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Preface

Ligands are a special class of species, having a significant character to control the electronic
properties of metal ions through some kind of chemical attachment. They have a great abili‐
ty to enhance the reactivity and/or selectivity in controlling the physico-chemical properties
of chemical entities.

This book consists of five chapters. Chapter 1 aims to outline the beneficial role of various
functional ligands in pairing of metal ions in the molecular imprinting process and to pro‐
vide an up-to-date overview of various applications in chemical sensing, separation process‐
es (stationary phases and selective sorbents), drug delivery and catalysis. Chapter 2 covers
the incorporation of both Si and P functionalities in a ligand backbone (silylphosphines),
along with their applicability in reactivity in catalysis. The topic of discussion in Chapter 3
focuses on preparative route for gold clusters consisting of chalcogenate (thiolate, selenolate
or tellurolate) ligands. A description of their geometric/electronic structures including phys‐
ical and chemical properties is also depicted here. In Chapter 4, the concept of neuropeptide,
including its intracellular maturation process and characteristics of some typical neuropep‐
tide families with common properties of their cognate GPCRs, is dealt with. Chapter 5 high‐
lights the significant contribution to soluble Fas ligand, a Type II membrane protein
belonging to TNF family in the pathogenesis against dengue infection. The importance of
Fas ligand and its mechanistic aspects in preventing dengue disease is also depicted here.

So, the book Ligand describes the diversity and versatility of ligands covering structural fea‐
tures, donor-acceptor properties and secondary functions like molecular recognition. More‐
over, this book also provides a comprehensive account on the applicability: catalysis, sensors,
supramolecular assembly, photochemical property, bioinorganic chemistry, and so on.

Dr. Chandraleka Saravanan
Department of Chemistry

Urumu Dhanalakshmi College
Tamil Nadu, India

Dr. Bhaskar Biswas
Department of Chemistry

Surendranath College
West Bengal, India
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Abstract

Molecular imprinting enables the design of highly crosslinked polymeric materials that are 
able to mimic natural recognition processes. Molecularly imprinted polymers exhibit bind-
ing sites with tailored selectivity toward target structures ranging from inorganic ions to 
biomacromolecules and even viruses or living cells. The choice of the appropriate functional 
monomer, crosslinker, and the nature and specificity of template–monomer interactions are 
critical for a successful imprinting process. The use of a metal ion mediating the interaction 
between the monomer and template (acting as ligands) has proven to offer a higher fidelity 
of imprint, which modulates the molecularly imprinted polymers (MIPs) selectivity or to 
endow additional features to the polymer, such as stimuli-responsiveness, catalytic activity, 
etc. Furthermore, limitations in using nonpolar and aprotic solvents are overcome, allowing 
the use of more polar solvents and even aqueous solutions as imprinting media, opening 
new prospects toward the imprinting of biomacromolecules (proteins, DNA, RNA, antibod-
ies, biological receptors, etc.). This chapter aims to outline the beneficial pairing of metal ions 
as coordination centers and various functional ligands in the molecular imprinting process, 
as well as to provide an up to date overview of the various applications in chemical sensing, 
separation processes (stationary phases and selective sorbents), drug delivery, and catalysis.

Keywords: molecular imprinting, metal pivot imprinting, ion imprinting,  
drug delivery systems, catalysis, metal-ligand interactions, sensors,  
surface imprinting, chiral analysis

1. Introduction

Molecular recognition is indispensable to most of natural occurring phenomena, such as 
antibody–antigen immune response, ligand-receptor interactions, and enzyme catalysis. The 
complexity and specificity of these phenomena is the refined product of millions of years of 
evolution inciting scientists to search ways of mimicking these natural processes. The most 
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promising and advanced field of biomimetics is molecular imprinting (MI), a technique that 
gained popularity after the 90s, even though the first reports of imprinting date back to 1931, 
related to the findings of the Soviet chemist M. V. Polyakov. Compared with their natural 
counterparts, molecularly imprinted polymers (MIPs) possess, besides a similar selectivity, 
good chemical and thermal stability, ease of preparation, and low-cost production. By far, 
their main applications have been reported in the analytical field, and especially in separation 
techniques, where they have been used as stationary phases for (electro)chromatography and 
chiral separations and as selective sorbents in solid phase extraction [1]. They have also been 
applied as promising recognition elements in the development of biosensors, particularly 
electrochemical [2] and optical [3] ones. In the last few years, MIPs have proven to be versatile 
engineered materials in the construction of drug delivery systems [4] and as catalysts [5].

The MI process is a relatively simple concept, enabling the synthesis of highly crosslinked 
polymeric materials of various formats with highly specific binding sites for target structures. 
The synthesis procedure is relatively easy, versatile, and straightforward, and in general, five 
components are required: template molecule, functional monomer(s), crosslinking monomer, 
solvent (porogen), and initiator. The polymers are prepared in the presence of the target mol-
ecule itself as template. The first step in MIP-preparation is the self-assembly of template-
functional monomer into a complex to immobilize the template molecules throughout the 
polymerization process. After the addition of the remaining components, the polymerization 
is initiated and the functional monomer (linked with the template) is incorporated into the 
rigid 3D structure of the polymer with the functional groups locked toward the template. 
Upon the subsequent removal (extraction) of the template, cavities are unveiled in the struc-
ture of the rigid polymer, which are complementary in size, shape, and functionality to the 
template. Hence, a molecular memory is created into the polymeric matrix, which has now 
the ability to selectively and reversibly bind the analyte or its structural analogs. The strength 
of the interactions between template and monomer determines the efficiency of the imprint-
ing process [6].

Traditionally, MI is classified according to the chemical nature of the interactions that occur 
during the functional monomer–template complex formation and template rebinding, into 
two main approaches: the noncovalent and the covalent approach [7, 8]. By far, the most fre-
quently employed approach is the noncovalent one, based on weak, noncovalent interactions 
in the template-functional monomer complex formation and also in the subsequent recogni-
tion step. These interactions, such as hydrogen bonding, electrostatic interactions and van 
der Waals forces, are similar with those occurring in biological recognition systems. Because 
of the weak nature of these bonds, the formed complexes are unstable and a large excess of 
functional monomer, as compared to the template, is required during the polymerization step 
in order to favor the formation of the template-monomer assemblies. However, this excess 
generates a high number of heterogeneous binding sites as a result of random incorpora-
tion of the monomer’s functional groups outside the imprinted cavities. Moreover, because 
the complex formation is governed by an equilibrium, a special attention must be paid to 
the employed porogenic solvent. Usually, nonpolar, aprotic solvents, such as chloroform and 
toluene promote the template-functional monomer association, whereas polar solvents like 
methanol and water tend to disrupt the noncovalent interactions in the prepolymerization 
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complex. The covalent approach or the preorganized approach employs reversible covalent 
bonds between the functional monomer and template, such as reversible esterification or con-
densation reactions (boronate ester, ketal/acetal, and Schiff’s base formation) both prior to the 
polymerization, and also in the subsequent rebinding step of the template. This strategy leads 
to the generation of a higher yield of specific and more homogeneous binding sites along 
with reduced nonspecific adsorption. However, the applicability of the covalent imprinting 
approach is limited because of the small number of compounds bearing required function-
alities (alcohols (diols), aldehydes, ketones, amines, and carboxylic acids). Removal of the 
template is generally more difficult, and the chemical cleavage must be achieved under mild 
conditions. A third, semi-covalent approach, (also called hybrid approach) [9], developed by 
Whitcombe et al. [10] combines the advantages of the previous two methods. While revers-
ible covalent bonds are employed during the polymerization step, the re-binding is entirely 
non-covalent in nature.

Unfortunately, most authors neglect in their classification a different strategy, metal ion coor-
dination, even though its first report dates back to 1985 [11]. It has been employed as an 
alternative to enhance template and functional monomer association in water by introducing 
a metal ion as mediator [12]. The use of metal ions allows the formation of a ternary complex 
between the functional monomer, metal ion, and template. The heteroatoms of monomer and 
template bind to the metal ion (generally first row transition metals) by donating electrons to 
the unfilled orbitals of the outer coordination sphere of the latter [13]. Coordination of metal 
ions to natural (e.g. structural elements of DNA, peptides, alkaloids, etc.) or synthetic ligands 
bearing a large variety of donor atoms has proven to be well suited for the preparation of 
polymers with outstanding molecular recognition properties, put into good use in a wide 
variety of applications fields.

Initially, the design and development of MIPs, regardless of the employed imprinting 
approach, aimed for the rebinding of the template with the highest selectivity. Nevertheless, 
instead of using the metal ion as mere mediator in the formation of the imprinted polymer, 
the selective rebinding of a target metal ion is often of interest. Thus, based on the principle 
of MI, the concept of ion imprinting has also been introduced, in which case the metal ion 
assumes the role of template.

2. Metal pivot imprinting (metal ion as mediator)

In this approach, metal ions act as a bridge between the functional monomer and the tem-
plate. Compared to noncovalent interactions, coordinative bonds are stronger, leading to a 
better stability in aqueous media. The stronger the interactions within the ternary complex, 
the more specific the recognition sites. Thus, the functional monomer and the template are 
maintained in close and fixed positions throughout the polymerization step [14]. Monomers 
are regularly positioned around the template via coordinate bonds, the relative motion of 
species is restrained, thus leading to improved imprinting factors and lower number of non-
specific binding sites. A key role in the imprinting process is represented by the nature of the 
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metal ion, which needs to simultaneously meet several requirements, that is, no inhibition of 
the polymerization process, well-defined coordination sphere, and optimal affinity toward 
the template and monomer.

2.1. Metal ion

Generally, only a small number of transitional metal ions are employed as pivots in MI, such 
as: Co(II), Co(III), Cu(II), Ni(II), Zn(II), Cd(II), Fe(II), and Fe(III). Due to their high ability in 
forming coordination compounds with the majority of ligands of interest cobalt [15–26] and 
copper [27–33] ions are most often chosen by default. Nevertheless, in the absence of rational 
guidelines for matching the optimal metal pivot ion with the ligand of interest, a systematic 
pairing process would be required for each individual set of components.

Wu and Li [27] reported Cu(II) being complexed in the pre-polymerization step by 2 molecules 
of monomer (4-vinylpyridine (4-VPy)), one of template (picolinamide) and two acetates. They 
also have shown that the anion in the copper salt participates in the recognition process and in 
the complex formation [27]. Even though Cu(II) forms the most stable coordination compounds 
with ligands bearing N-donor atoms, the best imprinting efficiency is achieved in the case of 
Co(II), as evidenced in multiple studies that compared the imprinting performances of multi-
ple metal ions [15, 18, 21]. In an attempt to separate the enantiomers of mandelic acid, the R(+) 
enantiomer and 4-VPy were used as template and functional monomer, respectively, along-
side different metal ions as pivot (Co(II), Ni(II), Cu(II), and Zn(II)) to create imprinted mono-
liths [15]. The best resolutions were obtained using Co(II) and Ni(II) as mediators (RS = 1.87 
and RS = 1.41, respectively), while in the case of Cu(II) and Zn(II) no separation was observed. 
The smallest template retention recorded in the case of Zn(II) monolith implies that no ternary 
complex (template:metal ion:monomer) is formed due to zinc’s weak coordination capacity. 
In the case of Cu(II), even though it produces the most stable hexa-coordinated complexes, 
because of Jahn–Teller distortion, these coordination compounds are known to be susceptible 
to tetragonal distortion (elongation/ compression) [34]. In another study, the Co(II) mediated 
imprinted monolith showed the best retention (k = 2.75) and imprinting factors (I.F. = 3.1) for 
the gallic acid (template), in comparison with Ni(II) mediated polymer (k = 2.49) or different 
other ion-mediated MIP monoliths that were tested [18]. The Co(II)-mediated MIPs emerge 
also in other two studies [21, 22] in which ketoprofen and ketoprofen with naproxen, respec-
tively were used as templates. In the first study, [21] the ability of molecular recognition of the 
ion-mediated imprinted polymers decreases in the order: Co(II) > Ni(II) > Zn(II). The binding 
affinity of Ni(II) to the N containing ligands (especially aminoacids containing compounds) 
was employed in creating imprinted polyacrylamides as artificial receptors for different pep-
tides (cholecystokinin C-terminal pentapeptide (CCK-5) [35] and His-Alac [36]). The functional 
monomer (nitrilotriacetic acid) occupies four positions in the octahedral coordination sphere 
of Ni(II), leaving the remaining two for selective interactions with the template. Both Fe(II) 
and Fe(III) were successfully used in developing MIP adsorbents for tetracyclines enriching 
[37, 38]. It was found that Fe(II) could form a ternary complex with tetracycline (template) and 
methacrylic acid (MAA) (functional monomer), made of one molecule of template, one Fe(II) 
and four MAAs. The same mole ratio 2:1:2, methacryloyl-l-cysteine methyl ester (functional 
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monomer):Fe(III):template (uric acid) was found in the coordination compound used for the 
surface plasmon resonance (SPR) detection of uric acid [39]. Fe(III)-MIP was developed as a 
drug carrier that showed larger drug loading capacity and a higher amount of drug release at 
its equilibrium state compared with the Fe-free MIP. Moreover, the Fe-MIP drug release rate 
was more controlled than that of the MIP and the non-imprinted polymer (NIP), especially at 
the early stages of release [40].

2.2. Template as ligand

Metal–template binding should be stable under polymerization conditions yet labile enough 
to allow removal of substrates-templates. With few exceptions, [41] the design of MIPs for the 
selective recognition of amino acids and peptides has been limited to the traditional imprint-
ing strategy, which employs polyacrylates with MAA as the functional monomer in organic 
solvents. Bulkier templates, such as macromolecules (especially proteins) are not compatible 
with the organic media because of their low solubility and tendency toward denaturation, 
thus using water as solvent is essential. However, polar solvents will interfere in template-
monomer hydrogen bonding, therefore metal-coordination interactions represent an effective 
alternative in imprinting biological-relevant compounds. The affinity of N-terminal histidine 
for Ni(II) allowed the creation of MIP receptors for peptides with exposed histidine residues 
[36]. It was shown that the metal ion works not just as a link between the monomer and 
template, it also influences the steric environment around the metal ion during polymeriza-
tion step. The superior performance of metal-ion mediated imprinting compared with the 
metal-free approach, was demonstrated for CCK-5 [35]. MIPs produced in the presence Ni(II) 
showed a more than double average rebinding value and an I.F. of 1.9 with respect to the 
traditionally imprinted polymer. A Co(II)-mediated imprinted polymer for the bovine serum 
albumin (BSA) recognition (I.F. = 14.9), was synthesized and compared with the BSA ion-free 
MIP [17]. The Co(II)-mediated MIP presented an 8-fold increase in the I.F. and a reduced 
cross-selectivity by a factor of 2.5 compared with the BSA-MIP. Using Cu(II) chelation strat-
egy, the cytochrome c was successfully imprinted into a supermacroporous cryogel, which 
was employed for template separation from a mixture of proteins (cytochrome c, lysozyme, 
and BSA).

Protein imprinting is still a challenging task mainly because of their huge molecular size and 
conformational flexibility and complexity, which makes template removal and the subse-
quent protein rebinding onto imprinted sites very difficult. One alternative to the protein 
bulk imprinting is the metal-ion mediated surface imprinting in which the specific recogni-
tion sites are located at the surface of MIP. Porcine serum albumin was imprinted on the 
surface of silica microparticles via a metal chelating strategy in phosphate buffer [32]. The 
thickness of the imprinted polymer layer was about 20 nm, allowing fast binding kinetics 
(~1 min), the binding of protein template reaching more than 90% of the maximum capacity. 
Satisfactory selectivity was obtained using three competitive proteins: cytochrome c, ribonu-
clease B and myoglobin. Another metal-ion imprinted thin polymeric film was synthesized on 
the surface of cellulose nanofibers for the selective recognition and purification of hemoglobin 
from hemolysate [33]. The obtained MIP was able to rebind 8 times more template protein 
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compared to the corresponding NIP. z-Histidine was also imprinted in polar organic solvent 
(methanol) via the mediation of Co(II) ions [20]. However, it was found a small difference in 
the rebinding capacities between the polymers prepared in the presence of z-His/Co(II) and 
Co(II) when they were exposed to the Co(C2H3O2)2(z-Histidine)] coordination compound.

Metal chelating approach was employed for the chiral discrimination of different amino 
acids, like phenylalanine, tyrosine, alanine, valine, leucine, isoleucine [29], and Boc-L-Phe-OH 
[25] and other compounds (mandelic acid [15]). The amino acid’s side group’s size plays a 
crucial role in obtaining a good enantioselectivity. The MIPs prepared with aliphatic amino 
acids showed no or little enantioselectivity. Amino acids containing aromatic or heterocyclic 
groups yielded MIPs with good chiral discriminative properties. According to the three-point 
interaction model, these bulky groups are responsible for the third necessary interaction with 
the polymer matrix, sterically hindering the opposite enantiomer.

Regarding the smaller and simpler (no multiple functional groups) molecules, non-covalent 
imprinting is more difficult because of the smaller number of possible interactions between 
the template and functional monomer, especially in aqueous media. It is the case of formate, 
acetate and propionate anions, which showed no imprinting effect using 4-VPy as functional 
monomer. However, if these anions are part of a ternary complex with picolinamide as ligand 
and Cu(II) ion as mediator (during the polymerization process as well as during the rebinding 
step), their indirect analysis is possible [28].

Metal ion mediated approach may be an alternative for compounds with strong intramolecu-
lar hydrogen bonds that can interfere in the formation of template-monomer intermolecular 
hydrogen bonds, thus inhibiting the MI effect. For example, picolinamide cannot be imprinted 
through the noncovalent approach, but if it is included in a ternary Cu(II) complex with 4-VPy 
(both as ligand and monomer), the imprinted polymer showed a high molecular recognition 
ability [27]. Metal ion-mediated imprinting was also used to prepare different MIPs for the 
specific recognition of multiple drugs with high metal chelating capability: tetracyclines [37, 
38], quinolones [37], ketoprofen [21], furosemide [40], and naproxen [26]. Two pharmaceutical 
compounds, naproxen, and ketoprofen were simultaneously imprinted using metal chelating 
strategy without loss of selectivity and it was found to give better results versus traditional 
MIPs [22]. A SPR sensor for a biological-relevant molecule (uric acid) was developed and 
applied for the metabolite’s detection in urine [39].

Because of the stronger coordination binding compared with noncovalent imprinting, metal 
ion mediated imprinted polymers can be successfully used as selective sorbents for the con-
centration and the clean-up of different pollutants and toxic compounds (methylmercury 
from human hair and soil [42], organohalide pesticide 4-(2,4-dichlorophenoxy)butyric acid 
(2,4-DB) [16], thiabendazole fungicide in citrus and soil samples [31]).

MIPs were also used as extraction media of active compounds from complicated natural 
products, using metal coordination interactions. Quercetin was shown to form coordination 
compounds with Zn(II) through 3-hydroxyl-4-ketone electron donor functionality from its 
structure [43]. Epigallocatechin gallate was separated from natural plant extracts employing 
gallic acid as a dummy template in order to reduce the MIPs manufacturing costs [18].

Ligand8

The combination of using ionic liquid ([Bmim]BF4) and metal pivoting was employed in 
imprinting a polar compound, methyl gallate, exhibiting superior recognition abilities than 
the ion-free polymer [24]. It is assumed that the ionic liquid improves the imprinting process 
by limiting the polymer swelling and shrinkage [44].

2.3. Functional monomer

A successful metal ion-imprinting process is achieved if the formation of the template-
metal ion-functional monomer ternary complex involves strong coordination interactions. 
Therefore, the choice of the functional monomer is very important. It must interact with the 
metal ion and template in a particular geometry offering the anchor point for the coordination 
compound on the polymer backbone.

One approach is to synthesize the metal ion-functional monomer complex before the addition of 
template, complex that will be incorporated into the polymer matrix and will be preserved after 
template removal [16, 17, 29, 35, 36]. Thus, in the rebinding step, the MIP should be exposed only 
to the free-form of the template. Examples of such coordination compounds: nitrilotriacetic acid–
nickel (Ni–NTA) complex [35, 36], Co-porphyrin (Co(III)tetrakis(o-aminophenyl) porphyrin [16], 
Co(II)-(E)-2-((2 hydrazide-(4-vinylbenzyl) hydrazono)methyl)phenol, Fe(III) chloroprotopor-
phyrin, vinylferrocene, Zn(II) protoporphyrin [17], and Cu(II)–N-(4-vinylbenzyl)iminodiacetic 
acid [29].

However, in the metal-mediated imprinting, the most widely used functional monomer is by 
far 4-VPy, because of its ability to form strong coordination bonds with a large spectrum of 
divalent metals. Different metal ion-4-VPy molar ratios have been used, ranging from 1:1 [43], 
1:2 [19, 20, 27, 28], 1:4 [22] up to 1:6 [15, 18, 23]. It appears that with the increasing molar ratio 
of functional monomer, the IFs are also increasing up to a ratio of 1:6. An excess of functional 
monomer is needed in order to stabilize the ternary complex and to achieve good fidelity of 
the binding sites.

Surprisingly, when 4-VPy was investigated as functional monomer versus acrylamide, and 
MAA, the best performances were exhibited by acrylamide-imprinted polymer, even though 
among the three monomers, acrylamide generates the lowest binding energy.

However, acidic acrylates (itaconic acid [37], MAA [25, 32, 38], and acrylic acid (AA) [40]) 
were successfully employed in metal-ion imprinting using Fe(II) and Fe(III) as central ion.

3. Ion imprinting (metal ion as template)

Commonly used monomers in MI often possess the ability to universally bond a multitude of 
metal ions, with variable selectivity. Thus, the use of monomers and/or ligands with structural 
features that enable metal ion chelation has opened new perspectives in the management and 
analysis of metal ions. First introduced by Nishide et al. [45], the concept of metal ion imprint-
ing has been increasingly developed during the last two decades on the principle of MI.
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The series of reviews published throughout the years offer general guidelines and concepts 
on the development of ion imprinted polymers (IIPs) (synthesis, characterization, types of 
imprinting, and assessment of analytical performance) and various applications (selective 
detection, sample enrichment, recovery, and decontamination of metal ions) in the biomedi-
cal and environmental fields [46–50]. Herein, several aspects on different materials, natural 
and synthetic, used in the design of IIPs and the particular features that allow these materials 
to selectively bind distinct metal ions will be pointed out.

The choice of the chelating agent, the complexation mode, the particular geometry of the 
coordination compound, the charge, and the size of the imprinted metal ions are key factors 
in determining the selectivity of the resultant imprinted polymer [34, 51, 52].

The inclusion of the metal binding entity in the polymerization matrix can be achieved through 
four distinct approaches: (a) crosslinking of linear chain polymers carrying metal-binding 
groups, (b) chemical immobilization, (c) surface imprinting, and (d) trapping of ligand in the 
polymeric matrix [47].

3.1. Crosslinking of linear chain polymers carrying metal-binding groups

This approach is currently used mainly with natural linear polymers, such as chitosan (CTS) 
and cellulose. CTS units, copolymers of glucosamine and N-glucosamine are widely used 
as functional monomers due to the material’s abundance, lack of toxicity, biocompatibility, 
and biodegradability that add to its particular structure with numerous amino and hydroxyl 
functional groups which enable structural modifications and crosslinking [53].

The uptake of metal occurs mainly by chelation and is most likely to occur inter- or intra-
CTS chains via one to four amino groups, with the nitrogen atoms in the amino and N-acetyl 
amino groups acting as electron donors. Upon deprotonation, hydroxyl groups may also be 
involved in metal ion coordination [54]. The poor selectivity, low stability in acidic solutions, 
and weak mechanical strength of nonimprinted raw CTS renders it inappropriate as selec-
tive metal ion sequestrant; these drawbacks, however, may be addressed by crosslinking and 
functionalization [53–55].

