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Preface

Time series analysis initially applied in financial analysis, statistics and forecasting has gained
huge momentum in data science. This book presents a cross section of the time series applica‐
tions in diverse fields such as agriculture, biostatistics, geospatial, renewable energy and oth‐
ers. Common issues as well as specific ones, for instance, nonlinear time series, are hereby
addressed. Ten chapters including an introductory one from the editor compose the book to
enlighten the readers about latest trends and developments in time series across the globe.

The possibilities offered by time series analysis are by far more efficient than traditional
transform like Fourier transform in electromagnetic fields modelling, for example. However,
just by representing data points in time domain does not make it spontaneous for analysis.
The choice of algorithms and methodologies in itself is quite complex, and there is actually a
panoply of time series analysis techniques. Readers will discover different techniques in ev‐
ery chapter and hopefully would be more confident about time series after reading the
whole book. Moreover, a mix of general knowledge and specialised content on time series
can be found. Although the mathematical intricacies are generally present in the content, the
manuscripts are well described for early career researchers or university students.

It is worth mentioning that authors representing institutions from Brazil, Japan, Slovak Re‐
public, the United States, Italy, Uruguay, Sudan and South Africa participated in this book
project. Nevertheless, we expect to disseminate the knowledge compiled globally.

This book would not be possible without the support of the InTechOpen team, namely, the
Publishing Process Manager Ms. Dajana Pemac and the technical editors. The chapters re‐
tained for publishing are of very high standard indeed. We wish to congratulate the authors
for their efforts and contributions in this endeavour. We would like to express a note of
thanks to the InTechOpen Editorial Board through the commissioning editor for this initia‐
tive and opportunity.

Associate Professor (Dr.) Nawaz Mohamudally
University of Technology,

Mauritius
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1. Introduction

Observing data points over time with proper transform may reveal valuable information 
about systems behaviours and trends. This book entitled “Time Series Analysis (TSA) and 
Applications” comes at a very opportune period where business enterprises are overloaded 
with data and looking for swift analytics and on the other hand have not yet trusted the 
powerful algorithms such as deep learning and AI. Academics prefer simple tools like Matlab 
or Mathematica to run TSA. However, statistics and probabilistic instruments have gained 
wide acceptance for decades. Time Series Analysis had been often assimilated to finance and 
forecasting. The chapters presented here prove the contrary and show how far TSA is being 
applied across an array of disciplines and how efficient and effective this technique could be 
if it is fittingly utilised. In the same spirit, this chapter provides an overview of time series as 
applied to detect anomalies in Internet of Things (IoT) networks. Specific attention is paid to 
anomalies that occur in smart cities IoT use cases. The final aim of this research work partly 
described here is to mount plug n play anomaly detection engine (ADE).

The Internet has evolved from its original aim of providing access to web resources globally 
to what is commonly called today Internet of Things, where it is expected that objects will 
internetwork and have a presence on the Internet just with an IPv6 address for example. The 
objects market is estimated in billions and trillions, very far from the global human popula-
tion. This has led to new business models with development of dedicated IoT networks such 
as SigFox, LoRa, Symphony Link, and NB-IoT, and production of IoT compliant devices from 
microcontrollers’ manufacturers such as Microchip, Intel, and Raspberry PI. Software compa-
nies have come up with virtual machines and statistical tools for big data analytics whereas 
network devices constructors like Cisco and Juniper for instance have come up with network 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



gateways and routers to accommodate devices connection, routing, and IoT data transit. The 
myriad of technologies involved within the IoT ecosystem should empower smart environ-
ments as it happens likewise in smart cities. The next section introduces the IoT value chain 
and then lists some use cases of IoT in smart environments whereby anomalies arouse, fol-
lowed by the classification of anomalies in the time domain, the time series models applicable 
and finally problematics in applying TSA to anomaly detection in IoT.

2. IoT value chain

The IoT value chain in Figure 1 shows that the value added services to IoT & key differen-
tiator is the data analytics part which comprises the anomaly detection component with the 
help of TSA. Data analytics in IoT could be a higher income generator than key  technology 
enablers like SDN, IPv6, and 5G, even more than machine automation. We are talking about 
Analytics as a Service (AaaS). According to Cisco’s annual Visual Networking Index, machine-
to-machine (M2M) connections that support IoT applications will account for more than half 
of the world’s 27.1 billion devices and connections by 2021.

2.1. Anomalies categories

Table 1 illustrates the anomalies descriptions in selected smart cities IoT use cases.

Let us now classify the anomalies in the time domain.

i. Static vs. dynamic: anomalies are defined as data points not following current patterns; 
static means in the same direction but with different characteristics whereas dynamic 
refers to opposite direction.

Figure 1. IoT Value Chain.

Smart Anomalies description Benefits

Water Water leakages To prevent water waste

Lighting Broken bulbs Save time and fuel for maintenance

Home Gas leakage Alert home users on the incident

Building Electricity peak and pipe leakage Energy monitoring

Farm Anomalies in farm data and weather Monitor growth

Goods Traffic congestion spots Optimize route and delivery

Table 1. Benefits of Anomaly Detection in Smart City Applications.

Time Series Analysis and Applications2
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ii. Outlier: an outlier is not necessarily an anomaly; it all depends on the defined threshold, 
for instance in the example in Figure 2 showing sugar bags weight with respect to time, 
any bag <920 g or >1080 g is considered as an anomaly.

iii. Contextual: a data point could be an anomaly in one context but not in another. For exam-
ple, a temperature of 35°C in January is an anomaly in a northern European country but 
normal in a southern hemisphere island for the same month.

iv. Collective: this happens when there is elongation in time of a particular anomaly like 
it happens in telecom transmission; there are accumulation of delays that result in 
jitters.

2.2. Time series models

There is actually no one size fit all solution for the development of an ADE as well as no de 
facto time series model that suits the ADE. Below are some of the popular time series models 
adopted for ADE in IoT.

i. Autoregressive models: an autoregressive model specifies that the output variable depends 
linearly on its own previous values. It is based on an approach that several points from 
the past generate a forecast of the next point with the addition of some random variable, 
which is usually white noise. The autoregressive integrated moving average (ARIMA) is 
applicable to stationary time series only.

ii. Symbolic TSA: data points are converted to bits and bytes 10100111001; then, Information 
Theory; Shannon, FFT, DFT, DWT is applied.

iii. Seasonal-trend-Loess (STL) decomposition: data points together with the noise or multiple 
data sets over a period are decomposed and analyzed to detect eventual anomalies.

Figure 2. Outlier anomaly (https://anomaly.io/anomaly-detection-normal-distribution/).

Introductory Chapter: Time Series Analysis (TSA) for Anomaly Detection in IoT
http://dx.doi.org/10.5772/intechopen.72669

3



iv. Machine learning: there are two main branches of machine learning namely supervised 
learning whereby the pattern for the anomaly is learnt and known, whereas in super-
vised mode, detection is done by inference or featuring. The latter is more challenging 
as the anomaly pattern is unknown and the algorithm learnt from the data points is to 
be analyzed. The supervised mode comprises the following methods: Decision Table, 
Random Forest, K-nearest Neighbor, SVMs, Deep Learning, Naive Bayes. The popular 
“unsupervised” algorithms are K-means clustering, DBSCAN, N-SVM, Stream Clustering, 
and LDA (Latent Dirichlet Allocation).

2.3. Problematics

Below listed are the 10 main issues, in which some are inherent to the IoT network and others 
to the time series properties.

i. Missing data points/holes: missing data can happen due to device malfunctioning, for in-
stance, or issues related to device identification for example. “Potent, climate warming gas-
es are being emitted into the atmosphere but are not being recorded in official inventories,” 
a BBC (http://www.bbc.com/news/science-environment-40669449) investigation has found.

ii. Data corruption: for instance, data can be corrupted due to external factors or device 
malfunctioning; thus, it is important to ensure that the data points analyzed are accurate 
and come from the system under investigation.

iii. Encrypted data: in most IoT networks, data are encrypted during transmission and nor-
mally decrypted for customer usage. If detection is to be performed on encrypted data, 
anomaly detection might not be straightforward.

iv. Sensor fusion: data points from different sensors can be aggregated for a specific func-
tion. For example, different parameters like temperature, carbon footprint, wind speed 
can be captured from different sensors and merged for modelling on a server for environ-
mental impact study. In such cases, the TSA needs to deal with multiple datasets. Sensor 
fusion is also assimilated to evolving sources.

v. Real-time detection: this is probably more inherent to the network itself, but the process-
ing and programming aspects of the TSA are also determinants.

vi. Seasonality: also called as periodic time series, arrives when the time series is influenced 
by the seasonal factors such as day, night, month, and so on.

vii. Heteroscedasticity: it involves frequent changes in variances that can render the transfor-
mation of the time series more complex.

viii. Noisy data: data points with very low amplitude can be drowned into the intrinsic trans-
mission electronic noise. Network equipment vendors are proposing edge computing 
routers that would actually clean the IoT device data in a closer location prior to run the 
complete analytics on the cloud.

ix. Traffic surge: at times, there could be excessive throughput like number SMS on the eve 
of New Year that could bring an overload on the ADE.

Time Series Analysis and Applications4
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x. Non-linearity: date points that are not stationary and changing with time would require 
multivariate analysis.

3. Conclusion

This chapter highlights the challenges relevant to core elements involved in the development 
of an anomaly detection engine (ADE). It was found that an accurate and reliable ADE relies 
on three main selection factors namely, the quality of the data points, the time series transfor-
mation, and where analytics are executed. Moreover, due to the heterogeneous nature of net-
working environments, the convergence of communication and data protocols in IoT requires 
special attention when it comes to anomaly detection software development. For instance, 
raw data points from a smart water application are surely completely different from that from 
a health care IoT application; hence, the domain of application is another determinant factor 
in the construction of an efficient ADE. Machine learning in the unsupervised mode is indeed 
very efficient in situations where datasets are unpredictable. Moreover, cases where data 
points show nonlinear time series require multivariate analysis that makes the process more 
computing intensive. This property is not favorable to real-time anomaly detection as more 
computation at the ADE level will affect the accuracy of the ADE. From a software develop-
ment perspective, the trend is similar to data mining tools embedded in popular database 
servers. Once the dataset is compiled, the user can choose the most appropriate statistical tool. 
In a near future, ERP solution providers will probably propose the ADE as a customizable 
module that would best fit the customers’ requirements. Future work will investigate into the 
challenges from empirical experimentations and how anomaly detection can be translated as 
a service in cloud computing.
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Abstract

We analyse the heartbeat interval time series in this chapter. Our time series analysis 
concepts and techniques have been reported previously, for example, in the Intech Book 
chapter. Here, we would like to introduce how it works by presenting typical examples. 
The techniques can distinguish between healthy, sick and stressful hearts. All data were 
obtained by us from natural heartbeat data. Therefore, we have notes behind data, espe-
cially about behavioural psychological observations. Results of analysis are the follow-
ing: healthy hearts exhibit a healthy scaling exponent (SI), which is near 1.0, stressful 
hearts exhibit a lower SI, such as 0.7, dying heart’s SI approaches to 0.5, and so forth.

Keywords: cardiovascular system, EKG, electrocardiogram, heartbeat-interval time 
series, modified detrended fluctuation analysis, mDFA, scaling exponent

1. Introduction

The cardiovascular control system (CVCS) – the heart, the vessels and the brain – executes 
optimum performance of the blood circulation if it works under a healthy condition. If CVCS 
is defective, the heart contractions lose any useful rhythm, for example, like as patient who 
is suffering from sinus node dysfunction. It is ideal to identify the causes of defectiveness by 
existing diagnostic methods.

The discovery of the circulation of the blood (William Harvey in 1628) was a long time ago. 
But until recently, we do not know about what is the proper behaviour of CVCS. In 1982, 
Kobayashi and Musha reported and determined that a healthy heart exhibits a 1/f spectrum-
like fluctuation [1]. 1/f fluctuations are widely found in nature (beginning, Johnson and 
Nyquist noise, 1920s). Until now, 1/f rhythm of healthy hearts has become a widely held 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



notion [2, 3]. We consider that 1/f spectrum is a state where, mathematically, scaling exponent 
(SI) is 1.0. We have, therefore, made a time series analysis programme in order to check the 
heartbeat wellness: computing whether or not a time series exhibits SI = 1.0. Our technique is 
a random-walk analysis, which calculates ‘the number of steps proceeded within a box, i.e., 
increased or decreased’ [4, 5]. The name of the method is mDFA (abbreviated name, modi-
fied detrended fluctuation analysis). We have explained it elsewhere, about the box, steps 
and entrance and the exit of a box, and so on [4, 5]. As a result, our method showed that SI 
can quantify the condition of CVCS [4, 5]. This quantification is like the thermometer. It has a 
baseline value. If the body condition is normal, it is 37°.

In particular, as far as we know, the association of high SI with unpredictable cessation of 
heart pumping has been discovered. It has not been shown empirically before us. We first 
observed it in the crustacean heart; thereafter, we confirmed the same phenomena (high SI) 
on humans with ischaemic disease and a person who underwent a surgery that made an inci-
sion of the heart [4, 5].

By the way, our heart rhythm is apparently not regular. Cardiac rhythmicity is contin-
uously changing, because CVCS is responding to stimulus from the internal and outer 
world. Therefore, marked irregularity and/or over-regularity might be a deficient state. At 
least mDFA seems to detect defect/problem that derives from an injury of the myocardial 
cells caused by either ischaemic reasons or artificial/synthetic reasons. It seems that mDFA 
is a better way to compute this correlation between an SI value and a poor condition of 
CVCS.

Lower animals such as crustaceans have a heart. Crustacean CVCS has been well studied over 
100 years. For example, the English comparative biologist-anatomist Tomas Henry Huxley 
published about crayfish zoology in ca. 1900s [6]. And Swedish American physiologist Anton 
Julius Carlson has already documented detailed morphology and physiology of the heart of 
horseshoe crabs (Limulus polyphemus), in 1904 [7]. It is worth noting that Carlson already con-
sidered invertebrate hearts as a model of our heart.

Until now, the anatomy of cardiac nerve of crustaceans is well documented. The crusta-
cean animal has autonomic nervous system that controls the heart (see Cooper et al., e.g. [8], 
and legendary articles [9, 10]). Typically, crustacean heart is innervated by two acceleratory 
nerves and one inhibitory nerve (Figure 1, see [11]). Figure 2 shows a diagrammatical view 
of cardiac nerves in both vertebrates and crustaceans. Crustacean diagram is based on our 
publication [11]. In summary, the cardiac inhibitory nerve innervates pacemaker cells (P in 
Figure 2) in both crustaceans and humans. In turn, the cardiac acceleratory nerve innervates 
not only P cells but also myocardial cells (ventricle cells). As shown in Figure 2, it is impor-
tant to acknowledge that nerve fibres of accelerator (CA) proceed deep inside the heart. This 
fact presents evidence that CA nerve regulates not only the rhythm of the heart but also the 
strength of heart contraction. Figure 2 highlights an important issue in terms of evolution: 
the heart and its controller system resemble in both invertebrate and vertebrate. Further 
discussions about the resemblance are shown in Ref. [4]. Thus, we strongly expect that a 
basic finding obtained from invertebrate animals is applicable to humans, according to an 
evolutional view [4].

Time Series Analysis and Applications8
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baseline value. If the body condition is normal, it is 37°.

In particular, as far as we know, the association of high SI with unpredictable cessation of 
heart pumping has been discovered. It has not been shown empirically before us. We first 
observed it in the crustacean heart; thereafter, we confirmed the same phenomena (high SI) 
on humans with ischaemic disease and a person who underwent a surgery that made an inci-
sion of the heart [4, 5].

By the way, our heart rhythm is apparently not regular. Cardiac rhythmicity is contin-
uously changing, because CVCS is responding to stimulus from the internal and outer 
world. Therefore, marked irregularity and/or over-regularity might be a deficient state. At 
least mDFA seems to detect defect/problem that derives from an injury of the myocardial 
cells caused by either ischaemic reasons or artificial/synthetic reasons. It seems that mDFA 
is a better way to compute this correlation between an SI value and a poor condition of 
CVCS.

Lower animals such as crustaceans have a heart. Crustacean CVCS has been well studied over 
100 years. For example, the English comparative biologist-anatomist Tomas Henry Huxley 
published about crayfish zoology in ca. 1900s [6]. And Swedish American physiologist Anton 
Julius Carlson has already documented detailed morphology and physiology of the heart of 
horseshoe crabs (Limulus polyphemus), in 1904 [7]. It is worth noting that Carlson already con-
sidered invertebrate hearts as a model of our heart.

Until now, the anatomy of cardiac nerve of crustaceans is well documented. The crusta-
cean animal has autonomic nervous system that controls the heart (see Cooper et al., e.g. [8], 
and legendary articles [9, 10]). Typically, crustacean heart is innervated by two acceleratory 
nerves and one inhibitory nerve (Figure 1, see [11]). Figure 2 shows a diagrammatical view 
of cardiac nerves in both vertebrates and crustaceans. Crustacean diagram is based on our 
publication [11]. In summary, the cardiac inhibitory nerve innervates pacemaker cells (P in 
Figure 2) in both crustaceans and humans. In turn, the cardiac acceleratory nerve innervates 
not only P cells but also myocardial cells (ventricle cells). As shown in Figure 2, it is impor-
tant to acknowledge that nerve fibres of accelerator (CA) proceed deep inside the heart. This 
fact presents evidence that CA nerve regulates not only the rhythm of the heart but also the 
strength of heart contraction. Figure 2 highlights an important issue in terms of evolution: 
the heart and its controller system resemble in both invertebrate and vertebrate. Further 
discussions about the resemblance are shown in Ref. [4]. Thus, we strongly expect that a 
basic finding obtained from invertebrate animals is applicable to humans, according to an 
evolutional view [4].
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2. EKG: crustaceans

Therefore, we have been studied crustacean heart as a model of human heart [4, 11, 12]. Crab’s 
electrocardiograms (EKGs) were analysed by a random-walk analysis technique that we inno-
vated by our group [4, 5] and discovered that dying crab hearts (Figure 3) show a low scaling 
exponent [scaling index (SI)], and healthy crab hearts show a normal SI, near 1.0. Experiments 
on several animal species (crabs, lobsters, isopod Ligia, crayfish and insects) revealed that natu-
ral death processes decrease SI, falling towards a low level, that is, SI ≒ 0.5 [4, 5] (Figure 4). 
Then, we encountered strange specimens that exhibited a high SI, such as ~1.5. Their hearts 

Figure 1. Crustacean CVCS. Autonomic-like regulation of the heart. Cardio-regulatory nerves are the following: ci, 
cardio-inhibitory nerve, ca, cardio-acceleratory nerve, dcn, bilateral dorsal cardiac nerves. A dcn carries only three nerve 
axons, one ci and two ca nerves. Arrows, the direction of blood flow. Blood is pumped out from the heart (h), all meeting 
at the gill (g) where blood is oxygenated. After leaving from the gill, blood enters the pericardial sinus (p) and finally 
withdrawn into the heart through ostium. Therefore, this is a system constituted of a pump and a controller.

Figure 2. Resemblance of a wiring design in CVCSs between evolutionarily distinct two different animals, vertebrates 
(four chambered) and crustaceans (single chambered). The cardioinhibitory (CI) and cardioacceleratory (CA) nerves, P, 
pacemaker cells.
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stopped suddenly, meaning that they died unpredictably (Figure 5): we noticed that high-SI 
specimens are unique and of rare case. A key observation was that unpredictable death crab 
always had myocardial injury that was caused by the mounting of artificial EKG electrodes 
(Figure 6).

Figure 5 shows EKG data taken during the unexpected dying process. We normally put two 
EKG electrodes into crustacean dorsal carapace. However, this crab (Figure 6) received three, 
an excess electrode. As EKG electrodes have no good contact with the surface of heart muscles, 
they make EKG signal weak. We never want to damage the heart. However, this insufficient 
condition sometimes occurred. Any electrode can cause this unwished outcome: damaging local 
myocardial cells. From this unexpected outcome, we ‘accidentally’ obtained data that prove that 
myocardial damage increases SI. Then, we had an idea from this crustacean phenomenon that 
human ischaemic myocardium damage might be the same in terms of physiological nature, and 
damaged human heart might be able to be analysed with mDFA (see subsequent text).

Figure 3. A natural death EKG recorded from a dying coconut crab (Birgus latro). From A to F, decrements in scaling 
exponents. Immediately after F, the heart stops pumping and fibrillation-like electrical signal remained (an arrow).

Figure 4. EKG test arena (sea water) and some specimens engaged in the tests. After mounting electrodes, EKGs were 
continuously recorded for the rest of their life. These specimens were terminally inconvenienced after a period of time, 
for example, from 2 weeks to 2 years.
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Figure 5. Unpredictable death. EKG from a crab (Portunus sp.). A similar experiment as shown in Figure 3, but this 
specimen’s heart suddenly ceased at an arrow. Note, scaling exponents (SI) are always very high, from A to D.

Figure 6. Inside view of a crab carapace. Gazami crab, Portunus sp. the approximate size of the heart is shown, pentagon-
shaped diagram. This picture was taken after the crab’s death. Electrode-1, -2, and -3, for EKG. Diameter of electrodes: 
1 mm. One can see that electrode-3 is too long in size to damage the heart being located immediately beneath the 
carapace. Myocardial damage caused unpredictable cessation of heartbeat. It took 2 weeks before this crab stopped her 
heart pumping, which was unpredictable (see Figure 5).

Figure 7. Intermittent-stopping manner of heartbeat. Lobster (Panulirus japonicus). The intermittency ceased when a human 
approached the lobster tank. Note: An increasing tendency of heart rate during the presence of a human (between arrows).
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We believed that crustacean heartbeat continuously persists beating, that is, their hearts beat 
like the human heart does. But it was not the case (Figure 7). With EKGs from freely mov-
ing lobsters/crabs, we found that the heartbeat pattern is not continuous but intermittent if 
animals are not disturbed (Figure 7). This intermittency is induced by the activity of cardio-
inhibitory nerve (Figure 8, [12]). Then, EKG analysis revealed that a relaxed lobster exhibits 
an SI near 1.0 and a nervous lobster exhibits an SI near 0.5 (Figure 9). These results suggested 

Figure 9. A long EKG recording. Lobster, Panulirus japonicus. A human visit (thick lines) changes the heartbeat pattern. 
In relaxed and nervous conditions: SI ≒ 1 and SI ≒ 0.6, respectively (upper inset). SI distinguishes lobster’s psychology.

Figure 8. Simultaneous electro-physiological recording: heart (pacemaker, largest spike size, approximately 3 mV), 
cardio-regulatory nerve (autonomic impulses, largest spike size, approximately 500 micro-V), and mechanical transducer 
(myocardial force, the largest peak force of contraction is approximately 1 mg). An increase of a nerve activity corresponds 
to a complete stop of heartbeat. The smallest spikes in amplitude are the cardio-inhibitory impulses. The other two 
include the cardio-acceleratory impulses. Hermit crab (Aniculus aniculus) (modified from Yazawa and Kuwasawa [12]).
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to us that SI might be useful to quantify the psychology of lobster. Indeed, stressful stimuli 
decrease lobster’s SI significantly, and electro-physiologically the nervous/stressful state is a 
state of acceleration dominant and lost-inhibition controls of the heart (Figure 7).

We have long been specifically studying the neurobiology of crustaceans [11]. However, the 
crustacean experiments opened our eyes bigger, and our viewpoint was extended to human 
hearts. SI measures could be applicable not only to crustaceans but also to humans at least 
applying to their time series signal obtained from the heartbeat. According to our guideline, 
the normal SI ranges approximately 0.8–0.9 < SI < 1.1–1.2 [5].

3. EKG: humans

All experimental subjects were treated as per the ethical control regulations of universities 
(Tokyo Metropolitan University; Tokyo Women’s Medical University; Universitas Advent 
Indonesia, Bandung; Universitas Airlangga, Surabaya, Indonesia). 

We have tested so far over 500 human individuals [5]. We have learned that SI is a useful 
indicator for job-related stress and/or contentment of everyday life, as well as for heart dis-
ease. Typical results from them are shown in Table 1 (modified from Ref. [4]). When subjects 
reply to an interview that stress level is fairly low, the person’s SI is near 1.0. In turn, subjects 
who have stress exhibit a low SI such as 0.7–0.8 (Table 1). Subjects who have ischaemic heart 
disease, that is, having damaged myocardium, have a high SI such as 1.2–1.4 (Table 1). It is 
worth noting that we found a correlation between a high SI and myocardial damage, when 
we conducted crustacean experiments (Figures 5 and 6).

Subject Categories cardiac disease Age Stress level (interview)/daily life SI

1 Business owner (a company) 50s, male Fairy low 1.03

2 Business owner (a company) 50s, male High 0.72

3 Top management, President of a Univ. 60s, male High 0.84

4 Top management, Vice President of a Univ. 40s, female High 0.84

5 Middle management, Dean 40s, male High 0.72

6 Middle management, Secretary of president 40s, female High 0.76

7 Ordinary employee, Teaching only professor 50s, male Fairly low 1

8 Ordinary employee, Teaching only professor 50s, female Fairly low 0.98

9 Patient with stent-placement 60, male Daily life OK 1.26

10 Patient with bypass-surgery 45, male Daily life OK 1.38

11 Patient with implantable cardioverter 53, male Daily life OK 1.22

12 Ventricular septal defect (20 years ago operation) 48, female Daily life OK 1.41

13 Healthy representative, housewife 46, female Daily life OK 1.03

Table 1. Typical mDFA results.
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4. EKG-mDFA gadget

Health wellness monitoring has been advancing in health care and medical applications [14]. We 
focus our attention to heartbeat checking. Figure 10 shows lab-made data logging and mDFA com-
puting devices for a real-time detection and measurement. Figure 10A shows electrodes for EKG, 
commercially available, in-hospital use, using for a prematurely born baby in an incubator, Vitrode 
V, Nihon Koden, Tokyo, Japan. Figure 10 shows an EKG amplifier, heartbeat-interval calculator 
and Bluetooth radio transmitter. This EKG amplifier (Figure 10B) receives live-body EKG signal 
from the two terminals (Figure 10A and B, any two electrodes, the third one is a spare electrode). 
Figure 10C shows an iPod (Apple, USA), which has a computation program mDFA [4, 5]: We 
incorporated mDFA into an iPod (not for sale). This system (Figure 10) is commercially available 
except for two items: (1) mDFA program and (2) modified electrode attachment (Figure 10B). To 
us, ready-made goods (Figure 10B) have the inconvenience for precision recording of the heartbeat 
signal, because it often fails to detect R-peaks of EKG.

Figure 12 shows a practical view of iPod touch screen. To start recording, an operator can 
touch the button (Rec), and then after completing capture of 2000 beats, it automatically 

Figure 10. EKG logging and mDFA calculation, a real-time detection and measurement.

Figure 11. An example of a screen view of an iPod (lab-made, not for sale).
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computes SI. As can be seen in the figure, SI is 0.53 (Figure 11). Generally, SIs are computed 
from various box size ranges: [10; 30], [30; 70], [70; 140], [130; 270], [51; 100], [30; 140] and 
[30; 270] (see [4, 5] in detail). For the final best SI, we take the last one, here, it is 0.531390 
[30; 270], as explained in [4, 5]. Computational and mathematical explanations about mDFA 
are presented in [4, 5].

5. Case study 1: driving safely

Figure 12–14 show 14 results of consecutive and automated mDFA computation. A volunteer 
(a male aged 66) drove a car from his home to a town 150 km away to visit his mother-in-law 
who is hospitalised. He has been driving the road a number of times; thus he is familiar with 
the road conditions every corner. Furthermore, he drove safely as possible as he can by obey-
ing the speed limit. We recorded his EKGs while driving and computed the scaling exponents 
(SI) using the device shown in Figure 10.

Figure 12. An example for EKG monitoring and mDFA results.
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The driver’s heart rate was monitored by the aforementioned device (Figure 10). Figure 12  
shows an example result of mDFA computation. Figure 12B represents a 2000-beat record-
ing, that is, an example time series. Figure 12A shows an expanded time series of heart rate 
recording (arrows). Interval signals were transferred to an iPod and stored in it. The iPod has 
our mDFA program [4, 5]. The program instantaneously computed the scaling exponent (SI) 
from the heart rate time series, immediately after capturing 2000 heartbeats (Figure 12C). 
Figure 12D shows a summary of the characteristics of the data (i.e. the file-name (interval.
txt), 37 min and 0.2 s in total recording time for the 2000 beats, R-R interval value and heart 
rate (beat per min, BPM) for the last heartbeat, i.e. 1046 ms.). Figure 12C indicates that driv-
ing safely gives a perfect healthy scaling exponent near 1.0. Here, the SI is 0.99.

Figure 13. Fourteen consecutive EKG monitoring and resulting SIs.
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Figure 13 summarises results of driving-mDFA test. At first, SI showed a low value 
(SI = 0.84, Figure 13, number 1). This can be explained that the driver handled many wor-
ries about fuel gas, driving route and so force. After taking the express way, the driver 
maintained a speed limit (70 km/h) and enjoyed the blue sky of a spring morning day 
(SI = 1.03, Figure 13, number 2). Many vehicles overtook his car one right after the other 
although some law-abiding cars followed his car. He continued driving safely (Figure 13). 
One can see that his safe driving gave good values of SI, that is, near 1.0 as can be seen in 
the SI values from 2 to 8 (Figure 13).

It is very unique result that a specific behaviour, eating lunch, decreased the SI value (SI = 0.61, 
Figure 13, number 9). We can explain these results as the following: the mind (his brain func-
tion, i.e. autonomic nerve function) concentrated to enjoying foods, digesting them in the 
stomach and even pay less attention to environment. It seems that a dynamic CVCS response 
to environment is not dominant when eating lunch.

One can see that SI decreased when the subject walked into the hospital and visited/stayed in 
the room of his mother-in-law (see Figure 13, numbers 10 and 11, SI = 0.64 and 0.53, respec-
tively). After going out from the hospital, SI recovered: during driving and shopping at the 
super market (see Figure 13, numbers 12 and 13). We would like to conclude that mDFA can 
capture anxiety/worry of a subject.

The last result (Figure 13, number 14, SI = 0.77) is interesting. When meeting a new person 
(the driver’s brother-in-law) in order to greet him, SI decreased again to a very low value 
(Figure 13, number 14, SI = 0.77), which indicates that the volunteer subject is very nervous. 
He said that he tried NOT to display an ungentlemanly attitude to the son of mother-in-law.

Figure 14. Two examples of iPod-mDFA. A, corresponding to Figure 13, number 10. B, corresponding to Figure 13, 
number 11. A 5-min break of recording between A and B. Driving the car (d), walking into the hospital (e), sitting in the 
room of the patient (f).
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Figure 14 shows two examples of iPod-mDFA screen view. This might give convincing evi-
dence for the idea that ‘stressfulness decreases SI’. We would like to emphasise that iPod-
mDFA is beneficial more than we have expected.

In conclusion, stress decreases SI down to a lower value. We would like to emphasise that 
three examples, SI = 0.64, and SI = 0.53, SI = 0.77, are great results of iPod-mDFA gadget, and 
read-out time after 2000 heartbeat detections is only 1–2 s. All SI monitoring were instanta-
neously computed by iPod-mDFA system as shown in Figure 13.

6. Case study 2: overseas flight

A volunteer (a male aged 66) travelled by air from the Narita-Tokyo Airport to the 
Washington Dulles International Airport in order to attend a conference held in the USA. 
Using the iPod device, we recorded his EKGs and computed the scaling exponents as shown 
in Figure 15. Twenty-four SI measurements during the flight were documented and plot-
ted, from which we found that mDFA accomplished understandable results similar to that 
shown in Figure 13.

We confirmed that the SI values can represent the internal world of the subject (see Figure 15). 
For example, when the subject was at an aroused state such as in the waiting lounge (see 1 in 
Figure 15), watching an exciting documentary (note: highly personalised expression), and pre-
paring for landing (see 24 in Figure 15), the SI is near 1.0. In turn, when watching a movie which 
has an emotional involvement (note: highly personalised expression), the heartbeat of subject 
shows a lower SI values (see 18–20 in Figure 15). Finally, when the subject is at asleep condition, 
the SI decreases significantly (see 7–9 in Figure 15).

In conclusion, a happy life could fundamentally guarantee a healthy exponent. Anxiety and 
stress lowered the scaling exponent. mDFA might reflect psychological and physical internal 
bodily state. mDFA might look at the internal state through the heart. The heart is the window 
of the mind.

7. Uncertainty and accuracy of mDFA computation

7.1. Physics/mathematics

Readers of this article might have questions about the uncertainty and accuracy when it comes 
to the acquisition of the data points.

We must identify all R-peaks (R-peak within a single heartbeat of EKG trace) to construct 
a heartbeat-interval time series. Firstly, we put a red-mark sign on top of each and every 
R-peak. Unfortunately, our computer does miss some R-peaks due to the movement of sub-
jects (animals). There are two major reasons for that. One is inevitable drift of baseline of 
EKG trace. The other is electric-originated or muscle-movement-originated spike-like noises. 
Therefore, secondly in our study, we always check/repair each and every R-peak by eyes on a 
PC screen. This is NOT easy tasks but must-do tasks for us; we decided so in the beginning of 
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Figure 15. mDFA results during a 13-h overseas flight.
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this study. As a result, our time series obtained from any subjects are a 100% accurate. It is a 
perfectly captured R-R interval data: prematured ventricular contractions, atrial fibrillations, 
whatever it is.

mDFA computes SI values. For a given time series data, mDFA returns only one SI. If you 
repeat this procedure for a given time series, you get an exactly the same SI value. Readers 
can imagine an artificial time series that is, for example, a white noise-like fluctuation data, it 
gives a scaling exponent of 0.5. A random-walk-like time series data give a scaling exponent 
of 1.5. However, 1/f time series (SI = 1.0) is very difficult to make artificially, definitely because 
1/f-spectrum-like fluctuation is an outcome from natural dynamic phenomena. In short, a 
structure of a time series gives a single SI. It is mathematically accurate.

7.2. Biology/medicine

The uncertainty derives from the uncertainty of BioMedicine. The problem to be solved is 
how we interpret the meaning of SI. We agree that it could be a controversial issue for the 
people who read this article without doing experiments. Diagnosis/interpretation of data is 
never perfect, but SI calculation is accurate and perfect.

I recall my childhood: cicadas sing during the day of sunny summer days. It is like under perfect 
condition they sing. At night, I hear insects most of them were a cricket or a katydid. Whenever 
‘a boy of a curious nature’ tried to capture them, he experienced, the insects stop singing if he 
approached too closer to them. Typically, animals do not love human approaching.

A few people have asked me if lobsters/crabs feel stress. My answer is ‘yes’ although there is a 
problem regarding the uncertainty and accuracy (see earlier text). The truth is not known yet, 
because animals never tell us how they feel. But they indeed sense a human. At least, the truth 
that we found is SI changes when they sense a human (Figures 7 and 9).

We can explain that SI measure is like temperature measure (Celsius, C degree). SI has a cri-
terion value as temperature does. If C is 37°, our healthiness is fine as far as temperature is of 
concern. In the same way, if SI is one (1.0), healthiness is fine. 1/f is comparable to SI = 1. It has 
been shown by Kobayashi and Musha in 1982 [1] and Peng et al. in 1990s [2, 3]. In those days, 
when Kobayashi et al. worked, their computer never had enough power to quickly calculate/
handle the time series data.

In short, the scaling exponent (SI) is accurate. The uncertainty derives from our interpretation. 
For our guide line, believe it or not, you may have no problem for the heart if you have SI, 
ranging 0.8 < SI < 1.2.

8. Conclusion

This study suggests that the scaling exponents (SI) computed by mDFA can quantify stress. 
Furthermore, mDFA results were intriguing: cardiac muscle injury can be detected using 
mDFA. An ischaemic heart has a high SI. Before these findings, we already have proven in 
animal models that injured crustacean hearts exhibited a high exponent [4, 5].
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Although we need much more comprehensive examples, we propose that mDFA is a helpful 
and beneficial computation tool in the research on emotion, particularly fear and anxiety dis-
orders, understanding how emotion is encoded in the heartbeat time series, in animal models 
and humans.

If the body is tortured by stimuli from environment, and/or if some stimuli would harm us 
internally, which is invisible from outside, we would be upsetting for the nervous system. If we 
use mDFA, we can realise that stimuli is distorting the autonomic nerve function, little of which 
has been understood by a human being until today [13], although we spend everyday under 
advanced science and technology. We would like to emphasise that, using mDFA computation, 
we can numerically evaluate/quantify the state of our body, even if it is invisible to us.

Although we (basic scientists, biologists) cannot make by ourselves, making a gadget is very 
rewarding. It is the right time to start making it. The gadget can work: (1) recording 2000 con-
secutive heartbeats without missing even a single pulse, (2) computing automatically the scal-
ing exponent that can check the scaling exponent = 1.0, which is perfectly healthy state [4, 5], 
and finally (3) the gadget would capture what is going on in front of, around, and inside our 
mind. It gives us health information, for example, each time we use it on an everyday basis.

