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Preface

Resonance is a common phenomenon, which is observed both in nature and in numerous
devices and structures. It occurs in literally all types of vibrations. To mention just a few
examples, acoustic, mechanical, or electromagnetic resonance can be distinguished. In the
present book, several chapters dealing with different aspects of resonance phenomena have
been collected.

Out of numerous submitted chapters, the following 12 have been eventually selected for
publication in this book. A brief overview of them is as follows.

In the chapter by Çalişkan and Çalişkan, the fundamentals of magnetic resonance are descri‐
bed. The authors deal with both electron spin (paramagnetic) resonance and nuclear mag‐
netic resonance.

Le Bras and Greneche give an overview of magnetostrictive resonators, principles related to
such resonators, and their respective performances including sensing application domains
and limitations. They review different magnetostrictive materials to design resonators.
Moreover, they propose an analytical model, which can be used to determine the magnetoe‐
lastic coupling factor.

Náprstek and Fischer focus on the stochastic resonance (SR) and related topics. Aside from
classical definition and basic features of SR, they discuss the most important methods of in‐
vestigation of SR as well as recommend an experimental procedure to verify the results of
stochastic simulation, among others.

Kalashnikov deals with chaotic and stochastic resonance as well as stochastic antiresonance
(SAR). The chapter presents SAR in a Raman fiber amplifier, chaotic resonance between a
dissipative soliton and linear waves, and stochastic resonance and antiresonance in mode-
locked lasers.

The chapter authored by He considers the optimization method of double-well bistable sto‐
chastic resonance system. Besides the optimization method, the corresponding analysis re‐
sults are given especially under low SNR circumstances. Also, an example of application of
the proposed method in cognitive radio networks is given.

Narahara studies resonances in left-handed (LH) waves developed in nonlinear electrical lat‐
tices. To investigate resonances involving LH waves, nonlinearity is introduced to compo‐
site right-handed and left-handed (CRLH) transmission lines. Head-on collision, three-wave
mixing, harmonic resonance, and soliton decay are considered.



In the chapter authored by Kurmann, an introduction to parametric and autoparametric reso‐
nance is given. The chapter is supplemented with numerous examples of literature to the
topic. Also, examples with numerical simulations and analytical methods are presented.

In the chapter by Kalinova, results of investigations of the resonance effect of nanofibrous
membranes for sound absorption applications are presented. The chapter comprises the the‐
oretical basics of membrane and Helmholtz’s resonators, followed by the description of the
design of an acoustic element used for the study.

Souza et al. present the results of the investigation of the influence of a dielectric shell on
metallic spherical nanoparticles in the resonant modal response of an SPR-type sensor. In
their research, they compare analytical solutions with those obtained with the use of the fi‐
nite element method and experimental data.

Kong et al. use Mie theory to analyze Fano resonances in simple high-permittivity structures
such as spheres or core-shell particles. The chapter includes also the investigations for arbi‐
trary-shaped objects as well as for periodic structures. For each structure, different theoreti‐
cal methods are presented together with numerical analysis.

Hino et al. review the laser-induced Fano resonance in condensed matter systems. They
study two physical processes, i.e., a Floquet excitor in semiconductor super lattices driven
by a strong continuous-wave laser and the coherent phonon induced by an ultrashort pulse
laser in bulk crystals.

Last but not least, Velázquez-Arcos et al. present their approach to the reasons of a sudden
loss of signal propagation due to significant changes in the broadcasting regime. Further‐
more, they propose a method to avoid such loss of signal and thus to enhance the broadcast‐
ing process.

I sincerely hope that any reader of this book will find at least some of the investigated topics
interesting and inspiring for his or her research.

Jan Awrejcewicz
Department of Automation, Biomechanics and Mechatronics

Lodz University of Technology
Lodz, Poland
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Magnetic Resonance

Betul Çalişkan and Ali Cengiz Çalişkan
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Abstract

Magnetic resonance is divided into electron spin resonance (ESR) [electron paramag-
netic resonance (EPR)] and nuclear magnetic resonance (NMR) according to the working
region in the electromagnetic spectrum. If the studied region is in the microwave region,
this resonance type is electron spin resonance. If the region studied is the radio fre-
quency region, then nuclear magnetic resonance is mentioned. ESR and NMR are simi-
lar in terms of their basic theorem.

Keywords: electron spin resonance (ESR), electron paramagnetic resonance (EPR),
nuclear magnetic resonance (NMR), microwave frequency, radio frequency

1. Introduction

Nuclear magnetic resonance (NMR) spectroscopy examines the interaction of nuclear spins
forming an atom with the magnetic field applied to them. Electron spin (paramagnetic) reso-
nance (ESR, EPR) spectroscopy studies the interaction of the electron spins with the applied
magnetic field.

The resonance term is used to determine that an external factor is in harmony with the natural
frequency of the magnetic system. The natural frequency is the radio frequency (RF) or
microwave (MD) frequency, which is in agreement with the Larmor rotation frequency of the
magnetic moments in the magnetic field.

The magnetic moment referred to NMR is a nonzero nuclear moment. In other words, NMR
deals with nuclei whose spin value is nonzero. The magnetic moment referred to EPR is the
magnetic moment of the electron. EPR studies magnetic systems with unpaired electrons.
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2. Magnetic resonance spectroscopy (NMR and EPR spectroscopy)

Nuclear magnetic resonance (NMR) was first observed by F. Bloch in 1946. In the same period,
the electron spin resonance (ESR) experiment was first performed by YK Zavoysky in 1944.

Magnetic resonance spectroscopy is similar to other types of absorption spectroscopy. Mag-
netic resonance is based on the interaction of matter with electromagnetic radiation. Electro-
magnetic radiation for NMR is in the radio frequency domain. For the EPR, it is in the
microwave area. As a result of this interaction, the transition from the high energy state to the
low energy state leads to an energy release in the amount of (ΔE) [1].

ΔE ¼ hυ (1)

Within the external magnetic field, the magnetic moment of the nucleus or electron makes a
precession movement with the Larmor frequency (ω) around the magnetic field. The Larmor
precession movement tries to orient the spins or magnetic dipole moments in the direction of
the magnetic field. This process is called the relaxation process [2].

The state of the system reaching the thermal equilibrium is called relaxation time. Relaxation
times are divided into two. The first is T1 spin-lattice (longitudinal) relaxation time. It affects the
z-component of the magnetization vector. T1 determines the energy flow rate of neighboring
molecules (lattice) from the nuclear spin system. It is the time to reach the thermal equilibrium of
the neighboring molecules with the nuclear spin system. The second is T2 spin-spin (transverse)
relaxation time. T2 affects the x and y components of the magnetization vector. The process of
reaching thermal equilibrium as the result of the interaction between the spins without transfer-
ring energy to the neighboring molecules is called the spin-spin relaxation process. T2 is related
to the full width at half maximum (fwhm) (Δν1/2) of the NMR signal.

The orientations of the magnetic moments are in the form of different spin populations at
different energy levels. Boltzmann expression is used for low energy state (N�) and high
energy state (N+) spin populations with temperature effect.

N�
Nþ

¼ ehυ kT= (2)

where k is Boltzmann's constant and T is the temperature in K.

The ratio of the magnetic moment to the spin angular momentum is called the gyromagnetic
ratio (γ). This expression is also equal to the ratio of the Larmor precession frequency to the
magnetic field.

ω!¼ γ H
!

(3)

where ω is 2π times the precession frequency (2πν) and H is the applied magnetic field.

This expression contains both the resonance condition and the magneton concept. For EPR
studies, Bohr magneton is valid whereas for NMR studies nuclear magneton is applied.

Resonance2
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Magneton is related to the concept of spin magnetic moment (μI: the nuclear spin magnetic
moment, μS: the electron spin magnetic moment). It is a concept related to the ratio between
the mass and the charge of a particle having a different spin from zero.

β ¼ eℏ
2me

(4)

where β is the Bohr magneton, β=9.2741�10�24 J/T, e is the charge of the spinning particle, and
me is the mass of the electron. For the nuclear magneton βn, this would be:

βn ¼ eℏ
2mp

(5)

βn (nuclear magneton) is much smaller than β (Bohr magneton) since the proton mass (mp) is
1836 times as great as that of the electron, βn=5.05�10�27 J/T. The magneton relates to the basic
equation above because:

γ ¼ gβ
ℏ

(6)

where g is a proportionality constant usually referred to as the g-value or g is the spectroscopic
splitting constant, and ℏ is Planck's constant divided by 2π. Hence:

ω
H

¼ gβ
ℏ

(7)

or

ωℏ ¼ gβH (8)

Since ω is 2πν, then:

hν ¼ gβH (9)

The above expression is called resonance condition in both NMR and ESR [1].

Although many processes are similar in the EPR and NMR experiments, the tools used in the
experiments differ. In EPR, it is used in microwave components, such as wave-guide, cavities,
and klystron tubes. In NMR, inductances, capacitors, conductors that transmit radio frequency
energy, and vacuum tubes are used [2].

2.1. NMR spectroscopy

Magnetic dipole moment of the nucleus:

μ!I ¼ γI I
!

(10)

Magnetic Resonance
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μ!I ¼ gn
βn
ℏ

I
!

(11)

μI ¼ gn
eℏ
2mp

� �
1
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ

p
ℏ

� �
(12)

μI ¼ gnβn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ

p
(13)

Here, I is nuclear spin and gn is the nuclear g-factor (gn=5.5855).

The interaction between the external magnetic field and the nuclear magnetic moment is given
as follows:

E ¼ �μ!I ∙ H0
!

(14)

E ¼ �μIH0cosθ (15)

where θ is the angle between the dipole and the magnetic field. There are two orientations for a
proton with a nuclear spin 1/2. This indicates the quantum number of magnetic spin, mI. For
mI ¼ � 1

2, energy takes values � 1
2 gnβnH0 and þ 1

2 gnβnH0 as shown in Figure 1.

The nuclear magnetic resonance transition occurs between two energy levels. The transition
between the two energy levels constitutes the resonance condition.

ΔE ¼ hν ¼ gnβnH0 (16)

is called the resonance condition for NMR.

Nuclear magnetic resonance stays on two important interactions. The first one is the chemical
shift and the other is the spin-spin coupling. A third interaction can also be mentioned. This is
the exchange interaction. Thus, we can list three important interactions in NMR as follows:

Figure 1 . Nuclear magnetic resonance transition.
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1. The chemical shift

2. The spin-spin coupling

3. The exchange interaction
a. Slow exchange interaction

b. Fast exchange interaction

However, the third influence is not taken into consideration. So, we will focus on two interactions.

The effective Hamiltonian expression for NMR consists of the sum of the nuclear Zeeman
Hamiltonian and the nuclear spin-spin interaction Hamiltonian terms:

H ¼ �gnβn H
!

∙ I
!
∙ S
! þ I

!
∙ Q
!!

∙ I
!

(17)

Here, Q
!!

is the quadrupole interaction tensor (interaction between two nuclear spins) interac-
tion tensor [3].

2.1.1. Chemical shift

The electrons surrounding the nucleus of a molecular system show a spherical distribution.
The external magnetic field applied on the system creates polarity in the electron distribution
in the spherical structure. That is, a current flows through the molecule. This current induces a
magnetic field by induction where the core is located. This field is called the internal magnetic
field (Figure 2). The internal magnetic field is opposite to the external magnetic field. The total

Figure 2. Internal magnetic field and external magnetic field orientation.
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magnetic field seen by the nucleus is different from the external magnetic field. This brings
about a shift in the resonance frequency of the nucleus. This is called the chemical shift. That is,
the electron-nucleus interaction originating from the magnetic field created by moving charges
is the chemical shift (Figure 3).

Accordingly, the nucleus sees the effective magnetic field given by the formula:

Heff
!¼ H

!
0 �H

!
in (18)

The internal magnetic field is connected to the external magnetic field (Eq. (18))

H
!

in ¼ σH
!

0 (19)

The internal magnetic field is connected to the external magnetic field by the diamagnetic
shielding coefficient (σ). In NMR, tetramethylsilane, Si(CH3)4, is generally used as a standard
sample for comparison. The chemical shift is shown as δ. Its scale is parts per million (ppm).

δ ¼ σT � σXð Þ:106 ppm (20)

δ ¼ ωX � ωT

ω0

� �
:106 ppm (21)

δ ¼ HX �HT

H0

� �
:106 ppm (22)

2.1.2. Spin-spin coupling

Contrary to the dipole-dipole interaction, it is a new type of interaction that is not dependent
on the orientation of the molecule. It is the indirect spin-spin interaction period that occurs
through the electrons that form chemical bonds in the molecule. In other words, the interaction
of a nucleus with another nucleus through an electron cloud is a spin-spin coupling. The spin
of an electron near the A nucleus is SA and the spin of an electron near the B nucleus is SB. In

Figure 3. The chemical shift.
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external magnetic field, the opposite or the same direction of orientation of A and B nuclei with
I = 1/2 is the spin-spin coupling state of A and B nuclei. The energy of the spin-spin coupling is
given as

E ¼ ℏJAB I
!
A∙IB

!
(23)

J is the spin-spin coupling coefficient.

When a nucleus or nucleus group interacts with n magnetically equivalent nuclei with spin
quantum number I, the observed number of splits is (2nI + 1). Figure 4 shows a spin-spin
coupling example and Figure 5 shows an NMR spectrum example.

2.2. EPR (ESR) spectroscopy

EPR is a magnetic resonance method such as NMR. EPR deals with substance that contains
unpaired electrons. These substances are free radicals, triplet excited states, and most transi-
tion metal and rare earth species. Among the parameters found in the EPR experiments are the
g-factor, the hyperfine structure constant (hf), the nuclear quadrupole coupling constant, and
the zero-field splitting constant. However, mostly the g-factor and the hyperfine structure
constant are among the more studied parameters.

For EPR analysis, the sample is placed in a strong magnetic field. The applied electromagnetic
radiation is in the microwave area. Due to the interaction between the magnetic moment of the
free electron and the external magnetic field, the spin of the electron is directed parallel or
antiparallel to the magnetic field. The energy difference between the two orientations gives the
resonance condition for EPR.

Figure 4. A spin-spin coupling example.

Figure 5. An example of an NMR spectrum.
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ΔE ¼ hν ¼ geβH0 (24)

Here, ge is the free electron g-factor (ge=gS=2.0023) and β is Bohr magneton, β=9.2741�10�24 J/T.

Magnetic dipole moment of the free electron:

μ!S ¼ γS S
!

(25)

μ!S ¼ �gS
β
ℏ
S
!

(26)

μS ¼ �gS
eℏ
2me

� �
1
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S Sþ 1ð Þ

p
ℏ

� �
(27)

μS ¼ �gSβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S Sþ 1ð Þ

p
(28)

where S is the electron spin.

The interaction between the external magnetic field and the magnetic moment of the free
electron is given as follows:

E ¼ �μ!S∙ H0
!

(29)

E ¼ �μSH0cosθ (30)

where θ is the angle between the dipole and the magnetic field. There are two orientations for a
electron spin 1/2. This indicates the quantum number of magnetic spin, mS. For mS ¼ � 1

2,

energy takes values þ 1
2 geβH0 and � 1

2 geβH0 as shown in Figure 6.

The electron spin resonance transition occurs between two energy levels. The transition
between the two energy levels constitutes the resonance condition.