Nevertheless, crosslinking may decrease the metal uptake efficiency as, often, the functional 
groups of CTS involved in metal binding are also involved in the crosslinking reaction. The reac-
tive amine and hydroxyl groups most likely to be involved in metal chelation are protected by 
ion imprinting prior to crosslinking [56, 57]. The commonly used crosslinkers include, but are 
not limited to, aldehydes (formaldehyde, glutaraldehyde, and glyoxal), heterocyclic compounds 
[epichlorohydrin(ECH)], and ethers [crown ethers, ethylene glycol diglycidyl ether (EGDE)]. 
Various modes of functionalization intended to modulate selectivity of CTS toward different metal 
ions have been reported: carbomethylation and thiourea/glutaraldehyde grafting for Ag(I) [58], car-
boxylation via ketoglutaric acid for Cu(II) [59], derivatization with aminobenzaldehyde for Ni(II), 
Cu(II) and Pd(II), [60, 61] dithiocarbamate for Sr(II), [62] tetraethylenpentamine for Pb(II) [63].

A different approach was employed by Hande et al. [64] for the design of a Pb(II) imprinted 
interpenetrating polymer by simultaneous polymerization of MAA and CTS in the presence 
of Pb(II) ions as template.
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3.2. Surface imprinting

Chemical immobilization, trapping, and crosslinking of linear chain polymers, prepared 
mainly by traditional polymerization methods (bulk, precipitation, and suspension), present 
several drawbacks (i.e. relatively low rebinding capacity, slow mass transfer, and incomplete 
removal of template) that arise mostly from the restricted accessibility of the binding site, 
enclosed in the rigid polymeric mixture [48, 65]. Surface imprinting addresses these issues by 
generating binding cavities at the surface of the imprinted polymer. A thin imprinted layer is 
immobilized on the surface of fibers or small sized particles of organic or inorganic nature [48].

Selective sorption of Cu(II) was achieved by copolymerization of ethylene glycol dimeth-
acrylate (EDMA) and Cu(MAA)2 on the surface of a polystyrene core [66]. Li et al. grafted 
glycidyl methacrylate on polypropylene fibers [67]. A polypropylene membrane was used as 
support for a Pb(II) imprinted composite material in a process that implied grafting polym-
erization of AA on the polypropylene membrane and subsequent covalent immobilization 
of CTS [68].

Surface-imprinting modification of magnetic particles such as TiO2 and Fe2O3 is particularly 
appealing since the post processing of solid-phase extraction is reduced to a simple magnetic 
separation. Chen et al. [57] developed thiourea-modified magnetic ion imprinted CTS/TiO2 
for highly effective Cd(II) adsorption and simultaneous 2,4-dichlorophenol degradation via 
TiO2 photocatalysis. Fe2O3 magnetic particles were immobilized on carbon disulfide modi-
fied CTS-Fe(III), for the effective and simultaneous removal of Cd(II) and tetracycline from 
water samples. The synergistic effect of tetracycline and Cd(II) adsorption was found to be 
due to the formation, at pH = 8, of a tetracycline-Cd(II) complex bridging the adsorbent and 
adsorbate [56].

Modified silica gel particles are extensively used as support for the imprinted layer because 
of their mechanical and chemical stability, low cost, and ease of preparation and functional-
ization through the silanol groups. A facile approach with good results in terms of selectivity 
(selectivity coefficients above 50) was reported by Zhang et al. [69] and involved the use of 
two commonly employed functional monomers, 4-VPy and MAA to obtain ternary Pb(II) 
complexes, immobilized by polymerization with EDMA and subsequently grafted on hollow 
mesoporous silica by co-condensation between Si-OH and EDMA. Pb(II) imprinted silica sor-
bents were designed using a tetradentate chelating silylating agent derived from 3-[2-(2-ami-
noethylamino)ethylamino]propyltrimethoxysilane and 2-pyridinecarboxaldehyde [70] or a 
N,N-bidentate group in the structure of the functional monomer 4-(di(1H–pyrazol-1-yl)methyl)
phenol [71]. Iminodiacetic functionalized silane ((3-glycidyloxypropyl)trimethoxysilane) [72] 
and the bifunctional ligand monomer [3-(γ-aminoethylamino)-propyltrimethoxysilane] [72, 
73] were used for the imprinting with Ni(II) and Cd(II) ions and the imprinted sites were 
embedded in mesoporous silica.

3.3. Chemical immobilization

The chemical immobilization technique employs bifunctional ligands that possess both 
polymerizable functional group (i.e. a vinyl group for free radical polymerization or a silane 
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3.2. Surface imprinting
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ization through the silanol groups. A facile approach with good results in terms of selectivity 
(selectivity coefficients above 50) was reported by Zhang et al. [69] and involved the use of 
two commonly employed functional monomers, 4-VPy and MAA to obtain ternary Pb(II) 
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bents were designed using a tetradentate chelating silylating agent derived from 3-[2-(2-ami-
noethylamino)ethylamino]propyltrimethoxysilane and 2-pyridinecarboxaldehyde [70] or a 
N,N-bidentate group in the structure of the functional monomer 4-(di(1H–pyrazol-1-yl)methyl)
phenol [71]. Iminodiacetic functionalized silane ((3-glycidyloxypropyl)trimethoxysilane) [72] 
and the bifunctional ligand monomer [3-(γ-aminoethylamino)-propyltrimethoxysilane] [72, 
73] were used for the imprinting with Ni(II) and Cd(II) ions and the imprinted sites were 
embedded in mesoporous silica.

3.3. Chemical immobilization

The chemical immobilization technique employs bifunctional ligands that possess both 
polymerizable functional group (i.e. a vinyl group for free radical polymerization or a silane 
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coupling agent for sol–gel processes), and electron donor groups for the chelation of metal 
ions [48, 74].

Currently, the technique is a one-step process that implies mixing together the metal ion, the 
bifunctional monomer and the crosslinker prior to co-polymerization. Isolation of the binary 
complex prior to polymerization is a more complicated approach but it offers the advantage 
of the control of the amount and of the structure of the coordination compound embedded 
into the polymer’s structure [34, 48].

Common monomers such as 4-VPy, 1-vinylimidazole, AA or acrylamide may serve for chemi-
cal immobilization, but they show low binding capacities and low selectivity. MAA was used 
simultaneously with 1-vinylimidazole [75] or 4-VPy [76, 77] to prepare Cd(II), Cu(II), and 
Zn(II) imprinted polymer particles, respectively. Considering however that the use of simple, 
commercially available monomers results in materials with generally low binding capacity 
and selectivity, new tailored bifunctional ligands, bearing both chelating functionalities and 
polymerizable groups, have been proposed.

Particular features that differ from those of their open-chain analogs such as controlled size 
and the “macrocyclic effect” that translates into high selectivity and stability, make crown 
ethers interesting candidates as ligands in ion-imprinting. Benzo-15-crown-5-acrylamide, 
4-vinylbenzo-18-crown-6, and 2-(allyoxy)methyl-12-crown-4 have been successfully employed 
for the imprinting of K(I), [78] Pb(II) [79] and Li(I) ions [80, 81].

Calix[4]resorcinorene, a resorcinol-based macrocyclic compound with a bowl-shape molecu-
lar cavity formed by four resorcinol units, was used by Yusof et al. [82] to synthesize diallyl-
aminomethyl-calix[4]-resorcinarene, as host for imprinting Pb(II) ions.

Amino acids or amino acid derivatives bearing vinylated groups, (e.g. N-methacryloyl-(L)-
histidine), [83, 84] vinylated SALEN, [85] [N-(4-vinybenzyl)imino]diacetic acid, [34] are other 
examples of bifunctional ligands that have been reported for the chelation of various metal 
ions and subsequent copolymerization with a suitable crosslinking agent.

Based on the ability of Hg(II) to form stable coordination compounds with thymine (T), 
T-Hg(II)-T interactions, Xu et al. [74] synthesized 3-isocyanatopropyltriethoxysilane, bearing 
thymine (T) bases as recognition elements for the imprinting of Hg(II).

Using 5-(bisulfate N,N-diallyl-N-methyl ammonium)methyl salicylaldoxime, Zhang et al. 
[86] anchored chelating salicylaldoxime units onto the polymer networks through quaternary 
ammonium cations serving as spacers.

Chemical immobilization shows the advantage of ligands not being leached out during the 
elution of the template. The magnitude of the imprinting effect is however rather low; this 
adds up to the difficulty of the vinylation procedure [47].

3.4. Trapping of the ligand in the polymeric matrix

In case of trapping, ligands do not require the insertion of polymerizable functions, but instead 
they are used as such and are entrapped inside the network during the polymer’s formation, 
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without being chemically bound to the polymeric network. The stability of the binding sites 
depends upon the correct immobilization of the ligand in the polymeric matrix and the pres-
ence and the integrity of the ligand during and after the template removal [47, 48].

The first trapping procedure was reported by Rao et al. in 2003. The imprinted polymer was syn-
thesized by co-polymerization of a coordination compound between Dy(III), 5,7-dichloroquino-
line-8-ol and 4-VPy, in the presence of divinylbenzene (DVB) as crosslinker [87].

The entrapped species may be a metal ion:ligand binary complex, as in the case of Zn(II):8-
hydroxyquinoline (1,2) and Al:8-hydroxyquinoline (1,3) coordination compounds embedded 
in the polymeric matrix formed by MAA and DVB [88]. In most cases, however, a ternary 
metal complex is formed, the metal ion being coordinated by both the ligand ensuring selec-
tivity and the functional monomer (e.g. 4-VPy, MAA) bearing, it too, electron donating het-
eroatoms, and therefore coordination ability. The ternary complex can be prepared in situ, 
just before the polymerization step or synthesized, isolated and characterized before being 
introduced in the polymerization. Comparative studies on the efficiency of polymers pre-
pared with such ternary complexes vs. binary species where the coordination environment 
is ensured by the presence of the ligands alone, revealed the importance of the presence of 
bifunctional species acting as complementary complexing agents. Alizadeh used 4-VPy as 
functional monomer and quinaldic acid as complexing agent to imprint Cd(II) and employed 
experimental design to study various binary and ternary mixtures [89]. IPs prepared from 
binary complexes were found to be less efficient than those prepared with ternary complexes.

Crown ethers and derivatives with cavities of appropriate size were trapped in the polymer 
network by using suitable functional monomers and crosslinking agents and the polymer 
imprinted with alkali metals ions. Dicyclohexyl-18-crown-6, [90] dibenzo-21-crown-7, [91] 
dibenzo-24-crown-8 ether [92] and the aza-thioether crown containing a 1,10-phennathro-
line subunit (5-azamethyl-2,8-dithia [9],(2,9)-1,10-phenanthrolinophane), [93] were used by 
Shamsipur and coll. to imprint K(I), Rb(I), Cs(I) and Ag(I) ions, respectively, in the presence 
of MAA as functional monomer and EDMA as crosslinker.

Other ligands used for ion-imprinting via trapping include isatine for Cu(II), [94] diphenyl-
carbazide (for Cd(II)), [95] 1,10-phenanthroline for Ag(I) [93] or neocuproine for Cd(II), [96] 
8-hydroxyquinoline for Ni(II), [97] etc.

As compared to chemical immobilization, the trapping approach is easier to implement. The 
stability of the binding sites created via the trapping approach, however, depends upon the 
correct immobilization of the ligand in the polymeric matrix and the presence and the integ-
rity of the ligand during and after the removal of template [48].

4. MIPs in drug delivery

Polymers have played an integral role in the advancement of drug delivery systems (DDS) 
through the last three decades, improving safety, efficacy, and patient compliance during 
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In case of trapping, ligands do not require the insertion of polymerizable functions, but instead 
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long-term medication therapy by providing sustained release of both hydrophilic and hydro-
phobic therapeutic agents [98]. MIPs used as excipients of solid pharmaceutical dosage forms 
have been tested for tuning drug release profiles and eventually protect their load from enzy-
matic degradation while being freight through the body, nevertheless the inherent feature 
of these polymers, their selectivity, has not been put to a proper use. Therefore, efforts have 
been made to integrate MIPs in therapeutic systems for intelligent drug release or as targeting 
drug vectors [99].

These tailor-made IPs would be therapeutically advantageous for several reasons as they can 
act as molecular trap (sequestrant) systems, [100] as reservoir for prolonged release of a par-
ticular drug, they can enable an increased loading capacity of the therapeutic formulation, 
facilitate environmentally or physiologically responsive intelligent release of the therapeutic 
agent [101] and if required, they can confer an enantioselective load or release [102, 103]. 
Using conventional drug formulations, repeated administration would help in building up 
the required therapeutic levels of the drug in various biological compartments (blood, tis-
sues, urine, etc.); however, in case of bioactive molecules with a narrow therapeutic index 
(i.e. digoxin, cyclosporine, sirolimus, theophylline, warfarin, lithium, phenytoin, and fle-
cainide) or with very short plasmatic half-life (i.e. 5-fluorouracil (5-FU), acetylcholine, GABA, 
catecholamines, adenosine, and NO) repeated administration could lead to elevated risks or 
severity of toxic side effects.

Several comprehensive reviews have been published concerning the use of MIPs in general 
as DDS for controlled/sustained drug release or as intelligent drug delivery (DD) platforms 
(responsive release systems) either for oral, ocular, transdermal, or implant-associated local 
delivery routes of the therapeutic agent [99–101, 104–108].

Targeted DD relies on the MIP’s ability to specifically recognize certain bioreceptors, such as a 
cell surface epitopes, which could further convey to cellular internalization of the drug loaded 
carrier and subsequent release of the active pharmaceutical compound. In the initial and most 
simple approaches the payload of biologically active molecule was non-covalently bound 
(hydrogen bonding, hydrophobic interactions, charge transfer, or van der Waals forces) to the 
imprinted polymer network [109]. Nevertheless, the overall controllability and reliability of 
DDS based on noncovalent binding might not be ideal in a living organism. Therefore, as an 
alternative, metal ion-mediated coordinate bonds between the functional monomer and the tar-
geted drug molecule (template) has been investigated offering higher specificity and strength, 
as well as spatial directionality in comparison with noncovalent bonding. Additionally, metal 
coordination bonds are more compatible with the polar environment of living tissues and they 
can be easily manipulated through changes of the local hydrogen ion concentration, a feature 
extremely helpful in the development of pH-responsive delivery systems. Furthermore, MIPs 
prepared by noncovalent imprinting methods usually require using organic solvents, which 
eventually leave toxic traces, incompatible with biomedical applications.

Some of the imprinted polymers employed nowadays in intelligent DD [i.e. poly(2-hydroxy-
ethyl methacrylate, (PHEMA)] were initially employed in the early forms of the non-imprinted 
DDS [98]. Various aspects about the encountered recognition and drug release mechanisms, 
optimization of the drug loading capacity, latest trends in various routes of DD, as well as 
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limitations and future prospects of such molecularly imprinted DDS may be found in different 
reviews [99, 104, 105, 110].

A wide range of biocompatible semi-synthetic and synthetic polymers have been tested as suit-
able imprinted frameworks for DD. PHEMA and its derivatives or nanocomposites continues 
to be one of the most widely used biomaterials due to their low toxicity, excellent and long-term 
biocompatibility (including hemocompatibility) and high resistance to degradation [111, 112].

Such molecularly imprinted biomaterials served for the fabrication of various drug-delivery 
systems, such as transdermal membranes, [113] ocular inserts [114, 115], and implants (sub-
cutaneous, intra-peritoneal, etc.) [116].

Polymer biodegradability plays also an important role in the biomedical exploitation, patient 
compliance and safe use of such DD systems. Because PHEMA is not biodegradable, upon 
the release of the pharmacologically active load the implants must be removed from the 
body through minor surgery to avoid the formation of pseudocyst. However, in many cases, 
such as the localized treatment of spinal cord injuries, the use of hydrolytically degrad-
able hydrogel implants is far more convenient. In vivo experiments showed that macropo-
rous 2-ethoxyethyl methacrylate/ N-(2-hydroxypropyl) methacrylamide based hydrolysable 
hydrogels (adjustable degradation between 2 and 40 days) are promising candidates for 
implantation into tissue defects of the central nervous system [117].

Although metal ion coordination-based imprinting has shown promise in the creation of 
advanced recognition and DD systems up until now, literature is rather scarce in such studies. 
Nevertheless, there are some noteworthy publications in this field, such as the one reporting 
the sustained release (5 days) of copper salicylate, a metal-based nonsteroidal anti-inflam-
matory drug, successfully embedded in a metal chelate imprinted polymer using 4-VPy and 
2-hydroxyethyl methacrylate (HEMA) as functional monomers and EDMA as crosslinker [118]. 
Another interesting study is the synthesis of Co(II) mediated imprinted hydrogels containing 
pendent chain linked template (drug) [119]. A pH responsive drug release could be achieved 
in the range of pH 3–6.8 due to the presence of an imidazole group within the proximity of the 
polymer-drug (ester or amide) bond responsible of the catalytic hydrolysis of the hydrogel.

Design of dedicated macromolecular architectures through MI able to recognize certain target 
molecules as well as capable of intelligent DD and release leads to the introduction of feed-
back-controlled drug release systems employing stimuli-responsive gel systems. As a result 
of oscillatory swelling, they are able to modulate release in response to pH, temperature, ionic 
strength, electric fields, or specific analyte concentration differences [101, 104]. The solvation 
of the hydrogel’s macromolecular network is rather well adjustable by the local environment, 
this leading to a controlled swelling and release of the payload.

The inherent advantages offered by metal pivot-based MI have been successfully exploited in 
the imprinting process of hydrogels intended for stimuli-responsive DDS. The formation and 
cleavage of coordination bonds between different metal ions and various drugs of interest are 
pH-dependent, so by a rational design they could be specifically engineered for an intended 
use. As such, metal-mediated imprinting of HEMA-based hydrogel backbone crosslinked 
with N, N-methylenebisacrylamide (MBA) has been described for the pH-responsive and 
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long-term medication therapy by providing sustained release of both hydrophilic and hydro-
phobic therapeutic agents [98]. MIPs used as excipients of solid pharmaceutical dosage forms 
have been tested for tuning drug release profiles and eventually protect their load from enzy-
matic degradation while being freight through the body, nevertheless the inherent feature 
of these polymers, their selectivity, has not been put to a proper use. Therefore, efforts have 
been made to integrate MIPs in therapeutic systems for intelligent drug release or as targeting 
drug vectors [99].

These tailor-made IPs would be therapeutically advantageous for several reasons as they can 
act as molecular trap (sequestrant) systems, [100] as reservoir for prolonged release of a par-
ticular drug, they can enable an increased loading capacity of the therapeutic formulation, 
facilitate environmentally or physiologically responsive intelligent release of the therapeutic 
agent [101] and if required, they can confer an enantioselective load or release [102, 103]. 
Using conventional drug formulations, repeated administration would help in building up 
the required therapeutic levels of the drug in various biological compartments (blood, tis-
sues, urine, etc.); however, in case of bioactive molecules with a narrow therapeutic index 
(i.e. digoxin, cyclosporine, sirolimus, theophylline, warfarin, lithium, phenytoin, and fle-
cainide) or with very short plasmatic half-life (i.e. 5-fluorouracil (5-FU), acetylcholine, GABA, 
catecholamines, adenosine, and NO) repeated administration could lead to elevated risks or 
severity of toxic side effects.

Several comprehensive reviews have been published concerning the use of MIPs in general 
as DDS for controlled/sustained drug release or as intelligent drug delivery (DD) platforms 
(responsive release systems) either for oral, ocular, transdermal, or implant-associated local 
delivery routes of the therapeutic agent [99–101, 104–108].

Targeted DD relies on the MIP’s ability to specifically recognize certain bioreceptors, such as a 
cell surface epitopes, which could further convey to cellular internalization of the drug loaded 
carrier and subsequent release of the active pharmaceutical compound. In the initial and most 
simple approaches the payload of biologically active molecule was non-covalently bound 
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limitations and future prospects of such molecularly imprinted DDS may be found in different 
reviews [99, 104, 105, 110].
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2-hydroxyethyl methacrylate (HEMA) as functional monomers and EDMA as crosslinker [118]. 
Another interesting study is the synthesis of Co(II) mediated imprinted hydrogels containing 
pendent chain linked template (drug) [119]. A pH responsive drug release could be achieved 
in the range of pH 3–6.8 due to the presence of an imidazole group within the proximity of the 
polymer-drug (ester or amide) bond responsible of the catalytic hydrolysis of the hydrogel.

Design of dedicated macromolecular architectures through MI able to recognize certain target 
molecules as well as capable of intelligent DD and release leads to the introduction of feed-
back-controlled drug release systems employing stimuli-responsive gel systems. As a result 
of oscillatory swelling, they are able to modulate release in response to pH, temperature, ionic 
strength, electric fields, or specific analyte concentration differences [101, 104]. The solvation 
of the hydrogel’s macromolecular network is rather well adjustable by the local environment, 
this leading to a controlled swelling and release of the payload.

The inherent advantages offered by metal pivot-based MI have been successfully exploited in 
the imprinting process of hydrogels intended for stimuli-responsive DDS. The formation and 
cleavage of coordination bonds between different metal ions and various drugs of interest are 
pH-dependent, so by a rational design they could be specifically engineered for an intended 
use. As such, metal-mediated imprinting of HEMA-based hydrogel backbone crosslinked 
with N, N-methylenebisacrylamide (MBA) has been described for the pH-responsive and 
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controlled release of doxorubicine (within 7 days 60% of the drug released at pH 5.0 vs. 10% 
at pH 7.2). The anticancer drug was loaded onto the hydrogel as a preassembled Cu(II) ion 
bridged complex of doxorubicin (1,2 molar ratio) as template and 4-VPy as functional mono-
mer [120]. Although by a slightly different approach, Liang et al. reported the encapsulation 
in self-assembled biodegradable zein/carboxymethyl chitosan (CMCS) nanoparticles of the 
same anticancer drug by electrostatic interactions [121]. The nanoparticles were additionally 
coated by a thin layer of metal-tannic acid layer, where the metal ions (Cu(II), Ca(II)) act as 
stimuli-responsive crosslinking agents, controlling the release of the guest molecule.

The intracellular conversion rate of a key anticancer agent, 5-FU, to its biologically active 
metabolites is very fast in the human body, however more than 80% of the administered 
pro-drug is inactivated by the liver (6 min plasmatic half-life) [122]. As a solution, various 
controlled localized DD approaches have been investigated [123, 124]. Nevertheless, the 
prospects of metal ion-mediated MI technology for the controlled delivery 5-FU has also 
been exploited by the formation of a metal-chelate complex of N-methacryloyl-L-histidine 
(MAH) functional comonomer and 5-FU via Cu(II) ion coordination in the prepolymeriza-
tion step [125]. A free radical polymerization, crosslinking and a cryogenic processing lead to 
the formation of 5-FU imprinted PHEMA-N-methacryloyl-(L)-histidine methyl ester) cryogel 
discs, an interesting class of implantable biomaterials, particularly suitable for the controlled 
delivery of an antineoplastic agent directly to the site of tumor. In vitro studies have shown 
that drug release may be simply controlled by the amount of used crosslinker, whereas the 
delivery rate of 5-FU is further tuneable (faster at pH 4 vs. 7.4), through the influence of 
the coordination compound’s stability, rendering the metal ion-mediated imprinted polymer 
pH-responsive [125].

Due to the inherent large surface area of porous metal–organic frameworks (MOFs) and to 
the excellent gas adsorption capacity of the active metal atoms, such structures have been 
described for the delivery of bioactive gas molecules, such as NO as an antithrombosis and 
vasodilation agent [126]. The gas can be stably stored by the covalently unsaturated metal 
atoms (Co or Ni) from their structure, each able to coordinate to one NO molecule (accu-
mulating up to 7 mmol NO/g of MOF), whereas the bioactive gas is delivered through a 
water-triggered release. Although other porous MOFs were also described as promising DD 
systems, where the pharmaco-active payload is stored in a 3D network of nanoscaled cages 
by guest-host interactions, in the respective case the metal ion is not actively involved in the 
drug’s (i.e. 6-FU) binding or release [127].