In the present paper, we would suggest that we have entered the world experiencing seeing 
inside without sight. Sometimes, a new technology does not have to be supercomplicated. mDFA 
computation is a kind of high school-level mathematics instead of sophisticated nonlinear mea-
sures and/or linear complex computation like the HRV, the heart rate variability. mDFA looks at 
how the brain communicates with the heart and also with the world. mDFA is a tool that enables 
us to explore previously uncharted territories. For both preventive and post-diagnostic health 
wellness monitoring [14], we hope that the market might find this beneficial nature of mDFA.
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Abstract

The remote sensing images are more accessible nowadays and there are proper technolo-
gies to receive, distribute, manipulate and process long satellite image time series that 
can be used to improve traditional methods for harvest monitoring and forecasting. The 
potential of the satellite multi-temporal images to support research of agricultural moni-
toring has increased according to improvements in technological development, especially 
in analysis of large volume of data available for knowledge discovery. In Brazil, sugar-
cane is cultivated on extensive fields and is the main agriculture crop used to produce 
ethanol. The main objective of this chapter is to monitor the sugarcane crop by cluster-
ing analysis with multi-temporal satellite images having low spatial resolution. A large 
database of this kind of image and specific software were used to perform the image pre-
processing phase, extract time series, apply clustering method and enable the data visu-
alization on several steps during the whole analysis process. According to the analysis 
done, our methodology allows to identify land areas with similar development patterns, 
also considering different growing seasons for the crops, covering monthly and annual 
periods. Results confirm that satellite images of low spatial resolution can indeed be sat-
isfactorily used in agricultural crop monitoring in regional scale.

Keywords: time series, AVHRR/NOAA, NDVI, k-means, sugarcane

1. Introduction

With the current challenge to improve the agricultural monitoring, forecast and planning, 
which are strategic for a country with continental dimensions and great diversity of land uses, 
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the importance of the time series of digital images acquired by low-spatial-resolution satel-
lites (such as the AVHRR/NOAA and MODIS/Terra) to monitor the expansion and produc-
tion of agricultural crops (such as the sugarcane) in tropical regions (such as the southeastern 
region of Brazil) that have a huge amount of clouds during the growing season making the 
operational use of remote sensing data difficult is an essential highlight.

The AVHRR/NOAA is a meteorological remote sensor that has been widely used also as source 
of spectral information for environmental and agricultural purposes. Since the sugarcane is 
cultivated on large and extensive fields, medium- and low-spatial-resolution satellites such as 
the AVHRR/NOAA can be used to properly monitor this agricultural crop. Sugarcane produc-
tion has expanded in the last years in southeastern Brazil making this agricultural product 
strategic for its economy and environment since it is the main renewable source of energy 
used to replace fossil fuels and reduce the emissions of greenhouse gases that cause the global 
warming.

Remote sensing images have been efficient to evaluate important characteristics of the 
sugarcane cultivation, providing relevant results to the debate of sustainable ethanol pro-
duction from sugarcane [1]. The accuracy of the thematic mapping of sugarcane through 
satellite images was assessed [2], and a methodology for contributing in the automation of 
sugarcane mapping over large areas, with time series of remotely sensed imagery [3], was 
developed.

In addition, researchers have conducted studies to assess social and economic impacts in sug-
arcane cultivation [4], as well as to predict its yield [5]. An alternative masking technique for 
satellite image time series, called yield-correlation masking, can be used for the development 
and implementation of regional crop yield forecasting models eliminating the need for a land 
cover map [6].

In fact, this agricultural commodity has an increasing economic importance especially due 
to the increasing demand for ethanol (one of its derivative) used as renewable energy source 
to replace fossil fuels. Although there is a consensus about the benefits from a temperature 
increase for the sugarcane production, its expansion to the warmest regions can be nega-
tively impacted whether the water deficit becomes more severe in consequence of climate 
changing scenarios in those areas. Thus, researchers have been dedicated to more detailed 
studies regarding expansion and productivity of sugarcane fields to find innovative and 
optimized methods in order to understand the impact of global warming in this crop pro-
duction [7].

Even being more accessible and available nowadays, many users still have difficulties to deal 
with satellite images due to different and more sophisticated demands as well as the fast-
growing quantity and complexity of this kind of data [8]. In this context, knowledge discovery 
technologies are an important alternative to explore and find relevant information on this 
huge volume of data. Some initiatives involving data and image mining have been accom-
plished through different techniques with reasonable results [9–13].
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In this context, we focus on computational methods that allow analysis at regional scale with the 
purpose of improving agricultural crop monitoring and increasing the sustainable usage of the 
soil, taking into account that climate changes are in course. Even so, we show a clustering-based 
approach to analyze time series extracted from multi-temporal NDVI images and visualiza-
tion. The main objective of this chapter is to monitor the sugarcane crop by clustering analysis 
through multi-temporal satellite images of low spatial resolution.

2. Material and methods

2.1. Study area

The study area is located in São Paulo, an important state of southeastern macro-region of 
Brazil (54°00′ to 43°30′W and 25°30′ to 19°30′S), which is responsible for 60% of the national 
production and 25% of the global production of sugarcane (Figure 1).

Figure 1. Location of study area, state of São Paulo in Brazil. The areas shown in gray are sugarcane production area.

Agricultural Monitoring in Regional Scale Using Clustering on Satellite Image Time Series
http://dx.doi.org/10.5772/intechopen.71148

25



2.2. Proposed approach

The knowledge discovery process comprehends three main steps: (1) data preparation of satel-
lite image time series, (2) extraction of the NDVI profiles, and (3) clustering analysis. Figure 2 
presents a flowchart of the proposed process to assess multi-temporal satellite images.

2.2.1. Satellite image time series (SITS)

The database of multi-temporal NDVI/NOAA/AVHRR images used in this chapter is available 
at the Centre for Meteorological and Climatic Research Applied to Agriculture (Cepagri) at the 
University of Campinas (Unicamp), Brazil, having AVHRR/NOAA images recorded since April 
1995 with approximately 6 terabytes of data. It was used in the analysis AVHRR/NOAA-16 and 
AVHRR/NOAA-17 images gathered from April 2001 to March 2010.

It is necessary to preprocess the images, since the AVHRR/NOAA images often have geometric 
distortions caused by the Earth curvature and rotation, attitude errors and imprecise orbits of 
the satellite [14]. These distortions must be corrected specially for land applications that require 

Figure 2. Flowchart with the main steps of proposed approach employed in this chapter.
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a highly accurate geometric matching, with one pixel accuracy (1.1 km) in the Equidistant 
Cylindrical Projection. To perform accurate geometric, the maximum cross-correlation (MCC) 
method is applied. The MCC method compares a target image to a base image (one for each 
year season), geometrically accurate and cloudless [15]. The first step to be executed corre-
sponds to the image georeferencing process, which is executed in batch mode by the NAVPRO 
system [16, 17] to accomplish the necessary tasks, such as:

• Conversion from a raw to an intermediary format

• Radiometric calibration

• Geometric correction

• Identification of pixels classified as cloud

To attenuate the effect of the atmosphere on the images, maximum-value composite (MVC) 
of NDVI images was generated. Following the recommendations [18], it is important to mask 
out the inappropriate pixels, such as cloud-contaminated pixels. The georeferencing mod-
ule allows users to generate NDVI images for a specific region. As the volume of images is 
huge, it was used the SatImagExplorer system [19]. This system is interactive and allows the 
user to specify regions of interest (ROIs), using as input basis a satellite image time series. 
SatImagExplorer extrapolates the region indication for all images in the sequence, generat-
ing time series of the ROIs corresponding to that indicated for all available images. This tool 
allows the user to focus their analysis on strategic points of interest, as well as facilitates the 
analysis of a long series of data. Time series extracted from multi-temporal images using 
SatImagExplorer are one of the data to be mined by the clustering method.

2.2.2. Clustering analysis

The clustering task is defined as a process of grouping similar objects, following a given 
criterion [20]. In this step, NDVI time series are analyzed by clustering method imple-
mented in the SatImagExplorer system. We have used the partition-based method named 
k-means.

k-Means divide n objects from the input dataset into k partitions. Initially, the algorithm ran-
domly determines k objects as initial centroids and associates each remaining object to the 
partition represented by the most similar (closest) centroid. In the end of each iteration, cen-
troids that correspond to the average values of the cluster objects are recalculated to define 
the new order of n objects in the clusters during the next iteration. The k-means algorithm 
converges when there are no more changes in the clusters. Although simple and computation-
ally efficient (O(nk)), as k-means considers average values, it is more sensitive to errors when 
noise and outliers appear in time series [21].

The k-means method uses a distance function to perform similarity search operations to find 
the series most similar to a given time series that is being analyzed. A distance function or 
metric can be defined as a similarity measure between two data elements that are, in this 
case, two time series. The most widely used distance functions are those from the Minkowski 
family (or Lp norm). The Euclidean distance corresponds to L2, which is commonly used to 
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calculate the distance between multidimensional arrays and vectors. The dynamic time warp-
ing (DTW) is a very efficient distance function to compare time series [22]. Its main objective 
is to keep close time series that have similar behavior but are delayed or distorted along the 
time axis. Thus, this technique presents a proper way of working to warping, because the 
comparisons between corresponding points are not rigid. DTW is a tool with two of the main 
issues raised by high-temporal-resolution satellite image time series, namely, the irregular 
sampling in the temporal dimension and the need for comparison of pairs of time series hav-
ing different numbers of samples [23].

We will show next the three clustering analyses performed:

First: k-Means used with Euclidean distance, when we considered only monthly NDVI val-
ues. These values of sugarcane fields were extracted using geographical coordinates (lati-
tude and longitude) provided by the Canasat/INPE Project (www.canasat.inpe.br). In this 
approach, each element of the dataset corresponds to one NDVI value, which refers to a 
month value in a given location (pixel), in order to obtain monthly analysis of the region 
of interest. Considering similarity among NDVI values, elements were assigned to different 
clusters. Five clusters were generated for each month of the crop season (2004–2005), being 
able to follow the development stage of the crop per month. For example, whether crop is in 
maturing phase, it has already been harvested, and there are not spectral mixing with other 
crops or vegetation;

Second: k-Means used with DTW distance function, when we have generated series of NDVI 
values corresponding to one or more sugarcane crop series. The clustering was determined 
by five clusters for each crop season (2001–2010) for annual crop monitoring according to the 
type of planting in each crop season, for example, sugarcane ratoon, sugarcane expansion, 
sugarcane renewed, sugarcane under renewing and not defined [13, 24].

Third: k-Means used with DTW distance function of three dimensional (multivariate) time 
series database, extracted from 324 monthly images of NDVI, albedo and surface tempera-
ture. Since DTW calculates the distance between pairs of data points using Euclidean dis-
tance, DTW method can be applied to multivariate time series. The whole dataset had 220,238 
data series, being each observation a triplet of NDVI, albedo and surface temperature values 
of study area in a given month, with 108 values per time series [25].

3. Results and discussion

In this section, we present the results and discuss the three analyses performed in this chapter 
described above.

3.1. k-Means used with Euclidean distance

In this section we present how results of appliance of k-means clustering with Euclidean 
distance function over NDVI monthly values extracted from the study area can assist the 
monitoring of sugarcane fields.
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by five clusters for each crop season (2001–2010) for annual crop monitoring according to the 
type of planting in each crop season, for example, sugarcane ratoon, sugarcane expansion, 
sugarcane renewed, sugarcane under renewing and not defined [13, 24].

Third: k-Means used with DTW distance function of three dimensional (multivariate) time 
series database, extracted from 324 monthly images of NDVI, albedo and surface tempera-
ture. Since DTW calculates the distance between pairs of data points using Euclidean dis-
tance, DTW method can be applied to multivariate time series. The whole dataset had 220,238 
data series, being each observation a triplet of NDVI, albedo and surface temperature values 
of study area in a given month, with 108 values per time series [25].

3. Results and discussion

In this section, we present the results and discuss the three analyses performed in this chapter 
described above.

3.1. k-Means used with Euclidean distance

In this section we present how results of appliance of k-means clustering with Euclidean 
distance function over NDVI monthly values extracted from the study area can assist the 
monitoring of sugarcane fields.
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Months from December to May correspond to the period of maximum vegetative growth of 
sugarcane. In Figure 3J, L and B, pixels that appear in yellow and red colors correspond to the 
maximum NDVI values, being included in the clusters 3 and 4, respectively. On the other hand, 

Figure 3. Monthly MVC NDVI images and clustering of NDVI (five clusters) of sugarcane planting area in the state of 
São Paulo for months from April 2004 to march 2005. (A) NDVI/NOAA 2004 April; (B) Clustering 2004 April; (C) NDVI/
NOAA 2004 July; (D) Clustering 2004 July; (E) NDVI/NOAA 2004 September; (F) Clustering 2004 September; (G) NDVI/
NOAA 2004 November; (H) Clustering 2004 November; (I) NDVI/NOAA 2005 January; (J) Clustering 2005 January; (K) 
NDVI/NOAA 2005 March; (L) Clustering 2005 March.
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months of August, September and October correspond to harvest season. In these months 
(Figure 3F), pixels in magenta and blue, with minimum NDVI values, correspond to clusters 0 
and 1, respectively. Cluster 2 (green) corresponds to sugarcane intermediate stage of growth.

These clusters can be validated in the MVC NDVI images. The black squares over the satel-
lite images in the left correspond to the main sugarcane planting areas. Analyzing the MVC 
NDVI images in the northeastern region of São Paulo, the evolution of the sugarcane vegeta-
tive growth cycle can be seen (Figure 3). Planting begins in August represented in the images 
by pixels in shades of green and blue located in the northeastern region of the state. These 
colors represent low NDVI values (around 0.2) characterizing areas with exposed soil and 
sparse vegetation. Similar pattern also occurs in the months from September to November. 
From December, when sugarcane begins to grow up and acquire more biomass, these regions 
are shades of yellow, orange and red. Months from January to May show shades of dark red, 
when sugarcane reaches the highest stage of growth with maximum NDVI values (between 
0.7 and 0.8). The dark areas in images represent pixels covered by clouds and water.

There is no predominance of one or two clusters in all producing regions if we consider all 
months of the crop season. As we can observe, both plant and ratoon sugarcane are grown 
throughout the state, and the five clusters appear in all months. There is a higher percentage 
of pixels in the clusters with higher NDVI during some months. However, in other months, 
the largest number of pixels is included in clusters with lower NDVI (Figure 3).

Figure 4 has the temporal profile of clusters showing dynamics of crop planting and har-
vesting throughout the growing season. Analyzing the temporal profile of Figure 4, we can 
observe that in months from December to May, the NDVI values are higher and represent a 
larger percentage of pixels for clusters 2, 3 and 4 (from 20 to 40% of the pixels). For the months 
from August to November, the NDVI values are lower, representing higher percentages for 
clusters 0 and 1 (around 30% of the pixels). Each month features a sugarcane planting area at 
a certain stage of growth, appearing in clusters 0 or 1 (harvested or bare soil) and in clusters 
2, 3 and 4 (in growth or ready to be harvested) (Figure 3).

Figure 4. Temporal profile of five NDVI clusters of sugarcane fields for the months from April 2004 to March 2005.
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Although the k-means method is simpler and more widely used, their application in satellite 
image time series of low spatial resolution allows the regional study of crop, even with the 
difficulty in the analysis due to the possibility of spectral mixing in pixels.

3.2. k-Means was used with DTW distance

Results of the MVC NDVI image time series analysis about the period 2001–2010 for the state 
of São Paulo are presented hereafter. Maps and temporal profiles correspond to results of 
clusters (k-means with DTW distance function), pixels with NDVI values from year to year. In 
general, clusters that were identified as sugarcane may be (i) related to the type of planting car-
ried out each year, for example, identifying areas of sugarcane ratoon (the sugarcane available 
for harvest after one or more cuts), sugarcane expansion (the sugarcane planted in new areas 
that will be harvested for the first time), sugarcane renewed (the year-and-half sugarcane plant 
that has undergone renovation during the previous crop year and will be available for harvest 
in the current crop year), sugarcane under renewing (the sugarcane area is not harvested due 
to renovation, not available for that specific crop year) and not defined area, and (ii) related to 
the quantity produced. Clusters, which were determined by clustering analysis, do not remain 
constant from year to year as the sugarcane planting is dynamic along the time series.

Thus, applying the k-means clustering analysis, we can verify sugarcane planting type from 
the years analyzed. Cluster 4 (red) indicates the maximum NDVI values in the month, corre-
sponding to areas with higher biomass. Cluster 0 (magenta) shows the lower NDVI values, cor-
responding to bare soil. The k-means method showed more homogeneous temporal profiles 
(Figure 5). Low peaks in NDVI profiles during the months of December and January (Figure 5) 
match NDVI values related to clouds, because this period of year is the rainy season in the state.

Analyzing every year, we found that each cluster corresponds to different types of sugar-
cane planting (Table 1). For example, in crop season 2001–2002, 2003–2004, 2006–2007 and 
2008–2009, cluster 2 (green; Figure 6A, C, F and H) corresponds to the type of sugarcane 
ratoon, and this cluster (29–47% of the pixels) is correlated (between R = 0.74 and R = 0.87) 
with the crop production (Figure 7). In crop seasons 2002–2003 and 2009–2010 (Figure 6B 
and I), sugarcane ratoon corresponds to cluster 1 (blue), with a correlation of R = 0.84 
and R = 0.73 with the production and 36 and 33% of the sugarcane pixels (Figure 7). 
Crop season 2004–2005 (Figure 6D) corresponds to cluster 3 (yellow), with correlation 

Figure 5. Temporal profiles of each cluster for each crop season in the period 2001–2002 to 2009–2010.
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Figure 6. k-Means clustering with DTW distance function for each crop season in the period 2001–2002 to 2009–2010. 
(A) Clustering 2001–2002; (B) Clustering 2002–2003; (C) Clustering 2003–2004; (D) Clustering 2004–2005; (E) Clustering 
2005–2006; (F) Clustering 2006–2007; (G) Clustering 2007–2008; (H) Clustering 2008–2009; (I) Clustering 2009–2010.
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index R = 0.81 and 32% of the sugarcane pixels (Figure 7). In most crop seasons, sugar-
cane ratoon is strongly correlated with the sugarcane production. Only in crop seasons 
2005–2006 and 2007–2008 (Figure 6E and G), the sugarcane expansion is correlated with 
crop production.

3.3. k-Means was used with DTW distance function of three dimensional (multivariate) 
time series database

Dataset with more than 220,000 series in the state of São Paulo were clustered into five clusters 
(0–4) by k-means method with DTW distance function. Each cluster was formed according to 
the characteristics of NDVI, surface temperature and albedo extracted from AVHRR/NOAA 
images in the period 2001–2010. The identified areas were cluster 0 (magenta), which corre-
sponds to water; cluster 1 (blue), which to the urban area and areas where the soil is exposed 
or have low vegetation and pasture; cluster 2 (green), which represents areas of agricultural 
crops; cluster 3 (yellow), which corresponds to sugarcane; and cluster 4 (red), which repre-
sents forest areas (Figure 8A and B).

NDVI was useful to separate vegetation areas from other targets, for example, forests present 
high values of NDVI during the whole season (have high concentration of vegetation and bio-
mass), and these areas are normally shown by red-colored representative time series, in profile 
visualization (Figure 9A). On the other hand, albedo variable was useful to separate water areas 
from other targets, but was not enough to distinguish areas having different levels of vegetation 
cover (Figure 9B). The water represented by cluster 0 was well clustered, since the NDVI values 
and especially the albedo values were different from other clusters, as shown in the temporal 

Figure 7. Graph of pixels’ number percentage for each cluster regarding each crop seasons in the period 2001–2002 to 
2009–2010. Correlation values of the clusters with the sugarcane production.
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profile of NDVI (Figure 9A) and albedo (Figure 9B). The albedo and NDVI values are lower (less 
than 0.1), since there is no presence of vegetation in the water or when there is minimal.

Clustering results for agricultural crops and grassland were less accurate, probably because 
different crops present similar NDVI values in some phenological phase during vegetative 
crop cycle, but are useful to separate agricultural from nonagricultural areas, such as water, 

Figure 8. Geographic spatial of 2001–2002 (A) and 2009–2010 (B) of clustering results; yellow represents sugarcane.

Figure 9. Profile visualization (2001–2010) of NDVI (A), albedo (B) and surface temperature (C) of clustering results.
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urban areas and forest. Clustering of these areas was defined mainly by surface temperature, 
being higher for targets with lower canopy, such as urban areas and exposed soil, and lower 
for woodland (Figure 9A and C). For example, the forest areas represented by cluster 4, in 
Figure 8A and B, have high NDVI values (Figure 9A) and lower surface temperature values 
(Figure 9C), as they are very shady and dense vegetation coverage areas.

However, sugarcane fields were well clustered over the crop seasons because the sugarcane 
has a typical behavior (long seasonal cycle) than other crops. In Figure 8A and B, it is possible 
to observe the dynamic of this agricultural crop, represented by cluster 3 (yellow), throughout 
the decade in which in the crop years 2001–2002 the acreage was low, with higher production, 
and planted in the northeast area of the state, and in the end of the crop years 2009–2010, there 
was a significant increase in the planted area toward the western of the state. This technique 
of clustering in three dimensional (multivariate) time series database was efficient to perform 
temporal analysis of land use, indicating that this methodology can be used to identify and 
analyze the dynamics of land use and cover.

4. Conclusions

This chapter presented a new approach to boost the agricultural monitoring including the 
expansion of crops to different regions, through techniques of time series mining. We used 
clustering analysis associated with the Euclidean and the DTW distance functions. We demon-
strated that it is possible to take advantage of off-the-shelf computational methods to support 
agricultural monitoring as well as to automatically determine sugarcane fields’ expansion 
that is a valuable contribution of this work.

Moreover, we also showed the potential use of time series of satellite images with low spatial 
resolution in agricultural monitoring although spectral mixtures can occur. The main advan-
tage of this approach is the high temporal resolution, low cost and global coverage of the 
remote sensing system used (AVHRR/NOAA). The performance analysis of a simple cluster-
ing technique based on a time series of satellite images is in providing a further step in the 
researches on the use of renewable energy sources, such as the sugarcane ethanol. The impact 
of such approach becomes even stronger, and it increases the need for researching on new 
ways to reduce greenhouse gas emissions, mainly in the trail of the recent occurrences of 
extreme events in different locations of the planet.
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Abstract

This paper proposes a GARCH-type model allowing for time-varying volatility, skew-
ness, and kurtosis assuming a Johnson’s SU distribution for the error term. This distri-
bution has two shape parameters and allows a wide range of skewness and kurtosis. We
then impose dynamics on both shape parameters to obtain autoregressive conditional
density (ARCD) models, allowing time-varying skewness and kurtosis. ARCD models
with this distribution are applied to the daily returns of a variety of stock indices and
exchange rates. Models with time-varying shape parameters are found to give better fit
than models with constant shape parameters. Also, a weighted forecasting scheme is
introduced to generate the sequence of the forecasts by computing a weighted average
of the three alternative methods suggested in the literature. The results showed that the
weighted average scheme did not show clear superiority to the other three methods.

Keywords: GARCH models, conditional volatility, skewness and kurtosis

1. Introduction

Many papers deal with the departures from normality of asset return distributions. It is well
known that the distributions of stock return exhibit negative skewness and excess kurtosis; see
among others [2, 9, 14, 15]. The higher moments of the return specifically, excess kurtosis (the
fourth moment of the distribution) makes extreme observations more likely than in the normal
case, which means that the market gives higher probability to extreme observations than in
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normal distribution. However, the existence of negative skewness (the third moment of the
distribution) has the effect of accentuating the left-hand side of the distribution, which means
that a higher probability of decreases given to asset pricing than increases in the market.

The generalized autoregressive conditional heteroscedasticity (GARCH) models, introduced by
Engle [5] and Bollerslev [1], allow for time-varying volatility1 but not for time-varying skewness
or time-varying kurtosis. Different GARCH models have been developed in the literature to
capture dependencies in higher order moments, starting with Hansen [7] who proposed a
skew-Student distribution to account for both time-varying excess kurtosis and skewness. A
significant evidence of time-varying skewness found [9]. Others [11, 12] found a significant time
varying in both skewness and kurtosis, while [3, 15, 16] found little evidence of either. With
regard to the frequency of observation, Jondeau and Rockinger [11] found the presence of time-
varying skewness and kurtosis in daily but not weekly data, while others including [2, 7, 9]
found an evidence of time-varying skewness and kurtosis in weekly and even monthly data.
Regarding daily data [4, 12, 18] found an evidence of time-varying skewness and kurtosis in
daily data. The chapter employed GARCH(1,1) model as the performance of the model proved
compared large number of volatility models; for more details, see Hansen and Lunde [8].

This paper contributes to the literature of volatility modeling in two aspects. First, we jointly
estimate time-varying volatility, skewness, and kurtosis assuming Johnson SU distribution for
the error term. The method is applied to two different daily returns: stock indices and
exchange rates. Second, a new alternative scheme is introduced to generate the sequence of
the forecasts.

The rest of the paper is organized as follows. Following this introduction, Section 2 presents
the empirical results regarding the estimation of the model. Section 3 compares the models. In
Section 4, the new forecasting scheme is presented, while Section 5 gives concluding remarks.

2. Empirical results and methodology

2.1. Data and preliminary findings

The time series data used for modeling volatility in this paper consists of two sets of financial
data. The first set includes daily returns of five stock indices: NASDAQ100 (US), Germany
(DAX30), Ishares MSCI South Africa index (EZA), Shanghai stock exchange composite index
(SSE), and Ishares MSCI Canada index (EWC).2 The second data set includes daily returns of
five exchange rates series: British Pound (USD/GBP), Australian Dollar (USD/AUD), Italian
Lira (USD/ITL), South Africa Rand (USD/ZAR), and Brazilian Real (USD/BRL).3 The two data

1In general terms, volatility refers to the fluctuations observed in some phenomenon overtime. In terms of modeling and
forecasting literature, it means “the conditional variance of the underlying asset return” [17].
2Some of the closing price indices were put into US-dollar and some were put into other currencies. For unification of
foreign exchange rates, all closing price indices were converted into American US dollar. These closing price indices are
obtained from Yahoo Finance (http://finance.yahoo.com).
3The exchange rates have been retrieved from the website (http://www.oanda.com).
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sets include daily closing prices from August 6, 2001, through December 10, 2013, for all stock
indices and from July 1, 2005, to September 17, 2013, for all exchange rate series with a total of
3001 observations for each data set. The estimation process for the two sets of data was run
using 2001 observations as in-sample, while the remaining 1000 observations were used for the
out-of-sample forecast. Based on the empirical evidence, it is common to assume that the
logarithmic return series rt = 100 * [ln(pt) � ln(pt � 1)] (where Pt and Pt�1 are the price at the
current day and previous day, respectively) is weakly stationary. Table 1 reports the descrip-
tive statistics for all return series. It shows that all data exhibit excess kurtosis (leptokurtosis)
and skewness, which represents the nature of departure from normality. The Jarque-Bera (JB)
statistics for normality test show that the null hypotheses of normality are strongly rejected for
all daily returns of stock and exchange rate series.

2.2. Methodology

Preliminary results in the preceding section provided evidence of a significant deviation from
normality and obvious leptokurtosis in all daily return series. This suggests specifying
GARCH models that capture these characteristics. In presenting these models, there are two
distinct equations or specifications, one for the conditional mean and the other for the condi-
tional variance. For the models employed in this paper, the mean equation for all stock return
series is the AR(1) model with a constant, and for all exchange rate return series, we used the
MA(1) model without a constant. After estimating the mean equation, the next step was to
identify whether there is substantial evidence of heteroscedasticity for the daily returns of
stock and exchange rate series. Table 2 provides the Ljung-Box statistics of order 20 for ε2t , ε

3
t

and ε4t , where εt is the error term from the mean equation. The results show that the Ljung-Box

Assets N Mean S.D. Skewness Kurtosis Jarque-Bera

Stock indices

NASDAQ100 2000 0.011 1.789 0.084 7.139 1429.85*

DAX30 2000 0.032 1.795 0.053 6.473 1929.78*

SSE 2000 0.048 1.764 �0.078 6.929 1292.92*

EZA 2000 0.076 2.403 �0.354 14.436 10968.85*

EWC 2000 0.049 1.673 �0.473 9.327 3420.18*

Exchange rates

USD/GBP 2000 0.007 0.485 0.658 11.419 6066.76*

USD/AUD 2000 �0.013 0.702 0.481 14.254 10659.08*

USD/ITL 2000 �0.004 0.467 �0.197 8.185 2260.57*

USD/ZAR 2000 0.001 0.877 1.010 17.404 17672.41*

USD/BRL 2000 �0.016 0.961 0.441 10.048 4215.97*

*Significant at the 5% level.

Table 1. Descriptive statistics for daily returns.
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statistics on the squared residuals ε2t , ε
3
t , and ε4t are significant for the presence of time-varying

volatility, skewness, and kurtosis for all daily returns of stock and exchange rate series.

2.2.1. Distributional assumptions

To complete the basic GARCH specification, an assumption about the conditional distribution of
the error term εt is required. The expectation is that the excess kurtosis and skewness displayed
by the residuals of conditional heteroscedastic models will be reduced, when a more appropriate
distribution is used. The Johnson’s SU distribution is resorted to in this study. This distribution
has two shape parameters that allow a wide range of skewness and kurtosis levels of the type
anticipated, and it is used in financial returns data [4, 18]. The Johnson’s SU distribution was
derived by Johnson [10] through transformation of a normal variable. Letting z ~ N(0,1) the
standard normal distribution, the random variable y defined by the transformation:

z ¼ γþ δ sinh�1 y� ζ
λ

� �
(1)

where sinh�1 is the inverse hyperbolic sine function defines a Johnson’s SU variable. The form
of the density of the Johnson’s SU distribution, which will be used for the estimation proce-
dure, is that due to Yan [18]:

f y yð Þ ¼ δ

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y�ζ

λ

� �2r φ γþ δ sinh�1 y� ζ
λ

� �� �
(2)

Series ε2t ε3t ε4t

Stock indices

NASDAQ100 1834.3 (0.000) 305.1 (0.000) 507.1 (0.000)

DAX30 2132.9 (0.000) 148.4 (0.000) 676.1 (0.000)

SSE 443.2 (0.000) 24.6 (0.216) 52.4 (0.000)

EZA 2597.2 (0.000) 305.8 (0.000) 647.8 (0.000)

EWC 3614.3 (0.000) 272.1 (0.000) 984.2 (0.000)

Exchange rates

USD/GBP 1020.8 (0.000) 98.6 (0.000) 190.6 (0.000)

USD/AUD 2525.9 (0.000) 678.2 (0.000) 889.8 (0.000)

USD/ZAR 975.5 (0.000) 89.2 (0.000) 39.128 (0.006)

USD/ITL 536.2 (0.000) 94.477 (0.000) 77.6 (0.000)

USD/BRL 1555.3 (0.000) 406.1 (0.000) 1030.9 (0.000)

Note. For Ljung-Box statistics, the p-values are reported in parentheses.

Table 2. Ljung-Box statistics with order 20 of ε2t , ε
3
t and ε4t where εt is the error term for the mean equation for all daily

returns of stock and exchange rate series.
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where y ∈ R, φ is the density function of N(0, 1), ξ and λ > 0 are location and scale parameters,
respectively, while γ, δ > 0 can be interpreted as skewness and kurtosis parameters, respec-
tively. The parameters are not the direct moments of the distribution. The first four moments,
the mean, variance, third central moment, and fourth central moment, respectively, of the
distribution according to Yan [18] are as follows:

μ ¼ ζþ λω1=2sinhΩ (3)

σ2 ¼ λ2

2
ω� 1ð Þ ω cosh 2Ωþ 1ð Þ (4)

μ3 ¼ � 1
4
ω2 ω2 � 1
� �2

ω2 ω2 þ 2
� �

sinh 3Ωþ 3 sinhΩ
� �

(5)

μ4 ¼
1
8

ω2 � 1
� �2

ω4 ω8 þ 2ω6 þ 3ω4 � 3
� �

cosh 4Ωþ 4ω4 ω2 þ 2
� �

cosh 2Ωþ 3 2ω2 þ 1
� �� �

(6)

The quantities Ω and ω in the moment formulas are Ω = γ/δ and ω = exp(δ�2). The skewness
and kurtosis are jointly determined by the two shape parameters γ and δ. The standardized
Johnson’s SU innovations exist when ξ = 0 and λ = 1, but the mean and the variance are not 0
and 1, respectively. These can be done by setting the parameters in the following manner:

ζ ¼ �ω1=2sinhΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

ω� 1ð Þ ωcosh 2Ωþ 1ð Þ
r" #�1

(7)

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

ω� 1ð Þ ω cosh 2Ωþ 1ð Þ
r" #�1

(8)

2.2.2. Maximum likelihood

Under the presence of heteroscedasticity (autoregressive conditional heteroscedasticity (ARCH)
effects) in the residuals of the daily returns of stock and exchange rate series, the ordinary least
square estimation (OLS) is not efficient, and the estimate of covariance matrix of the parameters
will be biased due to invalid ‘t’ statistics. Therefore, ARCH-type models cannot be estimated by
simple techniques such as OLS. The method of maximum likelihood estimation is employed in
ARCH models. For the formal exposition of the approach, each realization of the conditional
variance ht has the joint likelihood of realization:

L ¼
YT
t¼1

ffiffiffiffiffiffiffiffiffiffi
1

2πht

s !
exp

�ε2t
2ht

� �
(9)

The log likelihood function is:

Log Lð Þ ¼ �T
2
Ln 2πð Þ � 0:5

XT
t¼1

ht � 0:5
XT
t¼1

ε2t
ht

� �
(10)

The parameter values are selected so that the log likelihood function is maximized using a
search algorithm by computers.
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2.2.3. Model estimation with time-varying volatility, skewness, and kurtosis

As it was shown in Section 2.2, when the residuals were examined for heteroscedasticity, the
Ljung Box test provided strong evidence of ARCH effects in the residuals series, which
suggests proceeds with modeling the returns volatility using the GARCH methodology. The
model to be estimated in this study is the standard GARCH(1, 1) model with constant shape
parameters, and also, we impose dynamics on both shape parameters to obtain autoregressive
conditional density (ARCD) models.4 This allows for time-varying skewness and kurtosis
assuming Johnson Su distribution for the error term in the two cases. Before presenting the
estimation results obtained with both the stock return series and the exchange rate return
series, the four nested models to be estimated are summarized as follows:

For stock return series:

Mean equation

rt ¼ μþ φ1rt�1 þ εt (11)

εt ¼
ffiffiffiffi
ht

p
zt, zt ¼

ffiffiffiffi
ht

p
zt � JSu ξt;λt;γt; δt

� �

Variance equation (GARCH)

ht ¼ b0 þ b1ε2t�1 þ b2ht�1 (12)

Skewness equation

γt ¼ c0 þ c1zt�1 þ c2z2t�1 þ c3γt�1 (13)

Kurtosis equation

δt ¼ d0 þ d1zt�1 þ d2z2t�1 þ d3δt�1 (14)

For all stock return series, the study is going to use GARCH(1,1) model with a similar specifi-
cation to that of Hansen [7] for shape parameters (γt, δt) but employs the standardized
innovation zt�1 instead of nonstandardized εt�1 as in Eqs. (13) and (14).

For exchange rate return series:

Mean equation

rt ¼ θ1εt�1 þ εt (15)

εt ¼
ffiffiffiffi
ht

p
zt, zt ¼

ffiffiffiffi
ht

p
zt � JSu ξt;λt;γt; δt

� �

Variance equation (GARCH)

4ARCD is the approach, where dynamics imposed on shape parameters and skewness or kurtosis are derived from the
time-varying shape parameters.
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ht ¼ b0 þ b1ε2t�1 þ b2ht�1 (16)

Skewness equation

γt ¼ c0 þ c1zt�1Izt�1<y þ c2zt�1Izt�1 ≥ y þ c3γt�1 (17)

Kurtosis equation

δt ¼ d0 þ d1 zt�1j jIzt�1<y þ d2 zt�1j jIzt�1 ≥ y þ d3δt�1 (18)

For the exchange rate return series, a specification similar to that of [11] for shape parameters
(γt, δt) is used with the exception that it utilizes the standardized innovation zt�1 instead of
nonstandardized εt�1 as in Eqs. (17) and (18). It also considers the absolute standardized
shocks for the shape parameter in Eq. (18), Ghalanos [6]. So, first, we start by estimating the
two standard models for the conditional variance: the AR(1)-GARCH(1,1) model (Eqs. (11) and
(12)) for the stock return series and MA(1)-GARCH(1,1) model (Eqs. (15) and (16)) for the
exchange rate return series. Second, the generalizations of both the standard GARCH and
GARCH models with time-varying skewness and kurtosis (GARCHSK) as in Eqs. (11)–(14)
for the stock return series and Eqs. (15)–(18) for the exchange rate return series are estimated.

The results for the stock return series are presented in Tables 3 and 4 for both the standard
GARCH and GARCHSK models, respectively. As expected, the results indicate high and
significant presence of conditional variance, since the coefficient of lagged conditional variance
(b2) is high, positive, and significant. Volatility is found to be persistent, since the coefficient of
lagged volatility (b1) is positive and significant, indicating that high conditional variance is
followed by high conditional variance. The sum of the two estimated coefficients (b1 + b2) in the
estimation process is very close to one, implying that large changes in stock returns tend to be

Parameters NASDAQ100 DAX30 SSE EZA EWC

Mean equation μ 0.0536* 0.0940* 0.0207 0.1535* 0.0976*

φ �0.0578* �0.0813* 0.0025 �0.0534* �0.0461*

Variance equation b0 0.0082 0.0128* 0.0284* 0.0596* 0.0202*

b1 0.0499* 0.0646* 0.0756 0.1011* 0.0619*

b2 0.9468* 0.9311* 0.9225* 0.8894* 0.9285*

Log-likelihood �3589.94 �3588.5 �3651.1 �4178.55 �3308.61

AIC 3.5969 3.5955 3.6580 4.1855 4.1445

ARCH-LM test for heteroscedasticity

Statistic (T*R2) 6.596 7.775 0.5993 1.385 4.032

Prob. chi-square (5) 0.2525 0.1691 0.9880 0.9259 0.5447

*Significant at the 5% level.