Figure 6. Electron spin resonance transition.
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ΔE ¼ hν ¼ geβH0 (31)

is called the resonance condition for EPR.

2.2.1. g-factor

The unpaired electrons can cause a slight shift in the resonance line due to the internal
magnetic field effect. This effect is expressed as a g-value shift in the EPR. The largest shifts
occur in paramagnetic transition metal ions. The g-value parameter in the EPR is identical to
the chemical shift parameter in NMR.

To calculate the g-value, the values of the microwave frequency and the magnetic field must be
known. g-value is obtained from the resonance condition.

ge ¼
hν
βH0

(32)

The g-value calculation can also be performed using a sample with the known g-value as a
reference. The reference material for EPR is diphenylpicrylhydrazyl. The g-value of the stan-
dard sample is 2.0036.

g ¼ gref
Href

H
(33)

2.2.2. Hyperfine coupling

The interaction between the unpaired electron and the nucleus is called the hyperfine structure
interaction. For hyperfine structure interaction, the nuclear spin value must be different from
zero (I 6¼0). The hyperfine structure interaction is divided into the isotropic hyperfine struc-
ture interaction (Fermi contact) and the anisotropic hyperfine structure interaction (dipole-
dipole interaction). While the anisotropic interaction is dependent on the orientation of the
molecule, the isotropic effect is not dependent on the orientation of the molecule. The symbol
of the isotropic hyperfine structure interaction constant is “a,” whereas the symbol of the
anisotropic hyperfine structure interaction constant is “A.” Usually the Gauss unit is used for
hyperfine structure constant. In addition to the Gauss unit, the unit of MHz is also used (1 G ≈
2.8 MHz). The value of a is expressed as:

a ¼ 8π
3
geβgnβn ψ 0ð Þj j2 (34)

where |ψ(0)|2 is the probability of finding the electron in the s-sphere for the hydrogen atom.
For isotropic hyperfine structure interaction, the Hamiltonian is expressed as follows:

H ¼ a S
!
∙ I
!

(35)

For the anisotropic hyperfine structure interaction, it is expressed as:
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H ¼S
!
∙ A
!!
∙ I
!

(36)

The effective Hamiltonian expression for EPR consists of the sum of the electron Zeeman
Hamiltonian and the hyperfine structure interaction Hamiltonian terms:

H ¼ β H
!

∙ g!
!
∙ S
! þ S

!
∙ A
!!
∙ I
!

(37)

where g!
!

and A
!!

are in the tensor form. In the resonance case, the average of the diagonal
elements of the g-tensor gives the isotropic value of the g-factor.

g ¼ 1
3
Trace g!

!� �
(38)

In the same way, the average of the diagonal elements of the A-tensor gives isotropic value “a.”

a ¼ 1
3
Trace A

!!
 !

(39)

An example of an EPR spectrum is shown in Figure 7.

Figure 7. An example of an EPR spectrum and the measurement of the “a” value. If there are n equivalent nuclei, the
spectrum shows 2nI + 1 splits. Here, the nuclei with the same hyperfine structure constant as the equivalent nuclei
expression are meant. If the nuclear spin is 1/2, the number of lines and the relative intensity are given by the binomial
theorem (Figure 8). The line-to-line spacing gives a hyperfine structure constant [4–6].

Figure 8. The Pascal triangle.

Resonance10



H ¼S
!
∙ A
!!
∙ I
!

(36)

The effective Hamiltonian expression for EPR consists of the sum of the electron Zeeman
Hamiltonian and the hyperfine structure interaction Hamiltonian terms:

H ¼ β H
!

∙ g!
!
∙ S
! þ S

!
∙ A
!!
∙ I
!

(37)

where g!
!

and A
!!

are in the tensor form. In the resonance case, the average of the diagonal
elements of the g-tensor gives the isotropic value of the g-factor.

g ¼ 1
3
Trace g!

!� �
(38)

In the same way, the average of the diagonal elements of the A-tensor gives isotropic value “a.”

a ¼ 1
3
Trace A

!!
 !

(39)

An example of an EPR spectrum is shown in Figure 7.

Figure 7. An example of an EPR spectrum and the measurement of the “a” value. If there are n equivalent nuclei, the
spectrum shows 2nI + 1 splits. Here, the nuclei with the same hyperfine structure constant as the equivalent nuclei
expression are meant. If the nuclear spin is 1/2, the number of lines and the relative intensity are given by the binomial
theorem (Figure 8). The line-to-line spacing gives a hyperfine structure constant [4–6].

Figure 8. The Pascal triangle.

Resonance10

The difference between the hyperfine structure splitting of two inequivalent protons and the
hyperfine structure splitting of two equivalent protons is shown in Figures 9 and 10, respectively.

Figure 9. The hyperfine structure splitting of two inequivalent protons (a1 6¼ a2).

Figure 10. The hyperfine structure splitting of two equivalent protons (a1 = a2).
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The hyperfine structure interaction in the EPR is identical to the spin-spin coupling interaction
in NMR.

3. Conclusion

EPR and NMR form the magnetic resonance spectroscopy. EPR and NMR depend on the same
basic principles. However, these two experimental methods differ because of the differences in
the physical quantities between the electron and the nucleus. These differences stand out in
terms of charge, mass, and magnetons (Bohr magneton or nuclear magneton).
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Abstract

The magnetostriction effects are first discussed in the frame of the magneto-elastic
resonance to define important values mainly the magneto-elastic coupling factor, k33.
We review the different magnetostrictive materials according to their developments,
with a special attention to amorphous ribbons to design magnetostrictive resonators.
Furthermore, we focus on the current instrumental setups including their limitations,
and then on the usual measurement procedures of the resonators, particularly the
frequency domain measurement. In addition, an innovative approach based on the
magneto-elastic impedance is reported, together with an analytical model which estab-
lishes the complete transfer function between the input and output voltages. This model
is applied to ribbon-shaped materials, particularly to determine the magneto-elastic
coupling factor. These resonators are suitable to sensing applications, i.e., to estimate
the influential quantities such as the temperature, magnetic fields and mass stuck on the
resonating surface.

Keywords: resonant frequency, magnetostrictive resonators, magneto-mechanical
coefficient, analytical model, sensor

1. Introduction

This chapter deals with the magneto-elastic resonance: this form of mechanical resonance
involves magneto-mechanical properties of some ferromagnetic materials. Consequently, it
presents some similarities to other types of resonance, such as the existence of resonant and
anti-resonant frequencies. The behaviors of magnetostrictive resonators, which also result
from magneto-mechanical properties, give rise to some specific particularities. After introduc-
ing the main features on magneto-elastic resonance, we first report on the magnetostriction
effects and the relevant characteristics of subsequent materials in order to design magne-
tostrictive resonators. Then, we detail an analytical model in the case of a ribbon-shaped
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resonator allowing the magneto-elastic coupling factor to be estimated. Finally, we propose
some resonator based on a magnetostrictive amorphous ribbon, which behaves as a good
platform for sensing applications while we report on the emblematic example of freezing-rain
sensor.

2. Magnetostriction effects

Resonance could be defined as a phenomenon that occurs when a vibrating system has
greater amplitude at some specific resonant frequencies. In case of magneto-elastic reso-
nance, the vibrating system can be established from a magnetostrictive material. One can
consider, in a first approach, this mechanical resonance occurs with a magnetic cause. To
obtain the excitation, i.e., a mechanical vibrating strain, one applies a vibrating magnetic
field and the magnetostriction converts magnetic variation into strain variation. In return,
when resonance occurs, strain is at a maximum. As a consequence of magnetostrictive
effects, magnetic values are also at maxima resulting from maximum of mechanical values.
Thus, magneto-elastic resonances result from mechanical and magnetic resonances. Conse-
quently, studying magneto-elastic resonance requires knowing of magnetostriction effect, as
presented in the next section.

2.1. Magnetostriction

2.1.1. Definition

Magnetostriction can be defined, in a first approach, as the property of some ferromagnetic
materials to modify their shape due to change in magnetization [1, 2]. In practice, only some
ferromagnetic materials have significant shape and magnetization correlated changes. This
phenomenon was discovered by James Prescott Joule in 1842 studying a sample of iron. Since
Joule’s discovery, many magnetostriction effects have been highlighted, such as bending,
torsion, density changes, or Young’s modulus variations. We still use the term of magnetostric-
tion for all magneto-elastic properties. This chapter is only concerned by changes in shape.
More precisely, two effects are involved in common magnetostrictive resonators, the Joule and
Villari effects; the last one corresponds to the inverse magneto-elastic effect.

2.1.2. Joule and Villari effect

A ferromagnetic material with parallelepiped shape elongates or shrinks under a magnetic
field according to the longitudinal Joule effect. The reversal effect, change of magnetization
while submitted to a mechanical stress is known as Villari effect. These effects are depicted by
the material magnetostriction curves which describe the variation of the relative deformation
λ ¼ dL

L , where L is the length of the sample, versus H the magnetic field applied to the material.

A typical curve is characterized by a maximum, as illustrated in Figure 1; in addition, one
clearly observes some hysteresis also commonly called “butterfly loop,” because of its sym-
metrical shape. In the next part, curves are restricted to the positive fields. The asymptotic
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elongation or shrinkage gives rise to magnetostriction at saturation: the maximum value λs
corresponds to the saturation magnetostrictive coefficient, i.e., the strength of the magneto-
elastic coupling, which can be thus either positive or negative, respectively. It is usually found
in the order of 10�6 but could rise up to 10�3 in the case of Terfenol-D (TbxDy1�xFe2, x ~ 0.3),
which behaves as the best magnetostrictive material and is commonly applied as engineering
magnetostrictive material. The magnetostriction can be described by a quadratic function and
the sign is strictly dependent on the material, not on the direction of the applied magnetic field.
Note that it differs from piezomagnetism (analogously piezoelectric effect), which is character-
ized by a linear coupling between the mechanical strain and the magnetic polarization.

It is important to emphasize that function λ(H) is not linear and could be more rugged than the
typical one illustrated in Figure 1. Indeed, λ(H) is not strictly monotonous (as for Fe), for
which one can distinguish two regimes with positive and negative values of λ, corresponding
to an elongation and shrinkage of material for small and larger fields, respectively.

In addition, the deformation is not exclusively dependent on the magnetic field. Indeed,
among the other parameters, the temperature plays an important role: when the temperature
increases, the elongation decreases as the magnetization is reduced. The magnetostriction
curves also depend on the direction of the applied field respect to the easy magnetization
axes, i.e., the shape and the chemical purity of the sample and also on its thermomagnetic
history.

2.1.3. Causes

The physical mechanisms of the magnetostrictive effects have not been yet described successfully
at the atomic scale, to the best of our knowledge. But they are not necessary for our current topic.
On the opposite, we would only keep in mind a simple picture, as schematized in Figure 2: the
main idea is based on the rotation of magnetization in presence of an external magnetic field,
which may originate some new arrangements of magnetic domains causing either elongation or
shrinkage of the magnetostrictive material [3].

One can distinguish different contributions to the magnetic energy from nano to microscale:
exchange interactions, dipolar interactions, magneto-crystalline anisotropy, shape, interface,

Figure 1. Typical magnetostriction curves in form of butterfly loop.
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and magneto-elastic anisotropy energies. When the material is submitted to mechanical
stresses and/or an external magnetic field, the equilibrium of the deformations corresponds to
the minimum of the total energy. In the case of a crystalline magnet, the application of uniaxial
mechanical stress originates a magnetostrictive contribution to the magnetic anisotropy. It is
clear that this magneto-elastic contribution results from the magneto-crystalline term: indeed,
under stress crystals can be considered as stressless crystals with a slightly different crystalline
structure. In the case of polycrystalline materials, the saturation magnetostriction is an average
over different crystal orientations.

Magnetostrictive materials are suitable to convert magnetic into kinetic energy and vice-versa:
they can be thus applied to design actuators and sensors. They are implemented in sonars,
generation of ultrasound for medical, industrial uses, or for active control of noise and vibra-
tion, using simultaneously the opposite effect for vibration measurement and the direct one to
carry out the corrective action.

2.2. Characteristic quantities, magneto-elastic coupling factor

2.2.1. Curves, magnetostriction at saturation and slope

The useful information expected by engineers and technicians is the magnetostriction curve, as
plotted in Figure 1, which characterizes the magnetostrictive material [4]. Indeed, one could
easily define the maximum of deformation and estimate λs which is usually reported by the
manufacturer in the literature. This value presents the advantage to be unequivocal and weakly
dependent on further physical parameters except temperature.

This value is able to predict the maximum change in length as ΔLmax =λs ∙ L but does not
describe the sensitivity of the magneto-mechanical conversion. But the slope d ¼ ∂λ

∂H

� �
σ is a

useful representation of materials properties, since it indicates how rapidly the strain changes
with the relevant applied field, according to Jiles [5]. The largest slope, dmax, corresponds to the
best operating point. But, it is important to emphasize that literature does not report on dmax

Figure 2. Schematic picture depicting the magnetostriction caused by rotation of magnetization.

Resonance16



and magneto-elastic anisotropy energies. When the material is submitted to mechanical
stresses and/or an external magnetic field, the equilibrium of the deformations corresponds to
the minimum of the total energy. In the case of a crystalline magnet, the application of uniaxial
mechanical stress originates a magnetostrictive contribution to the magnetic anisotropy. It is
clear that this magneto-elastic contribution results from the magneto-crystalline term: indeed,
under stress crystals can be considered as stressless crystals with a slightly different crystalline
structure. In the case of polycrystalline materials, the saturation magnetostriction is an average
over different crystal orientations.

Magnetostrictive materials are suitable to convert magnetic into kinetic energy and vice-versa:
they can be thus applied to design actuators and sensors. They are implemented in sonars,
generation of ultrasound for medical, industrial uses, or for active control of noise and vibra-
tion, using simultaneously the opposite effect for vibration measurement and the direct one to
carry out the corrective action.

2.2. Characteristic quantities, magneto-elastic coupling factor

2.2.1. Curves, magnetostriction at saturation and slope

The useful information expected by engineers and technicians is the magnetostriction curve, as
plotted in Figure 1, which characterizes the magnetostrictive material [4]. Indeed, one could
easily define the maximum of deformation and estimate λs which is usually reported by the
manufacturer in the literature. This value presents the advantage to be unequivocal and weakly
dependent on further physical parameters except temperature.

This value is able to predict the maximum change in length as ΔLmax =λs ∙ L but does not
describe the sensitivity of the magneto-mechanical conversion. But the slope d ¼ ∂λ

∂H

� �
σ is a

useful representation of materials properties, since it indicates how rapidly the strain changes
with the relevant applied field, according to Jiles [5]. The largest slope, dmax, corresponds to the
best operating point. But, it is important to emphasize that literature does not report on dmax

Figure 2. Schematic picture depicting the magnetostriction caused by rotation of magnetization.

Resonance16

but on λs, because of some dependencies on influence quantities (especially dmax, sometimes
noted d33, depends on the direction of the magnetic field).

2.2.2. Magneto-mechanical coupling coefficient k33

The more relevant characteristic of a resonator is obviously the magneto-mechanical coupling
coefficient k33, a dimensionless parameter, which describes the energy conversion as k33

2 is the
energy conversion ability from magnetic into elastic energy and inversely. The values of k33
which can be estimated from the slope of the curve are expected to be theoretically ranged
from 0 up to 1. The larger value which is 0.97 has been observed for an amorphous metallic
ribbon.