5. MIPs in catalysis

The use of MIPs in catalysis has been gaining in interest in recent years thanks to their low 
cost of manufacturing, good biocompatibility, and recognition properties and excellent sta-
bility compared to their bio-analogues such as enzymes. The main objective in this field is to 
produce MIPs capable of showing enzyme-like activities for reactions for which no enzyme 
exists, or to improve the performance of the existing catalytic systems [128]. Many natural 
enzymes contain metal ions capable of specifically coordinate different molecules.
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A salicylaldiminato Co(III)-based catalyst was used for the preparation of Cibacron-reactive-red-
dye-imprinted MIP with tert-butyl acrylate as a functional monomer and DVB as a crosslinker. 
Methyl aluminoxane activated the transition-metal coordination compound, which catalyzed 
the polymerization of tert-butyl acrylate, and high-molar-mass polymers with very low molecu-
lar weight distributions were generated, even in the presence of the polar dye. The obtained MIP 
was used for the selective rebinding and preconcentration of the red dye from tap water and 
textiles [129]. Co(II)- and Ni(II)-imprinted hydrogel catalyst were able to significantly improve 
the hydrolysis kinetics of NaBH4 and NH3BH3 in H2 production (total hydrolysis in 50 s at 60°C) 
[130]. Rare earth metal ions (Y(III), Ce(III), Nd(III), and La(III)) as doping ions were immobilized 
by ion-imprinting in photocatalysts on TiO2 Halloysite. Using two aniline derivatives as mono-
mers (o-phenylenediamine, m-phenylenediamine), the photocatalytic activity was demonstrated 
on tetracycline degradation (up to 78.80%) in simulated wastewaters under visible light irradia-
tion [131]. Last but not least, as a more stable alternative to the natural enzyme phosphotriester-
ase (hydrolysis of organophosphotriester pesticides), a MIP was synthesized using a paraoxon 
analog as template and Co(II)–imidazole coordination compound mimicking the catalytic cen-
ter of the enzyme. Polymers containing the Co(II)–imidazole coordination compound showed 
a 20-fold higher hydrolytic activity in comparison with polymers containing only imidazole or 
a solution containing only Co(II) ions. Additionally, the MIP synthesized using the paraoxon 
analog as template showed higher paraoxon hydrolysis activity than the control NIP [132].
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the formation of 5-FU imprinted PHEMA-N-methacryloyl-(L)-histidine methyl ester) cryogel 
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delivery of an antineoplastic agent directly to the site of tumor. In vitro studies have shown 
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delivery rate of 5-FU is further tuneable (faster at pH 4 vs. 7.4), through the influence of 
the coordination compound’s stability, rendering the metal ion-mediated imprinted polymer 
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Due to the inherent large surface area of porous metal–organic frameworks (MOFs) and to 
the excellent gas adsorption capacity of the active metal atoms, such structures have been 
described for the delivery of bioactive gas molecules, such as NO as an antithrombosis and 
vasodilation agent [126]. The gas can be stably stored by the covalently unsaturated metal 
atoms (Co or Ni) from their structure, each able to coordinate to one NO molecule (accu-
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In this chapter, a review throughout the literature on the chemistry of multidentate 
silylphosphines is presented. The incorporation of P and Si functionalities in cooperation 
in a single ligand backbone is exceptionally versatile, and examples of this rich chemistry 
stemming from the works of many research groups around the world are herein pro-
vided. The ligand systems can be flexible or rigid and incorporate varying numbers of P, 
Si and even other atoms. Exceptional ligand-metal systems are discussed in terms of their 
structure, reactivity and, in some cases, catalytic activity.

Keywords: silicon, phosphorous, silylphosphines, transition metals, multidentate 
ligands

1. Introduction

In modern Coordination and Organometallic Chemistry, ligand design is recognised as cru-
cial for the development of efficient and selective complexes for important transformations 
including medicinal chemistry, material science and catalysis. Polydentate-rigid or semi-rigid 
ligands constrain the geometry at the metal centre providing inherently well-defined coordina-
tion geometries for potential incoming substrates. Indeed, a good number of these metal-ligand 
systems are capable of performing selectively difficult activations and many research groups 
around the world have directed their endeavours to the study of their chemical properties.

The incorporation of dual functionalities in a single ligand backbone has also been shown to 
modify the properties of the compounds making them especially prone to undergo selective 
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transformations resulting from differing reactivity of the coordinating atoms in the ligand. 
A wide variety of combinations of donor atoms have been employed to date, including for 
example, soft and hard donor atoms in what is known as hemilabile ligands.

In this chapter, the chemistry related to silylphosphine ligands which include in their struc-
ture both a basic P as well as a Si is reviewed. Si derivatives are exceptionally good sigma 
donors and exert a considerably high trans-influence/effect, thus their coordination gen-
erates electron rich metal centres in turn capable of activating otherwise inert substrates. 
Phosphines have long been preferred ligands due to their ability to tune their steric and 
electronic properties depending on the substituents on P. The incorporation of P and Si in 
a ligand framework also allows for the employment of NMR spectroscopic tools deriving 
from 31P and 29Si nuclei.

2. Silylphosphine ligands: definition, general structure and bonding

Silylphosphines can be described as bi- or polydentate ligands bearing at least one basic phospho-
rous (III) atom, usually a phosphine PR3 or phosphite P(OR)3, and at least one silicon-substituted 

Scheme 1. General structure of silylphosphine ligands and examples of main coordination modes.

Ligand30

moiety. The P (III) group is able to form a coordination bond to the transition metal, while the silyl 
moiety is potentially prone to bind by means of loss of H2, alkane or arene molecules. Between 
the P and Si atoms, there are generally a number of carbon atoms in the form of an alkyl or aryl 
bridges (Scheme 1). Else a direct P─Si bond can be established. Silylphosphines are potentially 
bi-, tri- or polydentate ligands, the coordination number depending on the number of P or Si 
moieties present in the ligand backbone.

Therefore, the molecular orbitals can be described as those of the phosphine and silicon 
donor moieties. For example, for the non-classical bidentate coordination mode, the frontier 
orbitals are shown schematically in Figure 1. A bidentate P, Si ligand can readily coordinate 
to the metal centre both through the phosphorous atom via the donation of the electron lone 
pair on P to an empty d-orbital on the metal and through the σ-Si─H electron pair donated to 
a suitable empty d-orbital on the metal generating a 3c-2e non-classical bond. In both bonds, 
the stabilisation is given by the retro-donation of electron density of a filled d-orbital to an 
anti-bonding orbital. In the full oxidative addition process of the Si─H bond to the metal, 
due to the strong retro-donation of the d-orbital → σ*(Si─H), the final product results in the 
formation of two 2c-2e bonds: M─H, M─Si. As expected, depending on the substituents on 
both the P and Si atoms, the molecular orbital diagrams and the energy of the HOMO and 
LUMO will vary. In general, it could be said according to Figure 1, the HOMO generally pos-
sess a higher ligand character, while the LUMO is more metal centred.

3. Silylphosphine ligands throughout the chemical literature: a 
review

Stobart and co-workers pioneered the systematic study of transition metals bound to 
silylphosphine ligands. As early as in 1983, they reported the synthesis and full characteri-

Figure 1. Molecular orbital diagrams of the phosphine and non-classical Si─H sigma moieties.
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sation of an extensive family of silanes modified with a phosphorous fragment connected 
to the silicon atom by a polymethylene chain, of general formula (XYZ)Si(CH2)nPR2 (where 
X, Y, Z = Me, Ph, Cl or H; n = 1–3; R = Me or Ph;) (Figure 2, compounds 1–33) [1]. The 
reactivity of Vaska’s complex trans-[Ir(PPh3)2(CO)(Cl)] towards Ph2P(CH2)2SiRR’H (com-
pounds: 12, 14, 16, 18, 20) was also investigated. The reaction results in the formation of 
air stable six-coordinated Ir(III) compounds, resulting from coordination of the ligands 
through the P atom and of the oxidative addition of the Si─H bond (compounds: 34–38) 
(Figure 3). Furthermore, the reactions of Ph2P(CH2)2SiMe2H towards the dimers [M(μ-Cl)
(COD)]2 (M = Rh, Ir; COD = 1, 5-cyclooctadiene), also afford the M(III) complexes [MCl{Ph2

P(CH2)2SiMe2}2] (M = Rh 39; Ir 40) which are quiral with the two phosphorous atoms in trans 
disposition while the two Si dispose in a cis fashion (Figure 3) [2]. The fact that the reactiv-
ity of complexes 39 and 40 was remarkably constrained due to the trans-labilising effect 
of the silyl groups, was exploited in their use as catalysts for transformations of organic 
substrates [3]. Several works reported in the literature have argued on the high extent of 
trans-influence silyl groups exercise on a transition metal centre. There are various reasons 
for this behaviour including an excellent sigma orbital overlap as well as a favourable elec-
tronic release of the Si [4, 5]. This is in agreement with only a few compounds exhibiting 
a trans coordination of the Si atoms in many cases as kinetic products in equilibria with 
their cis isomers [6, 7] even when employing chelating silylphosphines (vide supra) [8–11] 
(Section 8).

It was found that the ligands with two or three phosphorous atoms and a Si-H bond (com-
pounds 41-52, Figure 4) coordinate via oxidative addition to the metal centre (i.e. rho-
dium, iridium, ruthenium and platinum) and impose steric constraints on the coordination 
sphere in turn restraining substrate entry to sites which could suffer the strongly labilis-
ing trans effect of the silyl group, increasing the complexes’ capabilities as catalysts [12] 
(Figure 4).

Figure 2. The silylphosphine ligands bearing alkyl bridges reported in Ref. [1].

Ligand32

4. Silylphosphines complexation in tetra-coordinated systems

4.1. Square-planar geometry

Turculet and co-workers have further made significant contributions in the field of silylphos-
phine chemistry. They introduced a PSiP-type ligand [(ο-C6H4-PCy2)2SiMe2] (53) and explored 
its reactivity with transition metal precursors. The complexes [MCl{(ο-C6H4-PCy2)2SiMe}] 
(M = Ni or Pd) (64, 65) were treated with alkyl lithium or Grignard reagents. In the case of 
65 treatment with stoichiometric amounts of MeLi led to the formation of [Pd(Me){(ο-C6H4-
PCy2)2SiMe}] (61) which regenerates complex 65, upon reaction with Ph2SiClH while renders 
[Pd{(ο-C6H4-PCy2)2SiMe}(SiHPh2)] (66) from reaction with Ph2SiH2. The direct reaction of 53 
and [Pd2(dba)3] provides complex [Pd{(ο-C6H4-PCy2)SiMe2}(ο-C6H4-PCy2)] (63) derived from 
Si-C(sp2) bond activation. Treatment of complex 64 with MeMgBr led to [Ni(Me){(ο-C6H4-
PCy2)2SiMe}] (60) and complex [Ni{(ο-C6H4-PCy2)SiMe2}(ο-C6H4-PCy2)] (62) resulting from 

Figure 4. Design of poly(phosphino)-silane ligands reported in Ref. [12].

Figure 3. The reactivity of group 9 metals as reported in Ref. [2].
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ligand rearrangement. Complexes 62 (Ni) and 63 (Pd) constitute rare examples of reversible 
Si-C(sp2) and Si-C(sp3) bond cleavage (Figure 5) [13, 14].

Moreover, the reactivity of 54 towards [PtCl2(SEt2)2] leads to the generation of [PtCl{(ο-
C6H4-PPh2)2SiMe}] (67) where the ligand coordination results in adoption of a distorted 
square planar geometry around Pt with a persistent Cl atom bonded trans to the silyl group 
(Figure 5) [9].

Iwasawa and collaborators reported an interesting system for the catalytic hydrocarboxylation 
of allenes using the Pd(II) hydride complex [PdH{(ο-C6H4-PPh2)2SiMe}] (68) as the active catalyst. 
Their methodology also served for the synthesis of β,γ-unsaturated carboxylic acids. In general, 
complex [Pd(OTf){(ο-C6H4-PPh2)2SiMe}] (69) in catalytic ratios 1.0 mol% or 2.5 mol % was used 
in soft conditions of CO2 pressure (1 atm) with 150 mol% of AlEt3 or ZnEt2 for carboxylation of 
1,1-disubstituted, monosubstituted or disubstituted allenes to the respective carboxylic acid or 
ester [15]. In addition, the chemical properties of complex 69 were described as well. To mention 
some, 69 undergoes transmetalation with AlEt3 followed by β-hydride elimination to generate 
the proposed complex 68. Complex 69 reacted with an excess of B2pin2 at room temperature 
leading to HBpin and the monoborylpalladium complex [Pd(Bpin){(ο-C6H4-PPh2)2SiMe}] (70) 
which promotes the product of borylation of styrene as well as other alkenes (Figure 5) [16–18].

Milstein and co-workers described the design and synthesis of the first pincer-type silanol-
Pt(II) compound by using a PSiP ligand. The ligand {(ο-C6H4-PiPr2)2SiH2} (58) was obtained in 
moderate yields from the o-bromophosphine. It readily reacts with [(Me2S)2Pt(Me)Cl] at room 
temperature to give the bicyclic complex [PtCl{(ο-C6H4-PiPr2)2SiH}] (72), which then under-
goes autoxidation yielding the silanol complex [PtCl{(ο-C6H4-PiPr2)2Si(OH)}] (73) in moderate 
yields (65%) (Figure 5) [19].

Figure 5. [PSiP] ligands and their square planar group 10 metal complexes [13-19, 26, 59].

Ligand34

Interestingly, changes on the identity of the substituents on the P atoms in the PSiP ligand back-
bone bring about a great strategy for the coordination of ligand 55 towards group 9 metals, in 
particularly rendering an Ir system able to activate intermolecular arene C─H bonds. Indeed, the 
reaction of 55 and [MCl(coe)2]2 (M = Rh, Ir; coe = 1-cyclooctadiene) or [RhCl(PPh3)3] produced 
the monomeric complexes [MH(Cl){(ο-C6H4-PCy2)2SiMe}] (M = Rh, 74; Ir, 75), which react with 
organolithium compound [Me3SiCH2Li] forming neutral three-coordinate intermediate species 
able to subsequently coordinate neutral ligands, thus generating [M(L){(ο-C6H4-PCy2)2SiMe}] 
(M = Rh, L = H2NPh (76); M = Rh, L = NH3 (77); M = Ir, L = C2H4 (78); M = Ir, L = PMe3 (79); M = Rh, 
L = PMe3 (80)) (Figure 7) [20].

4.2. Tetrahedral and trigonal pyramidal geometries

Ligand 54 (see Figure 5) reacted with [Pd(PPh3)4] or [CpPd(C3H5)] yielding complex [Pd{η2-(ο-
C6H4-PPh2)2SiHMe}(PPh3)] (82) instead of the hypothesised hydride complex 68 which was pro-
posed as the intermediate in the reduction of compound [PdCl{(ο-C6H4-PPh2)2SiMe}] (71, see 
Figure 5) with LiHBEt3 in presence of PPh3 to afford also 82 [21]. Likewise, the reaction of ligand 
54 with [Ni(PPh3)4] led to the formation of the Ni(0) complex [Ni{η2-(ο-C6H4-PPh2)2SiHMe}
(PPh3)] (81). The Si─H, Ni─H and Ni─Si distances are 1.62(3), 1.44(2) and 2.2782(4) Å respec-
tively, suggesting that the Si─H bond was preserved. This non-classical complexation mode is 
kept in solution because the observed NMR parameters such as coupling constants JSiH = 89 Hz 
at 300 K and 77 Hz at 193 K are large (2JSiH ≤ 20 Hz for a complete Si─H bond cleavage) and in 
line with the conservation of the η2-Ni(0) structure seen in solid state (Figure 6). On the other 
hand, the mixture of 54 with [Pt(PPh3)4] is discussed in Section 5.2 [22].

Figure 6. Reactivity of 54. Tetra-coordination is highlighted in blue and penta-coordinated in purple [21-23, 26-29].
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Bourissou and co-workers reported the reactivity of the PSiP ligand 54 towards CuCl and 
AuCl(SMe2), which was subsequently followed by a stoichiometric addition of GaCl3 (com-
plexes 84, 85). The addition of the gallium halide was envisioned to increase the electro-
philicity of the central metal and thus to escalate the strength of non-classical σ-SiH bond 
interaction at the metal. In complex 84, the coordination of the ligand occurs through the two 
phosphorous atoms and a weak sigma interaction Si─H⋯Cu. The spectroscopic evidence as 
well as computational analyses (geometry optimisations and NBO analyses) are in agree-
ment with weak donation σ-SiH → Cu in combination with a negligible Cu → σ*SiH back-
donation in 84. Meanwhile in the cationic gold complex 85, the coordination of 54 took place 
only through the two phosphorous atoms as any non-classical Si─H bond interaction to the 
metal was strongly disfavoured as it was found to be by computational means 15.9 kcal/mol 
(Figure 6) [23].

Extraordinarily, 86 (described in more detail in Section 5.2) demonstrated to be a suitable 
precursor for the synthesis of stable 14-electron [Ru(X){(ο-C6H4-Cy2)2SiMe}] (X = OtBu (87), 
N(SiMe3)2 (88); NHPh (89); NH(2,6-Me2C6H3) (90)) complexes, donning unusual trigonal 
pyramidal coordination geometries explained once again by the presence of the strongly 
σ-donating silyl group in the apical site with the contribution of steric effects of the phosphino 
substituents in the equatorial plane (Figure 7) [24].

Figure 7. Reactivity of ligand 55. Tetra-coordination is highlighted in blue and penta-coordination in purple [20, 24-25, 36].
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5. Silylphosphines complexation in penta-coordinated systems

5.1. Square pyramidal geometry

The reactivity of 55 with [RuCl2(p-cymene)]2 was carried out in the presence of PCy3 and Et3N 
rendering a binuclear complex that preserves bridging chloride ligands [Ru(μ-Cl){(ο-C6H4-
PCy2)2SiMe}]2 (86), which was exhaustively characterised spectroscopically (Figure 7). The 
ligand coordinates each Ru atom through two P, one Si and two Cl atoms in a distorted 
square pyramidal geometry, in which the silyl group occupies the apical coordination site. 
This Ru(II)-ligand system brings about stability and selectivity in catalytic transformations 
including the transfer hydrogenation of ketones. In this case, Li et al observed high conversion 
of the corresponding secondary alcohols for numerous dialkyl, diaryl, and alkyl/aryl ketones, 
employing 0.2 mol% of 86 with 5 mol% of KOtBu at 80°C [25].

The activation of Si-H bonds in ligands of general formula (ο-C6H4-PR2)2SiHMe (R = Ph or Cy; 54 
and 55) was also observed in monomeric Ru systems. Compound 54 reacted with [RuCl2(PPh3)3] 
in the presence of triethylamine as a base affording complex [RuCl{(ο-C6H4-PPh2)2SiMe}(PPh3)] 
(91). The X-ray diffraction study confirms the coordination of the ligand through the two phos-
phorous and the silicon atom adopting a facial arrangement with the silyl group occupying the 
basal position of a distorted square pyramidal geometry around Ru. The Cl atom disposes trans 
to the silyl group, and the remaining site was occupied by a PPh3. Complex 91 reacted with 
LiEt3BH to form octahedral-Ru hydride complex 92 in moderate yield (Figures 6) [26].

5.2. Trigonal bipyramidal geometry

The mixture of 54 with [Pt(PPh3)4] at room temperature led to the generation of five-coordi-
nated Pt(II) complex [PtH{(ο-C6H4-PPh2)2SiMe}(PPh3)] (93). In contrast with the derivatives of 
Ni(0) 81 and Pd(0) 82 (Figure 6), where the Si─H bond is only slightly activated, the Pt(II)-
hydride complex 93 derives from the complete oxidative addition of the Si─H bond. The crys-
talline structure displays a trigonal bipyramidal geometry with the silyl group in the apical 
position in the metal centre. The opposed apical site was taken by the hydride ligand which 
in the 1H NMR spectrum revealed a quartet at δ −7.92 ppm (2JPH = 18.9 Hz) with 195Pt satellites 
exhibiting a measured coupling constant 195Pt-1H of 650 Hz, which is considerably small com-
pared with some cis-H-Pt(II)-Si species previously reported (1JPtH = 890–1010 Hz); supporting 
the proposal that the hydride is located trans to Si atom (Figure 6) [22].

A study of the reaction of complex 82 and its related analogue [Pd{η2-(ο-C6H4-PPh2)2SiHMe}
(PMe3)] (83) towards B2pin2 was made, since it could provide a means of accessing Pd(II) hydrides 
via oxidative addition of the Si─H bond. Two isomers: cis and trans were proposed. Depending 
on the phosphine choice, the isolation of one isomer was possible through a reversible σ-bond 
metathesis pathway. In the case of the PMe3 ligated complex, the kinetic product cis-[Pd(Bpin)
{(ο-C6H4-PPh2)2SiMe}(PMe3)] (94) showed a slow reverse reaction and was obtained predomi-
nantly. In contrast, for the PPh3 derivative, the equilibrium favoured the thermodynamic isomer 
trans-[Pd(Bpin){(ο-C6H4-PPh2)2SiMe}(PPh3)] (95) as a major product (Figure 6) [27, 28]. In relation 
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to unusual bonding modes, Sun and collaborators reported the systematic reactivity of the tri-
dentate ligand 54 towards the low-valent nickel compound [Ni(PMe3)4] which induced the for-
mation of Ni(0) complexes [Ni{η2-(ο-C6H4-PPh2)2MeSi-H}(PMe3)] (96, Figure 6). Complex 96 did 
not undergo the oxidative addition process of a Si─H bond even in the presence of independent 
silanes (Et3SiH, Ph2MeSiH). However, the reactivity with chlorosilanes Me3SiCl or MeHSiCl2 led 
to the formation of Ni(II) complex [NiCl{(ο-C6H4-PPh2)2MeSi}] (97). The halogenated products 
[NiX{(ο-C6H4-PPh2)2SiMe}(PMe3)] (X = Br (98); I (99)) were easily obtained from reaction with 
EtBr or MeI of complex 96 (Figure 6) [29].

The versatility of ligand 55 was also probed in the coordination towards Ru. With the aim 
of preparing highly valuable 16-electron complexes, complex 86 was reacted with monoden-
tate phosphines. The reaction with PPh3 results in small conversion to the five-coordinated 
compound [Ru(Cl){(ο-C6H4-PCy2)2SiMe}(PPh3)] (100) in equilibrium with 86. Interestingly, this 
latter compounds are also formed from the reaction of ligand 55 and [RuCl2(PPh3)3] in the pres-
ence of NEt3 albeit in low yields. However, the production of the isolable penta-coordinate 
complex [Ru(Cl){(ο-C6H4-PCy2)2SiMe}(PMe3)] (101) was possible in quantitative yields when 
employing 86 in solution and the smaller, more σ-electron-donating PMe3 (Figure 7) [30].

In complexes 74 and 75 (Figure 7), the ligand coordinates in a tridentate fashion through the 
phosphorous atoms which dispose in trans and the Si which sits in the equatorial plane of a 
trigonal bipyramidal geometry. The remaining sites were taken by the hydride derived from the 
ligand and a Cl atom. Remarkably, besides the intermolecular C─H activation ability imposed 
by the coordination of ligand 55 to Ir, complex 75 also exhibits facile N─H bond activation of 
ammonia and anilines while its Rh analogues undergo mainly adduct formation. Likewise, the 
starting complexes 74 and 75 react with lithium anilides [Li(NHR)] generating isolable anilido 
hydride complexes [MH(NHR){(ο-C6H4-PCy2)2SiMe}] (M = Rh, R = Ph (102); M = Rh, R = {2, 
6-Me2C6H3} (103); M = Ir, R = Ph (104); M = Ir, R = {2, 6-Me2C6H3} (105); M = Ir, R = H (106)) upon 
mixing. The new compounds were described as being very resistant to N─H bond reductive 
elimination even in the presence of alkyl or aryl substrates (Figure 7) [20].