Table 3. Maximum likelihood estimates of AR(1)-GARCH(1,1) model for stock return series.
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followed by large changes, and small changes tend to be followed by small changes. This
confirms that volatility clustering is observed in the stock returns series. For the skewness and
kurtosis equations, it is found that for all stock return series, days with high conditional
skewness and kurtosis are followed by days with high conditional skewness and kurtosis
except DAX30 in kurtosis case, since the coefficients for lagged skewness (c3) and for lagged
kurtosis (d3) are positive and significant. In summary, there is a significant presence of condi-
tional skewness and kurtosis for all stock return series, since at least one of the coefficients
associated with the standardized shocks or squared standardized shocks to (skewness and
kurtosis) or to lagged (skewness and kurtosis) is found to be significant.

The results for the five exchange rates are presented in Tables 5 and 6 for GARCH and
GARCHSK models, respectively. As expected, the results are the same as in the case of stock
return series, i.e., the results also indicate highest significant presence of conditional variance.
Volatility is found to be persistent, and volatility clustering is also observed in exchange rate
return series. A significant presence of conditional skewness and kurtosis for all exchange rate
return series is confirmed, since at least one of the coefficients associated with the standardized

Parameters NASDAQ100 DAX30 SSE EZA EWC

Mean equation μ 0.0155 0.0816* 0.0555 0.1312* 0.0851*

φ �0.0567* �0.0947* �0.0154 �0.0512* �0.0540*

Variance equation b0 0.0104* 0.0167* 0.0506* 0.0620* 0.0250*

b1 0.0578* 0.0717* 0.1009* 0.0931* 0.0762*

b2 0.9436* 0.9239* 0.8997* 0.8998* 0.9183*

Skewness equation c0 �0.0038* 0.0035* 0.0015* �0.0261* �0.0256*

c1 0.00002 �0.0083* �0.0054* 0.0838* 0.0163

c2 0.00355* �0.0037* �0.0017* 0.0004 0.0192*

c3 0.9939* 1.0000* 0.9898* 0.8661* 0.9165*

Kurtosis equation d0 0.0001 0.7193* 0.9625* 0.2245* 0.4362

d1 0.9869* 0.3126* 0.2684* 0.4848* 0.5166*

d2 0.0799 0.2929* 0.0591 0.0000 0.2638*

d3 0.8459* 0.0019 0.5469* 0.8143* 0.4358*

Log-likelihood �3559.79 �3578.15 �3620.83 �3294.5 �3406.96

AIC 3.5728 3.5911 3.6338 4.1344 3.4200

ARCH-LM test for heteroscedasticity

Statistic (T*R2) 6.942 6.604 1.678 0.7606 5.393

Prob. chi-square (5) 0.2250 0.2518 0.8917 0.9795 0.3698

*Significant at the 5% level.

Table 4. Maximum likelihood estimates of AR(1)-GARCH(1,1) model with time-varying skewness and kurtosis for stock
return series.
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Parameters USD/GBP USD/AUD USD/ITL USD/ZAR USD/BRL

Mean equation θ 0.28470* 0.1886* 0.2495* 0.2619* 0.0945*

Variance equation b0 0.0009* 0.0015* 0.0006 0.0165* 0.0114

b1 0.0384* 0.0485* 0.0331* 0.0553* 0.1041

b2 0.9579* 0.9505* 0.9658* 0.9175* 0.8948*

Log-likelihood �907.732 �1528.337 �922.161 �2257.187 �2159.827

AIC 0.9137 1.5343 0.9282 2.2632 2.1658

ARCH-LM test for heteroscedasticity

Statistic (T*R2) 5.169 2.900 4.019 9.646 28.35

Prob. chi-square (5) 0.0754** 0.7155 0.1340** 0.0859 0.0016

*Significant at the 5% level.
**Significant at the 1% level.

Table 5. Maximum likelihood estimates of MA(1)-GARCH(1,1) model for exchange rate return series.

Parameters USD/GBP USD/AUD USD/ITL USD/ZAR USD/BRL

Mean equation θ 0.2978* 0.2111* 0.2626* 0.2590* 0.0978*

Variance equation b0 0.0009 0.0016 0.0006 0.0139* 0.0086*

b1 0.0502* 0.0597* 0.0425* 0.0760* 0.2626*

b2 0.9489* 0.9449* 0.9582* 0.9119* 0.8348*

Skewness equation c0 �0.0306 0.0368* �0.0189 0.0168* �0.0047

c1 0.0237 0.0610* 0.0195 0.0589* �0.0051

c2 0.0808* 0.0036 0.0658* 0.0058 0.0150*

c3 0.0000 0.4814 0.0000 0.9018* 0.8807*

Kurtosis equation d0 0.2075 0.2939* 0.2128 0.4497 0.0405

d1 0.4029* 0.5678* 0.3459* 1.0000* 1.0000*

d2 0.0050 0.0000 0.0235 0.0000 0.0000

d3 0.8217* 0.7851* 0.8364* 0.5342* 0.9077*

Log-likelihood �895.695 �1516.323 �910.919 �2227.667 �2135.46

AIC 0.9077 1.5283 0.9229 2.2397 2.1475

ARCH-LM test for heteroscedasticity

Statistic (T*R2) 4.299 2.4075 3.308 8.659 9.116

Prob. chi-square (5) 0.1165 0.7904 0.1912** 0.1235 0.1045

*Significant at the 5% level.

Table 6. Maximum likelihood estimates of MA(1)-GARCH(1,1) model with time-varying skewness and kurtosis for
exchange rate return series.
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shocks (either negative or positive) to (skewness & kurtosis) or to lagged (skewness & kurtosis)
are found to be significant.

Finally, it is worth noting that from the bottom of Tables 3–6, the value of Akaike information
criterion (AIC) decreases monotonically when moving from the simpler model (standard
GARCH) to the more complicated ones (GARCHSK) for all return series. Therefore, for all return
series analyzed, the GARCHSK model specification seems to be the most appropriate one
according to the AIC. Note that the ARCH-LM test statistics for all return series did not exhibit
additional ARCH effect. This shows that the variance equations are well specified and adequate.

3. Comparison of models

One way to start comparing the models is to compute the likelihood ratio test. The LR test statistic
has been used to compare the standard GARCHmodel (restricted model) and GARCHSK model
(unrestricted model), where Johnson Su distribution is assumed for the standardized error zt in
both specifications. The results are contained in Table 7. The value of the LR statistic is quite large
in all return series. This means that the GARCHSK model is showing superior performance than
the standard GARCH model with constant shape parameters.

4. A new forecast scheme

In the literature, three alternative ways for generating the sequence of the forecasts, namely the
recursive, rolling, and fixed schemes are suggested, see [13]. In this paper, the estimation

Series LogL (GARCH) LogL (GARCHSK) LR

Stocks

NASDAQ100 �3589.94 �3559.79 60.3*

DAX30 �3588.5 �3578.15 20.7*

SSE �3651.1 �3620.83 60.54*

EZA �3308.61 �3294.5 28.22*

EWC �3415.2 �3406.96 16.48*

Exchange rates

USD/GBP �907.732 �895.695 24.07*

USD/AUD �1528.337 �1516.323 24.03*

USD/ITL �922.161 �910.919 22.48*

USD/ZAR �2257.187 �2227.667 59.04*

USD/BRL �2159.827 �2135.46 48.73*

*Significant at the 5% level.

Table 7. Likelihood ratio tests for all daily returns of stock and exchange rate series.
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sample of the models for all return series is based on R = 2000 observations, while the last P =
1000 observations are used for the out-of-sample forecast. Only the case of generating one-step
ahead forecasts using the three alternative methods to generate a sequence of P one-step ahead
forecasts is considered. For the estimation sample sizes R for all return series, the study will
consider five different values for P for the three alternative schemes, namely P = 200, 400, 600,
800, 1000.

In this section, an attempt is made to introduce a new alternative scheme to generate the
sequence of the forecasts by computing a weighted average of the last three alternative methods.
The weights used are the reciprocals of the MSE of the methods. The rationale behind this is that
a method with large mean square forecasting errors (MSE) (i.e., less reliability) should be given a
smaller weight. The suggested name for the new method is “weighted average scheme.” The
four forecasting alternative schemes are applied using the estimated GARCHSKmodels for stock
and exchange rate return series, which are given in the previous section and the results are
shown in Table 8.

Table 8 presents the averages of the mean square forecasting errors over all levels of out-of-
sample forecast (P = 200, 400, 600, 800, 1000) for the recursive, rolling, fixed, and weighted
average schemes for all daily returns of stock and exchange rate series. The results show that
the average forecasting mean squares errors for the four forecasting methods for all return
series differ only either in the second decimal place or third decimal place. Although the
weighted method shows clear superiority to the recursive and fixed methods, it failed to beat
the rolling method which outperforms all other three methods in these data. We attribute the
fair performance of weighted method compared to the rolling method possibly because of the

Forecasting alternative schemes

Series Recursive Rolling Fixed Weighted

Stock

NASDAQ100 1.521857 1.522096 1.522586 1.522166

DAX30 2.256312 2.238891 2.254930 2.249675

SSE 1.736101 1.736698 1.736048 1.736175

EZA 3.759198 3.752719 3.759654 3.756829

EWC 2.031167 2.027740 2.031093 2.029841

Currency

USD/GBP 0.093255 0.092812 0.092784 0.092932

USD/AUD 0.255625 0.255306 0.255633 0.255505

USD/ITL 0.178520 0.178018 0.178496 0.178318

USD/ZAR 0.491262 0.489874 0.491256 0.490684

USD/BRL 0.377914 0.376564 0.377805 0.377420

Table 8. Averages of the mean square forecasting errors over all levels of out-of-sample forecast (P = 200, 400, 600, 800,
1000) for all forecasting alternative schemes for all daily returns of stock and exchange rate series.
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small differences in the mean square errors of the un-weighted methods. We expect it to
perform better in cases, where the three methods differ markedly with respect to their mean
square errors.

5. Conclusions

This chapter proposes a GARCH-type model that allowing for time-varying volatility, skew-
ness, and kurtosis where assuming a Johnson’s SU distribution for the error term. Models
estimated using daily returns of five stock indices and five exchange rate series. The results
indicate significant presence of conditional volatility, skewness, and kurtosis. Moreover, it is
found that specifications allowing for time-varying skewness and kurtosis outperform specifi-
cations with constant third and fourth moments. Also, a weighted average forecasting scheme
is introduced to generate the sequence of the forecasts by computing a weighted average of the
three alternative methods namely the recursive, rolling, and fixed schemes are suggested. The
results showed that the weighted average scheme did not show clear superiority to the other
three methods. Further work will consider linear and nonlinear combining methods and
different forecasting horizons to forecast stock and return series.
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Abstract

In this chapter, the recent advancements of differential synthetic aperture radar inter-
ferometry (DInSAR) technique are presented, with the focus on the DInSAR-based 
approaches leading to the generation of three-dimensional time-series of Earth’s surface 
deformation, based on the combination of multi-platform line-of-sight (LOS)-projected 
time-series of deformation. Use of pixel-offset (PO) measurements for the retrieval of 
North-South deformation components, which are difficult to be extracted from DInSAR 
data, only, is also discussed. A review of the principal techniques based on the exploita-
tion of amplitude and phase signatures of sequences of SAR images will be first pro-
vided, by emphasizing the limitations and strength of each single approach. Then, the 
interest will be concentrated on the recently proposed multi-track InSAR combination 
algorithm, referred as minimum acceleration InSAR combination (MinA) approach. The 
algorithm assumes the availability of two (or more) sets of SAR images acquired from 
complementary tracks. SAR data are pre-processed through one of currently available 
multi-temporal DInSAR toolboxes, and the LOS-projected surface deformation time-
series are computed. An under-determined system of linear equations is then solved, 
based on imposing that the 3-D displacement time-series have minimum acceleration 
(MA). The presented results demonstrate the validity of the MinA algorithm.

Keywords: ground displacement, SAR interferometry, pixel-offset, minimum 
acceleration, geodesy

1. Introduction

Over almost last two decades, the differential synthetic aperture radar interferometry (DIn-
SAR) technique [1, 2] has evolved to become nowadays a common practice for the detection 
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and monitoring of Earth’s crust modifications over time, both in academic and operative 
frameworks. DInSAR is mainly used to detect the temporal evolution of surface deforma-
tion through the generation of long-lasting displacement time-series. Several multi-temporal 
advanced DInSAR algorithms have been proposed in the literature [3–9]. At the present days, 
the availability of large archives of SAR images collected by several radar instruments oper-
ating with different wavelengths, and with complementary side-looking angle geometries 
has posed the problem to effectively combine the information associated with the different 
SAR datasets. In particular, the combination of multiple-platform line-of-sight (LOS) dis-
placement time series can improve the ability to retrieve the three-dimensional (East-West, 
Up-Down, and North-South) components of the on-going surface displacement phenomena. 
Thus, it allows overcoming the main limitation of DInSAR, which is able only to measure the 
radar LOS projection of the displacement. This research field is of particular interest; and in 
the recent years, a few solutions have been proposed [10–22] based on the effective combina-
tion of multiple-orbit/multiple-angle DInSAR-based measurements, as well as on merging 
of DInSAR data products with external measurements (e.g., derived from processing GPS 
data).

In this chapter, first, the basic rationale of the multi-temporal DInSAR techniques for 
the generation of Earth’s surface displacements maps (see Section 2) is summarized; and 
then, the characteristics of the principal combination techniques for multi-track/multi-
angle/multi-sensor SAR data recently proposed in the literature are discussed. In Section 
3, the focus will be on the algorithm referred to as minimum acceleration combination 
technique (MinA) [23], which does not require the simultaneous process of very large 
sequence of differential SAR interferograms. The algorithm consists of a straightforward 
post-processing stage that involves the analysis of sequences of independently processed 
(potentially, also with different DInSAR toolboxes) multiple-platform LOS displacement 
time-series. Noteworthy, the adopted InSAR-combination scheme can be used in a wide 
context. Real SAR datasets are exploited to demonstrate the validity of the presented algo-
rithm. Experimental results will be shown in Section 4. Conclusions and further perspec-
tives will be provided in Section 5.

2. Retrieval of surface displacement components through DInSAR and 
pixel-offset-based techniques

In this section, the basic principles of differential SAR interferometry (DInSAR) for the detec-
tion of Earth’s surface displacement are introduced. Moreover, the potential integration of 
DInSAR and pixel-offset-based measurement for the measurement of large deformation sig-
nals occurring in the case of large ruptures of Earth’s crust is discussed.

2.1. Basics of InSAR technique

One of the major applications of the SAR technology is represented by the SAR interferometry 
(InSAR) technique [1, 2], which relies on the measurements of the phase difference between 
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two complex-valued SAR images gathered from a satellite/airborne platform at different 
times and from different orbital positions, so as to measure the geomorphological character-
istics of the ground (such as the topography height and the modifications of the surface over 
time, due to earthquakes, volcano eruptions, or other geophysical phenomena). Historically, 
InSAR has been used for the measurement of ground topography. To understand how InSAR 
works, let us consider the imaging geometry shown in Figure 1, and let us suppose the first 
SAR image (referred to as master image) is acquired from the orbital position labeled to as M, 
and the second image (i.e., the slave image) is taken from the orbital position labeled to as S, 
located at a distance b (usually referred to as baseline) from M. By applying simple geometri-
cal rules, it is possible to uniquely identify the location of each ground targets on the image as 
well as to get an estimate of their heights (namely, z) relative to the reference plane. As evident 
by inspection of Figure 1, if a same target (namely, T) is observed form two orbital positions 
(master and slave), with two corresponding ranges its distances from the first (namely, r) 
and the second position (namely, r + δr) can be correctly measured and the target height can 
be unambiguously determined. This is obtained by finding out the solution of the following 
system of two equations (see Figure 1):

    (r + 𝛿𝛿r)    2  =  r   2  +  b   2  − 2 r b sin  (ϑ − α)   (1)

  z = H − r cos𝜗𝜗  (2)

where δr and δr + r represent the radar ranges from each antenna to the target point, ϑ repre-
sents the radar side-looking angle, α the angle of the baseline relative to the horizontal, and 
z is the scatterer height above the flat-earth reference. H is the height of the sensor above the 
reference surface and b is the distance between the antennas, which is referred to as baseline. 
The ability in successfully reconstructing the unknown topography (z) is strictly dependent 
on the capability to precisely measure the slant-range difference δr, which represents one of 
the known terms of the system of Eqs. (1) and (2).

Figure 1. SAR interferometric configuration. The dashed lines show that radar signal paths for the first interferogram 
pair formed by antennas at M and S.
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To understand how InSAR works, let us consider again the imaging geometry, let us 
assume the radar system has infinite bandwidth; under this condition the master and 
slave complex-valued SAR images (pixel-by-pixel) can be mathematically represented as 
follows:

    γ ̂    1   =  γ  1   exp  [− j   4π ___ λ   r]   (3)

    γ ̂    2   =  γ  2   exp  [− j   4π ___ λ   (r + δr) ]   (4)

where γ1 and γ2 are the complex reflectivity functions of the master and slave scene, respec-
tively, and λ denotes the operative radar wavelength. An interferogram is formed on a pixel-
by-pixel basis by starting from two complex-valued co-registered SAR images, as outlined in 
the following. For each pixel, the phase difference between the two SAR images is computed, 
by multiplying the first image (master) by the complex conjugate of the second image (slave) 
and, then, by extracting the relevant phase.

From Eqs. (3) and (4), the interferometric phase is obtained, as follows:

  arg  [  γ ̂    1     γ ̂    2  ∗ ]  = arg  [j   4π ___ λ   δr]  + arg  [ γ  1  ]  − arg  [ γ  2  ]   (5)

where the asterisk denotes the complex conjugate operation, and the symbol  arg[∙] refers to 
the operator that extracts the phase of a complex number, which is restricted to the [− π, π] 
interval. However, by assuming the scattering mechanism on the ground is the same 
(arg[γ1] = arg[γ2]) between the two passages of the sensor over the illuminated area (mutually 
coherent observations), the measured phase difference    ψ ~     k   (where k identifies a specific inter-
ferometric pair of a multiple baseline configuration) depends upon on the range difference 
δr, only:

    ψ ~     
k
  = arg  [exp  (j   4π ___ λ   δr) ]   (6)

The observed interferometic phase    ψ ~     k   is 2π ambiguous, and the obtained image is called an 
interferogram. Since the ambiguity of the phase, which is measured modulo 2π, the informa-
tion on range difference δr is retrieved from the interferogram by applying the phase unwrap-
ping operation [24, 25], thus estimating the inherent absolute interferometric phase ψk, given 
by:

   ψ   k  =   4π ___ λ   δr  (7)

By considering the standard interferometric configuration depicted in Figure 1 and a few 
mathematical calculations detailed in [26], it is possible to relate the computed interferometric 
phase difference to the (unknown) height topography as:

   ψ   k  ≈  ψ  0  k  +   
∂  ψ   k 

 ___ ∂ z   ∆ z = −   4π ___ λ    b   k  sin  ( ϑ  0  k  −  α   k )  −   4π ___ λ     
 b  ⊥  k  
 ___________ r sin  ϑ  0  k     (8)

Time Series Analysis and Applications58



To understand how InSAR works, let us consider again the imaging geometry, let us 
assume the radar system has infinite bandwidth; under this condition the master and 
slave complex-valued SAR images (pixel-by-pixel) can be mathematically represented as 
follows:

    γ ̂    1   =  γ  1   exp  [− j   4π ___ λ   r]   (3)

    γ ̂    2   =  γ  2   exp  [− j   4π ___ λ   (r + δr) ]   (4)

where γ1 and γ2 are the complex reflectivity functions of the master and slave scene, respec-
tively, and λ denotes the operative radar wavelength. An interferogram is formed on a pixel-
by-pixel basis by starting from two complex-valued co-registered SAR images, as outlined in 
the following. For each pixel, the phase difference between the two SAR images is computed, 
by multiplying the first image (master) by the complex conjugate of the second image (slave) 
and, then, by extracting the relevant phase.

From Eqs. (3) and (4), the interferometric phase is obtained, as follows:

  arg  [  γ ̂    1     γ ̂    2  ∗ ]  = arg  [j   4π ___ λ   δr]  + arg  [ γ  1  ]  − arg  [ γ  2  ]   (5)

where the asterisk denotes the complex conjugate operation, and the symbol  arg[∙] refers to 
the operator that extracts the phase of a complex number, which is restricted to the [− π, π] 
interval. However, by assuming the scattering mechanism on the ground is the same 
(arg[γ1] = arg[γ2]) between the two passages of the sensor over the illuminated area (mutually 
coherent observations), the measured phase difference    ψ ~     k   (where k identifies a specific inter-
ferometric pair of a multiple baseline configuration) depends upon on the range difference 
δr, only:

    ψ ~     
k
  = arg  [exp  (j   4π ___ λ   δr) ]   (6)

The observed interferometic phase    ψ ~     k   is 2π ambiguous, and the obtained image is called an 
interferogram. Since the ambiguity of the phase, which is measured modulo 2π, the informa-
tion on range difference δr is retrieved from the interferogram by applying the phase unwrap-
ping operation [24, 25], thus estimating the inherent absolute interferometric phase ψk, given 
by:

   ψ   k  =   4π ___ λ   δr  (7)

By considering the standard interferometric configuration depicted in Figure 1 and a few 
mathematical calculations detailed in [26], it is possible to relate the computed interferometric 
phase difference to the (unknown) height topography as:

   ψ   k  ≈  ψ  0  k  +   
∂  ψ   k 

 ___ ∂ z   ∆ z = −   4π ___ λ    b   k  sin  ( ϑ  0  k  −  α   k )  −   4π ___ λ     
 b  ⊥  k  
 ___________ r sin  ϑ  0  k     (8)

Time Series Analysis and Applications58

where ∆z is the surface height variation above the flat-earth reference plane,   ϑ  
0
  k   is the side-

looking angle of each point in the image, assuming zero local height,   b  
⊥
  k   =  b   k  cos  ( ϑ  

0
  k  −  α   k )    repre-

sents the projection of the baseline in the direction perpendicular to the line-of-sight from the 
radar to the target. The first term   ψ  

0
  k  =   4π ___ λ    b   k  sin  ( ϑ  

0
  k  −  α   k )   in Eq. (8) accounts for the phase contribu-

tion corresponding to the flat-Earth (z = 0), which is the term that is present in the absence of 
any height elevation on the ground. From Eq. (8), it is clear that the sensitivity of the InSAR 
measurement can be improved by increasing the baseline. However, the perpendicular base-
line, cannot exceed the limiting value (critical baseline) for which the variation of the phase 
difference across one single ground range resolution element is 2π.

SAR interferometry nowadays is mostly used for the detection of surface changes occurring 
over time. In such a case, when a slight change of the surface across the two SAR acquisition 
times occurs in the imaged scene, an additive term arises in the interferometric phase, which 
is associated with the radar line-of-sight (LOS) component of the surface displacement, in 
addition to a phase term that depends on topography. By the inspection of the imaging geom-
etry depicted in Figure 2, we get:

  ∆  ψ   k  =   
∂  ψ   k 

 ___ ∂ z   ∆ z +   
∂  ψ   k 

 ____ ∂  d  Los  k     ∆  d  Los  k   = −   4π ___ λ     
 b  ⊥  k  
 ___________ r sin  ϑ  0  k    ∆ z +   4π ___ λ   ∆  d  Los  k    (9)

where  ∆  d  
Los

  k    represents the projection of the surface displacement vector onto LOS (range) 
direction pertinent to the kth interferometric pair. Note that the presence of the flat earth 
phase contribution was neglected, for the sake of convenience.

In order to measure the interferometric phase term related to the surface displacement, it 
is thus essential to remove the interferometric phase contribution pertinent to the topogra-
phy in Eq. (9). Specifically, a differential SAR interferogram is formed by synthesizing the 
topographic phase from an available digital elevation model (DEM) of the area (using the so 

Figure 2. Differential SAR interferometry imaging geometry.
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so-called back-geocoding process) and by subtracting, pixel-by-pixel, these synthetic fringes 
to the corresponding InSAR phase, thus leaving only the terms associated with the displace-
ment. Accordingly, computed differential SAR interferograms can be expressed as:

  ∆  ψ   k  = ∆  ψ  disp  k   + ∆  ψ  topo  k   + ∆  ψ  orb  k   + ∆  ψ  prop  k   + ∆  ψ  scat  k    (10)

where k ∈ {1, .., M} specifies the considered interferometric pair (master/slave);

 ∆  ψ  
disp

  k   =   4π ___ λ   ∆  d  
Los

  k    represents possible displacement of the scatterer between observations, where 
dLOS is the projection of the relevant displacement vector on the line of sight;

 ∆  ψ  
topo

  k   =   4π ___ λ     
 b  

⊥
  k  
 ___________ r sin  ϑ  

0
  k    ∆  z ~    represents the residual-topography induced phase due to a non-perfect 

knowledge of the actual height profile (i.e., the DEM errors  ∆  z ~   );

 ∆  ψ  
orb

  k    accounts for possible inaccurate orbital information;

 ∆  ψ  
prop

  k    denotes the phase components due to the variation of propagation conditions (pertinent 
to the change in the atmospheric and ionospheric dielectric constant) between the two master/
slave acquisitions;

 ∆  ψ  
scat

  k    accounts for change in scattering behavior [13].

2.2. Combination of ascending/descending displacement maps

Availability of InSAR results computed from SAR data obtained from ascending and descend-
ing orbits allows also for the separation of the East-West (E-W) and the vertical components 
of the detected deformation. In particular, for all the pixels that are common to both radar 
geometries, the sum and the difference of LOS-projected deformations computed for the 
ascending and the descending orbits are calculated. In particular, the sum of the ascending/
descending LOS-projected displacement measurements is related to the vertical component 
of the ground deformation, whereas the difference of the ascending/descending compo-
nents gives an estimate for the E-W component of the deformation. Also, because modern 
spaceborne radar systems are mounted on-board satellites that fly nearly polar orbits, the 
North-South (N-S) component of the deformation cannot be reliably measured. To explain 
the rationale for the retrieval of the E-W and the vertical components of the deformation, the 
following assumptions are made: (i) ascending and descending radar LOS directions (  d  

LOS
   (Asc)    

and   d  
LOS

   (Desc)   , respectively) lay wholly in the east–z plane and (ii) the sensor side-looking angle 
is approximately the same along the ascending and descending orbits. Both these assump-
tions are acceptable. If we refer to the same homologous pixel imaged by the ascending and 
descending orbits, the E-W and Up-Down components of the measured surface deformation 
can be estimated from the ascending/descending LOS measurement (e.g., the LOS-projected 
rates of deformation) as follows:

   d  LOS   (East)   ≈   
 d  LOS   (Desc)   −  d  LOS   (Asc)  

 _________ 2 sin ϑ    (11)

   d  LOS   (Up)   ≈   
 d  LOS   (Desc)   +  d  LOS   (Asc)  

 _________ 2 cos ϑ    (12)
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Geometric scheme to interpret the deformation component is portrayed in Figure 3. Finally, 
it is worth emphasizing that a fundamental advantage of InSAR technology, with respect to o 
GPS networks, resides in its dense sampling grid of the displacement field.

2.3. The advanced multi-temporal small baseline subset (SBAS) technique

In the following, the small baseline subset (SBAS) algorithm is presented. SBAS was developed 
in 2002 by a team of researchers from National Council Research (CNR) of Italy [19]. To intro-
duce the rationale of the algorithm, let us consider a set of Q single-look-complex (SLC) SAR 
images acquired by a radar instrument over a certain area of interest. One of these images is 
selected and assumed as the reference (master) image, with respect to which all available SAR 
images are properly co-registered. The set is characterized by the corresponding acquisition 
times {t1, …, tQ} and the inherent perpendicular baselines vector {b⊥1, …, b⊥Q} estimated with 
respect to the reference image. Application of the standard SBAS technique starts with the gen-
eration of a set of M of small baseline multi-look (differential) interferograms. On these interfer-
ograms, the retrieval of the original (unwrapped) phase signals from the modulo-2π measured 
(wrapped) phases is carried out. The expression of the kth interferometric phase is as follows:

Figure 3. Combination scheme of ascending and descending displacement fields.
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  ∆  ψ   k  =   4π ___ λ   ∆  d  LOS  k   −   4π ___ λ     
 b  ⊥  k  
 ___________ r sin  ϑ  0  k    ∆   z ~   + ∆  ψ  orb  k   + ∆  ψ  prop  k   + ∆  ψ  scat  k     (13)

The system of Eq. (13) can be re-organized in a matrix form as:

  A ⋅ Ψ = ∆Ψ  (14)

wherein A is the incidence-like matrix directly related to the selected set of small baseline 
(SB) interferometric data-pairs. Let us now manipulate the system of Eq. (14) to replace the 
unknown phase vector Ψ with the mean phase velocities between adjacent time acquisitions 
(see [6]). Accordingly, the new unknowns become:

  v =   [ v  1   =    Ψ   2  −  Ψ   1  ______  t  2   −  t  1  
  , … ,  v  Q−2   =    Ψ   Q−1  −  Ψ   Q−2  ________  t  Q−1   −  t  Q−2  

  ]    
T
   (15)

and the system (14) can be re-formulated as follows:

  B ⋅ v = ∆Ψ  (16)

wherein B is the incidence matrix of the linear transformation in Eq. (15), whose detailed 
expression can be found in [6]. It is worth remarking that, depending upon the selection of 
small baseline interferometric data pairs, it is possible that SAR data could be separated into 
some independent subsets separated one another by large baselines. Mathematically, this 
leads the rank deficiency of matrix B and, accordingly, the system (16) can have infinite pos-
sible solutions. In order to figure it out a solution among the infinite ones, the singular value 
decomposition (SVD) method is applied. This allows us to evaluate the pseudo-inverse of 
the matrix B, which gives the minimum norm least-squares (LS) solution of the system (16). 
In this context, the minimum-norm constraint on the velocity vector v allows mitigating the 
presence of temporal discontinuities in the final result, so as to guarantee a physically sound 
solution. Finally, an additional integration step is necessary to compute the solution from the 
estimated vector v. After solving the system (16) an estimate of the spurious terms due to the 
presence of some residual topographic artifacts in the generated interferograms is usually 
performed [6]. Atmospheric phase screen (APS) is also estimated and filtered out [6]. The 
quality of retrieved LOS time-series is finally evaluated pixel-by-pixel by calculating the val-
ues of the temporal coherence factor, defined in [26].

2.4. Pixel-offset (PO) technique for the estimation of large rupture deformations

In areas where large and/or rapid deformation phenomena occur, the exploitation of the dif-
ferential interferograms, thus the generation of displacement time series, can be however 
strongly limited by the presence of very high fringe rates, which in turn introduce additional 
difficulties in the phase unwrapping step and may lead to significant misregistration errors. 
A pictorial representation of how the interferometric phase degrades as the displacement 
amount increases is given in Figure 4. Nevertheless, the information on the occurred displace-
ments might be preserved in the amplitude of the investigated data pair, considering the offset 
of the image’s pixels in range and azimuth directions.

Time Series Analysis and Applications62



  ∆  ψ   k  =   4π ___ λ   ∆  d  LOS  k   −   4π ___ λ     
 b  ⊥  k  
 ___________ r sin  ϑ  0  k    ∆   z ~   + ∆  ψ  orb  k   + ∆  ψ  prop  k   + ∆  ψ  scat  k     (13)

The system of Eq. (13) can be re-organized in a matrix form as:

  A ⋅ Ψ = ∆Ψ  (14)

wherein A is the incidence-like matrix directly related to the selected set of small baseline 
(SB) interferometric data-pairs. Let us now manipulate the system of Eq. (14) to replace the 
unknown phase vector Ψ with the mean phase velocities between adjacent time acquisitions 
(see [6]). Accordingly, the new unknowns become:

  v =   [ v  1   =    Ψ   2  −  Ψ   1  ______  t  2   −  t  1  
  , … ,  v  Q−2   =    Ψ   Q−1  −  Ψ   Q−2  ________  t  Q−1   −  t  Q−2  

  ]    
T
   (15)

and the system (14) can be re-formulated as follows:

  B ⋅ v = ∆Ψ  (16)

wherein B is the incidence matrix of the linear transformation in Eq. (15), whose detailed 
expression can be found in [6]. It is worth remarking that, depending upon the selection of 
small baseline interferometric data pairs, it is possible that SAR data could be separated into 
some independent subsets separated one another by large baselines. Mathematically, this 
leads the rank deficiency of matrix B and, accordingly, the system (16) can have infinite pos-
sible solutions. In order to figure it out a solution among the infinite ones, the singular value 
decomposition (SVD) method is applied. This allows us to evaluate the pseudo-inverse of 
the matrix B, which gives the minimum norm least-squares (LS) solution of the system (16). 
In this context, the minimum-norm constraint on the velocity vector v allows mitigating the 
presence of temporal discontinuities in the final result, so as to guarantee a physically sound 
solution. Finally, an additional integration step is necessary to compute the solution from the 
estimated vector v. After solving the system (16) an estimate of the spurious terms due to the 
presence of some residual topographic artifacts in the generated interferograms is usually 
performed [6]. Atmospheric phase screen (APS) is also estimated and filtered out [6]. The 
quality of retrieved LOS time-series is finally evaluated pixel-by-pixel by calculating the val-
ues of the temporal coherence factor, defined in [26].

2.4. Pixel-offset (PO) technique for the estimation of large rupture deformations

In areas where large and/or rapid deformation phenomena occur, the exploitation of the dif-
ferential interferograms, thus the generation of displacement time series, can be however 
strongly limited by the presence of very high fringe rates, which in turn introduce additional 
difficulties in the phase unwrapping step and may lead to significant misregistration errors. 
A pictorial representation of how the interferometric phase degrades as the displacement 
amount increases is given in Figure 4. Nevertheless, the information on the occurred displace-
ments might be preserved in the amplitude of the investigated data pair, considering the offset 
of the image’s pixels in range and azimuth directions.

Time Series Analysis and Applications62

Pixel-offset (PO) is a technique that attempts to find the same distinctive features within sub-
scenes of two images relevant to the same target area. In remote sensing, this is usually per-
formed by considering either the Fourier shift theorem [28], or normalized cross-correlation 
(NCC) algorithms [29]. In SAR applications, PO allows co-registering image pairs or, while 
already co-registered, identifying the residual shifts related to the motion of distinctive fea-
tures with accuracies in the order of 1/20th of pixel.

In this scenario, the availability of a sequence of full resolution SAR data pairs, already co-
registered, was assumed. For this purpose, the NCC algorithm, which is widely used for SAR 
images, is applied. This step, carried out on across-track and along-track directions, provides 
for each pixel an estimation of range and azimuth shifts, finally leading to two offset maps for 
each data pair. The performed NCC analysis might be evaluated through an estimator of the 
“goodness” of the retrieved offsets.

At this stage, in order to obtain the corresponding time series, the SBAS strategy is applied 
(see Section 2.3) by substituting the amplitude-driven information to the phase-driven dis-
placement measurements. This operation was performed to the sequences of smoothed range 
and azimuth pixel-offset maps. Hence, the small baseline constraint in the data pair’s selec-
tion, implicit in the SBAS strategy, is convenient in order to maximize the amount of the 

Figure 4. Pictorial representation of the effects due to different amounts of deformations. (a) Plot of the deformation 
time-series showing the temporal evolution of displacement in the Sierra Negra Caldera, as computed from a sequence 
of ENVISAT DInSAR interferograms. (b)–(d) Differential interferograms relevant to different deformation regimes 
and time epochs: when the deformation rate is low the information conveyed in the phase is fully preserved (b). As 
deformation rate increases the fringe spatial frequency increases (c), and in the occurrence of the large rupture of terrain 
the fringe rate is so high that the corresponding interferometric phase (d) is completely corrupted by decorrelation noise, 
thus making the use of phase not effective. This figure is a re-adaptation of Figure 1 originally presented in [27].

Generation of Earth’s Surface Three-Dimensional (3-D) Displacement Time-Series by Multiple-Platform SAR Data
http://dx.doi.org/10.5772/intechopen.71329

63



exploitable pixels. Notice that this algorithm, which is known in the literature to as pixel 
offset SBAS (POSBAS) [27], is particularly attractive in the case of large deformation, because 
it allows us to have an estimate of the North-South deformation components, with accuracy 
in the order of some centimeter, whereas (as said before) the information related to North-
South displacement is almost absent in the conventional DInSAR interferometric phase, being 
the sensors’ flight trajectories almost parallel to the North-South direction. The results of the 
performed experiments are shown in Section 4.

3. Minimum acceleration (MinA) algorithm

In this section, the minimum acceleration (MinA) combination algorithm [23] used for the 
extraction of displacement time-series of the Up-Down, East-West, and North-South com-
ponents is detailed. To introduce the right mathematical framework, let us assume the 
availability of K independent sets of multiple-platform SAR data collected at ordered times   
t    (j)   =   [ t  

0
   (j)  ,  t  

1
   (j)  , … ,  t   Q  

j
  −1

   (j)   ]    T  ∀ j = 1, … , K  over the same area on the ground, consisting of Qj distinctive 
time epochs, respectively. The MinA algorithm [23] requires the preliminary generation from 
each single SAR data-track of the inherent LOS-projected deformation time-series. This task 
can be achieved by independently applying either the SBAS technique [6] or other alterna-
tive multi-temporal DInSAR approaches [4–9] to the available K SAR datasets. During this 
preliminary stage, the residual topography as well as the atmospheric phase screen (APS) 
artifacts corrupting differential SAR interferograms might be estimated and successfully fil-
tered out from the generated LOS-projected displacement time-series [7–16]. The so-obtained 
LOS-projected time-series of deformation along with other ancillary information, such as the 
maps of temporal coherence (quantifying the goodness of obtained time-series) as well as 
the LOS mean deformation velocity maps are geocoded to a common spatial grid of points 
where to apply the subsequent combination stage. During this preliminary stage the location 
of high coherent targets is also identified. Henceforth, let   d    (j)   =   [ d  

0
   (j)  ,  d  

1
   (j)  , … ,  d   Q  

j
  −1

   (j)   ]    T  ∀ j = 1, … , K  be the 
geocoded LOS-projected deformation time-series relevant to a generic pixel P that belongs to 
the group of high-coherent pixels common to all the available K SAR datasets.