Du Trémolet de Lacheisserie has proposed an equation to estimate the effective magneto-
mechanical coupling k33 coefficient from the calculation of Gibbs free energy, as

k33 ¼ d33

ffiffiffiffiffiffiffiffiffi
YH

μ33
σ

s
(1)

where, μ33
σ is the permeability at constant stress and YH the Young’s modulus at constant field

(certain conditions are reported in a next section). Indeed, the effective value of k33 depends on
the boundary conditions (geometry and fixation of the magnetostrictive material acting as
resonator) and the mode of induction of the magnetic field.

2.3. Materials

Since Joule and his discovery of magnetostriction on an iron sample, many new magnetostric-
tive materials have been identified [3, 5, 6]. Hartemann proposed [1] to classify them into four
main categories: nickel and metallic crystalline alloys, the first materials to be used, ferrites,
iron-rare-earth alloys, and amorphous alloys. But, this classification has to be updated with
nanocrystalline alloys as obtained from subsequent annealing on as-quenched alloys on one
hand, and the newer Fe-Ga based alloy (Galfenol) on the other hand.

2.3.1. Nickel, metallic alloys, and magnetostrictive ferrites

Polycrystalline nickel was the first magnetostrictive material to be used as a transductor.
Figure 3 compares the magnetostriction curves characteristics of Ni (thick) and Fe (thin),
revealing negative and positive magnetostriction coefficient, respectively.

Nickel which is semi-soft (or semi-hard) magnetic material, gives clear evidence for a quite
large linearity range with a magnetostriction at saturation λs of �35 ppm and a magneto-
mechanical coefficient k33 of 0.3. In addition to a significant hysteresis, Ni characteristics are
strongly dependent on its chemical purity and the annealing conditions to get polycrystalline
structure: nevertheless Ni remains an excellent standard. As abovementioned, λs (Fe) depends
on the external field, giving rise to positive and then negative magnetostrictive behavior.
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The magnetostrictive properties of Fe-Ni alloys result from a combination of their respective
positive and negative magnetostrictive and magneto-crystalline anisotropies: it allows differ-
ent magnetostrictive characteristics to be tuned as a function of the chemical content. Thus,
Permalloy has high permeability and magnetostriction near zero for Permalloy 78 (78% Ni) but
Permalloy 45 is greatly magnetostrictive (λs = 27 � 10�6, k33 = 0.3). Table 1 lists some physical
characteristics of iron-aluminum (Alfenol), nickel-cobalt, and iron-cobalt alloys.

In the case of ferrites with spinel structure, the magnetic properties are not only dependent on
the nature of cations, but also on their distributions into the tetrahedral and octahedral sites
giving rise to either direct, inverse, or mixed structures. Consequently, the conditions of elabora-
tion using the ceramic route, the chemical nature, and content of their atomic elements provide
large varieties of materials. Co-based ferrites are excellent candidates as magnetostrictive mate-
rials (see characteristics listed in Table 1, in addition to their high resistivity compared to those of

Figure 3. Magnetostriction curves characteristic of Ni (thick) and Fe (thin).

Material λs (ppm) k33 max () d33 max [6] (10�9 m/A)

Fe �9 0.3

Ni �35 0.3 �3

Co �62 �0.2

Permalloy 45 (Ni45-Fe55) 27 0.3

Permalloy 80 (Ni80-Fe15-Mo5) <1.2

Alfer 13 (Al 13-Fe 87) 40 0.3

Co 4.5-Ni 95.5 �36 0.5

Fe 30-Co 70 laminated 130

Ferrites Fe3O4 40 0.36

Ferrites CoFe2O4 �110

Terfenol (TbFe2) 1753 0.35

Terfenol-D (Tb0.3Dy0.7Fe2) 1100 0.75 57

Galfenol 250 0.7

Table 1. Specific characteristics (λs, k33max, d33max) of some selected magnetostrictive materials.
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The magnetostrictive properties of Fe-Ni alloys result from a combination of their respective
positive and negative magnetostrictive and magneto-crystalline anisotropies: it allows differ-
ent magnetostrictive characteristics to be tuned as a function of the chemical content. Thus,
Permalloy has high permeability and magnetostriction near zero for Permalloy 78 (78% Ni) but
Permalloy 45 is greatly magnetostrictive (λs = 27 � 10�6, k33 = 0.3). Table 1 lists some physical
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the nature of cations, but also on their distributions into the tetrahedral and octahedral sites
giving rise to either direct, inverse, or mixed structures. Consequently, the conditions of elabora-
tion using the ceramic route, the chemical nature, and content of their atomic elements provide
large varieties of materials. Co-based ferrites are excellent candidates as magnetostrictive mate-
rials (see characteristics listed in Table 1, in addition to their high resistivity compared to those of

Figure 3. Magnetostriction curves characteristic of Ni (thick) and Fe (thin).
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Alfer 13 (Al 13-Fe 87) 40 0.3

Co 4.5-Ni 95.5 �36 0.5

Fe 30-Co 70 laminated 130

Ferrites Fe3O4 40 0.36
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Table 1. Specific characteristics (λs, k33max, d33max) of some selected magnetostrictive materials.
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metal alloys). Microferrites can then be used at higher frequencies, but their mechanical fragility
remains a serious weakness.

Nickel and metal alloys are used mainly as actuators for applications requiring small displace-
ments with a large force like for ultrasound emission.

2.3.2. Iron-rare-earth compounds

As noted by du Trémolet de Lacheisserie, studies developed on iron-rare-earth compounds are
exemplary in the field of magnetic materials. The aim of the researchers was to combine advan-
tages of 3d metals and/or alloys able of operating at room temperature and under relatively
small magnetic fields, but with poor magnetostrictive effects and 4f metals which exhibit high
values of magnetostriction coefficient but very low Curie temperatures. Those studies developed
in the 70’s led to significantly improved magnetostrictive materials with deformations 50–100
times larger. Thus, Clark first developed the TbFe2 alloy named Terfenol (TERbium, FEr, Naval
Ordnance Laboratory), which exhibits a relatively high Curie temperature with giant magneto-
striction but with a great magneto-crystalline anisotropy. Then, he elaborated a mixed alloy
combining two different rare-earth species, giving rise to Tb0.3Dy0.7Fe2 which exhibits rather
similar advantages than Terfenol but is easier to be magnetically saturated (λs = 1100 � 10�6,
k33 = 0.75). Terfenol compounds which behave as hard magnets are brittle and expensive.
According to its characteristics, Terfenol-D remains currently an excellent magnetostrictive mate-
rial. Indeed, it is suitable to be applied as magnetostrictive actuator at room temperature, but
with restriction in use as resonator. We report magnetostriction curve under preload (Figure 4): it
appears different curves and in particular, the maximum slope of the curves reported are 15, 80,
and 40 10�9 A/m for pressures of 0, 20, and 40 MPa, respectively. Such values are greater than
those predicted by du Trémolet de Lacheisserie [4].

It is important to emphasize that, as observed in its website [7], Etrema™ reports the curve
established without load which does not allow correct values of k33 to be extrapolated; indeed,
as illustrated in Figure 4, the values of the magneto-mechanical coefficient can be well esti-
mated providing that the material (Terfenol-D) is submitted to important loads. Thus, one has

Figure 4. Magnetostriction curve characteristic of Terfenol-D with and without preloading.
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to be very careful to estimate the value of k33. In addition, most of resonators work without
load, making that Terfenol cannot act as an excellent magnetostrictive material, contrarily to Ni
which possesses a large k33 value with a small polarization.

2.3.3. Amorphous and nanocrystalline material

In the case of usual resonators, the highest values of magnetostriction coefficient are not strictly
necessary but the key parameter does result from the largest possible magnetostrictive effect
obtained in presence of a magnetic field as small as possible, i.e., large d and k33 values [6, 8].
Some ribbon-shaped amorphous glasses possess very good magneto-elastic properties (great
k33 for small field) associated to excellent mechanical properties. Let us remember that the
metallic amorphous ribbons, also called metallic glasses, are obtained by rapid quenching from
the induction melt (106 K/s) using the roller technique: a molten alloy is ejected by a flume onto
a cooled rotating wheel. The experimental conditions (temperature of the melt, size of capillary,
distance capillary-wheel, nature and surface state of the wheel, protective gas, etc.) have to be
optimized to get regular ribbons over large lengths (up to several km). Their thicknesses—
typically ranged from 20 to 40 μm—favor some mechanical brittleness which depends on
quenching conditions. The amorphous ribbons are usually soft magnets with relative perme-
ability more than 105 and coercive field near 1 A/m, very low magneto-crystalline anisotropy
while their magnetostrictive properties are strongly correlated to their chemical composition
(particularly that of Fe, Ni, and Co). The magnetic properties can be improved by annealed
under a magnetic field, transverse to increase magnetostriction (longitudinal to annihilate). The
largest magneto-mechanical coupling coefficient k33 was measured on Metglas 2605SC ribbon
annealed at 390�C under a transverse in-plane magnetic field of 400 kA/m for approximately
10 min. The magneto-mechanical coupling coefficient k33 is close to 1. We report technical
properties of two ribbons of metallic glasses, the best 2605SC and the most used 2826 MB.

As listed in Table 2, the main characteristics of metallic amorphous ribbons make them good
candidates as magnetostrictive resonators (soft magnet, mechanically soft, large k33), despite
their weak thicknesses. Nanocrystalline alloys (such as FINEMET, NANOPERM, and HITP
ERM) which result from a subsequent annealing of the amorphous precursor do not exhibit
better magnetostrictive characteristics. An alternative is related to bulk amorphous glasses
(BMG) which could be obtained as cylindrical rods by mold casting and suction casting
techniques: some of them possess excellent soft or hard magnetic properties with saturation
magnetostriction values ranged up to 40 � 10�6.

3. Magnetostrictive resonator

3.1. Structure

Resonators consist of a magnetostrictive material, one or two exciting coils, one or two pick-up
coils and eventually a support (a schematic view is given in Figure 5) [9, 10]. Exciting coil,
either Helmholtz type or a rather long cylindrical coil, aims to produce a homogeneous
magnetic field with an alternating component and a DC component. Exciting coil converts
vibrating current into vibrating field. This field induces vibrations in the ribbon-shaped mate-
rial with a resonant frequency which is dependent on its size, usually length L.
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As described by Grimes [10], vibrations “can be detected magnetically with a pick-up coil,
acoustically with a microphone, or optically with a laser emitter and a photo-transistor.”Next,
we focus on resonators with vibration detection based on the Villari effect, resulting from the
pick-up coil as previously mentioned.

Ideally, the best configuration would be to study a free ribbon, thus in practice, the ribbon does
simply lye on a flat and smooth surface or be centered in its middle on a support.

3.2. Operating principle, elementary model

A generator delivers a current with an alternating component to the excitating coil which in
turn generates a magnetic field proportional to the current. The magnetostrictive material
subjected to the field, is thus deformed. By applying a sinusoidal current component, the
material vibrates according to a sinusoidal mode. The excitation is the strains originated from
field’s variation, and the resonator acts thus as a mechanical resonator.

Properties Units Metglas 2605SC Metglas 2826 MB

Composition Fe81B13.5Si3.5C2 Fe40Ni38B4Mo18

Thickness (μm) 17 29.2

Density kg.m�3 7320 7900

Magnetostriction at saturation (ppm) 30 12

Magneto-mechanical coupling coefficient — 0.97 (H = 50 A/m) 0.3

Crystallization temperature K 480 410

Young’s modulus GPa 25 100-110

Résistivité électrique μ.Ω.m 1.35 1.38

Perméabilité relative maximum — 300,000 800,000

Table 2. Specific physical parameters characteristic of two ribbon-shaped metallic glasses.

Figure 5. Principle of a ribbon-shaped resonator.

Magneto-Elastic Resonance: Principles, Modeling and Applications
http://dx.doi.org/10.5772/intechopen.70523

21



The resonator with parallelepiped shape could be modeled as a plate, where ultrasound waves
propagate without losses. Assuming a one-dimensional problem and choosing as system a
slice of thickness dx, its mass is

dm ¼ r ∙ h ∙ edx (2)

where h, e, and r are the thickness, depth, and the density of the plate, respectively.

The balance of forces represented in Figure 6 provides f xð Þ��! ¼ σ xð Þ∙S∙x! and f xþ dxð Þ�����! ¼
�σ xþ dxð Þ∙S∙ x!, where S is the cross-section of the resonator.

When applying fundamental principle of dynamics, it comes out:

�σ xþ dxð ÞSþ σ xð ÞS ¼ rSdx ∂2u
∂t2 ) � ∂σ

∂t ¼ r ∂2u
∂t2 , where u is the displacement.

From both the Hooke’s law establishing the proportionality between relative elongation and
constraint, λ ¼ �1

Y � σ, and the expression of the elongation is given as

λ ¼ dL
L

¼ u xþ dxð Þ � u xð Þ
dx

¼ ∂u
∂x

(3)

one gets ∂2u
∂t2 � 1

c2
∂2u
∂x2 ¼ 0 where c ¼

ffiffiffi
Y
r

q
.

This equation can be solved using harmonic solutions u(t, x) = ej2πft �u(x) with

u t; xð Þ ¼ U1ej
2πf
c x þU2e�j2πfc x and assuming constraint at x = 0 with u(0) = 0 and boundary

conditions σ L
2

� � ¼ σ � L
2

� � ¼ 0.

Consequently, σ xð Þ ¼ �j2Y U�2πf
c cos 2πf

c x
� �

, to satisfy σ x ¼ L
2

� � ¼ 0 involving 2πf
c L ¼ π 2pþ 1

� �

where p is a positive integer.

Resonances are established at frequencies fp ¼ 2pþ 1
� �

c
2L ¼

2pþ1ð Þ
2L �

ffiffiffi
Y
r

q
, and particularly the

fundamental frequency corresponding to that characteristic of the material:

f 0 ¼
1
2L

�
ffiffiffiffi
Y
r

s
: (4)

Figure 6. Resonator modeling, with the stress forces.
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3.3. Measurement

By Villari effect, resonator’s vibration generates a time-varying magnetic flux, measured by the
pick-up coils. Three different routes as time domain measurement, frequency domain mea-
surement, and magneto-elastic impedance can convert this variation to estimate f0.

3.3.1. Time domain measurement

The strategy consists in exciting the resonator to its natural frequency. Then, one could apply to
the exciting coil a rectangular wave-train pulse, or even better, a sinusoidal wave-train, as the
current variation is limited by the inductance. Then the response, the pick-up coil’s voltage, is a
damped sine wave-train (Figure 7). The natural frequency can be thus determined by fast
Fourier transform (FFT), frequency counting or demodulation. FFT gives the spectrum of the
voltage which maximum corresponds to the natural frequency. Furthermore, frequency
counting consists in the determination of a number of oscillations. Thus, a comparator converts
the voltage into a rectangular shape voltage whose frequency can be easily determined by a
counter, according to the definition of a frequency. The last technique consists in demodulating
the pick-up’s signal: a phase-locked loop replaces the counter and gives voltage corresponding
linearly to the frequency. The frequency counting and demodulation techniques require less
high-performance instrumentation but remain more difficult to be well achieved. On the
contrary, FFT gives a priori better results and particularly the quality factor characteristics of
the resonance.

