations in (U $ H) and (A $ G) can be written down
on the spot as follows:

Thermodynamic Symmetry and Its Applications ‐ Search for Beauty in Science
http://dx.doi.org/10.5772/intechopen.72839

95



conventional mathematical symbols, which are an equal sign (=) located between the two
functions, an uncertain changeable sign (� or +) located between a pair the functions and the
product term, and a product sign (�) located between the two opposite sign conjugate vari-
ables, respectively, and another kind of a series of symbols associated with given information,
which are a pair of the reversible functions (M and F) and a pair of the involved opposite sign
conjugate variables. The given information symbols can be called as first, second, third, and
fourth one in the writing order from left to right, respectively.

If we use a pair of square symbols (□ and □) symbolizing a pair of the known functions (M and F),
and a pair of different symbols ([ ] and { }) symbolizing a pair of the opposite treatments
(canceling and keeping), and put an empty space for the uncertain (or unknown) sign (� or +)
located between the functions and the product term, the general formula may be created for the
symmetric (E*$ R*) to be

either □ ¼ □ ½ � · f g or □ ¼ □ f g · ½ � (21)

It can be seen in Eq. (21) that the two different possible orders of the opposite treatments, [ ] � { }
and { }� [ ], would make the general formula uncertain, not unique. The general formula for the
symmetric (E* $ R*) must be unique.

3.1.2.4. The order of the opposite treatments on a pair of the opposite sign conjugate variables

It is found out during my thinking about above problem that only one of two possible opposite
signs (either positive or negative) could be bestowed on each conjugate variable to make sense,
whereas another opposite sign makes no sense, and similarly that only one of two possible
treatment orders (either [ ] � { } or { } � [ ]) can make sense, whereas another opposite order
makes no sense. Therefore, a unique opposite treatment order can be determined only by
checking against the well-known basic conclusions and formulas in the subject.

After a series of serious checks against some well-known basic conclusions and formulas in
thermodynamics, such as the entropy (S) seeks for a maximum, rather than a minimum,
during any spontaneous processes and equilibriums, the first-order partial derivative of the
potentials (G, A, and Ω) with respect to their natural variable of temperature (T) equals �S in
Eq. (12), rather than S (no sign means positive), if the negative sign is bestowed only on those
three conjugate natural variables (S, P, and N), respectively, rather than oppositely on T, V, and
μ, then a set of the three opposite sign conjugate natural variable pairs (T � �S, �P � V, and
μ � �N) will exactly be same as those six first-order partial derivatives of the potentials in
Eqs. (9)–(14) and so on, then it is found out that the right unique order of the two opposite
treatments in the general formula must be [ ] � { }, rather than { }� [ ]; therefore, the general
formula for the symmetric (E* $ R*) must be symbolized as:

□ ¼ □ ½ � · f g (22)

rather than □ = □ { } � [ ], since Eq. (22) makes sense.
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3.1.2.5. A general procedure for using the symbolized general formula

If we knew a pair of the two opposite sign conjugate variables (either �w and z or w and �z), a
pair of the two associated functions (M and F), and a direction of the Legendre transform
(either F ! M or M ! F), thus we would be able to find out the unknown (uncertain) sign of
the product term (either w � z or z � w) in Eq. (22) for the symmetric (E* $ R*). The general
procedure of a created specific method comprises the following four steps, here take a given
Legendre transform (U ! H) as an example.
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and a pair of associated opposite sign conjugate natural variables (V and �P) as well as the
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Step 2: Use the first square symbol (□) in Eq. (22) to select the converted (ended) potential H
(�S, �P, �N), the second square symbol (□) to select the converting (starting) potential U(�S,
V, �N), the third canceling symbol [ ] to cancel any negative sign of the conjugate variable (�P)
of the potential H(�S, �P, �N) located in the first place, and the fourth keeping symbol { } to
keep any negative sign of the conjugate variable (V) of the potentialU(�S, V,�N) located in the
second place, respectively;

Step 3: Find out an unknown sign of the product term between the two pairs of the symbols
in the general formula, the unknown sign is found out to be positive (+), in this case, since no
sign in front of the conjugate variable (V), which is associated with the potential U(�S, V,
�N) located in the second place, is kept by the keeping symbol { };

Step 4: Write down a series of results of both the known and the unknown obtained above
in the writing order of the general formula from left to right, and double check it for sure
as below:

H �S;�P;�Nð Þ ¼ U �S;V;�Nð Þ þ P ·V (23)

3.1.3. Symmetry of the thermodynamic potentials

The Legendre transforms are used to define thermodynamic potentials from one to another,
thus the exchangeable (reversible) potentials are symmetric when a pair of opposite sign
conjugate variables (T � �S, V � �P or μ � �N) are treated under a pair of opposite ways
(canceling [ ] or keeping { }). Based on the general procedure of the specific method described
above, we can write down the reversible Legendre transforms for any pair of the closest
neighbor potentials.

For example, take V and �P as a pair of the opposite sign conjugate natural variables, which
are exactly same as a pair of the first-order partial derivatives, and exchange the two conjugate
natural variables (V $ �P), thus four parallel potential pairs like (U $ H), (A $ G), (Ω $ Φ),
and (ψ $ χ), shown in Figure 1, will mirror-symmetrically be exchanged in each pair, respec-
tively. Some symmetric exchangeable equations in (U $ H) and (A $ G) can be written down
on the spot as follows:
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U ! H : H �S;�P;�Nð Þ ¼ U �S;V;�Nð Þ ? �P½ � · Vf g ¼ U �S;V;�Nð Þ þ P ·V ð2Þ

H ! U : U �S;V;�Nð Þ ¼ H �S;�P;�Nð Þ ? V½ � · �Pf g ¼ H �S;�P;�Nð Þ � V ·P ð1Þ

A ! G : G T;�P;�Nð Þ ¼ A T;V;�Nð Þ ? �P½ � · Vf g ¼ A T;V;�Nð Þ þ P ·V ð5Þ
G ! A : A T;V;�Nð Þ ¼ G T;�P;�Nð Þ ? V½ � · �Pf g ¼ G T;�P;�Nð Þ � V ·P ð3Þ

Similarly, take �S and T as a pair of the opposite sign conjugate natural variables, which are
also exactly same as a pair of the first-order partial derivatives, and exchange the two conjugate
natural variables (�S $ T), thus four parallel potential pairs like (U $ A), (H $ G), (ψ $ Ω),
and (χ $ Φ) shown in Figure 1 will mirror-symmetrically be exchanged in each pair, respec-
tively. Some symmetric exchangeable equations in (U $ A) and (H $ G) can be written down
on the spot as follows:

U ! A :A T;V;�Nð Þ ¼ U �S;V;�Nð Þ ? T½ � · �Sf g ¼ U �S;V;�Nð Þ � T ·S ð3Þ
A ! U :U �S;V;�Nð Þ ¼ A T;V;�Nð Þ ? �S½ � · Tf g ¼ A T;V;�Nð Þ þ S ·T ð1Þ
H ! G :G T;�P;�Nð Þ ¼ H �S;�P;�Nð Þ ? T½ � · �Sf g ¼ H �S;P;�Nð Þ � T · S ð5Þ
G ! H :H �S;�P;�Nð Þ ¼ G T;�P;�Nð Þ ? �S½ � · Tf g ¼ G T;�P;�Nð Þ þ S ·T ð2Þ

It is found out by checking above equations against Figure 1 that the symbolized general
formula [Eq. (22)] works very well and makes sense, that specific symmetries involved in the
symmetric reversible conversions of the potentials {F*, (+/�)z) $ M*, (�/+)w} are mirror
symmetry (σ) with respect to a mirror and fourfold rotating symmetry (C4) about an axis and
that each mirror is always perpendicular to a linking segment of the two opposite sign
conjugate variables, and each rotating axis is the linking segments of a pair of opposite sign
conjugate variables.

3.1.4. Symmetry of the thermodynamic properties

The thermodynamic properties can be expressed in terms of the derivatives of the potentials
with respect to their natural variables. Therefore, many thermodynamic equations (properties)
are symmetric too. For example, it can be seen that following four rewritten Maxwell equations

∂V
∂T

� �

PN
¼ � ∂S

∂P

� �

TN
or

∂ Vð Þ
∂T

� �

PN
¼ ∂ �Sð Þ

∂P

� �

TN
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∂T
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� �
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¼ ∂V
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� �

PN
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� �
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¼ ∂T

∂V
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∂ �Pð Þ
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� �

VN
¼ ∂ Tð Þ

∂V

� �

SN
(26)

∂S
∂V

� �
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¼ ∂P

∂T

� �

VN
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∂ �Sð Þ
∂V

� �
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¼ ∂ �Pð Þ

∂T

� �

VN
(27)
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display mirror symmetry (σ) with respect to both sides of each equation and fourfold rotation
symmetry (C4) about the conjugate pair of μ and �N in Figure 1.

3.2. Koenig’s results and geometric explanations

There are not generally accepted symbols for all thermodynamic potentials. In Koenig’s paper,
Callen’s transformed symbols [2, 4], which are also recommended by IUPAC [10], were used;
whereas, in this chapter, Pate’s symbols [8] are used. In order to conveniently discuss Koenig’s
results, a comparison of these symbols is shown in Figure 2, where another kind of symbols

Figure 2. Comparison of the symbols for thermodynamic potentials.
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(conjugate ones) is also introduced. The relations among three different kinds of the symbols
for four transformed potentials are as follows:

U0 ¼ ψ ¼ G∗; H0 ¼ χ ¼ A∗; G0 ¼ Φ ¼ U∗; A0 ¼ Ω ¼ H∗:

where symbols with a prime (0) stand for Callen’s transformed ones (Figure 2(2)) and symbols
with an asterisk (*) stand for conjugate ones (Figure 2(3–6)).

Koenig pointed out that an important class of thermodynamic equations being resolved by
“standard form” into families [3, 4], and the equations of greatest physical interest belong to

Figure 3. Thermodynamic symmetry: One C3 symmetry about the [1, �1, 1] (U � Φ diagonal) direction and C4 and σ
symmetries on three U-containing squares.
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families having 48, 24, 12, or 8 members. The remaining possibilities for the number of
members per family are 6, 4, 3, and 1. Also, he gave one example of each kind:

1. 48 members (∂U/∂V)T,N = T(∂P/∂T)V,N � P

2. 24 members: (∂T/∂V)S,N = � (∂P/ ∂S)V,N

3. 12 members: A = U � TS

4. 8 members: dU = TdS � PdV + μdN

5. 6 members: U � A + G � H = 0

6. 4 members: U � G0 = TS � PV + μN

7. 3 members: U + A + G + H � H0 � G0 � A0 � U0 = 4μN

8. 1 member: U � A + G � H + H0 � G0 + A0 � U0 = 0

He evaluated the value of his results being less in the technique, which supplies for generating
formulas, than in its revelation of the symmetry of the equations of thermodynamics, a keen
sense of which is helpful to every one of the subject.

It can be geometrically explained and verified by a well-oriented cub octahedron diagram
(Figure 3) that his most results are true, however, that the example of the four member family
should be sum (plus or addition) of U and G0, rather than difference (minus or subtraction)
between them, that the example of the one member family could be difference (minus or
subtraction) between U and G0, rather than U � A + G � H + H0 � G0 + A0 � U0 = 0, and that
the revealed symmetry in thermodynamics is not perfect as the geometric symmetry of the cub
octahedron is since the zero potential (Φ) damages the cube symmetry.

3.3. Thermodynamic symmetry

The thermodynamic symmetry revealed and verified by above geometric analysis in Figure 3
exhibits only one C3 (threefold rotation) symmetry about the [1, �1, 1] (U � Φ diagonal)
direction and C4 (fourfold rotation) and σ (mirror) symmetries on three U-containing squares,
where the square including U, H, G, and A is the most important and useful one.

4. Extension

Koenig extended the square [5] to the octahedron [4], developed his results described above,
and also raised a question at the end of his paper: Can the octahedron be extended to higher
cases? Answer of the question is positive. Based on the equivalence principle of symmetry
(reproducibility and predictability) [12], if we knew a sample member of any family, we would
be able to know all other members of the family through symmetric operations. So, we can use
the verified symmetry to extend the diagram to deal with the second-order partial derivative
variables.
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4.1. To develop novel CP type variables and build up an extended 26-face polyhedron

4.1.1. CP (isobaric thermal capacity) and CV (isochoric thermal capacity)

Both Cp and CV are second-order partial derivatives of the Gibbs free energy, G(T, P,N) and the
Helmholtz free energy, A(T, V, N), respectively (see Eqs. (15) and (16)), thus they should be
arranged at two proper locations outside of the large octahedron, where they close to their
correlated variables, i.e., CPN to G, T, P, and N, and CVN to A, T, V, and N, respectively. Their
Cartesian coordinates are CPN [3.62, �1.50, �1.50] and CVN [3.62, 1.50, �1.50].

4.1.2. Other members of the CP’s family

When N = constant, similarly other members of CP’s family can be defined symmetrically as
follows:

RTN h;�k;�h½ � ¼ ∂A
∂P

� �

TN
¼ �P

∂V
∂P

� �

TN
¼ �P

∂2G
∂P2

� �

TN
(28)

RSN �h;�k;�h½ � ¼ ∂U
∂P

� �

SN
¼ �P

∂V
∂P

� �

SN
¼ �P

∂2H
∂P2

� �

SN
(29)

OPN �k;�h;�h½ � ¼ ∂G
∂S

� �

PN
¼ �S

∂T
∂S

� �

PN
¼ �S

∂2H
∂S2

� �

PN
(30)

OVN �k; h;�h½ � ¼ ∂A
∂S

� �

VN
¼ �S

∂T
∂S

� �

VN
¼ �S

∂2U
∂S2

� �

VN
(31)

JSN �h; k;�h½ � ¼ ∂H
∂V

� �

SN
¼ V

∂P
∂V

� �

SN
¼ �V

∂2U
∂V2

� �

SN
(32)

JTN h; k;�h½ � ¼ ∂G
∂V

� �

TN
¼ V

∂P
∂V

� �

TN
¼ �V

∂2A
∂V2

� �

TN
(33)

and others.

4.1.3. An extended polyhedron

Total 24 members of the CP’s family can be constructed as an extended 26-face polyhedron
(rhombicuboctahedron) shown in Figure 4. The Cartesian coordinates for 24 vertices of the
concentric rhombicuboctahedron are all permutations of <h, h, k>, where h equals one and half

unit (h = 1.50), and k is larger than h by (1 +
ffiffiffi
2

p
) times (k = 3.62).

Physically, such a scheme shown in Figure 4 to arrange the four categories of thermodynamic
variables at four kinds of the vertices of the extended concentric multi-polyhedron corresponds
to Ehrenfest’s scheme to classify phase transitions.
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4.2. To develop relations for CP’s family

4.2.1. The closest neighbor relation between CP and CV

A closest neighbor relation between CP and CV is well known as

CV ¼ CP � α2VT
κT

The relation could also be expressed in terms of the natural variables (T, S, P, V, μ, and N) as

CPNðT, � P, �NÞ ! CVNðT, V, �NÞ : CVN ¼ CPN þ ∂V
∂T

� �

PN
•T •

∂ �Pð Þ
∂T

� �

VN
(34)

CVNðT, V, �NÞ ! CPNðT, � P, �NÞ : CPN ¼ CVN þ ∂P
∂T

� �

VN
•T •

∂ Vð Þ
∂T

� �

PN
(35)

Similarly, the closest neighbor relations for other pairs of the CP type variables could be

RSNð�S, � P, �NÞ ! RTNðT, � P, �NÞ : RTN ¼ RSN þ ∂T
∂P

� �

SN
•P•

∂ �Sð Þ
∂P

� �

TN
(36)

Figure 4. An extended concentric multi-polyhedron diagram in thermodynamics.
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Figure 4. An extended concentric multi-polyhedron diagram in thermodynamics.
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RTNðT, � P, �NÞ ! RSNð�S, � P, �NÞ : RSN ¼ RTN þ ∂S
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These symmetric reversible linear conversions between the two closest CP type variables are
similar to the symmetric reversible Legendre transforms between two closest potentials.
Because all of them are resulted from the reversible conversions between a pair of the opposite
sign conjugate variables (T $ �S or �P $ V).

4.2.2. The parallel relations

It is easily found that following relations are true:

CP •OP ¼ T • �Sð Þ ¼ �T S (42)

CV •OV ¼ T • �Sð Þ ¼ �T S (43)

JT •RT ¼ V • �Pð Þ ¼ �P V (44)

JS •RS ¼ V • �Pð Þ ¼ �P V (45)

They can be called the parallel relations, as shown in the diagram.

4.2.3. The cross relations

It can also be found that following relations are true:

CV •RT ¼ CP •RS (46)

RT •OP ¼ RS •OV (47)

OP • JS ¼ OV • JT (48)

CV • JS ¼ CP • JT (49)

They can be called the cross relations, as shown in the diagram.
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5. Applications

5.1. To distinguish and identify partial derivatives

Different partial derivatives can visually be distinguished and identified by variable neighbor
relationship in the diagram (Figure 5).

5.1.1. “Maxwell equations”-like partial derivatives

Any partial derivative, (∂X/∂Y)z, can be expressed by a ratio of other two partial derivatives,
(∂X/∂Y)Z. = {�(∂Z/∂Y)X/(∂Z/∂X)Y}, based on Euler’s chain relation (∂X/∂Y)Z. • (∂Y/∂Z)X •

Figure 5. Different variable neighbor relationships.
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(∂Z/∂X)Y = �1, where three partial derivatives look like same in their forms and variable’s
categories, but different each other from their variable neighbor relationship in thermodynamics
(Figure 5-2–4). For an example, (∂P/∂T)SN = {�(∂S/∂T)PN/ (∂S/∂P)TN}, all of them look as same as
theMaxwell partial derivatives, but they are different. It is quite difficult to determine, which one
is a real Maxwell partial derivative or not by their forms and variables only.

The partial derivative (∂S/∂P)TN, which is involved in one of the Maxwell equations (∂(S)/
∂P)TN = �(∂V/∂T)PN [Eq. (24)], can be called a Maxwell-I partial derivative. It stands for a
partial derivative of the function S, S = S(P,T,N), with respect to one of S’s first neighbor
variables, P, while holding S’s two order-mixed (second and first) neighbor variables, T and
N, constant (Figure 5-2). The partial derivative (∂P/∂T)SN can be called Maxwell-II or inverted
Maxwell-I partial derivative. It stands for a partial derivative of the function P, P = P(T,S,N),
with respect to one of P’s first neighbor variables, T, while holding P’s other two first neighbor
variables, S and N, constant (Figure 5-3). The partial derivative (∂S/∂T)PN, which can be called
Maxwell-III partial derivative, stands for a partial derivative of the function S, S = S(T,P,N),
with respect to S’s second neighbor (or conjugate) variable, T, while holding S’s two first
neighbor variables, P and N, constant (Figure 5-4). Therefore, Maxwell like partial derivatives
can be visually distinguished by the variable neighbor relationship in the diagram and identi-
fied (or classified) into three different families: Maxwell-I, -II, and -III partial derivatives.