LOS-projected time-series of deformation are expressed with respect to the instants   
t  

0
   (j)  , ∀ j = 1, … , K , which are singularly taken as reference for each dataset, that is to say   

d  
0
   (j)   = 0, ∀ j = 1, … , K . Let us now describe the algorithm works, and  Q =  ∑ 

j=1
  

K
     Q  

j
    be the total number 

of the available SAR images collected at the “whole” ordered times  T =  ∪  
j=1

  K    t    (j)   =   [ T  
0
  ,  T  

1
  , … ,  T  

Q−1
  ]    T  .

Let us start by observing that a generic LOS-projected deformation measurement, namely 
dLOS, can be related to its inherent 3-D components, namely [dE − W, dU − D, dN − S]T, as [18, 22]:

   d  LOS   = d ⋅   i 
^
    LOS   = sin ϑ cos ϕ  d  East−West   − cos ϑ  d  Up−Down   + sin ϑ sin ϕ  d  North−South    (17)

where     i ̂    
LOS

    is the LOS-direction versor. Note that θ and ϕ represent the radar side-looking and 
the satellite heading angles, respectively; the imaging geometries for ascending/descending 
data-tracks are shown in Figure 5. Extending to our case what originally proposed in [6] and 
subsequently adapted in [22], let us relate the available LOS deformations d(j)(P),  j = 1, …, K 

Time Series Analysis and Applications64



exploitable pixels. Notice that this algorithm, which is known in the literature to as pixel 
offset SBAS (POSBAS) [27], is particularly attractive in the case of large deformation, because 
it allows us to have an estimate of the North-South deformation components, with accuracy 
in the order of some centimeter, whereas (as said before) the information related to North-
South displacement is almost absent in the conventional DInSAR interferometric phase, being 
the sensors’ flight trajectories almost parallel to the North-South direction. The results of the 
performed experiments are shown in Section 4.

3. Minimum acceleration (MinA) algorithm

In this section, the minimum acceleration (MinA) combination algorithm [23] used for the 
extraction of displacement time-series of the Up-Down, East-West, and North-South com-
ponents is detailed. To introduce the right mathematical framework, let us assume the 
availability of K independent sets of multiple-platform SAR data collected at ordered times   
t    (j)   =   [ t  

0
   (j)  ,  t  

1
   (j)  , … ,  t   Q  

j
  −1

   (j)   ]    T  ∀ j = 1, … , K  over the same area on the ground, consisting of Qj distinctive 
time epochs, respectively. The MinA algorithm [23] requires the preliminary generation from 
each single SAR data-track of the inherent LOS-projected deformation time-series. This task 
can be achieved by independently applying either the SBAS technique [6] or other alterna-
tive multi-temporal DInSAR approaches [4–9] to the available K SAR datasets. During this 
preliminary stage, the residual topography as well as the atmospheric phase screen (APS) 
artifacts corrupting differential SAR interferograms might be estimated and successfully fil-
tered out from the generated LOS-projected displacement time-series [7–16]. The so-obtained 
LOS-projected time-series of deformation along with other ancillary information, such as the 
maps of temporal coherence (quantifying the goodness of obtained time-series) as well as 
the LOS mean deformation velocity maps are geocoded to a common spatial grid of points 
where to apply the subsequent combination stage. During this preliminary stage the location 
of high coherent targets is also identified. Henceforth, let   d    (j)   =   [ d  

0
   (j)  ,  d  

1
   (j)  , … ,  d   Q  

j
  −1

   (j)   ]    T  ∀ j = 1, … , K  be the 
geocoded LOS-projected deformation time-series relevant to a generic pixel P that belongs to 
the group of high-coherent pixels common to all the available K SAR datasets.

LOS-projected time-series of deformation are expressed with respect to the instants   
t  

0
   (j)  , ∀ j = 1, … , K , which are singularly taken as reference for each dataset, that is to say   

d  
0
   (j)   = 0, ∀ j = 1, … , K . Let us now describe the algorithm works, and  Q =  ∑ 

j=1
  

K
     Q  

j
    be the total number 

of the available SAR images collected at the “whole” ordered times  T =  ∪  
j=1

  K    t    (j)   =   [ T  
0
  ,  T  

1
  , … ,  T  

Q−1
  ]    T  .

Let us start by observing that a generic LOS-projected deformation measurement, namely 
dLOS, can be related to its inherent 3-D components, namely [dE − W, dU − D, dN − S]T, as [18, 22]:

   d  LOS   = d ⋅   i 
^
    LOS   = sin ϑ cos ϕ  d  East−West   − cos ϑ  d  Up−Down   + sin ϑ sin ϕ  d  North−South    (17)

where     i ̂    
LOS

    is the LOS-direction versor. Note that θ and ϕ represent the radar side-looking and 
the satellite heading angles, respectively; the imaging geometries for ascending/descending 
data-tracks are shown in Figure 5. Extending to our case what originally proposed in [6] and 
subsequently adapted in [22], let us relate the available LOS deformations d(j)(P),  j = 1, …, K 

Time Series Analysis and Applications64

(for each high coherent pixel) to their unknown 3-D components. This leads writing a system 
of Q-K independent linear equations with respect to the M = 3(Q-1) unknowns representing the 
East-West (E-W), Up-Down (U-D), and North-South (N-S) deformation velocities components 
between adjacent time-acquisitions, namely   V  E   =  [  V   E  1  

  ,  V   E  2  
  , ...,  V   E  Q−1  

   ]   T  ,   V  U   =  [  V   U  1  
  ,  V   U  2  

  , ...,  V   U  Q−1  
   ]   T    

and   V  N   =  [  V   N  1  
  ,  V   N  2  

  , ...,  V   N  Q−1  
   ]   T  . This system of linear equations can be expressed using matrix 

formalism as follows

  B ⋅  

⎡
 ⎢ 

⎣
 
 V  E  

   V  U    
 V  N  

 

⎤
 ⎥ 

⎦
  =  

⎡

 ⎢ 

⎣

 

 Γ   1  ( d    (1)   −  d  0   
(1)  ) 

   Γ   2  ( d    (2)   −  d  0   
(2)  )          …  

 Γ   K  ( d    (K)   −  d  0   
(K)  ) 

 

⎤

 ⎥ 

⎦

  =  d  ˜    (18)

where Γj j = 1, …, K are the values of temporal coherence associated to the K different datas-
ets (representing a quality factor of the obtained LOS displacement time-series) and B is the 
incidence-like matrix of the linear transformation that converts LOS-projected measurements 
into their inherent 3-D components. It is defined by taking into account (1) as:

  B =  

⎡

 ⎢ 

⎣

 

 B    (1)    Γ    (1)   sin  ϑ    (1)   cos  ϕ    (1)  

  

−  B    (1)    Γ    (1)   cos  ϑ    (1)  

  

 B    (1)    Γ    (1)   sin  ϑ    (1)   sin  ϕ    (1)  

        B    (2)    Γ    (2)   sin  ϑ    (2)   cos  ϕ    (2)    −  B    (2)    Γ    (2)   cos  ϑ    (2)     B    (2)    Γ    (2)   sin  ϑ    (2)   sin  ϕ    (2)                      …                  …               …      
             …

  
                …

  
             …

      

 B    (K)    Γ    (K)   sin  ϑ    (K)   cos  ϕ    (K)  

  

−  B    (K)    Γ    (K)   cos  ϑ    (K)  

  

 B    (K)    Γ    (K)   sin  ϑ    (K)   sin  ϕ    (K)  

 

⎤

 ⎥ 

⎦

   (19)

wherein B(j), j = 1, …, K is the jth incidence-like matrix of the linear transformation that relates 
displacement time-series with velocity deformation rates between consecutive time intervals 
for the jth SAR data set. Derivation of that incidence-like matrix is detailed in the paper [6]. 
Note that this matrix is the same as the one used in SBAS and discussed in the previous 
section.

The system (18) and (19) has fewer linear independent equations (Q-K) than unknowns (M), 
thus it is an under-determined system that does not admit a unique solution. The matrix B 
of the system has singular values that gradually decay to zero, thus rendering any solution 

Figure 5. SAR data acquisition geometries for descending (a) and ascending (b) orbits, respectively.
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much sensitive to noise level corrupting the vector   d ˜   . It represents a canonical example of a 
linear discrete ill-posed problem whose meaningful solution can be obtained by replacing 
the “original” linear system (18) and (19) by a nearby system that is less sensitive to perturba-
tions of the right-hand side of the system, and considers the solution of this new system as a 
good approximation of the original one. This operation is known as regularization and can 
be performed using truncated singular value decomposition (TSVD) [30], Tikhonov regular-
ization [31], maximum entropy principle [32]. TSVD practically consists in decomposing the 
matrix B with SVD and truncating (putting to zeros) the small singular values, in such a way 
that they do not dominate the solution leading to spurious oscillations. In turn, Tikhonov 
regularization consists in replacing the solution of the system (2) and (3) by the following 
minimization problem:

   min  
V∈ℝ

    {  ‖B ⋅ V −  d  ˜  ‖   2   +  α   2    ‖V‖   2  }   (20)

for a suitable value of the regularization parameter α, which can effectively be found 
using (for instance) L-curve method [31]. The goal of L-curve is to search for a regular-
ization parameter α for which the solution has an optimal balance between the mini-
mization of residual norm    ‖B ⋅ V −  d ˜  ‖   

2
    and the “weight” of the minimum-norm velocity 

 regularization ‖V‖2.

A similar regularized problem was proposed within the MSBAS algorithm [22], even 
though in that case the relevant system of linear equations was derived from a sequence of 
unwrapped multiple-tracks differential SAR interferograms. In the case of MinA algorithm, 
the regularization problem is achieved differently, by adding to the original system (18) 
and (19) other equations imposing the condition that the (unknown) 3-D (E-W, U-D, N-S) 
displacement time-series are with minimum curvature, that is to say the velocity deforma-
tion differences (for all the 3-D components) between consecutive time intervals is minimal. 
Such conditions can formally be expressed by adding to Eq. (2) the following set of 3(Q-2) 
additional equations:

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

 V   E  i+1  
   −  V   E  i  

  

  

i = 1, … , Q − 2

     V   U  i+1  
   −  V   U  i  

    i = 1, … , Q − 2    
 V   N  i+1  

   −  V   N  i  
  
  

i = 1, … , Q − 2
    (21)

Accordingly, the regularized system of linear equations becomes:

   [ B  C ]  ⋅  

⎡
 ⎢ 

⎣
 
 V  E  

   V  U    
 V  N  

 

⎤
 ⎥ 

⎦
  =  [  d  ˜    

0
  ]   (22)

where C is the incidence-like matrix related to the minimum-acceleration-regularization lin-
ear transformation. The solution of Eq. (6) is finally obtained in the LS sense by applying 
Truncated SVD to the matrix  𝛀𝛀 =  ( B  C )  . Once the problem in Eqs. (21) and (22) is solved, the 
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where C is the incidence-like matrix related to the minimum-acceleration-regularization lin-
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Truncated SVD to the matrix  𝛀𝛀 =  ( B  C )  . Once the problem in Eqs. (21) and (22) is solved, the 
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3-D velocity deformation components are independently time-integrated to recover the rel-
evant 3-D displacement time-series.

As earlier said, a similar system of equations was also derived within the MSBAS algorithm 
[22] but, at variance with MinA, it relies on searching for a minimum-velocity-norm (MN) 
solution considering the Tikhonov regularization. Moreover, MSBAS requires the simul-
taneous inversion of several (a few hundreds or more) unwrapped interferograms for the 
retrieval of the 3-D components of deformation, and the achieved time-series were however 
still affected by possible topographic and atmospheric artifacts (although considering several 
hundreds of interferograms various sources of noise and related artifacts are averaged and 
only partly filtered out) that need to be subsequently filtered out in a post-processing phase. 
Accordingly, even though the adopted combination strategy shares some similarities with the 
MSBAS algorithm, MinA does not require simultaneous processing of multi-platform/multi-
angle SAR datasets and can be applied with no restrictions at all on the method (permanent 
scatterers and/or small baseline-oriented) used for the retrieval of LOS DInSAR time-series, 
making its field of applicability extremely wide.

Noteworthy, the MinA algorithm can also be extended to include azimuth- and range-pixel-
offset (AZPO and RGPO) time-series, as computed using the PO-SBAS method (or alterna-
tive solutions). This case is very suitable when large deformation phenomena have to be 

Figure 6. MinA diagram block. K independent sets of LOS measurements of the surface ground displacement, as obtained 
by processing data from K multi-angle/multi-sensor SAR systems also using independent DInSAR toolboxes, are 
combined (taking into account the associated quality reconstruction maps). Combination is based on the application of 
minimum-acceleration constraints on the achievable Up-Down, East-West, and North-South time-series of deformation. 
Use of external data is helpful for better constraining the solutions.
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 monitored, being the accuracy of these methods is on the order of 10 cm (or larger). In this 
case, the strategy here adopted can be extended using AZPO and RGPO time-series of defor-
mation, instead of the LOS deformation measurements, and applying the minimum-acceler-
ation (MA) regularization.

The diagram block of the MinA algorithm is shown in Figure 6.

4. Experimental results

This section shows some experimental results obtained by applying the PO-SBAS and 
the MinA techniques for the estimation of three-dimensional components of terrain 
displacements.

4.1. Sierra Negra PO-SBAS results

The experiments carried out in this case were related to the area of Sierra Negra caldera, which 
is the most active among shield volcanoes located on Isabela Island, Galapagos Archipelago. 
Following an Mw 5.4 earthquake, in October 2005 Sierra Negra caldera erupted, interrupting 
a period of quiescence that lasted almost 30 years. The investigation of several analyses of 
the Sierra Negra caldera geodetic signals revealed Sierra Negra is almost continuously in an 
uplift phase, which started in 1992, and accelerated so as to reach about 5 m of cumulative 
ground displacement before the 2005 eruption. On the other hand, the October 2005 cata-
strophic event induced a subsidence of the inner caldera of more than 5 m [33].

Due to the large deformation dynamics affecting Sierra Negra caldera, the retrieval of 
ground displacements using DInSAR is a challenging task. Indeed, the application of con-
ventional SBAS-DInSAR time series analysis on the 2003–2007 Galapagos dataset provides 
only a partial picture of the deformation field. In particular, a set of 25 ENVISAT SAR images 
were processed (see [27] for further details). Figure 7(a) and (b) shows the retrieved mean 
ground velocity maps relevant to the 2003–2007 period. The behavior of the northern flanks 
of the volcano, being the displacements still in the order of centimeters, is clearly imaged by 
the SBAS-DInSAR analysis, and it is in agreement with previous studies. However, due to 
the lack of coherence caused by the large deformation dynamics, the interferometric phase 
analysis is not able to measure displacements around the crater and inner caldera due to the 
lack of coherence caused by the large deformation dynamics.

In order to image the spatial and temporal evolution of the deformation in these areas, the 
SAR amplitude information was exploited. Thus, the PO-SBAS approach was applied to the 
same data pairs considered for the generation of the SBAS-DInSAR time series. Following 
the PO-SBAS steps explained, the offsets for each data pair were calculated, and a common 
mask of “good” pixels was selected by considering only those having a high QI value that 
were present at least in 70% of the whole dataset. At this stage, the PO-SBAS time-series were 
generated for each of the selected pixels. The accuracies for the PO-SBAS measurements, rel-
evant to the herein analyzed test-case, were obtained by calculating the standard deviation 
of the measurements in an area that is known to be stable. Estimated accuracy values are in 
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the order of 1/20th of pixel, in agreement with those expected. However, since the aim of 
this analysis is to emphasize the areas characterized by large deformations, the pixels whose 
dynamics are smaller than 1/10th of pixel were masked out. Figure 8 shows the PO-SBAS 
time-series and the comparison with external GPS measurements available in the area.

4.2. Piton de La Fournaise MinA results

To further demonstrate the capabilities of the DInSAR-driven minimum-acceleration com-
bination algorithm, it has been applied for studying the settlements of the area of Piton de 
La Fournaise (Reunion Islands), which is characterized by the presence of a large volcanic 
system that erupted on April 3, 2007 and lead to large fractures on the ground. Such vol-
canic system has extensively been studied [34], however new data can provide additional 
information on the state of volcanism of the island. The presented experiments are based on 
processing three independent sets of SAR images collected by the ENVISAT/ASAR (C-band) 
radar instrument along ascending (48 images) and descending passes (35 images) as well 
as by the ALOS-1/PALSAR (L-band) sensor (11 images), spanning the 2003–2010 time inter-
val (see Table III in [23]). These three SAR datasets were independently processed by the 

Figure 7. SBAS-DInSAR results. (a) Mean deformation velocity map of the Galapagos Islands retrieved by applying 
the SBAS technique and (b) zoom of the study area, (c) Comparison between PO-SBAS and GPS measurements 
corresponding to the GV01 station.
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SBAS-DInSAR processing chain, and corresponding LOS-projected displacement time-series 
(and mean deformation maps) were generated. The MinA combination method is applied 
(as a post-processing stage) only to those pixels that remain coherent in all three indepen-
dent SBAS-DInSAR processing analyses, and this permitted discriminating from the LOS-
projected deformations the time-series of the 3D deformation components.

Figure 9(a)–(c) shows the maps of retrieved E-W, U-D, and N-S mean deformation velocity 
maps, superimposed to a gray-scale SAR amplitude image of the zone common to all the 
three SAR data-tracks. Also, one point, labeled to as P in Figure 9 and located in the summit 

Figure 8. Examples of PO-SBAS time-series in azimuth (right) and range (left) directions, respectively. (a)-(f) Comparison 
between PO-SBAS and GPS measurements in the proximity of selected GPS stations. (g)-(h) AZO and RGO displacement 
mean velocity maps. The figure is adapted from  [27].
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area of the crater, was selected. The inherent (combined) E-W and Up-Down deformation 
time-series relevant to this point are shown in the plots of Figure 10. They make it evident the 
large cumulative E-W displacement, moving mostly eastward, affects the upper part of the 
Eastern flank with velocity of about 10 cm/year. This trend is abruptly interrupted by a jump 
of about 40 cm in correspondence of the April 2, 2007 eruption, which induced a widespread 
flank movement starting at the time of dike injection to feed an initial eruption, a few days 
before the main eruptive event; also a significant U-D signal was active even with a more 
moderate deformation value (around 8 cm).

Figure 9. Geocoded maps of the Up-Down (a), east–west (b), and north–south (c) mean velocity deformation.
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5. Conclusions

In this chapter, a review of some existing DInSAR methods for the retrieval of the 3-D (2-D) 
deformation time-series is first provided. In particular, we review some recently published 
methods and then we focus on the MinA method. With respect to previous works, this method 
has the advantage to be a post-processing algorithm, thus it does not require the simultane-
ous processing of hundreds of differential SAR interferograms. Information on the quality of 
LOS-projected deformation time-series (e.g., the temporal coherence maps) as well as the a 
priori identification of very coherent targets is very proficient for the discrimination of the 3-D 
deformation components. One strength of the algorithm is represented by the opportunity to 
complement LOS measurements with other external sources of information (such as GPS/lev-
eling data). This technique has primarily been developed as an ultimate extension of the SBAS 
processing chain; however, it can be used, without any further modification, to work with 
other general-purpose DInSAR toolboxes. Several examples are provided, thus also clarifying 
how this method can be easily integrated in the currently available DInSAR toolboxes.

Figure 10. DInSAR results retrieved for the Piton de la Fournaise study area. Zoom view of the Up-Down (a) and East-
West (b) mean deformation displacement maps. (c) and (d) are the MinA-driven time-series obtained by combining the 
LOS time-series for the Up (c) and East-West (d) components, respectively.
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Abstract

Renewable energy generation has been constantly increasing during recent years.
Wind and solar have had the most significant growths among all renewable resources.
Wind and solar resources are highly intermittent and dependent on meteorological
parameters and climatic conditions. The power output of wind turbines is subject to
various meteorological parameters, such as wind speed, wind direction, air tempera-
ture, relative humidity, etc., among which the wind speed is the most direct and
influential factor in wind power generation. Solar photovoltaic (PV) power is a func-
tion of solar radiation. Wind speed and solar radiation time series data exhibit unique
features which complicate their prediction. This makes wind and solar power fore-
casting challenging. Accurate wind and solar forecasting enhances the value of renew-
able energy by improving the reliability and economic feasibility of these resources. It
also supports integrating solar and wind power into electric grids by reducing the
integration and operation costs associated with these intermittent generation sources.
This chapter provides an overview of the time series methods that can be used for
more accurate wind and solar forecasting.

Keywords: forecasting, renewable energy, solar, time series, wind

1. Introduction

Power generation forecasting is the fundamental basis in managing existing and newly
constructed power systems. Without having accurate predictions for the generated power,
serious implications such as inappropriate operational practices and inadequate energy trans-
actions are inevitable. High penetrations of intermittent renewable energy sources such as
wind and solar significantly increase uncertainties of power systems which in turn, complicate
the system operation and planning. Accurate forecasting of these intermittent energy sources
provides a valuable tool to ease the complication and enable independent system operators
(ISOSs) to more efficiently and reliably run power systems.
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There are three major methods for wind and solar forecasting; classical statistical techniques,
computational intelligent methods, and hybrid algorithms. Each category includes several
methods.

Time series methods are one of the most commonly used statistical techniques for forecasting.
Time series can be defined as “the evolution of a set of observations sampled at regular
intervals along time. The specificity of time series models, compared to other statistic methods,
is that it introduces ‘time’ as one of its explicative variables” [1]. Time series develop mathe-
matical models that can forecast future observations on the basis of available data. Section
below provides definitions and explanations for time series methods commonly in use for
forecasting.

2. Time series methods

This section provides an overview of the most commonly used time series methods for solar
and wind forecasting. A brief description is provided for each method along with its mathe-
matical representation.

2.1. Autoregressive (AR)

The autoregressive (AR) model presents a process whose current value can be represented as a
linear combination of the past values and a signal noise ωt. The ARmodel of orderm, AR(m), is
described by [2]:

~xt ¼
Xm

i¼1

Φi xt�i þ ωt ¼ Φ1 xt�1 þ Φ2 xt�2 þ…þ Φm xt�m þ ωt (1)

where xt is the time series values, ωt is the noise, Φ = (Φ1, Φ2, …, Φm) is the vector of model
coefficients and m is a positive integer.

2.2. Moving average (MA)

Unlike the AR model that uses a weighted sum of past values (~xt�i) to provide a time-series
representation, the moving average (MA) model combines n past noise values (ωt, ωt� 1,ωt� 2,
ωt� n) to develop a time-series process. The MA model of order n, MA(n), is describes as, is
describes as [3]:

~xt ¼
Xn

j¼0

θj ωt�j ¼ ωt þ θ1 ωt�1 þ θ2 ωt�2 þ…þ θn ωt�n (2)

where θ = (θ1,θ2, …,θn) is the vector of model coefficients and θ0 = 1.
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2.3. Autoregressive moving average (ARMA)

The autoregressive moving average (ARMA) model is developed by combining AR and MA
terms to provide a parsimonious parametrization for a process. The ARMA model of orders
m and n, ARMA(m, n) is given by [3]:

~xt ¼
Xm

i¼1

Φi xt�i þ
Xn

j¼0

θj ωt�j (3)

where Φi and θj are the autoregressive and moving average coefficients of the ARMA model.

2.4. Autoregressive moving average model with exogenous variables (ARMAX)

The auto regressive moving average model with exogenous variables (ARMAX) provides a
multivariate time-series representation to enhance the accuracy of the univariate ARMAmodel
by including relevant information in addition to the time-series under consideration. For
example, climate information such as cloud cover, humidity, wind speed and direction can be
included as exogenous variables in an ARMA model to develop an ARMAX for more accurate
forecasting of solar radiation time series. The ARMAX model of orders m, n and p, ARMAX
(m, n, p), is defined as [3]:

~xt ¼
Xm

i¼1

Φi xt�i þ
Xn

j¼0

θj ωt�j þ
Xp

k¼1

λk et�k (4)

where Φi, θj and λk are the autoregressive, moving average and exogenous coefficients of the
ARMAX model, and et is the exogenous input term.

2.5. Autoregressive integrated moving average (ARIMA)

The autoregressive integrated moving average (ARIMA) model is used for non-stationary time
series. Despite representing differences in local trend or level, different sections of non-
stationary processes exhibit certain levels of similarity. A stationary ARMA (m, n) process with
the dth difference of the time-series develops an ARIMA (m, d, n) model. The ARIMA (m, d, n)
model is represented by [4]:

~xt ¼
Xm

i¼1

Φi Sdxt�i þ
Xn

j¼0

θj ωt�j (5)

where S = 1� q�1 and Φm(q) is a stationary and invertible AR(m) operator; xt, ωt,Φi and θj are
the observed time series values, error, AR and MA parameters, respectively; d is the number of
non-seasonal differences; m is the number of autoregressive terms, and n is the number of
lagged forecast errors.
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2.6. Autoregressive fractionally integrated moving average (ARFIMA)

The autoregressive fractionally integrated moving average (ARFIMA) model is used for long-
memory forecasting. ARFIMA generalizes ARIMA by allowing the differencing to take frac-
tional values. An ARFIMA model is given by [5]:

1�
Xm

i¼1

Φi Li
 !

1� Lð Þd~xt ¼ 1þ
Xn

j¼1

θj Lj

0
@

1
A ωt (6)

where powers of L indicate a corresponding number of shifts backward in the time series, and
(1� L)d is the fractional differencing operator.

2.7. Autoregressive integrated moving average with exogenous variables (ARIMAX)

The autoregressive integrated moving average with exogenous variables (ARIMAX) includes
the previous values of an exogenous time-series in the ARIMA to enhance its performance and
accuracy. It is more applicable to time-series with sudden changes in trends. An ARIMA
(m, d, n) process including the past p values of an exogenous variable et develops an ARIMAX
process of order (m, d, n, p). The ARIMAX (m, d, n, p) model is represented by [3]:

~xt ¼
Xm

i¼1

ΦiSdxt�i þ
Xn

j¼0

θj ωt�j þ
Xp

k¼1

λk et�k (7)

where ωt is the white noise. Φi, θj and λk are the coefficients of the autoregressive, moving
average and exogenous inputs, respectively.

2.8. Vector autoregressive (VAR)

The vector autoregressive (VAR) model characterizes linear dependences between two or more
time-series. VAR model uses multiple variables to generalize the univariate autoregressive
model (AR model). A k-dimensional VAR model of order L is given by [6].

~xt ¼ vþ
XL

i¼1

Ai xt�i þ ωt ¼ vþ A1 xt�1 þ…þ AL xt�L þ ωt (8)

where xt and v are k � 1 vectors of variables and constants, respectively. L is the maximum lag
in the VAR model, Ai is a k � k matrix of lag order parameters, and ωt = (ω1t, …,ωkt) is the
vector of white noise [6, 7].

2.9. Autoregressive conditional heteroscedasticity (ARCH)—generalized ARCH (GARCH)

The autoregressive conditional heteroscedasticity (ARCH) is used for time series with specific
variances for the error terms [7].
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Estimated values are calculated using the following equations [8]:

xt ¼ εt σt (9a)

σt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ

Xq

i¼1

ai x2t�i

vuut (9b)

where xt is the observed time series values; εt is the error; σt is the conditional standard
deviation; and a0 is the constant added to the model.

The generalized ARCH (GARCH) model estimates the values by:

xt ¼ εt σt (10a)

σt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ

Xp

i¼1

ai x2t�i þ
Xq

i¼1

βj σ
2
t�i

vuut (10b)

By setting p = 0, the GARCH model reduces to an ARCH process with parameter q.

3. Performance metrics

The performance of the forecast methods is measured by various metrics related to the forecast
error. Higher values of errors correspond to less forecast accuracies. This section provides the
definitions and equations for performance metrics which are commonly used to calculate the
forecast error. Note that x represents the observed value, ~x is the predicted value (forecast) and
n is the total number of samples.

3.1. MSE

Mean square error (MSE) is calculated by:

MSE ¼ 1
n

Xn

i¼1

~xi � xi
� �2 (11)

3.2. NMSE

Normalized mean square error (NMSE) is calculated by normalizing the MSE as:

NMSE ¼
n
Pn
i¼1

~xi � xi
� �2

Pn
i¼1

xi
Pn
i¼1

~xi

(12)

3.3. RMSE

Root mean square error is given by calculating the square root of the MSE as:
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

~xi � xi
� �2

s
(13)

3.4. NRMSE

Normalized root mean square error (NRMSE) is calculated by normalizing the RMSE as:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

~xi � xi
� �2

s

1
n

Pn
i¼1

xi
(14)

3.5. MAE

Mean absolute error is calculated by:

MAE ¼ 1
n

Xn

i¼1

~xi � xi
�� �� (15)

3.6. NMAE

Normalized mean absolute error (NMAE) is calculated by normalizing the MAE as:

NMAE ¼ 1
n

Xn

i¼1

~xi � xi
�� ��
max xið Þ (16)

3.7. MRE

Mean relative error (MRE) is calculated by:

MRE ¼ 1
n

Xn

i¼1

~xi � xi
�� ��

xi
(17)

3.8. MBE

Mean bias error (MBE) is calculated by:

MBE ¼ 1
n

Xn

i¼1

~xi � xi
� �

(18)

3.9. MAPE

Mean absolute percentage error is calculated by:
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MAPE ¼ 1
n

Xn

i¼1

~xi � xi
xi

����
����� 100% (19)

3.10. MASE

Mean absolute scaled error is calculated by:

MASE ¼

Pn
i¼1

~xi � xi
�� ��

n
n�1

Pn
i¼2

xi � xi�1j j
(20)

3.11. MSPE

Mean square percentage error is calculated by:

MSPE ¼ 1
n

Xn

i¼1

~xi � xi
xi

� �2

� 100% (21)

4. Time series methods for solar energy/wind power forecasting

Time series methods have been extensively used to forecast solar radiation/power and wind
speed/power. Typically, solar and wind data exhibit features such as non-linearity and non-
stationarity which cannot be captured by most of the time series methods. To address this
limitation, these methods are used in combination with other computational intelligent or data
processing methods to take advantage of their capabilities to better characterize wind and
solar data for more accurate forecasting. These combinations are referred to as hybrid methods
which are proven effective for renewables forecasting.

4.1. Time series methods for solar energy forecasting

This section provides a review of the articles that use time series methods individually or in
hybrid algorithms for solar radiation/power forecasting. The literature review provides a sum-
mary of the solar-related variable that is predicted, the horizon for which the variable is
predicted, the performance metrics in use to calculate the forecast error, the time series methods
and data in use, and the research findings of each article. Table 1 provides the summary.

4.2. Time series methods for wind power forecasting

This section provides a review of the articles that use time series methods individually or in
hybrid algorithms for wind speed/power forecasting. The literature review provides a sum-
mary of the wind variable that is predicted, the horizon for which the variable is predicted, the
performance metrics in use to calculate the forecast error, the time series methods and data in
use, and the research findings of each article. Table 2 provides the summary.
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References Forecast
variable

Forecast
horizon

Error
metric

Time series
method

Data Finding

[9] 5, 15, 30, and
60 min
averaged
global
horizontal
irradiance
(GHI)

5 min to
several
hours

MAPE Regressions in
logs, ARIMA, and
hybrid (ARIMA
and ANN)

4 years of hourly GHI
data for three locations
in USA

ARIMA can obtain
better results if used in
logs with time varying
coefficients

[10] Daily GHI 1 day RMSE,
NRMSE,
MAE,
and MBE

AR, ARMA 19 years of daily GHI
from the metrological
station of Ajaccio,
France

AR and ANN models
perform better than
other prediction
methods (ARMA,
k-Nearest Neighbors,
Markov Chains, etc.), if
the time-series data is
not pre-processed

[11] Hourly GHI 1 h MBE and
RMSE

ARIMA Meteorological data
including GHI, diffuse
horizontal irradiance
(DHI), direct normal
irradiance (DNI) and
cloud cover from two
weather stations in
USA (Miami and
Orlando)

Cloud cover
information yields to
more accurate
forecasting

[12] Half daily
values of
GHI

Up to
3 days

NRMSE AR Hourly GHI
measurements from
stations of the Spanish
National Radiometric
Network

Neural network models
obtain better results for
almost all stations
except for Lerida
station where the
clearness index-based
models outperform

[13] Hourly solar
irradiance

1 h RMSE,
and
NRMSE

Naive, ARMA 144 months of hourly
solar irradiance of the
Paris suburb of
Alfortville

ARMA model has
competitive results as
compared to similarity
method (SIM), support
vector machine (SVM)
and neural network
(NN)

[14] Hourly solar
radiation

1 h RMSE,
and
NRMSE

Hybrid (ARMA
and time delay
neural network
(TDNN))

10 months of solar
radiation data from the
observation station in
Nanyang
Technological
University

The combination of the
ARMA and TDNN
provides more accurate
results than each
individual forecaster

[15] Daily
average of
solar
irradiance

1–15 h MAPE ARIMA Solar irradiance data
from a 4.0 kW PV panel
in the city of Awali,
Kingdom of Bahrain

ARIMA models are
proved to effectively
capture the auto-
correlative structure of
the solar irradiance

[16] Daily solar
irradiance

1 day NA ARIMA Solar irradiance and
surface air temperature

Various climate time
series are dependent on
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References Forecast
variable

Forecast
horizon

Error
metric

Time series
method

Data Finding

and surface
air
temperature

data from 10
meteorological stations
in Europe and 4
stations in Asia

long-range variability
of solar irradiance

[17] Hourly solar
power from
PV systems

1 h up to
36 h

RMSE AR, AR with
exogenous input
(ARX), RX
(regressive model
with no
endogenous
variables)

1 year of solar power
observations from 21
PV systems in
Denmark

ARX model with both
solar power
observations and
numerical weather
predictions (NWPs) as
the input outperforms
the AR model for
forecast horizons
longer than 2 h ahead

[18] Hourly GHI,
DHI and
DNI

1 h RMSE,
and MBE

AR 5 min GHI data from
Jeddah, Saudi Arabia
for a five-year interval

Using sunshine
duration, relative
humidity and air
temperature as the
inputs result in the
most accurate forecast
by the developed
adaptive model

[19] Monthly
average
solar
radiation

1 month RMSE Linear regression
(LR)

Daily GHI and
meteorological data in
Darwin, Australia from
2000 to 2011

LR obtains the best
predictions compared
to Angstrom-Prescott-
Page (APP) and ANN
models

[20] Hourly PV
power

1 and 2 h MAE,
MBE,
RMSE,
and
NRMSE

ARIMA Hourly average power
of a 1 MW PV power
plant located in
Merced, California
collected between
November 2009 and
August 2011

ANN-based forecasting
models including the
ANN and GA-
optimized ANN obtain
better predictions than
Persistent, ARIMA and
k-NN models

[21] Hourly GHI 1 h NRMSE Hybrid (ARMA
and ANN)

6 years of hourly solar
radiation and
meteorological data
from five locations in
the Mediterranean area
in France

Combining ARMA and
ANN enhances the
forecast accuracy

[22] Hourly solar
irradiation

24 h NRMSE ARMA 2 years of
meteorological data
from Ajaccio, France

ANN outperforms the
ARMA by 1.3 points
reduction in the error
estimate

[23] Daily GHI 1 day RMSE,
NRMSE,
MAE,
and MBE

AR, ARIMA 30 min global solar
radiation data in
Corsica Island, France
from January 1998 to
December 2007

An ANN with
exogenous and
endogenous data
outperforms univariate
forecasters such as
ARMA models

[24] Solar
irradiance

12 h Hybrid (ARIMA-
Back Propagation)

Hourly solar irradiance
observations from

Time Series and Renewable Energy Forecasting
http://dx.doi.org/10.5772/intechopen.70845

85



References Forecast
variable

Forecast
horizon

Error
metric

Time series
method

Data Finding

RMSE,
and
MASE

National Solar
Radiation Data Base
(NSRDB) site between
2008 and 2009

The hybrid ARIMA-BP
does not outperform
ARIMA

[25] Solar power 1 min MAE,
MSE,
and
MAXE

Hybrid (Wavelet,
ARMA, and
Nonlinear
Autoregressive
model with
exogenous
variables (NARX))

1 min solar power data
from the solar panel at
UCLA for nearly
200,000 observations

Capability of the
ARMA process to
model the linear
features of the data and
the NARX advantage
to compensate the error
of Wavelet-ARMA
enhances the forecast
accuracy of the hybrid
Wavelet-ARMA-NARX
method

[26] Solar
generation

1–5 h MAE,
and MSE

ARMA 14 years of hourly solar
radiation data from
SolarAnywhere

ARMA outperforms
the persistence model
for short and medium
term solar predictions

[27] Hourly solar
irradiance

1 h and
3 h

RMAE Hybrid (non-linear
regression and PR)

Solar radiation data
from sensors, and
National Digital
Forecast Database, as
well as the
meteorological
measurements from
local airports in Los
Angeles region

The hybrid method
excels the benchmark
methods including the
regression, ARIMA and
ANN by 40% and
33.33% for 1-h and 3-h
ahead, respectively

Table 1. Summary of the articles with time series methods (individual or hybrid) for solar radiation/power forecasting.