3.3.2. Frequency domain measurement

The resonant frequency results from the transfer function. The excitation coil is connected to a
function generator and the pick-up coil to a voltage measurement system. The generator
delivers a sinusoidal voltage as a function of frequency (sweeping mode) giving rise to V(f)
corresponding to the amplitude of the pick-up coil (as illustrated in Figure 9b). The resonant
frequency corresponds to the maximum. This measurement can be carried out using only a
spectrum analyzer that delivers the magnitude of the input signal versus frequency: such an
approach allows the resonant frequency, the anti-resonant frequency, and the resonance qual-
ity to be obtained.

Figure 7. Time domain measurement signals: wave train and response as continous and dashed line, respectively.
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3.3.3. Magneto-elastic impedance

The experimental setup for measuring the evolution of the impedance is close to that of
frequency domain measurement. An analyzer measures real and imaginary parts of voltage
as a function of the frequency, allowing thus the variation of impedance which is experimen-
tally similar to the transfer function versus frequency. Let us note that the instrumentation is
similar for the two techniques, but physicists prefer the later one which also gives the evolution
of the permeability.

3.4. Development

The development of a resonator requires a setup comprising polarization and excitation coils
(possibly one for both), two pick-up coils, a continuous power supply, and an analyzer, in
addition to the magnetostrictive material. Consequently, its achievement is not a difficult task
providing some rules to be satisfied.

3.4.1. The resonator

As concluded in Section 2.2, the main criterion of choice is the magneto-mechanical coefficient
or the slope of curves λ(H), i.e., a material with a k33 at least more than 10%, for a DC field easy
to obtained in the lab. For preliminary tests, Ni foil or amorphous 2826MB would be a good
choice according to Section 2.3, but the optimal choice depends on the application.

The output is often the resonant frequency that is inversely proportional to the length of the
resonator with parallelepiped shape. To get an acute resonance, the resonator requires a
strictly constant length L: consequently, the cutting has to be done with extreme caution.
Different techniques such as paper guillotine, laser beam, diamond wire saw, or electrical
discharge machining have to be optimized according to the brittleness of the material and
preventing from contamination and from crystallization in the case of amorphous ribbons.
After cutting, the material may undergo subsequent treatment under field in neutral atmo-
sphere to improve magnetostriction.

3.4.2. Coils and electrical setup

Polarization and excitations coils such as Helmholtz or long cylindrical solenoid, do create a
uniform field. In addition, as the field produced by a coil is proportional to the current, it is
easier to get only one coil, using links capacitor and inductor to discriminate the DC and AC
component voltage (see Figure 8). The advantage of Helmholtz coils is that the resonator is
placed outdoor, but as the field decreases with the square of the coil diameter, a large coil
creates a greater field than Helmholtz type with the same current.

The coil picks up the time derivative of flux Φn =μ0H ∙ Sn +μ0M ∙ Srib resulting from n loops of
surface S mounted around the material. Then the flux is image of the magnetization M, but
also of the magnetic field H. The field component is removed using a differential measurement
from two pick-up coils. Indeed, the second coil is identical to the first one and placed, out of the
material, symmetrically centered in the excitation field, what measured is the voltage of the
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serial coils: u ¼ n
d μ0M∙Sribð Þ

dt . The voltage u is thus proportional to the derivative of the magneti-
zation change with the sinusoidal strain.

3.4.3. Setting

The first step consists in determining the place of the pick-up coil corresponding to a minimum
of voltage without resonator in order to optimize the compensation. Then, the measuring
range has to be refined from an approximate value of the resonant frequency. The resonance
is obtained by adjusting first the amplitude of the excitation at around 1 V and scanning the
DC voltage. The final refinement of the position of the pick-up coil and the amplitude of the
AC voltage gives rise to a curve similar to that displayed in Figure 9b.

Figure 8. Coils and electrical setup.

Figure 9. a: Examples of frequencies responses of the maximum strains in the middle (thick,) and displacement at the
ends (thin). b: Examples of frequencies responses of the pick-up coil’s voltage.
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4. Analytical model

An analytical model is thus necessary to estimate the frequency dependence of the output/input
coils voltage ratio when submitted to an electrical excitation [11]. It consists in establishing the
equations coupling mechanical and magnetic quantities.

4.1. Modeling and assumptions

3D general equations can be derived into the two following 1D Eqs. (5) and (6), assuming a low
AC component of the magnetic field

eB ¼ d ∙ eσ þ μσ ∙ eH (5)

eλ ¼ 1
Y

∙ eσ þ d ∙ eH (6)

where eX refers to a low level AC quantity, B, H, ε, σ, Y, d, and μσ are the magnetizing flux
density, the magnetic field, the strain, the stress, the Young modulus, the slope of the magne-
tostriction curve, and the magnetic permeability at constant stress, respectively.

The ribbon is assumed to be set in the middle. The magnetic field is uniform and has two

components: HDC and alternating eH withHDC ≫ eH . In addition, eH is low enough to neglect the
effects of hysteresis. The complex Young modulus is expressed as Y ¼ Y 1þ jηð Þ, where the
imaginary part takes into account mechanical and magnetic losses with η, the damping factor
characteristic of the resonator.

The boundaries conditions are related to the two ends of the ribbon mechanically free, except
strains due to magnetostriction:

λ z ¼ �L
2

� �
¼ eε0 ¼ d ∙ eH (7)

λ z ¼ L
2

� �
¼ eε0 ¼ d ∙ eH (8)

The vibrations resulting from the excitation field are described by the wave propagation
equation derived from Newton’s second law:

∂σ
∂t

¼ r
∂2u
∂t2

(9)

where u is the longitudinal displacement and r the density.

From Eqs. (3), (9), and (6), assuming that ∂~u
∂z ¼ 0 (uniform field), one gets

Y
∂2~λ
∂z2

¼ r
∂2~λ
∂t2

(10)
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4.2. The strain expression

Eq. (10) can be solved by using harmonic oscillations expressed as

eλ z; tð Þ ¼ ejωt ∙E ∙ ejKz (11)

From Eqs. (10) and (11) K = � (kr + jki) with kr ¼
ffiffi
r
Y

p
∙ωffiffiffiffiffiffiffiffi

1þη24
p cos tg�1 ηð Þ

2

� �
with ki ¼ �

ffiffi
r
Y

p
∙ωffiffiffiffiffiffiffiffi

1þη24
p sin tg �1 ηð Þ

2

� �
:

Considering above boundary conditions, one finally obtains from Eq. (12):

λ zð Þ ¼ d∙eH Er0 þ jEi0

� �
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� �
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At this stage, the frequency variation of the strain can be plotted but the displacement at ends
of the resonating ribbon is preferred. This second curve can be obtained by means of a
contactless measurement as laser vibrometer or microphone.

The expression of the motion is determined from Eqs. (3) and (12):

u zð Þ ¼ d∙eH Er0 þ jEi0

� � e �kiþjkrð Þz

�ki þ jkrð Þ þ
e ki�jkrð Þz

ki � jkrð Þ
� �

Figure 10a reports the frequencies’ responses of the maximum strain (in the middle) and
displacement (at the ends) for a ribbon taken from an anti-theft which is Vitrovac 4040 (Fe39
Ni39Mo4Si6B12; r = 7400 kg.m�3 and L = 37 mm. The refined characteristics are k33 = 0.312,
d = 20 � 10�9 m/A, HACmax = 4 A/m and η = 0.012.

The mechanical responses are quite different from the measurement based on the inverse
magnetostrictive (Villari) effect (Figure 9b).

4.3. Expression of the frequency response

As coils associated with the magnetostriction convert mechanical quantities into electrical
quantities, the next step consists thus in substituting mechanical by magnetic quantities.

From Eqs. (12), (5), and (1):

μ ¼
eB
eH ¼ μσ 1� k332 þ k332 Er0 þ jEi0

� �
e �kiþjkrð Þz þ e ki�jkrð Þz
� �� �

(13)
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The current applied to the exciting coil assumed to be only inductive is

i tð Þ ¼ Veffexc

Lexcω

ffiffiffi
2

p
sin ωtð Þ, (14)

where Veffexc and Lexc correspond to the rms voltage and the inductance of the excitation coil.

As the B magnetic field can be neglected out of the resonating ribbon, it is expressed as

B ¼ μ ∙ nl ∙ i (15)

assuming an infinitely long solenoid coil where nl: number of loops per unit length

From Eqs. (13)–(15), one gets than B zð Þ ¼ 2
ffiffiffi
2

p
∙ n
l b�að Þ

Veffexc

Lexcω

ffiffiffi
2

p
sin ωtð Þ∙μ zð Þ

The output voltage is calculated as:v tð Þ ¼ dΦ
dt ¼

d
Ð b l2
a l2

nl ∙dz∙B zð ÞS
� �

dt

The frequency response defined as T ¼ VM
Veffexc

where VM corresponds to rms value of V(t) is then:

T ¼ T0 1þ 2
k332

1� k332
∙
Er0 þ jEi0

l b� að Þ ∙
e �kiþjkrð Þal2 þ e ki�jkrð Þbl2 � e �kiþjkrð Þbl2 � e ki�jkrð Þal2
� �

ki � jkr

0
@

1
A

ðWithÞT0 ¼ S
Lexc

∙
2nb2

l b� að Þ ∙ 1� k332
� �

μσ

The frequency response T is function of a, b, L, nb, Lexc, S, μ
σ, k33, η, l, Y, r, and f. While

considering T function of T0, which then becomes a parameter, T is function of T0, a, b, L, k33, r,
l, Y, η, and f.

It is important to emphasize that the gain depends on not only the material parameters (L, k33,
η, Y), but also on the size and position of the pick-up coil (a, b, and l).

Figure 10. Evolution of resonant and anti-resonant frequency fr (+) and fa (x), Young’s modulus Y, magneto-mechanical
coefficient k33, damping η, slope of the magnetostriction curves d, and strain λ as function of DC field for Vitrovac ribbon.
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A typical response is plotted in Figure 9b. The resonant frequencies, noted frk and f0 or fr for
the fundamental one can be estimated from Eq. (4). The anti-resonant frequencies, fak, are not
observable when studying strain response (Figure 9a). One observes in Figure 9b reversal of
some anti-resonant harmonic frequencies when they are smaller than the resonant frequency:
details are reported in [12].

5. Applications of magnetostrictive resonator’s characterization

This model allows interestingly to estimate the values of k33, η, Y, T0, from a frequency
response, providing that a, b, L, l, and r are known [12]. The strategy consists first in saving
couples of data (f, T) from a classic analyzer and then to fit them using a least squares method

to determine the set (k33, η, Y, T0). In addition, from Eq. (1), k33 ¼ d33
ffiffiffiffiffiffiffi
YH

μ33
σ

q
, it becomes possible

to estimate the value of d and then by integration that of strain λ. Figure 10 displays the
different data characteristic of Vitrovac sample. It is important to emphasize that the present
contactless and cheap method is well suitable to characterize soft magnetic resonators.

6. Influence quantities

The frequency response of a resonator is strongly dependent on its geometry such length L, its
physical properties (μσ,Y, r), and the operating conditions. But, some particular quantities may
influence the sensing response of the magnetostrictive resonators.

6.1. Effects of field and temperature

6.1.1. Effect of field

The magnetostrictive effects depend obviously on magnetic field which is an unavoidable
influence quantity, but easily quantified. The thicker line in Figure 11 describes the variation
of resonant frequency, at 20�C, versus the applied field. From Eq. (4), resonant frequency

Figure 11. Evolution of magnetostriction curves for 20�C and 100�C (thick and thin line, respectively).
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appears as a function of Y1/2 assuming the density constant, also labeled as ΔY effect [13]. The
variations of d or k33 versus the field are sources of perturbation and can be considered as
influence quantities which are intrinsic to the material: consequently, one does control that d
remains constant in a wide range, i.e., Ni is a better choice than amorphous ribbon.

6.1.2. Effect of temperature

As magnetization decreases with temperature, magnetostriction does the same. Figure 11
compares frequency response versus magnetic field for two temperatures for our ribbon
(thicker line corresponds to 20�C and the thinner one to 100�C) [14]. One concludes that
increasing the temperature increases the minimum of resonant frequency, but decreases k33.
The temperature proves as an important influence quantity with change of resonant frequency
up to 15%. This effect can be reduced by tuning the DC field lower than the anisotropy field
while that of the thermal expansion can be neglected.

6.2. Effect of a mass stuck on the surfaces

Any mass coated on the resonator tends to absorb vibrations: the effect of inertial mass Δm
coating the resonator has to be studied, assumed to be uniformly applied. In Eq. (2), the mass
of the system, a slice of thickness dx, changes from dm = r ∙ e ∙ d ∙ dx to r ∙ e ∙ d ∙ dxþ Δm dx

L . This

change acts equivalent to that of density from r to r 1þ Δm
Lreh

� �
. Then the resonant frequency

becomes:

f 0 ¼
1
2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

r 1þ Δm
Lreh

� �
vuut (16)

It is expected only a decrease of f0. Indeed, one observes a decrease of the maximum due to the
losses generated by the friction between the resonator and the coating mass.

6.3. Effects of operating conditions

Any cause of frictions originates from an influence quantity, among them the viscosity and the
density of the fluid wrapping the resonator [10]. An increase of viscosity increases the losses of
the resonator and then affects damping ratio η. Such an effect can be quantified by comparing
the frequency responses corresponding to two different values of damping: one expects a
decreasing of the maximum concomitant to the decrease of the resonant frequency which
significantly differs when the damping ratio increases (see Eq. (4)). Consequently, the attach-
ment of the resonator disturbs strongly the frequency response.

7. Magnetostrictive sensors

7.1. Freezing-rain sensor, an emblematic example

Freezing-rain sensors which are the emblematic examples of magnetostrictive resonators,
particularly because of the non-contact measurement, are used to detect the icing conditions
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from the mass deposition of ice layer stuck on their surface as well as its growth [15]. The
aerospace manufacturer Goodrich™ proclaims that “its sensor detects the presence of icing
conditions so that appropriate actions can be taken to prevent damage to power and commu-
nication lines, to warn of road hazards, or to keep ice off wind turbine blades or a plane’s
wings.” It is also announced that “surfaces are automatically defrosts itself when ice accumu-
lation reaches 0.5 mm.” Technical available information (including natural resonant frequency:
40 kHz, frequency decreases to 130 Hz, strut height of 2.54 cm, and strut diameter: 3.10 cm, the
material is a nickel alloy rod) allows us to make some calculations. But boundaries’ conditions

differ from our model: free at both ends, here fixed-free than the frequency is f0 ¼ 1
4L �

ffiffiffi
Y
r

q
, in

our case the displacement in the middle is zero, it appears the ribbon fixed in the middle.
Taking Young’s modulus and density of nickel, respectively 200 GPa and 8908 kg.m�3, from a
length of 2.54 cm gives a frequency of 47 kHz.

The frequency, for a cylindrical resonator, with a thickness of ice eice is given by

f 0 ¼
1
4L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

r 1þ
r
ice dþeiceð Þ2�d2ð Þ

r d2

� �
vuuut (17)

Thus, the values of the resonant frequency and its shift are estimated at 47 kHz and 85 Hz
using Ni resonator, which are rather consistent with those given the manufacturer (40 kHz and
130 Hz) obtained with Ni based alloy resonator. Finally, we do emphasize that the sensitivity
of the sensor is essentially due to the strut diameter (see Eq. (17)).