The ligand (ο-C6H4-PPh2)3Si-H (107) reacts with [Ni(PPh3)4] to yield the complex [Ni{η2-(ο-C6H4-
PPh2)2Si-H(ο-C6H4-PPh2)}(PMe3)] (109) bearing non-classical σ-Si─H bonds. On the other hand, 
complex 109 undergoes thermal oxidative addition at the Ni centre and loss of PMe3 to allow 
the coordination of the previously uncoordinated phosphorous, thus rendering a compound 
of formula [NiH{(ο-C6H4-PPh2)3Si)}] (110). In a subsequent step, HCl was added to afford the 
formation of [NiCl{(ο-C6H4-PPh2)3Si)}] (111), which was also obtained when compound 109 was 
combined with one equivalent of MeHSiCl2. Compounds [NiX{(ο-C6H4-PPh2)3Si}] (X = Br, 112; I, 
113) were obtained from the reaction of 110 with either EtBr or MeI (Figure 8).

Peters and co-workers have also reported the synthesis and reactivity of silanes functionalised 
with phosphines and/or sulphur derivatives. In particular, the ligand 107 reacts with [Fe2Mes4] 
leading to the formation of [Fe{(ο-C6H4-PPh2)3Si}Mes] (114), which was characterised structur-
ally by single crystal X-ray diffraction. The analysis discloses a distorted octahedral geometry 
around the Fe atom in which the ligand has taken four out of the six coordination positions, 
a mesityl group occupies one more and the sixth site (trans to silyl group) is occupied by an 
agostic interaction (C─H⋯Fe) from a methyl group in ortho position of the mesityl bonded to 
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the metal. The reaction of this agostic complex with HCl leads to the formation of complex 
[FeCl{(ο-C6H4-PPh2)3Si}] (115). Subsequent reduction with Na/Hg amalgam under a N2 atmo-
sphere led to the Fe(I) complex [Fe(N2){(ο-C6H4-PPh2)3Si}] (116), which was again subjected 
to reduction with an additional equivalent of Na/Hg in the presence of [12]crown-4 to render 
dark purple ionic pair [Na([12]crown-4)2]+[Fe(N2){(ο-C6H4-PPh2)3Si}]− (117) in which Fe is in a 
zero oxidation state and the dinitrogen ligand is less labile than in 116 because of stronger π 
backdonation from the more reduced metal [32]. Once again the nature of the substituents on 
the P atom is determinant. Indeed, ligand (ο-C6H4-PiPr2)3SiH (108) reacts with FeCl2 at room 
temperature producing a species with one uncoordinated phosphorous atom and the Si─H 
bond intact [FeCl2{(ο-C6H4-PiPr2)2SiH(ο-C6H4-PiPr2)}] (118); however, if the reaction was made 
in the presence of MeMgCl at −78°C, the desired complex [FeCl{(ο-C6H4-PiPr2)3Si}] (119) was 
isolated. The reactivity of 108 with metallic precursors CoCl2, NiCl2 and [Ir(μ-Cl)(COD)]2 was 
found to yield the tripodal species [CoCl{(ο-C6H4-PiPr2)3Si}] (120), [NiCl{(ο-C6H4-PiPr2)3Si}] 
(121) and [IrHCl{(ο-C6H4-PiPr2)3Si}] (122), respectively (Figure 8) [33].

Figure 8. The chemistry of P3Si systems [31-34].
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113) were obtained from the reaction of 110 with either EtBr or MeI (Figure 8).
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the metal. The reaction of this agostic complex with HCl leads to the formation of complex 
[FeCl{(ο-C6H4-PPh2)3Si}] (115). Subsequent reduction with Na/Hg amalgam under a N2 atmo-
sphere led to the Fe(I) complex [Fe(N2){(ο-C6H4-PPh2)3Si}] (116), which was again subjected 
to reduction with an additional equivalent of Na/Hg in the presence of [12]crown-4 to render 
dark purple ionic pair [Na([12]crown-4)2]+[Fe(N2){(ο-C6H4-PPh2)3Si}]− (117) in which Fe is in a 
zero oxidation state and the dinitrogen ligand is less labile than in 116 because of stronger π 
backdonation from the more reduced metal [32]. Once again the nature of the substituents on 
the P atom is determinant. Indeed, ligand (ο-C6H4-PiPr2)3SiH (108) reacts with FeCl2 at room 
temperature producing a species with one uncoordinated phosphorous atom and the Si─H 
bond intact [FeCl2{(ο-C6H4-PiPr2)2SiH(ο-C6H4-PiPr2)}] (118); however, if the reaction was made 
in the presence of MeMgCl at −78°C, the desired complex [FeCl{(ο-C6H4-PiPr2)3Si}] (119) was 
isolated. The reactivity of 108 with metallic precursors CoCl2, NiCl2 and [Ir(μ-Cl)(COD)]2 was 
found to yield the tripodal species [CoCl{(ο-C6H4-PiPr2)3Si}] (120), [NiCl{(ο-C6H4-PiPr2)3Si}] 
(121) and [IrHCl{(ο-C6H4-PiPr2)3Si}] (122), respectively (Figure 8) [33].

Figure 8. The chemistry of P3Si systems [31-34].
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Another example of the importance of the trans-influence of the silyl groups on the metal 
coordination sphere is given by the chemical properties of [RuCl{(ο-C6H4-PPh2)3Si}] (123). 
The exchange reaction with LiPPh2 (also with LiPiPr2) led to expected phosphide complex 
[Ru(PPh2){(ο-C6H4-PPh2)3Si}] (124), which decays at room temperature to the cyclometalated 
[Ru(PHPh2){Si(ο-C6H4-PPh2)2(ο-C6H4)P(ο-C6H4)Ph}] (125). The reaction of 123 with stoichio-
metric amounts of MeLi or PhCH2MgCl leads to [Ru(Z){(ο-C6H4-PPh2)3Si}] (Z = Me (126); 
PhCH2 (127)). Successive loss of methane or toluene renders the formation of the unsatu-
rated square pyramidal species [Ru{Si(ο-C6H4-PPh2)2(ο-C6H4)P(ο-C6H4)Ph}] (128), which in 
turns affords under H2 or N2 atmospheres compounds [Ru(H2)H{(ο-C6H4-PPh2)3Si}] (129) and 
[Ru(N2)H{(ο-C6H4-PPh2)3Si}] (130) in subsequent reactions steps (Figure 8) [34].

6. Silylphosphines complexation in hexa-coordinated systems: 
octahedral geometry

Shimada and collaborators reported on the reactivity of ligands (ο-C6H4-PR2)2SiHMe (R = Cy 
(55), iPr (56), tBu (57); Figure 5) towards [Ir(μ-Cl)(COD)]2. The complexes [IrClH{(ο-C6H4-
PR2)2SiMe}] (R = Cy, 75, iPr, 131, tBu, 132) (Figure 7 and 9) reacted with reducing agent Me4N·BH4 
under argon to produce the tetrahydride complexes [IrH4{(ο-C6H4-PR2)2SiMe}] (R = Cy (133), iPr 
(134), tBu(135)) or under dinitrogen gas to produce rare stable Ir(III) dihydride-dinitrogen com-
plexes of formula [IrH2(N2){(ο-C6H4-PR2)2SiMe}] (R = Cy (136), iPr (137)). For the last two com-
plexes, NMR spectroscopy reveals the presence of the fac/mer isomers; the meridional and facial 
disposition of the PSiP ligand was supported by single crystal X-ray diffraction (Figure 9) [35].

The complex [FeH{(ο-C6H4-PPh2)2SiMe}(PMe3)2] (138) was synthesised from [Fe(PMe3)4], its 
ν(Fe─H) stretching band was found at 1870 cm−1 in the IR spectrum, while a triplet of doublets (td), 

Figure 9. (Left) Chemistry of PSiP complexes of group 9. (Right) Related Fe octahedral complexes [35].
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signal was found at δ −17.09 (JPH = 71.4, 18.1 Hz) in the 1H NMR spectrum. By comparison, com-
plex [FeH{(ο-C6H4-PPh2)3Si}(PMe3)] (139) was characterised by a ν(Fe─H) band at 1967 cm−1 and 
a signal in 1H NMR spectrum at δ −15.00 of a triplet of doublets of doublets (tdd) multiplicity 
with JPH = 79.4, 78.8 and 10.8 Hz (Figure 9) [31].

7. Hybrid silylphosphines complexation

PSiN-ligated complexes have also been attractive synthetic targets due to the hemilability prop-
erty the presence of soft P, Si and hard N atoms could impose. The synthetic strategy for the 
preparation of PSiN-type ligands involved the synthesis of {(ο-C6H4)-NMe2}SiHMeCl and its 
reactivity towards organolithium {(ο-C6H4Li)-PtBu2}. In this manner, the mixed-donor ligand 
{(ο-C6H4)-PtBu2}{(ο-C6H4)-NMe2}SiHMe (140) was synthesised. This new-fangled ligand reacted 
with group 10 precursors PdBr2 or [PtCl2(cod)] to give the complexes [M(X){(ο-C6H4)-PtBu2}
{(ο-C6H4)-NMe2-SiMe}] (M = Pd, X = Br (144); M = Pt, X = Cl (145)), respectively. Treatment of the 
latter complexes with OTf- led to the formation of compounds [M(OTf){(ο-C6H4)-PtBu2}{(ο-C6H4)-
NMe2-SiMe}] (M = Pd (146); Pt (147)) showing in the X-ray diffraction molecular structure a 
distance Pd-O of 2.3518(11) Å in 146, which once again highlights the strong trans-influence of 
the silyl donor. The selective reversible de-coordination of the amine arm in 144 and 145 was 
observed upon the use of PMe3 which yields compounds [M(X){(ο-C6H4)-PtBu2-SiMe-(ο-C6H4)-
NMe2}(PMe3)] (M = Pd, X = Br (148); M = Pt, X = Cl (149)). The coordination of the PSiN ligand 
towards group 9 (Rh, Ir) and 8 (Ru) has also been studied. The complex [Ru{(ο-C6H4)-PtBu2}
{(ο-C6H4)-CHNMe-SiMe}(η3-cyclooctene)] (150) was achieved upon thermal reaction of the PSiN 
ligand with one equivalent of [Ru(2-methylallyl)2(cod)]. The complex resulted from the coordi-
nation of the P and Si atoms of the ligand as well as a C─H bond activation of the methyl group 
(NMe) with a hydrogenated cyclooctene, remaining on the coordination sphere of the metal. 
Overall, a square planar geometry around Ru centre is structurally proposed (Figure 10) [36].

Another example of an elegant catalytic application of systems derived of PSiN pincer-like 
ligands is that comprising the ligands of general formula {(ο-C6H4)-PR2}{(ο-C6H4)-NMe2}SiHMe 

Figure 10. The chemistry of mixed PSiN ligands [36-37].
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observed upon the use of PMe3 which yields compounds [M(X){(ο-C6H4)-PtBu2-SiMe-(ο-C6H4)-
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nation of the P and Si atoms of the ligand as well as a C─H bond activation of the methyl group 
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(R = tBu (140); Cy (141); iPr (142); Ph (143)) [36]. The complexes [PtCl{(ο-C6H4)-PR2(ο-C6H4)-
NMe2-SiMe}] (R = tBu (145); Cy (151); iPr (152); Ph (153)) were synthesised by the reaction with 
[PtCl2η2-(C2H4)]2 in the presence of Et3N. In particular, the PSiN-platinum complex 151 success-
fully catalysed C─H borylation not only of highly electron deficient perfluoroarenes but also of 
the monofluorinated arenes, chloroarenes and benzoate (Figure 10) [37].

Regarding [M(P3Si)] tripodal systems, an extended series of organometallic species of general 
formulae [M(X){(ο-C6H4-PR2)3Si}] or [M(L){(ο-C6H4-PR2)3Si}] (R = Ph, iPr; X = Me, Cl; L = H2, N2, 
CO, NH3, N3R’, PMe3) has been disclosed with a variety of metals including, Fe [38–44], Co 
[45, 46], Ni [47], Ru [48], Os [48], Rh [45] and Ir [45], with outstanding and specific properties. 
Perhaps among the most novel systems, one can find the chemistry of novel hybrids (thio-
ether/phosphine)-silane ligands (ο-C6H4-PiPr2)3-n(ο-C6H4-SAd)nSiH (n = 2 (154); 1 (155)) syn-
thesised from silyl-phosphines such as (ο-C6H4-PiPr2)2SiHCl, 59 (Figure 5, section 4.1), upon 
lithiation of Br(ο-C6H4)E (E = PiPr2 or SAd) with varying stoichiometric amounts of Li(ο-C6H4)
E. The reactivity of these hybrids with FeCl2 afforded a new class of iron complexes featuring a 
S─Fe─N2 linkage (Figure 11) [49]. The bulky hexa-dentate ligand {(ο-C6H4-PiPr2)2HSi-O-SiH(ο-
C6H4-PiPr2)2} (156) was synthesised by the controlled hydrolysis of 59 (Figure 11). The reactiv-
ity of 59 was also reported towards FeBr2 and NiX2·DME (X = Cl or Br). The complex [Fe2(N2)
(μ-H)2{((ο-C6H4-PiPr2)2Si)2O}] (157) was formed in an equilibrium mixture with [Fe2(N2)2(μ-
H)2{((ο-C6H4-PiPr2)2Si)2O}] (158), which were observed at low temperature in the IR spectrum 
(two ν(N─N) bands at 2097 and 2060 cm−1) in accordance with the determined thermodynamic 
parameters including a large negative entropy (−30(2) cal/mol K), consistent with the coordi-
nation of a gas molecule and a rather small enthalpy of binding (−9.0(4) kcal/mol) in line with 
the observation of both species at low temperature (Figure 11) [50]. This research is particu-
larly relevant for the understanding of nitrogenase mimicking systems. From the reactivity 
of a binucleating variant of a PSiP ligand with NiX2.DME (X = Cl, Br) in the presence of tri-
ethylamine, dinuclear zerovalent nickel complexes bearing both η2-(Si─H) and η2-H2 moieties 
were observed by the group of Peters. Theoretical studies suggest that the Ni centre facilitates 
H atom exchange between the η2-(Si─H) and η2-H2 ligands via interconversion with a higher 
valent Ni(II) isomer (compounds 159–161) (Figure 11). This exchange has been exploited in the 
selective catalytic deuteration of exogenous silanes [51].

Figure 11. Chemistry of compound 59 and related reactions [49-52].
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Interestingly, the synthesis of the bulkier ligand (ο-C6H4-PiPr2)2HSi-(C6H3)SiPr-SiH(ο-C6H4-
PiPr2)2 (162) was reported very recently. The lithiation of (2,6-dibromophenyl)-isopropyl 
thioether with nBuLi in one pot followed by the stoichiometric addition of 59 affords the 
formation of (3-bromo-2-(isopropylthio)phenyl)(bis(2-diisopropylphenylphosphino)silane, 
which received the same treatment that (2,6-dibromophenyl)-isopropyl, to form the desired 
compound 162 (Figure 11) [52].

8. Bulky silylphosphines complexation

An example of rare kinetic stabilisation of trans bis(silyl) isomers was provided by the contribu-
tions of Kang, Ko and coworkers on the reaction of the bulky carborane silyl-phosphines {(R2P)
C2B10H10(SiMe2H)} (R = Me (163), OEt (164), Ph (165)) towards [Pt(η2-C2H4)(PPh3)3] or [Pt(COD)2], 
which afforded extremely uncommon trans-bis(P,Si-chelates) [Pt{(R2P)C2B10H10(SiMe2)}2] 
(R = Me (166); OEt (167)) formed by “chelate-assisted” oxidative addition. However, in the 
presence of dimethyl acetylenedicarboxylate, the complexes endure thermally rearrange-
ments to the thermodynamically favoured cis isomers 166′ and 167′. Besides, the reaction of 
[Pt(η2-C2H4)(PPh3)3] towards 165 occurs via oxidative addition resulting in the mono(chelate) 

Figure 12. Bulky carborane silyl-phosphine ligands [53].

Figure 13. Syntheses of bulky cage trigonal bipyramidal iron complexes [54].
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[PtH{(Ph2P)C2B10H10(SiMe2)}(PPh3)] (168). These authors also investigated the reactivity of the 
same bulky carborane silyl-phosphines with the palladium precursor [Pd2(dba)3] and observed 
that depending of the substituents over the phosphorous atoms, the cis isomer was exclusively 
formed [Pd{(R2P)C2B10H10(SiMe2)}2] (R = OEt (169); Ph (170)) or a mixture of the trans/cis isomers 
was detected when R = Me (171/171′) (Figure 12) [53].

Recently, the syntheses of bulky-cage trigonal bipyramidal iron complexes 174 and 175 with 
remote tertiary amines were reported. The synthesis of ligands 172 and 173 is shown in Figure 13. 
Once again, in this regard, the incorporation of secondary sphere interactions into iron-phosphine 
scaffolds is relevant to synthetic nitrogen fixation research [54].

9. Non-rigid and semi-rigid silylphosphines

Sola reported tridentate systems exemplified by [IrHCl{[Ph2P(CH2)3]2SiMe}] (176) [55] derived 
from the reaction of the ligand PSiP {[Ph2P(CH2)3]2SiHMe} (47, Figure 3) with the dimeric com-
pound [Ir(μ-Cl)(cod)]2. In solution, complex 176 displays an equilibrium between the syn (176) 
and anti (176′) isomers in a ratio 93:7 in C6D6 and C7D8, while in CDCl3 or CD2Cl2 solutions, 
the ratio is ca. 83:17. Complex 176 (and 176′) reacted with NaX (X = Br or I) leading to the cor-
responding complexes [IrHX{[Ph2P(CH2)3]2SiMe}] ((X = Br (177); I (178)) also in equilibrium 
with their respective syn and anti-isomers (177′, 178′) in similar ratios that those of 176 [56]. 
The mixture of isomers 176, also reacted with Me(O3SCF3) to produce the isomers syn 179 and 
anti 179′ with general formula [IrH(O3SCF3){[Ph2P(CH2)3]2SiMe}]; likewise the reactivity of 
176 with AgX or HX (X = PF6) in the presence of a neutral ligand afforded the mixture of the 
respective syn/anti cationic species [IrH(L)2{[Ph2P(CH2)3]2SiMe}]+[PF6]− (L = NCMe (180/180′), 
CO (181/181′), bipy (182/182′)) (Figure 14) [57].

Our research group studied the reactivity of PSi ligand phosphino-(benzyl)-silane Ph2P{(ο-
C6H4)CH2SiMe2H} (183) towards the complexes [RuH2(η2-H2)(PCy3)2] (184) and [Ru(cod)(cot)]. 
Complex 185 resulted from the substitution of two molecules of dihydrogen and two of the 
ligands PCy3 in 184 by two ligands 183 bonded to the ruthenium atom through the phospho-
rous atoms and two σ-bonds of the fragments Si─H. Following loss of H2, complex 183 slowly 
transformed to the cyclometalated complex 186 and subsequently into the bis(cyclometalated) 
187. When 183 was added to [Ru(cod)(cot)], the synthetic precursor of 184, it generated directly 
complex 187 in very high yield. The increase on the acidity of the methylene groups of ligand 

Figure 14. The chemistry of [IrP2Si] [56, 57].
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183 with respect to a non-benzilic phenylphosphine analogue, coupled with the presence of the 
non-classical Si─H bond interactions, which could undergo a low energy dissociation-coordina-
tion process of the Si─H bonds, was claimed to induce the gradual loss of H2 in 185 to the final 
stable bis(carbometallated) complex 187. Thus, it was reasonable to propose that the agostic 
interactions preceded and favoured the C─H bonds activation process [58]. Ligand SiPSi phos-
phinodibenzyl-silane PhP{(ο-C6H4)CH2SiMe2H}2 (188) was synthesised from PhP(ο-tolyl)2, it 
behaved as a pincer-like ligand capable of adopting different coordination modes at ruthenium 
through different degrees of Si─H bond activation. The reaction of 188 towards complex 184 
yielded exclusively the formation of 189, in which a Ru(II) centre is coordinated to one ligand 
188, through the P atom and two non-fully activated Si─H bonds preserving one PCy3 and two 
hydride ligands of the original Ru complex. The phosphorous atoms arrange in a distorted cis 
with a P-Ru-P angle 113.32(4)° in 189 which should be compared to 107.1(4)° in bis-cyclometal-
lated 187. This sterically encumbered arrangement of the phosphine ligands around ruthenium 
has been explained due to the favourable exchange of the two formally terminal and two non-
classical sigma hydrides around the metal. Certainly, the measured value of the JSiH together 
with theoretical calculations and the observed chemical behaviour of 189 in solution agree with 
the presence of non-classical η2-Si-H character of the silyl moieties. Thus, the complex 189 was 
formulated as an 18-electron species stabilised by two unusual intramolecular ε-non-classical 
interactions. Complex 189 undergoes facile and reversible loss of dihydrogen to afford quan-
titatively 16-electron complex 190, which is thought to preserve a single non-classical hydride 
as well as a terminal one. Moreover, NMR spectroscopic experiments on complex 189 show it 
to be very fluxional in the temperature range accessible, while hydride exchange in complex 
190 takes place at the high-temperature regime but in the slow exchange indicates only one 

Figure 15. Chemistry of silyl-benzyl phosphines bi-, tri- and tetradentate [58-60].
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hydride is bound to the two silicon atoms. In the solid-state X-ray diffraction analysis, a P-Ru-P 
angle of 154.37(3)° was determined, which is significantly more obtuse than in 189 and in 187, 
as expected due to the diminished hydride exchange in 190. The free energy ΔrG298 of the reac-
tion 189 to 190 + H2 is +16.9 kJ/mol; in line with the experimentally observed conversion at 308 K 
[59]. The reactivity of the ligands 183, 188 and new PSi3 ligand P{(ο-C6H4)CH2SiMe2H}3 (191) 
was also investigated with compounds [M(μ-Cl)(cod)]2 (M = Rh, Ir) [60] and with [Pt(PPh3)3] [8]. 
Compound 191 coordinates to Rh and Ir centres as a tetradentate ligand through the phospho-
rus and two silyl groups, while a third Si atom engages in an agostic Si─H interaction mode [60]. 
Complexes 192 and 193 react with adventitious water to generate dimeric siloxane compounds. 
Additionally, compounds 188 and 191 react with Pt as tridentate ligands leading exclusively to 
compounds exhibiting a very rare trans silyl disposition at square planar Pt (194, 195). These two 
complexes feature ligand (188 and 191) in a close to meridional disposition. Complex 195 results 
from ligand modification at one of the benzylic positions which undergoes formation of a new 
C-Si bond. Furthermore, d8 Pt(II) complex 195 is the first case of a silyl-platinum complex that 
includes a novel C─H⋯Pt anagostic interaction (Figure 15).

10. Applications of silylphosphines in the chemical industry

From the examples throughout this chapter, one can safely envisage transition metal com-
plexes of silylphosphines as active catalysts in a variety of industrial processes. The industrial 
application of this type of ligand systems, nevertheless, is still at its cradle with future applica-
tions expected to materialise in the mid-term.