References Forecast
variable

Forecast
horizon

Error
metric

Time series
method

Data Finding

[28] Hourly
average
wind
Speed

1 h NA ARMA 2 years of wind speed
data from Quetta in
Pakistan

ARMA is more
appropriate for
prediction intervals
and probability
forecasts

[29] Wind
power
density

1–
10 days

MAE, and
RMSE

AR-GARCH, ARFI-
GARCH

Daily midday wind
speed measurements
from 1995 to 2004, as
well as weather
ensemble predictions
from 1997 to 2004 for
five wind farms in UK

Weather ensemble-
based forecasters are
shown to perform
better than time series
models and
atmospheric-based
models

[30] Mean
hourly
wind
speed

1 h RMSE AR, and ARIMA 744 hours of wind
speed measurements in
Odigitria of the Greek
island of Crete in
March 1996

The neural logic-based
models perform better
than the time series
methods
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References Forecast
variable

Forecast
horizon

Error
metric

Time series
method

Data Finding

[15] Daily
average of
wind
speed

1–15 h MAPE ARIMA Wind speed data from
a 1.7 kW wind turbine
in the city of Awali,
Kingdom of Bahrain

ARIMA models are
proved to effectively
capture the auto-
correlative structure of
the wind speed

[31] Wind
speed

3 h RMSE AR Wind speed data
measured every 3-h in
three Mediterranean
sites in Corsica

AR is sufficient to
simulate 3-h wind
speeds

[32] Wind
speed

1, 2 and
3-step(s)

MAE,
MAPE
and MSE

Hybrid (Wavelet
Packet-ARIMA-
BFGS (Broyden-
Fletcher-Goldfarb-
Shanno))

Half-hourly wind
speed measurements
from 20 December 2011
to 5 January 2012 in
Chinese Qinghai wind
farm

The ARIMA models
have better time
performance than the
ANN models in
approximating wind
speed time series while
providing a little lower
accuracy

[33] Hourly
mean
wind
speed and
direction

1 h MAE ARMA, and VAR Hourly average wind
data from May 1 to
October 21, 2002 in two
wind sites in North
Dakota, USA

ARMA forecasts the
wind speed better than
the component model
whereas the opposite is
observed for wind
direction forecasting

[34] Wind
power

3 h MAPE,
and
NMAE

ARIMA Wind power data in
Portugal

The ARIMA model is
used as a benchmark to
evaluate the
performance of the
proposed hybrid
Wavelet-PSO-ANFIS
forecasting method

[35] Wind
speed

1–24 h MAE, and
RMSE

AR, ARX, ARX-
GARCH, Hybrid
(ARX-TN
(truncated normal),
ARX-GARCH-TN)

3 years of hourly wind
speed observations
from a meteorological
station in Denmark, as
well as wind speed
predictions based on a
NWP model from the
Danish Meteorological
Institute

The time series models
are used as benchmark
methods to evaluate
the performance of the
developed stochastic
differential equation
for probabilistic wind
speed forecasting

[36] Wind
speed/
power

1–24 h MAE,
MBE,
RMSE,
MASE
NMBE,
NMAE,
and
NRMSE

AR, ARMA, and
ARIMA

Wind speed, wind
direction, humidity,
solar radiation,
temperature,
atmospheric pressure,
and heat radiation data
from two anemometric
measuring towers in La
Ventosa, Mexico

Results show that the
developed method
based on support
vector regression is
more accurate than the
persistence and
autoregressive models

[37] Wind
speed/
power

1 and
2 day(s)

Daily
mean

fractional-ARIMA
(f-ARIMA)

4 weeks of hourly
average wind speed
data from four wind

The proposed f-ARIMA
is more accurate than
the persistence method
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References Forecast
variable

Forecast
horizon

Error
metric

Time series
method

Data Finding

error
(DME)

monitoring sites in
North Dakota

[38] Average
hourly
wind
speed

1 h ME, MSE,
and MAE

Hybrid (ARIMA-
ANN)

1 month of wind speed
measurements in three
regions of Mexico

The combination of
ARIMA and ANN
predicts the wind
speed with more
accuracy than the
individual ARIMA and
ANN

[39] Wind
speed

1 day MAPE Hybrid (KF-ANN
model based on
ARIMA)

Daily wind speed
observations from two
meteorological stations
in Mosul, Iraq and
Johor, Malaysia

The ARIMA model
provides inaccurate
wind speed forecasts
due to its limitation to
capture the
nonlinearity of the
wind speed patterns

[40] Wind
speed

1, 2 and
3-step(s)

MAE,
MSE, and
MAPE

Hybrid (ARIMA-
ANN and ARIMA-
Kalman)

Hourly wind speed
measurements from a
station

Both hybrid methods
can obtain accurate
forecasts and are
appropriate for non-
stationary wind speed
datasets

[41] Wind
speed

1 h NA ARMA-GARCH 7 years of hourly wind
speed data from an
observation site in
Colorado, USA

The ARMA-GARCH
model is proved
efficient in capturing
the trend change of
wind speed mean and
volatility over time

[42] Hourly
average
wind
speed

1 h up to
10 h

RMSE ARMA 9 years of hourly wind
speed data of five
locations in Navarre,
Spain

For longer term
forecasting, the ARMA
models with
transformed and
standardized data
perform better than the
persistence model

[43] Wind
speed

1 month MSE,
MAE, and
MAPE

ARIMA 7 years of wind speed
measurements from the
South Coast of Oaxaca,
Mexico

ARIAM models
provide more
sensitivity than the
ANN methods to the
adjustment and
prediction of the wind
speed

[44] Win speed 1–6 min
(s), and
1–6 hour
(s)

MAE, and
MAPE

Hybrid (Empirical
mode
decomposition
(EMD)-Least
squares support
vector machines
(LSSVM)-AR)

1 year of wind speed
data measurements in
Beloit, Kansas, USA

The proposed hybrid
approach is proved
more accurate than the
existing forecasting
approaches
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5. Conclusion

This chapter provides a comprehensive literature review to demonstrate the application of
time-series methods for renewable energy forecasting. In spite of recent developments in
intelligent methods and their extensive applications for more accurate solar energy/wind
power forecasting, our literature review concludes that time-series methods, individually or
in combination with intelligent methods, are still viable options for short-term forecasting of
intermittent renewable energy sources due to their less computational complexities.
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Abstract

In this chapter, we review nonlinear models for vector time series data and develop new
nonparametric estimation and inference for them. Vector time series data exist widely in
practice. In financial markets, multiple time series are usually correlated. When analyz-
ing several interdependent time series, in general one should consider them as a single
vector time series fitted by multivariate models, which provides a useful tool for
modeling interdependencies among multiple time series and for simultaneously ana-
lyzing feedback and Granger causality effects. Since nonlinear features are widely
observed in time series, we consider nonlinear methodology for modeling nonlinear
vector time series data, which allows flexibility in the model structure and avoids the
curse of dimensionality.

Keywords: cointegration, VAR, multivariate threshold autoregressive model,
nonparametric smoothing, generalized likelihood ratio

1. Introduction

Multiple time series are of considerable interest in an array of domains, such as finance,
economics, engineering and so on. The data are collected in time order and consist of several
related variables of interest, for instance, the data of stock price indexes and the status data of
important instruments such as shuttles. It is of much practical significance to model this kind
of data well. Moreover, a lot of commonly seen multiple time series are correlated, which
makes it reasonable to regard them as a single vector and to fit them using multivariate
models. Multivariate models perform well in exploring the interdependencies among multiple
time series and capturing the dynamic structure.

Plenty of contributions have been made in the field of parametric models for multivariate time
series. For instance, Sims proposed vector autoregressive (VAR) models in 1980 [1], Engle and
Kroner considered multivariate generalized autoregressive conditional heteroscedastic (GARCH)
models in 1995 [2], and Tsay developed the multivariate threshold models in 1998 [3]. Compared
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to parametric models, nonparametric models require less assumption about the model struc-
ture and are more flexible. Combined with the fact that nonlinearity widely exists in time
series, it is ideal to model the multiple time series using nonparametric models. However, not
much of achievements have been made about this. This is partly due to the complexity of
nonparametric smoothing as well as the curse of dimensionality. With these objectives in mind,
Jiang proposed the multivariate functional-coefficient model in 2014 [4], which provides a
useful tool for modeling vector time series data.

In this chapter, we first review some vector time series models, next extend them to include an
error-correction term by incorporating cointegration among integrated variables, then develop
a single index model for choosing the smoothing variable and a variable selection method for
the multivariate functional-coefficient models, and finally study multivariate time-varying
coefficient models and related hypothesis testing problems.

The remainder of this chapter is organized as follows. In Section 2 we review vector auto-
regressive (VAR) models. In Section 3, we consider multivariate functional-coefficient regres-
sion models and their extensions, where a model selection rule is also proposed. In Section 4
we introduce multivariate time-varying coefficient models and propose a generalized likeli-
hood ratio test. In Section 5 we make a conclusion and discuss some interesting research topics
to be completed.

2. Review of VAR models

The vector autoregressive model is a generalization of the univariate autoregressive model for
forecasting a vector of time series. This model was pioneered by Sims in Ref. [1] and it has
acquired a prominent role in analyzing macroeconomic time series. Prior to 1980, large-scale
statistical dynamic simultaneous equations model (DSEMs) was widely used in empirical
macroeconomics, which often contained dozens or even hundreds of equations. As the eco-
nomic environment has grown more complicated, the traditional simultaneous models have
grown. Sims believed that since these models do not dichotomize variables into “endogenous”
and “exogenous,” the exclusion restrictions used to identify the simultaneous equations
models make little sense. Thus, he advocated the vector autoregressive model (VAR) to model
the interrelationships among a set of macroeconomic variables. In the structure of VAR
models, each variable is a linear function of past lags of itself and past lags of the other
variables. Sims demonstrated that VARs provide a flexible and tractable framework for ana-
lyzing economic time series. While hardly relying on economic theorems, VAR models have
proven efficient in capturing the dynamics of multivariate systems as well as forecasting [1].
Specifically, a vector autoregressive model of order p [VAR(p)] has the following general form:

yt ¼ cþ A1yt�1 þ…Apyt�p þ et (1)

where yt = (y1t, … , yKt)
0
is a set of K time series variables, c is a K� 1 vector of constant, Ai’s are

K�K coefficient matrices, and et are error terms. Usually, et are assumed to be zero-mean
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independent white noise with time-invariant and positive-definite covariance matrix Σ. For
example, a VAR (1) model with two time series components can be written as:

y1t
y2t

� �
¼ c1

c2

� �
þ A11 A12

A21 A22

� � y1, t�1

y2, t�1

 !
þ e1, t

e2, t

� �

or the equation set

y1t ¼ c1 þ A11y1, t�1 þ A12y2, t�1 þ e1, t
y2t ¼ c2 þ A21y1, t�1 þ A22y2, t�1 þ e2, t

Using lag-operator L, Eq. (1) can be written as the following form:

yt ¼ cþ A1Lþ A2L2 þ…þ ApLp
� �

yt þ et (2)

Let A(z) = I�A1z�A2z
2� …Apz

p, where z is a complex number. Then the VAR process is
stable if

det A zð Þð Þ 6¼ 0for zj j ≤ 1: (3)

In other words, the determinant of the matrix polynomial has no roots in and on the complex
unit circle. If the stability conditions are satisfied and the process can be extended to the infinite
past, then the VAR process is stationary.

For model (1), since the right-hand side consists of only predetermined variables and the error
terms are assumed to be independent white noise with time-invariant covariance, each equa-
tion can be estimated by ordinary least squares (OLS). Zellner proved that the OLS estimator
coincides with the generalized LS (GLS) estimator [5].

The celebrated model (1) is easy to fit, and its autoregressive structure allows one to study
the feedback effects and the Granger causality. However, model (1) employs only the lagged
values of yt for forecast and ignores other potentially important variables’ effect. In addition,
as time evolved, the coefficients remain constant, which may contrast the real situations
where the dynamic structure of the relationship among different time series involves with
time.

3. Multivariate functional-coefficient regression models and extensions

We briefly reviewed VAR models in the previous section. This parametric method has been
significantly developed and widely applied to econometric dynamics as well as other domains.
An alternative to modeling vector time series is the nonparametric method, which requires
much fewer assumptions on the model structure and may shed light on the later parametric
fitting. To illustrate the basic idea of this approach, let us begin with the multivariate threshold
autoregressive model [3].
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3.1. Multivariate threshold autoregressive model

The multivariate threshold autoregressive model is a generalization of the univariate threshold
autoregressive model [6]. The idea is to partition one-dimensional variable into s regimes and
impose an AR model with exogenous variables in each regime. Consider a k� dimensional
time series yt = (y1t, … , ykt)

0
and a v-dimensional exogenous variable xt = (x1t, … , xvt)

0
, for t = 1,…,

n. Let �∞ = r0 < r1 < ⋯ < rs =∞. The multivariate threshold model with threshold variable zt and
delay d has the following form:

yt ¼ cj þ
Xn

i¼1

φi
jð Þyt�i þ

Xq

i¼1

βi
jð Þxt�i þ εi jð Þ if rj�1 < zt�d ≤ rj j ¼ 1;…; sð Þ, (4)

where p and q are nonnegative integers and εt jð Þ ¼ Σj
1
2at, with Σj

1
2 being a positive-definite

matrix and atf g a sequence of serially uncorrelated random vectors with mean zero and
covariance matrix Ιk. The threshold variable zt is assumed to be stationary and has a continu-
ous distribution.

Model (4) is piecewise linear in the threshold space of zt� d, but it is nonlinear when s > 1 [3].
This model has proven to be useful in practice. Nevertheless, the assumption embedded in this
model weakens the practicability, that is, the coefficients are assumed to be constants in the
threshold space of zt� d in model (4). This assumption is questionable since the economic
conditions tend to change slowly over time and the coefficient functions may vary smoothly.
Motivated by this, Jiang proposed the multivariate functional-coefficient model, in which the
coefficients are functions of threshold variable zt� d instead of constants [4].

3.2. Multivariate functional-coefficient models

The multivariate functional-coefficient model has the following form:

yt ¼ c zt�dð Þ þ
Xp

i¼1

φi zt�dð Þyt�i þ
Xq

i¼1

βi zt�dð Þxt�i þ εt, (5)

where cð�Þ is a k� 1 functional vector, φi(�) are k� k functional matrices, and βi(�) are k� v
functional matrices. The innovation satisfies εt ¼ σt∗at, where σt

∗ is a positive-definite matrix
and atf g as in Eq. (4). Assume that σt

∗ is measurable with respect to the σ-field generated by
the historical information F t� 1 = {(wj,zj� d) : j ≤ t}, where wj = (xj� 1, … , xj� q, yj� 1, … , yj� p). For
model (5), we are interested in estimating the regression part. Once it is estimated, one may
consider making simultaneous inference about parameters and using the residuals to study the
structure of the volatility matrix. This model is a generalization of vector autoregressive
models [1], threshold models [3] and functional-coefficient models [7–10]. Even for one-
dimensional settings with k = 1, model (5) includes important predictive regression models in
econometrics, such as the linear predictive models with nonstationary predictors [11–13] and
functional-coefficient models for nonstationary time series data [14]. Model (5) can also be
used to investigate the Granger Causality [15–17] and the feedback effect in engineering and
finance [18, 19].
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For model (5), a weighted local least squares estimation method was provided in [4]. Let
Xt = vec(1, yt� 1, … , yt� p, xt� 1, … , xt� p) and Φ(z) = (c(z),φ1(z), ⋯ ,φp(z), β1(z), … , βq(z)). Then
model (5) becomes

yt ¼ Φ zt�dð ÞXt þ εt, (6)

where Φ(�) is a k�m matrix-valued function and Xt is an m� 1 vector with m = 1 + pk + qv. For
any zt� d in the neighborhood of z, by the Taylor expansion, we have

Φ zt�dð Þ ≈Φ zð Þ þΦ0 zð Þ zt�d � zð Þ � Aþ B zt�d � zð Þ:

Let S and V be 2� 2 matrices whose (i, j)th elements are μi + j� 2 =
Ð
ui + j� 2K(u)du and

νi + j� 2 =
Ð
ui + j� 2K2(u)du, respectively, and let s = (μ2,μ3)

0
. Given any invertible working vari-

ance matrix σt
2 of σt

∗2, the estimator ~A; ~B
� �

is achieved by minimizing

Xn
t¼s0þ1

∥σt�1 yt � AXt � BXt zt�d � zð Þ� �
∥2Khn zt�d � zð Þ,

where ∥ � ∥ denotes the Euclidean norm, s
0
=max(p, d, q), and Khn(x) = hn

�1K(x/hn) for kernel
function K(�) with bandwidth hn controlling the amount of smoothing. Let Khn

(i)(zt� d� z) =

hn
�i(zt� d� z)Khn(z�d� z) and ~Sni ¼

Pn
t¼s0þ1

XtXt
T� �

⊗ σt�2Khn
ið Þ zt�d � zð Þ for i = 0 , 1 , 2. Then the

weighted estimators ~A; ~BÞ
�

admit the closed form:

vecð~AÞ
vecðhn~BÞ

 !
¼

~Sn0 ~Sn1

~Sn1 ~Sn2

 !�1

Xn
t¼s0þ1

Xt ⊗ σt�2� �
ytKhn zt�d � zð Þ

Xn
t¼s0þ1

Xt ⊗ σt�2� �
ytKhn

1ð Þ zt�d � zð Þ

0
BBBBB@

1
CCCCCA
:

Under certain conditions, the weighted estimators are asymptotically normal (see [4]).

Recall that, in model (5), σt
∗ is a positive-definite matrix measurable with respect to the sigma-

algebra generated by historical information. If there is a parametric structure of σt
∗, for exam-

ple, the generalized autoregressive conditional heteroscedastic (GARCH) errors [4], then it
helps to improve the efficiency of the weighted estimation. Example 3 in [4] exemplifies this
point. Our intuition is that, if a parametric structure of σt

∗ is correctly specified, then the
weighted estimation mimics the oracle estimation in the sense that σt

∗ is known. This intuition
can be verified theoretically since σt

∗ can be estimated at rate of
ffiffiffi
n

p
which is faster than what

we can do for the regression function in model (5).

3.3. Extension of multivariate functional-coefficient models

Due to the fact that many economic factors are not stationary, classic regression analysis
requiring the stationarity condition suffers from a great limitation. Cointegration analysis has
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become a formidable toolkit in analyzing non-stationary economic time series. The concept of
cointegration goes back to Granger [20] and initiated a literal research boom. Engle & Granger
proposed the well-known Engel-Granger test to examine whether there is a cointegrating
relationship among a set of first-order integrated variables [21].

Motivated by Granger and Engel & Granger, Jiang proposed an error-correction version of
model (5) by incorporating the cointegrating relationship of first-order integrated variables [4].
This allows us to cope with the nonstationarity of vector time series and to improve the
accuracy of forecasting.

Let st denote a k� 1 vector of first-order integrated variables and let yt = st� st� 1. Assume that
there is a co-integrating relationship for st; that is, there exists a unique k� r(0 < r < k) determin-
istic matrix θ of rank r and a stationary process ut such that θTst = ut. Then an error-correction
form of model (5) is

yt ¼ c zt�dð Þ þ γ zt�dð Þut�1 þ
Xp

i¼1

φi zt�dð Þyt�i þ
Xq

i¼1

βi zt�dð Þxt�i þ εt, (7)

where γ(zt� d) is a k� r coefficient matrix. This model simplifies to the Granger representation
theorem if the coefficient functions are constant and there are no exogenous variables [4].

Due to the widespread presence of cointegrating variables in finance and economics, model (7)
should improve the practicability of model (5). However, model (7) requires specification of
variable zt. This can be relaxed by using the idea of single index models. Recall that model (5)
can be represented in succinct form (6). The similar operations can be applied to model (7).
Now set zt =γ

TXt and let data decide the value of γ. Then model (7) can be extended as

yt ¼ Φ γTXt�d
� �

Xt þ εt, (8)

where γ is a directional vector such that its first nonzero entry is positive. Model (8) is more
flexible than model (7), it is key to estimate γ. We introduce the profile lease squares method to
estimate model (8). The estimation procedure consists of several steps:

Step 1. Given an initial value of γ, one obtains the weighted estimator bΦ �;γð Þ of coefficient
function in the same way as for model (6).

Step 2. Find the value bγ to minimize

Xn
t¼s0þ1

∥yt � bΦ γTXt�d;γ
� �

Xt∥2: (9)

Step 3. Update the value of γ by bγ, and repeat Step 1 and Step 2 many times until convergence.

The coefficient function Φ(�) is estimated by bΦ �; bγð Þ.

It can be shown that bΦ �; bγð Þ shares the same asymptotic normality as the Oracle weighted
estimator in the sense that it knows the true value of γ, since bγ is

ffiffiffi
n

p
-consistent.
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3.4. Variable selection of multivariate functional-coefficient models

In this section, we consider variable selection of model (6). Increasing the lags p and q will
necessarily reduce the sum of squared errors. However, doing so will increase the burden of
coefficient estimation and may also lead to overfitting. Hence, for the multivariate functional-
coefficient model, order selection is of much importance.

Two widely used model selection criteria are Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC). However, these stepwise methods yield heavy burden on compu-
tation and furthermore bring difficulty in establishing asymptotics for the estimation of
selected models. The problems become more severe for high-dimensional data. Various regu-
larization methods have been proposed to deal with these problems. Among them, a popular
approach, called LASSO, proposed by Tibshirani, performs variable selection and parameter
estimation simultaneously. See Ref. [22]. For univariate varying-coefficient regression models
with i.i.d. data, Wang and Xia [23] developed a shrinkage estimation method by combining the
idea of group LASSO [24] and kernel smoothing. In the following we develop a shrinkage
estimation method for multivariate functional-coefficient model (6):

yt ¼ Φ zt�dð ÞXt þ εt,

where the functional-coefficient matrix Φ(z) = (c(z),φ1(z), … ,φp(z), β1(z), … , βq(z)). Since each
column of Φ(�) corresponds to the effect of a component of Xt, for variable selection of Xt we
should penalize each column of Φ(�) as a whole. This leads to minimizing

Qλ Φð Þ ¼
Xn

i¼s0þ1

Xn
t¼s0þ1

∥yt �Φ zi�dð ÞXt∥2K h�1 zt�d � zi�dð Þ� �þ
Xpþqþ1

j¼1

λj∥Φj∥, (10)

where Φj = (Φj(zs0 + 1� d), … ,Φj(zn� d)) with Φj(�) being the jth column of Φ(�), λj’s are tuning
parameters, and for any matrix Awe use ∥A∥ to denote the Hilbert-Schmidt norm of matrix. It
is interesting to establish model selection consistency and the oracle property of the shrinkage
estimation.

4. Multivariate time-varying coefficient models

Parallel to functional-coefficient model (5), it is natural to consider its alternative with time-
varying coefficients [25]:

yt ¼ c t=Tð Þ þ
Xp

i¼1

φi t=Tð Þyt�i þ
Xq

i¼1

βi t=Tð Þxt�i þ εt, t ¼ 1,…, T, (11)

where yt is a k� 1 vector, xt is a v� 1 vector, c �ð Þis a k� 1 vector, ϕi(�) are k� k smooth matrices and
βi(�) are k� v smooth matrices. The innovation satisfies the same conditions as model (5). It is
known that as time involves the economic conditions change slowly and smoothly. Model (11)
reflects this smoothing change by allowing the coefficients being smoothing functions of time.
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Let

Φ t=Tð Þ ¼ c t=Tð Þ;φ1 t=Tð Þ;…;φp t=Tð Þ; β1 t=Tð Þ;…; βq t=Tð Þ
� �

:

Using similar arguments to model (6), we can rewrite model (11) as

yt ¼ Φ t=Tð ÞXt þ εt, t ¼ 1,…, T, (12)

whereΦ(�) is a k�mmatrix and Xt is the same as in model (6). By the Taylor expansion, for any
t in the neighborhood of t0∈ (0,T), we have

Φ t=Tð Þ ≈Φ t0=Tð Þ þΦ0 t0=Tð Þ t� t0ð Þ=Tð Þ � PþQ t� t0ð Þ=Tð Þ:

Running the local linear smoother for model (12), we minimize

XT
t¼sþ1

∥yt � PXt �QXt t� t0ð Þ=Tð Þ∥2Kh t� t0ð Þ (13)

over P and Q, where s =max(p, q) and Kh(x) = h
�1K(x/hT). Then it is straightforward to obtain an

explicit form of the minimizer, bP; bQ
� �

, for the above optimization problem,

vec bP
� �

vec hbQ
� �

0
B@

1
CA ¼ ST0 ST1

ST1 ST2

� ��1

XT
t¼sþ1

Xt ⊗ Ikð ÞytKh t� t0ð Þ

XT
t¼sþ1

Xt ⊗ Ikð ÞytKh
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Using similar arguments to [4], we can show that this estimator is asymptotically normal with
mean zero and variance Σ, where Σ = (U�1VU�1)⊗ (M�1NM�1).

4.1. Generalized likelihood ratio tests

The multivariate time-varying coefficient regression model is flexible and powerful to estimate
the dynamic changes of coefficients. After fitting a given dataset, some important questions
arise, for example, whether the coefficient functions are actually constant or of some particular
forms? This leads to statistical hypothesis testing. To answer these questions, we develop
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generalized likelihood ratio statistics to test corresponding hypothesis testing problems about
the coefficient functions [26].

For the multivariate time-varying coefficient model (12), assume Σ0
�1/2εt has mean zero and

covariance matrix Ik with Σ0 being a symmetric positive-definite constant matrix.

Consider the following hypothesis testing problem

H0 : Φ t=Tð Þ∈Θ0 t=Tð Þ $ Ha : Φ t=Tð Þ∉Θ0 t=Tð Þ, (15)

where Θ0(t/T) is some known constant matrix Φ0 or a set of functionalmatrices. Let bΦ t=Tð Þ
denote the nonparametric estimator ofΦ, and let bΦ0 t=Tð Þ denote the true or estimated value of
coefficients under the null hypothesis. Following Fan et al. [26] and Fan and Jiang [27], we
define a generalized likelihood ratio statistic for testing problem (15):

λT ¼ T
2
log

RSS0 � RSSa
RSSa

� �
, (16)

where RSS0 ¼
PT

t¼1 yt � bΦ0 t=Tð ÞXt

� �T
Σ�1 yt � bΦ0 t=Tð ÞXt

� �T
, and RSSa ¼

PT
t¼1 yt � bΦ t=Tð Þ
�

XtÞTΣ�1 yt � bΦ t=Tð ÞXt

� �
with Σ being a known constant covariance matrix from a working

model. It is meaningful to study the asymptotic distributions of the test statistic under the null
and alternatives.

In the following example, we consider the case when Θ0(.) is a known constant. For any u = t/
T∈ (0, 1), if we rewrite matrix Φ(u) as a vector, Δ(u)� vec(Φ1(u), … ,Φm(u)), and denote
Δ0(u)� vec(Φ01

∗(u), … ,Φ0M
∗(u)), then the power of the test is evaluated against alternatives:

Ha : Δ uð Þ ¼ Δ0 uð Þ þ 1ffiffiffiffiffiffi
Th

p G uð Þ, (17)

where G(u) = (g1(u), … , gm(u))
T is a vector of functions.

Example 1. To investigate the performance of the proposed generalized likelihood ratio test,
600 replications for each of sample sizes T = 200, T = 400 and T = 800 from the multivariate time-
varying coefficient model were generated:

yt ¼ Φ t=Tð ÞXt þ εt, t ¼ 1,…, T

where k = 2, v = p = q = 1, Δ = vec(0.5, 0.0074, 0.08, 0.65, 0.25, 0.75)T. We set the initial values x1 = 0
and y1 = (0.15, 0.2). Accordingly, Xt = vec(y1 , t� 1, y2 , t� 1, xt� 1) for t = 2 , … ,T. Three distributions
of the error term are considered: bivariate normal, bivariate log-normal, and bivariate t(5), each

with variance matrix Σ ¼ 1 0:5
0:5 1

� �
. According to alternative (17), the power of the test is

evaluated for a sequence of alternatives index by θ:
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Figure 1. The power curves for Example 1. Significance level is 5%.
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Hθ : Δθ ¼ 0:5; 0:0075; 0:08; 0:65; 0:25; 0:75ð ÞT þ θffiffiffiffiffiffi
Th

p G t=Tð Þ, (18)

where G t=Tð Þ ¼ sin
ffiffiffi
2

p
π=T

� �
;�0:09 cos πt=Tð Þ; 0:16 sin ffiffiffi

3
p

π=T
� �

; 0:8 sin
ffiffiffi
2

p
π=T

� �
; 0:3 sin t=Tð Þ;��

cos
ffiffiffiffiffiffiffi
1:5

p
πt=T

� �ÞT and θ = 0 , 0.2 , 0.4 , 0.6 , 0.8 , 1. The power function is estimated by the relative
rejection frequency of H0 in the above replicates.

The significance level is set to be 5%, and the critical values in simulations are calculated
similarly by using the conditional bootstrap method in Ref. [26] for each given θ value. Detail
of this method is as follows:

Step 1. Compute the estimators of the coefficient bΦ t=Tð Þ under both the null and the alterna-

tive by setting the optimal bandwidth as the estimated value bhopt.
Step 2. Compute the test statistic λT(H0) and the residuals {et} from the alternative model.

Step 3. For each given Xt, draw a bootstrap residual et
∗ from the centered empirical distribu-

tion of et and compute yt
∗ ¼ bΦ t=Tð ÞXt þ et∗. This forms a conditional bootstrap sample

Xt; yt
∗� �T

t¼1.

Step 4. Compute the test statistic λT
∗(H0) using the bootstrap sample constructed in Step 3.

Step 5. Repeat Step 3 and Step 4 to get a sample of the test statistic λT
∗(H0). The critical values

at significance level α are calculated by the 100(1�α)th percentile of the sample.

Figure 1 displays the power curves in difference scenarios. We can tell from Figure 1 that the
patterns of power curves look like half of an inverted normal density. All the curves rise
monotonically from a height equal to the significance level of 5% until eventually it reaches
its maximum height of around 90%. It is evident from Figure 1 that the test is powerful for all
three different distributions of error terms. Moreover, the test becomes more powerful as
sample size increases. These indicate that the proposed test keeps the size and is powerful for
distinguishing the difference between the null and the alternative.

5. Conclusions

In this chapter, we have reviewed some parametric and nonparametric methods for modeling
nonlinear vector time series data, which include the VAR model, the multivariate threshold
autoregressive model, and the multivariate functional-coefficient regression model. These
models have great significance in econometrical and statistical theory and application. Based
on the weighted local least square estimation, we have proposed a variable selection method
for the functional-coefficient model. This model selection procedure is applicable to the pro-
posed multivariate single index models and multivariate time-varying coefficient models. We
have also extended the generalized likelihood ratio test to the time-varying coefficient model
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and demonstrated its performance through simulation. The proposed methodology is very
useful for modeling nonlinear dynamic structures inherited in financial data. However, there
are many problems remain unsolved for our procedure, such as the limiting theory about the
proposed methodology. Future work includes, but not limited to, extending our models to
nonstationary settings and exploring their performance in different applications.
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Abstract

The present chapter intents to present the symbolic time series analysis (STSA)
reviewing the recent developments in sciences. Even if there are very few works applied
to social sciences, STSA has a potential to be developed. In particular, due to the
limitations about historical data, fields such as Economics and Finance need to develop
statistical tests to prove their hypotheses. An independence test and a causality test
based on STSA are reviewed. They seem to be more powerful, detecting different kinds
of nonlinearities compared with the classical tests, usually applied in social sciences.
However, there is much work to do with STSA, and social sciences are a fertile field for
the development of new powerful tools.

Keywords: STSA, information theory, entropy, independence, causality

1. Introduction

Time series has a long history in social sciences, especially in economics and finance. As it is well
known, much of economics and finances are concerned with modeling dynamics, and systema-
tization of data over time was a subject that appeared early. In particular, two empirical topics
become important when working with time series in social sciences: inferences and forecasting.
The cumulated historical data permitted to applied statistical methods in order to find evidence
of causation between social variables, finding some support to social theories. Considering the
nonexperimental nature of the social sciences, this also encourages the development of statistical
techniques. In fact, while in physics, it is relatively easy to get hundreds of thousands of data for
a given time series, in economics there are often only 50 or 100 data for a time series, and maybe
we can obtain thousands of data in financial series. For this reason, much of the statistical effort,
in particular econometric effort was focused on developing powerful statistical tests, considering
the availability of small samples. This is an important different approach between econometrics
and for example, statistical mechanics in theoretical physics.
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We can identify two main groups in time series econometrics: univariate time series analysis
concerning with techniques for the analysis of dependence in adjacent observations. It has
increased importance since 1970 based on the main ideas underlying in [1]; multivariate time
series analysis based on the vector autoregressive (VAR) models, made popular by [2]. In the
first group, we find all the autoregressive integrated moving average (ARIMA) models and the
related generalized autoregressive conditional heteroscedasticity (GARCH) models developed
by [3]. The second group is a generalization of the AR models and we can find two important
developments based on this: cointegration proposed by [4] focusing on finding a statistical
relationship between variables; and noncausality test developed by [5], which takes the con-
cept of predetermination try to test if a variable causes another. Much of the development in
time series econometrics is found in books such as [6–18].

In summary, dependence and causation are two important topics in time series econometrics
and time series analysis. These topics are related with the importance of inference and fore-
casting in social sciences. Econometrics has been focused in developing powerful test consid-
ering the available small samples. Most of these developments are based on linear models even
if there are some developments considering nonlinearities; see for instance [19, 20].

Time series analysis in econometrics is mostly based on observations belonging to the set of the
real numbers. Some variables can be categorical such as dummy variables. However, in this
chapter, we will talk about a different approach that is known as symbolic time series analysis
(STSA). It has been originally applied to physics and engineering as a statistical methodology
to detect the very dynamic of highly noise time series. The application to social sciences such as
economics or finance is very recent and there are some novel developments.

As mentioned before, the application of STSA in social sciences requires a different approach
due to data limitation. In this sense, the design of powerful test considering the availability of
data is crucial. As abovementioned, dependence and causation are two important topics. In
this sense, we review an independence test and a first approach on testing noncausality, both
based on STSA. The information theory was adopted as an approach to analyze the symbolic
time series and the approximation of Shannon Entropy as an important measure, applied to
test design.

The chapter is organized as follows. Section 2 presents the symbolic time series approach and
its relation with the symbolic dynamics. In Section 3, we review some of the literature of STSA
applied to the sciences. In Section 4, the information theory approach and Shannon Entropy
measure is explained. Section 5 presents a review of the independence symbolic test. Section 6
focuses on causality test based on STSA. Section 7 discusses the difference between the pro-
posed symbolic noncausality test and the traditional and well-known Granger noncausality
test. Finally, in Section 8, we draw some conclusions and present some future lines of research.

2. Symbolic time series analysis

The concept of symbolization has its roots in dynamical systems theory, particularly in the
study of nonlinear systems, which can exhibit bifurcation and chaos. In [21], it is asserted that
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symbolic dynamics is a method for studying nonlinear discrete-time systems by taking a
previously codified trajectory using strings of symbols from a finite set, also called an alphabet.
According to [22], symbolic dynamics and symbolic analysis are connected but are different
concepts. In fact, the former is the practice of modeling a dynamical system by a discrete space.
However, the latter is an empirical approach to characterize highly noisy data by considering a
partition, discretizing the data, and obtaining a string representing the very dynamic of the
process.

As asserted by [23], symbolization involves transformation of raw time series measurements
into a series of discretized symbols that are processed to extract information about the gener-
ating process. In this way, we can search for nonrandom patterns and dependence by
transforming a given time series {x1, x2,…, xT} into a symbolic string {s1, s2, …, sT}.

The STSA approach is easy to apply but the definition of the right partition is the most difficult
thing to do. Generally, it applied an equiprobable partition implying to take the empirical
distribution of a given time series {x1, x2,…, xT} and establishing two or more equally probable
regions. For instance, for a Gaussian time series, we can define two equally probable regions
considering as partition the mean equal to zero. After that, we can assign the symbol si = 0 for
negative values and si = 1 for positive ones. In this way, we transform a continuously random
series into a discrete string similar to the outcomes from flipping a coin.

3. STSA in applied sciences

In [23], the applications of STSA techniques to the different fields of science are reviewed.
According to the authors, the different applications suggest that symbolization can increase
the efficiency of finding and quantifying information from the systems. Mechanical systems
were one of the first applications where symbolic analysis was successfully used to character-
ize complex dynamics. In [24–26], symbolic methods to the analysis of experimental combus-
tion data from internal combustion engines are applied. Their objective was to study the onset
of combustion instabilities as the fueling mixture was leaned. STSA has also been applied in
Astrophysics and Geophysics. For instance, [27] analyzes weak-reflected radar signals from
the planet Venus to measure the rotational period. In [28], a binary symbolization to analyze
solar flare events is utilized. Biology and Medicine is another field where STSA has been
applied. There have been many recent applications of symbolic analysis for biological systems,
most notably for laboratory measurements of neural systems and clinical diagnosis of neural
pathologies. STSA has been applied in neurosciences. In [29, 30], symbolization data is applied
to equal-sized interval to partition EEG signals to identify seizure precursors in electroenceph-
alograms. [31] proposed a new damage localization method based on STSA to detect and
localize a gradually evolving deterioration in the system. They assert that this method could
be demanded for implementation in real-time observation application such as structural health
monitoring. In [32], the STSA is used in human gait dynamics. The results of this study can
have implication modeling physiological control mechanism and for quantifying human gait
dynamics in physiological and stressed conditions. In [33], the heart-rate dynamics is studied
by using partitions aligned on the data mean and �1 and �2 sample standard deviations, for a
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symbol-set size of 6. In [34], the prevalence of irreversibility in human heartbeat is analyzed
applying STSA.