7.2. Chemical sensor

Magneto-elastic sensors can be used to detect chemicals such as carbon dioxide [16] or ammo-
nia [17], biological cells [18], or to measure pH [19]. The principle is to detect the mass of
chemical or biomass stuck on the surfaces. Using amorphous ribbon, the sensibility is excel-
lent. The difficulty is to functionalize the surface in such a way that the product to be detected
sticks the surface and no other contaminating elements. Ruan et al. describe the functiona-
lization process to design a sensor for measuring ricin in solution [19]. The sample is first cut
using a computer controlled laser cutter. Then it is coated with a 10 nm Cr layer and a 140 nm
protective Au layer, with appropriate annealing treatment before functionalization. Magneto-
strictive sensors act as excellent platforms to detect very low mass while the wireless and
passive nature of these devices allows remote measurements.

7.3. Electronic article surveillance

Magnetostrictive resonators are involved in anti-theft tags which are fixed to merchandise.
Tags consist of twomechanically independent free strips, one of a magnetostrictive amorphous
ferromagnetic ribbon, and the second one of a magnetically semi-hard film acting as biasing
magnet and switch to activate and deactivate the sensor. The good magneto-elastic coupling of
the first strip originates the conversion of magnetic energy into mechanical vibrations. Detec-
tion gantries emit bursts at frequency close to that of the resonator (58 kHz) inducing thus
longitudinal vibrations, which continue even after the burst is over. It results some change in
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magnetization of the amorphous strip and induces thus an AC voltage to activate the detection
gantry’s antenna. These tags which are thicker than electromagnetic ones are cheaper and have
better detection rates, but vibration and therefore detection can be deleted, when the sensor is
submitted to a mechanical pressure (that of the robber!).

7.4. Magnetic sensor, thermometer, and others

The resonant frequency depends on both magnetic field and temperature which can be also
measured by a resonator. Garcia-Ambas et al. [14] have investigated the possibility of temper-
ature measurements from the temperature dependence of the magneto-elastic resonance fre-
quency: it occurs when the magnetic biasing field applied to the resonator is close to its
anisotropy field. But the sensitivity of the measurement is dependent on the temperature
dependence of the magneto-elastic, which is self-correlated to that of the anisotropy constants;
these low prize magnetostrictive sensors have the great advantage to make remote measure-
ments. In addition, they can be also involved for differential and multiple measurements.
Literature reports several possible applications such as stress [20] and strain [21] measure-
ments or environmental parameters such as viscosity [22].

8. Conclusion

The aim of this chapter deals with an overview of magnetostrictive resonators, their own
principles and their respective performances including sensing application domains and limi-
tations. The development of some analytical model allows the characteristics of magnetostric-
tive to be estimated and the main influential quantities to be defined: thus, it does facilitate the
design of new ribbon-shaped resonator suitable for specific applications.
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Abstract

The stochastic resonance (SR) is the phenomenon which can emerge in nonlinear dynamic
systems. In general, it is related with a bistable nonlinear system of Duffing type under
additive excitation combining deterministic periodic force and Gaussian white noise. It
manifests as a stable quasiperiodic interwell hopping between both stable stateswith a small
random perturbation. Classical definition and basic features of SR are regarded. The most
important methods of investigation outlined are: analytical, semi-analytical, and numerical
procedures of governing physical systems or relevant Fokker-Planck equation. Stochastic
simulation ismentioned and experimentalwayof results verification is recommended. Some
areas in Engineering Dynamics related with SR are presented together with a particular
demonstration observed in the aeroelastic stability. Interaction of stationary and quasiperi-
odic parts of the response is discussed. Some nonconventional definitions are outlined
concerning alternative operators and driving processes are highlighted. The chapter shows a
large potential of specific basic, applied and industrial research in SR. This strategy enables to
formulate new ideas for both development of nonconventional measures for vibration
damping and employment of SR in branches, where it represents an operating mode of the
system itself.Weaknesses and emptyareaswhere the research effort of SR should be oriented
are indicated.

Keywords: stochastic resonance, post-critical processes, dynamic stability,
Fokker-Planck equation, Galerkin approach

1. Introduction

The stochastic resonance (SR) is a phenomenon, which can be observed at certain nonlinear
dynamic systems under combined excitation including mostly deterministic periodic force and
random noise. The phenomenon of this type has been first observed and reported by Kramers,
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see [1], investigating the interwell hopping in the Brownian motion. Some allusions can also be
found in older resources devoted to stochastic processes and theory of stability (Lyapunov,
Kolmogorov, Planck, and others).

The genuine phenomenon of SR has been discovered in early 1980s. The initiation point was
probably two papers by Nicolis [2, 3] dealing with problems of climatic evolution. Other
scientific and application areas followed that inspiration in due time, since it came to light that
SR is a generic phenomenon. The idea of SR initiated remarkable cross-disciplinary interest
bringing together nonlinear dynamics, statistical physics, information and communication
theories, data analysis, life and medical sciences. Individual areas came to the use of SR
phenomenon rather independently, and therefore, they introduced slightly different defini-
tions and particular strategies in the first period. This transition time passed and many cross
disciplines overlapping in their activities have been built at the unifying background devel-
oped by mathematics and theoretical physics. Despite this evolution, the historical aspects are
still visible, due to fact that every branch still focuses on different needs, working in different
scale and parameter intervals.

The term stochastic resonance was introduced probably in 1981 in informatics to describe the
annoying noise in contemporary communication equipment that prevented to detect the weak
useful signal. However, researchers recognized soon that under certain conditions, the noise
can be helpful to enhance the device sensitivity.

The opportunity to employ SR in mechanics emerged only recently. SR approved to be prom-
ising for modeling of certain post-critical effects in nonlinear dynamics, active vibration
damping, feedback systems, biomechanics, etc. Therefore, it is worthy of presentating a certain
overview to the community of rational and applied dynamics concerning strengths, weak-
nesses, and application possibilities of SR occurred in theoretical and applied disciplines.

The phenomenon itself manifests in the simplest case by a stable periodic hopping between
two nearly constant limits perturbed by random noises. The occurrence of this phenomenon
depends on certain combinations of input parameters, which can be determined theoretically
and verified experimentally. The classical mathematical definition of SR follows from proper-
ties of the Duffing equation with the negative linear part of the stiffness (bistable system)
under excitation by a Gaussian white noise together with a deterministic harmonic force with
a fixed frequency. It should be highlighted that also more general definitions of SR exist and
will be also briefly reported in this chapter. In particular, it considers various types of the
random noise, shapes of the deterministic excitation component, types of oscillator
nonlinearity (potential of internal forces), and finally also number of stable positions, which
can exceed two or drop to one.

In terms of classical Engineering Dynamics, SR can be assumed as a dangerous effect accompa-
nying a post-critical system response. Therefore, it should be eliminated by appropriate selection
of parameters and operating conditions (plasma physics, aeroelasticity, rotating machines, etc.)
in order to ensure the reliability of the system. On the other hand, SR can characterize the mode
of a natural system we are observing, and therefore, it serves as a tool of its investigation (e.g.,
Brownian motion mentioned above). It can also represent an intentional operating mode of the
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artificial system, and therefore, it should be considered as a useful state (special excitation or
vibration damping devices, energy harvesting, etc.).

Nevertheless, many disciplines predominantly consider SR as a mechanism by which a system
embedded in a noisy environment acquires an enhanced sensitivity toward small external
signal, when the noise intensity reaches certain finite level. This phenomenon of boosting
undetectable signals by resonating with added noise extends to many other systems, whether
electromagnetic, physical, or biological, and is an area of intense research. This interpretation
of SR shows that noise can play a positive role in systems either designed artificially or
observed as a natural systems. Furthermore, SR and its variants can serve to understand many
processes in various scales and temperature domains to understand various effects in solid
state physics, biophysics, and electronics with possible application to design SR-inspired
devices.

The study tries to mimic some excellent review studies published mainly in the areas of
physics, informatics, and physiology with emphasis on Engineering Dynamics. See, for
instance, papers [4–10], etc. Although their style is quite different, adequately with the branch
they represent, they are full of valuable information and worthy to be studied. For reading are
recommended problem-oriented monographs, e.g., [11, 12] or books including SR-devoted
chapters, e.g., [13–15]. Additional information can be found also at numerous web sites, like
popular Wikipedia, Scholarpedia, American Physical Society Sites, Encyclopedia of Maths, or
Mathworks, see [16]. Doubtlessly, the largest source of primary information are leading
journals edited by world societies of physics, electronics, informatics, and neurosciences.
Moreover, lot of conference proceedings are available as well organized, e.g., by IEEE, APS,
AIP, SIAM, or OSA.

Apart from this introductory remarks, the chapter consists of six sections (2–6). They have
general or specific character oriented to particular disciplines. Section 2 introduces some
overview of classical SR definitions, solution methods, and ways of its quantification. The
following Section 3 estimates a possible future SR position in mechanics accompanied by a
digest of a particular study performed in area of aeroelastic stability. Section 4 is devoted to SR-
assisted energy harvesting as a discipline being very close to mechanics and having many joint
features with that. Section 5 is unavoidably included for historical reasons dealing with clima-
tology, where the modern SR appeared in the contemporary meaning of the term in early 1980.
It gave an inspiration for all other branches, which are commonly discussed. Section 6 pays
attention to nonconventional SR definitions dealing with alternative differential operators
providing for instance, a possibility to abandon the bistable interwell hopping and to build
SR on a monostable system. The use of nonGaussian driving noise is mentioned as well.

Concluding part No. 7 attempts to evaluate position of SR strategy and its strengths and
weaknesses. With respect to the area of potential readers, it concentrates to a possible SR
involvement in Engineering Dynamics. It means to eliminate dangerous SR-based phenomena
occurring in industrial aerodynamics, dynamics of vehicles, and in whatever system endangered
by dynamic stability loss and subsequent post-critical emergency regime. In the same time, SR
can become the basis for the development of active equipment for vibration damping, earth-
quake resistance improvement, vehicle stabilization, etc. Let us take a note that SR phenomenon
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appears in many additional disciplines of theoretical and applied physics, data mining, chemis-
try, neurophysiology, pattern recognition, etc., where many inherent extensions beyond the
classical definition of SR have been developed and used. For more information, see review
papers, e.g., [4, 17], where extensions into quantum stochastic resonance with specific applica-
tions are outlined.

2. Classical definition of stochastic resonance

In early 1980s, SR has been discovered as a generic phenomenon and the first classical defini-
tion has been introduced. Some modifications appeared in due time, but the basic version is
still alive serving as the basis of SR mathematical modeling. There is a lot of resources
reporting about SR from the viewpoint of the definition in a rigorous or loose interpretation,
see for example well-known overview article [4] by Gammaitoni et al. and also review
paper [17] by authors of this chapter. Note that although vast majority of cases use the classical
definition, a number of problems need the special definition of the SR phenomenon regarding
its basic philosophy or individual components. Such settings extending the classical definition
will be briefly outlined in Section 6.

2.1. Phenomenon of stochastic resonance

In classical meaning, SR occurs in bistable systems with single degree of freedom (SDOF),
when a small periodic force is applied together with a large broad band random noise, see
Figure 1. The system response is driven by two excitation components resulting in a “system
switch” between two stable states. Their positions are given by two wells of the system
potential V(u). Wells are separated by a barrier. Its height decisive for the switching is consid-
ered as a difference between maximum and minimum of the potential, see Figure 1.

Figure 1. Bistable nonlinear system: (a) Symmetric potential; (b) Nonsymmetric potential.
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In the absence of periodic forcing, the approximate frequency of escape from one well into the
second is given by the following estimate published in the comprehensive study [1]:

ωe ¼
ffiffiffi
2

p
� exp �ΔV=σ2

� �
(1)

where σ2 is the variance of the noise, and ΔV means the barrier separating potential minima
(symmetric potential), see Figure 1a. For nonsymmetric potential, the symbols ΔV�(u),ΔV+(u)
in Figure 1b denote the left and right minima, respectively. In classical setting of SR, the
Gaussian white noise is taken into account (for a couple of other variants, see Section 6).

If both component are acting, then the degree of switching is related with the noise intensity σ2,
see a sample response in Figure 2. When the periodic force is small enough being unable to make
the system response switch, the presence of a nonnegligible random component is required for it
to happen. When the noise is small (small variance σ2) very few switches occur, mainly at
random with no significant periodicity in the system response—Figure 2(a). When the noise is
too strong, a large number of switches occur for each period of the periodic component, and the
system response does not show remarkable periodicity—Figure 2(c). Between these two condi-
tions, there exists an optimal value of the noise intensity σ20 that cooperatively concurs with the
periodic forcing in order tomake almost exactly one switch per period (a maximum in the signal-
to-noise ratio)—Figure 2(b). Amplitude of the response alternating component as a function of
the noise level is outlined in Figure 3. Peakness of the maximum is given by the damping factor.
If the damping is too high, the peak can completely disappear and SR vanishes.

The optimum of the noise level σ20 is quantitatively determined by matching of two time scales:

i. the period of the sinusoid (the deterministic time scale); and

ii. the Kramers rate, Eq. (1)—average switch rate induced by the sole noise, which is the
inverse of the stochastic time scale. It implicates the denomination “stochastic resonance”.

Figure 2. Time history of the system response for various noise variance: (a) low level; (b) optimal level σ20; (c) high level.
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The Kramers formula, Eq. (1), is a result of theoretical and empirical investigation motivated
by problems of nonlinear optics. Note that, in original resources, the absolute temperature T
instead of the variance σ2 is considered. The formula Eq. (1) is widely used and works very
well. During the last decades, a number of areas of optics, quantum mechanics, chemistry,
neurophysiology, etc., investigated this formula attempting to use the phenomenon of SR for
the description of various effects arising in their branches using both experimental and theo-
retical ways of investigation, see, e.g., [18, 19].

The mathematical basis of the classical SR definition is related to the Duffing equation with
negative linear part of the stiffness (in terms of mechanics). It is the most simple variant and it
corresponds together with Gaussian white noise and deterministic harmonic force with a fixed
frequency to the classical setting of SR. This configuration will be treated mostly throughout
this chapter. Nevertheless, some generalizations and extensions beyond the classical formula-
tion will be introduced in section 6 and furthermore at other remarked places.

Let us assume the nonlinear mass-unity SDOF oscillator written in a normal form:

_u ¼ v; _v ¼ �2ωb � v� V 0 uð Þ þ P tð Þ þ ξ tð Þ: (2)

V(u)–potential commonly introduced in a form providing the Duffing equation:

V uð Þ ¼ �ω2
0

2
u2 þ γ4

4
u4 ) V 0 uð Þ ¼ dV uð Þ=du ¼ �ω2

0 � uþ γ4 � u3 (3)

ξ(t)–Gaussian white noise of intensity 2σ2 respecting conditions:

E ξ tð Þf g ¼ 0, E ξ tð Þξ t0ð Þf g ¼ 2σ2 � δ t� t0ð Þ; (4)

Ef•g, δðtÞ—operator of the mathematical mean value in Gaussian meaning and Dirac function,
respectively,

Figure 3. Amplitude of the system response alternating component due to simultaneous excitation by a weak periodic
force and a random noise.