In principle, Si and P are capable of displaying nucleophilic behaviour and both also possess the 
ability to displace leaving groups such as halogens, neutral/monodentate ligands, and so on, 
while the factors affecting their stereochemistry may also assist the complex in the attainment 
of specific geometries [61]. Catalysed transfer hydrogenation has been developed mainly based 
on complexes derived from the platinum-metals group [62], and it is applied in industrial pro-
cess and organic synthesis [63]. [PSiP-Ru] species also have shown to play an excellent role in 
the reduction of ketones employing iPrOH as the hydrogen source. The well-known Kumada’s 
cross-coupling reaction is an actual tool for the low-cost synthesis of styrene derivatives in the 
industrial scale by using Ni and Pd complexes as catalysts [64]. Some advances revealed the 
crucial use of phosphorous-containing compounds [65–67] and/or the very bulky donor ligands 
[68, 69]. Nevertheless, [PSiP-Co] systems have shown efficient conversions in relative mild reac-
tion conditions of an aryl-Grignard reagent reaction with organic halides at 50°C for 24 h [70].

11. Conclusion and perspectives

The incorporation of dual functionalities P and Si in single ligand backbones, silylphosphines, 
notably modifies the properties of the complexes they form, making them especially reactive 
and able to undergo selective transformations resulting from differing reactivity of the coor-
dinating atoms in the ligand in conjunction with the chelate effect.

Predictably, the observed reactivity stems from the combination of the most important quali-
ties of the Si ligands, specifically their extremely high σ-donating character and thus their 
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capability of forming σ-complexes, coupled to those features of the P moieties, which can be 
greatly modified by the choice of substituents.

Throughout this chapter, it has been shown the study of transition metal systems bonded 
to silylphosphine ligands has thrived in the last decades, but the findings in the last years 
highlight the importance of their study. Numerous extraordinary systems displaying unusual 
bonding modes, structures or physicochemical properties have been reported to date and 
many more can be envisioned to be informed in the near future given the relatively accessible 
synthesis of ligands and the seemingly unlimited structural variations.

However, the catalytic and other applications of these compounds have been sparingly 
explored; yet the potential of many of the reported systems is foreseen. We thus expect this 
field of chemistry to continue growing rapidly and encourage other research groups to direct 
their endeavours to this fascinating area of research.
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Abstract

Small gold clusters with diameters less than or equal to 2 nm (below approximately 200
atoms) possess geometric and electronic structures different from bulk gold. When these
gold clusters are protected by ligands, these clusters can be treated as chemical compounds.
This review focuses on gold clusters protected by chalcogenate (thiolate, selenolate, or
tellurolate) ligands and describes the methods by which these clusters are synthesized as
well as their geometric/electronic structures and physical and chemical properties. Recent
findings regarding ligand exchange reactions, which may be used to impart functionality to
these compounds, are also described.

Keywords: gold clusters, chalcogenate, geometric and electronic structures, physical
and chemical properties, ligand exchange reactions

1. Introduction

Small gold clusters with diameters less than or equal to 2 nm (below approximately 200 atoms)
possess geometric and electronic structures different from those of bulk gold [1]. The geometric
structure often consists of an atomic arrangement, such as an icosahedral structure, that differs
from the close-packed structure of bulk gold, as a result of reducing the surface energy. In
addition, a discrete electronic structure appears rather than the continuous structure observed
in the bulk element. Owing to these characteristics, small gold clusters exhibit fundamental
properties and functionalities different from those of bulk gold. In addition, when these gold
clusters are protected by ligands, it is possible to treat them as chemical compounds. In early
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Abstract

Small gold clusters with diameters less than or equal to 2 nm (below approximately 200
atoms) possess geometric and electronic structures different from bulk gold. When these
gold clusters are protected by ligands, these clusters can be treated as chemical compounds.
This review focuses on gold clusters protected by chalcogenate (thiolate, selenolate, or
tellurolate) ligands and describes the methods by which these clusters are synthesized as
well as their geometric/electronic structures and physical and chemical properties. Recent
findings regarding ligand exchange reactions, which may be used to impart functionality to
these compounds, are also described.

Keywords: gold clusters, chalcogenate, geometric and electronic structures, physical
and chemical properties, ligand exchange reactions

1. Introduction

Small gold clusters with diameters less than or equal to 2 nm (below approximately 200 atoms)
possess geometric and electronic structures different from those of bulk gold [1]. The geometric
structure often consists of an atomic arrangement, such as an icosahedral structure, that differs
from the close-packed structure of bulk gold, as a result of reducing the surface energy. In
addition, a discrete electronic structure appears rather than the continuous structure observed
in the bulk element. Owing to these characteristics, small gold clusters exhibit fundamental
properties and functionalities different from those of bulk gold. In addition, when these gold
clusters are protected by ligands, it is possible to treat them as chemical compounds. In early

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.73441

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



studies, beginning in the 1960s, phosphine was employed as a protective ligand [2–16]. Repre-
sentative phosphine (PR3)-protected gold clusters (Aun(PR3)m) include [Au11(PPh3)8Cl2]

+,
[Au13(PMe2Ph)8Cl2]

3+, [Au39(PPh3)14Cl6]
2+, and Au55(PPh3)12Cl6 (Figure 1(a)). Unfortunately,

these clusters have been found to be unstable in solution, which restricts their practical appli-
cations. In contrast, thiolate (SR)-protected gold clusters (Aun(SR)m), first synthesized by Brust
et al. in 1994 (Figure 1(b)) [17], are highly stable both in solution and in the solid state, because
the SR ligands form strong bonds with gold atoms. These Aun(SR)m clusters exhibit various
physical and chemical properties not shown by bulk gold, such as photoluminescence and
catalytic activity. For these reasons, SR ligands have become the most common choice for use
with gold clusters [18–40]. Recently, the synthesis of gold clusters protected by other
chalcogenates (selenolate (SeR) or tellurolate (TeR); Figure 1(c)) [41–51], by alkynes [52–54], or
by two kinds of ligand (Figure 1(d)) [55–59] has also been reported. In this chapter, we focus
on gold clusters protected by chalcogenates (Aun(XR)m; XR = SR, SeR, or TeR) and describe the
synthetic procedures, geometric/electronic structures, and physical and chemical properties of
these compounds. Moreover, the physical and chemical properties of these gold clusters are
greatly affected by the type of functional group of the protecting ligand. The ligand exchange

Figure 1. The crystal structures of (a) Aun(PR3)m, (b) Aun(SR)m, (c) Aun(SeR)m, and (d) Aun(PR3)m(SeR)l. H atoms are
omitted for clarity. In [Au39(PPh3)14Cl6]

2+, C atoms are also not shown (these figures were adapted from Refs. [2, 10, 11, 29,
30, 34, 47, 48, 59]).
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reaction is a very powerful means for introducing the different ligands into the pre-synthesized
cluster. Although this type of reaction was discovered nearly 20 years ago [60–65], the associated
mechanism was not fully understood at that time. Recently, tremendous progress has been made
in terms of the precise synthesis and evaluation of metal clusters, and details of these reactions
have been elucidated [66, 67]. Recent findings regarding these reactions are therefore also included
herein.

2. Synthesis of Aun(XR)m clusters

The method used most frequently to synthesize Aun(XR)m clusters is based on the chemical
reduction of gold ions in the presence of ligands in solution (Figure 2). In this approach, a gold
salt and the ligand are mixed in solution to form Au-ligand complexes that are subsequently
treated with a reducing agent (normally NaBH4). Aun(XR)m clusters are formed by the aggregation

Figure 2. A typical procedure for the synthesis of Aun(SR)m clusters having a well-defined chemical composition.
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of the resulting gold atoms in conjunction with surface protection by the ligands [18]. In the
first report published by Brust et al., dodecanethiolate was used as the ligand [17]. Because a
gold salt and dodecanethiolate are soluble in different solvents, Brust transferred the gold salt
from an aqueous phase to a ligand-containing toluene phase using a phase-transfer reagent
(representing a two-phase system; Figure 2). In contrast, in more recent research, tetrahydro-
furan (THF) has often been used as the solvent because it could dissolve both gold salt and
ligand [68]. This removes the need for phase transfer of the gold salt and thereby simplifies the
synthesis to a one-phase system (Figure 2). Similarly, when a hydrophilic thiol is used as the
ligand, gold clusters can be synthesized in a one-phase system [69–71].

The product obtained from this technique is typically a mixture of Aun(XR)m clusters having
various numbers of constituent atoms. Because the physical and chemical properties of the
clusters are greatly affected by the number of atoms, separation by size or conversion to stable
clusters by exposure to severe conditions is required to obtain Aun(XR)m clusters with well-
defined physical properties and functions (Figure 2) [18, 72]. Polyacrylamide gel electrophoresis
[69–72], high-performance liquid chromatography [72–77], and solvent extraction are the most
frequently applied techniques for size separation. It is also common to use an etching reaction
for size convergence [72, 78–82]. In addition to these techniques, the ligand exchangemethod, in
which the ligands of a specific Aun(XR)m cluster are replaced with other ligands, is an effective
means of generating Aun(XR)m clusters with a specific chemical composition (Figure 2) [83].
Recent results associated with such ligand exchange reactions are discussed in Section 6.

3. Geometrical structures of Aun(XR)m clusters

Until 2007, it was believed that Aun(SR)m clusters possess a geometrical structure in which an
Au core is covered with thiolate ligands (Figure 3(a)) [84]. Since then, single-crystal X-ray

Figure 3. The geometrical structures of Au38(SR)24 (a) predicted by theoretical calculations in 1999 and (b) determined by
single-crystal X-ray structural analysis in 2010. The R groups have been omitted for clarity (these figures were adapted
from Refs. [30, 84]).
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structural analysis has revealed that several Aun(SR)m clusters consist of an Au core covered
with multiple dS(R)[dAudS(R)]xd staples (Figure 3(b)) [30, 85–88]. Based on the geometri-
cal structures determined for Aun(SR)m clusters to date, it can be assumed that almost all small
Aun(SR)m clusters have this type of core-shell structure. Single-crystal X-ray structural analysis
has also demonstrated that small Aun(SeR)m clusters have core-shell structures similar to those
of small Aun(SR)m clusters (Figure 1(c)) [47, 48]. The geometrical structure of Aun(TeR)m
clusters has not yet been determined experimentally, although theoretical calculations [45, 89]
have shown that these clusters are also likely to have a similar core-shell structure.

4. Electronic structures of Aun(XR)m clusters

Unlike bulk gold, small Aun(SR)m clusters have discrete electronic structures. As a result,
multiple peak structures can be observed in the optical absorption spectra of these clusters.
As an example, Aun(SC12H25)m clusters show multiple peak structures across the entire visible
range in their optical absorption spectra up to the size of Au144(SC12H25)60 (Figure 4) [75]. Such
fine peak structures are not observed in the spectra of larger clusters, although peaks that can
be attributed to surface plasmon resonance absorption have been identified at approximately

Figure 4. Optical absorption spectra of films composed of Aun(SC12H25)m clusters (n = 38–520) at various temperatures
(25–290 K) (this figure was adapted from Ref. [75]).
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520 nm in their optical absorption spectra (Figure 4). Thus, the electronic structures of
Au187(SC12H25)68 and larger clusters tend to resemble that of bulk gold (Figure 5) [75].

At present, the relationship between cluster size and electronic structure is not well under-
stood for Aun(SeR)m and Aun(TeR)m clusters, because only a small number of such compounds
have been studied to date. However, the researches regarding Au25(SeR)18 and Au38(SeR)24
clusters have demonstrated that changing the ligands from SR to SeR reduces the HOMO-
LUMO gap of the clusters [42, 43] and that this effect becomes more pronounced in the case of
clusters containing TeR in the ligand shell [45].

5. Physical and chemical properties of Aun(XR)m clusters

Aun(SR)m clusters exhibit size-specific electronic structures, and their physical and chemical
properties also vary with size. Herein, we first discuss typical physical and chemical charac-
teristics of such Aun(SR)m clusters.

5.1. Photoluminescence

Small Aun(SR)m clusters have been shown to exhibit photoluminescence (Figure 6(a)) [18, 20,
23, 70, 71, 90]. As an example, Au25(SG)18 (SG = glutathionate) exhibits photoluminescence with
an estimated quantum yield of ~1 � 10�3 [71], which can be used for sensing and imaging
applications [91].

5.2. Redox behavior

Aun(SR)m clusters also display redox behavior [20, 21]. Figure 6(b) shows a differential pulse
voltammogram obtained from Au25(SC2H4Ph)18, in which the peaks at �1.9 and �0.3 V orig-
inate from [Au25(SC2H4Ph)18]

�/2� and [Au25(SC2H4Ph)18]
0/� redox couples, respectively. This

Figure 5. Structural changes in Aun(SC12H25)m clusters with varying numbers of gold atoms (this figure was adapted
from Ref. [75]).
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redox behavior is not confined to clusters with discrete electronic structures; Aun(SR)m clusters
larger than Au144(SR)60 also exhibit redox behavior as a result of quantized double-layer
charging [21]. The redox properties of Aun(SR)m clusters could be applied to single-electron
transistors [92].

5.3. Optical activity

Several clusters, such as Au38(SR)24 and Au40(SR)24, have optical isomers with different
dS(R)[dAudS(R)]xd staple (x = 1, 2) configurations [93–95] and thus are optically active [36].
Figure 6(c) presents the circular dichroism spectra of two optical isomers of Au38(SC2H4Ph)24

Figure 6. Size-specific physical and chemical properties of Aun(SR)m clusters: (a) photoluminescence, (b) redox behavior,
(c) optical activity, and (d) catalytic activity (these figures were adapted from Refs. [22, 90, 95]).
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[95]. The anisotropy factor associated with the optical activity of this cluster increases with
wavelength up to a maximum of 4 � 10�3.

5.4. Catalytic activity

Catalytic activity is another typical size-specific property of Aun(SR)m clusters (Figure 6(d))
[22, 72]. As an example, Au25(SR)18 catalyzes the oxidation of CO, styrene, benzyl alcohol,
cyclohexane, and sulfides. The same cluster also exhibits catalytic activity for the hydrogena-
tion of nitrophenol, aldehydes, and ketones and promotes CdC coupling reactions. As noted,
several Aun(SR)m clusters have optical isomers and therefore could potentially function as
asymmetric catalysts [96].

5.5. Effect of changing ligands

Regarding Aun(SeR)m and Aun(TeR)m clusters, it has been reported that the incorporation of SeR
or TeR ligands changes the nature of the bonding between the Au atoms and the ligands [97,
98]. In the case of Aun(SeC12H25)m clusters, this effect reduces the degree of charge transfer from
the Au atoms to the ligands (Figure 7(a)) such that the Audligand bond becomes much more
covalent than that in Aun(SC12H25)m clusters [41]. Owing to these changes in bonding charac-
teristics, Au25(SeR)18 (R = C12H25 or C8H17) exhibits greater resistance to degradation in solution
compared with Au25(SR)18 (R = C12H25 or C8H17) (Figure 7(b)) [42, 99]. In addition to such an
improved stability, the use of SeR ligands is expected to improve conductivity between the gold
core and the ligands [97, 100, 101], and future work is likely to demonstrate the conductivity of
Aun(SeR)m clusters. Furthermore, recent studies have found that Au25(SePh)18 exhibits catalytic
activity for the reduction of 4-nitrophenol (Figure 7(c)) [48].

Figure 7. A comparison of (a) the Au L3-edge X-ray absorption near-edge structure spectra of Au25(SeC12H25)18 and
Au25(SC12H25)18 and (b) the stability of Au25(SeC12H25)18 and Au25(SC12H25)18 in solution under harsh conditions.
(c) Representative UV-vis optical absorption spectra acquired during the reduction of 4-nitrophenol to 4-aminophenol
over Au25(SePh)18 (these figures were adapted from Refs. [42, 43, 48]).
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6. Ligand exchange reactions

As described above, Aun(SR)m clusters tend to resist degradation. However, this type of metal
cluster readily exchanges its ligands with other coexisting ligands in solution (Figure 8(a)). A
complete understanding of the associated mechanism would allow these reactions to be con-
trolled, thus permitting synthesis of novel metal clusters with specific functions. Recently,
more details regarding exchange reactions between metal clusters and ligands have been
reported, and these findings are discussed in this section.

6.1. Mechanism

Murray et al. reported the ligand exchange reactions of this type of cluster nearly 20 years ago
[60–65]. However, their research was conducted using mixtures and did not use advanced
techniques such as mass spectrometry and single-crystal X-ray structural analysis to character-
ize the products. Therefore, a thorough understanding of the details of these reactions was not
obtained. More recent research has elucidated the associated mechanism. As an example,
Au25(SR)18 has a geometry in which the Au13 core is covered by six dS(R)d[AudS(R)]2d
staples (Figure 9(a)). As a result, there are two types of SR units in Au25(SR)18: those in contact
with the Au13 core (core-site SR; Figure 9(a)) and those at the apex of each staple (apex-site SR;
Figure 9(a)) [102, 103]. Ackerson et al. performed a single-crystal X-ray structural analysis of the
product obtained from the reaction of Au25(SC2H4Ph)18 (SC2H4Ph = 2-phenyl ethanethiolate)

Figure 8. A schematic diagram of ligand exchange reactions including (a) only ligand exchange, (b) induction of quasi-
isomerization, and (c) induction of size transformation.
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cluster readily exchanges its ligands with other coexisting ligands in solution (Figure 8(a)). A
complete understanding of the associated mechanism would allow these reactions to be con-
trolled, thus permitting synthesis of novel metal clusters with specific functions. Recently,
more details regarding exchange reactions between metal clusters and ligands have been
reported, and these findings are discussed in this section.

6.1. Mechanism

Murray et al. reported the ligand exchange reactions of this type of cluster nearly 20 years ago
[60–65]. However, their research was conducted using mixtures and did not use advanced
techniques such as mass spectrometry and single-crystal X-ray structural analysis to character-
ize the products. Therefore, a thorough understanding of the details of these reactions was not
obtained. More recent research has elucidated the associated mechanism. As an example,
Au25(SR)18 has a geometry in which the Au13 core is covered by six dS(R)d[AudS(R)]2d
staples (Figure 9(a)). As a result, there are two types of SR units in Au25(SR)18: those in contact
with the Au13 core (core-site SR; Figure 9(a)) and those at the apex of each staple (apex-site SR;
Figure 9(a)) [102, 103]. Ackerson et al. performed a single-crystal X-ray structural analysis of the
product obtained from the reaction of Au25(SC2H4Ph)18 (SC2H4Ph = 2-phenyl ethanethiolate)

Figure 8. A schematic diagram of ligand exchange reactions including (a) only ligand exchange, (b) induction of quasi-
isomerization, and (c) induction of size transformation.
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with para-bromobenzenethiol to ascertain which SR was more likely to be exchanged [103]. The
results showed that Au25(SC2H4Ph)16(p-BBT)2 (p-BBT = para-bromobenzenethiolate), in which the
substitution had occurred at the core-site SR ligands, was obtained (Figure 9(a)), suggesting that
the ligand exchange occurred at the core-site SR locations. However, this prior work did not
determine whether other structures may have been present in the reaction mixture or not. For
this reason, Niihori et al. employed reversed-phase high-performance liquid chromatography to
allow the high-resolution separation of the coordination isomers generated by a similar reaction
and estimated the distribution of isomers in the product. It was confirmed that the product
mixture mainly contained a coordination isomer in which the core-site SR ligands had been
substituted (Figure 9(b)) [104]. Fernando and Aikens performed density functional theory
(DFT) calculations at approximately the same time, and the results indicated that ligand
exchange was likely to occur at core-site SR ligands in Au25(SR)18 [105]. These results demon-
strated that ligand exchange preferentially proceeds at core-site SR ligands in Au25(SC2H4Ph)18.
The research by Hossain et al. has revealed that preferential exchange at core-site SR ligands also
occurs in the reaction between [Au25(SC2H4Ph)18]

� and other chalcogenides (Figure 9(c)) [106].

6.2. Induction of quasi-isomerization

Studies have found that, in addition to ligand exchange, a change in geometry can also
take place during reactions with thiol (RSH) (Figure 8(b)). This discovery originated from
the prediction of the geometry of Au24(SR)20 clusters. Specifically, Jin et al. synthesized
Au24(SC2H4Ph)20 in 2010 [107], after which Pei and coworkers predicted the geometry of these
clusters via DFT calculations based on Au24(SCH3)20 [108]. Thereafter, Jin et al. characterized
Au24(SCH2Ph-

tBu)20 (SCH2Ph-
tBu = 4-tert-butylphenylmethanethiolate) by single-crystal X-ray

structural analysis but found that the resulting structure was different from that predicted by
Pei’s group [109]. This discrepancy prompted Jiang et al. to study the geometric structures of
Au24(SR)20 clusters (R = CH3, C2H4Ph, or CH2Ph-

tBu) using DFT, leading to the conclusion that
the most stable structure of a Au24(SR)20 cluster depends on the ligand [110]. At present, this
theory has not been proven experimentally for Au24(SR)20. However, in 2016, Jin et al. reported
that exchanging the ligands of Au28(SPh-

tBu)20 (SPh-tBu = 4-tert-butylbenzenethiolate) with
cyclohexanethiolate (S-c-C6H11) altered the skeletal structure of the cluster (Figure 10(a)) [111].

Figure 9. Preferential sites in ligand exchange reactions. (a) and (c) Geometrical structures of the products obtained from
the reaction between Au25(SC2H4Ph)18 and para-bromobenzenethiol and benzeneselenol, respectively. (b) Chromatogram
of the product obtained from the reaction between Au24Pd(SC2H4Ph)18 and dodecanethiol (these figures were adapted
from Refs. [103, 104, 106]).
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This same work also demonstrated that exchanging the ligands of Au28(S-c-C6H11)20 with SPh-tBu
regenerated the original geometry, meaning that the reaction was reversible (Figure 10(a)) [111].
Thus, it has recently been revealed that both ligand exchange and quasi-isomerization (as
opposed to true isomerization because the ligand is different) can be induced for a particular
Aun(SR)m cluster.

6.3. Induction of size transformation

Researches have also shown that the introduction of a significant structural deformation via
ligand exchange can result in the formation of Aun(SR)m clusters with different chemical
compositions (Figure 8(c)) [102]. An example is the reaction of Au38(SC2H4Ph)24 clusters
(Figure 3(b)) with tBu-PhSH in solution, from which Au36(SPh-

tBu)24 was generated as the
main product (yield ~90%) (Figure 10(b)) [112]. This outcome indicates that exchange with a
ligand containing a bulky functional group can affect the chemical composition of the cluster.

Figure 10. Examples of ligand exchange reactions, including (a) quasi-isomerization and (b) size transformation (these
figures were adapted from Refs. [111, 112]).
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Research regarding the mechanism of such reactions has also been conducted. Jin et al. found
that the following four processes occur in the reaction between Au38(SC2H4Ph)24 and

tBu-PhSH:
(I) ligand exchange, (II) structural distortion, (III) disproportionation, and (IV) size focusing
conversion together with further ligand exchange (Figure 10(b)) [112]. In the first process, ligand
exchange occurs without size or structural transformations, while the structural distortion of the
resulting Au38(SC2H4Ph)24�m(SPh-

tBu)m (m > ~12) is initiated in the second process. During the
third process, one Au38(SC2H4Ph)24–m(SPh-

tBu)m releases two gold atoms to form Au36 and
another Au38(SC2H4Ph)24–m(SPh-

tBu)m captures these two atoms and two free ligands to form
Au40(SC2H4Ph)24–m(SPh-

tBu)m+2. In the final process, the Au40(SC2H4Ph)24�m(SPh-
tBu)m+2 begins

to convert to Au36, such that pure Au36(SPh-
tBu)24 is eventually obtained (Figure 1(b)). Aun(SR)m

clusters such as Au28(SPh-
tBu)20, Au36(SPh-

tBu)24, and Au36(S-c-C5H9)24, none of which can be
generated via direct synthesis at atomic precision, have also been synthesized in a size-selective
manner by inducing this kind of structural deformation [102].