Application of symbolization to fluid flow measurements has spanned a wide range of data
types from global measurements of flow and pressure drop, to formation and coalescence of
bubbles and drops, to spatiotemporal measurements of turbulence. In [35], an approach for
transforming images of complex flow fields (as well as other textured fields) into a symbolic
representation is developed. In [36], STSA is applied to the networks of genes, which is
important underlying the normal development and function of organisms. Information about
the structure of the genome of humans and other organisms is increasing exponentially. In [37],
equiprobable symbols are used for analyzing measurements from free liquid jets in order to
readily discriminate between random and nonrandom behavior. In [38], STSA is applied to the
detection of incipient fault in commercial aircraft gas turbine engines. In [39], combustion
instability in a swirl-stabilized combustor is investigated using STSA. Chemistry-related appli-
cations of symbolic techniques have been developed for chemical systems involving spontane-
ous oscillations or propagating reaction fronts. In [40], a type of symbolization for improving
the performance of Fourier-transform ion-cyclotron mass spectrometry is applied. Artificial
Intelligence, Control, and Communication are fields where symbolization has been incorpo-
rated. In [41], a phase-space partitioning to model communication is used. An example appli-
cation of symbolization to communication is found in [42], utilizing small perturbations to
encode messages in oscillations of the Belousov-Zhabotinsky (BZ) reaction. In robotics, a
symbolic time series–based statistical learning method to construct the generative models of
the gaits (i.e., the modes of walking) for a robot, see [43], has been developed. Efficacy of the
proposed algorithm is demonstrated by laboratory experimentation to model and then infer
the hidden dynamics of different gaits for the T-hex walking robot. In [44], an algorithm to
intuitively cluster groups of agent trails from networks based on STSA is proposed. The
authors assert that temporal trails generated by agents traveling to various locations at differ-
ent time epochs are becoming more prevalent in large social networks. The algorithm was
applied to real world network trails obtained from merchant marine ships GPS locations. It is
able to intuitively detect and extract the underlying patterns in the trails and form clusters of
similar trails.

Themethods of data symbolization have also been applied for data mining, classification, and rule
discovery. In [45], rule discovery techniques to real-valued time series via a process of symboliza-
tion are applied. Finally, we find some applications of STSA in Social Science. In [46–48], STSA
and minimal spanning tree (MST) are applied to construct cluster of financial asset with appli-
cation to portfolio theory. Utilizing a similar methodology, in [49], the dynamics of exchange
market is studied, and in [50], the international hotel industry in Spain is analyzed. In [51, 52],
STSA and entropy are applied to measure informational efficiency in financial markets.

4. Information theory and Shannon entropy

The term entropy was first used by Rudolf Clausius in [53] related to the second law of
thermodynamics. Subsequently, the communication theory [54] used the Shannon entropy as
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a measure of uncertainty where the maximum entropy corresponds to the maximum degree of
uncertainty. In this sense, a random process will take the maximum entropy value. In fact,
English language is not a random process; some patterns such as “THE” are more probable
than sequences such as “DXC”. Note, that in a random process, the two sequences should have
the same probability. This principle is very relevant because if a symbolic string is random, the
entropy should be the maximum.

The entropy measure (H) must meet the following conditions:

1. H(P) should be a function of the probability distribution of the n events expressed as the
vector P = (p1, p2, …, pn).

2. (Continuity), H(P) should be a continuous function of vector P.

3. (Symmetry), the measure should be unchanged if the outcomes pi are re-ordered.

4. (Expansible), Event of probability zero should not contribute to the entropy,H(p1, p2,…, pn,
0) = H(p1, p2, …, pn).

5. (Minimum), the measure should take value 0 when there is not uncertainty.

6. (Maximum), the measure should be maximal if all the outcomes are equally likely. It means
p1 = p2 = … = pn = 1/n.

7. For equiprobable events, the entropy increases with the number of outcomes. H(p1 = 1/
(n + 1), …,pn + 1 = 1/(n + 1)) > H(p1 = 1/n,…,pn = 1/n).

In [54], the Shannon entropy function is proposed:

Hn Pð Þ ¼ �
X

pilog2 pi
� �

(1)

The entropy is frequently measured in bits by using log base 2 satisfying all the properties
already mentioned. Note that the maximum property is confirmed solving the following
Lagrangian expression (2).

�
X

pilog2 pi
� �� λ

X
pi ¼ 1

� �
(2)

The Shannon entropy is concaved with a global maximum when all the probabilities are equal.
In addition, when pi = 0, the convention that 0.log0 = 0 is used. Thus, adding zero, probability
terms do not change the entropy value.

In order to clarify the concept of Shannon, consider two possible events and their respective
probabilities p and q = 1�p. The Shannon entropy will be defined by Eq. (3).

H ¼ � p: log pð Þ þ q: log qð Þð Þ (3)

Figure 1 shows graphically the function shape, note that the maximum is obtained when the
probability is 0.5 for each event. This case corresponds to a random event; on the other hand,
note that a certain event (when probability of one event is 1) will produce entropy equal to 0.
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In general, [55] showed that any measure satisfying all the properties must take the following
form:

�c
X

pilog2 pi
� �

(4)

In order to normalize the Shannon entropy, c usually takes the value 1/log2(n) allowing to
compare events of different sizes.

5. Symbolic independence test

STSA seems to present a good performance when detecting independence in time series. A
variety of dynamical processes are present in economics. Linearity, nonlinearity, deterministic
chaos, and stochastic models have been applied when modeling a complex reality. In [56], a
runs test is designed, asserting that the problem of testing randomness arises frequently in
quality control of manufactured products. It is remarked that detecting dependence in time
series is an essential task for econometricians and applied economist. In [57], the well-known
BDS test is introduced, considered as a powerful test to detect nonlinearity. In [58], a simple
and powerful test based on STSA is proposed and the results are compared with the BDS and
runs test. On one hand, it is found that BDS is not able to detect processes such as the chaotic
Anosov and the stochastic processes nonlinear sign model (NLSIGN), nonlinear autoregressive
model (NLAR), and nonlinear moving average model (NLMA). On the other hand, runs test
cannot detect the chaotic Anosov, the logistic process, the bilinear, the NLAR, and the NLMA
stochastic processes. The experiments show that the test based on STSA has no problem

Figure 1. Shape of the Shannon entropy function. Note that maximum happens when the process is random (p = 0.5).
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detecting all these dynamics. It is concluded that proposed test is simple, easy to compute, and
is powerful with respect to the other two tests. In particular, for small samples, it is the only
one able to detect models such as chaotic Anosov and nonlinear moving average (NLMA).
Besides, the test is applied to financial time series to detect nonlinearity on the residuals after
applying a GARCH model. In this case, the BDS rejected the independence few times whereas
the SRS test still detects nonlinearity in the residuals. It seems that BDS considers that the
GARCH(1,1) model is a good model most of the time. However, the symbolic test suggests that
GARCH(1,1) would not be a good model considering all the nonlinear components.

Here, we review briefly the test and repeat some experiments comparing the results with the
well-known BDS and runs tests. At first, let us consider a finite time series generated by an
independent or random process-sized T* {xt}t = 1,2,…,T*. Define a partition in the series in “a”
equiprobable regions obtaining the symbolized time series {st}t = 1,2,…,T*, where each symbol st
takes a symbolic value from the alphabet A = {A1,A2,…,Aa}. Since, we want to derive a general
statistic for different alphabet sizes a and different subsequences lengths w, we have to make
two considerations: (1) from now, we will call n to the quantity of possible events. That is
n = aw, where for the simplest case (w = 1) implies n = a, then the quantity of events is equal to
the symbol-set size; (2) in practice, we have a finite sample size T*, there is no problem for
w = 1, but when we compute subsequences or time-windows w of consecutive symbols we loss
observations. For example, when we compute the frequency for two consecutive symbols, we
have a total sample size T*�1. In general, we can define the sample size T = T* + w�1, again for
the trivial case w = 1, T* = T

Note that defining Si for i = 1,2,…,n as the sum of the total i events in the time series, we can derive
the multidimensional variable S = {Si/T} being distributed as a multinomial with E(Si/T) = (1/n),
Var(Si/T) = (1/n)(n-1)/nT and Cov(Si/T,Sj/T) = �(1/n)(1/nT) ∀i 6¼ j. As we will see, frequencies of the
events should be important in the statistic and the vector of the n frequencies Si/T could be
approximated by a multivariate normal distribution N(1/n,σ2Σ) where σ2 is (1/nT) and Σ is a
idempotent matrix as in (5)

X
nxn

�

n� 1ð Þ=n �1=n … �1=n

�1=n n� 1ð Þ=n … �1=n

⋮ ⋮ ⋱ ⋮

�1=n �1=n … n� 1ð Þ=n

2
666664

3
777775

(5)

For convenience, we can define the normalized vector variable {εi} = {(Si/T)-(1/n)}i = 1,2,…,n

having a multivariate normal distribution N(ø,σ2Σ), being ø, the null vector. Then, the statistic
can be defined as a quadratic form in random normal variables (6).

Pi¼n
i¼1 ε

2
i

σ2

( )
(6)

In [58] is applied the distribution of quadratic forms in normal variables presented in [59].
X = (ε1/σ,ε2/σ,…,εn/σ) is distributed multivariate normal N(ø,Σ). The theorem indicates that
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tr(ΑΣ) = n�1, and thus X’ΑX distributes Chi-square with (n�1) degrees of freedom. In this
case, Α is the identity matrix I, and Σ is symmetric, singular, and idempotent. Remembering
that σ2 = (1/nT), then we obtain that the distribution of the symbolic randomness statistic
(SRS) as in (7).

SRS � Tn
Xi¼n

i¼1

Si
T
� 1
n

� �2
( )

assymptotically distributes χ2
n�1 (7)

Note that in practice computing the statistic is very simple. We just have to consider the
symbols (a) and subsequences or length (w) and compute the frequencies for each event
(n = aw) in the time series.

The algorithm to compute the test is as follows:

Step 1: Considering time series {xt}t = 1,2,…,T*, compute the empirical distribution, and define
equiprobable regions according to the quantity of symbols or the alphabet size.

Step 2: According to the partition, translate {xt}t = 1,2,…,T* into {st}t = 1,2,…,T*, the symbolic time
series when w = 1.

Step 3: Compute different symbolic time series for different lengths w, remember that the
obtained series in step 2 corresponds to w = 1.

Step 4: For each w, compute the frequency of the n different events Si/T for i = 1,2,…,n.

Step 5: For each w, compute the SRS(a,w) = Tn{Σ(Si/T - 1/n)2} as shown in Eq. (7).

Step 6: Compare the SRS(a,w) with the Chi-2 with n-1 degree of freedom at 0.05 of significance,
under the independence null hypothesis. When SRS(a,w) is larger than the critical value we
reject the null hypothesis.

In [58], it is found that the statistic introduced in (7) is related to the Shannon entropy (H). We
can derive the approximation expressed in Eq. (8).

SRS ≈ 1�Hð Þ:T:ln nð Þ (8)

Note the generalization implied in STSA permits to study different dynamical process. For
instance, consider a string of the first 3000 letters from the book “A Christmas Carol”,
s1 = {marleywasdeadtobeginwith…scroogecar} and a random string of 3000 letters from an alpha-
bet of 26, s2 = {iskynbmhjp…vbbihjfkk}. Imagine testing this kind of process with BDS or runs
test. However, note that would be easy to test this dynamics with the symbolic test. In this
case, we can define an alphabet of 26 letters and the string. On the one hand, applying the SRS
(26,1) and SRS(26,2) for the s1, we obtain the following values 2102.40 and 12331.26, respec-
tively. On the other hand, SRS(26,1) and SRS(26,2) for the string s2 are 25.79 and 690.26,
respectively. Considering that a Chi-2 with 25 degree of freedom at 95% is 37.65 and a Chi-2
with 675 degree of freedom (262–1) at 95% is 736.55. Since, the statistics for s1 are large than the
critical value, we can conclude that the process is not random. However, since the statistics for
s2 are less than critical values, we cannot reject the hypothesis of independence.
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In [58] is shown that the test is conservative, rejecting the null hypothesis less time than
expected. However, it is powerful in detecting nonrandom and nonlinear processes. Consider-
ing the four sample sizes, selecting two symbols and length 4 presents decent results in most of
the cases. Selecting three symbols seems to be a relative good option for size of 200 or larger
and three symbols for a sample size of 500 or larger. The best result is given for a sample of
2000 applying three symbols and length 4. Table 1 presents the experiments using 1000 Monte
Carlo simulations on Normal, Logistic, NLMA, Anosov, and NLSIGN processes reproducing
the experiments in [58].

Note that the symbolic test is more conservative than BDS and Runs test when rejecting
independence in a normal random process. However, the symbolic test is powerful in
detecting nonlinearities in the studied processes. For a sample of 50, Logistic model is detected
100% by the symbolic test, but BDS detects 68%, and Runs test rejects independence 23.90% of
the time. Logistic model is still hard to be detected by the run test when sample increases to
2000. Note that NLMAmodel is detected by the symbolic test when sample is 500 or larger, but
it is not detected by BDS and Runs test. It is interesting to note that the chaotic process of
Anosov is detected by the symbolic test for a sample larger than 500 but both BDS and Runs
tests reject independence less than 6% of the cases. NLSIGN is hard to be detected, for a sample
of 2000 the symbolic test detects more than 90% of the cases and Runs test detects 84% of the
cases. However, BDS cannot detect the NLSIGN process. In [58] similar results are obtained,
the proposed SRS is the only one that is able to detect chaotic Anosov and nonlinear process
NLMAwhen T = 2000.

Sample size Test Normal (%) Logistic (%) NLMA (%) Anosov (%) NLSIGN (%)

T = 50 SRS(2,3) 1.20 41.00 1.30 2.90 0.20

SRS(3,2) 0.70 100.00 0.40 0.80 0.50

BDS 9.70 68.10 7.60 18.10 12.00

RUN test 2.90 23.90 1.30 3.90 2.20

T = 500 SRS(2,3) 2.10 19.30 13.50 2.30 9.90

SRS(3,2) 0.40 100.00 1.70 0.80 1.10

SRS(4,3) 3.20 100.00 97.50 93.80 17.40

BDS 3.60 66.40 7.20 5.30 4.40

RUN test 3.80 14.70 16.30 5.50 24.10

T = 2000 SRS(2,3) 1.90 14.40 62.90 2.50 64.80

SRS(3,2) 0.30 100.00 25.30 1.00 3.80

SRS(4,3) 2.50 100.00 100.00 100.00 92.30

SRS(5,3) 1.70 100.00 100.00 100.00 92.20

BDS 2.80 80.40 14.60 3.60 4.00

RUN test 4.40 12.20 50.00 5.70 84.30

Table 1. Simulated size of the SRS, Runs and BDS statistics.
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6. Symbolic noncausality test

The present section reviews the symbolic noncausality test (SNC) and discusses the differences
with the classical Granger noncausality test. As in the case of independence test, the main idea
here is to derive the asymptotic distribution for the statistic when there is no causality between
the series. A full explanation of the test is shown in [60].

Let us consider that X and Y are two independent random time series sized T + 1 and the
symbolized time series can be expressed as Sx = {sx1,sx2,..,sxT + 1} and Sy = {sy1,sy2,…,
syT + 1}. To test causality, we have to define two new series, grouping Sx and Sy in the
following way:

(1) Sxy = {(sx1, sy2), (sx2, sy3),…,(sxt�1,syt),…,(sxT,sxT + 1)}

(2) Syx = {(sx1, sy2), (sx2, sy3),…,(sxt�1,syt),…,(sxT,sxT + 1)}

If the alphabet is composed by three symbols, the combination (sxt�1, syt) takes a value from
the set of nine possible events {(1,1), (1,2), (1,3), (2,1), (2,2),(2,3),(3,1),(3,2),(3,3)}. Note that each
event should be independent with probability 1/9 (Sx and Sy are random). Only if at least one
event were deviated from 1/9, would there be evidence of noncausality.

An alphabet of a = 3 symbols determines n = 32 = 9 possible events in the set of pairs {(xt-1,yt)} or
{(yt�1, xt)}. Considering “a” symbols and the events n = a2, the vector of the n frequencies Exyi/T
and Eyxi/T could be approximated by a multivariate normal distribution N(1/n,σ2Ω) where σ2

is (1/nT) and Ω is a idempotent matrix as in (9).

Ωnxn �

n� 1ð Þ=n �1=n … �1=n

�1=n n� 1ð Þ=n … �1=n

⋮ ⋮ ⋱ ⋮

�1=n �1=n … n� 1ð Þ=n

2
666664

3
777775

(9)

Following a similar approach as in Section 5, the statistics for the both hypothesis can be
defined as in (10) and (11).

Pi¼n
i¼1 εxy

2
i

σ2

( )
(10)

Pi¼n
i¼1 εyx

2
i

σ2

( )
(11)

The term in brackets in (10), (11) are quadratic forms in random normal variables. Applying
the theorem presented in [59], in the present case where vector X = (ε1/σ,ε2/σ,…,εn/σ) is
distributed multivariate normal N(ø,Ω). As mentioned in Section 5, tr(ΑΩ) = n-1, thus X’ΑX
distributes Chi-square with (n�1) degrees of freedom. In this case, Α is the identity matrix I
and Ω is symmetric, singular, and idempotent.
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{(yt�1, xt)}. Considering “a” symbols and the events n = a2, the vector of the n frequencies Exyi/T
and Eyxi/T could be approximated by a multivariate normal distribution N(1/n,σ2Ω) where σ2

is (1/nT) and Ω is a idempotent matrix as in (9).

Ωnxn �

n� 1ð Þ=n �1=n … �1=n

�1=n n� 1ð Þ=n … �1=n

⋮ ⋮ ⋱ ⋮

�1=n �1=n … n� 1ð Þ=n

2
666664

3
777775

(9)

Following a similar approach as in Section 5, the statistics for the both hypothesis can be
defined as in (10) and (11).

Pi¼n
i¼1 εxy

2
i

σ2

( )
(10)

Pi¼n
i¼1 εyx

2
i

σ2

( )
(11)

The term in brackets in (10), (11) are quadratic forms in random normal variables. Applying
the theorem presented in [59], in the present case where vector X = (ε1/σ,ε2/σ,…,εn/σ) is
distributed multivariate normal N(ø,Ω). As mentioned in Section 5, tr(ΑΩ) = n-1, thus X’ΑX
distributes Chi-square with (n�1) degrees of freedom. In this case, Α is the identity matrix I
and Ω is symmetric, singular, and idempotent.
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Note that we derive the test assuming that X and Y are random processes. However, we can
apply the test for stationary time series and optionally apply an autoregressive process if we
want to remove linear dependence and testing the noncausality between the residuals of the
two series.

xt ¼ α0 þ α1xt�1 þ uxt (12)

yt ¼ β0 þ β1yt�1 þ uyt (13)

Finally, the statistics of noncausality SNC(X! Y) and SNC(Y! X) are defined as in (14) and (15).

SNC X ! Yð Þ � nT
Xi¼n

i¼1

Exyi
T

� 1
n

� �2
( )

assymptotically distributes χ2
n�1 (14)

SNC Y ! Xð Þ � nT
Xi¼n

i¼1

Eyxi
T

� 1
n

� �2
( )

assymptotically distributes χ2
n�1 (15)

Note that in practice, computing the statistic is very simple. In summary, the test works as
follows:

Step 1: Consider time series {xt}t = 1,2,…,T + 2 and {yt}t = 1,2,…,T + 2 we can optionally apply an AR
(1) to both series as in (12) and (13) in order to eliminate autocorrelation and define the new
residuals time series {uxt}t = 1,2,…,T + 1 and {uyt}t = 1,2,…,T + 1. Note that 1 observation is lost after
applying AR(1).

Step 2: In {uxt}t = 1,2,…,T + 1 and {uyt}t = 1,2,…,T + 1 apply a partition in “a” equiprobable regions
and translate the series into {sxt}t = 1,2,…,T + 1 and {syt}t = 1,2,…,T + 1.

Step 3: According to the two hypothesis, X! Y and Y! X define the two sets Sxy = {(sx1, sy2),
(sx2,sy3),…,(sxt-1,syt),…,(sxT,sxT + 1)} and Syx = {(sx1,sy2), (sx2,sy3),…,(sxt-1,syt),…,(sxT, sxT + 1)}.

Step 4: For Sxy and Syx, compute the frequency of the n = a2 different events Exyi/T and Eyxi/T
considering i = 1,2,…, a2.

Step 5: Taking into account Eqs. (14) and (15) compute the SNC(X! Y) = nT{Σ[(Exyi/T)–(1/n)]
2}

and SNC(Y ! X) = nT{Σ[(Eyxi/T) � (1/n)]2}.

Step 6: Finally, two null hypotheses must be contrasted: X does not cause Y, and Y does not
cause X. In the first case SNC(X ! Y) should be compared with a Chi-2 with n-1 degree of
freedom at 0.05 of significance, if SNC(X ! Y) is larger than the critical value the null
hypothesis is rejected. The same should be done with SNC(Y ! X).

7. Symbolic noncausality and Granger noncausality

The concept of causality into the experimental practice is due to Clive Granger. The classical
approach of Granger causality is based on temporal properties. Although the principle was
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formulated for wide classes of systems, the autoregressive modeling framework proposed by
Granger was basically a linear model, and as mentioned in [61] the choice was made due to
practical reasons. Granger noncausality test is among the most applied tool testing causality.
Three limitations should be noted: (1) the classical test has a good performance when the
process is linear. This is because it is based on the vector autoregressive model (VAR); (2) there
are extension of the classical test to consider nonlinear causality but they are related with a
particular nonlinear model; (3) some authors assert that empirical time series are generally
contaminated with noise producing what is known as spurious causality or not allowing to
detect the causality.

SCN test presented in [60] is a nonparametric noncausality test based on the symbolic time series
analysis. The idea is to develop a complementary test to the Granger noncausality, showing
strengths in the points where the Granger test is weak. In this sense, the proposed SNC test
performs well detecting nonlinear processes, in particular the chaotic processes. In addition, the
mentioned problem related with spurious causality should be alleviated. In fact, according to
some experiments nonlinear models such as NLAR model, Lorenz map, and models with
exponential terms are not detected by Granger test but the SNC identifies these processes. The
test is based on information theory considering an approximation of the entropy as the measure
of uncertainty of a random variable. Information theory is considered to be a subset of commu-
nication theory. However, in [62] is consider that it is much more. It has fundamental contribu-
tions to make in statistical physics, computer science, and statistical inference, and in probability
and statistics. It is important to highlight and is an important idea relating symbolic analysis,
information theory, and the concept of noise. Information theory considers that communication
between A and B is a physical process in an imperfect ambient contaminated by noise. Another
important concept is the discrete channel, defined as a system consisting of an input alphabet X
and output alphabet Yand a probability transition matrix p(y|x) that expresses the probability of
observing the output symbol y given that we send the symbol x.

To compare the performance between the classical Granger noncausality and the proposed
SNC test, the following stochastic and deterministic models were simulated:

1. AR(1). We consider two independent series generated by autoregressive (AR) processes:
Xt = 0.2 + 0.45Xt�1 + ε1t and Yt = 0.8 + 0.5Yt-1 + ε2t. Where ε1t and ε2t are i.i.d. and normally
distributed (0,1).

2. Nonlinear with exponential component. Xt = 1.4–0.5Xt�1e
Yt�1 + ε1t and

Yt = 0.4 + 0.23Yt�1 + ε2t; where ε1t and ε2t are i.i.d. normal(0,1).

3. NLAR (Autoregressive Nonlinear). Xt = 0.2jXt-1j/(2 + jXt-1j) + ε1t and Yt = 0.7jYt-1j/(1 + jXt-1j)
+ ε2t; where ε1t and ε2t are i.i.d. normal(0,1).

4. Lorenz: Xt = 1.96Xt�1�0.8Xt�1Yt�1; Yt = 0.2Yt�1 + 0.8X2
t�1; with initial conditions X1, Y1

generated randomly. This is a discrete version of the Lorenz process as in [63].

Table 2 shows the results of the power experiments applying the SNC and the Granger
noncausality test to 10,000 Monte Carlo simulations for the four models and for different
sample sizes (T = 50, 100, 500, 1000, and 5000).
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Following [60], a 60% acceptance or rejection of the null hypothesis is considered as a threshold.
SNC and Granger noncausality correctly identifies noncausality in AR(1) process. Table 2 sug-
gests that SNC is more conservative in the rejection of causality with percentages less than 5%.
The nonlinear model with an exponential component implies causality from Y to X. Note that
SNC detects the causality when the sample size is 500 or larger. However, Granger test does not
detect causality in any case. As asserted by [58] the NLAR process is very difficult to detect. Note
that SCN is the only one detecting the causality when T = 5000. The Lorenz discrete map is also
chaotic, and it is detected by SNC starting from T = 100. However, note that Granger test never
detects the causality. In particular, is highlighted that Granger test is not able to detect the model
with an exponential component, the NLAR model and the chaotic Lorenz map.

Finally, we compare both tests with real data from US. In particular, we consider two well-
known relationships in economics: the Phillips curve [64] about the relation between unem-
ployment and inflation rates, the Okun’s law [65] establishing a relation between unemploy-
ment and economic rate. We take annual data for the US unemployment rate, inflation rate,

Sample size Model Symbolic noncausality Granger noncausality

X ! Y Y ! X X ! Y Y ! X

T = 50 AR(1)
(None)

0.40 0.45 5.66 5.25

T = 100 0.42 0.37 5.28 5.09

T = 500 0.41 0.27 5.47 5.14

T = 1000 0.39 0.42 5.18 5.14

T = 5000 0.34 0.46 5.30 5.09

T = 50 NLAR
(X ! Y)

0.01 0.01 0.05 0.05

T = 100 0.73 0.34 4.82 4.74

T = 500 5.96 0.31 4.94 5.16

T = 1000 17.87 0.29 5.01 5.05

T = 5000 98.02 0.39 6.51 5.00

T = 50 Nonlinear exponential
(Y ! X)

0.51 3.76 2.89 16.89

T = 100 0.28 11.85 2.78 13.36

T = 500 0.43 89.50 2.53 11.48

T = 1000 0.40 99.22 2.73 11.29

T = 5000 1.42 100.00 2.67 11.19

T = 50 Lorenz
(X ! Y, Y ! X)

96.61 31.90 30.77 13.86

T = 100 99.99 90.49 28.52 12.64

T = 500 100.00 100.00 23.60 11.74

T = 1000 100.00 100.00 24.42 11.69

T = 5000 100.00 100.00 23.87 11.52

Table 2. Simulated power of the SNC and the Granger non causality statistic.
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and economic growth for the period 1948–2016 representing a total of 69 observations. Table 3
shows the results of the Granger noncausality test and the symbolic test considering a partition
of two symbols.

The results are similar for both tests. On one hand, Granger and symbolic tests detect causality
from inflation to unemployment in the Phillips curve. On the other hand, the two tests detect
causality running from economic growth to unemployment in the Okun’s law. The economic
theory suggests that inflation increases unemployment while economic growth reduces it.
Note that STSA allows thinking about causality in a more general way, whereas Granger
noncausality needs to think of continuous measured variables, this should not be a problem
for STSA. Let us consider the following example; we now can test the hypothesis of causality
from economic growth (G) and inflation (P) to unemployment (U). The main problem is that
we have to test causality from a two-dimensional variable to a one dimensional. Symbolization
permits to transform the two-dimensional problem in one dimensional and then to apply the
symbolic test as explained. We can follow a similar approach as in [66] where STSA is applied

Null hypothesis Granger SNC(2 symbols)

Phillips curve

Unemployment does not cause inflation 0.04 1.53

Inflation does not cause unemployment 16.90* 9.41*

Okun’s law

Unemployment does not cause economic growth 3.37 2.94

Economic growth does not cause unemployment 61.01* 9.65*

* Indicates rejection of the null hypothesis at the 5% level significance.

Table 3. SNC and the Granger non causality for the Phillips Curve and Okun’s Law in US.

Figure 2. Two-dimensional variable (economic growth and inflation) is transformed into a four symbol variable.
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to dynamic regimes. Figure 2 shows the transformation of the variable (G, P) in a symbolic
variable with an alphabet of four symbols (I: low economic growth and low inflation, II: low
economic growth and high inflation, III: high economic growth and high inflation, IV: high
economic growth and low inflation) considering as partition the mean of each variable. Note
that now the application of symbolic causality is easy, the hypothesis that the economic regime
(G, P) does not cause unemployment is rejected since the SNC is 31.76 and Chi-2 with 15
degree of freedom (42–1) at 95% is 25.00. The opposite hypothesis is not rejected because the
SNC is 24.71. It is not possible to test this type of causality with the traditional Granger
noncausality test.

8. Conclusion

STSA is a powerful tool being applied to many scientific fields. There are recent applications in
robotic, biology, medicine, communication, and engineering. However, applications in social
sciences are very recent. The main difficult is the few historical data produced by the social
processes. Social sciences are used to applied statistical tests for proving their hypothesis.
However, there is much work to do in developing statistical tests based on STSA to be applied
in social sciences. There are some very recent efforts applied to economics and finance using
STSA. In particular, we present a symbolic independence test, which seems to be powerful in
detecting nonlinearities compared with well-known BDS and runs test. The symbolic test is
better detecting models such as the chaotic Anosov and Logistic or some stochastic models
such as NLMA or NLSIGN. A second symbolic test about causality detects complex processes
such as NLAR, nonlinear exponential, or the Lorenz chaotic process when the traditional
Granger noncausality cannot. The symbolic causality also enables causality to be tested in a
more general perspective. The application of test from a two-dimensional economic variable to
a one-dimensional economic variable is a clear example of the potential of STSA in economics
and social sciences in general.

One future research line could be to develop a powerful nonlinear test for multidimensional
variables. As it was explained, STSA permits to transform a multidimensional time series in a
one-dimensional time series simplifying the analysis. This could have important applications
in relationships involving vector functions. A more general line of research is to find meth-
odologies to define the optimal partition. As mentioned before, equiprobable partition is
generally applied but to find the right partition is still a theoretical and practical weakness
in STSA.
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Abstract

Count time series with excess zeros are frequently encountered in practice. In character-
izing a time series of counts with excess zeros, two types of models are commonplace:
models that assume a Poisson mixture distribution, and models that assume a binomial
mixture distribution. Extensive work has been published dealing with modeling frame-
works based on Poisson-type approaches, yet little has concentrated on binomial-type
methods. To handle such data, we propose two general classes of time series models: a
class of observation-driven ZIB (ODZIB) models, and a class of parameter-driven ZIB
(PDZIB) models. The ODZIB model is formulated in the partial likelihood framework,
which facilitates model fitting using standard statistical software for ZIB regression
models. The PDZIB model is conveniently formulated in the state-space framework.
For parameter estimation, we devise a Monte Carlo Expectation Maximization (MCEM)
algorithm, with particle filtering and particle smoothing methods employed to approx-
imate the intractable conditional expectations in the E-step of the algorithm. We investi-
gate the efficacy of the proposed methodology in a simulation study, which compares
the performance of the proposed ZIB models to their counterpart zero-inflated Poisson
(ZIP) models in characterizing zero-inflated count time series. We also present a practi-
cal application pertaining to disease coding.

Keywords: autocorrelation, count time series, observation-driven models,
parameter-driven-models, particle methods, zero-inflation

1. Introduction

Count time series with excess zeros are commonly encountered in a variety of research fields.
In principle, both zero-inflation and autocorrelation may be present in such series. Failing
to adequately accommodate temporal dynamics and a high frequency of zeros can lead to
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incorrect inferential conclusions. Developing a general modeling framework that accounts for
these characteristics poses a daunting challenge.

In characterizing data comprised of counts with excess zeroes, two types of models are
commonplace: a model that assumes a Poisson mixture distribution, and a model that
assumes a binomial mixture distribution. A considerable literature exists for regression
models based on the zero-inflated Poisson (ZIP) distribution to deal with count data that
are independently distributed [1]. Many researchers have extended the classical ZIP model
to analyze repeated measures data by incorporating independent random effects, as these
can account for within-subject correlation and between-subject heterogeneity [2, 3]. To deal
with count time series with excess zeros, some researchers have proposed parameter-driven
ZIP models that accommodate the temporal dynamics by incorporating correlated random
effects, which can be represented by a latent autoregressive process [4, 5]. However, for data
arising from a binomial mixture distribution, a survey of the literature for analogous frame-
works reflects an absence of work dealing with binomial time series with excess zeros. To
handle such data, we propose two general classes of models: a class of observation-driven
ZIB (ODZIB) models, and a class of parameter-driven ZIB (PDZIB) models. The inspiration
for the two proposed modeling frameworks arises from the work of Hall [6], Yau et al. [4],
and Yang et al. [5, 7].

Depending on how the temporal correlation is conceptualized, count time series models
can be classified as either observation-driven or parameter-driven [8]. For the former,
serial correlation is characterized by specifying that the conditional mean of the current
response depends explicitly on its past values [9–14]. For the latter, such correlation is
characterized through an unobservable underlying process [15–19]. In this chapter, we
employ the partial likelihood framework to formulate the ODZIB model, as this largely
simplifies parameter estimation with negligible loss of information. The ODZIB model can
be viewed as an extension of the observation-driven binomial model [20]. Such a model is
often fit using standard statistical software available for classical ZIB regression models.
For the PDZIB model, we employ a state-space approach, as this framework allows for the
investigation of the underlying latent processes that govern the temporal correlation and
zero inflation. Due to the non-Gaussian distribution of the count response, and the non-
linear nature of modeling its conditional mean, traditional state-space methods using the
Kalman filter and the Kalman smoother are not available for parameter estimation. We
thereby adopt a Monte Carlo Expectation Maximization (MCEM) algorithm based on the
particle filter [21] and the particle smoother [22].

The remainder of the chapter is organized as follows. In Section 2, we briefly introduce a
class of observation-driven models for a zero-inflated count time series that arises from a
binomial mixture. Section 3 proposes a class of parameter-driven models in the state-
space framework, and presents the MCEM algorithm devised to fit such models. A
comprehensive simulation study is provided in Section 4. In Section 5, we illustrate the
proposed methodology through a practical application. Section 6 concludes with a brief
discussion.
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2. Observation-driven ZIB models

2.1. ZIB models

A popular approach for modeling independent zero-inflated binomial data is the ZIB model
proposed by Hall [6]. This model assumes that data are generated from a mixture distribution,
comprised of a binomial distribution and a degenerate distribution at zero. For response
variable Y, let yi denote the observation for subject i, i = 1, 2,…, n. The probability mass function
for the ZIB model is defined as follows:

f yijπi;ωi
� � ¼

ωi þ 1� ωið Þ 1� πið Þni , if yi ¼ 0,

1� ωið Þ
ni

yi

 !
π
yi
i 1� πið Þni�yi , if yi > 0:

8>>><
>>>:

(1)

Here, ωi is the zero-inflation parameter, and πi is the intensity parameter representing the
probability of success, both modeled via logit link functions:

logit ωið Þ ¼ xΤi1γ, (2)

logit πið Þ ¼ xΤi2 β: (3)

In the preceding, xi1 and xi2 are sets of explanatory variables for the corresponding vectors of
regression coefficients γ and β. The Expectation Maximization (EM) algorithm or the Newton-
Raphson method can be used to obtain the parameter estimates.

2.2. Observation-driven ZIB models

In this section, we introduce an autoregressive model for binomial time series with excess zeros
based on an observation-driven approach.We retain the samemodel structure as that introduced
in Section 2.1 to account for the binomial mixture, yet we employ lagged responses as covariates
to resolve the temporal correlation. The proposed model can be viewed as an extension of the
binomial time series model presented by Kedem and Fokianos [20].

Let yt denote the binomial count response. Define the information set

F t�1 ¼ σ yt�1; yt�2;…; xt
� �

(4)

so as to represent all that is known to the observer at time t about the response and any
relevant covariate processes. Thus, the vector xt represents a collection of past and possibly
present time-dependent covariates that are observed at time t� 1. In the present setting,
xt may be viewed as either fixed or random. Conditioning on the information F t�1, the
response is assumed to follow a ZIB distribution with probability mass function defined
as follows:
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f t ytjF t�1;πt;ωt
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yt
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Similarly, ωt and πt represent the zero-inflation parameter and the intensity parameter, respec-
tively. Both parameters are modeled via logit link functions. Specifically, we assume that

logit ωtð Þ ¼ xΤ1, tγ, (6)

logit πtð Þ ¼ xΤ2, tβþ
Xp

j¼1

φjyt�j, (7)

where x1, t and x2, t are sets of time-dependent explanatory variables for the corresponding vectors
of regression coefficients γ and β, and φ = [φ1,…,φp]

Τ is a vector of autoregressive coefficients
corresponding to the past responses [yt� 1,…, yt� p]

Τ. For simplicity, we treat the zero-inflation
parameterωt as a constant thatdoesnot varyover time. In theobservation-drivenZIBmodel, serial
correlation is accommodated by introducing lagged values of the response to the linear predictor.

The partial data likelihood of the observed series is

PL θð Þ ¼
Yn
t¼1

f t ytjF t�1
� �

, (8)

where θ = [β,φ,γ]Τ is the vector of unknown parameters. The partial likelihood does not
require the derivation of the joint distribution of the response and the covariates, and is largely
simplified relative to the full likelihood. This approach facilitates conditional inference for a
fairly large class of transitional processes where the response depends on its past values.

The log-likelihood for the observation-driven ZIB model is

log PL θð Þ ¼
Xn
t¼1

log ωtI yt¼0ð Þ þ 1� ωtð Þ nt
yt

� �
πyt
t 1� πtð Þnt�yt

� �
: (9)

The vector θ̂ obtained by maximizing the partial likelihood is called the maximum partial
likelihood estimator (MPLE).