Resonance40



The Kramers formula, Eq. (1), is a result of theoretical and empirical investigation motivated
by problems of nonlinear optics. Note that, in original resources, the absolute temperature T
instead of the variance σ2 is considered. The formula Eq. (1) is widely used and works very
well. During the last decades, a number of areas of optics, quantum mechanics, chemistry,
neurophysiology, etc., investigated this formula attempting to use the phenomenon of SR for
the description of various effects arising in their branches using both experimental and theo-
retical ways of investigation, see, e.g., [18, 19].

The mathematical basis of the classical SR definition is related to the Duffing equation with
negative linear part of the stiffness (in terms of mechanics). It is the most simple variant and it
corresponds together with Gaussian white noise and deterministic harmonic force with a fixed
frequency to the classical setting of SR. This configuration will be treated mostly throughout
this chapter. Nevertheless, some generalizations and extensions beyond the classical formula-
tion will be introduced in section 6 and furthermore at other remarked places.

Let us assume the nonlinear mass-unity SDOF oscillator written in a normal form:

_u ¼ v; _v ¼ �2ωb � v� V 0 uð Þ þ P tð Þ þ ξ tð Þ: (2)

V(u)–potential commonly introduced in a form providing the Duffing equation:

V uð Þ ¼ �ω2
0

2
u2 þ γ4

4
u4 ) V 0 uð Þ ¼ dV uð Þ=du ¼ �ω2

0 � uþ γ4 � u3 (3)

ξ(t)–Gaussian white noise of intensity 2σ2 respecting conditions:

E ξ tð Þf g ¼ 0, E ξ tð Þξ t0ð Þf g ¼ 2σ2 � δ t� t0ð Þ; (4)

Ef•g, δðtÞ—operator of the mathematical mean value in Gaussian meaning and Dirac function,
respectively,

Figure 3. Amplitude of the system response alternating component due to simultaneous excitation by a weak periodic
force and a random noise.

Resonance40

P(t) = Po exp(iΩt)—external harmonic force with frequency Ω. Amplitude Po should be under-
stood per unit mass.

Symbols ω0 and ωb have a usual meaning of the circular eigenfrequency and circular damping
frequency of the associated linear system. The linear part of the V ' (u) is negatively making the
system metastable in the origin, while the cubic part acts as stabilizing factor beyond a certain
interval of displacement u. The system is drafted in Figure 1 in two versions: (a) system with
symmetric potential typical by an equivalent energy needed for hopping from the left into the
right potential well and backwards; (b) system with asymmetric potential due to the supple-
mentary linear string, which could be able (when rising its stiffness) to bring the oscillator to
monostable state, see Section 6.1, where we will see that also the monostable system under
certain circumstances is able to exhibit SR phenomenon.

2.2. Methods of stochastic resonance investigation

Theoretical approaches, either analytical or numerical, are mostly based on an assumption that
random processes ruling inside the investigated system are of the Markov type. The primary
requirement, namely the dependence of the process on its value only in one previous moment,
is usually accomplished. In such a case, a large variety of methods are applicable for the
investigation of SR phenomena.

Basically three type of solution procedures can be regarded:

(i) Fokker-Planck (FP) equation. It is the equation for cross probability density function (PDF) of
the system response. Solution of this equation serves subsequently for the evaluation of
various stochastic parameters like mean value, stochastic moments of adequate order, auto
and cross correlation functions, probability flow, signal to noise ratio, mutual information etc.
Concerning SR itself, the main indicators and parameters of this phenomenon can be evaluated
and discussed in relation with the physical character of the problem, see subsection 2.3. So
that, PDF is a certain “source function” to obtain all information needed.

Taking into account that random noise in the governing physical differential system, Eq. (2),
has an additive character, no Wong-Zakai correction terms emerge, see, e.g., [20–22]. Then, the
relevant FP equation, e.g., [23], can be easily written out:

∂p u; v; tð Þ
∂t

¼ �κu
∂p u; v; tð Þ

∂u
þ ∂
∂v

κvp u; v; tð Þð Þ þ 1
2
κvv

∂2p u; v; tð Þ
∂v2

; (5)

κu, κv - are drifft coefficients : κu ¼ v ; κv ¼ κv tð Þ ¼ �2ωb � v� V 0 uð Þ þ P tð Þ ,
κvv - is a diffusion coefficient : κvv ¼ 2σ2;

(6)

together with boundary and initial conditions:

lim
u, v!�∞

p u; v; tð Þ ¼ 0 að Þ, p u; v; 0ð Þ ¼ δ u; vð Þ bð Þ: (7)

Solution of the above FP equation can be conducted using one of the following procedures:
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(i-a) Variational solution of Galerkin type. In principle, it is a procedure of decomposition into
stochastic moments (or cumulants) with Gaussian closure, e.g., [24]. The demonstration of this
procedure is presented in subsection 3.2, where an application to stability analysis of the TDOF
aeroelastic system is roughly outlined.

In general, for details of the Galerkin method on the basis of functional analysis rules, see, e.g.,
[25]. For details of particular solution, see [26–28], and other papers and monographs. The
method is suitable namely for stationary solutions, but quasiperiodic solutions can be investi-
gated as well, see, e.g., [29], where detailed procedure outlined above is presented.

(i-b) Generalized Fourier method. Decomposition into a series following eigen functions and values
of FP operator.

p u; v; tð Þ ¼ po u; vð Þ � ϕ tð Þ ) p u; v; tð Þ ¼
XN

j¼0

pj u; vð Þ � ϕj tð Þ (8)

The series Eq. (8) can be substituted into the FPE Eq. (5). Due to the independency of pj(u, v) or
ϕj(t) on time or space variables, respectively, the part dependent on time only can be separated
on the left side and that dependent on space variables on the right side. They can be equivalent
only if both of them equal the same constant λj for each part of the series. It can be shown that
λj are eigen values of the FP operator part, which is on the right side of Eq. (5). Subsequently,
pj(u, v) are relevant eigen functions of this operator and finally ϕj(t) are the simple exponential
functions with the negative real part. Take a note that the λ0 = 0, as the first part of the series
Eq. (8) for j = 0 represents the stationary part of the FPE solution, provided the stationary part
exists. In general, the occurrence of one or more positive real parts of λj can reveal positive,
which would indicate an instable solution of FPE. However, it is not the case when investigat-
ing FPE used for modeling the SR phenomenon.

This approach is applicable rather in special cases with easy searching of eigen functions, when
transition process is looked for. For example, see [30]. In general, searching for eigen functions
of FP operator is a complex task, and it can prevent application of this method when more than
SDOF system is analyzed.

(i-c) Floquet theory. Application of the Floquet theorem:

p u; v; tð Þ ¼ p u, v, tþ Tð Þ (9)

Suitable for equations with periodically variable coefficients, when transition nonperiodic
process is investigated. See [30].

(i-d) Finite element method (FEM) and other numerical procedures. The FEM can be considered as a
general numerical solution method of partial differential equation. It can be proved that FEM
is well applicable for this purpose under certain circumstance, which are fulfilled regarding
FPE. When constructing adequate elements, a care should be taken due to special properties of
the FP operator. Significant problem originates from the fact of multi-dimensionality of space we
are workingwith and a delicate character of initial conditions. Moreover, the non-self-adjointness

Resonance42



(i-a) Variational solution of Galerkin type. In principle, it is a procedure of decomposition into
stochastic moments (or cumulants) with Gaussian closure, e.g., [24]. The demonstration of this
procedure is presented in subsection 3.2, where an application to stability analysis of the TDOF
aeroelastic system is roughly outlined.

In general, for details of the Galerkin method on the basis of functional analysis rules, see, e.g.,
[25]. For details of particular solution, see [26–28], and other papers and monographs. The
method is suitable namely for stationary solutions, but quasiperiodic solutions can be investi-
gated as well, see, e.g., [29], where detailed procedure outlined above is presented.

(i-b) Generalized Fourier method. Decomposition into a series following eigen functions and values
of FP operator.

p u; v; tð Þ ¼ po u; vð Þ � ϕ tð Þ ) p u; v; tð Þ ¼
XN

j¼0

pj u; vð Þ � ϕj tð Þ (8)

The series Eq. (8) can be substituted into the FPE Eq. (5). Due to the independency of pj(u, v) or
ϕj(t) on time or space variables, respectively, the part dependent on time only can be separated
on the left side and that dependent on space variables on the right side. They can be equivalent
only if both of them equal the same constant λj for each part of the series. It can be shown that
λj are eigen values of the FP operator part, which is on the right side of Eq. (5). Subsequently,
pj(u, v) are relevant eigen functions of this operator and finally ϕj(t) are the simple exponential
functions with the negative real part. Take a note that the λ0 = 0, as the first part of the series
Eq. (8) for j = 0 represents the stationary part of the FPE solution, provided the stationary part
exists. In general, the occurrence of one or more positive real parts of λj can reveal positive,
which would indicate an instable solution of FPE. However, it is not the case when investigat-
ing FPE used for modeling the SR phenomenon.

This approach is applicable rather in special cases with easy searching of eigen functions, when
transition process is looked for. For example, see [30]. In general, searching for eigen functions
of FP operator is a complex task, and it can prevent application of this method when more than
SDOF system is analyzed.

(i-c) Floquet theory. Application of the Floquet theorem:

p u; v; tð Þ ¼ p u, v, tþ Tð Þ (9)

Suitable for equations with periodically variable coefficients, when transition nonperiodic
process is investigated. See [30].

(i-d) Finite element method (FEM) and other numerical procedures. The FEM can be considered as a
general numerical solution method of partial differential equation. It can be proved that FEM
is well applicable for this purpose under certain circumstance, which are fulfilled regarding
FPE. When constructing adequate elements, a care should be taken due to special properties of
the FP operator. Significant problem originates from the fact of multi-dimensionality of space we
are workingwith and a delicate character of initial conditions. Moreover, the non-self-adjointness

Resonance42

of the FP operator, special configuration of boundary conditions, etc., should be taken into
account. These factors shift application of FEM in this case into a special area where a number of
nonconventional problems should be solved.

The FPE is analyzed in an original evolutionary form which enables an analysis of transition
effects starting the (nearly) Dirac type initial conditions. The FEM efficiency when solving FPE,
which follows from the Duffing stochastic differential equation without external harmonic
forces was already studied by the authors in [31]. With the periodic force taken into account,
certain difficulties arise due to the time inhomogeneity of the corresponding stochastic process.
Many results regarding FEM application on FP equation analysis can be found in [32] or [33].
For the most recent results concerning FEM application to SR problem, see [31], and additional
details together with demonstrating examples, see [34].

The method is based on the approximaltion solution of Eq. (5) in the Galerin-Petrov meaning
on the piecewise smoothly bounded domain Ψ ∈ u � v, in Rd, d = 2. The initial conditions at
t = 0s for PDF are considered in a form of the Gauss distribution function with an initial system
position at the point u0 = 0, v0 = 0. For a small value of standard deviation, it approaches the
Dirac function as it is primarily requested.

After a spatial discretization of Ψ onto the rectangular finite elements using the bilinear
approximation functions and implying boundary condition p(∂Ψ, t) = 0, the system of ordinary
differential equations emerges with global matrices M, S(t) and vector of probability density
values P(t) in nodes of the mesh.

Final differential system has the form as follows:

M � _P tð Þ ¼ S tð Þ � P tð Þ (10)

The matrix S(t) is time-dependent due to the periodic perturbation entering the drift term of
FPE, and in the result, the solution oscillates periodically between the potential wells. In the
regime of SR, the switchings are in phase with the external periodic signal P(t) and the mean
residence time is closest to half the signal period 2π/Ω. Comparing the results obtained by
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are necessary, see [20–22]. However, the strategy of integration should be carefully con-
trolled [35, 36], due to fact that we manipulate with the Ito system. In principle, the time
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increment can be neither too long in order to prevent information loss, nor too short to keep
the stochastic character of the output. Hence, the care should be taken during manipulations in
the corrector phase of one step.

Results obtained in this manner are very important. They serve as a verification of semi-
analytical results obtained using one of the procedures mentioned in the previous paragraph
(i), and furthermore, the simulation is able to enter into small details, which remain hidden to
methods mentioned in (i). It applies particularly to transition process if there is a need of their
investigation. On the other hand, like every fully numerical method or simulation, it provides
result for one set of parameters only. Like in experiments, it is difficult and laborious to obtain
a broader overview.

Analog simulations have been very popular in the past wherever nonlinear differential equa-
tions were to be solved. However, they are still very attractive for researchers as they lie at the
frontier between digital simulation and experiment. Their advantage is that the parameters can
be easily and quickly tuned over a wide range of values and the response can be followed
straightforwardly. Many review and technical papers have been published as for
instance [37, 38], where the comparison of analog simulation of stochastic resonance with
adiabatic theory has been performed. It should be appreciated now that a genuine analog
simulation can be effectively emulated at digital computers using commercial software pack-
ages, see for instance McSimAPN package, visit <http://www.edn.com>. Moreover, actually
whatever hybrid analysis enabling digital support of the analog simulation is possible.

(iii) Experimental measurements. SR has been observed in a wide variety of experiments involv-
ing electronic circuits, chemical reactions, semiconductor devices, nonlinear optical systems,
magnetic systems, and superconducting quantum interference devices (SQUID). The general
instruction for experimental procedures can be hardly recommended. They are always devel-
oped individually respecting specific character of every research activity. Anyway, be aware
that many experiments do not serve for validation of theoretical results. Indeed, the strategy is
often opposite. The purpose of the experiment is an initial recognition of the basic principle
while the theoretical approach should verify subsequently its validity. It is very frequently
observed particularly in neurophysiological experiments related with SR, see monograph [12]
and papers [39–43] and others. Three popular examples of this type performed should be
named: the mechanoreceptor cells of crayfish, the sensory hair cells of cricket, human visual
perception. Another “inverse” experiments (preceding any theoretical modeling) can be seen
in a wind tunnel. Here, the divergence instability of the prismatic bar in a cross flow has been
observed in the view of SR without any previous theoretical background. A number of
primary experimental studies are available also in plasma physics, optics, and in other
branches, e.g., [44–46].

2.3. Quantification of stochastic resonance

Occurrence of SR is obviously indicated by periodic transition across the potential barrier
which is synchronized in the mean with periodicity of the deterministic excitation component.
The frequency should be close to that given by Kramers formula, Eq. (1). The phenomenon
emerges markedly, when introducing the optimal noise amount under adequate damping
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level, as it corresponds to Figures 2 and 3, otherwise the response is very small. This rather
empirical identification is validated by theoretical means outlined above.

Internal character of the signal provided by SR can be inspected in particular cases using some
useful parameters and functions:

(i) Signal to noise ratio. Very frequently used indicator. It is based on the power spectral density
(PSD) attributes of the signal u(t). A couple of variants can be found in literature, see, e.g.,
[21, 23], etc. Usually the ratio of PSD concerning the periodic signal being proportional to the
integral of the Dirac function taken in a small neighborhood Δω of its frequency � Ω and the
total (PSD) integral at the same interval is considered. Symbolically expressed:

SNR ωð Þ ¼ PSD ωð Þ=SN, SN � output background noise (11)

Strengths and shortcomings of the above expression are obvious. Spectral density PSD(ω)
should be continuous and simple, otherwise Eq. (11) does not provide reliable results applica-
ble in a practical analysis. Nevertheless, other variants of this procedure are evident. They can
be based on a certain integral evaluation along the frequency axis, but they should be com-
posed for particular cases.