5.1.2. (∂H/∂P)SN and (∂H/∂T)PN

Two partial derivatives (∂H/∂P)SN and (∂H/∂T)PN look like same in their forms and variable’s
categories but totally different each other from their physical meanings: (∂H/∂P)SN = V (vol-
ume) and (∂H/∂T)PN = CP (isobaric heat capacity). Such a difference between them can also
visually be distinguished by their different variable neighbor relations shown in Figure 5-5
and 6. The partial derivative (∂H/∂P)SN stands for a partial derivative of the enthalpy H,
H = H(P, S, N), with respect to one of H’s first neighbor (or natural) variables, P, while
holding H’s other two first neighbor variables, S and N, constant, whereas another partial
derivative, (∂H/∂T)PN, stands for a partial derivative of the enthalpy H, H = H(T, P, N) with
respect to one of H’s second neighbor variables, T, while holding H’s two first neighbor
variables, P and N, constant.

It should be emphasized here after the above analysis that the general formula of a family
regarding to a group of similar partial derivatives must be unchanged not only in form but
also in variable’s nature and neighbor relationship under symmetric operations, conversely,
that those similar partial derivatives, which display same form and variable’s category without
same variable’s neighbor relationship, are not classified into a same family since they do not
have a general formula, and that any difference in the variable’s neighbor relationship can
certainly be distinguished by the diagram.

5.2. Predict novel members of families

5.2.1. The Gibbs-Helmholtz equation’s family

When we discuss temperature dependence of the Gibbs free energy, the famous Gibbs-
Helmholtz equation is satisfied as:
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∂ G=Tð Þ
∂T

� �

PN
¼ � H

T2 or
∂ G

T

� �

∂ 1
T

� �
 !

PN

¼ H (50)

It can be predicted by the σ and C4 symmetries, then justified by conventional derivation that
following other members of the family are true:

∂ G
T

� �

∂ 1
T

� �
 !

PN

¼ H ¼ ∂ U
V

� �

∂ 1
V

� �
 !

SN

(51)

and

∂ A
T

� �

∂ 1
T

� �
 !

VN

¼ U ¼ ∂ H
P

� �

∂ 1
P

� �
 !

SN

(52)

5.2.2. The Jacobian equations

The Jacobian method is useful and entirely foolproof [13, 14]. If we could combine it with this
method, it would be more helpful for anyone of the subject.

The Jacobian of two functions (f and g) with respect to two independent variables (x and y) is
defined by

J f ; gð Þ ¼ ∂ f ; gð Þ
∂ x; yð Þ ¼

∂f =∂xð Þy ∂g=∂xð Þy
∂f =∂yð Þx ∂g=∂yð Þx

 !
(53)

If the functions (f and g) or the variables (x and y) are interchanged, then sign is changed, and if
one function and one variable are identical, the Jacobian reduces to a single partial derivative.
For example, if g = y, then

J f ; yð Þ ¼ ∂ f ; yð Þ
∂ x; yð Þ ¼ � ∂ y; fð Þ

∂ x; yð Þ ¼
∂ y; fð Þ
∂ y; xð Þ ¼

∂f
∂x

� �

y
(54)

If the functions (f and g) and the variables (x and y) are functions of a new set of variables (w
and z), then

J f ; gð Þ ¼ ∂ f ; gð Þ
∂ x; yð Þ ¼

∂ f ; gð Þ=∂ w; zð Þ
∂ x; yð Þ=∂ w; zð Þ ¼

∂ f ; gð Þ
∂ w; zð Þ •

∂ w; zð Þ
∂ x; yð Þ (55)

In practice, it is convenient to take T and P as the independent variables since they are readily
controlled experimentally. Based on Eq. (55), that is equivalent to J(T, P) = 1, since J T;Pð Þ ¼
∂ T;Pð Þ
∂ T;Pð Þ ¼ 1. Conversely, if J(T,P) = 1 that means to take T and P as the independent variables.

One of the Jacobian equations for the internal energyU(S, V,N) could be derived from dividing
the fundamental equation (dU ¼ TdS� PdV þ μdN) by dx at constant y, where x and y are any
suitable variables
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5.2.1. The Gibbs-Helmholtz equation’s family

When we discuss temperature dependence of the Gibbs free energy, the famous Gibbs-
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∂U
∂x

� �

y
¼ Tð Þ• ∂S

∂x

� �

y
þ �Pð Þ• ∂V

∂x

� �

y
þ μð Þ• ∂N

∂x

� �

y

Using Eq. (54), the Jacobian equation for the internal energy is obtained as:

J U; yð Þ ¼ Tð Þ• J S; yð Þ þ �Pð Þ• J V; yð Þ þ μð Þ• J N; yð Þ (56)

Eq. (56) is similar to the fundamental equation for the internal energy. Each potential has

Figure 6. Six {1, 0, 0} projection diagrams.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry106

its own total differential and its corresponding Jacobian equation. Thus, total number of
the Jacobian equations is same as the total number of the potentials, it is eight.

5.3. To depict thermodynamic equations by an invented graphic method

Based on the equivalence principle of symmetry (reproducibility and predictability) [12], if we
knew a sample member of any family we would be able to know all members of the family
through symmetric operations [15].

5.3.1. Resolve the 3D diagram into 2D diagrams

Carrying out symmetric operations on the 3D diagram is complicated and quite difficult,
whereas doing so on 2D diagrams will be much easier instead. The simplified concentric
multi-polyhedron diagram could be resolved into six 2D {1, 0, 0} projection diagrams,
which are shown in Figure 6-1–6, and each 2D diagram consists of two squares and an
octagon and exhibits the fourfold rotation (C4) and the mirror (σ) symmetries. The “�N”-
centered (0, 0, �1) diagram (Figure 6-1) contains the most common thermodynamic vari-
ables (U, H, G, A, T, �S, �P, V, CPN, CVN, OPN, OVN, JTN, JSN, RTN, and RSN), and it is
chosen as first fixed diagram to depict the most familiar basic thermodynamic equations.

5.3.2. Specific notations

5.3.2.1. Graphic patterns for thermodynamic equations

It was mentioned that thermodynamic equations can be grouped into families with “standard
forms.” Each family with a standard form, or a general formula, can be expressed by a
specifically created graphic pattern, which consists of a series of mixed special symbols
arranged in a writing order (path) of the formula. Different families are distinguished by
different patterns, which display differences in their forms, symbols, and writing orders
(paths) graphically.

5.3.2.2. Graphic notations for partial derivatives

A first-order partial derivative of a multi-variable function, f = f(x,y,z), is expressed by (∂f/∂x)yz.
It consists of two parts in the form: a series of mathematical symbols (∂ and ∂) and a series of
variables (f, x, y, and z). Thus, it can be expressed by a specifically created graphic pattern,
∂О ! ∂О ! О ! О or ∂□ ! ∂О ! О ! О, where a series of mathematical symbols (∂ and ∂)
and a series of variable’s selecting symbols (О and/or □) are alternately mixed together and
arranged in a writing order of the partial derivative.

5.3.2.3. Arrows show directions

Arrows show directions of the writing order in a given general formula. For example, arrows
(!) in the graphic pattern, ∂О ! ∂О ! О ! О, show directions of the writing order for the
partial derivative, (∂f/∂x)yz.
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5.3.2.4. Different symbols for selecting different categories of the variables

A square symbol “□” is used for selecting the potential variables located at four corners of the
small square. Both large circle symbol “�” and small circle symbol “О” are used for selecting
the opposite sign conjugate variables located at four corners of the large square. The difference
between the large and the small circles is only significant for those three variables (�S,�P, and
�N). The large circle symbol (“�”) keeps negative sign in front of those variables, whereas the
small circle symbol (“О”) cancels the negative sign instead. They are equivalent to a pair of the
opposite treatment symbols, { } and [ ], mentioned before. A special symbol “☼” is used for
selecting the CP type variables located at eight corners of the octagon.

5.3.2.5. Symbols for some common mathematical operations

A line segment linking two selected variables, “О --- �” or “☼ --- ☼”, represents a product
“●” of the two selected variables. A slash between two symbols, “☼/�”, stands for a ratio of
the variable selected by the special symbol (“☼”) to the variable selected by the large circle
symbol (“�”). Symbols including =, d, ∂, ∂2, and J stand for equal, differential, first-order
partial derivative, second-order partial derivative, and Jacobian, respectively, as usual. Some-
times the equal symbol (“=”) is omitted. Symbol for addition (positive sign, “+”, or plus) is
always omitted. Symbol for subtraction (negative sign, “�”, or minus) is never shown in the
graphic patterns, but it is kept from those selected conjugate variables with the negative sign
(�S, �P, and �N) in the fixed diagram by the large circle (“�”).

5.4. General procedure of the invented graphic method

A general procedure to depict all members of 12 thermodynamic families comprises four steps
as follows.

Step 1: To employ the (0, 0, �1) diagram (Figure 6-1) as a fixed foundation, where four
categories of common used thermodynamic variables being arranged at four kinds of locations
including unchangeable natural variable (N) at center, four thermodynamic potentials (U, H,
G, and A) at four corners of a small square, four first-order partial derivatives of the thermo-
dynamic potentials, or two pairs of the opposite sign intensive versus extensive conjugate
variables, i.e., temperature versus entropy and pressure versus volume (T versus �S and �P
versus V) at two ends of two diagonals of a large square, and eight CP type second-order
partial derivatives of the thermodynamic potentials (the isobaric thermal capacity, CPN, the
isochoric thermal capacity, CVN, and six other CP type variables (OPN, OVN, JTN, JSN, RTN, and
RSN) at eight vertices of an octagon.

Step 2: To create a graphic pattern (or a general formula) for depicting each family on the
fixed diagram. It includes choosing a familiar equation in the family as a sample equation
of the family, identifying categories of all involved variables in the sample equation, deter-
mining a writing order of the sample equation, and resolving the sample equation into two
parts: a series of symbols of mathematical expressions and a series of involved variables in
the sample equation in the writing order, using a set of specific symbols correctly and
individually for each mathematical expression and each category of the involved variables
in the sample equation individually, alternately, and gradually, and combining a series of
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mathematical symbols with a series of variable selecting symbols together in the writing
order of the sample equation.

Step 3: To overlap each family’s specific, rigid, movable graphic pattern (Patterns 1–12)
on! the fixed diagram for depicting other members of the family. It includes picking up
a series of involved variables on the diagram by a series of variable selecting symbols in
the graphic pattern, and combining a series of the mathematical symbols with a series of
selected variables together in the writing order correspondingly and alternately to depict
other member of the family through σ and/or C4 symmetric operation individually and
gradually.

Step 4: To substitute the fixed foundation diagram from one to another gradually (from
Figure 6-1–6), and continuously to depict more members of each family in a same way above
until having all members of the 12 families done.

5.5. Graphic patterns for 12 families

5.5.1. The Legendre transforms

�P ! V; Hð�S, � P, �NÞ ! Uð�S, V, �NÞ : U ¼ H þ V • �Pð Þ (57)

Pattern 1: □ = □ О --- � parallel

where an uncertain sign (positive or negative) of the product term depends on sign of the
converting (starting) conjugate variable without or with a negative sign (“-”), which is selected
by a large circle symbol (“�”) located at end. In terms of the order of writing right equations
on the spot, it is always true to select the converted (ended) potential first for any equations of
this family and to select the converted (ended) conjugate variable using a small circle symbol
(“О”) first for the product term.

5.5.2. The first-order partial derivative variables

∂A
∂T

� �

V
¼ �Sð Þ (58)

Pattern 2: ∂□ ! ∂О ! О = �

5.5.3. The Maxwell equations

∂ Vð Þ
∂T

� �

P
¼ ∂ �Sð Þ

∂P

� �

T
(59)

Pattern 3: Two “∂� ! ∂О ! О” equal each other

Both paths go around the large square reversely.
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of the family, identifying categories of all involved variables in the sample equation, deter-
mining a writing order of the sample equation, and resolving the sample equation into two
parts: a series of symbols of mathematical expressions and a series of involved variables in
the sample equation in the writing order, using a set of specific symbols correctly and
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mathematical symbols with a series of variable selecting symbols together in the writing
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gradually.
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by a large circle symbol (“�”) located at end. In terms of the order of writing right equations
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5.5.4. The Maxwell-II equations (or the inverted Maxwell equations)

∂ �Sð Þ
∂P

� �

V
¼ ∂ Vð Þ

∂T

� �

S
(60)

Pattern 4: Two “∂� ! ∂О ! О” equal each other

Both paths pass through the center like a shape of “8” or “∞.”

5.5.5. The fundamental thermodynamic equations

dU ¼ Tð Þ · dSþ �Pð Þ ·dV (61)

Pattern 5: d□ = �---dО �---dО

5.5.6. The Gibbs-Helmholtz equation’s family

∂ G=Tð Þ
∂ 1=Tð Þ

� �

P
¼ H (62)

Pattern 6: ∂(□/О) ! ∂(1/О) ! О = □

5.5.7. The CP type variables

CP ¼ ∂H
∂T

� �

P
(63)

Pattern 7: ☼ = ∂ □ ! ∂О ! О

5.5.8. The relations between Maxwell-III and CP type variables

∂V
∂P

� �

S
¼ RS

�Pð Þ (64)

Pattern 8: ∂О ! ∂О ! О = ☼/�

5.5.9. The closest neighbor relations like CV and CP

CPN T, � P, �Nð Þ ! CVN T, V, �Nð Þ : CV ¼ CP þ ∂V
∂T

� �

P
•T •

∂ �Pð Þ
∂T

� �

V
(65)

Pattern 9: ☼ = ☼ ∂Ο
∂Ο

� �
Ο •Ο• ∂ �ð Þ

∂Ο

� �
Ο

where a product term consists of three parts (two Maxwell-I partial derivatives and a mid
variable, T in this case), the two Maxwell-I partial derivatives are symmetric each other with
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respect to a mirror, which is perpendicular to a line segment of a pair of the opposite sign
conjugate variables (�P ! V) and passes through the mid variable (T), an uncertain sign
(positive or negative) of the product term in the Pattern 9 depends on sign of the converting
(starting), rather than the converted (ended), conjugate variable without or with a negative sign
(“-”), and the converting (starting) conjugate variable (�P) is selected by a large circle symbol
(“�”), which is located at numerator of the second Maxwell-I partial derivative. In terms of the
order of writing right equations on the spot, it is always true to select the converted (ended) CP

type variable first for any equations of this family and to select the converted (ended) conjugate
variable using a small circle symbol (“Ο”) first for the product term.

Figure 7. Summary-I of the Patterns (1–6 and 12) on the (0, 0, �1) diagram.
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(“�”), which is located at numerator of the second Maxwell-I partial derivative. In terms of the
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5.5.10. The parallel relations

CP •OP ¼ Tð Þ• �Sð Þ ¼ �T S (66)

Pattern 10: ☼ --- ☼ = � --- �

Figure 8. Summary-II of the Patterns (7–11) on the (0, 0, �1) diagram.
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5.5.11. The cross relations

JT •CP ¼ JS •CV (67)

Pattern 11: ☼ --- ☼ = ☼ --- ☼

5.5.12. The Jacobian equations

J U;Yð Þ ¼ Tð Þ · J S;Yð Þ þ �Pð Þ · J V;Yð Þ (68)

Pattern 12: J(□,Y) = �---J(О,Y) � --- J(О,Y)

This Pattern 12 is similar to Pattern 5: d□ = � ---dО �---dО.

All the above 12 graphic patterns are summarized in Figures 7 and 8.

5.6. To derive any desired partial derivatives in terms of T, S, P, V, μ, N, CP, α, κT, and ω

If we want to know the total differential of a multi-variable function, we need to know what its
partial derivatives are. Often, there is no convenient experimental method to evaluate the
partial derivatives needed for the numerical solution of a problem. In this case, we must
calculate the partial derivatives and relate them to other quantities that are readily available,
such as T, S, P, V, μ, N, CP, α, ҝT, and ω (the molar grand canonical potential of the system,
ω = (∂Ω/∂N)VT).

5.6.1. Results of CP type variables

Results of the 24 CP-type variables are derived and given as follows:

CPN ¼ CP (69)

CVN ¼ CPN þ ∂V
∂T

� �

P,N
•T •

∂ �Pð Þ
∂T

� �

V,N
¼ CP � α2VT

κT
(70)

JTN ¼ ∂G
∂V

� �

TN
¼ V

∂P
∂V

� �

TN
¼ �1

κT
(71)

JSN ¼ JTN •CPN

CVN
¼¼ �CPN

κTCVN
¼ CPN

α2VT � κTCPN
(72)

OPN ¼¼ T • �Sð Þ
CPN

¼ �TS
CPN

(73)

OVN ¼ T • �Sð Þ
CVN

¼ κTST
α2VT � κTCPN

(74)
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∂ �Pð Þ
∂T

� �

V,N
¼ CP � α2VT

κT
(70)

JTN ¼ ∂G
∂V

� �

TN
¼ V

∂P
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� �
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RTN ¼ V • �Pð Þ
JTN

¼ κTPV (75)

RSN ¼ V • �Pð Þ
JSN

¼ κTPV � α2V2PT
CPN

(76)

OPμ ¼ ∂Φ
∂S

� �

Pμ
¼ �S

∂T
∂S

� �

Pμ
¼ �S

∂2χ

∂S2

� �

Pμ
¼ 0 (77)

JTμ ¼ ∂Φ
∂V

� �

Tμ
¼ V

∂P
∂V

� �

Tμ
¼ �V

∂2Ω

∂V2

� �

Tμ
¼ 0 (78)

ΓPT ¼ ∂Φ
∂N

� �

PT
¼ N

∂μ
∂N

� �

PT
¼ �N

∂2G
∂N2

� �

PT
¼ 0 (79)

CPμ ¼ ∂χ
∂T

� �

Pμ
¼ T

∂S
∂T

� �

Pμ
¼ �T

∂2Φ

∂T2

� �

Pμ
¼ ∞ (80)

RTμ ¼ ∂Ω
∂P

� �

Tμ
¼ �P

∂V
∂P

� �

Tμ
¼ �P

∂2Φ

∂P2

� �

Tμ
¼ ∞ (81)

ΛPT ¼ ∂G
∂μ

� �

PT
¼ μ

∂N
∂μ

� �

PT
¼ �μ

∂2Φ
∂μ2

� �

PT
¼ ∞ (82)

CVμ ¼ ∂Ψ
∂T

� �
Vμ ¼ T ∂S

∂T

� �
Vμ ¼ �T ∂2Ω

∂T2

� �
Vμ

¼ CVN þ ∂μ
∂T

� �
NV

•T • ∂ �Nð Þ
∂T

� �
μV

¼ CPN � α2VT
κT

þ ∂μ
∂T

� �

NV
•T •

∂ �Nð Þ
∂T

� �

μV

(83)

JSμ ¼ ∂χ
∂V

� �
Sμ ¼ V ∂P

∂V

� �
Sμ ¼ �V ∂2Ψ

∂V2

� �
Sμ

¼ JSN þ ∂μ
∂V

� �
NS

•V • ∂ �Nð Þ
∂V

� �
μS

¼ CPN

α2VT � κTCPN
þ ∂μ

∂V

� �

NS
•V •

∂ �Nð Þ
∂V

� �

μS

(84)

OVμ ¼ ∂Ω
∂S

� �
Vμ ¼ �S ∂T

∂S

� �
Vμ ¼ �S ∂2Ψ

∂S2

� �
Vμ

¼ OVN þ ∂μ
∂S

� �
NV

• S• ∂ �Nð Þ
∂S

� �
μV

¼ κTST
α2VT � κTCPN

þ ∂μ
∂S

� �

NV
• S•

∂ �Nð Þ
∂S

� �

μV

(85)
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RSμ ¼ ∂Ψ
∂P

� �
Sμ ¼ �P ∂S

∂P

� �
Sμ ¼ �P ∂2χ

∂P2

� �
Sμ

¼ RSN þ ∂μ
∂P

� �
NS

•P• ∂ �Nð Þ
∂P

� �
μS

¼ κTPV � α2V2PT
CPN

þ ∂μ
∂P

� �

NS
•P•

∂ �Nð Þ
∂P

� �

μS

(86)

ΓVT ¼ ∂Ω
∂N

� �
VT ¼ N ∂μ

∂N

� �
VT

¼ �N ∂2A
∂N2

� �
VT

¼ ω

ΛVT ¼ ∂A
∂μ

� �
VT

¼ μ ∂N
∂μ

� �
VT

¼ �μ ∂2Ω
∂μ2

� �
VT

(87)

¼ μ• �Nð Þ
ΓVT

¼ �μN
ω

(88)

ΓVS ¼ ∂Ψ
∂N

� �
VS ¼ N ∂μ

∂N

� �
VS

¼ �N ∂2U
∂N2

� �
VS

¼ ΓVT þ ∂S
∂N

� �
TV •N • ∂T

∂N

� �
SV

¼ ωþ ∂S
∂N

� �
TV •N • ∂T

∂N

� �
SV

(89)

ΓPS ¼ ∂χ
∂N

� �
PS ¼ N ∂μ

∂N

� �
PS

¼ �N ∂2H
∂N2

� �
PS

¼ ΓVS þ ∂P
∂N

� �
VS •N • ∂V

∂N

� �
PS

¼ ωþ ∂S
∂N

� �
TV •N • ∂T

∂N

� �
SV þ ∂P

∂N

� �
VS •N • ∂V

∂N

� �
PS

(90)

ΛVS ¼ ∂U
∂μ

� �
VS

¼ μ ∂N
∂μ

� �
VS

¼ �μ ∂2Ψ
∂μ2

� �
VS

¼ μ• �Nð Þ
ΓVS

¼ �μN
ωþ ∂S

∂N

� �
TV •N • ∂T

∂N

� �
SV

(91)

ΛPS ¼ ∂H
∂μ

� �
PS

¼ μ ∂N
∂μ

� �
PS

¼ �μ ∂2χ
∂μ2

� �
PS

¼ μ• �Nð Þ
ΓPS

¼ �μN
ωþ ∂S

∂Nð ÞTV •N • ∂T
∂Nð ÞSVþ ∂P

∂Nð ÞVS •N • ∂V
∂Nð ÞPS

(92)

The above 24 results of the CP type variables are useful for deriving other partial derivatives. It
can also be seen on (1, �1, 1) projection diagram (Figure 3-2) that locations of three zero-value
(OPμ, JTμ, ΓPT) and three infinite-value (CPμ, RTμ, ΛPT) CP type variables display the C3 (three-
fold rotation) symmetry about the U � Φ pair at the center of the diagram.