6.4. Relation between ligand structure and outcome

In this way, the outcomes are significantly affected by the bulkiness of the ligand in the ligand
exchange reactions. Normally, ligand exchange with alkanethiol or PhC2H4SH does not result
in structural transformation, but simply leads to ligand exchange. Conversely, a bulky ligand
such as tBu-PhSH often leads to structural transformation. At present, these are no clear rules
for predicting the final state of the deformed cluster (whether quasi-isomerization or size
transformation). The final state seems to be related to the magnitude of the structural transfor-
mation and the possibility of isomeric structures with similar stabilities.

7. Summary

This chapter summarized common methods of fabricating Aun(XR)m clusters and surveyed the
various geometric and electronic structures of these compounds, as well as their physical and
chemical properties. Recent discoveries regarding ligand exchange reactions capable of
enhancing the functionality of these clusters were also described. Although the precise synthe-
sis of such clusters was first reported only 13 years ago at the time of writing, many studies
regarding these clusters have been conducted in the interim, all of which have significantly
improved our understanding of synthetic methods as well as the structures and functions of
the clusters. It is expected that more information related to Aun(XR)m clusters will be gained on
the basis of continuing research, leading to the readily synthesis of metal clusters with desired
functions in the near future.
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Abstract

Neuropeptides constitute an important part of the nervous system, since the simple nerve
nets (i.e. of Hydra). The assigned functions of these peptides vary enormously. For
instance, besides inhibiting or stimulating the release of some hormones, they can be
responsible for tentacle contraction of the Hydra, dropping the tail of the lizard, postnatal
care of the beetles and also aggressiveness of humans. They perform these tasks via
activating their cognate GPCRs, which are hypothesized to be coevolved with their ligand
neuropeptides. In this chapter, we will introduce the concept of neuropeptide, its intracel-
lular maturation process, characteristics of some typical neuropeptide families and the
common properties of their cognate GPCRs. At last, we will try to give information about
the widely used methods for studying GPCR-neuropeptide interactions.

Keywords: neuropeptide, GPCR, peptide hormone, interaction

1. Introduction

Neuropeptides are polypeptides expressed in and secreted from neurons. They are produced
as propeptides, cleaved into smaller fragments and matured via posttranslational modifica-
tions, differing from classical neurotransmitters in size, concentration and secretion mecha-
nisms. They are expressed everywhere in the nervous system, take role in synapsis and can
have distal target organs, as do the hormones.

Neuropeptides constitute the most diverse class of molecules in the body. They have various
roles in development, reproduction, physiology and behavior of the animals. There are at least
70 known genes coding for neuropeptide precursor proteins, called prepropeptides, in
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mammals and 42 genes in Drosophila. Secreted forms are processed from these prepropeptides
and can vary from 5 to 80 amino acids in length. They coexist with classical neurotransmitters;
for instance, neurotensin is released with dopamine [1] or vasoactive intestinal peptide with
acetylcholine [2]. They mostly act on G-protein coupled receptors (GPCRs) and transduce their
signals via intracellular secondary messenger systems.

2. Evolution of neuropeptide signaling

Simple nerve nets have evolved since the earliest animals like cnidarians (such as Hydra, sea
anemones and jellyfish). Even they have no real brain, their nervous system includes secretory
vesicles and produces different types of neuropeptides [3]. Neuropeptides constitute an impor-
tant part of their nervous system. Therefore, neuropeptide signaling should have been evolved
before the divergence of cnidarians and bilaterians, which means more than 550 million years
of evolution.

Secretory vesicles of cnidarian nervous system are accumulated at the synapses [4, 5]. This
may help for directed-signal transmission such as tentacle contraction of Hydra [6]. However,
in vertebrates, the peptide secretory vesicles are not localized only to the synapse but distrib-
uted also along the nerve body and soma. Because neuropeptides interact mostly with GPCRs,
their action mechanism is slower than classical neurotransmitters. This fact should be disad-
vantageous for the peptidergic nervous system of the Hydra. However, it was found that they
have evolved different receptor-binding mechanisms to overcome this problem. For instance,
mammalian RFamide neuropeptides activate different GPCRs and this activation leads to a
slow response. On the other hand, Hydra-RFamide I and II act through a so-called peptide-
gated ionotropic receptor, which is a trimeric complex of ion channels [7]. This system results
in an advantage like faster transmission than that of classical neuropeptide-GPCR system, in
absence of classical neurotransmitters.

In evolution of neuropeptide signaling, echinoderms are the second most important because
they constitute an intermediate step between Protostomia (which include fruit fly) and
Deuterostomia (which include both the vertebrates and echinoderms). Echinoderm neuropep-
tides are suggested to be involved in unusual mechanisms such as autotomy (dropping the tail
of the lizard) and regeneration, or control of stiffness of connective tissue [8].

The major assumptions behind the diversity of neuropeptide genes are tandem duplications
and following substitutions. Neuropeptide sequences are conserved in most cases (such as
oxytocin family). However, some neuropeptide sequences show variations, and these varia-
tions can lead to differences in half-life, receptor affinity or expression profiles. Finally, these
changes can generate a pressure in the direction of neuropeptide-receptor coevolution. Addi-
tionally, the mature peptides that are processed from the same gene can have sequence
variations. These variations cannot be explained by gene duplication. An example for this is
37 peptide products of metamorphosin A prepropeptide of sea anemone [9]. All of these
peptides can show functional redundancy, which means that they can be coexpressed,
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cosecreted and activating the same receptor. In a study on Drosophila genus, multiple copies of
peptides from the same prepropeptide were analyzed [10], and it was found that they were
highly conserved and under stabilizing selection. The numbers of peptide copies were the
same within the genus (except FMRFamides). This conservation is important for receptor
selectivity, affinity or the final response. Additionally, the researchers showed that the most
conserved peptides were the most potent ligands for their receptors. Finally, these results on
Drosophila neuropeptides supported the idea of evolutionary pressure of peptide-receptor
coevolution on neuropeptide selection. This idea was proposed also for the vertebrate neuro-
peptides. Some regions of the vertebrate peptides are conserved, and these regions are thought
to be the most important parts for functioning. For instance, the C-terminal residues of
tachykinins are strictly conserved within vertebrates, and this region has roles in binding with
tachykinin receptors. However, these similarities between neuropeptides of different species
do not have to mean cross-reactivity with the receptors of different species [11, 12]. And this
fact would be a support for the discussion of peptide-receptor coevolution.

3. Processing and trafficking of neuropeptides

Neuropeptides are the gene products that range from 5 to 80 amino acids in length. They born
like prepropeptides, which contain an N-terminal signal sequence (between 15 and 40 residues
in length). A typical signal sequence contains a positively charged region, a hydrophobic
region and some polar but uncharged amino acids until the cleavage site, in the order [13].
This signal sequence is responsible for the anchorage of prepropeptide to the endoplasmic
reticulum (ER) membrane via a complex called translocon, where folding and signal peptide
cleavage occur. In some prepropeptides, the N-terminal region includes a signal anchor instead
of a signal sequence. This signal anchor is responsible for the anchorage of precursor protein to
the ER membrane but not cleaved. An example for this signal anchor can be given for the
precursor of Allatostatin CC peptides of insects [14]. These signal anchors produce single-pass
membrane proteins, which can act as juxtacrines in nervous system.

Cleaved propeptides are exported to the Golgi for further processing. Mainly, two types of
“trypsin-like” endopeptidases are responsible for the cleavage of propeptides. These enzymes
are called proprotein convertase 1 (PC1/3) and 2 (PC2). Seven PC types are expressed in
mammals, but only three PCs in fruit fly (Amontillado, Dfurin1 and Dfurin2). PCs recognize
and cleave the C-terminal site of dibasic residues such as KR or RR, especially of R-X-(R/K/X)-
R motif on propeptides [15]. However, cleavage preferences differ within organisms. For
instance, if valine or leucine is placed in place of X, the site will become resistant to cleavage
by vertebrate PC (furin) but will be efficiently cleaved by insect PCs (Dfurin) [16]. In processing
of neuropeptides, mammalian PC1 and PC2 and fly Amontillado are widely expressed in
neurons, whereas furins have ubiquitous expression [17, 18].

Cleaved propeptide contains a basic C-terminus, which is further cleaved by carboxypeptidase
E. In order to stabilize peptide structure against degradation, C-terminal glycine of most of

Neuropeptides as Ligands for GPCRs
http://dx.doi.org/10.5772/intechopen.73504

79



mammals and 42 genes in Drosophila. Secreted forms are processed from these prepropeptides
and can vary from 5 to 80 amino acids in length. They coexist with classical neurotransmitters;
for instance, neurotensin is released with dopamine [1] or vasoactive intestinal peptide with
acetylcholine [2]. They mostly act on G-protein coupled receptors (GPCRs) and transduce their
signals via intracellular secondary messenger systems.

2. Evolution of neuropeptide signaling

Simple nerve nets have evolved since the earliest animals like cnidarians (such as Hydra, sea
anemones and jellyfish). Even they have no real brain, their nervous system includes secretory
vesicles and produces different types of neuropeptides [3]. Neuropeptides constitute an impor-
tant part of their nervous system. Therefore, neuropeptide signaling should have been evolved
before the divergence of cnidarians and bilaterians, which means more than 550 million years
of evolution.

Secretory vesicles of cnidarian nervous system are accumulated at the synapses [4, 5]. This
may help for directed-signal transmission such as tentacle contraction of Hydra [6]. However,
in vertebrates, the peptide secretory vesicles are not localized only to the synapse but distrib-
uted also along the nerve body and soma. Because neuropeptides interact mostly with GPCRs,
their action mechanism is slower than classical neurotransmitters. This fact should be disad-
vantageous for the peptidergic nervous system of the Hydra. However, it was found that they
have evolved different receptor-binding mechanisms to overcome this problem. For instance,
mammalian RFamide neuropeptides activate different GPCRs and this activation leads to a
slow response. On the other hand, Hydra-RFamide I and II act through a so-called peptide-
gated ionotropic receptor, which is a trimeric complex of ion channels [7]. This system results
in an advantage like faster transmission than that of classical neuropeptide-GPCR system, in
absence of classical neurotransmitters.

In evolution of neuropeptide signaling, echinoderms are the second most important because
they constitute an intermediate step between Protostomia (which include fruit fly) and
Deuterostomia (which include both the vertebrates and echinoderms). Echinoderm neuropep-
tides are suggested to be involved in unusual mechanisms such as autotomy (dropping the tail
of the lizard) and regeneration, or control of stiffness of connective tissue [8].

The major assumptions behind the diversity of neuropeptide genes are tandem duplications
and following substitutions. Neuropeptide sequences are conserved in most cases (such as
oxytocin family). However, some neuropeptide sequences show variations, and these varia-
tions can lead to differences in half-life, receptor affinity or expression profiles. Finally, these
changes can generate a pressure in the direction of neuropeptide-receptor coevolution. Addi-
tionally, the mature peptides that are processed from the same gene can have sequence
variations. These variations cannot be explained by gene duplication. An example for this is
37 peptide products of metamorphosin A prepropeptide of sea anemone [9]. All of these
peptides can show functional redundancy, which means that they can be coexpressed,
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cosecreted and activating the same receptor. In a study on Drosophila genus, multiple copies of
peptides from the same prepropeptide were analyzed [10], and it was found that they were
highly conserved and under stabilizing selection. The numbers of peptide copies were the
same within the genus (except FMRFamides). This conservation is important for receptor
selectivity, affinity or the final response. Additionally, the researchers showed that the most
conserved peptides were the most potent ligands for their receptors. Finally, these results on
Drosophila neuropeptides supported the idea of evolutionary pressure of peptide-receptor
coevolution on neuropeptide selection. This idea was proposed also for the vertebrate neuro-
peptides. Some regions of the vertebrate peptides are conserved, and these regions are thought
to be the most important parts for functioning. For instance, the C-terminal residues of
tachykinins are strictly conserved within vertebrates, and this region has roles in binding with
tachykinin receptors. However, these similarities between neuropeptides of different species
do not have to mean cross-reactivity with the receptors of different species [11, 12]. And this
fact would be a support for the discussion of peptide-receptor coevolution.

3. Processing and trafficking of neuropeptides

Neuropeptides are the gene products that range from 5 to 80 amino acids in length. They born
like prepropeptides, which contain an N-terminal signal sequence (between 15 and 40 residues
in length). A typical signal sequence contains a positively charged region, a hydrophobic
region and some polar but uncharged amino acids until the cleavage site, in the order [13].
This signal sequence is responsible for the anchorage of prepropeptide to the endoplasmic
reticulum (ER) membrane via a complex called translocon, where folding and signal peptide
cleavage occur. In some prepropeptides, the N-terminal region includes a signal anchor instead
of a signal sequence. This signal anchor is responsible for the anchorage of precursor protein to
the ER membrane but not cleaved. An example for this signal anchor can be given for the
precursor of Allatostatin CC peptides of insects [14]. These signal anchors produce single-pass
membrane proteins, which can act as juxtacrines in nervous system.

Cleaved propeptides are exported to the Golgi for further processing. Mainly, two types of
“trypsin-like” endopeptidases are responsible for the cleavage of propeptides. These enzymes
are called proprotein convertase 1 (PC1/3) and 2 (PC2). Seven PC types are expressed in
mammals, but only three PCs in fruit fly (Amontillado, Dfurin1 and Dfurin2). PCs recognize
and cleave the C-terminal site of dibasic residues such as KR or RR, especially of R-X-(R/K/X)-
R motif on propeptides [15]. However, cleavage preferences differ within organisms. For
instance, if valine or leucine is placed in place of X, the site will become resistant to cleavage
by vertebrate PC (furin) but will be efficiently cleaved by insect PCs (Dfurin) [16]. In processing
of neuropeptides, mammalian PC1 and PC2 and fly Amontillado are widely expressed in
neurons, whereas furins have ubiquitous expression [17, 18].

Cleaved propeptide contains a basic C-terminus, which is further cleaved by carboxypeptidase
E. In order to stabilize peptide structure against degradation, C-terminal glycine of most of
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intermediate propeptides is amidated. This amidation is a multistep process of two enzymes in
invertebrates, while vertebrates have a multifunctional enzyme to perform this task, called as
peptidylglycine alpha-amidating monooxygenase (PAM).

Mature peptides are transported in large dense core vesicles (DCV), which are different from
small vesicles delivering classical neurotransmitters. Furthermore, posttranslational modifica-
tions occur in DCVs. These modifications may include acetylation, sulfation, glycosylation,
phosphorylation and cyclization. Some peptides can be processed even after secretion to the
extracellular space. For instance, it was found that CPA6 of A/B family of carboxypeptidases is
secreted to the extracellular matrix, cleaves hydrophobic C-terminal residues of neuropeptides
and can lead to activation of Angiotensin I while degradation of some other peptides [19].

The engagement of DCVs to the nerve terminals is a very rare event. This is because DCVs
respond to the changes in Ca+2 content and hundreds of spikes are needed to stimulate a DCV
to release its content [20]. Even in these rare events, very large amounts of neuropeptides are
released to the synaptic cleft where they are enzymatically cleaved and degraded. On the other
hand, unlike neuropeptides, classical neurotransmitters are very rapidly transported to the
membrane, easily released and recycled from the synaptic cleft.

Finally, one precursor protein can generate more than one neuropeptide and these peptides
can be distinct or the same. Additionally, a precursor molecule can be alternatively spliced to
yield different mature neuropeptides in different cells [21].

4. Types, cognate GPCRs and functions

As the simplest nervous system, cnidarians express at least 17 different neuropeptides,
which can be grouped in three: FMRFamide-like peptides (FLPs), GLWamides and Hym-
355 [3]. The neuropeptides expressed in worm C. elegans are also classified in three major
groups, depending on their structural and functional similarities [21]. These groups are
called as insulin-like peptides (ILPs), FLPs and neuropeptide-like peptides (NLPs). Verte-
brate neuropeptides can be clustered in a wide range of families according to sequence
similarities [22]. However, in human, neuropeptides expressed from 96 different genes were
clustered in 22 distinct families together with the no-family peptides and deposited in
neuropeptide databases [23].

In a study of metazoan (all animals) propeptides, neuropeptides of 10 phyla were taken and
clustered in about 80 families according to their similarities within propeptide sequences [22].
Twenty-two of these families showed high similarity with each other. These included
FMRFamides, LWamides, myoinhibitory peptide (MIP), neuropeptide FF and gonadotropin
inhibitory hormone (GnIH).

In this chapter, we will introduce some of the neuropeptides that show conservation within
species (as reviewed from the study of Jékely [22]) or that are specific examples for vertebrates
and exclude the ligands interacting with non-GPCR targets. Summary of all mentioned neuro-
peptide families is given in Table 1.
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intermediate propeptides is amidated. This amidation is a multistep process of two enzymes in
invertebrates, while vertebrates have a multifunctional enzyme to perform this task, called as
peptidylglycine alpha-amidating monooxygenase (PAM).

Mature peptides are transported in large dense core vesicles (DCV), which are different from
small vesicles delivering classical neurotransmitters. Furthermore, posttranslational modifica-
tions occur in DCVs. These modifications may include acetylation, sulfation, glycosylation,
phosphorylation and cyclization. Some peptides can be processed even after secretion to the
extracellular space. For instance, it was found that CPA6 of A/B family of carboxypeptidases is
secreted to the extracellular matrix, cleaves hydrophobic C-terminal residues of neuropeptides
and can lead to activation of Angiotensin I while degradation of some other peptides [19].

The engagement of DCVs to the nerve terminals is a very rare event. This is because DCVs
respond to the changes in Ca+2 content and hundreds of spikes are needed to stimulate a DCV
to release its content [20]. Even in these rare events, very large amounts of neuropeptides are
released to the synaptic cleft where they are enzymatically cleaved and degraded. On the other
hand, unlike neuropeptides, classical neurotransmitters are very rapidly transported to the
membrane, easily released and recycled from the synaptic cleft.

Finally, one precursor protein can generate more than one neuropeptide and these peptides
can be distinct or the same. Additionally, a precursor molecule can be alternatively spliced to
yield different mature neuropeptides in different cells [21].

4. Types, cognate GPCRs and functions

As the simplest nervous system, cnidarians express at least 17 different neuropeptides,
which can be grouped in three: FMRFamide-like peptides (FLPs), GLWamides and Hym-
355 [3]. The neuropeptides expressed in worm C. elegans are also classified in three major
groups, depending on their structural and functional similarities [21]. These groups are
called as insulin-like peptides (ILPs), FLPs and neuropeptide-like peptides (NLPs). Verte-
brate neuropeptides can be clustered in a wide range of families according to sequence
similarities [22]. However, in human, neuropeptides expressed from 96 different genes were
clustered in 22 distinct families together with the no-family peptides and deposited in
neuropeptide databases [23].

In a study of metazoan (all animals) propeptides, neuropeptides of 10 phyla were taken and
clustered in about 80 families according to their similarities within propeptide sequences [22].
Twenty-two of these families showed high similarity with each other. These included
FMRFamides, LWamides, myoinhibitory peptide (MIP), neuropeptide FF and gonadotropin
inhibitory hormone (GnIH).

In this chapter, we will introduce some of the neuropeptides that show conservation within
species (as reviewed from the study of Jékely [22]) or that are specific examples for vertebrates
and exclude the ligands interacting with non-GPCR targets. Summary of all mentioned neuro-
peptide families is given in Table 1.
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4.1. FMRFamide-like peptides

Genome searches and mass spectrometry-based methods on nematode C. elegans yielded
around 30 genes encoding for FLPs. These peptides share a common C-terminal motif like
FMRF residues. RNAi studies on these genes showed that FLPs can have roles on different
processes such as hyperactivity, timing of egg laying, number of laid eggs, fat metabolism and
acetylcholine signaling [24–26]. In mollusk Macrocallista nimbosa, this neuropeptide takes role
in cardioexcitatory activity [27]. FLPs are expressed in all of the animal species. However, the
conserved C-terminal residues may become FMRFamide, QFamide or RFamide. In arthro-
pods, sulfakinins, myosuppressins, RFamides and other extended FMRFamides have the
common C-terminal amidated RF residues. Myosuppressins seem to be restricted to crusta-
ceans and insects and have a role in inhibiting contractions of the hindgut, cardiac muscle and
release of adipokinetic hormone [28, 29]. Extended FMRFamides of arthropods affect respira-
tion, heart rate, gut motility and muscle contractions. Drosophila sulfakinin (drosulfakinin) was
shown to regulate locomotor behavior [30], feeding behavior [31] and smooth muscle contrac-
tion [32]. FMRFamides act through two types of receptors. Most of them activate GPCRs.
However, FMRFamides of snail Helix aspersa lead to an excitatory response in amiloride-
sensitive Na+ channels [33].

4.2. Tachykinins

Vertebrate tachykinins are one of the largest groups of neuropeptides expressed in both
invertebrates and vertebrates. They contain conserved C-terminally amidated motifs such as
FXGLM residues, while some of arthropod tachykinins show FXGXRamide conservation.
These five residues are very conserved but not vital for receptor activation, instead phenylala-
nine at the fifth position and the C-terminal amidation are essential for their activity. They can
be localized both to the brain and the gut of various organisms, as well as the skin of amphib-
ians. They can be secreted from the enteroendocrine cells of mammals as paracrines or as true
hormones.

Human tachykinin family includes neurokinin A (NKA), neurokinin B (NKB), neuropeptide K
(NPK), neuropeptide γ (NPγ) and substance P (SP), which are expressed from two genes.
These peptides activate three types of GPCRs: NK-1, NK-2 and NK-3. SP interacts with NK-1,
while NKA with NK-2 and NKB with NK-3. Higher concentrations of SP in patients with
personality disorders were correlated with aggressive behavior [34]. It was also shown that
Drosophila tachykinins have aggression-promoting functions [35] and control systemic lipid
homeostasis [36]. Tachykinin-like natalisin peptide regulates sexual activity and fecundity of
arthropods [37]. Another tachykinin family peptide, eledoisin, was identified from the salivary
glands of mollusk Eledone in 1962 [38]. And, eledoisin and kassinin were shown to be
expressed and stimulated ion transport in the frog skin [39].

4.3. Vasopressin/oxytocin

Vasopressin (VP) and oxytocin (OXT) are members of the same family due to their sequence
similarity. They are conserved from arthropods to mammals. Vertebrate VP/OXT peptides are
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expressed from different genes. Processing of propeptides of vasopressin gene produces three
peptides called VP, neurophysin II and copeptin, while processing of oxytocin gene produces
only OXT and neurophysin I peptides. OXT and VP bind with their corresponding
neurophysins, OXT with neurophysin I and VP with neurophysin II. These neurophysins are
responsible for the storage of VP and OXT inside DCVs. In physiological pH, VP and OXT do
not bind with neurophysins and circulate freely in the plasma. Both mature VP and OXT are
nine amino acids in length, eight of which are identical and contain a disulfide bridge between
the first and sixth residues [40], while neurophysins have seven bridges. The first cysteine and
the following tyrosine residues play the major role in neurophysin binding [41]. Although VP
and OXT show sequence similarity, their functions differ from each other. VP has antidiuretic
activity and released as a response to increased blood plasma osmolarity, while OXT has roles
in contraction of the uterus and in lactation and is stimulated with suckling movement of the
newborn. VP and OXT receptors constitute a big family of GPCRs. There are three types of
vasopressin receptors: V1A, V1B and V2. However, only one type of oxytocin receptor was
identified: OXTR [42].

Invertebrate homologous peptides also contain the disulfide bridge at the same position and
five or six amino acids of the peptides are well conserved. The invertebrate homologs of
vertebrate VP/OXT peptides are conopressins and diuretic hormones (DH) [43].

4.4. Myoinhibitory peptide/GWamides

These peptides are expressed from Cnidaria to Annelids but not present in vertebrates. This
family of peptides shares a common motif like W(X)6W and includes various similar peptides
such as myoinhibitory/allatostatin-B peptide (MIP/AST-B), sex peptide (SP), prothoracicostatic
hormone (PTTH) and GWamides (of mollusks).