(ii) Residence time distribution and the first excursion probability. Observing Figure 2, the output
signal u(t) is a random process. The time of residence in one basin and the jump to the other
one can be regarded as a problem of time of the first excursion probability, see, e.g., [21] and
many independent authors like [47], etc. Evaluation of individual periods of residence in one
basin can serve as indication of SR stability and quality. This parameter gets an important
information because the signal u(t) suffers very often from nonintentional jumps within SR
periods. Results provided are more reliable as a rule in comparison with (i), but the procedure
in a particular case is much more laborious.

(iii) Information entropy based indication. Widely used in communication theories. This indicator
is based on Boltzmann’s entropy of information, see monograph [48]. Boltzmann’s entropy is
defined by the expression:

I ϕð Þ ¼
ð

X

p x; tð Þ � lg p x; tð Þ dx (12)

where I(ϕ) denotes Boltzmann’s entropy of probability and p(x, t) is the cross-probability density
of the system response. The procedures working with this tool are usually based on maximiza-
tion of this entropy with auxiliary constraints, which is the governing dynamic system itself. In
particular, PDF is written in a form of the multi-dimensional exponential (mostly a polynomial in
a homogeneous form) with free coefficients. These coefficients are subsequently determined by
means of the extreme searching using a suitable procedure (Fletcher-Powell, artificial neuronal
network, etc.).

This procedure is very effective when impuls character of useful signal is considered, see the SR-
focused paper by Neiman [49] or generally oriented [26], etc. As a large source of information
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can doubtlessly serve relevant chapters in monographs [11] or [50]. A significant step forward to
characterize the conventional SR by means of information theory tools has been put by [51],
where SR in a nonlinear system driven by an aperiodic force has been studied. See also a number
of other papers being more or less on the boundary between classical and nonconventional SR
definitions, as for instance [52] dealing with SR capacity enhancement in an asymmetric binary
channel.

(iv) Statistics of local random processes in individual basins. Random processes surrounding the
mean value when residing in a basin is evaluated. Then random mean square root is evaluated
and compared with the amplitude of the jumping process mean value. Rather special method
which appears rarely in SR as a separate tool. If applied, it is more or less smoothly integrated
with the analytical process. Its application can be observed more in areas working with more
general SR definitions concerning the operator structure and driving noise type, see section 6.

(v) Mutual information. Let us denote pϕψ(ϕ, ψ) the joint PDF of input and output processes
ϕ(t), ψ(t). Being based on Shannon’s theorem, see [53], mutual information between processes
ϕ(t), ψ(t) is defined as the relative entropy between the joint PDF and the product of partial
PDFs, see [48] or [54]:

I ϕ;ψð Þ ¼
ð

ϕ,ψ
pϕψ ϕ;ψð Þ � lg

pϕψ ϕ;ψð Þ
pϕ ϕð Þpψ ψð Þ

 !
dϕdψ (13)

It seems that the mutual information is the most effective quantification parameter for assess-
ment in suprathreshold stochastic resonance, see [11] and many more. Take a note that Eq. (13)
basically represents a significant generalization of the Boltzmann’s entropy procedure Eq. (12)
with respect to conditional probability referring some intermediate state analogously with
Bayesian updating.

3. Engineering Dynamics and stochastic resonance

It seems that Engineering Mechanics is now gradually discovering SR and is looking for areas
of SR applicability. Nevertheless, some areas can already show off tangible results. Research
activities are mostly the joint projects with physics, fluid mechanics, electronics, and medical
disciples. Similarly like in other branches also in Engineering Mechanics, the direct and inverse
tasks are investigated. Due to some delay, it can draw upon experience of other disciplines.

Let us outline some relevant areas of Engineering Mechanics where SR provides (or could
provide) significant contribution in various points of the research and application. Then, we
present briefly a sample problem of aeroelastic stability related with SR.

3.1. Areas in dynamics related with stochastic resonance

Engineering Dynamics of discrete and continuous systems in classical meaning of the term can
come into contact with SR roughly in three areas:
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(i) Nonlinear SDOF, multi degree of freedom (MDOF) or possibly continuous dynamic systems
subdued to combination of periodic and random excitation. A number of problems arising in flow
structure interaction can be tackled using various models of SR type, e.g., slender structures in
a cross flow, soft large roofs, high speed channels with streaming fluids, and propagating
solitary waves, etc. Some more examples can be found among other systems with significant
Duffing type nonlinearity with meta-stable point of origin, even those more complicated
nonlinear system (Van der Pol, Rayleigh, etc.) can exhibit SR effects. They emerge usually after
entering into a post-critical regime stabilized by certain nonlinear forces. A sample problem of
aeroelastic stability will be shortly looked through.

(ii) Experimental measurements of weak signals below threshold limit. Subthreshold signal sensing,
recording, and filtering is rather a cross discipline widespread nearly everywhere.

Signal sensing and subsequent data processing is a wide area pervading all scientific and
engineering disciplines. Hence, relevant problems attracted many researchers all the time.
The aim has always been to speed up digitizing frequency, increase resolution and reliability,
and to diminish as much as possible differences between input and output processes.

It has been recognized in the past that a weak signal being below the threshold limit of a
sensor, can be boosted by adding white noise to the useful signal, see Figure 4. For details,
see [11]. The sum of both signals can overcome the threshold limit and hence to be detectable
by the sensor. Then, random component is filtered out to effectively detect original, previously
undetectable signal. Many general studies and special-oriented variants have been performed
to detect subthreshold signals using a driving random signal, let us name a few of them [24, 55–
58] following various attributes of SR employment in weak signal recognition and reliable
recording.

The qualitative jump forward in this strategy brought the suprathreshold stochastic resonance
(SSR). The phenomenon of SSR has been discovered by N. Stocks. The first paper informing
about SSR is the review paper [8] published in 1999. As the primary source can serve [59],
which appeared 1 year later and authored solely by Stocks. Since then, many articles have been
published about SSR. Probably, the most comprehensive explanation can be found in the
monograph by McDonnell et al. [11].

Figure 4. Experimental measurements of weak signals below threshold limit, see [11].
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(iii) Biomechanics. Very wide domain gathering experts of many areas constituted interdisci-
plinary teams worldwide. Domains like heart dynamics, blood streaming, muscle system
functionality, and vocal folds are followed. However, predominantly problems of the human
skeleton are tackled, see for instance [42, 60]. Here, substantial attention is paid to SR in which
noise enhances the response of a nonlinear system to weak signals in various biological
sensory systems. In the same time, it has been recognized that adding low magnitude periodic
vibration greatly enhances the bone formation in response to loading, which is definitely an
excellent contribution of SR for the osteogenic processes. An outcome of these activities are
among others the therapies of the whole-body through vibration training on a chair rising in
elderly individuals [61, 62]. Very sophisticated stochastic analysis of discrete data sets pro-
vided by measuring records has been performed in order to bring an exact evidence of the
meaningful healing procedure.

Let us take a note beyond limit of this study. Biomechanics is not far from various medical
branches, where a wide range of modern special implants based on the SR principle is
successfully used. In particular cochlear stimulators, oftalmological adaptors, pacemakers
and others, see for instance [4] or [17] where also many additional references can be
found.

3.2. Sample problem of aeroelastic stability

With reference to wind tunnel observations in a wind channel, it seems that SR is promising as
a theoretical model inherent for several aeroelastic post-critical effects arising at a prismatic
beam in a cross flow. Dealing with relevant projects, these post-critical effects should be
carefully investigated in order to eliminate any danger of the bridge deck collapse due to
aeroelastic effects. In particular, the divergence or buffeting of a bridge deck can be modeled
as a post-critical process of the SR type at an SDOF or two degree of freedom (TDOF) system,
see Figure 5. For details, see [63]. In Figure 5(a), we can see outline of the TDOF system
investigated. Figure 5(b) exhibits the stability diagram itself. White or dark fields indicate
stable or instable zones, respectively. The stability limits are plotted in the plane of heaving
and pitching eigen frequencies ω2

u and ω2
ϕ. Figure 5(c) shows value of the flutter frequency Ω2

with respect to position on the parabola with axes x1, x2 in Figure 5(b).

Figure 5. Stability diagram of the TDOF aeroelastic system: (a) TDOF aeroelastic system, (b) stability diagram in ω2
u and

ω2
ϕ coordinates, (c) flutter frequency Ω2 as function of a position on the parabolic part of stability limits.
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Paper [64] is referred for details and further references. Anyway, let us revisit Eqs. (2–4) for
basic mathematical model. Three theoretical solution ways have been followed. FP equation
together with boundary conditions is written out in Eqs. (6, 7).

(i) Semi-analytical solution of FP equation. Galerkin type procedure has been applied in order to
respect non-self-adjointness of the FP operator, see [25]. With respect to the linearity of the FP
equation, the basic periodicity of the PDF should be equivalent with the frequency of the
deterministic excitation component Ω and its integer multiples. See formulation Eqs. (2–4)
together with Eqs. (5–7).

Therefore, the series can be written in the following form:

p u; v; tð Þ ¼ po u; vð Þ
XJ

j¼0

qj u; vð Þ � exp ijΩtð Þ (14)

where Ω is the harmonic excitation frequency. The series Eq. (14) represents an approach of a
weak solution of FP equation, which repeats in the period T = 2π/Ω. It gives a true picture of
solution within one period, but cannot express any influence of initial conditions.

In Eq. (14), po(u, v) means the solution of FPE Eq. (5) for P0 = 0, it means that the deterministic
part of excitation vanishes and the external excitation is limited to random component only.
The solution is time independent (solution of the Boltzmann type). For details, see, e.g., [26–
28], and other papers and monographs, see also Figure 6 for symmetric and nonsymmetric
potentials V:

po u; vð Þ ¼ D � exp � 2ωb

σ2
H u; vð Þ

� �
: (15)

Figure 6. Response PDF of the system excited by white noise only: (a) Symmetric potential; (b) Nonsymmetric potential.
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In the above expression, D is the normalizing constant, and H(u, v) represents the Hamiltonian
function of the basic system. In particular:

H u; vð Þ ¼ 1
2
v2 þ V uð Þ ¼ 1

2
v2 � 1

2
ω2

ou
2 þ 1

4
γ4u4 (16)

The unknown functions qj(u, v) in Eq. (14) can be searched for using the generalized method of
stochastic moments as it can be found, in [23]. For additional details, see [29]. Using the
Galerkin approach, the expression (14) is substituted into Eq. (5) and the whole equation is
subsequently multiplied by the testing functions α(u, v).

The testing functions α(u, v) and unknown functions qj(u, v) are assumed to have a following
advantageous form:

α u; vð Þ ¼ αr, s u; vð Þ ¼ ur �Hs βv
� �

; r ¼ 0,…, R ; s ¼ 0,…, S (17)

qj u; vð Þ ¼
XR, S

k, l¼0

qj, klu
k �Hl βv

� �
(18)

where Hs(βv) are l'Hermite polynomials and β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωb=σ2

p
. After applying the mathematical

mean operator with respect to probability density function po(u, v), see Eq. (15), and employing
orthogonality of l'Hermite polynomials, the linear algebraic system for unknown coefficients
qj;k,l arises (qo(u, v) = 1, q� 1(u, v)�0):

2β ijΩþ 2ωbsð ÞAqj, s � 2 sþ 1ð ÞCqj, sþ1 þ Bqj, s�1 ¼ 2β2PoAqj�1, s�1 (19)

whereqj,s = [qj,0s, qj,1s,…, qj,Rs]
T—columnvector (R + 1 components) andA,B,C∈R(R + 1)� (R + 1)—

square arrays containing moments:

Ar,k ¼
ð∞

�∞

urþkΦ uð Þdu ; Br,k ¼
ð∞

�∞

kurþk�1Φ uð Þdu ; Cr, k ¼
ð∞

�∞

rurþk�1Φ uð Þdu

Φ uð Þ ¼ exp βω2
ou

2 � 1
2
γ4u4

� � (20)

Function Φ(u) is symmetric with respect to zero and therefore Ar,k = 0 for odd r + k, while Br,k,
Cr,k vanish for even r + k.

For each j, the three-term recurrence formula Eq. (19) forms an algebraic system of size (S + 1)
(R + 1)� (S + 1)(R + 1) for all unknown coefficients qj,rs. The block diagonal of the systemmatrix
consists from scaled regular matrices A, see Eq. (20), and thus it is invertible.

The resulting probability density function varies in time with periodicity, which corresponds to
the frequency of external loading Ω. The individual peaks alternate but the lower peak never
vanishes completely, see Figure 7. The computed joint probability density is shown in the
Figure 7(a), the corresponding curve for the displacement variable u (section for v = 0) is in
the Figure 7(b). The solid line shows the computed time-dependent probability density for t = 30,
the dashed line corresponds to the stationary solution of the Boltzmann type po(u, v), see Eq. (15).
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the dashed line corresponds to the stationary solution of the Boltzmann type po(u, v), see Eq. (15).
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(ii) Solution of FP equation using FEM. Solution procedure is based on the approximate solution
of Eq. (5) in the Galerin-Petrov meaning on the piecewise smoothly bounded domainΨ ∈ u� v,
in Rd, d = 2. The initial conditions at t = 0s for PDF are considered in a form of very pointed
Gaussian distribution function with an initial system position at the point u0 = 0, v0 = 0. For a
small values of standard deviation, it approaches to the Dirac function as it is primarily
requested. The system of ordinary differential equations emerge with global matrices M, K(t)
and vector of PD values p(t) in nodes of the mesh:

M _p tð Þ ¼ K tð Þp tð Þ: (21)

The matrix K(t) is time-dependent due to the periodic perturbation entering the drift term of
FP equation, and in the result, the solution oscillates periodically between the potential wells.
In the regime of SR, the switchings are in phase with the external periodic signal P(t), and the
mean residence time is closest to half of the signal period 2π/Ω.

Some results of numerical analysis are depicted in Figure 8. Comparison of those with semi-
analytic results plotted in Figure 7 shows a perfect coincidence.

(iii) Stochastic simulation. Differential system Eq. (2) has been repeatedly solved numerically
respecting its stochastic character, see [35], with the same parameter setting as used before. The
white noise was simulated as a finite sum of harmonic functions with uniformly distributed
random frequencies ωi ∈ (0, ωmax〉 (ωmax = 10 rad. s� 1) and phases ϕi ∈ (0, 2π〉:

ξ tð Þ ¼
ffiffiffi
2

p
σ
XN

i¼1

cos ωitþ ϕi

� �
(22)

Figure 7. (a) PDF according to relation Eq. (14) for t = 30; (b) the corresponding cross section for v = 0 during the transition
period starting initial condition of the Dirac type (solid line with filling) and stationary solution of the Boltzmann type
(dashed).
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The results of the SR analysis are illustrated in Figure 9, which presents the signal to noise ratio
—Figure 9(a) as the function of the noise intensity expressed by 2σ2 = κvv, and the results
(Fourier spectra) of the stochastic simulations using the basic system Eq. (2) and Figure 9(b).
In the individual spectral lines, it can be seen in the influence of rising the white noise intensity,
which acts together with a harmonic force onto the system. For a very low level of the noise,
the harmonic component is hardly able to overcome the interwell barrier, and therefore, only

Figure 8. Axonometric and sectional display of the PDF at the highest value of probability of residing in selected potential
well: (a) κvv = 0.10; (b) κvv = 0.25–stochastic resonance; (c) κvv = 1.0; the lower pictures are vertical cross-sections of surfaces
in the upper row for v = 0, see highlighted curves in red.