5.6.2. To derive any desired partial derivatives

Any desired partial derivatives, ∂X
∂Y

� �
ZW , can be derived in terms of T, S, P, V, μ,N, CP, α, κT, and

ω by using the graphic patterns (Patterns 1–12) and the results of CP type variables. Two
examples are shown below:

Example 1 (∂G/ ∂S)V = ?
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RTN ¼ V • �Pð Þ
JTN

¼ κTPV (75)

RSN ¼ V • �Pð Þ
JSN

¼ κTPV � α2V2PT
CPN

(76)

OPμ ¼ ∂Φ
∂S

� �

Pμ
¼ �S

∂T
∂S

� �

Pμ
¼ �S

∂2χ

∂S2

� �

Pμ
¼ 0 (77)

JTμ ¼ ∂Φ
∂V

� �

Tμ
¼ V

∂P
∂V

� �

Tμ
¼ �V

∂2Ω

∂V2

� �

Tμ
¼ 0 (78)

ΓPT ¼ ∂Φ
∂N

� �

PT
¼ N

∂μ
∂N

� �

PT
¼ �N

∂2G
∂N2

� �

PT
¼ 0 (79)

CPμ ¼ ∂χ
∂T

� �

Pμ
¼ T

∂S
∂T

� �

Pμ
¼ �T

∂2Φ

∂T2

� �

Pμ
¼ ∞ (80)

RTμ ¼ ∂Ω
∂P

� �

Tμ
¼ �P

∂V
∂P

� �

Tμ
¼ �P

∂2Φ

∂P2

� �

Tμ
¼ ∞ (81)

ΛPT ¼ ∂G
∂μ

� �

PT
¼ μ

∂N
∂μ

� �

PT
¼ �μ

∂2Φ
∂μ2

� �

PT
¼ ∞ (82)

CVμ ¼ ∂Ψ
∂T

� �
Vμ ¼ T ∂S

∂T

� �
Vμ ¼ �T ∂2Ω

∂T2

� �
Vμ

¼ CVN þ ∂μ
∂T

� �
NV

•T • ∂ �Nð Þ
∂T

� �
μV

¼ CPN � α2VT
κT

þ ∂μ
∂T

� �

NV
•T •

∂ �Nð Þ
∂T

� �

μV

(83)

JSμ ¼ ∂χ
∂V

� �
Sμ ¼ V ∂P

∂V

� �
Sμ ¼ �V ∂2Ψ

∂V2

� �
Sμ

¼ JSN þ ∂μ
∂V

� �
NS

•V • ∂ �Nð Þ
∂V

� �
μS

¼ CPN

α2VT � κTCPN
þ ∂μ

∂V

� �

NS
•V •

∂ �Nð Þ
∂V

� �

μS

(84)

OVμ ¼ ∂Ω
∂S

� �
Vμ ¼ �S ∂T

∂S

� �
Vμ ¼ �S ∂2Ψ

∂S2

� �
Vμ

¼ OVN þ ∂μ
∂S

� �
NV

• S• ∂ �Nð Þ
∂S

� �
μV

¼ κTST
α2VT � κTCPN

þ ∂μ
∂S

� �

NV
• S•

∂ �Nð Þ
∂S

� �

μV

(85)

Symmetry (Group Theory) and Mathematical Treatment in Chemistry114

RSμ ¼ ∂Ψ
∂P

� �
Sμ ¼ �P ∂S

∂P

� �
Sμ ¼ �P ∂2χ

∂P2

� �
Sμ

¼ RSN þ ∂μ
∂P

� �
NS

•P• ∂ �Nð Þ
∂P

� �
μS

¼ κTPV � α2V2PT
CPN

þ ∂μ
∂P

� �

NS
•P•

∂ �Nð Þ
∂P

� �

μS

(86)

ΓVT ¼ ∂Ω
∂N

� �
VT ¼ N ∂μ

∂N

� �
VT

¼ �N ∂2A
∂N2

� �
VT

¼ ω

ΛVT ¼ ∂A
∂μ

� �
VT

¼ μ ∂N
∂μ

� �
VT

¼ �μ ∂2Ω
∂μ2

� �
VT

(87)

¼ μ• �Nð Þ
ΓVT

¼ �μN
ω

(88)

ΓVS ¼ ∂Ψ
∂N

� �
VS ¼ N ∂μ

∂N

� �
VS

¼ �N ∂2U
∂N2

� �
VS

¼ ΓVT þ ∂S
∂N

� �
TV •N • ∂T

∂N

� �
SV

¼ ωþ ∂S
∂N

� �
TV •N • ∂T

∂N

� �
SV

(89)

ΓPS ¼ ∂χ
∂N

� �
PS ¼ N ∂μ

∂N

� �
PS

¼ �N ∂2H
∂N2

� �
PS

¼ ΓVS þ ∂P
∂N

� �
VS •N • ∂V

∂N

� �
PS

¼ ωþ ∂S
∂N

� �
TV •N • ∂T

∂N

� �
SV þ ∂P

∂N

� �
VS •N • ∂V

∂N

� �
PS

(90)

ΛVS ¼ ∂U
∂μ

� �
VS

¼ μ ∂N
∂μ

� �
VS

¼ �μ ∂2Ψ
∂μ2

� �
VS

¼ μ• �Nð Þ
ΓVS

¼ �μN
ωþ ∂S

∂N

� �
TV •N • ∂T

∂N

� �
SV

(91)

ΛPS ¼ ∂H
∂μ

� �
PS

¼ μ ∂N
∂μ

� �
PS

¼ �μ ∂2χ
∂μ2

� �
PS

¼ μ• �Nð Þ
ΓPS

¼ �μN
ωþ ∂S

∂Nð ÞTV •N • ∂T
∂Nð ÞSVþ ∂P

∂Nð ÞVS •N • ∂V
∂Nð ÞPS

(92)

The above 24 results of the CP type variables are useful for deriving other partial derivatives. It
can also be seen on (1, �1, 1) projection diagram (Figure 3-2) that locations of three zero-value
(OPμ, JTμ, ΓPT) and three infinite-value (CPμ, RTμ, ΛPT) CP type variables display the C3 (three-
fold rotation) symmetry about the U � Φ pair at the center of the diagram.

5.6.2. To derive any desired partial derivatives

Any desired partial derivatives, ∂X
∂Y

� �
ZW , can be derived in terms of T, S, P, V, μ,N, CP, α, κT, and

ω by using the graphic patterns (Patterns 1–12) and the results of CP type variables. Two
examples are shown below:

Example 1 (∂G/ ∂S)V = ?
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∂G
∂S

� �

V
¼ ∂ Aþ P• Vð Þð Þ

∂S

� �

V
Pattern 1ð Þ

¼ ∂ U þ T • �Sð Þ þ P• Vð Þð Þ
∂S

� �

V
Pattern 1ð Þ

¼ ∂U
∂S

� �

V
� T � S

∂T
∂S

� �

V
þ V

∂P
∂S

� �

V

¼ T � T � S
OV

�Sð Þ
� �

� V
∂T
∂V

� �

S
Patterns 2, 8 & 3ð Þ

¼ OV � V
� ∂S=∂Vð ÞT
∂S=∂Tð ÞV

� �
chain eq:
� �

¼ T • �Sð Þ
CV

� V
� ∂P=∂Tð ÞV

CV=T

� �
Patterns 10, 3 & 8ð Þ

¼ T • �Sð Þ
CV

þ V
� ∂V=∂Tð ÞP

∂V=∂Pð ÞT
CV=T

8<
:

9=
; chain eq:

� �

¼ T • �Sð Þ
CV

þ V α=κTð Þ
CV=T

α & κT ’s def:ð Þ

¼ �TS
CV

þ αVT
κTCV

¼ αVT � κTTS
κTCV

¼ αVT � κTTS
κT CP � α2VT=κTð Þ ¼

αVT � κTTS
κTCP � α2VT

CV ’s resultð Þ

Example 2 ∂Að ÞH ¼ ?

This is a question chosen from Bridgman’s thermodynamic equations [16], where the symbol
of the question stands for the Jacobian of two functions (A and H) with respect to two
independent variables (T and P), i.e. J(T, P) = 1.

∂Að ÞH ¼ ∂ A;Hð Þ ¼ J A;Hð Þ
¼ �Sð Þ• J T;Hð Þ þ �Pð Þ• J V;Hð Þ ðPattern 12Þ
¼ Sð Þ• J H;Tð Þ þ Pð Þ• J H;Vð Þ ðEq: ð54ÞÞ

where, J H;Tð Þ ¼ Vð Þ• J P;Tð Þ þ Tð Þ• J S;Tð Þ ðPattern 12Þ

¼ Vð Þ• J P;Tð Þ
J T;Pð Þ þ Tð Þ• J S;Tð Þ

J T;Pð Þ J T, Pð Þ ¼ 1ð Þ

¼ � Vð Þ � Tð Þ• ∂ S;Tð Þ
∂ P;Tð Þ Eq: 54ð Þ� �
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¼ � Vð Þ � Tð Þ• ∂S
∂P

� �

T
¼ �V þ T •

∂V
∂T

� �

P
Eq: 54ð Þ & Pattern 3
� �

¼ �V þ T • αVð Þ ¼ αVT � V ¼ αT � 1ð ÞV ðα’s definitionÞ

and
J H;Vð Þ ¼ Vð Þ• J P;Vð Þ þ Tð Þ• J S;Vð Þ ðPattern 12Þ

¼ Vð Þ• J P;Vð Þ
J T;Pð Þ þ Tð Þ• J S;Vð Þ

J T;Vð Þ
J T;Vð Þ
J T;Pð Þ J T, Pð Þ ¼ 1 & Eq: 55ð Þ� �

¼ � Vð Þ• ∂V
∂T

� �

P
þ Tð Þ• ∂S

∂T

� �

V

∂V
∂P

� �

T
Eq: 54ð Þ� �

¼ � Vð Þ• αVð Þ þ Tð Þ• CV

T

� �
�κTVð Þ α, κT ’s def: & Pattern 8ð Þ

¼ �αV2 þ CP � α2VT
κT

� �
�κTVð Þ CV ’s resultð Þ

¼ �αV2 � CPκTV þ α2V2T ¼ αV2 αT � 1ð Þ � CPκTV

Finally, substitute the results of J(H,T) and J(H,V) into the above equation and yield

∂Að ÞH ¼ J A;Hð Þ ¼ S• J H;Tð Þ þ P• J H;Vð Þ

¼ S• αT � 1ð ÞVf g þ P• αV2 αT � 1ð Þ � CPκTV
� �

¼ V αT � 1ð Þ• Sþ αPVð Þ � CPκTPf g

6. Discussion

There are not generally accepted symbols and names for all thermodynamic potentials; how-
ever, based on the fact that sum of any pair of the diagonal potentials in the cube is same and
equals the internal energy of the system, i.e., □ + □* = TS � PV + μN = U(S, V, N), it is suggested
that three unnamed thermodynamic potentials Φ(T, P, μ), ψ(S, V, μ), and χ(S, P, μ) may be
meaningfully named to be conjugate internal energy, conjugate Gibbs free energy, and conju-
gate Helmholtz free energy, respectively, with respect to U(S, V, N), G(T, P, N), and A(T, V, N).

There are not generally accepted symbols and names for all 24 CP type variables; however, it is
clearly found out that an integration of the entire structure of a variety of thermodynamic
variables is complete and highly coherent with symmetry. For example, a complete set of the
24 CP type variables (CPN, CVN OPN, OVN, JTN, JSN, RTN, RSN, CPμ, CVμ, OPμ, OVμ, JTμ, JSμ, RTμ,
RSμ, ΛPT, ΛVT, ΓPT, ΓVT, ΛPS, ΛVS, ΓPS, and ΓVS) were initially defined for a completion based on
the equivalence principle of symmetry, and they are finally proven to relate each other with
three concise (closest neighbor, parallel, and cross) relations symmetrically and consistently.
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∂S
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∂S

� �

V
Pattern 1ð Þ

¼ ∂U
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� �

V
� T � S

∂T
∂S

� �
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þ V
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∂S

� �

V

¼ T � T � S
OV

�Sð Þ
� �

� V
∂T
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� �

S
Patterns 2, 8 & 3ð Þ
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� �
chain eq:
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CV

� V
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CV=T
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Patterns 10, 3 & 8ð Þ
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CV
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� ∂V=∂Tð ÞP
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CV=T
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� �
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CV
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CV=T
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CV
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κTCV

¼ αVT � κTTS
κT CP � α2VT=κTð Þ ¼

αVT � κTTS
κTCP � α2VT

CV ’s resultð Þ

Example 2 ∂Að ÞH ¼ ?

This is a question chosen from Bridgman’s thermodynamic equations [16], where the symbol
of the question stands for the Jacobian of two functions (A and H) with respect to two
independent variables (T and P), i.e. J(T, P) = 1.

∂Að ÞH ¼ ∂ A;Hð Þ ¼ J A;Hð Þ
¼ �Sð Þ• J T;Hð Þ þ �Pð Þ• J V;Hð Þ ðPattern 12Þ
¼ Sð Þ• J H;Tð Þ þ Pð Þ• J H;Vð Þ ðEq: ð54ÞÞ

where, J H;Tð Þ ¼ Vð Þ• J P;Tð Þ þ Tð Þ• J S;Tð Þ ðPattern 12Þ

¼ Vð Þ• J P;Tð Þ
J T;Pð Þ þ Tð Þ• J S;Tð Þ

J T;Pð Þ J T, Pð Þ ¼ 1ð Þ

¼ � Vð Þ � Tð Þ• ∂ S;Tð Þ
∂ P;Tð Þ Eq: 54ð Þ� �
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� �
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∂T

� �

P
Eq: 54ð Þ & Pattern 3
� �

¼ �V þ T • αVð Þ ¼ αVT � V ¼ αT � 1ð ÞV ðα’s definitionÞ

and
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¼ Vð Þ• J P;Vð Þ
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� �

P
þ Tð Þ• ∂S

∂T

� �

V

∂V
∂P

� �

T
Eq: 54ð Þ� �

¼ � Vð Þ• αVð Þ þ Tð Þ• CV

T

� �
�κTVð Þ α, κT ’s def: & Pattern 8ð Þ

¼ �αV2 þ CP � α2VT
κT

� �
�κTVð Þ CV ’s resultð Þ

¼ �αV2 � CPκTV þ α2V2T ¼ αV2 αT � 1ð Þ � CPκTV

Finally, substitute the results of J(H,T) and J(H,V) into the above equation and yield

∂Að ÞH ¼ J A;Hð Þ ¼ S• J H;Tð Þ þ P• J H;Vð Þ

¼ S• αT � 1ð ÞVf g þ P• αV2 αT � 1ð Þ � CPκTV
� �

¼ V αT � 1ð Þ• Sþ αPVð Þ � CPκTPf g

6. Discussion

There are not generally accepted symbols and names for all thermodynamic potentials; how-
ever, based on the fact that sum of any pair of the diagonal potentials in the cube is same and
equals the internal energy of the system, i.e., □ + □* = TS � PV + μN = U(S, V, N), it is suggested
that three unnamed thermodynamic potentials Φ(T, P, μ), ψ(S, V, μ), and χ(S, P, μ) may be
meaningfully named to be conjugate internal energy, conjugate Gibbs free energy, and conju-
gate Helmholtz free energy, respectively, with respect to U(S, V, N), G(T, P, N), and A(T, V, N).

There are not generally accepted symbols and names for all 24 CP type variables; however, it is
clearly found out that an integration of the entire structure of a variety of thermodynamic
variables is complete and highly coherent with symmetry. For example, a complete set of the
24 CP type variables (CPN, CVN OPN, OVN, JTN, JSN, RTN, RSN, CPμ, CVμ, OPμ, OVμ, JTμ, JSμ, RTμ,
RSμ, ΛPT, ΛVT, ΓPT, ΓVT, ΛPS, ΛVS, ΓPS, and ΓVS) were initially defined for a completion based on
the equivalence principle of symmetry, and they are finally proven to relate each other with
three concise (closest neighbor, parallel, and cross) relations symmetrically and consistently.
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Based on the fact that the scheme to build up the extended concentric multi-polyhedron
corresponds to Ehrenfest’s scheme to classify phase transitions, it is reasonable for us to predict
that the coherent and complete structure of thermodynamics may further be extended along
with novel research results about higher order phase transitions in future.

Based on the fact that symmetry plays an important role to integrate the entire structure of the
thermodynamic variables into a coherent and complete exposition of thermodynamics, it is
reasonable for us to consider the symmetry as one of foundations (or axioms) of the subject and
therefore to believe thermodynamics being a science of symmetry.

7. Conclusions

1. A variety of four categories of total 44 thermodynamic variables are properly arranged at
the vertices of the extended concentric multi-polyhedron diagram based on their physical
meanings.