Similar to Section2.1,we canapply theEMalgorithmor theNewton–Raphsonmethod toobtain the
MPLE. This estimation process can be conveniently conducted in practice using standard software
tools available for fitting classical ZIBmodels. In SAS, we can use the finite mixture models (FMM)
procedure to fit the observation-drivenZIBmodel,whilewe canuse function gamlss in the package
generalized additivemodels for location scale and shape (GAMLSS) formodel fitting inR.Hypoth-
esis testing for θ is carried out through the partial likelihoodmethod. The common tests are based
on Wald statistics, score statistics, and partial likelihood ratio statistics. All of these tests are
conducted based on the framework for classicalmaximum likelihood inference.

Time Series Analysis and Applications130



f t ytjF t�1;πt;ωt
� � ¼

ωt þ 1� ωtð Þ 1� πtð Þnt , if yt ¼ 0,

1� ωtð Þ
nt

yt

 !
πyt
t 1� πtð Þnt�yt , if yt > 0:

8>>><
>>>:

(5)

Similarly, ωt and πt represent the zero-inflation parameter and the intensity parameter, respec-
tively. Both parameters are modeled via logit link functions. Specifically, we assume that

logit ωtð Þ ¼ xΤ1, tγ, (6)

logit πtð Þ ¼ xΤ2, tβþ
Xp

j¼1

φjyt�j, (7)

where x1, t and x2, t are sets of time-dependent explanatory variables for the corresponding vectors
of regression coefficients γ and β, and φ = [φ1,…,φp]

Τ is a vector of autoregressive coefficients
corresponding to the past responses [yt� 1,…, yt� p]

Τ. For simplicity, we treat the zero-inflation
parameterωt as a constant thatdoesnot varyover time. In theobservation-drivenZIBmodel, serial
correlation is accommodated by introducing lagged values of the response to the linear predictor.

The partial data likelihood of the observed series is

PL θð Þ ¼
Yn
t¼1

f t ytjF t�1
� �

, (8)

where θ = [β,φ,γ]Τ is the vector of unknown parameters. The partial likelihood does not
require the derivation of the joint distribution of the response and the covariates, and is largely
simplified relative to the full likelihood. This approach facilitates conditional inference for a
fairly large class of transitional processes where the response depends on its past values.

The log-likelihood for the observation-driven ZIB model is

log PL θð Þ ¼
Xn
t¼1

log ωtI yt¼0ð Þ þ 1� ωtð Þ nt
yt

� �
πyt
t 1� πtð Þnt�yt

� �
: (9)

The vector θ̂ obtained by maximizing the partial likelihood is called the maximum partial
likelihood estimator (MPLE).

Similar to Section2.1,we canapply theEMalgorithmor theNewton–Raphsonmethod toobtain the
MPLE. This estimation process can be conveniently conducted in practice using standard software
tools available for fitting classical ZIBmodels. In SAS, we can use the finite mixture models (FMM)
procedure to fit the observation-drivenZIBmodel,whilewe canuse function gamlss in the package
generalized additivemodels for location scale and shape (GAMLSS) formodel fitting inR.Hypoth-
esis testing for θ is carried out through the partial likelihoodmethod. The common tests are based
on Wald statistics, score statistics, and partial likelihood ratio statistics. All of these tests are
conducted based on the framework for classicalmaximum likelihood inference.

Time Series Analysis and Applications130

3. Parameter-driven ZIB models

3.1. Model formulation

An alternative approach to describe binomial time series with excess zeros is based on parameter-
driven ZIB models. This class of models can be viewed as an analogue of the parameter-driven
ZIP models presented by Yang et al. [5].

To account for temporal dynamics in the series, we introduce a latent stationary autoregressive
process {zt} of order p (AR(p)):

zt ¼
Xp

i¼1

φizt�i þ εt: (10)

Here, εt is a Gaussian white noise process with a mean of 0 and a variance of σ2. Additionally,
φi explains how the past state zt� i relates to the current state zt.

Let yt be the observed count at time t. Given the current state zt, the positive count response yt
is assumed to follow a ZIB distribution with a probability mass function defined as

f t ytjzt;πt;ωt
� � ¼

ωt þ 1� ωtð Þ 1� πtð Þnt , if yt ¼ 0,

1� ωtð Þ
nt

yt

 !
πyt
t 1� πtð Þnt�yt , if yt > 0:

8>>><
>>>:

(11)

Similar to the previous model parameterizations, ωt and πt represent the zero-inflation param-
eter and the intensity parameter, respectively. Both parameters are modeled via logit link
functions and could be time-varying. To relate the intensity parameter πt to the latent compo-
nent zt, we use the model

logit πtð Þ ¼ xΤt βþ zt, (12)

where xt is a set of explanatory variables observed at time t, and β is the corresponding vector
of regression coefficients. In the present setting, xt is assumed fixed. For simplicity, we treat the
zero-inflation parameter ωt as a constant that does not vary over time.

For the parameter-driven ZIB model, the conditional mean and variance of the response
variable yt are given by

E Ytjztð Þ ¼ 1-ωtð Þntπt, (13)

Var Ytjztð Þ ¼ 1-ωtð Þntπt 1-πt 1-ωtntð Þ½ �: (14)

Obviously, the presence of zero-inflation (ωt > 0) not only explains the excess zeros in the series,
but also introduces overdispersion. Additionally, the correlated random effects zt contribute to
the extra variance.

State-Space Models for Binomial Time Series with Excess Zeros
http://dx.doi.org/10.5772/intechopen.71336

131



We can write the parameter-driven ZIB model in the following hierarchical form:

st∣st�1 � N p Φst�1;Σð Þ, (15)

ut � Bernoulli ωð Þ, (16)

yt∣st, ut � Binomial nt; 1� utð Þπtð Þ, (17)

where st = [zt,…, zt� p + 1]
Τ is a p-dimensional state vector with zt being its first element, ut

is an unobservable membership indicator that determines whether the response comes
from a degenerate distribution or an ordinary binomial distribution, Φ is an unknown
transition matrix, and Σ is the covariance matrix of the state noise process st. The process
st is initiated with a normal vector s0 that has mean μ0 and covariance matrix Σ0. Diffuse
priors are often assigned to s0 in practice. Given the two unobserved latent processes st
and ut, we can conceptualize a sequential update of the response variable yt.

In Eq. (15), Φ and Σ are p� p matrices defined as follows:

Φ ¼

φ1 φ2 ⋯ φp�1 φp

1 0 ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

2
666666664

3
777777775
, Σ ¼

σ2 0 ⋯ 0 0

0 0 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

0 0 ⋯ 0 0

2
666666664

3
777777775
: (18)

The transition matrix Φ governs the generation of the state vector st from the past state
st� 1 for time points t = 1,…, n. Note that the covariance matrix Σ in Eq. (18) is not positive
definite. This is both legitimate and common in the state-space modeling approach.

3.2. Parameter estimation via MCEM algorithm

3.2.1. Model fitting

To fit the parameter-driven ZIB model, in principle, one would first obtain the marginal
likelihood of the observed data y1,…, yn by integrating out unobserved components. However,
because of the presence of correlated random effects and the non-Gaussian nature of the
response, these integrals are not analytically tractable. Therefore, approximations or numerical
solutions for the maximum likelihood estimates (MLEs) are necessary. Instead of obtaining the
MLEs based on the marginal likelihood, we propose an EM algorithm [23], which relies on the
complete-data likelihood to estimate the parameters.

Let y1 : t = [y1, y2,…, yt]
Τ denote the vector of observed data from time point 1 through t. In a

similar fashion, let s0 : t = [s0, s1,…, st]
Τ and u1 : t = [u1, u2,…, ut]

Τ denote the vectors of two latent
processes, respectively, over the same time frame. Let θ = [ω, βΤ,φΤ, σ]Τ denote the vector of
unknown parameters.
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definite. This is both legitimate and common in the state-space modeling approach.

3.2. Parameter estimation via MCEM algorithm

3.2.1. Model fitting

To fit the parameter-driven ZIB model, in principle, one would first obtain the marginal
likelihood of the observed data y1,…, yn by integrating out unobserved components. However,
because of the presence of correlated random effects and the non-Gaussian nature of the
response, these integrals are not analytically tractable. Therefore, approximations or numerical
solutions for the maximum likelihood estimates (MLEs) are necessary. Instead of obtaining the
MLEs based on the marginal likelihood, we propose an EM algorithm [23], which relies on the
complete-data likelihood to estimate the parameters.

Let y1 : t = [y1, y2,…, yt]
Τ denote the vector of observed data from time point 1 through t. In a

similar fashion, let s0 : t = [s0, s1,…, st]
Τ and u1 : t = [u1, u2,…, ut]

Τ denote the vectors of two latent
processes, respectively, over the same time frame. Let θ = [ω, βΤ,φΤ, σ]Τ denote the vector of
unknown parameters.
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To develop an EM algorithm for parameter estimation of the mixture model, Eqs. (15)–
(17), we begin by formulating the complete-data likelihood; i.e., the joint density of s0 : n,
u1 : n, and y1 : n. The two latent processes s0 : n and u1 : n are considered missing. Based on the
state-space representation, the complete-data likelihood may be orthogonally decomposed
as follows:

Lc θð Þ ¼ f s0:n; u1:n; y1:n
� �

¼ f s0:n; u1:nð Þf y1:njs0:n; u1:n
� �

¼ f s0:nð Þf u1:nð Þf y1:njs0:n; u1:n
� �

¼ f s0ð Þ
Yn
t¼1

f stjst�1ð Þ
Yn
t¼1

f utð Þ
Yn
t¼1

f ytjst; ut
� �

:

(19)

Here, the initial state vector s0 is assumed to be normally distributed with mean vector μ0 and
covariance matrix Σ0. In implementing the algorithm, we set μ0 = 0 and Σ0 = Ip, as the effect of
the starting values of μ0 and Σ0 on the estimated parameters θ is negligible.

Up to an additive constant, the complete-data log-likelihood is given by

lc θð Þ ¼ � n
2
log σ2 � 1

2σ2
Xn
t¼1

zt � φΤst�1
� �2

þ
Xn
t¼1

ut logωþ 1� utð Þ log 1� ωð Þf g

þ
Xn
t¼1

1� utð Þ ytx
Τ
t β� nt log 1þ exp xΤt βþ zt

� �� �� �
:

(20)

The complete-data log-likelihood can be described as the sum of three functionally indepen-
dent parameter forms, such that lc(θ) = l(φ, σ| st) + l(ω| ut) + l(β| st, ut), resulting in ease of the
maximization in the M-step for each set of parameters.

With the implementation of the EM algorithm, we need to compute the conditional expecta-
tion of lc(θ) given the observed data y1 : n. Deriving an analytical form for the conditional
expectation is not feasible due to the nonlinear forms in the latent variables and the response,
as well as the non-Gaussian distributions of the response and the latent indicators. There are
many numerical methods available to approximate the conditional expectation, such as the
Markov chain Monte Carlo (MCMC) algorithm [24], the MCEM algorithm [7, 25], the penal-
ized quasi-likelihood (PQL) method [2], and integrated nested Laplace approximations (INLA)
[26]. Following Yang et al. [5], we develop an MCEM algorithm to approximate the conditional
expectation.

To simplify the notation, we let A jð Þ
t , b jð Þ

t , c jð Þ
t , d jð Þ

t , e jð Þ
t , and f jð Þ

t denote the conditional expecta-
tions of st�1sΤt�1, ztst� 1, z2t , ut, 1� utð Þ log 1þ exp xΤt βþ zt

� �� �
, and 1� utð Þexp xΤt βþ zt

� �
=

1þ exp xΤt βþ zt
� �� �

evaluated at θ(j), respectively. In the Monte Carlo E-step of the algorithm,
we first compute the conditional expectation of lc(θ):
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Q θjθ jð Þ
� �

¼ E lc θð Þjy1:n;θ jð Þ
n o

¼ �n
2
log σ2 � 1

2σ2
Xn
t¼1

c jð Þ
t � 2φΤb jð Þ

t þ φΤA jð Þ
t φ

� �

þ
Xn
t¼1

d jð Þ
t log ωþ 1� d jð Þ

t

� �
log 1� ωð Þ

n o

þ
Xn
t¼1

1� d jð Þ
t

� �
ytx

Τ
t β� nte

jð Þ
t

n o
,

(21)

where particle filtering and smoothing techniques are used to approximate the conditional
expectations. The details of the particle methods for the parameter-driven ZIB model are
presented in Section 3.3.

The following partial derivatives are applied to maximize Q(θ|θ(j)) in the M-step:

∂Q
∂ω

¼ 1
ω

Xn
t¼1

d jð Þ
t � 1

1� ω

Xn
t¼1

1� d jð Þ
t

� �
, (22)

∂Q
∂φ

¼ 1
σ2
Xn
t¼1

b jð Þ
t �A jð Þ

t φ
� �

, (23)

∂Q
∂σ

¼ �n
σ
þ 1
σ3
Xn
t¼1

c jð Þ
t � 2φΤb jð Þ

t þ φΤA jð Þ
t φ

� �
, (24)

∂Q
∂β

¼
∂E lc θð Þjy1:n;θ jð Þ
n o

∂β

¼ E
∂lc θð Þ
∂β

jy1:n;θ jð Þ
� �

¼ E
Xn
t¼1

1� utð Þyt � nt 1� utð Þ exp xΤt βþ zt
� �

1þ exp xΤt βþ zt
� �

( )
xtjy1:n;θ jð Þ

 !

¼
Xn
t¼1

1� d jð Þ
t

� �
yt � ntf

jð Þ
t

n o
xt:

(25)

At the jth iteration, we obtain the following closed-form solutions for ω(j + 1), φ(j + 1), and σ(j + 1):

ω jþ1ð Þ ¼ 1
n

Xn
t¼1

d jð Þ
t , (26)

φ jþ1ð Þ ¼
Xn
t¼1

A jð Þ
t

 !�1Xn
t¼1

b jð Þ
t , (27)
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At the jth iteration, we obtain the following closed-form solutions for ω(j + 1), φ(j + 1), and σ(j + 1):

ω jþ1ð Þ ¼ 1
n

Xn
t¼1

d jð Þ
t , (26)

φ jþ1ð Þ ¼
Xn
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σ jþ1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

a jð Þ
t �

Xn
t¼1

b jð Þ
t

 !Τ Xn
t¼1

A jð Þ
t

 !�1Xn
t¼1

b jð Þ
t

8<
:

9=
;

vuuut : (28)

In addition, we can easily compute β(j + 1) through iterative algorithms such as Broyden-
Fletcher-Goldfarb-Shanno (BFGS). Once we acquire the particle smoothers from the smoothing
step, we can obtain the MCEM estimates by plugging in the sample means of the functions of
particle smoothers for the conditional expectations.

To offset the slow convergence and to reduce the computational cost of the EM algorithm,
starting with good initial parameters is essential. For the proposed parameter-driven ZIB
model, we suggest using the estimates of the parameters from a classical ZIB model or from
the observation-driven ZIB model discussed in Section 2.2.

3.2.2. Standard errors

Standard errors of the parameter estimators can be obtained either by using the inverse of the
observed information to approximate the variance/covariance matrix, or by employing a
collection of replicated bootstrapped parameter estimates. Given the computational cost of
the MCEM algorithm, we pursue the first approach by applying Louis's formula [27] to
compute the observed information matrix Io(θ). Based on the missing information principle,
we have

Io θð Þ ¼ Ic θð Þ � Im θð Þ, (29)

where Ic(θ) and Im(θ) are defined as follows:

Ic θð Þ ¼ E � ∂2lc
∂θ∂θΤ jy1:n

� �
, (30)

Im θð Þ ¼ E
∂lc
∂θ

∂lc
∂θΤ jy1:n

� �
� E

∂lc
∂θ

jy1:n
� �

E
∂lc
∂θΤ jy1:n
� �

: (31)

The first-order derivatives of lc(θ) are given by

∂lc
∂ω

¼ 1
ω

Xn
t¼1

ut � 1
1� ω

Xn
t¼1

1� utð Þ, (32)

∂lc
∂β

¼
Xn
t¼1

1� utð Þ yt � nt
exp xΤt βþ zt

� �

1þ exp xΤt βþ zt
� �

( )
xt, (33)

∂lc
∂φ

¼ 1
σ2
Xn
t¼1

zt � φΤst�1
� �

st�1, (34)
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∂lc
∂σ

¼ �n
σ
þ 1
σ3
Xn
t¼1

zt � φΤst�1
� �2

: (35)

The second-order derivatives of lc(θ) are given by

∂2lc
∂ω∂ω

¼ � 1
ω2

Xn
t¼1

ut � 1

1� ωð Þ2
Xn
t¼1

1� utð Þ, (36)

∂2lc
∂β∂βΤ

¼ �
Xn
t¼1

1� utð Þnt
exp xΤt βþ zt

� �

1þ exp xΤt βþ zt
� �� �2 xtxΤt , (37)

∂2lc
∂φ∂φΤ ¼ � 1

σ2
Xn
t¼1

st�1sΤt�1, (38)

∂2lc
∂σ∂σ

¼ n
σ2

� 3
σ4
Xn
t¼1

zt � φΤst�1
� �2

, (39)

∂2lc
∂φ∂σ

¼ � 2
σ3
Xn
t¼1

zt � φΤst�1
� �

st�1: (40)

Again, particle filtering and smoothing techniques are used to approximate the conditional
expectations in Ic(θ) and Im(θ).

In principle, the variance/covariance matrix can be approximated by taking the inverse of the
observed information matrix. However, the computation of the inverse is often problematic.
As indicated by Kim and Stoffer [25], the observed information matrix is not guaranteed to be
numerically positive definite. To address this problem, we slightly modify Louis’s formula by
introducing a slack variable ξ, such that

Io θð Þ ¼ Ic θð Þ � 1� ξð ÞIm θð Þ, (41)

where ξ is a non-negative variable ranging from 0 to 1. In practice, we can iteratively increase
this value until the observed information matrix can be inverted.

3.3. Particle methods

Particle filtering [21] and particle smoothing [22] belong to the class of sequential Monte Carlo
(SMC) methods [28]. These particle methods can be viewed as the non-linear and non-Gaussian
extensions of the popular Kalman filtering and smoothing algorithms for traditional state-space
models. Rather than yielding a single estimate for the filter or the smoother, as computed
through conventional Kalman filtering and smoothing, particle methods provide a set of parti-
cles with associated weights to approximate the conditional densities governing the filters and
smoothers. Implemented via sequential importance sampling (SIS), in the E-step of the EM
algorithm, particle methods provide approximate solutions to the intractable integrals
corresponding to the conditional expectations of functions of the latent components given the
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observed data. However, sample degeneracy is a typical problem for SIS methods. In particular,
degeneracy occurs when particles have small weights or even negative weights, rendering their
contributions to the conditional density negligible. Resampling (e.g., bootstrapping) offers a
recourse for eliminating particles with negligible effects. Kim [29] provides an elegant treatment
of particle filtering and smoothing for state-space models.

Particle filtering

For the parameter-driven ZIB model, we implement particle filtering by first generating

s ið Þ
0∣0 � N p μ0;Σ0

� �
. Then for t = 1,…, n:

(F.1) Generate s ið Þ
t∣t�1 � N p Φs ið Þ

t�1∣t�1;Σ
� �

and u ið Þ
t∣t�1 � Bernoulli ωð Þ.

(F.2) Compute the filtering weights

q ið Þ
t∣t�1 ∝

nt
yt

� �
1� u ið Þ

t∣t�1

� �
π ið Þ
t∣t�1

� �yt
1� 1� u ið Þ

t∣t�1

� �
π ið Þ
t∣t�1

� �nt�yt
, (42)

where logit π ið Þ
t∣t-1

� �
¼ xΤt βþ z ið Þ

t∣t-1 and z ið Þ
t∣t�1 is the first element of s ið Þ

t∣t�1.

(F.3) Generate s ið Þ
t∣t ; u

ið Þ
t∣t

� �
by resampling s ið Þ

t∣t�1; u
ið Þ
t∣t�1

� �
with replacement based on the preceding

filtering weights.

As a byproduct of the particle filtering, the observed-data log-likelihood can be approximated by

Xn
t¼1

log
1
N

XN

i¼1

q ið Þ
t∣t�1

 !
, (43)

where N is the number of particles in the filtering step.

Particle smoothing

Next, we employ the particle smoothing algorithm proposed by Godsill et al. [22] to obtain the
conditional expectations of the functions of the latent variables given the complete set of

observed data. In this step, we first choose s rð Þ
n∣n; u

rð Þ
n∣n

� �
¼ s ið Þ

n∣n; u
ið Þ
n∣n

� �
with probability q ið Þ

n∣n�1.

Then for t = n� 1,…, 1:

(S.1) Calculate the smoothing weights

q ið Þ
t∣n ∝ q ið Þ

t∣t�1exp � 1
2σ2

z ið Þ
tþ1∣n � φΤs ið Þ

t∣t

� �2� �
ωu ið Þ

tþ1∣n 1� ωð Þ1�u ið Þ
tþ1∣n : (44)

(S.2) Choose s rð Þ
t∣n; u

rð Þ
t∣n

� �
¼ s ið Þ

t∣t ; u
ið Þ
t∣t

� �
with probability q ið Þ

t∣n.

We obtain independent realizations by repeating the preceding process for r = 1,…,R.
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4. Simulation studies

In this section, we investigate through simulation two salient issues pertaining to the proposed
modeling frameworks. In the first part, we explore the convergence of the MCEM algorithm
through simulated examples, and investigate the finite sample distributional properties of the
parameter estimators through a comprehensive simulation study. In the second part, we
present a simulation study to compare the performance of the proposed ZIB models to their
counterpart ZIP models in characterizing zero-inflated count time series.

4.1. Evaluation of the MCEM algorithm

We consider time series data simulated from four different parameter-driven models: ZIB + AR
(2), binomial + AR(2), ZIB + AR(1), and binomial + AR(1). The sample size is set to 300 and the
number of cases nt for each time point is set to 30. All of the models feature the following linear
predictor:

logit πtð Þ ¼ β0 þ β1x1, t þ zt, (45)

where x1, t is a covariate series generated from a standard uniform distribution. The true
parameters for the most complicated model ZIB + AR(2) are as follows:

ω ¼ 0:3, β0 ¼ 2, β1 ¼ �3,φ1 ¼ 0:8,φ2 ¼ �0:6, and σ ¼ 0:5: (46)

For the rest of the models considered, the corresponding parameters are set to 0 if no such a
form is included. Autoregressive (AR) coefficients are chosen to assure stationarity of the
series. In fitting the models, the number of particle filters (N) is set to 500 and the number of
particle smoothers (R) is set to 300. We stop the MCEM algorithm after 300 iterations. Table 1
presents the parameter estimates for the simulated data corresponding to the four parameter-
driven models.

Figure 1 shows the trace plots of the log-likelihood for the four fitted parameter-driven
models. Note that the log-likelihood of the MCEM algorithm is not strictly increasing at each
iteration due to the introduction of Monte Carlo errors. However, the log-likelihood stabilizes
after a few dozen iterations with slight fluctuations around the maximal value. Figure 2 shows
the trace plots for the parameter estimates from the most complex fitted model, ZIB + AR(2).
The plots indicate that the parameter estimates converge to the MLEs quickly with negligible

ω β0 β1 φ1 φ2 σ

True 0.300 2.000 �3.000 0.800 �0.600 0.500

Binomial + AR(1) 1.984 �2.968 0.800 0.540

ZIB + AR(1) 0.283 2.124 �2.930 0.781 0.563

Binomial + AR(2) 1.989 �3.012 0.852 �0.620 0.499

ZIB + AR(2) 0.293 1.992 �2.872 0.831 �0.576 0.506

Table 1. True and estimated parameters for the simulated examples.
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fluctuations. The trace plots of the parameter estimates for the other three models exhibit
similar patterns (results not shown). In practice, we recommend always checking the trace
plots of the estimates to assess convergence of the MCEM algorithm.

We next investigate the finite sample distributional properties of the parameter estimators from
the MCEM algorithm. We consider the same parameter-driven models presented in the preced-
ing simulated example. For each model structure, 500 replications are generated based on
sample sizes of 200 and 500. We employ the proposed MCEM algorithm to fit models based on
these replications, and record the subsequent parameter estimates and their standard errors. As
theMECM algorithm is computationally expensive, we set the number of particles for both filters
and smoothers to 200, and the stopping iteration for the MCEM algorithm at 100. In Tables 2–3,
we provide the simulation results based on the most complex model, ZIB + AR(2).

In general, the mean and median of the estimates converge to the true parameters, with a minor
degree of negative bias associated with the estimation of the AR coefficients. The empirical
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Figure 1. Trace plots of the log-likelihood for fitted parameter-driven models based on simulated data.
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standard deviations (ESDs) are reasonably close to the average asymptotic standard errors
(ASEs). Therefore, the standard errors calculated by Louis’s method prove to be sufficient. As
the sample size increases from 200 to 500, the bias for the estimation of the AR coefficients
attenuates, and the standard errors tend to diminish. The two behaviors indicate that weak
convergence holds. The results for the other three parameter-driven models are analogous to
those presented in Tables 2–3. Tables 4–9 show the simulation results for the binomial + AR(2)
model, ZIB + AR(1) model, and binomial + AR(1) model, respectively.

The normality of the parameter estimators is assessed by Q-Q plots based on the sets of
replicated estimates (figures not shown). For the most complex ZIB + AR(2) model, approxi-
mate normality holds for the finite sample distribution of the parameter estimators, with
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Figure 2. Trace plots of the estimated parameters for the fitted ZIB + AR(2) model.
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True Mean Median ESD ASE

ω 0.300 0.299 0.295 0.032 0.032

β0 2.000 1.999 1.992 0.139 0.166

β1 �3.000 �2.992 �2.980 0.235 0.224

φ1 0.800 0.743 0.757 0.120 0.165

φ2 �0.600 �0.563 �0.572 0.104 0.145

σ 0.500 0.504 0.508 0.063 0.098

Table 2. Summary statistics for replicated parameter estimates from fitted ZIB + AR(2) models with sample size 200.

True Mean Median ESD ASE

ω 0.300 0.300 0.299 0.020 0.020

β0 2.000 2.002 2.002 0.081 0.104

β1 �3.000 �3.006 �3.007 0.138 0.139

φ1 0.800 0.754 0.754 0.076 0.095

φ2 �0.600 �0.566 �0.573 0.067 0.086

σ 0.500 0.509 0.510 0.039 0.057

Table 3. Summary statistics for replicated parameter estimates from fitted ZIB + AR(2) models with sample size 500.

True Mean Median ESD ASE

β0 2.000 1.998 2.003 0.108 0.167

β1 �3.000 �3.002 �3.010 0.179 0.174

φ1 0.800 0.783 0.783 0.087 0.101

φ2 �0.600 �0.593 �0.596 0.080 0.094

σ 0.500 0.496 0.494 0.052 0.062

Table 4. Summary statistics for replicated parameter estimates from fitted binomial + AR(2) models with sample size 200.

True Mean Median ESD ASE

β0 2.000 1.995 1.989 0.070 0.101

β1 �3.000 �2.994 �2.995 0.113 0.108

φ1 0.800 0.791 0.791 0.057 0.063

φ2 �0.600 �0.593 �0.595 0.053 0.059

σ 0.500 0.498 0.496 0.032 0.038

Table 5. Summary statistics for replicated parameter estimates from fitted binomial + AR(2) models with sample size 500.
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slightly non-normal tail behavior (thick or thin) evident for the estimated AR coefficients. As
the sample size is increased from 200 to 500, this non-normal behavior is attenuated. Similar
patterns are observed for the other three parameter-driven models.

True Mean Median ESD ASE

β0 2.000 1.997 1.996 0.125 0.168

β1 �3.000 �2.997 �2.994 0.106 0.106

φ1 0.800 0.787 0.789 0.035 0.035

σ 0.500 0.499 0.499 0.030 0.033

Table 9. Summary statistics for replicated parameter estimates from fitted binomial + AR(1) models with sample size 500.

True Mean Median ESD ASE

ω 0.300 0.299 0.299 0.020 0.021

β0 2.000 1.984 1.989 0.135 0.168

β1 �3.000 �2.992 �2.991 0.133 0.132

φ1 0.800 0.781 0.785 0.041 0.040

σ 0.500 0.500 0.499 0.035 0.040

Table 7. Summary statistics for replicated parameter estimates from fitted ZIB + AR(1) models with sample size 500.

True Mean Median ESD ASE

ω 0.300 0.299 0.299 0.031 0.032

β0 2.000 1.971 1.971 0.208 0.251

β1 �3.000 �2.982 �2.969 0.199 0.210

φ1 0.800 0.763 0.770 0.073 0.067

σ 0.500 0.500 0.502 0.056 0.063

Table 6. Summary statistics for replicated parameter estimates from fitted ZIB + AR(1) models with sample size 200.

True Mean Median ESD ASE

β0 2.000 2.006 2.024 0.192 0.233

β1 �3.000 �2.987 �2.988 0.165 0.167

φ1 0.800 0.782 0.788 0.054 0.056

σ 0.500 0.497 0.496 0.051 0.052

Table 8. Summary statistics for replicated parameter estimates from fitted binomial + AR(1) models with sample size 200.
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4.2. Model comparison

As previously mentioned, based on a Poisson mixture distribution, extensive methodology has
been published to deal with count time series with excess zeros. In addition, the Poisson
distribution provides an accurate approximation to the binomial distribution when the sample
size is large and the success probability is small. Therefore, one may question whether Poisson-
type models are sufficient for approximating binomial-type models when data are generated
from a binomial mixture distribution. In this section, we try to address this question through a
simulation study.

Two different types of ZIB models are proposed in this work: the parameter-driven ZIB model,
and the observation-driven ZIB model. To evaluate the propriety of the binomial-type
models, we consider two corresponding Poisson-type counterparts: the parameter-driven ZIP
model, and the observation-driven ZIP model. We assess the performance of the four models
under two scenarios: first, where data are generated from the parameter-driven ZIB model,
and second, where data are generated from the observation-driven ZIB model.

To denote the parameter-driven ZIB/ZIP model with an AR(p) latent process, we use PDZIB(p)/
PDZIP(p). Similarly, we use ODZIB(p)/ODZIP(p) to denote the observation-driven ZIB/ZIP
model with p lagged responses employed as covariates.

In the first scenario, data are generated from a PDZIB(2) model having the same form as that
provided in Section 4.1. To reduce the computational burden associated with fitting the
models, 100 replicated series of length 200 are generated. We fit four different zero-inflated
models to each of the series. For the two parameter-driven models, we specify a latent
autoregressive process of order two, and employ the MECM algorithm to fit the models.
For the two observation-driven models, we incorporate the lagged responses yt� 1 and yt� 2

to account for the temporal correlation, and employ the Newton–Raphson algorithm to fit
the models.

In the second scenario, data are generated from an ODZIB(2) model featuring the following
structures:

logit πtð Þ ¼ β0 þ β1x1, t þ φ1yt�1 þ φ2yt�2, and logit ωð Þ ¼ γ0: (47)

Here, x1, t is a covariate series generated from a standard uniform distribution, and φ1 and φ2

are the autoregressive coefficients for the lagged responses yt� 1 and yt� 2, respectively. The
values of the true parameters are the same as those for the parameter-driven model.

Again, we generate 100 replications of length 200 based on the preceding model. The same
four zero-inflated models are fit to each of the replications. The Akaike information criterion
(AIC) [30] is used to guide the selection of an optimal model in both scenarios. To evaluate the
magnitude of the absolute difference in AIC values, Burnham and Anderson [31] provide the
following guidelines (Table 10).

Thus, a difference in AIC values of two or more is considered meaningful, and a difference of
10 or more is considered pronounced.
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Figure 3 illustrates the performance of the four zero-inflated models, in terms of AIC differ-
ences, when data are generated from a PDZIB(2) model. The PDZIB(2) model serves as the
reference for model comparison. Each point represents the difference in the AIC value between
the target model and the reference model. As evident from the figure, the PDZIB(2) model
markedly outperforms the other three models for all 100 replications, with AIC differences
over 50. Although vastly inferior to the PDZIB(2) model, the PDZIP(2) model performs better
than the two observation-driven models. The ODZIB(2) performs the worst among the four
models considered. Parameter-driven models clearly exhibit a substantial advantage over
observation-driven models when the underlying data arise via a parameter-driven approach.

Figure 4 shows the performance of the four zero-inflated models, in terms of AIC differences,
when data are generated from an ODZIB(2) model. Similarly, the ODZIB(2) model serves as

Difference in AIC Level of empirical support for model with larger AIC

0�2 Substantial

4�7 Considerably less

>10 Essentially none

Table 10. Guidelines for assessing AIC differences.

Figure 3. AIC differences of zero-inflated fitted models relative to parameter-driven ZIB fitted models.
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the reference. The ODZIB(2) model easily performs the best among all four models for all 100
replications, reflecting a substantial improvement in model fit over the other three models
based on AIC differences (>20). Compared to the two parameter-driven models, the ODZIP(2)
model accommodates the data much more appropriately. Between the two parameter-driven
models, the PDZIB(2) model is substantially favored over the PDZIP(2) model. Thus,
observation-driven models markedly outperform parameter-driven models when the under-
lying data arise via an observation-driven approach.

We close this section with a brief discussion of issues germane to model selection. These issues
are relevant not only in evaluating the results of the preceding simulations, but also in facili-
tating the choice of a model in practice.

First, one may question which class of models should be considered when coping with binomial
time series data with excess zeros. In the simulation sets, the fitted parameter-driven models
markedly outperform the fitted observation-driven models when data are generated via a
parameter-driven approach. Although parameter-driven models are computationally expensive
to fit, observation-driven models do not appear to provide an adequate characterization of the

Figure 4. AIC differences of zero-inflated fitted models relative to observation-driven ZIB fitted models.
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data in such settings. Additionally, unlike observation-driven models, parameter-driven models
provide a description of the underlying latent processes that govern the temporal correlation
and zero inflation. Observation-driven models, in contrast, outperform parameter-driven models
when the underlying data are generated via an observation-driven approach. In general, the
selection of the class of models depends on the conceptualization of the model structure and
the perceived value of recovering and investigating the underlying latent processes. However, in
the context of zero-inflated count time series, since an understanding of the phenomenon that
gives rise to the data will rarely inform the practitioner as to whether the parameter-driven or
observation-driven conceptualization is more appropriate, we recommend the use of AIC or an
alternate likelihood-based selection criterion in choosing between these two model classes.

Second, one may question which distribution should be used when dealing with count time
series with excess zeros. The Poisson-type model with an offset is often considered an appro-
priate approximating model for a binomial-type model when the sample size is large and the
success probability is low. However, in the presence of zero inflation, our simulation results
indicate the necessity of using binomial-type models over their Poisson counterparts when the
underlying distribution is actually a binomial mixture. In practice, if the dynamics of the
phenomenon that gives rise to the data do not inform the underlying data generating distribu-
tion, we again recommend the use of AIC or another likelihood-based criterion in choosing an
appropriate distribution.

5. Application

In this section, to illustrate our proposed methodology, we consider an application pertaining
to the diagnosis coding of a severe disease, Kaposi’s sarcoma (KS). The application concerns
the assessment of a particular level change for a primary KS diagnosis. The data used are
extracted from the Healthcare Cost and Utilization Project (HCUP) database. We identify all
hospitalizations during the period from January 1998 through December 2011 during which a
primary or secondary diagnosis of KS is received. For case ascertainment, we use the Interna-
tional Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM), code 176. We
then aggregate all cases of KS by month to produce a national sample of the monthly KS
hospitalizations. The data consist of monthly counts of both primary and overall KS hospital-
izations from January 1998 to December 2011. The sample size for both KS series is 168.
Figure 5 shows both the primary KS count time series and the overall KS count time series. In
the latter, the overall KS count serves as the denominator for the binomial-type model and the
offset for the Poisson-type model.

A coding change was implemented in early 2008, during which many hospitals may have
modified the coding convention by switching the primary code to secondary, as this modifica-
tion may lead to an increase in hospital reimbursements. During the study period, a large
number of zero counts is observed and data among adjacent points seem to be highly corre-
lated. Since the primary KS count series exhibits a relatively large degree of zero-inflation
(appropriately 25% of the values are zero), we apply our proposed ZIB models to characterize
the data.
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Our analysis focuses on two objectives. First, we aim to model the dynamic pattern of the
primary KS series; in particular, we are interested in determining the appropriate order of the
autoregressive process embedded in the series, and evaluate whether there is a significant level
change at January 2008. Second, we aim to compare the performance of our proposed ODZIB
(p) and PDZIB(p) models to their counterpart ODZIP(p) and PDZIP(p) models.

For potential autocorrelation structures, we let p be either 1 or 2. As a result, we consider eight
candidatemodels in total. Each of themodels features an indicator to represent an intervention in
January 2008, which allows us to test whether there is significant level change at this time period.

Specifically, for the two PDZIB(p) models, we employ the following linear predictor:

logit πtð Þ ¼ β0 þ β1xt þ zt, (48)

zt ¼
Xp

i¼1

φizt�i þ εt, (49)

where t is a discrete time index, and xt = I(t > 2008) is a dummy variable indicating whether the
index t is greater than the predefined change point (January 2008). Thus, β1 reflects the level
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Figure 5. Monthly time series plots of primary KS hospitalizations (top panel) and overall KS hospitalizations (bottom
panel) from January 1998 to December 2011.
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change in KS counts due to the coding practice, and the φi denote the coefficients for the
autoregressive process.

For the two ODZIB(p) models, we employ the following linear predictor:

logit πtð Þ ¼ β0 þ β1xt þ
Xp

i¼1

φiyt�i, (50)

where β1 and φi reflect parameters analogous to those defined for the parameter-driven setting.