The first AST-B peptide is identified in Locusta migratoria as an MIP. It inhibits contractions of
hindgut and oviduct, as well as ecdysteroid synthesis. It has a W(X)6Wamide motif on its C-
terminus and is widely expressed in the central nervous system. Similar peptides are identified
in Gryllus bimaculatus and found that they inhibited juvenile hormone synthesis in corpora
allata. Therefore, they are called as allatostatins.

SP is found in Drosophila male accessory glands and regulates mating behaviors of the females.
During mating, SP is released from male’s ejaculatory duct and acts on the corresponding
receptor on the female reproductive duct, increases egg laying and reduces the female’s recep-
tivity. This peptide is 36 amino acids in length. N-terminal eight residues are responsible for
sperm binding and stimulation of juvenile hormone synthesis. Following 12 amino acids have
roles in innate immune responses against bacteria. And the C-terminal 16 amino acids have role
in postmating responses. A disulfide bridge is localized to the C-terminal part of the peptide. In
addition, there is an internal W(X)8Wmotif instead of W(X)6Wamide of the others. Therefore, the
tryptophan residues on both peptides seem to be important for receptor binding [44]. Sex
peptide receptor (SPR) of Drosophila is CG16752, and this receptor is expressed in female repro-
ductive organs and in the central nervous system of both genders. It is proposed to be Gαi-
coupled. MIP and SP both activate SPR, but MIP has lower affinity for this receptor [45].
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APGWamide is a mollusk tetrapeptide. It is mostly correlated with sex organ growth and
reproduction of the animal.

PTTH is a homodimer of two identical peptide chains that are hold together by disulfide
bridges [46]. It regulates the reproduction and release of ecdysone hormone. The target recep-
tor of PTTH is Torso, which is a kind of receptor tyrosine kinase [47]. However, it can also
activate SPR [48].

4.5. Orexin/allatotropin

Allatotropin (AT) was first identified in Manduca sexta, stimulating juvenile hormone synthesis
[49]. These peptides show conservation on their N- and C-termini. They include glycine, phenyl-
alanine and a following basic residue in the order in their N-termini (for instance, GFK residues).
This N-terminus is important for biological activity of the peptide. On their C-termini, aromatic
amino acids are conserved, followed by an amide group (such as R-amide or Y-amide). These
peptides are not identified inDrosophila, Apis mellifera andNasonia vitripennis. However,Drosoph-
ila expresses sex peptide for the same function. Therefore, it seems that different peptides may
work for the same function in different species. Additionally, AT has other roles such as
cardioacceleration, stimulation of muscle contractions and myostimulation in the gut [50–52].

Orexin receptors (or hypocretin receptors) are found to be orthologs of AT receptors, via
similarity on their C-terminus [22]. However, their peptide ligands are not structurally or
functionally related. Orexin peptides are about 28–33 amino acids in length. They are hypo-
thalamic neuropeptides and have roles mainly in sleep and wakefulness [53].

4.6. GnRH/corazonin/AKH

Gonadotropin releasing hormone (GnRH) is the peptide-stimulating gonadotropin release in
vertebrates. However, invertebrates, such as annelids and mollusks, also express GnRH-like
peptides. Octopus GnRH induces synthesis of testosterone and progesterone in the ovary and
testis, respectively. From tunicates to mammals, GnRH sequence shows a high conservation. It
is a decapeptide that has an N-terminal pyroglutamine and following HWS residues and C-
terminal PGamide residues [54].

Insects express corazonin and adipokinetic hormone (AKH), instead. Corazonin is 11 amino
acids in length and has a cardioacceleratory effect in cockroaches. However, other actions are
defined in other insects, such as melanization in locusts and developmental pathways in other
insects such asM. sexta and Bombyx mori. AKH is generally 8–10 amino acids in length. It has an
N-terminal pyroglutamate, C-terminal amidation and at least two aromatic residues in between.
These aromatic residues (at positions 4 and 8) are important for receptor binding. Its structure
exhibits a β-turn between these positions. It regulates mobilization of carbohydrates, lipids and
proteins from the fat body. Additionally, it has roles in cardioacceleration as corazonin.

Vertebrate GnRH receptors and insect AKH receptors are closely related. Drosophila corazonin
receptor is clustered in the same family of AKH and VP receptors. However, corazonin
receptor is highly selective for corazonin peptide [55].
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4.7. Neuropeptide Y

Neuropeptide Y (NPY) family of vertebrate neuropeptides includes NPY, peptide tyrosine tyro-
sine (PYY) and pancreatic polypeptide (PP). These peptides are C-terminally amidated and show a
hairpin-like structure called pancreatic polypeptide fold (PP-fold). This fold was composed of one
polyproline helix and one α-helix running antiparallel to each other [56]. Five types of Y receptors
(for NPY family) are expressed in mammals (Y1,2,4,5 and y6). It is proposed that hydrophobic
surface of the PP-fold is responsible for receptor binding. NPY is localized to the brain, while PP
and PYY are localized to the gastrointestinal tract. NPY is a highly conserved peptide from frog to
human. Circulating NPY acts on regulation of blood pressure and eating behavior [57].

A mollusk NPY was identified in Lymnaea stagnalis via activation assays on its corresponding
NPY receptor homolog [58]. This peptide was 39 amino acids in length and very similar to the
vertebrate NPYs. Invertebrate NPY prepropeptides lead to two peptides, one is NPY and the
other one is C-terminal peptide of NPY (CPON). The important residues that are responsible
for the PP-fold of vertebrate NPYs are conserved in mollusk NPYs, but only some of them are
conserved in Drosophila NPYs. Additionally, C-terminal four residues and amidation, which
are essential for the activity of the peptide [59], are conserved between vertebrate and inverte-
brate NPYs. Lymnaea NPY has role in regulation of energy consumption processes, while the
other invertebrate NPYs mostly affect food intake of the animal [60].

4.8. Somatostatin/allatostatin C

Allatostatin C (AST-C) is the arthropod homolog of vertebrate somatostatin (SST). SST is found
as the inhibitor of growth hormone release from the pituitary gland. And AST-C is the
inhibitor of juvenile hormone synthesis in corpora allata. From the same SST propeptide, one
peptide with 14 amino acids and another with 28 amino acids are released, which are secreted
from and acting on different tissues such as central and peripheral nervous system, as well as
gastrointestinal tract. Both SST and AST-C peptides exhibit a disulfide bridge, which is impor-
tant for receptor affinity [11]. The pharmacophore of SST is defined with FWKT residues. And
it functions for the inhibition of pituitary hormones such as growth hormone, thyroid stimu-
lating hormone and adrenocorticotropic hormone. SST acts on six different subtypes of SST
receptors (SSTRs), SSTR1, SSTR2A, SSTR2B, SSTR3, SSTR4 and SSTR5.

On the other hand, AST-C has highly conserved C-terminal PISCF amino acids. In addition to
juvenile hormone inhibition, it inhibits heart muscle contraction in Drosophila.

4.9. Galanin/allatostatin A

Galanin peptide is first identified in porcine intestine. Human galanin propeptide produces two
peptides, galanin (30 amino acids) and galanin-message associated peptide (GMAP), after cleav-
age. N-terminal residues and a C-terminal amidation (except in human) of galanin are highly
conserved. These peptides are expressed in both central and peripheral nervous systems and
have roles in nociception, feeding and osmotic regulation, via acting on three GPCRs; GalR1,
GalR2 and GalR3.
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Allatostatin A (AST-A) exhibits a conserved C-terminal FGLamide group, which is not
similar to galanin peptide. However, these two peptides activate ortholog receptors of verte-
brates and arthropods. AST-A peptides are mainly expressed in brain and gut and serve for
the inhibition of juvenile hormone synthesis and regulation of food intake, as similar to other
AST types.

4.10. Vasoactive intestinal peptide/pituitary adenylate cyclase activating peptide

Expression of vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating
peptide (PACAP) is restricted to vertebrates. They belong to the glucagon/secretin super-
family that also includes glucagon, secretin, growth hormone releasing hormone (GHRH)
and gastric inhibitory peptide (GIH). VIP and PACAP show structural similarity on their N-
terminal 27 amino acids. VIP is expressed in both central and peripheral nervous system,
while PACAP in hypothalamus, central nervous system, respiratory and gastrointestinal
tract. Mature VIP peptide is very well conserved in both mammals and nonmammalian
vertebrates. Short PACAP (27 amino acids in length) is restricted to mammals, but the longer
form (38 amino acids in length) can be found also in nonmammalian vertebrates [61]. It
exhibits an α-helical structure on binding to the receptor but can fold into different second-
ary structures in different solutions. PACAP is responsible for the release of growth hor-
mone, luteinizing hormone, adrenocorticotropic hormone, follicle-stimulating hormone and
prolactin from the pituitary gland, acts on testis and ovary and stimulates insulin and
glucagon release [62]. VIP was discovered due to its vasodilatory effects [63]. It can act as
both a paracrine or a hormone. However, its half-life is very short when compared to
classical hormones [64]. VIP gene produces other forms of peptides such as peptide histidine
isoleucine (PHI), peptide histidine methionine (PHM) and peptide histidine valine (PHV), in
different organisms. However, the information about the functions of these peptides is
limited.

High similarity between PACAP and VIP peptides make them to activate the same receptors,
but with different affinities. Three different PACAP receptors are identified (PAC1, VPAC1
and VPAC2). And two types of PACAP selectivity were detected in tissues. In one type, PAC1
receptor has high affinity for PACAP peptides (PACAP27 and PACAP38) and expressed in
anterior pituitary and hypothalamus. For the second selectivity, VPAC1 and VPAC2 receptors
showed affinity for both PACAP and VIP peptides, and this was detected in peripheral organs.
All of these receptors are known to activate adenylate cyclase, leading to cAMP stimulation. In
other circumstances, they can stimulate Ca+2 levels and phospholipase D.

Pigment dispersing factor (PDF) receptors are homologs of VPAC2 in invertebrates. They regu-
late circadian clock. In nematodes, they regulate locomotion, but in crustaceans, they regulate
pigment movements in the retina.

There are other additional neuropeptide families that interact with GPCRs, such as proopiome-
lanocortin (POMC) family, which is typical for its precursor complexity and others. However, we
will not go into details of other families in this chapter.
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5. Common features of neuropeptide GPCRs

Neuropeptides activate various receptors most of which are GPCRs. Some neuropeptides as
given in Section 4.4 can bind to membrane receptors that couple with receptor tyrosine kinases
(i.e. insulin receptors and Torso for PTTH). Some small neuropeptides do not have defined
receptors but are ligands for other peptides or enzymes (i.e. 7B2 binding to PC enzymes and
neurophysins binding to VP or OXT). Most of the others interact with their cognate GPCRs
from the extracellular region and activate a downstream signal transduction pathway. Peptide
GPCRs belong to either Class A (rhodopsin-like) or Class B1 (secretin-like) receptor.

Class A GPCRs exhibit two types of ligand-binding pockets. In one type, the hydrophobic
ligand interacts with the transmembrane (TM) region, and the N-terminal region together with
the second extracellular loop (ECL2) forms a closed lid-like structure (i.e. rhodopsin and S1P
receptors that have highly hydrophobic ligands). However, in the second type, ECL2 folds
over the extracellular region of the receptor and forms a pocket-like vacancy, which is exposed
to the soluble environment. Peptide GPCRs show the characteristics of this latter binding
pocket. Here, ECL2 comprises sheets, instead of β-hairpin loops of rhodopsin or helices of
adrenergic receptors. Another feature of Class A GPCRs is the presence of a disulfide bridge
between transmembrane domain 3 (TM3) and ECL2. This bridge is important for the stability
of the receptor and serves as a barrier against conformational changes in this region, which is
important for the ligand affinity. In a review on the defined 3D structures of Class A GPCRs,
the depths of bound ligands were compared with regard to positioning of TM4 [65]. Within the
Class A GPCRs that exhibit open binding pockets, amines (i.e. doxepine) were interacting
deeply, while peptides and nucleoside ligands were closer to the extracellular environment.
Three TM regions (TM3, TM6 and TM7) of Class A GPCRs were proposed to have consensus
binding residues. These consensus amino acid positions are 3.32, 3.33, 3.36, 6.48, 6.51 and 7.39
(Ballesteros-Weinstein numbering). However, peptide receptors such as neurotensin receptor
(NTSR) and allatostatin C receptor (AlstR-C) were shown to have different interactions within
the TM regions. For instance, neurotensin forms salt bridges and hydrogen bonds with the
Y3.29, R6.54, R6.55, F6.58 and Y7.35 residues of NTSR1 [66]. Additionally, AST-C was binding
with proposed AlstR-C model from the extracellular site, except for the two amino acids of
TM6 (I6.59 and F6.60 residues) [67]. In addition to these consensus residues, Venkatakrishnan
et al. proposed that the positions 6.48 and 6.51, which were conserved within Class A GPCRs,
might be responsible for the structural folding of the binding pocket, forming a scaffold
consensus [65]. However, the evidences for these consensus residues of binding pockets and
scaffold interfaces of peptide GPCRs are limited.

Secretin-like neuropeptide GPCRs include the receptors for VIP/PACAP, PDF (in inverte-
brates), calcitonin, insect DHs, corticotropin releasing factor (CRF), GHRH and parathyroid
hormone (PTH) peptides. There is less information about the structures of secretin-like neuro-
peptide receptors than that of rhodopsin-like receptors. Within the receptors mentioned above,
the only solved full-length structures come from CRF1 receptor (PDB entry: 4Z9G) and calci-
tonin receptor (PDB entry: 5UZ7). Additionally, there are ligand-bound structures of glucagon
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receptors of which the ligand is not a neuropeptide. Because glucagon receptor has the most
well-known structure and secretin receptor is the most studied in this class, we will use them
as examples to understand ligand binding of secretin-like neuropeptide GPCRs, even though
they are not neuropeptides. Additional information comes from the N-terminal region of
ligand-bound structures of PAC1 (PDB ID: 2JOD) and PTH receptor (PDB ID: 3C4M), together
with the free forms of V2 receptor (PDB ID: 2X57) and GHRH receptor (PDB ID: 2XDG).

In order to understand ligand-binding features of this class, we need to look at their ligands.
Neuropeptide ligands that couple with secretin-like GPCRs have a common secondary struc-
ture of at least one α-helix. As that of glucagon peptide, PACAP and CRF exhibit two α-
helices. VIP, PTH and calcitonin peptides have only one helical structure. On the other hand,
the common feature of these family receptors is that they have a long and complex N-terminus
that may include three disulfide bridges forming an α-β-β-α fold [68]. This N-terminal region
of the receptors is shown to be important in ligand binding. Provided by the experimental
structure of human glucagon receptor, another region on the N-terminus was identified as
“stalk” at the top of TM1. And mutagenesis studies on this stalk region proved that it was
important for ligand binding, by providing a defined conformation of N-terminal loop with
regard to TM1 [69, 70]. As another hypothesis, Dong et al. proposed an endogenous agonism
for the N-terminal region of secretin receptor [71]. Here, binding of C-terminus of the ligand to
the N-terminus of the receptor results in a conformational change that results in movement of a
hidden tripeptide region and becomes an endogenous agonist for the receptor itself. This
tripeptide region consists of WDN residues (inside one of the N-terminal helices) on secretin
receptor, which are also conserved for calcitonin and VPAC1 neuropeptide receptors.

According to FRET study by Harikumar et al., C-terminal part of secretin peptide was in
proximity to the groove above the β-hairpin of receptor N-terminus, while N-terminal part of
it was in proximity to ECL3 and TM6 [72]. This model of secretin binding is proposed as a
general mechanism for all secretin-like GPCRs. N-terminus of the peptide ligands was shown
to be important for receptor activation (i.e. for CRF, calcitonin, glucagon and VIP) [73–76].
Deletion of this region revealed antagonism for the receptor. And C-terminus of the peptide
was shown to be involved in ligand binding to the receptor (i.e. VIP, PTH and CRF) [77–79].
This binding includes hydrophobic residues of the helical structures on receptor N-terminus,
as well as hydrogen bonds or salt bridges formed between the ligand and polar receptor
residues. In this model, the ligand adopts an α-helical structure upon binding to the receptor.
This is supported by the soluble structures of glucagon, PTH or PACAP in aqueous solution
and their helical structures in organic solvents. Only calcitonin did not change in either media,
due to stabilization by disulfide bridges. The salt bridges between the ligand and the receptor
are thought to be responsible for the helix formation. After forming a binding helix, this
structure is covered by two β-sheets of the receptor N-terminus. Exceptionally, in case of
PACAP binding, the peptide wraps around the helical structures of receptor N-terminus [80].

All the details proposed for ligand binding to secretin-like GPCRs add up to a common model
of “two-domain” binding. The C-terminus of the peptide is responsible for receptor binding,
mostly to the N-terminus of the receptor, producing a conformational change here. And N-
terminus of the peptide enters to the TM region and produces a second conformational change
that will lead to signal transduction.
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6. Methods to study neuropeptide-GPCR interactions

Studying the ligand interaction properties of GPCRs is an essential concept in pharmacology.
Neuropeptide GPCRs contribute to the majority of drug targets in central nervous system
disorders. Also, insect neuropeptide GPCRs are valuable targets for pesticide designs. Finding
the binding sites, discovering agonists, antagonist and even allosteric modulators, understand-
ing the binding affinities and thermodynamic properties and measuring retention times pro-
duce a need for case-specific types of GPCR-ligand interaction studies. These may require
direct, indirect or in silico methods, or a combination of these.

Direct methods for studying GPCR-ligand interactions involve nuclear magnetic resonance
(NMR) spectroscopy, X-ray diffraction and surface plasmon resonance (SPR) techniques. The
information coming from these studies are deposited in Protein Data Bank (PDB) and increas-
ing every day. However, the increase in deposition of GPCR structures is not as fast as that of
soluble protein structures. For instance, most of the data coming from NMR studies include
only partial GPCR structures bound with their ligands. Obtaining pure crystals of GPCRs is a
challenge in X-ray analysis. And studying with hydrophobic ligands is difficult in SPR
method. Therefore, we will not go in detail of these direct methods in this chapter, due to their
challenges in working with membrane-bound proteins.

Indirect methods for studying GPCR-ligand interactions include fluorescent-based methods,
radioligand binding, photoaffinity labeling, luminescence-based methods, force spectroscopy
and activity-based assays.

In silico approaches do not yield direct or indirect evidence for GPCR-ligand interactions, but
they reduce the problem space, facilitate the following assays and qualitative comparisons
between molecules and can mimic the assay conditions, so that they are highly valuable tools
for drug design studies.

In this chapter, we will only focus on the indirect methods that are widely used for GPCR-
ligand interaction.

6.1. Radioligand-binding assays

In principle of radioligand-binding assays, the ligand is previously radiolabeled and added
onto the receptor, and its binding is measured quantitatively. The first study of radioligands on
GPCRs is that of Lefkowitz and his collaborators where they used I125-labeled adrenocortico-
tropic hormone (ACTH) against ACTH receptor [81]. Since then, modifications on the method
made use of membrane patches and also whole cells [82]. With the help of radioligand
saturation binding, indirect binding or kinetic-binding assays can be performed and result in
calculation of EC50, Kd values together with the retention time of the ligand on the receptor.
Also, they show if the ligand binding is reversible or not. The major challenges of this method
are the cost and half-lives of radioligands and the health issues in regard to exposure to them.
Agonists cannot be distinguished from antagonists with these assays. Additionally, optimiza-
tions should be performed to minimize nonspecific binding (i.e. to the cell, to the plastic ware).
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6.2. Photoaffinity labeling

In the study of GPCR-ligand interactions, photoaffinity labeling (PAL) is one of the oldest
methods. Here, the ligand is bound with a photoreactive group (PRG). Upon binding with the
receptor, PRG is activated by UV light and forms an irreversible covalent bond with the closest
residues on the receptor. This approach can be combined with immunoprecipitation and mass
spectrometry to sequence the amino acids that are in proximity to the ligand-binding pocket.
An example can be given as the study of Ceraudo et al. for the interaction between VIP and
VPAC1 receptor. They first labeled the C-terminus of VIP with a photoreactive p-benzoyl-p-
phenylalanine (Bpa) group. Then they followed by cleavage and Edman sequencing. Finally,
they found that the C-terminus of VIP was interacting with the N-terminus of VPAC1 [83].

In another study, Grunbect et al. have performed site-directed mutagenesis on some proposed
residues of CXCR4. These mutant residues were producing amber stop codons, which can be
engineered to incorporate photocrosslinkers (i.e. BzF and azF). They have transfected HEK
cells with these mutant constructs and treated the cells with the ligand. After UV activation,
lysis and immunopurification of the receptor-ligand complexes, they saw that 189F residue of
the receptor was in close proximity to the ligand during binding [84].

6.3. Fluorescence-based methods

The use of fluorescently labeled ligands has many advantages when compared to radioactively
labeled ligands. For instance, detection efficiency is higher in fluorescent ligands, and health
safety issues are easier to handle for the methods utilizing fluorescent ligands. Additionally,
fluorescence-based methods can generate quantitative data as given by radioligand assays (i.e.
EC50, etc.). For instance, microscopy and flow cytometry can be used in real-time experiments;
they can measure the amount of fluorescence that is interacting with or within the cells [85].
Dissociation rate constants (Kd) of fluorescently labeled ligands can be calculated in various
approaches. First, physical separation of bound ligand from free ligand in different fractions
can be measured by means of concentrations. Second, the emission intensity of the ligand
changes upon binding with the receptor and this change can be measured. Third, diffusion
rates of bound and free ligands differ. In an approach called fluorescence correlation spectros-
copy (FCS), diffusion rate of labeled ligand can be measured on a highly sensitive confocal
microscope. Another approach depends on anisotropy, which means that polarization of the
molecule changes between bound and free ligands. As a fifth approach, flow cytometry can be
used to detect presence of labeled ligands on receptor carrying cells or beads. At last, the most
frequently used sensitive approach is called as fluorescence resonance energy transfer (FRET).

There are other methods such as fluorescence recovery after photobleaching (FRAP) that is
similar to FCS in principle. However, this method is used only for GPCR oligomerization or G-
protein coupling until now [86, 87], but no study was performed on GPCR-ligand interactions
yet. Another complex approach combines two-photon excitation microscopy with FCS and
quantum dot technology (TPE-XCS), which seems very promising for the following days [88].
In this chapter, we will give some more detail on FRET experiments performed on GCPR-
ligand studies that are widely preferred by the researchers.
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FRET is based on the energy transfer between two different fluorophores when they come
close to a defined distance (typically between 10 and 100 Å). In principle, emission of first
fluorophore (donor) should excite the second fluorophore (acceptor). In case of GPCR-ligand
interactions, different approaches can be used. First, the ligand and an extracellular domain of
the receptor can be expressed in fusion with different fluorescent proteins. When the ligand is
in proximity to the receptor, two fluorophores also come close to yield an energy transfer. The
difference between the FRET signals of interacting and noninteracting GPCR-ligand couples
gives an information about the presence of interaction. FRET can also be time-resolved so that
information on kinetics of ligand binding can be achieved. This method was used for various
types of receptors such as M1 muscarinic acetylcholine receptor, PTH receptors, neurokinin
NK2 receptor, cholecystokinin receptor and secretin receptor [89–93]. In another approach,
mapping of the ligand-binding region is possible. Here, cysteine residues can be added to
different locations of the proposed binding pocket of GPCR via site-directed mutagenesis.
These cysteine residues can bind with small fluorophores which would not interfere ligand
binding. Additionally, the environment of the ligand-binding pocket can be assessed, via
accessibility of aqueous solution and changes in quenching and polarity upon ligand binding.
In a technique by Hoffman et al., tetracysteine residues were added to ICL3 and C-terminus of
the GPCR. These residues can bind with FlAsH reagent, which is a small fluorophore. When
used in combination with cyan fluorescent protein (CFP), conformational changes upon bind-
ing of the ligand were made possible to detect [93].