2. A symmetric function with “patterned self-similarity” is precisely be defined as the func-
tion of a general formula for each family in thermodynamics, which is unchanged not only
in function form but also in variable’s nature and neighbor relationship under symmetric
operations.

3. Although the reversible Legendre transforms (E $ R) are asymmetric under a pair of the
same sign conjugate variables (w and z), however, the asymmetric (E $ R) can become
symmetric (E* $ R*) under two required conditions: a pair of the opposite sign conjugate
variables (z and �w or �z and w) and a pair of the opposite conjugate variable treatments
(canceling and keeping the negative sign) are involved in the symmetric (E* $ R*).

4. Thermodynamic symmetry roots in the symmetric reversible Legendre transforms of
the potentials under the opposite sign conjugate natural variable pairs (T � �S, �P � V,
and μ � �N). The specific thermodynamic symmetries revealed by the extended concentric
multi-polyhedron diagram are only one C3 (threefold rotation) symmetry about the U � Φ
diagonal direction and C4 (fourfold rotation) and σ (mirror) symmetries on three U-
containing squares, where the square including U, H, G, and A is the most important and
useful one.

5. Based on the equivalence principle of symmetry (reproducibility and predictability),
numerous (more than 300) equations of 12 families can concisely be depicted by
overlapping 12 specifically created rigid, movable graphic patterns on the fixed {1, 0, 0}
diagrams through σ and/or C4 symmetric operations. Any desired partial derivatives can
be derived in terms of several available quantities by the foolproof graphic method.

6. It is the symmetry that made possible to build up the diagram as an elegant model to
exhibit an integration of the entire structure of the thermodynamic variables into a coher-
ent and complete exposition of thermodynamics. The model has much common with the
Periodic Table of the Elements in chemistry.
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A broken-(spin) symmetry (BS) method is now widely used for systems that involve
(quasi) degenerated frontier orbitals because of their lower cost of computation. The BS
method splits up-spin and down-spin electrons into two different special orbitals, so that a
singlet spin state of the degenerate system is expressed as a singlet biradical. In the BS
solution, therefore, the spin symmetry is no longer retained. Due to such spin-symmetry
breaking, the BS method often suffers from a serious problem called a spin contamination
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imate spin projection (AP) method, which is one of the spin projection procedures, can
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For the past few decades, many reports about “polynuclear metal complexes” have been
presented actively in the field of the coordination chemistry [1–19]. Those systems usually
have complicated electronic structures that are constructed by metal–metal (d-d) and metal–
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structures often bring many interesting and noble physical functionalities such as a magnetism
[8–17], a nonlinear optics [18], an electron conductivity [19], as well as their chemical functional-
ities, e.g., a catalyst and so on. For example, some three-dimensional (3D) metal complexes show
interesting magnetic behaviors and are expected to be possible candidates for a single molecule
magnet, a quantum dot, and so on [11–16]. On the other hand, one-dimensional (1D) metal
complexes are studied for the smallest electric wire, i.e., the nanowire [3–7, 17, 19]. In addition,
it has been elucidated that the polynuclear metal complexes play an important role in the
biosystems [20–24], e.g., Mn cluster [25, 26] in photosystem II and 4Fe-4S cluster [27–30] in
electron transfer proteins. In this way, the polynuclear metal complexes are widely noticed from
a viewpoint of fundamental studies on their peculiar characters and of applications to materials.
From those reasons, an elucidation of a relation among electronic structures, molecular struc-
tures, and physical properties is a quite important current subject.

Physical properties of molecules are sometimes discussed by using several parameters such as
an exchange integrals (Jab), on-site Coulomb repulsion, and transfer integrals of Heisenberg
and Hubbard Hamiltonians, respectively, in material physics [31–35]. In recent years, on the
other hand, direct predictions of such electronic structures, molecular structure, and physical
properties of those metal complexes are fairly realized by the recent progress in computers and
computational methods. In this sense, theoretical calculations are now one of the powerful
tools for understanding of such systems. However, those systems are, in a sense, still challeng-
ing subjects because they are usually large and orbitally degenerated systems with localized
electron spins (localized orbitals). The localized spins are caused by an electron correlation
effect called a static (or a non-dynamical) correlation [36]. In addition, a dynamical correlation
effect of core electrons also must be treated together with the static correlation in the case of the
metal complexes. A treatment of both the static correlation and the dynamical correlation in
large molecules is still a difficult task and a serious problem in this field. For those systems, a
standard method for the static and dynamical correlation corrections is a complete active space
(CAS) method [37–38] or a multi-reference (MR) method [39] that considers all configuration
interaction in active valence orbitals, together with the second-order perturbation correction,
e.g., CASPT2 or MPMP2 methods. In addition to these methods, recently, other multi-
configuration methods such as DDCI [40–42], CASDFT [43–45], MRCC [46–48], and DMRG-
CT [49–51] methods are also proposed for the same purpose. These newer methods are
developing and seem to be promising tools in terms of accuracy; however, real molecules such
as polynuclear metal complexes are still too large to treat computationally with those methods
at this state. An alternative way is a broken-symmetry (BS) method, which approximates the
static correlation with a lower cost of computation [52–55]. The BS method (or commonly
known as an unrestricted (U) method) splits up and down spins (electrons) into two different
spatial orbitals (it is sometimes called as different orbitals for different spins; DODS), so a
singlet spin state of the orbitally degenerated system is expressed as a singlet biradical, namely,
the BS singlet [55]. The BS method such as the unrestricted Hartree-Fock (UHF) and the
unrestricted DFT (UDFT) methods are now widely used for the first principle calculations of
such large degenerate systems. In this sense, the BS method seems to be the most possible
quantum chemical approach for the polynuclear metal complexes, although it has a serious
problem called the spin contamination error [56–65]. Therefore one must eliminate the error by
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some kind of projection method. An approximate spin projection (AP) method, which is one of
the spin projection procedures, can eliminate the error from the BS solutions and can recover
the spin symmetry. In this chapter, we illustrate a theoretical background of the BS and AP
methods, followed by some examples of their applications.

2. Theoretical background of AP method

In this section, the theoretical background of the BS and AP methods for the biradical systems is
explained with the simplest two-spin model (e.g., a dissociated H2) as illustrated in Figure 1(a).

2.1. Broken-symmetry (BS) solution and approximate spin projection (AP) methods for the
(two-spin) biradical state

In the BS method, the spin-polarized orbitals are obtained from HOMO-LUMO mixing [55–
56]. For example, HOMO orbitals for up-spin (ψHOMO) and down-spin (ψHOMO) electrons of the
simple H2 molecule are expressed as follows (Figure 1(b)):

Figure 1. (a) Illustration of the two-spin states of the simplest two-spin model. (b) HOMO and LUMO of spin-adapted
(SA) and BS methods. (c) Illustration of spin-symmetry recovery of BS method by AP method.
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ψBS
HOMO ¼ cosθψHOMO þ sinθψLUMO, (1)

ψ
BS
HOMO ¼ cosθψHOMO � sinθψLUMO, (2)

where 0 ≤ θ ≤ 45� and ψHOMO and ψLUMO express HOMO and LUMO orbitals of spin-adapted
(SA) (or spin-restricted (R)) calculations, respectively, as illustrated in Figure 1(b). And the
wavefunction of the BS singlet (e.g., unrestricted Hartree-Fock (UHF)) becomes

ΨSinglet
BS

���
E
¼ cos2θ ψHOMOψHOMO

�� �þ sin2θ ψLUMOψLUMO

�� �� ffiffiffi
2

p
cosθsinθ ΨTriplet

�� �
, (3)

where ψHOMO and ψHOMO express up- and down-spin electrons in orbital ψHOMO, respectively.
If θ = 0, the BS wavefunction corresponds to the closed shell, i.e., SA wavefunctions, while if θ
is not zero, one can have spin-polarized, i.e., BS wavefunctions. In the BS solution, ψHOMO 6¼
ψHOMO (Figure 1(b)), so that a spin symmetry is broken. In addition, it gives nonzero bS2D ESinglet

BS

value, and as described later, up- and down-spin densities appeared on the hydrogen atoms.

We often regard such spin densities as an existence of localized spins. An interaction between
localized spins can be expressed by using Heisenberg Hamiltonian:

bH ¼ �2JabbSa � bSb, (4)

where bSa and bSb are spin operators for spin sites a and b, respectively, and Jab is an effective

exchange integral. Using a total spin operator of the system bS ¼ bSa þ bSb, Eq. (4) becomes

bH ¼ �2Jab �bS2þbS2
a þ bS2

b

� �
: (5)

Operating Eq. (5) to Eq. (3), the singlet state energy in Heisenberg Hamiltonian (ESinglet
HH ) is

expressed as

ESinglet
HH ¼ Jab � bS2D ESinglet

þ bS2
a

D ESinglet
þ bS2

b

D ESinglet� �
: (6)

Similarly, for triplet state

ETriplet
HH ¼ Jab � bS2D ETriplet

þ bS2
a

D ETriplet
þ bS2

b

D ETriplet� �
: (7)

The energy difference between singlet (ESinglet
HH ) and triplet (ETriplet

HH ) states (S-T gap) within
Heisenberg Hamiltonian should be equal to the S-T gap calculated by the difference in total

energies of ab initio calculations (here we denote ESinglet
BS and ETriplet for the BS singlet and

triplet states, respectively). And if we can assume that spin densities of the BS singlet state on

spin site i (i = a or b) are almost equal to ones of the triplet state, i.e., bS2
i

D ETriplet
ffi bS2

i

D ESinglet
, then Jab

can be derived as
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Jab ¼ ESinglet
HH � ETriplet

HH

bS2
D ETriplet

� bS2
D ESinglet ¼

ESinglet
BS � ETriplet

bS2
D ETriplet

� bS2
D ESinglet

BS

: (8)

If the method is exact and the spin contamination error is not found in both singlet and triplet

states (i.e., bS2D ESinglet
Exact

¼ 0 and bS2D ETriplet
Exact

¼ 2), the S-T gap between those states can be expressed as

ESinglet
Exact � ETriplet

Exact ¼ 2Jab: (9)

The spin contamination in the triplet state is usually negligible (i.e., bS2D ETriplet
Exact

ffi bS2D ETriplet
ffi 2), and one

must consider the error only in the BS singlet state, so the S-T gap becomes

ESinglet
BS � ETriplet ¼ 2Jab � Jab bS2D ESinglet

BS
: (10)

A second term in a right side of Eq. (10) indicates the spin contamination error in the S-T gap,
and consequently, a second term in a denominator of Eq. (8) eliminates the spin contamination
in the BS singlet solution. In this way, Eq. (8) gives approximately spin-projected (AP) Jab
values. Eq. (8) can be easily expanded into any spin dimers, namely, the lowest spin (LS) state
and the highest spin (HS) state, e.g., singlet-quintet for Sa = Sb = 2/2 pairs, singlet-sextet for
Sa = Sb = 3/2 pairs, and so on, as follows:

Jab ¼ ELS
BS � EHS

bS2
D EHS

� bS2
D ELS

BS

: (11)

Eq. (11) is the so-called Yamaguchi equation to calculate Jab values with the AP procedure,
which is simply denoted by Jab here. The calculated Jab value can explain an interaction
between two spins. If a sign of calculated Jab value is positive, the HS, i.e., ferromagnetic
coupling state, is stable, while if it is negative, the LS, i.e., antiferromagnetic coupling state is
stable. Therefore, one can discuss the magnetic interactions in a given system.

2.2. Approximate spin projection for BS energy and energy derivatives

Because Jab calculated by Eq. (11) is a value that the spin contamination error is approximately
eliminated, it should be equal to Jab value calculated by the approximately spin-projected LS

energy (ELS
AP) as

Jab ¼ ELS
BS � EHS

bS2
D EHS

� bS2
D ELS

BS

¼ ELS
AP � EHS

bS2
D EHS

exact
� bS2
D ELS

ecact

: (12)

Here, we assume bS2D EHS

Exact
ffi bS2D EHS; then one can obtain a spin-projected energy of the singlet state

without the spin contamination error as follows [62–65]:
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ELS
AP ¼ αELS

BS � βEHS, (13)

where

α ¼
bS2
D EHS

� bS2
D ELS

exact

bS2
D EHS

� bS2
D ELS

BS

(14)

and
β ¼ α� 1 (14)

Then, we explain about derivatives of this spin-projected energy (ELS
AP). In order to carry out the

geometry optimization using the AP method, an energy gradient of ELS
AP is necessary. ELS

AP can
be expanded by using Taylor expansion:

ELS
AP RLS

AP

� � ¼ ELS
AP Rð Þ þ XTGLS

AP Rð Þ þ 1
2
XTFLS

AP Rð ÞX, (15)

where GLS
AP Rð Þ and FLS

AP Rð Þ are the first and second derivatives (i.e., gradient and Hessian) of

ELS
AP Rð Þ, respectively [62–65]; RLS

AP and R are a stationary point of ELS
AP Rð Þ and a present posi-

tion, respectively; and X is a position vector (X ¼ RLS
AP � R). The stationary point RLS

AP is a
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AP if GLS
AP Rð Þ can be calculated. By
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where GLS
BS and GHS are the first energy derivatives (energy gradients) of the BS and the HS

states, respectively. As mentioned above, the spin contamination in the HS state is negligible,
so that bS2D EHS is usually a constant. Then ∂α Rð Þ=∂R can be written as
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By using Eqs. (16) and (17), the AP optimization can be carried out. In addition, one can also
calculate the spin-projected Hessian (AP Hessian; FLS

AP Rð Þ in Eq. (15)) as follows:
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, (18)
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where FLS
BS and FHS are the Hessians calculated by the BS and the HS states, respectively. And a

second derivative of α can be expressed by
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By using Eqs. (18) and (19), the spin-projected vibrational frequencies are also calculated. The
AP optimization can be carried out based on Eq. (16) with ∂ bS2D ELS

BS
=∂R obtained by numerical

fitting or analytical ways.

2.3. Relationship between the BS and projected wavefunctions

As well as a calculated energy and its derivatives, the BS wavefunction itself has also vital
information. Here let us go back to Eq. (3). From the equation, an overlap between up-spin (so-
called alpha) and down-spin (so-called beta) orbitals (T) becomes

T ¼ ψBS
HOMOjψ

BS
HOMO

D E
¼ cos2θ� sin2θ ¼ cos2θ: (20)

And because occupation number (n) of natural orbital (NO) for the corresponding orbital is
expressed as n ¼ 2cos2θ, we get the relation:

T ¼ cos2θ ¼ n� 1 (21)

On the other hand, we can define projected wavefunction (PUHF) by eliminating triplet
species from BS singlet wavefunction from Eq. (3) as follows:
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(22)

If we focus on the second term, which is related to double (two-electron) excitation, its weight
(WD) can be obtained from Eqs. (21) and (22) as follows:

WD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1þ T2

s
1� T
2

( )2

¼ 1
2

1� 2T
1þ T2

� �
(23)

This is the weight of double excitation calculated by the BS wavefunction. By applying
Eq. (21)–Eq. (23), the WD is related to the occupation number of the corresponding NO as
follows:
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By using Eqs. (16) and (17), the AP optimization can be carried out. In addition, one can also
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AP Rð Þ in Eq. (15)) as follows:
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where FLS
BS and FHS are the Hessians calculated by the BS and the HS states, respectively. And a
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By using Eqs. (18) and (19), the spin-projected vibrational frequencies are also calculated. The
AP optimization can be carried out based on Eq. (16) with ∂ bS2D ELS

BS
=∂R obtained by numerical

fitting or analytical ways.

2.3. Relationship between the BS and projected wavefunctions

As well as a calculated energy and its derivatives, the BS wavefunction itself has also vital
information. Here let us go back to Eq. (3). From the equation, an overlap between up-spin (so-
called alpha) and down-spin (so-called beta) orbitals (T) becomes

T ¼ ψBS
HOMOjψ

BS
HOMO

D E
¼ cos2θ� sin2θ ¼ cos2θ: (20)

And because occupation number (n) of natural orbital (NO) for the corresponding orbital is
expressed as n ¼ 2cos2θ, we get the relation:

T ¼ cos2θ ¼ n� 1 (21)

On the other hand, we can define projected wavefunction (PUHF) by eliminating triplet
species from BS singlet wavefunction from Eq. (3) as follows:
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If we focus on the second term, which is related to double (two-electron) excitation, its weight
(WD) can be obtained from Eqs. (21) and (22) as follows:

WD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1þ T2

s
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2

( )2

¼ 1
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This is the weight of double excitation calculated by the BS wavefunction. By applying
Eq. (21)–Eq. (23), the WD is related to the occupation number of the corresponding NO as
follows:
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y ¼ 2WD ¼ n2 � 4nþ 4
n2 � 2nþ 2

: (24)

This y value is called an instability value of a chemical bond (or diradical character). In the case
of the spin-restricted (or spin-adapted (SA)) calculations, the y value is zero. However if a
couple of electrons tends to be separated and to be localized on each hydrogen atom, in other
words the chemical bond becomes unstable with the strong static correlation effect, the y value
becomes larger and finally becomes 1.0. So, the y value can be applied for the analyses of di- or
polyradical species, and it is often useful to discuss the stability (or instability) of chemical
bonds. The idea is also described by an effective bond order (b), which is defined by the
difference in occupation numbers of occupied NO (n) and unoccupied NO (n*):

b ¼ n� n∗

2
(25)

Different from the y value, the b value becomes smaller when the chemical bond becomes unsta-
ble. If we define the effective bond order with the spin projection b(AP), it is related to the y value:

b APð Þ ¼ 1–y (26)

Those indices show how the BS and AP wavefunctions are connected. In addition, one can
utilize the indices to estimate the contribution of double excitation for very large systems that
CAS and MR methods cannot be applied.

Finally, a relationship between the BS wavefunction and bS2D E
values are briefly explained. The

bS2D E
values of the BS singlet states do not show the exact value by the spin contamination error.

bS2D E
value of the SA calculation is.

bS2D E
SA

¼ S Sþ 1ð Þ,where S ¼ Sa þ Sb (27)

However, in the case of the BS singlet state of H2 molecule, it becomes

bS2D E
BS

¼ bS2D E
exact

þNdown �
X
ij

Tij ffi 1� T (28)

where Ndown and T are number of down electrons and the overlap between spin-polarized up-

spin and down-spin orbitals in Eq. (21). Therefore bS2D E
is also closely related to a degree of

spin polarization. For the BS singlet state of the hydrogen molecule model, by substituting
Eq. (21) into Eq. (28), we can obtain

bS2D E
BS

ffi 2� n (29)

Here we explain another aspect of the spin projection method. As depicted in Figure 1(c), the
BS wavefunction indicates only one spin-polarized configuration, e.g., BS1 in the figure.
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However, in order to obtain a pure singlet wavefunction, which satisfies the spin symmetry,
the opposite spin-polarized state (BS2) must be included. The projection method can give a
linear combination of the both BS states, and therefore it can give an appropriate quantum
state for the singlet state.