In addition, we consider four comparable Poisson-type models based on the work by Yang
et al. [5, 7]. For the two PDZIP(p) models, we employ the linear predictor

log μt

� � ¼ log ntð Þ þ β0 þ β1xt þ zt, (51)

zt ¼
Xp

i¼1

φizt�i þ εt: (52)

For the two ODZIP(p) models, we employ the linear predictor

log μt

� � ¼ log ntð Þ þ β0 þ β1xt þ
Xp

i¼1

φiyt�i: (53)

Model AIC ω β0 β1 φ1 φ2 σ

PDZIB(1) 922.98 0.248 �3.349 �0.249 �0.223 0.430

(0.034) (0.051) (0.120) (0.160) (0.044)

PDZIP(1) 923.31 0.248 �3.389 �0.242 �0.241 0.410

(0.034) (0.051) (0.116) (0.166) (0.043)

ODZIB(1) 1039.80 0.341 �3.184 �0.319 �0.007

(0.061) (0.024) (0.086) (0.002)

ODZIP(1) 1030.04 0.341 �3.224 �0.309 �0.007

(0.061) (0.046) (0.084) (0.004)

PDZIB(2) 922.98 0.248 �3.359 �0.237 �0.120 0.264 0.426

(0.034) (0.054) (0.126) (0.166) (0.153) (0.046)

PDZIP(2) 924.09 0.248 �3.395 �0.230 �0.119 0.263 0.402

(0.034) (0.052) (0.118) (0.178) (0.158) (0.045)

ODZIB(2) 1038.11 0.341 �3.250 �0.275 �0.008 0.007

(0.061) (0.033) (0.088) (0.002) (0.002)

ODZIP(2) 1028.49 0.341 �3.288 �0.266 �0.007 0.007

(0.061) (0.058) (0.087) (0.004) (0.004)

Table 11. Model fitting results for eight different zero-inflated models.
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(0.061) (0.024) (0.086) (0.002)

ODZIP(1) 1030.04 0.341 �3.224 �0.309 �0.007

(0.061) (0.046) (0.084) (0.004)

PDZIB(2) 922.98 0.248 �3.359 �0.237 �0.120 0.264 0.426

(0.034) (0.054) (0.126) (0.166) (0.153) (0.046)

PDZIP(2) 924.09 0.248 �3.395 �0.230 �0.119 0.263 0.402

(0.034) (0.052) (0.118) (0.178) (0.158) (0.045)

ODZIB(2) 1038.11 0.341 �3.250 �0.275 �0.008 0.007

(0.061) (0.033) (0.088) (0.002) (0.002)

ODZIP(2) 1028.49 0.341 �3.288 �0.266 �0.007 0.007

(0.061) (0.058) (0.087) (0.004) (0.004)

Table 11. Model fitting results for eight different zero-inflated models.
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Here, nt serves as an offset variable representing the overall number of KS diagnoses. AIC is
used to guide the selection of the optimal model.

Table 11 features results for the eight fitted candidate models. The parameter estimates along
with their standard errors are presented. All eight models indicate a significant level change
for the primary KS series after the introduction of the potential coding change practice
(β1 < 0). Among the first four models, which feature an autocorrelation structure of order
one, parameter-driven models are deemed superior to observation-driven models, with AIC
differences over 100. The PDZIB(1) model is slightly favored over the PDZIP(1) in terms of
the AIC value. We observe similar patterns in the last four models, which feature an auto-
correlation structure of order two. Among the parameter-driven models, adding a second
order to the autocorrelation offers little improvement in model fit, since the increase in
goodness-of-fit is offset by a decrease in parsimony. Therefore, the best model appears to be
PDZIB(1).

6. Conclusion

Count time series featuring a preponderance of zeros are commonly encountered in a variety
of scientific applications. In characterizing such series, modeling frameworks that assume a
Poisson mixture distribution have been extensively studied. However, minimal work has been
focused on modeling frameworks that assume a binomial mixture distribution. When data are
more naturally assumed to arise from the latter, a Poisson-type model with an offset is often
employed; however, the propriety of such an approximation is unclear.

We propose two general classes of models to effectively characterize a count time series that
arises from a zero-inflated binomial mixture distribution. The observation-driven ZIB model,
formulated in the partial likelihood framework, is fit using the Newton–Raphson algorithm.
The parameter-driven ZIB model, formulated in the state-space framework, is fit using the
MCEM algorithm. When data are generated from a binomial mixture, our proposed ZIB
models outperform their Poisson-type counterparts. We illustrate our methodology with an
application that assesses a particular level change for a diagnosis code.

Future work involves extending the current frameworks to the zero-inflated beta-binomial
(ZIBB) model. Both observation-driven and parameter-driven ZIBB models can be formu-
lated and fit based on methodological developments similar to those presented in this
work. However, weak identifiability could arise as a potentially problematic issue in
fitting the parameter-driven ZIBB model, as not only the overdispersion explicitly induced
by the beta distribution but also the correlated random effects account for any excess
variability in the data [5]. In addition, we could consider more complicated correlation
structures by incorporating moving average components in the linear predictors for
parameter-driven models. Such an extension necessitates non-trivial revisions to the
state-space model formulation and the complete-data likelihood, which warrant further
investigation.
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Abstract

This work presents the application of a data-driven model for streamflow predictions, 
which can be one of the possibilities for the preventive protection of a population and 
its property. A new methodology was investigated in which ensemble modeling by 
data-driven models was applied and in which harmony search was used to optimize 
the ensemble structure. The diversity of the individual basic learners which form the 
ensemble is achieved through the application of different learning algorithms. In the 
proposed ensemble modeling of river flow predictions, powerful algorithms with good 
performances were used as ensemble constituents (gradient boosting machines, support 
vector machines, random forests, etc.). The proposed ensemble provides a better degree 
of precision in the prediction task, which was evaluated as a case study in comparison 
with the ensemble components, although they were powerful algorithms themselves. For 
this reason, the proposed methodology could be considered as a potential tool in flood 
predictions and prediction tasks in general.

Keywords: time series of river flows, ensemble prediction, optimisation, harmony 
search, data-driven methods

1. Introduction

Effective water resources management is one of the most crucial environmental challenges 
of our time. The inundation and flooding of landscapes and urban areas are serious prob-
lems, which cause immense damage to infrastructures and human lives in various parts of 
the world (e.g., recently in Australia, South America, Pakistan, West Africa and China, just 
to mention a few). Flood prevention requires various management tools, among which flow 
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prediction models occupy an important place. Flood warnings several days in advance could 
provide civil protection authorities and the public with the necessary preparation time and 
could reduce the socio-economic impacts of flooding [1].

This work presents the application of a data-driven model for streamflow predictions, which 
can be one of the possibilities for the preventive protection of a population and its prop-
erty. There are various types of models for flow predictions: physically based, conceptual and 
data-driven models are among the most well known. While physically based models mainly 
depend on our knowledge of the physical laws in a watershed and on the corresponding 
geographical database, which serve as an information background for the application of the 
physical laws, data-driven models extract knowledge only from the monitored data describ-
ing the inputs and outputs of the watershed, e.g., time series of precipitation, temperatures, 
river flows, etc. For this reason, data-driven models are much more suitable for this task. It 
is not possible operatively to update all the detailed information about a watershed and its 
stated variables on a day-to-day or even hour-to-hour basis, which is necessary in the case of 
the application of physically based models.

The authors of this paper have focused on the application of a supervised learning methodology  
for flow prediction, namely, on a proposed ensemble approach, with the aim of refining  
the precision of the results of such modeling. In a typical supervised learning scheme, a set 
of input data instances, also referred to as a training set, is given. The output values of these 
data in the training set are known, and the goal is to construct a model in order to compute 
the outputs for the new instances (where the outputs are unknown).

Various models frequently show different capacities to maintain certain aspects of the hydro-
logical processes [2], so the application of a single model often leads to predictions that could 
be more precise in some part of the problem domain but are less suitable in others [3].

The recognition of this fact has led to the application of an ensemble or committee of mod-
els being simultaneously considered. Many researchers have shown that by combining the 
output of many predictors, more accurate predictions can be produced than what could be 
obtained from any of the individual predictors [4–6]. Individual predictors should be accurate 
enough and also different from each other [7–9]. Sampling different training datasets, using 
different learning architectures and using different subsets of variables are the most popular 
approaches used to achieve such diversity [5, 10] in the application of the data-driven model-
ing approach. For example, in bagging [4], each classifier is trained using a different training 
set sampled from all the available training data. Boosting algorithms are different and power-
ful ensemble learners, which implement forward stagewise additive modeling, where in each 
stage the data are reweighted: the examples that produced the worst predictions gain weight 
and the examples that produced precise results lose weight. Thus, the next basic learner is 
focused more on examples that were previously incorrectly predicted. Stacking, another type 
of ensemble learner concept, tries to learn which base models are more reliable than others by 
using a meta data-driven algorithm, the task of which is to discover how to best combine the 
output of the base models to achieve the final results.

In the field of streamflow forecasting, various papers have been published [3] in which the 
data-driven ensemble modeling approach has been studied, but they are usually focused on 
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climate inputs obtained by ensemble modeling of weather, which is not the subject of this 
paper. Selection of existing works from the focus of this article follows.

The application of a modular approach that uses different neural network rainfall-runoff mod-
els according to the hydrologic situation in a catchment was presented in Ref. [11]. A specific 
model from a set of trained models is proposed here to apply to particular input data. This 
work proposes that the model used for particular inputs is chosen on the basis of the most 
similar hydrological and meteorological conditions used to train the selected model. A clus-
tering technique based on self-organizing maps was applied to manage the model’s selection. 
A boosting application is presented in Ref. [12], where the authors demonstrated the advan-
tages of an improved version of boosting, namely, AdaBoost.RT, which is compared to other 
learning methods for several benchmarking problems, and two problems involving river flow 
forecasting. In a recent study [13], the authors investigated the potential usage of bagging 
and boosting in building classification and regression tree ensembles to refine the accuracy of 
streamflow predictions. They report that the bagged model performs slightly better than the 
boosted model in the testing phase. An ensemble neural network (ENN) designed to monthly 
inflows forecasting was applied in Ref. [14] to prediction of inflows into the Daecheong Dam 
in Korea. The ENN combined the outputs of the members of a neural network employing the 
bagging method. The overall results showed that the ENN outperformed a simple artificial 
neural network (ANN) among the three rainfall-runoff models. Cannon and Whitfield [15] 
studied the use of ensemble neural network modeling in streamflow forecasting. Boucher 
et al. [16] used bagged multi-layer perceptrons for the purpose of a 1-day ahead streamflow 
forecasting on three watersheds.

In general, the ensemble methods as described in the published theoretical and application 
papers are usually composed of weak predictors, e.g., decision trees or neural networks com-
monly used as base predictors while building ensemble machine learning models. On the 
other hand, there are only a few works in which the ensemble is formed by a fusion of strong 
learners. The authors of the present paper assume that it is also important to examine ensem-
bles based on nonweak learners, such as support vector machines, random forests or various 
other types of strong models, which are in some cases eventually ensembles themselves (com-
posed of weak learners, e.g., various types of boosting methods).

A major goal of the analysis in this study is to precisely evaluate ensembles composed of 
various strong machine learning algorithms in comparison with the results achieved by indi-
vidual learners. The final prediction by the proposed ensemble is accomplished by weighted 
summation of the results of the individual learners. The specification of these weights is a 
particularly important step in ensemble model building and is proposed to be solved with the 
help of the harmony search optimization methodology [17]. The harmony search methodol 
ogy has been successfully applied to various optimization tasks and also in the area of 
hydrology and water resources management, e.g. [18, 19].

In Section 2, the methods of the particular machine learning algorithms involved in this study 
are briefly explained, together with the ensemble methodologies used. Then, the data acquisi-
tion and preparation is presented. In Section 3, the settings of the experimental computations 
are described and the results are evaluated. Finally, Section 4 summarizes the main achieve-
ments and conclusions of the work and proposes ideas for future work in this area.
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2. Materials and methods

2.1. Description of case study and preparation of data

Ensemble modeling by data-driven methods was applied for the 2-day ahead prediction of 
flows on the Hron River in Slovakia. The watershed of this river is a sub-basin of the Danube 
River. This task was accomplished by using data observed in the period from 01-01-1984 to 
31-12-2000. Specifically, the average daily flow [m3 s−1], the average daily temperatures [°C] 
and the daily rainfall depths [mm] were used.

The prediction of flows at the Banska Bystrica gauging station (Figure 1) serves as the case 
study in this paper. Each row in the input file for this task includes the date of the predicted 
flow, the predicted flow itself (two days’ ahead—these are the modeled data, but their values 
are necessary for the training and testing mechanism), the input data of the flows from the three 
measuring stations, the temperatures from five meteorological stations, and the precipitation 
from 51 stations. All the input data were included in the input dataset from 1, 2, 3 and 4 days 
before the date of the predicted flow. This means that a summary of 238 variables is in each data 
row. Because daily data were used from 01-01-1984 to 31-12-2000, 6209 rows are in the dataset.

Some data preprocessing procedures had to be accomplished: cleansing the data, formatting 
it, inputting the missing data and normalizing it. These operations are not described here, 
because they are common procedures in data mining. A few words will follow about the divi-
sion of the data and the sampling, which were important from the point of view of this paper.

The correct prediction of high flows is the most important task for flood predictions. The 
period from 1996 to 2000 includes many situations with high flows and floods, which was the 
reason for its selection as the testing period. The rest of the years (1984–1996) were used for 
the training (Table 1).

A sampling of the data was also accomplished to obtain a balanced training dataset and data-
set that led to less demanding requirements from the point of view of the hardware and 

Figure 1. Map of the area studied within the Hron River watershed.
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CPU time. Because of these computer power demands, sampling as a form of data reduc-
tion is a particularly important procedure in ensemble modeling, because in such modeling 
many runs of many algorithms are necessary, and computer demands rise with the amount 
of data used for training. A proper sampling methodology should be chosen in relation to the 
properties of the data and the problem studied. In streamflow predictions, a high amount of 
relatively low flows is usually available (also in the case studied), which led to the authors’ 
decision to filter out some of them. On the contrary, high flows are somewhat rare. Because 
high flows are the most important data in flood predictions, the decision was made to filter 
out the data nonuniformly and leave all the input rows with this rare and large flow data in 
the final training dataset. Exactly, the same sampling of the same data was described in the 
previous work of the authors of the present paper [20], in which more details can be found.

2.2. Methodology

The goal of the proposed ensemble methodology is to combine the predictions of several 
models in order to improve the robustness/generalizability that could be obtained from any 
of the constituent models. The proposed ensemble methodology for predicting the river 
flows is divided into four equally important steps (Figure 2). The preparation of the data was 
described in a previous part of this chapter. This section follows two subsections: in the first, 
members of the ensemble are described, whereas the second subsection contains a description 
of each model’s weight optimization by the harmony search methodology. The final model 
is predicted using the weighted average of the base learners in which these weights are used.

2.2.1. Selection and training of ensemble members

In contrast to the usual approach when ensemble consists of less powerful algorithms, the 
authors’ intention was to evaluate the use of strong algorithms for members of the ensemble. 
The choice of “strong” algorithms is based on some papers, which evaluate existing data mining  
algorithms [21, 22].

A grid search combined with a repeated cross-validation methodology was used for finding 
the parameters of all the models included in the ensemble [6, 7]. In this approach, a set of each 
model’s parameters from a predetermined grid is sent to the parameter-evaluating algorithm. 
A 5-times repeated 10-fold cross validation was used to find best parameters for the final 

Flows in Banská Bystrica  
[m3 s−1]

Average temperatures—all 5 
stations [°C]

Average precipitation—all 51  
stations [mm]

Data All data Training 
(84–96)

Testing 
(96–00)

All data Training 
(84–96)

Testing 
(96–00)

All data Training 
(84–96)

Testing 
(96–00)

Min 5.18 5.18 5.29 −27.0 −27.0 −21.7 0.0 0.0 0.0

Max 219.20 219.20 157.90 27.6 27.3 27.6 123.6 123.6 93.5

Avg. 23.04 22.94 23.23 7.75 7.67 7.98 1.99 1.98 2.07

Table 1. Statistics of the data.
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models. Sampling of the data (as mentioned in the data preparation part of this chapter) was 
used in this process, because each basic algorithm runs in such a strategy many times.

Only a sketch of the algorithms is provided hereinafter, because in this work, a number of 
algorithms are used, and it is neither possible nor useful in this paper to go into a more 
thorough explanation. In the case of interest, the authors have indicated links to the relevant 
literature for detailed information.

2.2.1.1. Support vector machines (SVM)

A support vector machine (SVM) [23] is very effective, supervised, machine learning method 
for various machine learning tasks. It is specific by using kernel trick-nonlinear mapping used 
to transform the original training data of a nonlinear problem (which is also our case) into a 
higher dimension. Herein, SVM learn a nonlinear function indirectly and easier: they learn 
a linear function in the space induced by the particular kernel, which matches to a nonlinear 
function in the original space.

The next important concept in SVM methodology is to fully ignore small errors. In SVM, 
bounds for regression are set by defining the loss function that ignores errors, which are 
situated within the distance ε of the true value. This type of function is called epsilon insensi-
tive loss function. As a consequence, good generalization of SVM is gained, because not all 
the input vectors of data are used, but only the so-called support vectors, which are training 
samples that lie outside of the boundary of the ε-tube.

In this chapter, the ε-SVM model was created by: (1) choosing a radial basis kernel with 
parameter sigma = 0.0005; (2) specifying the ε parameter to be equal to 0.1 and (3) specifying 
the capacity C = 10.5. All parameters were found by a grid search.

Multilayer perceptron (MLP).

Artificial neural networks (ANNs) are the most popular and well-known data-driven meth-
odology; it has been described and is available in various literature sources, e.g. [24]. Briefly 
summarized, a multilayer perceptron, the most commonly used type of neural network, 
which was used also in this work, consists of input, hidden and output layers, all of which 

Figure 2. Proposed steps for the development of ensemble predictions of river flows.
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contain some processing elements or neurons. Input and output layer contains as many neu-
rons as the model has input, respectively output variables. The so-called learning involves 
determination of number, types and particular properties of neurons in hidden layer. This 
layer is used for the transformation of the inputs to the outputs. A type of ANN known as a 
multi-layer perceptron (MLP), which uses a back propagation training algorithm, was used 
for generating the flow predictions in this study. The number of neurons in a hidden layer 
was found by a grid search and is equal to 6. Neurons with a logistic activation function were 
used in the hidden layer and with the linear activation function in the output layer.

2.2.1.2. Random forest (RF)

Random forests (RF) [25] are formed by a set of trees, which can either be classification or 
regression trees, depending on the problem being addressed. An RF prediction is an average 
of many trees (weak learners) grown on a bootstrap sample of the training data. The user 
chooses the number of trees in the forest (ensemble). Each tree is trained using a different 
bootstrap sample, which causes that different trees are obtained. For the regression task, the 
values predicted by each tree are averaged to obtain the final random forest prediction. In 
this work, a number of variables randomly sampled as candidates at each tree split were opti-
mized with the help of a grid search, with the final value equal to 123. The minimum size of 
the terminal nodes is set at 5 and the number of trees at 500.

2.2.1.3. Multiple linear regression (MLR)

Multiple linear regression (MLR) analysis is generally used to find the relevant coefficients (a, 
b, c,…, intercept) in the following model:

  Y =  aX  1   +  bX  2   +  cX  3   + … +intercept  (1)

This is a simple, well-known methodology, which the authors included in this paper mainly 
for the purposes of comparison with other, more powerful, methods.

2.2.1.4. Generalized linear model with an elastic-net (GLMNET)

Also in this method, as in previous case, a linear model is applied for flows prediction. 
Additional improvement in comparison to the basic multiple linear model is usage of regu-
larization technique while searching parameters a, b, c,… from Eq. (1).

Regularization introduces additional criterion (or penalty) to the objective functions of opti-
mization problems in order to prevent overfitting and for obtaining a more general model. 
In this case, least squares method for linear regression is meant as optimization problem. 
Various types of regularization exist. Ridge regression uses penalty, which limits the size of 
the coefficients in Eq. (1). Lasso uses a type of penalty which is trying to set some coefficients 
to be equal to zero. Elastic-net is a compromise between these two techniques and is used in 
this work. In work presented in this paper software provided by the authors of this regular-
ization method was used [26].
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2.2.1.5. Multivariate adaptive regression splines (MARS)

MARS [27] construct regression relations from a set of coefficients β and linear basis functions 
h that are determined from the training data. The general MARS model equation is given as:

  y = f  (  X )    =  β  o   +   ∑  
m=1

  
M

    β  m    h  m    (  X )     (2)

The basis function h(x) takes one of the following three forms:

1. A constant (the intercept).

2. A function of the form max(0, x − const) or max(0, const − x). MARS selects the values of 
const for the knots of this function. These breakpoints define the region of application for 
a particular linear equation.

3. A product of two or more of the above-mentioned functions. The model interactions be-
tween two or more variables are modeled in this case.

The best parameters of multivariate adaptive regression splines were found by a grid search 
procedure; the maximum degree of interaction is equal to 1, and the maximum number of 
terms (including the intercept) in the pruned model was found as 31.

In recent years, boosting has developed into one of the most important techniques for fitting 
regression models in high-dimensional data settings. So, the authors decided to include the 
proposed ensemble in the three boosting models described below. Boosting, or additive mod-
els [28], express the searched function as a weighted sum of the basis functions as follows:

  f (x)  =  ∑  m    β  m   fm (x)  =  ∑  m    β  m   b (x;  γ  m  )      (3)

The basis functions b are dependent on the type of boosting method, and the parameters (βm 
and γm) are assessed by minimizing a loss function (e.g. a mean square error) over the training 
data. Forward stagewise fitting is used for estimating βm and γm sequentially from m = 1 to n. 
For example, for boosted trees with a squared error loss, we fit a least-squares regression tree 
to the residuals of the previous iteration.

2.2.1.6. Boosted linear models (B_GLM)

In this case, a linear model is fitted using gradient boosting, where the component-wise linear 
models are utilized as base learners. The methodology is described in Ref. [29]. In this work, 
the R package mboost and glmboost function with a default setting were used for this meth-
odology [30, 31]. The number of initial boosting iterations was found by grid search and is 
equal to 150; shrinkage parameter was set to 0.1.

2.2.1.7. Gradient Boosting with Smooth Components (B_GAM)

A (generalized) additive model is fitted in this case using a boosting algorithm based on com-
ponent-wise univariate base learners (where only one variable is updated in each iteration 
of the algorithm) in combination with the L2 loss function. A spline, which is a sufficiently 
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smooth polynomial function that is piecewise-defined, is suitable for this task. It possesses 
a high degree of smoothness at the places where the polynomial pieces connect (which are 
known as “knots”). In this study, P-splines with a B-spline basis [32] were used as a base 
learner. In each iteration of the gradient-boosting algorithm, a base learner is fitted to the 
negative gradient of the L2 loss function. The current estimate of the predictor function is then 
updated with the actual estimate of the negative gradient, which automatically results in an 
additive model fit. In this work, the gamboost function of the R mboost package [33] was used 
to fit the flow prediction model. The number of initial boosting iterations was found by grid 
search and is equal to 100; shrinkage parameter was set to 0.1.

2.2.1.8. Gradient boosting machines (GBM)

Gradient boosting machines (GBM) are one of the most powerful boosting methods. Similarly 
to the other boosting methods, gradient boosting combines weak learners into a single strong 
learner. In GBM, decision trees (regression trees in our case) are usually employed. Weak 
learners are sequentially used with continually modified selection of the data. Moreover, 
training set is in this stepwise procedure weighted for current iteration according to the accu-
racy of the previously fitted model. The final prediction is obtained as a weighted average. 
Gradient boosting used in this work is implemented in the R package gbm [34] and is freely 
available. The total number of trees to fit is equal to 700 in this work and this parameter was 
found by a grid search. The shrinkage in GBM is controlled by parameter υ, which was set in 
this work to 0.01 (default value). Also, the maximum depth of the variable interactions was 
found by a grid search with up to 10-way interactions.

2.2.2. Harmony search (HS)

The harmony search [17] algorithm (HS) was adopted from the musical process of finding 
“pleasant harmonies” through improvisation. The five fundamental steps of HS could be 
summarized as follows:

Step 1. Design the variables and initialization of the algorithm parameters. 
Initialization of HS search parameters: harmony memory size (HMS), harmony 
memory consideration rate (HMCR), the pitch adjustment rate (PAR) and the 
maximum number of improvisations (NI). The definition of the objective function 
f(x), which has to be minimized (or maximized), is also performed in this step.

Step 2. Initialization of harmony memory. The harmony memory is a memory 
location (matrix), where the solution vectors (sets of weights) and corresponding 
objective function values are stored. The initial HS memory consists of different 
randomly generated solution vectors.

Step 3. The generation of a new harmony inspired by improvisation process in 
music is performed and accomplished in this step. New harmony represents new 
solution of given optimisation problem. It consists of three basic procedures: 
(1) selection of harmony from the memory controlled by parameter HMCR, (2) 
pitch adjustment (parameter PAR) and (3) a pick a random value with probabil-
ity 1-HMCR. A more detailed description of these HS operators can be found in 
existing HS literature, e.g. [18].
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Step 4. A new solution’s objective function computation. If the new harmony has 
better value of the objective function than any harmony in the harmony memory, the 
worst harmony vector in harmony memory is replaced by this new harmony vector.

Step 5. Repeat from Step 3 to Step 5 until termination criterion is satisfied. In this 
work, the harmony search stops if there is no improvement in an objective func-
tion during the last 500 iterations or if the total (predefined) number of iterations 
is reached.

3. Results and discussion

In this section, the computation procedures, which are necessary for obtaining the ensemble 
model, are described. The ensemble model is proposed to have the following structure:

   P  ensemble  j   =     ∑       
n
  

i=1
    β  i   *  P  i  j   (4)

where βi are the weights of the individual learners and   P  
i
  t   is a vector of predicted flows by 

model i for day j. The harmony search method was used to determine the corresponding 
weights of individual models. Application of this method for 2-day ahead prediction of flows 
follows in the subsequent paragraphs.

One harmony consists of n members, where n is the number of models. In the case of this 
work, there are nine models present in the ensemble. All values of the weights βi are restricted 
to the interval ⟨0, 1⟩.

The problem solved should be defined by the objective function, which is proposed in this 
paper to have the following form:

   O  f   = 1 −  (1 −   
 ∑ i=1  N      ( O  i   −  P  i  )    2  __________ 
 ∑ i=1  N      ( O  i   −  O ¯¯  )    2   )  +  |α −  ∑ i=1  n     β  i  |   (5)

  0 ≤  β  i   ≤ 1,  (6)

where Pi and Oi are computed and observed flows, N is the number of days and   O ¯¯    is average 
value of observed flows. Expression in the rounded parentheses is the Nash-Sutcliffe model 
efficiency coefficient (NSE). It was used in this study for evaluation of models efficiency because 
it is most often used to assess the predictive power of hydrological models. The NSE ranges 
from −∞ up to 1, where NSE = 1 means a perfect agreement between the observed and simu-
lated data, i.e. closer the model efficiency is to 1, the more accurate the model is. The last com-
ponent of the objective function (as an absolute value) forces the sum of the ensemble members’ 
weights βi to be equal to α, which is a regularization constant, by default equal to 1. Only rarely 
in cases when the models are systematically underestimating or overestimating, the regula-
tion constant could have a slightly different values (maximum ±0.05). In this work, the authors 
only used the default value 1, because a relatively good prediction could be expected from the 
state-of-the-art models used as the ensemble members. This objective function is proposed to 
be minimized. In the case of an ideal model, the value of the objective function is zero.
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Harmony search algorithm parameters were set as follow: HMS (memory size) was set to 10; 
HMCR (the harmony memory’s consideration rate) was set to 0.91 and PAR, i.e., the pitch 
adjustment rate, was set to 0.1. The maximum number of improvisations NI = 500,000.

One of the main issues which must be carefully considered is what exactly has to be data Pi, 
which will serve as inputs to the harmony search optimization objective function (5). As was 
previously stated, these are basically the computed values of the predicted flows by each 
model. While performing these computations, we are in a model building phase, and that is 
why only training data can be used. There are two possibilities evaluated in this study as to 
how to obtain such data. The first possibility is achieved using the following steps:

1. The training data and repeated cross validation are used for finding the proper parameters 
of each model.

2. Every model (ensemble member) is trained with the values, which were found in step 1 
with all training data.

3. The values of the predicted flows are computed by the models from step 2 from all the 
training data for each ensemble member. The number of rows of resulted input matrix for 
HS PR,C is equal to the number of the rows of training data (535 in this study) and the num-
ber of columns C = n + 1 (n is the number of models, and one extra column is the observed 
data). In this work, n = 9.

The problem of obtaining data PR,C by this methodology, if it is used for calculating ensem-
ble weights, is that in this approach there is no mechanism that avoids overfitting of the 
final ensemble. Overfitting or a lack of generalization means that the weights of the mod-
els obtained could work well on the training data, but poorly on the testing set. Due to 
this problem, the authors also proposed a second option, which will be compared to the 
previous one:

1. The training data and cross validation are used for finding the proper parameters of each 
model.

2. When these parameters are obtained, the k − 1 folds (in the case of a k-fold cross valida-
tion) are used for training with the best parameters, and 1 fold is computed by the model 
obtained as a test.

3. This is repeated k times for every model included in the ensemble.

4. Because the r-repeated cross-validation was proposed in this work, steps 2 and 3 are  
repeated r times.

5. The computed values from all such testing folds from the cross-validation are used as the 
input matrix for the optimization by HS, which is proposed for searching the weights of 
each model in the final ensemble.

6. Consequently, the inputs to the HS are de facto testing data, although from the training set 
(the results from the testing folds in the cross-validation). When n is the number of models 
in the ensemble, N is the number of data in the training set and r is the number of repeats of 
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the cross-validation, the number of rows of this input matrix PR,C is R = N*r and the number 
of columns C = n + 1 (one column is the observed data). In this work, n = 9, k = 10, N = 535 
(the data were reduced by the sampling!) and r = 5.

The ensemble models obtained from these two approaches are hereinafter identified as EHS1 
for the first case and EHS2 for the second.

The process of assessing the performance of a hydrologic model involves making some esti-
mates of the “closeness” of the simulated behavior of the model to observations (in our case, 
the streamflow). The most basic approach for assessing a model’s performance is through a 
visual inspection of the simulated and observed hydrographs (Figure 4). An objective assess-
ment requires the use of a mathematical estimate of the error between the simulated and 
observed hydrological variables. The predictive accuracy of the ensemble and its members 
was evaluated using the Nash-Sutcliffe coefficient of efficiency (NSE), the root mean square 
error (RMSE) and the correlation coefficient (r).

In Table 2, the root mean square error, correlation coefficient and Nash-Sutcliffe efficiency are 
evaluated for the ensemble members and the proposed ensembles. The identification of the 
models from their abbreviations in the heading of this table is possible. Two ensemble opti-
mization approaches, which are identified as EHS1 and EHS2, are evaluated in Table 2 and 
were described hereinbefore.

The selection of the appropriate settings for the ensemble members evaluated in Table 2 is 
described in Section 2.2. A grid search was mostly used for the tuning; in some cases, the set-
tings recommended in the scientific literature were applied. Regarding ensembles EHS1 and 
EHS2, it can be clearly seen that the hypothesis about the poor performance of the above-men-
tioned first proposition for obtaining matrix PR,C was confirmed. Ensemble model EHS1 per-
formed well on the training data (with an NSE equal to 0.82, when an NSE of 0.79 was achieved 
by the best ensemble component, which was the GBM model), but on the testing set, which is 
evaluated in Table 2, the ensemble EHS1 gives worst results than most of the ensemble mem-
bers. The ensemble approach to modeling is worth applying only in a case where the ensemble 
performs better than any of its members. If one considers the weights of the multilayer percep-
tron in ensemble EHS1, it is presumably inappropriately high (MLP are generally less precise 

GBM B_GLM RF MLP MARS MLR SVM B_GAM GLMNET EHS1 EHS2

NSE 0.806 0.783 0.808 0.676 0.593 0.376 0.800 0.787 0.782 0.759 0.825

r 0.898 0.885 0.900 0.832 0.802 0.724 0.896 0.888 0.884 0.874 0.909

RMSE 13.575 14.371 13.519 17.548 19.661 24.355 13.788 14.219 14.410 9.684 8.247

Weights 
EHS1

0.128 0.011 0.190 0.549 0.021 0.022 0.032 0.003 0.045

Weights 
EHS2

0.134 0.056 0.379 0.034 0.083 0.021 0.218 0.029 0.046

Table 2. Evaluation of the computations by r and NSE and the final values of the model weights in the ensembles.
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performs better than any of its members. If one considers the weights of the multilayer percep-
tron in ensemble EHS1, it is presumably inappropriately high (MLP are generally less precise 

GBM B_GLM RF MLP MARS MLR SVM B_GAM GLMNET EHS1 EHS2

NSE 0.806 0.783 0.808 0.676 0.593 0.376 0.800 0.787 0.782 0.759 0.825

r 0.898 0.885 0.900 0.832 0.802 0.724 0.896 0.888 0.884 0.874 0.909

RMSE 13.575 14.371 13.519 17.548 19.661 24.355 13.788 14.219 14.410 9.684 8.247

Weights 
EHS1

0.128 0.011 0.190 0.549 0.021 0.022 0.032 0.003 0.045

Weights 
EHS2

0.134 0.056 0.379 0.034 0.083 0.021 0.218 0.029 0.046

Table 2. Evaluation of the computations by r and NSE and the final values of the model weights in the ensembles.
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models), which means that this model is overfitted and that the poor generalization is a conse-
quence of the approach used for the development of the EHS1 model. To the contrary, accord-
ing to Table 2, in which the testing data are evaluated, the results with a good generalization 
were achieved by ensemble EHS2. From now on, we will only speak about this second model.

Column nine of Table 2 with the evaluation of the ensemble members could also be seen as a 
case study of the evaluation of these models. The models are ordered from best to worst, so they 
can be ranked and compared with each other. As could be expected for such a complicated pro-
cess as the flow formation in a river is, this process was described more successfully by nonlinear 
models, especially by the recently developed boosting types of algorithms. However, when the 
weights of the models for the EHS2 ensemble in Table 2 are considered, it can be seen that this 
order does not imply that the weights will also be ordered in the same way as precision. An effi-
cient ensemble should consist of predictors that are not only sufficiently precise, but also diverse, 
i.e. ones that if make wrong predictions they make them at different parts of the input space, e.g. 
which are not highly correlated. The correlation of the models is evaluated in Figure 3.

From the conjoint consideration of Table 2 (weights of models for the EHS2) and Figure 3, it 
can be seen that, after optimization of the weights, the best three models, the GBM, RF, and 
SVM, are included in the proposed ensemble with the highest contribution (their weights 
are the highest). But the next best model, the boosted GAM (B_GAM), is included in the 
ensemble with a relatively small weight. That is because this model is highly correlated with 
the three best models mentioned and also with the GLMNET model. A similar case could 
also be observed with some other members of the ensemble. From this phenomenon, it could 
be evaluated that the optimization procedure, which was proposed in this paper, is search-
ing for the best weights not only from the point of view of the best performance of the mod-
els but also is considering the diversity of the models as well, which is, as was mentioned, 

Figure 3. Correlation between the simulated results obtained by the ensemble members and with the observed data.
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not less important. The authors assume that this is mainly due to the procedure by which 
matrix PR,C was obtained for model EHS2. As could be expected, the smallest contribution 
to the EHS2 ensemble has its least precise member: the multiple linear regression (MLR).

In Figure 4, a time series graph of the testing dataset with the observed flows and the flows 
simulated by the proposed ensemble model is seen. As can be seen, the predicted flows follow 
the real values with a high degree of precision, and the proposed ensemble approach could be 
used as an innovative alternative for flow predictions.

4. Conclusion

In this work, the authors deal with an investigation of the possible improvement of the river 
flow predictions. A new methodology was investigated in which ensemble modeling by data-
driven models was applied and in which the harmony search was used to optimize the ensem-
ble’s structure. Because various data-driven models with strong prediction capability already 
exist, the authors were trying to evaluate in the case study presented in this paper (2-day ahead 
prediction of river flows), whether an ensemble paradigm would also bring some gain in cases 
when strong algorithms are used as ensemble members. Although the improvement in preci-
sion was not relatively as high as in the case when the ensemble consists of weak learners, it was 
proved that the ensemble model worked better than any of its constituents. These results mean, 
of course, that the proposed ensemble also works better than the ensembles with weak learners 
which are usually applied, because these were actually among the members of the proposed 
ensemble.

Figure 4. Time series of the testing dataset of the observed flows and the same flows simulated by the proposed ensemble 
model in the year 1997.
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The authors’ intention was to emphasize one important detail: how the input data for a har-
mony search optimization of weights should be properly computed. In the authors’ investi-
gation, it was verified that using the results of testing folds from cross-validation is the best 
option. This procedure is described in Section 3.

The authors like to emphasize the following practical aspect about ensemble modeling at 
the end of this paper. It is well known that for different datasets various algorithms may 
suit as best choice for prediction and it is never certain in advance, which one of these algo-
rithms will perform with best results. This is known as “no free lunch” theorem. Because of 
this uncertainty, more algorithms must be usually trained, tested and evaluated during data 
mining process. These three activities (training, testing and evaluation) together with data 
preparation are quite laborious and computationally intensive. When this work is already 
done, instead of choosing only one of these algorithms for obtaining final results, it is wiser 
to use all already tuned algorithms for ensemble prediction of unknown variable (or subset 
of these algorithms). Updating prediction using ensemble paradigm almost always brings an 
improvement in precision as was also confirmed in the case study presented (the results are 
in Table 2). It does not mean a lot of extra work because tuned algorithms for a given task are 
already available. Gain will be different for different datasets, but as was confirmed also in 
this study it is surely worth to try this for such a little effort.
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