6.4. Bioluminescence resonance energy transfer (BRET)

In principle, BRET is similar to FRET by using a bioluminescent donor on one molecule and a
fluorescent acceptor on the target molecule. Generally, a luciferase (i.e. Rluc8) is used as the
donor. It can be performed real time, giving quantitative information about ligand binding. It
is advantageous over FRET, because it does not require an initial illumination of the donor
molecule. As an example, Stoddart et al. performed BRETon beta adrenergic receptor 2 (β2AR)
with an antagonist in live cells. They generated the N-terminus of the receptor with lumines-
cent donor and used a fluorescently labeled ligand [94].

6.5. Atomic force microscopy (AFM)

AFM is based on the principle of single-molecule force spectroscopy, in which binding force of
two singlemolecules is measured as a difference in laser deflection. Onemolecule is bound on the
tip of a cantilever and the other molecule stays on a rigid surface (or on cell surface). If interaction
occurs, the laser deflection from the cantilever tip differs from the state of no-interaction events.
Here, the receptors can be in lipid bilayers, as performed by Pfreundschuh et al. [95] and Alsteens
et al. [96], and binding the ligand to the cantilever tip. Also, the method can utilize the receptors
on live cells directly as performed by our group for AlstR-C receptor [67].

In AFM, direct measurements can be obtained from single molecules, and the controls can be
designed to exclude nonspecific-binding events. There is no need for fluorescent, luminescent or
radiolabeling of the molecules, which may interfere with the binding sites. In most of the cases,
peptide ligands are much smaller than fluorescent proteins. However, in AFM, the peptides can
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6.2. Photoaffinity labeling

In the study of GPCR-ligand interactions, photoaffinity labeling (PAL) is one of the oldest
methods. Here, the ligand is bound with a photoreactive group (PRG). Upon binding with the
receptor, PRG is activated by UV light and forms an irreversible covalent bond with the closest
residues on the receptor. This approach can be combined with immunoprecipitation and mass
spectrometry to sequence the amino acids that are in proximity to the ligand-binding pocket.
An example can be given as the study of Ceraudo et al. for the interaction between VIP and
VPAC1 receptor. They first labeled the C-terminus of VIP with a photoreactive p-benzoyl-p-
phenylalanine (Bpa) group. Then they followed by cleavage and Edman sequencing. Finally,
they found that the C-terminus of VIP was interacting with the N-terminus of VPAC1 [83].

In another study, Grunbect et al. have performed site-directed mutagenesis on some proposed
residues of CXCR4. These mutant residues were producing amber stop codons, which can be
engineered to incorporate photocrosslinkers (i.e. BzF and azF). They have transfected HEK
cells with these mutant constructs and treated the cells with the ligand. After UV activation,
lysis and immunopurification of the receptor-ligand complexes, they saw that 189F residue of
the receptor was in close proximity to the ligand during binding [84].

6.3. Fluorescence-based methods

The use of fluorescently labeled ligands has many advantages when compared to radioactively
labeled ligands. For instance, detection efficiency is higher in fluorescent ligands, and health
safety issues are easier to handle for the methods utilizing fluorescent ligands. Additionally,
fluorescence-based methods can generate quantitative data as given by radioligand assays (i.e.
EC50, etc.). For instance, microscopy and flow cytometry can be used in real-time experiments;
they can measure the amount of fluorescence that is interacting with or within the cells [85].
Dissociation rate constants (Kd) of fluorescently labeled ligands can be calculated in various
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can be measured by means of concentrations. Second, the emission intensity of the ligand
changes upon binding with the receptor and this change can be measured. Third, diffusion
rates of bound and free ligands differ. In an approach called fluorescence correlation spectros-
copy (FCS), diffusion rate of labeled ligand can be measured on a highly sensitive confocal
microscope. Another approach depends on anisotropy, which means that polarization of the
molecule changes between bound and free ligands. As a fifth approach, flow cytometry can be
used to detect presence of labeled ligands on receptor carrying cells or beads. At last, the most
frequently used sensitive approach is called as fluorescence resonance energy transfer (FRET).

There are other methods such as fluorescence recovery after photobleaching (FRAP) that is
similar to FCS in principle. However, this method is used only for GPCR oligomerization or G-
protein coupling until now [86, 87], but no study was performed on GPCR-ligand interactions
yet. Another complex approach combines two-photon excitation microscopy with FCS and
quantum dot technology (TPE-XCS), which seems very promising for the following days [88].
In this chapter, we will give some more detail on FRET experiments performed on GCPR-
ligand studies that are widely preferred by the researchers.
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FRET is based on the energy transfer between two different fluorophores when they come
close to a defined distance (typically between 10 and 100 Å). In principle, emission of first
fluorophore (donor) should excite the second fluorophore (acceptor). In case of GPCR-ligand
interactions, different approaches can be used. First, the ligand and an extracellular domain of
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different locations of the proposed binding pocket of GPCR via site-directed mutagenesis.
These cysteine residues can bind with small fluorophores which would not interfere ligand
binding. Additionally, the environment of the ligand-binding pocket can be assessed, via
accessibility of aqueous solution and changes in quenching and polarity upon ligand binding.
In a technique by Hoffman et al., tetracysteine residues were added to ICL3 and C-terminus of
the GPCR. These residues can bind with FlAsH reagent, which is a small fluorophore. When
used in combination with cyan fluorescent protein (CFP), conformational changes upon bind-
ing of the ligand were made possible to detect [93].

6.4. Bioluminescence resonance energy transfer (BRET)

In principle, BRET is similar to FRET by using a bioluminescent donor on one molecule and a
fluorescent acceptor on the target molecule. Generally, a luciferase (i.e. Rluc8) is used as the
donor. It can be performed real time, giving quantitative information about ligand binding. It
is advantageous over FRET, because it does not require an initial illumination of the donor
molecule. As an example, Stoddart et al. performed BRETon beta adrenergic receptor 2 (β2AR)
with an antagonist in live cells. They generated the N-terminus of the receptor with lumines-
cent donor and used a fluorescently labeled ligand [94].

6.5. Atomic force microscopy (AFM)

AFM is based on the principle of single-molecule force spectroscopy, in which binding force of
two singlemolecules is measured as a difference in laser deflection. Onemolecule is bound on the
tip of a cantilever and the other molecule stays on a rigid surface (or on cell surface). If interaction
occurs, the laser deflection from the cantilever tip differs from the state of no-interaction events.
Here, the receptors can be in lipid bilayers, as performed by Pfreundschuh et al. [95] and Alsteens
et al. [96], and binding the ligand to the cantilever tip. Also, the method can utilize the receptors
on live cells directly as performed by our group for AlstR-C receptor [67].

In AFM, direct measurements can be obtained from single molecules, and the controls can be
designed to exclude nonspecific-binding events. There is no need for fluorescent, luminescent or
radiolabeling of the molecules, which may interfere with the binding sites. In most of the cases,
peptide ligands are much smaller than fluorescent proteins. However, in AFM, the peptides can
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be utilized in their native forms, or they can be functionalized from defined terminal sites. The
method in our study also provides the native environment of the receptor as in FRET experi-
ments. And this makes it more advantageous than the methods analyzing purified receptors.
AFM setup is suitable for working on adherent cancer cells for long hours, so that the performer
can take hundreds of data points from the same cell. And ectopic expression produces enough
saturation of the receptor on the surface to detect at each approaching step. Therefore, AFM
seems a promising and easy way to study GPCR-ligand interactions on live cells.

6.6. Activity-based assays

Activity-based assays depend on the previously known downstream effects of the GPCR in cells.
The advantage of these assays is that they allow discrimination of agonists from antagonists and
also partial agonists. Quantification of EC50 values is possible, so that they can also be used in
high-throughput pharmacological studies. Examples can be given as GTPγS (guanosine 5'-O-
[gamma-thio]triphosphate) binding assays, cAMP (cyclic adenosine monophosphate) assays, IP3
(inositol triphosphate) and Ca+2 assays, TGF-α (transforming growth factor alpha) shedding
assay, β-arrestin recruitment and internalization assay, dimerization assays and voltage-clamp
experiments. These assays can be coupled with fluorescent techniques or site-directed mutagen-
esis of the receptor when required.

7. Conclusion

There are at least 80 genes encoding for neuropeptide precursors in human. These precursors
give rise to at least 150 mature neuropeptides. And until now, at least 109 of these peptides
were shown to signal via GPCRs. All these peptides and their cognate GPCRs are still being
studied against the neurological disorders, which range from the simplest stress and pain relief
cases to the complex schizophrenia and Alzheimer’s disease. Therefore, understanding the
kinetics, interactions and transduction pathways of GPCR-neuropeptide signaling systems
will remain crucial for the human wealth.
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Abstract

Dengue disease, which is caused by dengue virus infection, is a major public health in the 
tropical and subtropical countries in the world. It has a wide spectrum of clinical mani-
festations ranging from an undifferentiated fever in a mild clinical form (dengue fever 
[DF]) to the severe clinical and potentially fatal dengue hemorrhagic fever and shock 
syndrome (DHF/DSS). Recently, a study has suggested that excessive inflammation and 
apoptosis contribute to the pathogenesis of severe dengue disease. Soluble FasL is a type 
II membrane protein belonging to the tumor necrosis factor (TNF) family, which induces 
apoptosis in Fas-bearing cells and neutrophil chemotactic functions. The apoptosis of 
microvascular endothelial cells may explain the plasma leakage mechanism in DHF and 
there was a significant increase in soluble Fas-ligand level in DHF patients compared to 
DF patients. It can be concluded that the soluble Fas ligand is related to the pathogenesis 
of dengue infection.
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1. Introduction

Dengue is a public health problem in much of the tropical and subtropical countries in the 
world. Two-thirds of the world’s population is at risk of dengue infection; an estimated 50 
million cases occur annually, and around 2.5% of those affected die [1]. Dengue has a wide 
spectrum of clinical presentations and often has unpredictable clinical outcomes, may be 
asymptomatic, or may cause undifferentiated febrile illness (viral syndrome), dengue fever 
(DF), or dengue hemorrhagic fever (DHF) including dengue shock syndrome (DSS), and this 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 5

Role of Soluble Fas Ligand in Severity of Dengue
Disease

Nurfadly Zain

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74617

Provisional chapter

DOI: 10.5772/intechopen.74617

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Role of Soluble Fas Ligand in Severity of Dengue 
Disease

Nurfadly Zain

Additional information is available at the end of the chapter

Abstract

Dengue disease, which is caused by dengue virus infection, is a major public health in the 
tropical and subtropical countries in the world. It has a wide spectrum of clinical mani-
festations ranging from an undifferentiated fever in a mild clinical form (dengue fever 
[DF]) to the severe clinical and potentially fatal dengue hemorrhagic fever and shock 
syndrome (DHF/DSS). Recently, a study has suggested that excessive inflammation and 
apoptosis contribute to the pathogenesis of severe dengue disease. Soluble FasL is a type 
II membrane protein belonging to the tumor necrosis factor (TNF) family, which induces 
apoptosis in Fas-bearing cells and neutrophil chemotactic functions. The apoptosis of 
microvascular endothelial cells may explain the plasma leakage mechanism in DHF and 
there was a significant increase in soluble Fas-ligand level in DHF patients compared to 
DF patients. It can be concluded that the soluble Fas ligand is related to the pathogenesis 
of dengue infection.

Keywords: soluble Fas ligand, dengue fever, dengue hemorrhagic fever, apoptosis, 
immune response

1. Introduction

Dengue is a public health problem in much of the tropical and subtropical countries in the 
world. Two-thirds of the world’s population is at risk of dengue infection; an estimated 50 
million cases occur annually, and around 2.5% of those affected die [1]. Dengue has a wide 
spectrum of clinical presentations and often has unpredictable clinical outcomes, may be 
asymptomatic, or may cause undifferentiated febrile illness (viral syndrome), dengue fever 
(DF), or dengue hemorrhagic fever (DHF) including dengue shock syndrome (DSS), and this 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



can cause death [2]. Despite much research, pathogenesis which can explain the severity of 
dengue remains unclear [3, 4]. Severe dengue is characterized by plasma leakage and abnor-
mal bleeding that can lead to shock and death [1, 2, 5]. Pathogenesis of severe dengue diseases 
(DHF/DSS) has been suggested to be caused by the amplified production of cytokines that ulti-
mately targets the vascular endothelium and leads to an increase in vascular permeability [4, 
6, 7]. There is currently no specific treatment for severe dengue due to gaps in understanding 
the underlying mechanisms.

Soluble FasL is a type II membrane protein belonging to the tumor necrosis factor (TNF) fam-
ily, which induces apoptosis in Fas-bearing cells [8] and neutrophil chemotactic functions [9]. 
A recent study showed that in addition to the immune response, apoptosis also contributes to 
the pathogenesis of DHF. An autopsy examination showed that dengue cases show apoptosis 
in liver cells, brain, intestine, and lungs. The apoptosis of microvascular endothelial cells may 
explain the plasma leakage mechanism in DHF [10].

2. Role of soluble Fas ligand in the severity of dengue disease

2.1. Dengue infection

Dengue fever (DF) and its severe forms, dengue hemorrhagic fever (DHF) and dengue shock 
syndrome (DSS), have become a major international public health problem, especially in the 
tropical and subtropical regions around the world. An estimated 50 million infections per 
year occur across approximately 100 countries, with potential for further spread [1, 2]. The 
disease is caused by a virus belonging to the family Flaviviridae that is spread by Aedes 
mosquitoes. There are four distinct serotypes of dengue virus (DENV 1–4). All dengue sero-
types are capable of causing diseases with a wide spectrum of clinical manifestations, ranging 
from an undifferentiated fever in a mild clinical form (DF) to the severe clinical and poten-
tially fatal DHF/DSS. Infection with one serotype confers protective immunity against that 
serotype but not against other serotypes [11]. Dengue fever (DF) is an acute and self-limited 
illness manifested by fever, headache, myalgia, and arthralgia, and on physical examina-
tion there occurs rash. Laboratory tests reveal leukopenia and thrombocytopenia. The more 
severe dengue DHF is complicated by plasma leakage that occurs around 3–5 days after the 
disease. A sudden and extensive plasma leakage may result in shock or death, a phenomenon 
called DSS. Then, patients undergo a defervescence phase marked by an abrupt drop in body 
temperature, at which point the illness may either wane to recovery or proceed to serious 
complications [1, 5].

DENV infection in humans starts with a DENV-infected mosquito bite. DENV can replicate in 
a wide spectrum of cells, including liver, spleen, lymph node, kidney, and other organs, but 
monocytes, macrophages, and dendritic cells (DC) have been shown to be the major targets 
for DENV [12]. Monocytes and T lymphocytes, which are infected by DENV, produce several 
pro-inflammatory mediators which become sources of intense cytokine production [13].

Ligand104

Abnormal hemostasis and plasma leakage are the main pathophysiological hallmarks in 
DHF. There is no vasculitis and hence no injury to the vessel walls, and plasma leakage results 
from the cytokine-mediated increase in vascular permeability [14]. During inflammation, 
increased vascular permeability occurs primarily via changes in the integrity of inter-endo-
thelial cell junctions. The increase vascular permeability is affected by a number of soluble 
factors on the endothelium and among them are thrombin, bradykinin, histamine, oxygen 
free radicals, vascular endothelial growth factor (VEGF), and tumor necrosis factor-α (TNFα) 
[15]. Some neutrophil products like arachidonic acid (AA) or leukotriene (LT) A4 are fur-
ther processed by endothelial enzymes through transcellular metabolism before the resulting 
products thromboxane A2, LTB4, or LTC4 can activate their cognate receptors. Neutrophils 
also generate reactive oxygen species that induce vascular leakage [16].

2.2. Fas ligand

Fas ligand is a 40-kDa type II membrane protein belonging to the tumor necrosis factor (TNF) 
family of proteins which induce defined cellular responses upon binding to their respective 
receptors (Fas receptors). The interaction of Fas ligand with its receptor induced programmed 
cell death (apoptosis) [8].

FasL is expressed by many cell types; it is primarily recognized as associated with activated T 
lymphocytes and natural killer (NK) cells [17]. Fas ligand is expressed in three distinct forms:

1. a membranous form on the cell surface;

2. a membranous form stored in intracellular microvesicles which are excreted into the inter-
cellular milieu in response to various physiologic stimuli; and

3. the soluble form generated from the cleavage of the membranous molecule by matrix met-
alloproteinases within minutes of cell surface expression [9].

Membrane Fas ligand can be cleaved by metalloproteinases to release soluble protein seg-
ments. The soluble and membranous forms of the Fas ligand have different functions in 
apoptosis. Membranous Fas ligand is the primary mediator of apoptosis through forma-
tion of trimers and higher-order structures on the cell surface, while soluble Fas ligand can 
have proapoptotic, antiapoptotic, and neutrophil chemotactic functions, depending on the 
nature of other contextual mediators in the microenvironment. Soluble Fas ligand exists as 
a homotrimer, which is ineffective in co-aggregating Fas receptors. Soluble Fas ligand can 
induce apoptosis following aggregation with fibronectin of extracellular matrix proteins 
to form tetramers and higher-order structures. Besides its role in apoptosis, the soluble 
Fas ligand is a potent inflammatory agent; it induces B cell proliferation and IgE synthesis 
in conjunction with IL-4, and soluble B cell activating factor (BAFF) co-stimulates B cells.

Expression of soluble Fas ligand in several cell types has been shown to induce an effusive 
neutrophil-mediated inflammatory response, as documented in vivo by either tissue trans-
plant infiltration or neutrophil extravasation to the peritoneal cavity [18].
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Soluble Fas ligand-binding cells express Fas receptors and lead to apoptosis whereas there 
are some cells that have a default death pathway that can be blocked by a survival factor 
such as a hormone or growth factor [19].

The binding of the Fas ligand to the Fas receptor results in the binding of the adapter pro-
tein Fas-associated death domain (FADD). FADD then associates with procaspase-8 via 
dimerization of the death effector domain forming a death-inducing signaling complex 
(DISC). Once caspase-8 is activated, the execution phase of apoptosis is triggered. Cas-
pases are widely expressed in an inactive proenzyme form in most cells and once activated 
can often activate other procaspases, allowing initiation of a protease cascade. One caspase 
activates other caspases and causes the apoptotic signaling pathway to be activated. Cas-
pases have proteolytic activity and are able to cleave proteins at aspartic acid residues. 
Once caspases are initially activated, it leads an irreversible commitment towards cell 
death. There are 10 major caspases that have been identified and categorized into initiators 
(caspase-2,-8,-9,-10), effectors or executioners (caspase-3,-6,-7), and inflammatory caspases 
(caspase-1,-4,-5) [20].

There are morphological changes that occur during apoptosis. At the early process of ap-
optosis, cell shrinkage and pyknosis occur. At the cell shrinkage stage, the cells are smaller 
in size, the cytoplasm is dense, and the organelles are more tightly packed. Pyknosis is 
the result of chromatin condensation. Furthermore, plasma membrane blebbing occurs 
followed by karyorrhexis and separation of cell fragments into apoptotic bodies. The orga-
nelle integrity is still maintained and all of this is enclosed within an intact plasma mem-
brane. Then, apoptotic bodies are subsequently phagocytosed by macrophages degraded 
within phagolysosomes. There is essentially no inflammatory reaction associated with the 
process of apoptosis [21].

The recent studies show that soluble Fas ligand also induces cellular activation signals. 
Soluble Fas ligand induced monocyte responses to secrete pro-inflammatory cytokines 
and chemotactic factors [22, 23]. Soluble Fas ligand-induced monocyte cytokine responses 
were associated with rapid expression of pro-inflammatory cytokine genes, suggesting at 
least partial regulation at the transcriptional level and involving nuclear factor-kappa beta 
(NF-kB) activation. There are important maturation-dependent differences in the soluble 
Fas ligand that depend on the signaling pathway whether inducing apoptosis or the silent 
disappearance of inflammatory cells. Soluble Fas ligand may serve to activate circulating 
monocytes and recruited macrophages to produce pro-inflammatory mediators that can ini-
tiate acute inflammation. This is may play an important role in the regulation of innate im-
mune responses and may contribute to the pathogenesis of a variety of clinically important 
inflammatory diseases [24].

2.3. Role of soluble Fas ligand in pathogenesis in dengue

Soluble Fas ligand can induce apoptosis and inflammatory responses. Recently the study has 
suggested that excessive inflammation and apoptosis contribute to the pathogenesis of severe 
dengue disease. Although elevated-level cytokines occur in DF patients, the higher level was 
found in severe dengue disease (DHF/DSS) [25]. The evidence has suggested that there is 
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significantly an increase in the number of human tissues that undergo apoptosis in dengue 
disease [26]. Apoptosis in white blood cells, brain cells, intestine, and pulmonary endothelial 
cells form microvasculature in DENV cases. The apoptosis of microvascular endothelial cells 
may be associated with plasma leakage and hemorrhage during DHF/DSS [27].

The interaction between DENV and humans leads to the activation of transcription fac-
tors, cytokines, and enzymatic factors. These interactions may induce not only inflamma-
tory responses but also apoptotic responses that influence the severity and progression of 
the disease. The human monocytes infected in vitro by DENV have upregulated Fas expres-
sion concomitant with the viral peak, indicating that DENV apoptosis is induced by extrinsic 
apoptotic pathway [13].

The dengue patients during acute infection found that TNF-α is the first cytokine detected 
in patients in the peripheral blood mononuclear cell (PBMC) cultures [28]. These findings 
showed that TNF-α and its family members are important apoptosis mediators during DENV 
infection. Among the TNF-α family, the Fas ligand is related to the pathogenesis of dengue 
infection [29–31]. The apoptotic event is an important event in life and is involved in patho-
genesis of dengue infection, and these events occur in response to the variety of signals and 
stimuli, both internal and external. Mitochondria play a central role in mediating intrinsic 
apoptotic signals. Changes in the external membrane mitochondria lead to the production 
of reactive oxygen species related to initial apoptotic events. The extrinsic signal that usually 
induced apoptosis is by a death receptor such as Fas receptor binding to Fas ligand. After sig-
naling, an enzymatic cascade leads to the activation of a series of cysteinyl aspartate proteases 
known as caspases and then to cell degradation [29]. DENV can induce apoptosis in DENV-
infected cells and disseminate its viral progenies to the neighbor cells. The induction of apop-
tosis may be an attempt by the host immune system to limit the extent of the infection [13].

Apoptotic signaling may first be triggered by the interaction of the DENV envelope protein 
with the endosomal membrane during the fusion process while newly synthesized viral pro-
teins may enhance apoptosis. There was indicate the involvement of NF-kB in mediating 
apoptosis. DENV triggers an apoptotic pathway through phospholipase A2 (PLA2) activation 
to superoxide anion generation and subsequently to NF-kB activation.

This apoptotic effect can be either directly derived from the action of arachidonic acid (AA) 
and superoxide anion on the mitochondria or indirectly derived from the products of apopto-
sis-related genes activated by NF-kB [32].

The recent study showed that soluble Fas ligand can be used as a potential marker of sever-
ity of dengue infection because the study showed that there was a significant increase in the 
soluble Fas ligand level in DHF patients compared to DF patients [33].

3. Conclusions

Soluble Fas ligand contributes to the pathogenesis of the severe dengue disease. The interac-
tions between DENV and humans induce not only inflammatory responses but also apoptotic 
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responses that influence the severity and progression of the disease. Soluble Fas ligand can 
induce apoptosis and is a potent inflammatory agent.
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responses that influence the severity and progression of the disease. Soluble Fas ligand can 
induce apoptosis and is a potent inflammatory agent.
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