3. Application of BS and AP methods to several biradical systems

3.1. Hydrogen molecule: comparison among SA, BS, and AP methods by simple biradical
system

In this section, we briefly illustrate how the BS and AP methods approximate a dissociation of
a hydrogen molecule. Figure 2(a) shows potential energy curves of Hartree-Fock and full CI
methods. In the case of the spin-adapted (SA) HF, i.e., the spin-restricted (R) HF method, the
curve does not converge to the dissociation limit. On the other hand, the BS HF, i.e., spin-
unrestricted (U) HF calculation, successfully reproduces the dissociation limit of full CI
method. This result indicates that the static correlation is included in the BS procedure.
Around 1.2 Å, there is a bifurcation point between RHF and UHF methods. Within the closed
shell (i.e., SA) region, where rH-H < 1.2 Å, the UHF solution does not appear, and the singlet
state is described by RHF (single slater determinant). In this region, the energy gap between
full CI and RHF that is known as correlation energy indicates a necessity of the dynamical
correlation correction as discussed later.

In order to elucidate how the double-excitation state is included in the BS solution, the
occupation numbers of the highest occupied natural orbital (HONO) are plotted along the H-
H distance in Figure 2(b). The figure indicates that the occupation number is 2.0 in the closed
shell region, while it suddenly decreases at the bifurcation point. And it finally closes to 1.0 at
the dissociation limit. In Figure 2(c), calculated y/2 values from the occupation numbers are
compared with the weight of the double excitation (WD) of CI double (CID) method. The
figure indicates that the BS method approximates the bond dissociation by taking the double
excitation into account. As frequently mentioned above, the BS wavefunction is not pure
singlet state by the contamination of the triplet wavefunction. In Figure 2(b), bS2D E

values of

the BS states are plotted. It suddenly increases at the bifurcation point and finally closes to the
1.0, which corresponds to occupation number n at the dissociation limit. And as mentioned
above, bS2D E

and 2-n values are closely related.

Next, we illustrate results of calculated effective exchange integral (Jab) values of the hydrogen
molecule by Eq. (11). The calculated J values are shown in Figure 2(d). In a longer-distance
region (rH-H > 2.0 Å), the AP-UHF method reproduces the full CI result, indicating that the
inclusion of double excitation state and elimination of the triplet state work well within the BS
and AP framework. On the other hand, in a shorter-region (rH-H < 1.2 Å), a hybrid DFT
(B3LYP) method reproduces the full CI curve. In the region, the dynamical correlation that
the RHF method cannot include is a dominant. Therefore the dynamical correlation must be
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of the spin-restricted (or spin-adapted (SA)) calculations, the y value is zero. However if a
couple of electrons tends to be separated and to be localized on each hydrogen atom, in other
words the chemical bond becomes unstable with the strong static correlation effect, the y value
becomes larger and finally becomes 1.0. So, the y value can be applied for the analyses of di- or
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bonds. The idea is also described by an effective bond order (b), which is defined by the
difference in occupation numbers of occupied NO (n) and unoccupied NO (n*):
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Different from the y value, the b value becomes smaller when the chemical bond becomes unsta-
ble. If we define the effective bond order with the spin projection b(AP), it is related to the y value:

b APð Þ ¼ 1–y (26)

Those indices show how the BS and AP wavefunctions are connected. In addition, one can
utilize the indices to estimate the contribution of double excitation for very large systems that
CAS and MR methods cannot be applied.

Finally, a relationship between the BS wavefunction and bS2D E
values are briefly explained. The

bS2D E
values of the BS singlet states do not show the exact value by the spin contamination error.
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value of the SA calculation is.
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where Ndown and T are number of down electrons and the overlap between spin-polarized up-

spin and down-spin orbitals in Eq. (21). Therefore bS2D E
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spin polarization. For the BS singlet state of the hydrogen molecule model, by substituting
Eq. (21) into Eq. (28), we can obtain
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Here we explain another aspect of the spin projection method. As depicted in Figure 1(c), the
BS wavefunction indicates only one spin-polarized configuration, e.g., BS1 in the figure.
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However, in order to obtain a pure singlet wavefunction, which satisfies the spin symmetry,
the opposite spin-polarized state (BS2) must be included. The projection method can give a
linear combination of the both BS states, and therefore it can give an appropriate quantum
state for the singlet state.

3. Application of BS and AP methods to several biradical systems

3.1. Hydrogen molecule: comparison among SA, BS, and AP methods by simple biradical
system

In this section, we briefly illustrate how the BS and AP methods approximate a dissociation of
a hydrogen molecule. Figure 2(a) shows potential energy curves of Hartree-Fock and full CI
methods. In the case of the spin-adapted (SA) HF, i.e., the spin-restricted (R) HF method, the
curve does not converge to the dissociation limit. On the other hand, the BS HF, i.e., spin-
unrestricted (U) HF calculation, successfully reproduces the dissociation limit of full CI
method. This result indicates that the static correlation is included in the BS procedure.
Around 1.2 Å, there is a bifurcation point between RHF and UHF methods. Within the closed
shell (i.e., SA) region, where rH-H < 1.2 Å, the UHF solution does not appear, and the singlet
state is described by RHF (single slater determinant). In this region, the energy gap between
full CI and RHF that is known as correlation energy indicates a necessity of the dynamical
correlation correction as discussed later.

In order to elucidate how the double-excitation state is included in the BS solution, the
occupation numbers of the highest occupied natural orbital (HONO) are plotted along the H-
H distance in Figure 2(b). The figure indicates that the occupation number is 2.0 in the closed
shell region, while it suddenly decreases at the bifurcation point. And it finally closes to 1.0 at
the dissociation limit. In Figure 2(c), calculated y/2 values from the occupation numbers are
compared with the weight of the double excitation (WD) of CI double (CID) method. The
figure indicates that the BS method approximates the bond dissociation by taking the double
excitation into account. As frequently mentioned above, the BS wavefunction is not pure
singlet state by the contamination of the triplet wavefunction. In Figure 2(b), bS2D E

values of

the BS states are plotted. It suddenly increases at the bifurcation point and finally closes to the
1.0, which corresponds to occupation number n at the dissociation limit. And as mentioned
above, bS2D E

and 2-n values are closely related.

Next, we illustrate results of calculated effective exchange integral (Jab) values of the hydrogen
molecule by Eq. (11). The calculated J values are shown in Figure 2(d). In a longer-distance
region (rH-H > 2.0 Å), the AP-UHF method reproduces the full CI result, indicating that the
inclusion of double excitation state and elimination of the triplet state work well within the BS
and AP framework. On the other hand, in a shorter-region (rH-H < 1.2 Å), a hybrid DFT
(B3LYP) method reproduces the full CI curve. In the region, the dynamical correlation that
the RHF method cannot include is a dominant. Therefore the dynamical correlation must be
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compensated by other approaches, such as MP, CC, and DFT methods. The hybrid DFT
methods are effective way in terms of the computational costs; however, one must be careful
in a ratio of the HF exchange. It is reported that a larger HF exchange ratio is preferable in the
intermediate region as well as the dissociation limit [69, 70].

3.2. Dichromium (II) complex: effectiveness of hybrid DFT method for calculation of J
value

Next, the BS and AP methods are applied for Cr2(O2CCH3)4(OH2)2 (1) complex [1] as illus-
trated in Figure 3(a). This complex involves a quadruple Cr(II)-Cr(II) bond (σ, π //, π⊥, and δ

Figure 2. (a) Calculated potential energy surface of H2 molecule by spin-restricted (R), spin-unrestricted (U), and approx-

imate spin-projected HF methods as well as full CI method. (b) Calculated bS2D E
, occupation number (n), and 2–n values

of H2 molecule by UHF calculation. (c) a weight of double (two-electron) excitation (WD) by double CI (CID) calculation
and y/2 values in Eq. 24. (d) Calculated effective exchange integral (J) values of H2 molecule with several H-H distances.
For all calculations, 6-31G** basis set was used.
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orbitals). Due to the strong static correlation effect, it requires the multi-reference approach.
Within the BS procedure, as a consequence, the electronic structure of the complex is expressed
by the spin localization on each Cr(II) ions. First, let us examine the nature of the metal–metal
bond between Cr(II) ions. For the purpose, natural orbitals and their occupation numbers are
obtained from the BS wavefunctions using an experimental geometry.

As depicted in Figure 3(b), there are eight magnetic orbitals, i.e., bonding and antibonding σ, π //,
π⊥, and δ orbitals that concern about the direct bond between Cr(II) ions. The NO analysis
clarifies the nature of the Cr-Cr bond. If d-orbitals of two Cr(II) ions have sufficient overlap to
form the stable covalent bond, the occupation numbers of each occupied orbital will be almost
2.0 (i.e., T is close to 1.0). As summarized in Table 1, however, those bonds show much smaller
values. The occupation numbers of all of occupied σ, π, and δ orbitals are close to 1.0, indicating
that electronic structure of the complex 1 is described by a spin-polarized spin structure like the
biradical singlet state.

By substituting the obtained energies and bS2D E
values into Eq. (11), Jab values of the complex 1 are

calculated as summarized in Table 2. In comparison with the experimental value, HF method
underestimates the effective exchange interaction, while B3LYP method overestimates it. This
result is quite similar to a tendency of the Jab curve of H2 molecule at the intermediation region in
Figure 2(d). In that region, BH and HLYP method, which involves 50% HF exchange, gives
better value in comparison with B3LYP. The results also suggest an importance of the effect on
the ratio of the HF/DFT exchange for estimation of the effective exchange interaction [71, 72].

3.3. Singlet methylene molecule: Spin contamination error in optimized geometry by BS
method and its elimination by AP method

Finally, we examine the spin contamination error in the optimized structure. Here we focus on a
singlet methylene (CH2). As illustrated in Figure 4(a), the methylene molecule has two valence

Figure 3. (a) Illustration of Cr2(O2CCH3)4(OH2)2 (1) complex. (b) Calculated natural orbitals of complex 1 by UB3LYP/
basis set I (basis set I: Cr, MIDI+p; others, 6-31G*).
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compensated by other approaches, such as MP, CC, and DFT methods. The hybrid DFT
methods are effective way in terms of the computational costs; however, one must be careful
in a ratio of the HF exchange. It is reported that a larger HF exchange ratio is preferable in the
intermediate region as well as the dissociation limit [69, 70].

3.2. Dichromium (II) complex: effectiveness of hybrid DFT method for calculation of J
value

Next, the BS and AP methods are applied for Cr2(O2CCH3)4(OH2)2 (1) complex [1] as illus-
trated in Figure 3(a). This complex involves a quadruple Cr(II)-Cr(II) bond (σ, π //, π⊥, and δ
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, occupation number (n), and 2–n values
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and y/2 values in Eq. 24. (d) Calculated effective exchange integral (J) values of H2 molecule with several H-H distances.
For all calculations, 6-31G** basis set was used.
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orbitals). Due to the strong static correlation effect, it requires the multi-reference approach.
Within the BS procedure, as a consequence, the electronic structure of the complex is expressed
by the spin localization on each Cr(II) ions. First, let us examine the nature of the metal–metal
bond between Cr(II) ions. For the purpose, natural orbitals and their occupation numbers are
obtained from the BS wavefunctions using an experimental geometry.

As depicted in Figure 3(b), there are eight magnetic orbitals, i.e., bonding and antibonding σ, π //,
π⊥, and δ orbitals that concern about the direct bond between Cr(II) ions. The NO analysis
clarifies the nature of the Cr-Cr bond. If d-orbitals of two Cr(II) ions have sufficient overlap to
form the stable covalent bond, the occupation numbers of each occupied orbital will be almost
2.0 (i.e., T is close to 1.0). As summarized in Table 1, however, those bonds show much smaller
values. The occupation numbers of all of occupied σ, π, and δ orbitals are close to 1.0, indicating
that electronic structure of the complex 1 is described by a spin-polarized spin structure like the
biradical singlet state.

By substituting the obtained energies and bS2D E
values into Eq. (11), Jab values of the complex 1 are

calculated as summarized in Table 2. In comparison with the experimental value, HF method
underestimates the effective exchange interaction, while B3LYP method overestimates it. This
result is quite similar to a tendency of the Jab curve of H2 molecule at the intermediation region in
Figure 2(d). In that region, BH and HLYP method, which involves 50% HF exchange, gives
better value in comparison with B3LYP. The results also suggest an importance of the effect on
the ratio of the HF/DFT exchange for estimation of the effective exchange interaction [71, 72].

3.3. Singlet methylene molecule: Spin contamination error in optimized geometry by BS
method and its elimination by AP method

Finally, we examine the spin contamination error in the optimized structure. Here we focus on a
singlet methylene (CH2). As illustrated in Figure 4(a), the methylene molecule has two valence

Figure 3. (a) Illustration of Cr2(O2CCH3)4(OH2)2 (1) complex. (b) Calculated natural orbitals of complex 1 by UB3LYP/
basis set I (basis set I: Cr, MIDI+p; others, 6-31G*).
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orbitals (ψ1 and ψ2) and two spins in those orbitals. Those two orbitals are orthogonal and
energetically quasi-degenerate each other. The ground state of the molecule is 3B1 (triplet) state,
and 1A1 (singlet) state is the first excited state. Components of the wavefunction of 1A1 state
obtained by BS method as illustrated in Figure 4(b) have been graphically explained [36]. The
spin-restrictedmethod such as RHF considers only single component (the first term of Figure 4(b))
although the BS wavefunction involves three components as illustrated in Figure 4(b). The exis-
tence of the triplet component is the origin of the spin contamination error in this system.

Both 1A1 and
3B1 methylene molecules have bent structures, but the experimental data indi-

cates a large structural difference between them. For example, as summarized in Table 3,
experimental HCH angles (θHCH) of

1A1 and
3B1 states are 102.4� and 134.0�, respectively [66,

67]. There have also been many reports of the SA results as summarized in Ref. [68]. On the
other hand, the BS method is a convenient substitute for CI and CAS method, so here we
examined the optimized geometry of the 1A1 methylene by SA and BS methods. In order to
elucidate a dependency of the spin contamination error on the calculation methods, HF,
configuration interaction method with all double substitutions (CID), coupled-cluster method
with double substitutions (CCD), several levels of Møller-Plesset energy correction methods
(MP2, MP3, and MP4(SDQ)), and a hybrid DFT (B3LYP) method are also examined. In the case
of 1A1 state, all SA results are in good agreement with the experimental values; however, it is
reported that energy gap between the singlet and triplet (S-T gap) value is too much
underestimated [65]. On the other hand, all BS results overestimate the HCH angle. The
difference in HCH angle between the BS values and experimental one is about 10–20�. The
HCH angles of UCI and UCC methods are especially larger than MP and DFT methods,

Orbital Occupation number (n) Overlap (T)

δ 1.148 0.148

πave
2 1.242 0.242

σ 1.625 0.625

1Cr, MIDI+p, and others, 6-31G*
2Averaged value of π⊥ and π//

Table 1. n and T values of complex 1 calculated by UB3LYP/basis set I1.

Method Jab values

B3LYP �734

BH and HLYP �520

HF �264

Expt �490

1In cm�1

2Basis set I was used.

Table 2. Calculated Jab values1 of complex 1 by several functional sets2.
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indicating that the post-HF methods even require some correction for such systems if the BS
procedure is utilized. Therefore it is difficult to use the BS solution for 1A1 state without some
corrections. On the other hand, by applying the AP method to the BS solution, the error is
drastically improved, and the optimized structural parameters became in good agreement
with experimental ones. The difference in the optimized θHCH values between the BS and the
AP method, i.e., the spin contamination error in the optimized geometry, is about 10–20�.

Figure 4. Illustrations of (a) a methylene molecule and (b) components of BS wavefunctions.

Method rCH
a θHCH

b

SA BS AP (3B1) SA BS AP (3B1)

HF 1.097 1.083 1.098 1.071 103.1 115.5 102.9 130.7

CID 1.114 1.091 1.112 1.081 101.6 119.7 101.9 131.8

CCD 1.116 1.087 1.113 1.082 101.7 125.1 102.4 132.0

MP2 1.109 1.091 1.109 1.077 102.0 114.7 100.9 131.6

MP3 1.109 1.094 1.112 1.080 102.0 114.9 101.0 131.8

MP4(SDQ) 1.117 1.096 1.114 1.081 101.2 115.0 101.0 131.9

B3LYP 1.120 1.100 1.113 1.082 100.3 112.9 103.2 133.1

CASSCF(2,2) 1.097 102.9

CASSCF(6,6) 1.124 100.9

MRMP2(2,2) 1.109 102.0

MRMP2(6,6) 1.122 101.1

Expt.d 1.107 1.077 102.4 134.0

aIn Å
bIn degree
c6-31G* basis set was used
dIn Refs. [66, 67] for singlet and triplet states, respectively

Table 3. Optimized C-H bond lengths (rCH)
a and H-C-H angle (θHCH)

b by SA, BS, and AP approaches with several methodsc.
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orbitals (ψ1 and ψ2) and two spins in those orbitals. Those two orbitals are orthogonal and
energetically quasi-degenerate each other. The ground state of the molecule is 3B1 (triplet) state,
and 1A1 (singlet) state is the first excited state. Components of the wavefunction of 1A1 state
obtained by BS method as illustrated in Figure 4(b) have been graphically explained [36]. The
spin-restrictedmethod such as RHF considers only single component (the first term of Figure 4(b))
although the BS wavefunction involves three components as illustrated in Figure 4(b). The exis-
tence of the triplet component is the origin of the spin contamination error in this system.

Both 1A1 and
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cates a large structural difference between them. For example, as summarized in Table 3,
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1A1 and
3B1 states are 102.4� and 134.0�, respectively [66,

67]. There have also been many reports of the SA results as summarized in Ref. [68]. On the
other hand, the BS method is a convenient substitute for CI and CAS method, so here we
examined the optimized geometry of the 1A1 methylene by SA and BS methods. In order to
elucidate a dependency of the spin contamination error on the calculation methods, HF,
configuration interaction method with all double substitutions (CID), coupled-cluster method
with double substitutions (CCD), several levels of Møller-Plesset energy correction methods
(MP2, MP3, and MP4(SDQ)), and a hybrid DFT (B3LYP) method are also examined. In the case
of 1A1 state, all SA results are in good agreement with the experimental values; however, it is
reported that energy gap between the singlet and triplet (S-T gap) value is too much
underestimated [65]. On the other hand, all BS results overestimate the HCH angle. The
difference in HCH angle between the BS values and experimental one is about 10–20�. The
HCH angles of UCI and UCC methods are especially larger than MP and DFT methods,
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indicating that the post-HF methods even require some correction for such systems if the BS
procedure is utilized. Therefore it is difficult to use the BS solution for 1A1 state without some
corrections. On the other hand, by applying the AP method to the BS solution, the error is
drastically improved, and the optimized structural parameters became in good agreement
with experimental ones. The difference in the optimized θHCH values between the BS and the
AP method, i.e., the spin contamination error in the optimized geometry, is about 10–20�.

Figure 4. Illustrations of (a) a methylene molecule and (b) components of BS wavefunctions.
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CCD 1.116 1.087 1.113 1.082 101.7 125.1 102.4 132.0

MP2 1.109 1.091 1.109 1.077 102.0 114.7 100.9 131.6

MP3 1.109 1.094 1.112 1.080 102.0 114.9 101.0 131.8

MP4(SDQ) 1.117 1.096 1.114 1.081 101.2 115.0 101.0 131.9
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Table 3. Optimized C-H bond lengths (rCH)
a and H-C-H angle (θHCH)

b by SA, BS, and AP approaches with several methodsc.
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Those results strongly indicate that the spin contamination sometimes becomes a serious
problem in the structural optimization of spin-polarized systems and the AP method can work
well for its elimination. On the other hand, the optimized structure with the AP-UHF method
almost corresponds to CASSCF(2,2) result. This means that the AP method approximates two-
electron excitation in the (2,2) active space well. The θHCH values become smaller by including
higher electron correlation with the larger CAS space such as CASSCF(6,6) or with the dynam-
ical correlation correction such as MRMP2(2,2) and MRMP2(6,6). The result of the spin-
projected MP4 (AP MP4(SDQ)) successfully reproduced the MRMP2(6,6) result, indicating
that the AP method plus dynamical correlation correction is a promising approach.

By calculating Hessian, one can also obtain frequencies of the normal modes. In Table 4, the
calculated frequencies of the normal mode singlet methylene are summarized. The significant
difference between the BS and AP methods can be found in a bending mode. The BS result
underestimates the binding mode frequency by the contamination of the triplet state. On the
other hand, the AP result gives close to the experimental result of 1A1 species. In this way, the
AP method is also effective for the normal mode analysis as well as the geometry optimization.

4. Summary

In this chapter, we explain how the BS method breaks the spin symmetry and AP method
recover it. In addition, we also demonstrate how those methods work the biradical systems.
The theoretical studies of the large biradical and polyradical systems such as polynuclear
metal complexes have been fairly realized by the BS HDFT methods in this decade. The BS
method is quite powerful for the large degenerate systems, but one must be careful about the
spin contamination error. Therefore the AP method would be important for those studies. For
example, it is suggested that the spin contamination error misleads a reaction path that
involves biradical transition states (TS) or intermediate state (IM) [73]. In addition, in the case
of the more larger systems, e.g., metalloproteins, some kind of semiempirical approach com-
bined with the AP hybrid DFT method by ONIOM method will be effective [74]. By using the
method, the mechanisms of the long-distance electron transfers and so on will be elucidated. In

Method θHCH
�

Mode

Symmetry Bent Antisymmetry

BS 114.1 3008 1069 3152

AP 104.5 2959 1252 3054

Expt.c (1A1) 102.4 2806 1353 2865

(3B1) 134.0 2992 963 3190

aIn cm�1

bB3LYP/6–31++G(2d,2p) was used
cIn Refs. [66, 67] for singlet and triplet states, respectively.

Table 4. Calculated vibrational frequenciesa of singlet methylene by SA, BS, and AP approaches with several methodsb.
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such cases, one also must be careful about the parameter of the semiempirical approach to fit
the spin-polarized systems. Recently, some improvements for PM6 method have been pro-
posed [75, 76]. Because the PM6 calculation can be utilized for the outer region in ONIOM
approach, therefore the AP method is also the effective method for the larger systems. In
addition, the BS wavefunction can be applied for other molecular properties by combining
with other theoretical procedures. For example, it was reported that the electron conductivity
of spin-polarized systems could be simulated by using the BS wavefunction together with
elastic Green’s function method [77], and some applications for one-dimensional complexes
have reported [78, 79]. The results indicate that the BS wavefunctions can be applied for
calculations of the physical properties of the strong electron correlation systems as well as their
electronic structures. The spin-projected wavefunctions seem to be effective for such simula-
tions of the physical properties. From those points of view, the BS and AP methods have a
great potential to clarify chemical and physical phenomena that are still open questions.
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Abstract

Acetohydroxy acid synthase (AHAS) is a thiamin diphosphate (ThDP)-dependent enzyme 
involved in the biosynthesis of branched-chain amino acids (valine, leucine, and isoleu-
cine) in plants, bacteria, and fungi. This makes AHAS an attractive target for herbicides 
and bactericides, which act by interrupting the catalytic cycle and preventing the synthe-
sis of acetolactate and 2-keto-hydroxybutyrate intermediates, in the biosynthetic pathway 
toward the synthesis of branched amino acids, causing the death of the organism. Several 
articles on the catalytic cycle of AHAS have been published in the literature; however, 
there are certain aspects, which continue being controversial or unknown. This lack of 
information at the molecular level makes difficult the rational development of novel her-
bicides and bactericides, which act inhibiting this enzyme. In this chapter, we review the 
results from our group for the different stages of the catalytic cycle of AHAS, using both 
quantum chemical cluster and Quantum Mechanics/Molecular Mechanics approaches.

Keywords: AHAS, catalytic cycle, DFT, QM/MM

1. Introduction

Computational chemistry is a branch of chemistry in which quantum mechanics and/or 
molecular mechanics methods are implemented on computers for understanding and pre-
dicting the behavior of chemical systems from molecular information. It plays a key role in the 
rational design of drugs, biomolecules, organic and inorganic molecules, catalysts, and so on.

Amino acids are organic compounds containing amine (–NH2) and carboxyl (–COOH) func-
tional groups, along with a side chain (R group) specific to each amino acid. An essential 
amino acid is an amino acid that cannot be synthetized by the organism and consequently 
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must be supplied by the food. Unlike animals, plants and microorganisms have the biosyn-
thetic machinery to synthesize all the essential metabolites required for their survival. These 
differences in the metabolic paths between plants and animals are the basis for the rational 
development of herbicides and bactericides, chemicals that interrupt the biosynthetic route to 
branched chain amino acids causing the death of the plant or bacteria. To achieve this goal, 
detailed knowledge of the mechanisms at the molecular level is essential.

Plants and bacteria utilize several enzymes for the biosynthesis of branched chain amino acids 
such as valine, leucine, and isoleucine, being acetohydroxy acid synthase (AHAS), the one 
which catalyzes the first common step, followed by the participation of other enzymes which 
finally lead to the formation of these essential amino acids [1–5].

AHAS requires for its catalytic role the cofactor thiamin diphosphate, ThDP, in addition 
to flavin-adenine dinucleotide (FAD) and a divalent metal ion, Mg2+. FAD has no catalytic 
function, and Mg2+ is required to anchor the diphosphate moiety of ThDP in the active 
site. During catalysis by ThDP-dependent enzymes, the 4-mino-pyrimidine moiety can 
interconvert among four ionization/tautomeric states: the 4′-aminopyrimidine (AP), the 
N1′-protonated 4′-aminopyrimidium ion (APH+), the 1′,4′-iminopyrimidine (IP), and the C2-
ionized ylide (Y), whose formation is believed to activate ThDP to initiate the catalytic cycle 
in thiamin-dependent enzymes [6–10], Figure 1.

Figure 1. Activation of ThDP and catalytic cycle of AHAS.
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In this chapter, we review the results from our group for the different stages of the catalytic 
cycle of AHAS from a theoretical point of view, using both quantum chemical cluster and 
Quantum Mechanics/Molecular Mechanics approaches.

2. Activation of thiamin diphosphate (ThDP)

The cofactor ThDP is involved in the sugar metabolism by catalyzing carbon–carbon bond 
breaking, as well as bond forming [7–9]. During catalysis, the 4′-aminopyrimidine ring can inter-
convert among four ionization/tautomeric states: AP, APH+, IP, and the ylide Y (Figure 2). In 
this section, the equilibria among the various ionization and tautomeric states involved in the 
activation of ThDP and the electron density reactivity indexes of the tautomeric/ionization forms 
of thiamin diphosphate are addressed using high-level density functional theory calculations.

2.1. Thermodynamics

We have studied the equilibria among the various ionization and tautomeric states involved 
in the activation of ThDP by using density functional theory calculations at the X3LYP/6-
311++G(d,p)//X3LYP(PB)/6-31++G(d,p) level of theory [11, 12]. Briefly, the procedure consists 
of geometry optimization in solution without any constraint. Solvation effects were modeled 
using the Poisson-Boltzmann model as implemented in Jaguar. The solvents chosen were water 
and cyclohexane, as paradigms of polar and apolar media, respectively. All computations were 

Figure 2. Equilibria among the different tautomeric/ionization forms of thiamin diphosphate.

A Computational Chemistry Approach for the Catalytic Cycle of AHAS
http://dx.doi.org/10.5772/intechopen.73705

143



must be supplied by the food. Unlike animals, plants and microorganisms have the biosyn-
thetic machinery to synthesize all the essential metabolites required for their survival. These 
differences in the metabolic paths between plants and animals are the basis for the rational 
development of herbicides and bactericides, chemicals that interrupt the biosynthetic route to 
branched chain amino acids causing the death of the plant or bacteria. To achieve this goal, 
detailed knowledge of the mechanisms at the molecular level is essential.

Plants and bacteria utilize several enzymes for the biosynthesis of branched chain amino acids 
such as valine, leucine, and isoleucine, being acetohydroxy acid synthase (AHAS), the one 
which catalyzes the first common step, followed by the participation of other enzymes which 
finally lead to the formation of these essential amino acids [1–5].

AHAS requires for its catalytic role the cofactor thiamin diphosphate, ThDP, in addition 
to flavin-adenine dinucleotide (FAD) and a divalent metal ion, Mg2+. FAD has no catalytic 
function, and Mg2+ is required to anchor the diphosphate moiety of ThDP in the active 
site. During catalysis by ThDP-dependent enzymes, the 4-mino-pyrimidine moiety can 
interconvert among four ionization/tautomeric states: the 4′-aminopyrimidine (AP), the 
N1′-protonated 4′-aminopyrimidium ion (APH+), the 1′,4′-iminopyrimidine (IP), and the C2-
ionized ylide (Y), whose formation is believed to activate ThDP to initiate the catalytic cycle 
in thiamin-dependent enzymes [6–10], Figure 1.

Figure 1. Activation of ThDP and catalytic cycle of AHAS.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry142

In this chapter, we review the results from our group for the different stages of the catalytic 
cycle of AHAS from a theoretical point of view, using both quantum chemical cluster and 
Quantum Mechanics/Molecular Mechanics approaches.

2. Activation of thiamin diphosphate (ThDP)

The cofactor ThDP is involved in the sugar metabolism by catalyzing carbon–carbon bond 
breaking, as well as bond forming [7–9]. During catalysis, the 4′-aminopyrimidine ring can inter-
convert among four ionization/tautomeric states: AP, APH+, IP, and the ylide Y (Figure 2). In 
this section, the equilibria among the various ionization and tautomeric states involved in the 
activation of ThDP and the electron density reactivity indexes of the tautomeric/ionization forms 
of thiamin diphosphate are addressed using high-level density functional theory calculations.

2.1. Thermodynamics

We have studied the equilibria among the various ionization and tautomeric states involved 
in the activation of ThDP by using density functional theory calculations at the X3LYP/6-
311++G(d,p)//X3LYP(PB)/6-31++G(d,p) level of theory [11, 12]. Briefly, the procedure consists 
of geometry optimization in solution without any constraint. Solvation effects were modeled 
using the Poisson-Boltzmann model as implemented in Jaguar. The solvents chosen were water 
and cyclohexane, as paradigms of polar and apolar media, respectively. All computations were 

Figure 2. Equilibria among the different tautomeric/ionization forms of thiamin diphosphate.

A Computational Chemistry Approach for the Catalytic Cycle of AHAS
http://dx.doi.org/10.5772/intechopen.73705

143



done considering the highly conserved glutamic residue interacting with the N1′ atom of the 
4-aminopyrimidine ring, as a simple way of considering the apoenzymatic environment.

The first equilibrium involves the proton transfer from the glutamic acid side chain to the N1′ 
atom. In order to evaluate the acidity constant of the N1′ atom, it is necessary to determine 
the free energy change corresponding to the protonation of the N1′ atom solely. This can be 
performed applying the Hess’s Law considering the following two equations:

  AP + GluCOOH ↔  APH   +  + GluCOOH  (1)

   GluCOO   −  +  H   +  ↔ GluCOOH  (2)

whose sum gives the desired equation:

  AP +  H   +  ↔  APH   +   (3)

The calculated standard free energy changes for the first equation are −1.1 and +3.0 kcal/mol, 
in the solvents cyclohexane and water, respectively. While for the second equation, the free 
energy changes are those that correspond to pKa’s values of 4.5 in aqueous solution, and 7 in 
the enzymatic environment, as predicted by the Propka software. Using these figures, the 
resulting values of ΔG0 for Eq. (3) are −3.2 and −10.7 (kcal/mol), in water and cyclohexane, 
respectively. The results show that the protonation of the N1′ atom is thermodynamically 
favored in both solvents. The resulting values of pKN1′ are 2.32 and 7.81, in water and cyclo-
hexane, respectively. The low value obtained in water is in the characteristic range of a weak 
acid and do not reflect the well-known basicity of amines. The obtained value in cyclohexane, 
however, is in the typical range of amines, on the one hand; and it is in agreement with the 
accepted value of about 7 for glutamates in the proteic ambient, on the other hand.

The second equilibrium involves the transfer of a proton from the N4′ atom to an amino acid 
side chain, for instance, Glu473 in pyruvate decarboxylase (PDC). Its respective value of the 
standard free energy change includes the values corresponding to the deprotonation of the N1′ 
atom and the protonation of glutamate. In order to determine pKN4, we follow an analog proce-
dure to that considered for the first equilibrium. We consider the following chemical equations:

   APH   +  +  GluCOO   −  ↔ IP + GluCOOH  (4)

  GluCOOH ↔  GluCOO   −  +  H   +   (5)

to give the desired equation:

   APH   +  ↔ IP +  H   +   (6)

The resulting values of ΔG0 for the reaction (6) are +6.0 and +10.6 kcal/mol in water and cyclo-
hexane, respectively. These values imply that this reaction does not proceed spontaneously 
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under standard conditions. However, at temperature and pressure constant, the spontaneity 
of a process is given by ΔG and not by ΔG0

. They are related by the well-known relation ΔG = 
ΔG0 + RT ln Q, where Q is the ratio of the activities of the products to the activities of the reac-
tants. Considering that the concentrations of the different forms of ThDP in the enzyme are 
quite low, their activity coefficients must not be very different from unity, and consequently, 
the activities could be replaced by the concentrations. Under this assumption, Q takes the form 
[IP] [H+]/[APH+], where the concentration of hydrogen ions is about 10−7 mol/L. In consequence 
under physiological conditions, the reaction becomes thermodynamically favored because of 
the cancelation of the positive value of ΔG0 by the contribution of [H+] to ΔG. The correspond-
ing calculated values of pKN4′ are 4.35 and 7.72 in water and cyclohexane, respectively.

The standard free energy change for the third equilibrium, tautomeric equilibrium between AP 
and IP, can be calculated by combining the chemical Eqs. (3) and (6). The calculated values are 
+2.8 and −8.3 × 10−2 kcal/mol, for water and cyclohexane, respectively. The corresponding equi-
librium constants are 8 × 10−3 and 1.1, respectively. These values imply that in aqueous solution, 
the formation of IP from AP is thermodynamically forbidden, while the value in cyclohexane is 
in agreement with the suggested values of about 1 for the equilibrium constant [13].

The fourth equilibrium involves the transformation of IP into the ylide. The calculated values 
of ΔG0 are +0.1 and +1.0 kcal/mol, in water and cyclohexane, respectively. The corresponding 
equilibrium constants are 0.85 and 0.18, respectively. The calculated values are in agreement 
with the value suggested in the literature of 1–10 for the ratio [IP]/[ylide] [13].

The fifth equilibrium involves the deprotonation of the C2 atom of APH+ to form the ylide. The 
standard free energy change for this reaction can be obtained by combination of the following 
equations, whose ΔG0 are known:

  IP ↔ ylide  (7)

  GluCOOH ↔  GluCOO   −  +  H   +   (8)

   APH   +  +  GluCOO   −  ↔ IP + GluCOOH  (9)

Resulting in the desired equation:

   APH   +  ↔ ylide +  H   +   (10)

The calculated values of ΔG0 are +6.1 and +11.6 kcal/mol, in water and cyclohexane, respec-
tively. These values imply that the ylide is not formed by the direct transformation of APH+, 
but via the IP species through via the following sequence: APH+ → IP → ylide, as suggested 
in the literature. On the other hand, the value of ΔG0 in aqueous solution does not correspond 
with weakly acidic nature of the thiazolium C2H group, while its value in cyclohexane is in 
agreement with the value reported in the literature in the range of 8–9 for the deprotonation 
of the C2 atom [13]. Table 1 summarizes the calculated values of ΔG0 for the possible equilibria 
for the diverse tautomeric/ionization forms of ThDP.
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2.2. Electron density reactivity indexes

In order to complement the thermodynamic results described above, the electron density 
reactivity indexes of the diverse tautomeric/ionization forms of ThDP were calculated using 
density functional theory (DFT) calculations at the X3LYP/6-31++G(d,p) level of theory. The 
study includes the calculation of Fukui functions and condensed-to-tom Fukui indices as a 
means to assess the electrophilic and nucleophilic character of key atoms in the pathway lead-
ing to the formation of the ylide [12].

The quantum chemical calculations were performed considering a clusterized model consist-
ing only of ThDP and the conserved chain of glutamic acid interacting with the N1′ atom of 
the pyrimidyl ring, and the rest of residues were ignored. In order to simplify the calculations, 
the diphosphate group of ThDP was replaced by a hydroxyl group, having in mind that the 
primary function of the diphosphate group is to anchor the cofactor, and it is not involved 
in the catalysis. The geometries of all structures were optimized in gas phase using the same 
level of theory X3LYP/6-31++G(d,p). All the quantum chemical calculations of the study were 
performed using Jaguar 7.0 suite of programs.

The generation of the ylide requires the proton abstraction from the C2 atom by the N4′ atom 
of the IP form. Therefore, the nucleophilicity of the N4′ atom is essential for the formation of 
the ylide. Therefore, the Fukui function and the atomic Fukui indices on this atom were calcu-
lated for two alternative forms of IP, those having the N1′ atom protonated and deprotonated, 
respectively. The nucleophilic character of the N4′ atom as expressed by   f  

N4
  −    f   −   Fukui functions 

is shown in Figures 3 and 4. Figure 3 shows that the isosurface is negligible in the structure 
having the N1′ atom protonated. On the other hand, Figure 4 shows that for the N1′ atom 
deprotonated form, there is an important nucleophilicity on the N4′ atom as required for the 
proton abstraction from de C2 atom. In line with the above finding, the respective condensed-
to-atom Fukui indices are 0.00 and 0.41, respectively. These results suggest that the imino 
form should be with the N1′ atom deprotonated in order to favor the proton abstraction. The 

Equilibrium Solvent Reaction ΔG0 (kcal/mol)

1 Cyclohexane

Water

GluCOOH + AP ↔ GluCOO− + APH+ −1.1

+3.0

2 Cyclohexane

Water

APH+ + GluCOO− ↔ IP + GluCOOH +1.0

−0.2

3 Cyclohexane

Water

AP ↔ IP −0.083

+2.8

4 Cyclohexane

Water

IP ↔ ylide +1.0

+0.1

5 Cyclohexane

Water

APH+ ↔ ylide + H+ +11.6

+6.1

Table 1. Standard free energy for the possible equilibria of ThDP.
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optimization of the structures of both forms of IP shows that the N4′ atom and the proton 
attached to the C2 atom are at close distance, 2.39 Å. The transition state associated to this 
proton transference, Figure 5, is characterized with one and only one imaginary frequency, 
893.2 cm−1, corresponding to the stretching of the H ↔ C2 bond. The dihedral angles φt and 
φp reach values 67.10 and −70.40, respectively. In this distorted V–type structure, the N4′atom 
is only at 1.45 Å from the proton as compared to the rather long C2-H bond of 1.25 Å. These 

Figure 3. Nucleophilic character of the N1´-protonated IP form as expressed by the   f   −   Fukui function.

Figure 4. Nucleophilic character of the N1´-deprotonated IP form as expressed by the   f   −   Fukui function.
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893.2 cm−1, corresponding to the stretching of the H ↔ C2 bond. The dihedral angles φt and 
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Figure 6. Nucleophilic character of the N1´-protonated ylide form as expressed by the   f   −   Fukui function.

bond lengths accounts for the proton transfer in progress. The observed activation barrier is 
just 0.7 kcal/mol, as expected for rapid proton transference. On the other hand, the results 
show that the reaction of formation of the ylide is exergonic with a standard free energy 
change of −35.19 kcal/mol.

In ThDP-dependent enzymes, the ylide so formed has the role of to initiate the catalytic cycle 
with the nucleophilic attack on the Cα atom of the pyruvate molecule to form the intermediate 
lactyl-ThDP. Consequently, the reaction is strongly dependent on the nucleophilic character of 
the C2 atom. In order to address this issue, the   f  

C2
  −   Fukui functions were calculated and shown in 

Figures 6 and 7. The results show that only the ylide form having the N1′ atom deprotonated 

Figure 5. Optimized structure of the transition state for the proton abstraction from the C2 atom.
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shows an important nucleophilicity on the C2 atom, as required to initiate the catalytic cycle. 
On the other hand, the other form of the ylide in which the N1′ atom is protonated the C2 atom 
does not show any tendency to carry out a nucleophilic attack. Instead, the most important 
nucleophilic reactivity is lying on the carboxylic oxygen atoms, evidencing the stronger Lewis 
basicity of these atoms compared to the N1′ atom, and suggesting in turn that the N1′ atom 
should be deprotonated. The respective atomic Fukui indices on the C2 atom are 0.00 and 0.34 
for the protonated and deprotonated N1′ atom forms, respectively.

2.3. Conclusions

The obtained results in aqueous solution do not correlate with the experimental results; 
moreover, they cannot be supported from a chemical point of view. Instead, when the enzy-
matic environment is modeled with a solvent of low dielectric constant, like cyclohexane, 
the results correlate well both qualitatively and quantitatively to the empirical evidence. In 
addition, the results show that thermodynamically all ionization/tautomeric forms of ThDP 
are accessible. The ylide is formed from the IP species as a result of a concerted event in 
which the increase in the negative partial charge, basicity on the N4′ atom, occurs in conjunc-
tion with a decrease in the basicity of the C2 atom, allowing its deprotonation. The calculated 
values of pKa’s for the key stages are 7.8, 7.7, and 8.5 for pKN1, pKN4′,and pKC2, respectively. 
These findings support the suggestion given in the literature [14] concerning that the depro-
tonation and protonation of the C2 atom are accomplished by a fast proton shuttle enabled 
by a closely matched pKa values. The calculated equilibrium constants for the remaining two 
equilibria are: [IP]/[AP] = 1.2, and [IP]/[ylide] = 5.6. These values are in agreement with those 
given in the literature [13], of about 1 for equilibrium 3, and values in the range 1–10 for 
equilibrium 4. In addition, the results allow to conclude that the highly conserved glutamic 
residue does not protonate the N1′atom of the pyrimidyl ring, but it participates in a strong 

Figure 7. Nucleophilic character of the N1´-deprotonated ylide form as expressed   f   −   Fukui function.
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Figure 8. Proposed mechanism for the formation of L-ThDP.

hydrogen bonding, stabilizing the eventual negative charge on the nitrogen. This condition 
provides the necessary reactivity on key atoms, N4′ and C2, to carry out the formation of the 
ylide required to initiate the catalytic cycle of ThDP-dependent enzymes.

3. Formation of Lactyl-THDP intermediate

The intermediate Lactyl-ThDP (L-ThDP) is formed in the first stage of the catalytic cycle of 
AHAS as product of the attack of the ylide on the Cα atom of pyruvate. Despite the number 
of articles published on the topic, there are still some aspects that remain unknown or contro-
versial, specifically, the manner in which the reaction occurs (i.e., via a stepwise or concerted 
mechanism) and the protonation states of the N1´ and N4′ atoms during the attack.

In this chapter, we investigate the formation of the L-ThDP intermediate by postulating that 
the ylide intermediate itself can act as the proton donor, avoiding in this way the involvement 
of any additional acid-base ionizable group, Figure 8. The issue is addressed from a theoretical 
point of view, considering the total proteic ambient. This chapter includes molecular dynam-
ics simulations, exploration of the potential energy surface (PES) by means of QM/MM calcu-
lations, and reactivity analysis on key centers of the reacting species. The PESs are explored 
for both forms of the ylide, namely, that having the N1′ deprotonated and that having the N1′ 
atom protonated (henceforth called the Y1 and Y2 forms, respectively). The exploration of the 
PES is carried out in terms of two reaction coordinates accounting for the carboligation and 
proton transfer. The methodology used has been described earlier in the literature [15].

3.1. Results

The PESs obtained for the two forms of the ylide, Y1 and Y2, show very similar topologies, 
having three critical points that are associated to reactants (R), transition state (TS), and prod-
uct (P), Figures 9 and 10. The topology shows a clear reaction path in which both reaction 
coordinates vary nearly symmetrically, suggesting a concerted mechanism in which the car-
boligation and proton transfer occur simultaneously, that is, while the C2 atom attacks the car-
bonyl oxygen of pyruvate, the proton of the N4´ amine group is gradually transferred to the 
carbonyl oxygen of pyruvate as a consequence of the increasing nucleophilic character on the 
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Figure 9. Potential energy surface for the Y1 form of the ylide.

Figure 10. Potential energy surface for the Y2 form of the ylide.
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oxygen atom. On the other hand, the TS of the Y2 form of the ylide is stabilized in 4 kcal/mol 
with respect to the TS of the Y1 form. The respective activation barriers are 28 and 24 kcal/mol. 
The product, L-ThDP, under the Y2 form, is stabilized in 6 kcal/mol with respect to the Y1 form.

The relative stability of the forms Y1 and Y2 was assessed by means of the study of the proton 
transfer from the carboxylic group of Glu139 to the N1′ atom of ThDP. It is found that the Y2 
form (N1′ atom protonated) is energetically lower in about 4 kcal/mol than the Y1 form. The 
calculated activation barrier for this proton transference is about 4.5 kcal/mol. These results 
are summarized in the energy diagram, Figure 11. The calculated energy barriers are 28 and 
24 kcal/mol for the Y1 and Y2 forms, respectively. In consequence, the reaction leading to 
the formation of L-ThDP should occur under Y2 form of the ylide. However, the reactivity 
analysis using the condensed to atom Fukui índices show that at long C2-Cα distance (reactant 
state), the nucleophilic character of the C2 atom is null for the Y2 form, Table 2. On the other 
hand, an important nucleophilic character on the carboxylic oxygens of Glu139 is observed, 
strong enough to detach the proton from the N1′ atom located at close distance, about 1.8 Å. 
These findings suggest that reaction cannot be initiated under the Y2 form. Unlike, the Y1 form 
shows non-null nucleophilic character on the C2 atom at early stages of the reaction suggest-
ing that the reaction should be initiated under this form.

Figure 11. Schematic energy profile for the reaction (red: minimum-energy path; green: Y1 form of the ylide; black: Y2 
form of the ylide).

Y1 Y2

C2–Cα distance (Å) C2 Oα GluCOO− C2 Oα

4.0 0.02 0.00 0.50 0.00 0.00

3.5 0.29 0.02 0.50 0.00 0.00

3.0 0.57 0.04 0.00 0.51 0.07

2.5 0.49 0.11 0.00 0.50 0.12

Table 2. Nucleophilic character on selected atoms as expressed by the   f   −   Fukui index.
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Having in mind the energetics and reactivity results, it is possible to postulate the following 
reaction path of minimum energy: the reaction is initiated with the attack of the ylide, in its Y1 
form, on the carbonylic carbon of pyruvate to reach a transition state in which the N1′ atom is 
protonated. This postulated mechanism allows to reduce the activation barrier to 20 kcal/mol, 
in agreement with the experimental evidence [15].

4. Formation of 2-aceto-2-hydroxybutyrate

The second stage of the catalytic cycle of AHAS involves the decarboxylation of the L-ThDP 
intermediate to form the 2-hydroxyethyl-ThDP carbanion/enamine (HEThDP−) intermedi-
ate. Then, HEThDP reacts with 2-ketobutyrate (2 KB) to form the 2-aceto-2-hydroxybutyrate 
(AHA-ThDP) intermediate. In this chapter, the formation of the 2-aceto-2-hydroxybutyrate 
(AHA-ThDP) intermediate is addressed from a theoretical point of view by means of hybrid 
quantum/molecular (QM/MM) mechanical calculations [18]. The QM region includes one 
molecule of 2-KB, the HEThDP− intermediate, and the residues Arg380 and Glu139, whereas 
the MM region includes the rest of the protein. This chapter includes potential energy surface 
(PES) scans to identify and characterize critical points on it, transition state search and activa-
tion energy calculations.

The initial structure of AHAS-HEThDP-2 KB for the exploration of the PES was obtained from 
the solvated and equilibrated structure of AHAS in complex with pyruvate and HEThDP after 
15 ns molecular dynamics (MD) simulation, according to the methodology elsewhere [18–20]. 
Along the simulation, significant displacements of the residues were not observed. In conse-
quence, to model the reaction mechanism, we took the final MD structure as a single repre-
sentative configuration. This structure was trimmed to a sphere of radius of 30 Å with center 
at the Cα atom of the HEThDP− intermediate. Then, the 2 KB structure was superimposed on 
the structure of pyruvate, and this was deleted.

The reaction mechanism was described on a single PES as a function of two asymmetric reac-
tions coordinates. The reaction coordinate R1 is defined as the bond length difference between 
Cα–C2 and Cα–CB bonds; the reaction coordinate R2 is defined as the bond length difference 
between Oα–Hα and OB–Hα.

4.1. Results

The PES obtained shows five critical points that are associated to reactants (R), transition 
states (TS1 and TS2), intermediate (I), and product (P), Figures 12 and 13. The PESs suggest 
that the reaction is initiated with the nucleophilic attack of the carbanion on the carbonylic 
carbon of 2 KB, reaching a transition state TS1 located at R1 ~ −1.0 and R2 ~ −0.6, evidencing 
that the nucleophilic attack is in progress while the hydroxyl proton of HEThDP− remains at 
constant distance of about 1.7 Å., from the carbonyl oxygen of ketobutyrate, Figure 14.

Once the transition state is reached, the PES shows a concerted asynchronous mechanism, 
namely, the nucleophilic attack continues until R1 reaches the values of about −0.3; afterward, 
the proton transfer from the hydroxyl of HEThDP− to the carbonyl oxygen of ketobutyrate 
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occurs, leading to the intermediate located at R1 ~ −0.25 and R2 ~ 0.75, indicating that at this 
point the proton transfer has been completed, Figure 15.

Figure 12. 3-D view of the DFT corrected PES.

Figure 13. 2-D view of the DFT corrected PES.
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The reaction continues with the increase of the reaction coordinate R1 reaching the second tran-
sition state TS2 located at coordinates R1 ~ 0.5 and R2 ~ 0.5, Figure 16. The reaction path for this 
event is clearly observed on the PES; in this step, the reaction proceeds at R2 constant, while 
the coordinate R1 changes systematically toward positive values indicating the separation of 
the product from the C2 atom of the thiazolium ring of ThDP, and the consequent ylide regen-
eration is in progress, Figure 17. The relevant distances and relative energies of the critical 
points observed in the PES are summarized in Table 3. It is observed the gradual shortening  
of the distance Cα–CB and lengthening of the distance Cα–C2 when going from reactant to prod-
uct, accounting for the nucleophilic attack and product release. Similar trend for the distances 

Figure 14. Optimized geometry of the transition state TS1.

Figure 15. Optimized geometry of the intermediate.
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Figure 16. Optimized geometry of the transition state TS2.

Figure 17. Optimized geometry of the product.

Reactant TS1 Intermediate TS2 Product

Cα–C2 (Å) 1.37 1.43 1.51 2.30 3.48

Cα–CB (Å) 3.28 2.35 1.80 1.60 1.56

Oα–Hα (Å) 1.02 0.98 1.94 1.60 1.71

OB–Hα (Å) 1.55 1.69 0.95 1.02 1.00

Relative energy (kcal/mol) 0.0 11.0 −9.0 6.10 3.00

Table 3. Interatomic distances and relative energies of the critical points on the PES.
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Oα–Hα and OB–Hα is observed as long as the reaction proceeds. The respective activation bar-
riers are 11 and 15 kcal/mol, evidencing that the second stage is the rate controlling step, in 
agreement with the empirical evidence.

4.2. Conclusions

The main conclusions can be summarized as follows: (1) the reaction between the intermedi-
ate HEThDP− and 2-ketobutyrate occurs via a stepwise mechanism consisting of two steps; (2) 
the first reaction step corresponds to the nucleophilic attack of the carbanion on the carbonylic 
carbon of 2-KB; this stage occurs via a concerted asynchronous mechanism, that is, the proton 
transfer follows the carboligation event; (3) the second reaction stage involves the product 
release and ylide recovery, allowing in this way to reinitiate the catalytic cycle once more; (4) 
two transition states are observed on the PES, the first one, TS1 corresponding to the first reac-
tion step, has an activation barrier of about 11 kcal/mol, while the second one, TS2 correspond-
ing to the product liberation, has an activation barrier of about 15 kcal/mol. (5) The results are 
in agreement with literature values [16, 17] which states that the next step to the formation of 
the adduct is the rate controlling step among the last two stages of the AHAS catalytic cycle.
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Abstract

The main goal of this chapter is to reveal the importance of molecular structure analy-
sis with specific computational tools using quantum chemistry methods based on den-
sity functional theory (DFT) with focus on pharmaceutical compounds. A wide series 
of molecular properties and descriptors related with chemical reactivity is discussed 
and compared for small organic molecules (e.g., quinolones, oxazolidinones). Structural 
and physicochemical information, important for quantitative structure-property rela-
tionships (QSPR) and quantitative structure-activity relationships (QSAR) modeling 
analysis, obtained using Spartan 14 software Wavefunction, are reported. Thus, by a com-
putational procedure including energy minimization and predictive calculations, values 
of quantum chemical parameters and molecular properties related with electronic charge 
distribution are reported and discussed. Frontier molecular orbitals energy diagram and 
their bandgap provide indications about chemical reactivity and kinetic stability of the 
molecules. Derived parameters (ionization potential (I), electron affinity (A), electronega-
tivity (χ), global hardness (η), softness (σ), chemical potential (μ) and global electrophi-
licity index (ω)) are given. Also, graphic quantities are reported: electrostatic potential 
maps, local ionization potential maps and LUMO maps, as visual representation of the 
chemically active sites and comparative reactivity of different constitutive atoms.

Keywords: quantum chemical parameters, linezolid, cadazolid, ciprofloxacin, molecular 
docking

1. Introduction

In recent years, prediction of chemical properties by computed tools becomes a useful and 
suitable way to analyze and compare wide libraries of compounds aiming to design and 
develop new molecules with higher biological activity and/or better and controlled chemical 
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sity functional theory (DFT) with focus on pharmaceutical compounds. A wide series 
of molecular properties and descriptors related with chemical reactivity is discussed 
and compared for small organic molecules (e.g., quinolones, oxazolidinones). Structural 
and physicochemical information, important for quantitative structure-property rela-
tionships (QSPR) and quantitative structure-activity relationships (QSAR) modeling 
analysis, obtained using Spartan 14 software Wavefunction, are reported. Thus, by a com-
putational procedure including energy minimization and predictive calculations, values 
of quantum chemical parameters and molecular properties related with electronic charge 
distribution are reported and discussed. Frontier molecular orbitals energy diagram and 
their bandgap provide indications about chemical reactivity and kinetic stability of the 
molecules. Derived parameters (ionization potential (I), electron affinity (A), electronega-
tivity (χ), global hardness (η), softness (σ), chemical potential (μ) and global electrophi-
licity index (ω)) are given. Also, graphic quantities are reported: electrostatic potential 
maps, local ionization potential maps and LUMO maps, as visual representation of the 
chemically active sites and comparative reactivity of different constitutive atoms.

Keywords: quantum chemical parameters, linezolid, cadazolid, ciprofloxacin, molecular 
docking

1. Introduction

In recent years, prediction of chemical properties by computed tools becomes a useful and 
suitable way to analyze and compare wide libraries of compounds aiming to design and 
develop new molecules with higher biological activity and/or better and controlled chemical 
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behavior. Molecular design and prediction of molecular parameters using ab initio methods 
and mathematical modeling of physical and chemical properties are imperative steps in new 
scientific approaches for developing new drugs or advanced materials.

Due to the evolution of computing data storage and processor performance, molecular mod-
eling rapidly integrates into the study of therapeutic molecules, due to the opportunities, 
it offers to solve relevant issues in a considerably short time without doing rebate from the 
accuracy of the predicted data.

The prediction of chemical properties and the assessment of chemical behavior in pseudo-
physiological media by computational methods has become a necessary and fast tool to ana-
lyze and compare wide libraries of compounds in order to design and develop new molecules 
with important biological activity or to potentiate them or conduct their chemical behavior. 
Computed structural analysis and chemical parameters prediction using ab initio methods 
and mathematical modeling of physicochemical properties are imperative steps in these new 
approaches in developing drugs or advanced new materials.

Mathematical models are used to predict the strength of intermolecular interactions between 
drug candidates and their biological protein/enzyme target, allowing to identify the most 
probable binding mode and affinity and, finally, to explore the molecular mechanism or bio-
chemical pathways.

Recent studies have been focused on the development of noncleavable dual-action molecules 
with antimicrobial activity. One of the noncleavable antibiotic hybrids is cadazolid, composed 
of a fluoroquinolone and an oxazolidinone core via a stable linker [1]. Regarding the mode of 
action, it was reported that cadazolid is acting as an oxazolidinone molecule but fails to dem-
onstrate a substantial contribution from the fluoroquinolone function. Cadazolid behaves like 
a potent linezolid with a low systemic exposure and a high local concentration in the gastroin-
testinal tract [1]. Our theoretical studies focus on the characteristics, molecular properties and 
molecular docking simulations to identify and visualize the most likely interactions between 
ligands such as cadazolid, linezolid, quinolone and the receptor protein (Staphylococcus 
aureus ribosomal subunit, PDB ID: 4WFA).

2. Materials and methods

2.1. Prediction properties computation procedure

The properties calculations were carried out using Spartan 14 software Wavefunction, Inc. Irvine, 
CA, USA [2] on a PC with Intel(R) Core i5 at 3.2 GHz CPU. First, the 3D CPK models of the stud-
ied compounds were generated. Then, a systematic conformational search and analysis were 
performed to establish the more stable conformers of the three pharmacological compounds, 
presenting the energy minima. The lowest energy conformer was obtained using MMFF molec-
ular mechanics model by refining the geometry for each studied molecule. On these structures, 
a series of calculations of molecular properties and topological descriptors were performed 
using density functional method [3], software algorithm hybrid B3LYP model (Becke’s three 
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 parameter hybrid exchange functional with the Lee-Yang-Parr correlation functional) [3–5] and 
polarization basis set 6-31G* [2, 6] in vacuum, for equilibrium geometry at ground state.

2.2. Molecular docking simulations

The docking studies have been carried out using CLC Drug Discovery Workbench Software in 
order to predict the most possible type of interactions, the binding affinities and the orientation 
of the docked ligand (cadazolid, linezolid or quinolone) at the active site of Staphylococcus 
aureus ribosomal subunit [7]. The protein-ligand complex has been realized based on the 
X-ray structure of crystal structure of the large ribosomal subunit of Staphylococcus aureus in 
complex with linezolid, which was downloaded from the Protein Data Bank (PDB ID: 4WFA) 
[7]. Co-crystallized ligand linezolid (ZLD) was extracted and redocked into 4WFA fragment 
to validate the docking protocol. The docked ligands and their optimized geometry are illus-
trated in Figure 1, as ball and spoke representation.

3. Results and discussion

3.1. Molecular properties

Structural and physicochemical information, important for quantitative structure-property 
relationships (QSPR) and quantitative structure-activity relationships (QSAR) modeling analysis, 

Figure 1. The optimized geometry of the pharmaceutical compounds: linezolid (a), ciprofloxacin (b) and cadazolid (c), 
ball and spoke representation.
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obtained using Spartan 14 software Wavefunction, are reported in Table 1. Thus, by a com-
putational procedure, including energy minimization to obtain the most stable conformer for 
each studied structure and predictive calculations, values of quantum chemical parameters 
and molecular properties related with electronic charge distribution are obtained. Using the 
Calculate Molecular Properties Tool of Spartan 14 software, relevant properties of small mol-
ecules have been calculated, related with Lipinski’s rule of five [8]. To be efficient drug candi-
dates, the compounds must respect the following conditions: maximum five hydrogen bond 
donors (as total number of nitrogen-hydrogen and oxygen-hydrogen bonds); maximum 10 
hydrogen bond acceptors (as total number of nitrogen and oxygen atoms); maximum molecu-
lar weight of 500 Da; the octanol-water partition coefficient (log P) value less than 5. In our 
study, the prediction log P coefficient is based on the XLOGP3-AA method [9]. These proper-
ties are important when several drug candidate compounds need to be analyzed, before their 
chemical synthesis, in order to evaluate their drug-likeness. In Table 1 are listed the calcu-
lated molecular properties from CPK and from Wavefunction models for the three studied 

Linezolid Ciprofloxacin Cadazolid

Molecular properties

Formula C16H20FN3O4 C17H18FN3O3 C29H29F2N3O

Weight (amu) 337.351 331.347 585.560

Energy (au) –1186.74569 –1148.36687 –2088.23350

Energy (aq) (au) –1186.76351 –1148.36687 –2088.26194

Solvation E (kJ/mol) –46.79 –57.23 –74.66

Dipole moment (Debye) 7.28 6.42 8.39

E HOMO (eV) –5.28 –5.72 –5.88

E LUMO (eV) –0.19 –1.33 –1.52

QSAR properties from CPK model

Area (Å2) 346.66 330.26 557.72

Volume (Å3) 324.83 318.18 541.53

PSA (Å2) 55.071 62.218 114.809

Ovality 1.52 1.47 1.74

QSAR properties from computed wavefunction

Log P 0.58 1.32 2.37

HBD count 1 1 2

HBA count 6 5 9

Polarizability (10−30 m3) 66.52 66.15 84.27

Table 1. Predicted molecular properties for linezolid, ciprofloxacin and cadazolid, using DFT method, B3LYP model, 
6-31G* basis set, in vacuum, for equilibrium geometry at ground state.
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 molecules obtained for the most stable conformer of each after geometry minimization: dipole 
moment, ovality, polarizability, the octanol-water partition coefficient (log P), the number of 
hydrogen bond donors (HBDs) and acceptors (HBAs) and acceptor sites (HBAs), area, vol-
ume, polar surface area (PSA) and energies of frontier molecular orbitals (FMOs).

Area, volume and polar surface area have the same variation as the molecular weight, increas-
ing in the following order: ciprofloxacin < linezolid < cadazolid.

The ovality index represents the deviation from the spherical form, considering its value 1 for 
spherical shape. From our calculations, we found the following variation of this parameter: 
1.47 (ciprofloxacin) < 1.52 (linezolid) < 1.74 (cadazolid). Ovality index is related with molecu-
lar surface area and van der Waals volume, and it increases with the increase of structural 
linearity. The polarizability provides information about induction (polarization) interactions 
resulting from an ion or a dipole inducing a temporary dipole in an adjacent molecule. The 
same variation is observed for both polarizability and for the dipole moment.

The octanol-water partition coefficient (log P) is related with the lipophilicity of compounds 
and is useful to predict the absorption of drugs across the intestinal epithelium.

Log P values are calculated according to Ghose, Pritchett and Crippen method [10]. The crite-
ria of Lipinski’s rule of five [11], log P must be smaller than 5 for a good drug candidate, are 
based on the observation that the most orally absorbed compounds have log P < 5. Log P can 
be correlated with PSA when the potential drugs are evaluated according to Hughes et al. [12] 
who proposed the criteria as log P < 4 and PSA > 75 Å2.

Molecular orbitals energy diagrams and gap (ΔE) are obtained from the energetic level values 
(eV) of frontier molecular energy orbitals (FMNOs): HOMO— the highest occupied molecular 
orbital and LUMO—the lowest unoccupied molecular orbital.

The molecular frontier orbitals are important descriptors related to the reactivity of molecules. 
Thus the higher value refers to chemically stable molecules. The HOMO energy is linked to 
the tendency of a molecule to donate electrons to empty molecular orbitals with low energy 
of convenient molecules. The LUMO energy indicates the ability to accept electrons. The fron-
tier molecular orbital density distribution of the studied therapeutic compounds is shown in 
Figure 2 (for linezolid (a), ciprofloxacin (b) and cadazolid (c): HOMO (top) and LUMO (bot-
tom). Black and dark gray regions correspond to positive and negative values of the orbital.

The frontier orbital gap helps to characterize chemical reactivity and kinetic stability [13, 14] of 
the molecules. HOMO and LUMO determine the way in which it interacts with other species.

The obtained energy gap increases in the order: cadazolid < ciprofloxacin < linezolid (4.36 
< 4.39 < 5.09). Consequently, among the three analyzed therapeutical compounds, linezolid 
presents the lowest reactivity (the most chemically stable) followed by ciprofloxacin and 
cadazolid (the most reactive).

Other derived quantum chemical parameters for the most stable conformers of linezolid, cip-
rofloxacin and cadazolid, such as ionization potential (I), electron affinity (A), electronegativity  
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(χ), global hardness (η), softness (σ), chemical potential (μ) and global electrophilicity index 
(ω), are obtained and listed in Table 2. Their values were derived from HOMO and LUMO 
energy diagram [15, 16], according to Koopmans’ theorem [17, 18]. The ionization potential is 
defined as I = −EHOMO and the electron affinity as A = −ELUMO.

Figure 2. HOMO-LUMO plots (ground state) and energy diagram. HOMO-LUMO plots of (a) linezolid, (b) ciprofloxacin 
and (c) cadazolid.
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3.1.1. Graphical quantities: electrostatic potential, local ionization potential and |LUMO| 
maps

These graphical quantities provide a visual representation of the chemically active sites and 
comparative local reactivity of analyzed structures.

Molecular electrostatic potential (MEP) is used to investigate the chemical reactivity of a 
molecule. The MEP is especially important for the identification of the reactive sites of nucleo-
philic or electrophilic attack in hydrogen bonding interactions and for the understanding of 
the process of biological recognition. The electrostatic potential map for all three compounds 
shows hydrophilic regions (negative and positive potentials) and hydrophobic regions (neu-
tral). Their variations and local values are illustrated in Figure 3. For linezolid (Figure 3a), 
the negative potentials are localized over oxygen atoms, presenting values: −154, −156 and 
−160 kJ/mol. The positive electrostatic potential presents a maximum value of 234 kJ/mol. For 
ciprofloxacin (Figure 3b), the negative values vary between −209 and −166 kJ/mol, while posi-
tive values are lower than those found for linezolid (194 kJ/mol). For cadazolid (Figure 3c), 
the negative regions present values between −219 and −159 kJ/mol, and positive regions vary 
between 190 and 214 kJ/mol.

Local ionization potential map (LIPM) is represented in Figure 4 for linezolid (a), ciprofloxa-
cin (b) and cadazolid (c). The ionization potential represents an overlay of the energy of elec-
tron removal (ionization) on the electron density, being particularly useful to assess chemical 
reactivity and selectivity, in terms of electrophilic reactions.

|LUMO| map is an indicator of nucleophilic addition and it is provided by an overlay of the 
absolute value of the lowest unoccupied molecular orbital (LUMO) on the electron density.

Figure 5 illustrates the graphical representation for |LUMO| maps for linezolid (a), cipro-
floxacin (b) and cadazolid (c).

Quantum parameters Linezolid Ciprofloxacin Cadazolid

EHOMO (eV) −5.2763 −5.7170 −5.8839

ELUMO (eV) −0.1856 −1.3262 −1.5517

ΔE (EHOMO–ELUMO) (eV) 5.0907 4.3908 4.3670

I = −EHOMO (eV) 5.2763 5.7170 5.8839

A = −ELUMO (eV) 0.1856 1.3262 1.5517

χ = (I + A)/2 (eV) 2.7309 3.5216 3.7178

η = (I – A)/2 (eV) 2.5453 2.1954 2.1661

σ = l/η 2.0829 2.6041 2.7163

μ = (EHOMO + ELUMO)/2 −2.7309 −3.5216 −3.7178

ω = μ2/2η −1.4650 2.4362 3.1905

Table 2. Calculated quantum chemical parameters of the studied compounds.
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Figure 4. Local ionization potential map (LIPM) of (a) linezolid, (b) ciprofloxacin and (c) cadazolid.

Figure 3. Electrostatic potential map (EPM) of linezolid (a), ciprofloxacin (b) and cadazolid (c), ball and spoke 
representation.
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The values of energetic intermediary levels of HOMO and LUMO orbitals for the studied 
compounds, predicted with B3LYP, 6-31G* algorithm are listed in Table 3.

Contribution of other occupied (HOMO{−1}–HOMO{−9}) and unoccupied molecular orbitals 
(LUMO{+1}) at UV VIS allowed transitions are presented in Table 4 for linezolid, Table 5 for 
ciprofloxacin and Table 6 for cadazolid.

3.2. Molecular docking simulations

The docking score is a measure of the antimicrobial activity of the studied molecules. The 
4WFA fragment, imported from PDB, was chosen for docking study because of the presence 
in its crystallographic structure of co-crystallized linezolid (ZLD). The crystal structure vali-
dated by X-ray diffraction contains a large ribosomal subunit of Staphylococcus aureus in com-
plex with linezolid (ZLD). The polymeric chains also include 36 unique types of molecules: 
RNA chain 23S rRNA; RNA chain 5S rRNA, 50S ribosomal proteins L2–L6, 50S ribosomal pro-
teins L13–L36, molecule N-{[(5S)-3-(3-fluoro-4-morpholin-4-ylphenyl)-2-oxo-1,3-oxazolidin-
5-yl]methyl}acetamide (ZLD-linezolid), molecule (4S)-2-methyl-2,4-pentanediol (MPD), 
magnesium ion, manganese(ii) ion, sodium ion, molecule 4-(2-hydroxyethyl)-1-piperazine 
ethanesulfonic acid (EPE), spermidine (SPD) and ethanol, as deposited in PDB on 2014-09-14, 
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Wavelength (nm) Strength MO component Contribution

211.68 0.1076 HOMO−1 → LUMO+1 43%

HOMO−1 → LUMO 38%

HOMO−2 → LUMO 13%

223.10 0.0605 HOMO−1 → LUMO 51%

HOMO−1 → LUMO+1 25%

255.34 0.3172 HOMO → LUMO+1 65%

HOMO → LUMO 20%

274.49 0.1237 HOMO → LUMO 70%

HOMO → LUMO+1 18%

Table 4. Linezolid UV/Vis allowed transitions.

Orbital Linezolid Ciprofloxacin Cadazolid

HOMO −5.3 −5.7 −5.9

HOMO{−1} −6.5 −6.0 −6.2

HOMO{−2} −6.6 −6.3 −6.4

HOMO{−3} −7.0 −6.4 −6.5

HOMO{−4} −7.3 −7.2 −7.0

HOMO{−5} −7.4 −7.3 −7.3

HOMO{−6} −7.7 −7.8 −7.4

HOMO{−7} −8.1 −8.3 −7.4

HOMO{−8} −8.2 −8.8 −7.4

HOMO{−9} −8.4 −9.0 −7.5

LUMO −0.2 −1.3 −1.5

LUMO{+1} 0.1 −1.0 −1.3

HOMO and LUMO orbitals and their values are in bold characters to highlight that they are the frontier molecular 
orbitals, and their values occur in the calculus of the energy gap (ΔE) and other quantum molecular parameters related 
with the global chemical reactivity of molecules.

Table 3. Linezolid, ciprofloxacin and cadazolid energetic levels (eV) of intermediary molecular orbitals (MO).
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Wavelength (nm) Strength MO component Contribution

277.36 0.3043 HOMO−1 → LUMO+1 33%

HOMO−3 → LUMO 19%

HOMO−1 → LUMO 16%

HOMO → LUMO+1 16%

279.79 0.0653 HOMO−1 → LUMO+1 36%

HOMO → LUMO+1 33%

HOMO−1 → LUMO 14%

292.77 0.0014 HOMO−2 → LUMO+1 92%

300.49 0.0204 HOMO−1 → LUMO 51%

HOMO → LUMO+1 43%

318.08 0.0927 HOMO → LUMO 84%

334.30 0.0023 HOMO−2 → LUMO 88%

Table 5. Ciprofloxacin UV/Vis allowed transitions.

Wavelength (nm) Strength MO component Contribution

286.51 286.51 HOMO-1 → LUMO 82%

Table 6. Cadazolid UV/Vis allowed transitions.
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Figure 6. Molecular docking results on linezolid, ciprofloxacin and cadazolid with 4WFA receptor. (a) Active binding 
site of 4WFA. (b) Docking validation of co-crystallized ZLD. (c) Interacting group and hydrogen bonds between the 
residues of the GLN 38 and the co-crystallized ZLD. (d) Interacting group of linezolid and hydrogen bonds between 
the residues of the GLN 38 and the linezolid. (e) Interacting group of ciprofloxacin and hydrogen bonds between the 
residues of LYS 36 and ciprofloxacin. (f) Interacting group of cadazolid and hydrogen bonds between the residues of LYS 
36 and GLN 38 and cadazolid. (g) Docking pose of the four ligands: co-crystallized ZLD (light gray), linezolid (gray), 
ciprofloxacin (black) and cadazolid (dark gray) with 4WFA.
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The docking simulations comprise the following steps: ligands preparation and calculate 
molecular properties, setup the binding site of the receptor protein, dock ligands, validation 
of docking, analyze and measure the interactions of the ligand with the amino acid group, 
analyze docking results in terms of docking score and root-mean-square deviation (RMSD). 
The docking studies aim to predict the binding modes, the binding affinities and the orienta-
tion of the docked ligands. In Figure 6, the docking results are illustrated; the active binding 
site of 4WFA (a), docking validation of co-crystallized ZLD (b), interacting group and hydro-
gen bonds between the residues of GLN 38 and co-crystallized ZLD (c), interacting group of 
linezolid and hydrogen bonds between the residues of GLN 38 and linezolid (d), interacting 
group of ciprofloxacin and hydrogen bonds between the residues of LYS 36 and ciprofloxacin 
(e), the interacting group of cadazolid and hydrogen bonds between the residues of LYS 36 
and GLN 38 and cadazolid (f), docking pose of the four ligands: co-crystallized ZLD (gray), 
linezolid (brown), ciprofloxacin (red) and cadazolid (blue) with 4WFA (g).

The results of molecular docking studies reveal the docking score −49.75 (RMSD: 2.65 Å) for 
cadazolid and shows the occurrence of two hydrogen bonds with GLN 38 (2.930 Å) and LYS 36 
(3.020 Å). Cadazolid forms a hydrogen bond with the same amino acid as linezolid (the first oxa-
zolidinone introduced into therapeutics) and a hydrogen bond with the same amino acid as cipro-
floxacin (second-generation fluoroquinolone) (Table 7). The obtained docking score resulted from 
the contributions of hydrogen bond score, metal interaction score and steric interaction score.

3.2.1. Drug-likeness of the studied therapeutical compounds

As seen from the analysis of docked ligands, from Table 8, cadazolid presents two violations 
of the parameters involved in Lipinski’s rule of five: the mass and the number of hydrogen 
acceptors (11), although the docking score is better, yet the RMSD has the higher value. These 
results can be correlated with cadazolid behavior, acting more likely as an oxazolidinone. 
Also, cadazolid presents the higher values of the water-octanol coefficient, from calculations 
made not only with CLC Drug Discovery Workbench software but also with Spartan  software, 

Compound Score/RMSD Interacting group Hydrogen bond Bond length (Å)

Linezolid-co-
crystallized (ZLD)

−34.55/1.66 ARG 33(I), GLY 34(I), HIS 35(I), LYS 36(I), 
GLY 37(I), GLN 38(I), LYS 39(I), ARG 
41(I), ALA 40(I), SER 42(I)

N sp2(N14) – O sp2 
from GLN 38(I)

2.917

Linezolid −37.97/0.22 GLY 34(I), HIS 35(I), LYS 36(I), GLY 37(I), 
GLN 38(I), LYS 39(I), ARG 41(I), ALA 
40(I), SER 42(I)

N sp2(N14) – O sp2 
from GLN 38(I)

2.989

Ciprofloxacin −36.79/0.19 GLY 34(I0, GLY 37(I), LYS 36(I), SER 42(I), 
HIS 35(I), GLY 43(I), PRO 48(I), GLY 49(I)

O sp3 (O2) – O sp2 
from LYS 36(I)

2.996

Cadazolid −49.75/2.65 LYS 29(I), ARG 33(I), GLY 34(I), HIS 35(I), 
LYS 36(I), GLY 37(I), GLN 38(I), ARG 
41(I), LYS(39(I), ALA 40(I), SER 42(I).

O sp2(O9) – Nsp2 
from LYS 36(I)

3.020

O sp3(O8) – N sp2 
from GLN 38(I)

2.930

Table 7. The list of intermolecular interactions between the ligands docked with 4WFA using CLC Drug Discovery 
Workbench software.
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both using different methods for the calculation of this parameter. Also, the differences in pre-
dicted values of log P can be attributed to the fact that Spartan software considers a rigorous 
conformational analysis before calculating the molecular properties. The calculated values 
with Spartan software are obtained only for the conformer with the lower energy.

4. Conclusions

Ab initio computation to molecular properties prediction and in silico molecular docking 
simulations help to evaluate the biological activity of several compounds and to assess their 
therapeutical potential.

Ciprofloxacin and linezolid can be used as reference compounds for their antimicrobial activ-
ity in order to analyze several derivatives of their class as drug candidates. Ciprofloxacin and 
linezolid fulfill both Lipinski and Hughes et al. rules about drug likeness, confirmed also by 
their use in therapeutics. Spartan 14 and CLC Drug Discovery Workbench Software offer the 
possibility of a deep conformational analysis and to obtain accurate predictive property data.
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Compound Atoms Weight 
[Da]

Flexible 
bonds

Lipinski 
violations

Hydrogen 
donors

Hydrogen 
acceptors

Log P

Linezolid-co-
crystallized (ZLD)

44 337.35 4 0 1 7 1.29

Linezolid 44 337.35 4 0 1 7 1.29

Ciprofloxacin 42 331.34 3 0 2 6 0.84

Cadazolid 71 585.55 8 2 3 11 4.14

Table 8. Ligands properties, computed with CLC Drug Discovery Workbench software.
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