Figure 9. Results of stochastic simulation: (a) the signal to noise ratio as the function of various noise intensity (σ2) due to
SR; (b) Fourier spectra of the response obtained by numerical solution.
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seldom irregular jumps between stable points occur, as it has been already demonstrated in
Figure 2.

In local regimes, the system response is relatively small and nearly linear. Optimal ratio of the
noise intensity (σ20), and the amplitude of the harmonic force results for its certain frequency in
the system response containing visible spectral peaks (amplification) corresponding with the
frequency of the external harmonic modulation. The single peak (in the case of colored noise
more peaks may appear) and thus the “optimal” noise strength can be identified.

4. Energy harvesting

A number of sources of harvestable ambient energy exist, including waste heat, vibration,
electromagnetic waves, wind, flowing water, solar energy, human motion, and others. They
can serve for powering remote wireless sensors, controllers, stimulators in a number of tech-
nological and biological applications, without any battery or wiring complements. Therefore,
energy harvesting (EH) has emerged as a discipline with the goal of fabricating devices that
can generate electrical power by exploiting ambient waste energy, for instance see [65]—
ambient vibration, [66]—thermo gradient [67]. Basically following ideas are used: piezoelectric
layered parts, magnetic levitation, magneto-rheologic hydraulic elements, ball screw systems,
impact systems, and other principles. A pioneering work highlighting theoretical aspects of
EH and challenging other authors is [68]. The adequate model follows from SDOF bistable
system:

€u þ 2ωb _u þ ω2
0u 1� lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ d2
p

 !
¼ P0 cosΩtþ hξ tð Þ (23)

where l, d are dimension characterizing von Mieses truss—remembers the system in Figure 1a.
A couple of modified equations are also used in order to facilitate the insight into the system.
The most frequent is the relevant Duffing system with negative linear part of stiffness.

4.1. Small scale energy production and measuring system feeding

A few electro-mechanical principles are used for this purpose. Typically, a cantilevered beam
with a piezoelectric strip is used to transform vibrational energy into electrical energy through
damping, see Figure 10. This figure has been taken over from [69], where many details and
systematic background can be found. For small displacements of the beam, peak power
generation in the mechanism will occur when the natural frequency of the beam is tuned to
the peak of the vibration noise spectrum. Briefly speaking, SR despite being counter-intuitive
phenomenon proved to be effective to enhance vibrational EH by adding periodic forcing to a
vibration excited energy harvesting. A review of EH suitable piezoelectric materials together
with adequate shaping and comprehensive experience in practice can be found in [9]. The most
frequent applications cover human stimulation feeding, measuring and transducer system
feeding, traffic control feeding, and many other devices with consumption approximately less
than 1.0W.
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4.2. Large scale application and vibration damping

While the first generation of EH devices has been intended for the low power consumption,
subsequently an idea of SR-assisted EH application in large scale systems appeared. These
systems usually combine auxiliary power production and vibration suppressing in large scale
engineering systems and suppose to work with energy approx 1 � 100kW. Energy is gained
from vehicles and transport means operation, vibration of civil and mechanical engineering
systems, and other resources.

Comprehensive review of the contemporary knowledge regarding EH in large scale facili-
ties is presented in papers [70] and [71]. Relevant principles are based again on EH assisted
by SR phenomena. Possibilities and practical aspects of vibration damping using SR sup-
port EH are widely discussed in engineering oriented journals, see Figure 11. A number of
other facilities is based or supported using this principle. Let us name a few: floating floor,
railroad track vertical deflection, vehicle suspension, ocean energy harvesting, and many
others.

Figure 10. Small scale energy production for capture local feeding, see [69].

Figure 11. Large scale energy supply of the active TMD, see [70].
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5. Climatology

The position of SR in climatology is specific in comparison with other disciplines. It is worthy
to be highlighted in the separate section, although apparently it is a bit far from engineering
mechanics. The reason is that researchers in climatology demonstrated the first systematic
genuine SR in contemporary meaning. This concept was introduced in 1981–1982 by C.
Nicolis, see [2, 3], dealing with the problem of climatic changes during the Quaternary.
Approximately in the same time appeared papers by Benzi at al. dealing with similar
topics [72, 73] preferring a bit more theoretical aspects of the SR phenomena. So that, this
pioneering step came from the apparently exotic context of the Earth’s climate evolution of the
periodic recurrence of Earth’s ice ages. For some summary of the starting period and physical
motivation analyzing the physical essentials of climatological changes in view of SR, see
Scholarpedia [74], other encyclopedia co-authored by C. and G. Nicolis and also a couple of
review articles, e.g., [4, 5].

5.1. Physical motivation

It has been known that the climatic system possesses a very pronounced internal variability. A
striking illustration is provided by the last glaciation which reached its peak some 18,000 years
ago, leading to mean global temperatures of some degrees lower than the present ones and a
total ice volume more than twice its present value.

Going further back in the past, it is realized that glaciation has covered, in an intermittent
fashion, much of the Quaternary era. Statistical data analysis shows that the glacial/inter-
glacial transitions that have marked the last hundred thousand years display an average
periodicity of 10,000 years, indeed. To this process is superimposed a considerable, random
looking variability of Sun flux. The conventional explanation was that variations in the eccen-
tricity of Earth’s orbital path occurred with a period of about 105 years. So that, the energy flux
Q impacting the Earth can be characterized as follows:

Q ¼ Q0 1þ ε � sinωtð Þ; (24)

where ε ≈ 0.001, ω ≈ 2π/105years� 1. This process caused the year average temperature to shift
dramatically and produces the ice volume changes on the Earth, which randomly oscillates
between limits 30 � 60 � 106km3, see Figure 12a.

However, it sounds strange, since the only known time scale in this range is that of the changes
in time of the eccentricity of the Earth’s orbit around the sun, as a result of the perturbing
action of the other solar system bodies. This perturbation modifies the total amount of solar
energy received by the Earth but the magnitude of this astronomical effect is exceedingly
small, about 0.1%, see above. So that, the measured variation in the eccentricity had a relatively
small amplitude compared to the dramatic temperature change. Therefore a question arose,
whether one can identify in the Earth-atmosphere-cryosphere system any mechanism capable
of enhancing its sensitivity to such small external time-dependent forcing.
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The search of a response to this question led to the concept of SR, which has been developed
out of an effort to understand how the Earth’s climate oscillates periodically between two
relatively stable global temperature states, one “normal” and the other an “ice age” state. In
other words, a theoretical explanation has been elaborated to show that the temperature
change due to the weak eccentricity oscillation and added stochastic variation due to the
unpredictable energy output of the sun (known as the solar constant) could cause the temper-
ature to move in a nonlinear fashion between two stable dynamic states. Specifically, glaciation
cycles are viewed as transitions between glacial and inter-glacial states that are somehow
managing to capture the periodicity of the astronomical signal, even though they are actually
made possible by the environmental noise rather than by the signal itself. Note that also
dynamics of the Earth as a deformable body should be taken into account, see [75], as an
indirect source of periodic processes involved.

5.2. Mathematical modeling

The orbit of Earth around the sun is not exactly elliptical, as it is commonly reported. The shape
of its trajectory is complex following a form of a spiral. This trajectory is stable within a basin
having a form of a closed strip. Its width is approximately 107 km, see Figure 12b, and exhibits
a character of deterministic chaotic attractor. Earth trajectory takes place within the shadow
area, see Figure 12b. The Lyapunov exponent mostly oscillates nearby 0.

The basic setting of SR in climatology started with SDOF nondynamic system subjected to a
stochastic excitation and weak harmonic forcing. It corresponds formally to the Langevin
equation of the first order in the form with suppressed inertia term due to high damping
(adiabatic approach), compare with Eqs. (26) or (27), Section 6.1:

d2u
dt2

þ ∂V uð Þ
∂u

¼ η tð Þ þQ0 1þ εexp iωtð Þ� �

_η þ a � η ¼ ξ tð Þ, or €η þ a _η þ bη ¼ ξ tð Þ
(25)

Figure 12. (a) Ice volume on the Earth surface in the past, see [5]. (b) Earth trajectory around the sun.
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where it has been denoted: V(u)—conventional symmetric quartic potential, η(t)—exponen-
tially correlated random process, ξ(t)—α stable white noise.

Potential V(u) is considered usually in conventional symmetric quartic form, but also various
nonsymmetric variants are regarded in order to respect specific anomalous situations, see also
sections 2 and 3. Compare Eq. (25) with FitzHugh-Nagumo equations, see [76, 77]. The
contemporary research uses more sophisticated models respecting the space distribution.
However, the basic mechanism concerning the time coordinate following Eq. (25) is kept.

Further research in 1990s has been focused to abrupt glacial climatic changes. It has been
conducted in view to SR phenomenon related with these changes. Results appeared succes-
sively during last 2 decades, see, e.g., [5, 78], and later [79, 80] reflecting furthermore specific
attributes of the chaotic dynamics. On the basis of SR, many more studies have been published
dealing with general and specific themes. See, e.g., [81] discussing SR in the North Atlantic and
a large series of articles by Ditlevsens (senior and junior), e.g., [82] dealing with the rapid
climate shifts observed in the glacial climate.

Take a note that the statistical properties of relevant processes are adequately characterized by
α-stable processes and so they are widely used in this discipline. For theoretical background
see, e.g., monographs [83, 84] and some problem specific papers, see subsection 6.2.

6. Alternative operators and driving processes

The most common SR definition is based on the Duffing equation with the negative linear part
of stiffness being excited by an appropriate combination of a harmonic and Gaussian white
noise signals. However, it came to light that a few different definitions of SR are possible being
based on an alternative differential system or using other driving noise than the Gaussian one.
It revealed that many cases can be treated much more effectively than under classical defini-
tions. Application of this background is very wide, and it can be concluded that starting
investigation of a particular problem a suitable definition should be carefully selected. So that
they can be actually found everywhere in physics, life, and social disciplines.

6.1. Alternative differential operators

Despite of classical definitions of SR, some nonconventional inherent settings appeared
together with excellent applications in general theory, nano-scale systems, neurophysiology,
etc. Using the linear response theory, some alternative types of SR turned out. For details, see
the original papers by Dykman [19, 85, 86], Luchinsky [7, 8], and other authors. They identified
SR existence in quite different systems from those commonly studied to date, which are typical
by a static double-well potential and being excited by a force equal to the sum of periodic and
driving stochastic components.

(i) SR in a monostable system. The SR can be observed in a monostable nonlinear Duffing
oscillator being driven by additive Gaussian white noise ξ(t) of intensity σ. Let us assume the
nonlinear mass-unity SDOF oscillator:
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€u þ 2ωb _u þ ∂V uð Þ
∂u

¼ ξ tð Þ þ P0 exp iΩtð Þ, V uð Þ ¼ ω2
0

2
u2 þ γ4

4
u4 þ Bu,

ωb ≪ 1, E ξ tð Þf g ¼ 0, E ξ tð Þξ t0ð Þf g ¼ 4ωbσ2 � δ t� t0ð Þ:
(26)

Note that the potential V(u) posses the positive quadratic part and therefore the derivative ∂V
(u)/∂u (providing the stiffness force in mechanical system) is a monotonous function. There-
fore, the system is monostable unlike conventional systems exhibiting SR. Moreover, the
system Eq. (26) is nonsymmetric due to linear term in the potential. It can be understood as a
constant external force pre-stressing the system, see Figure 13(a).

The first variant |B| ≤ 0.43: The eigen frequency is rising monotonously with increasing energy
(or the square of response amplitude). In absence of periodic force and under small noise
intensity σ, the peak of the response variance, spanning around the eigen frequency ω0(E) in
an excitation level E, has the width which is approximately given by ωb, see, e.g., [21] or [23] (in
other word Lorenzian peak). That small periodic force inserted on the right side of Eq. (26) will
be amplified significantly and therefore SR emerges. The most considerable increment corre-
sponds to the frequency Ω = ω0(E).

The second variant |B| > 0.43: The eigen frequency is no more monotonous and exhibits a
minimum for a certain E > 0. Without periodic force, the system response is given by a narrow
spectral density with a maximum at the frequency ωm lying in the point dω0(E)/dE = 0. The ωb

is very small, and therefore, in this point the extremely sharp variance of width approximately

ω1=2
b arises and increases nearly exponentially with rising σ. So that for Ω close to ωm, the SR

phenomenon can be expected. It comes to light that the second variant leads to more signifi-
cant SR phenomenon.

(ii) SR in a bistable system with periodically modulated noise. Potential of the system is similar to
the classical version, in particular its quadratic part is negative and hence the system is bistable
again. Linear part of the potential is retained. Damping is high (system is over-damped) and
therefore the inertia term can be neglected. The system behavior is modeled is follows:

_u þ ∂V uð Þ
∂u

¼ f tð Þ � ξ tð Þ 1
2
P0 exp iΩtð Þ þ 1

� �
, V uð Þ ¼ �ω2

0

2
u2 þ γ4

4
u4 þ Bu; (27)

Unlike Eq. (26), a harmonically modulated white noise is applied on the right side. Parameter B

characterizes again the asymmetry of the potential. For �2= 3
ffiffiffi
3

p� �
< B < 2= 3

ffiffiffi
3

p� �
, the poten-

tial possesses two minima. Simple manipulation gets the intensity of the driving force, see
Figure 13(b). As the amplitude P0 is considered small, its square can be neglected. So the real
part reads:

E f tð Þf t0ð Þf g ¼ 2σ2δ t� t0ð Þ 1þ P0 cos Ωtð Þð Þ (28)

and we can see that the intensity of the driving force is periodic. Herewith the phenomenon of
SR type emerges.
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(iii) SR in a system with coexisting periodic attractors. The third form of nonconventional SR
is entirely different form of bistability. The SR concept can be based on coexisting stable
states having the form of periodic or chaotic attractors, if there are any. The coexisting
attractors are not static, but periodic. Theoretical analysis of these more involved situa-
tions draw on the existence (for relevant systems) of generalized potentials, not necessar-
ily analytic in the state variables, possessing local minima on the corresponding attractors.
For simplicity, the case where the period of vibration for each of the two attractors is the
same can be considered and, consequently, it can be assumed that they correspond to two
different stable states of forced vibration induced by an external periodic field driving the
system, see Figure 13(c). This interesting approach has been proposed in [87] where
chaotic SR is studied to enhance attractors reconstruction using an appropriated random
additional noise.

The under-damped nonlinear oscillator to be considered provides a well-known simple, but
nontrivial, example of a system that behaves in just this way; its bistability under periodic,
nearly resonant driving has been investigated in the context of nonlinear optics and in exper-
iments on a confined relativistic electron excited by cyclotron resonant radiation. The particu-
lar model we treat, the nearly-resonantly-driven, under-damped, single-well Duffing oscillator
with additive noise, which serves as an archetype for the study of fluctuation phenomena
associated with coexisting periodic attractors, is described by

€u þ 2ωb _u þ ∂V uð Þ
∂u

¼ ξ tð Þ þ P0 exp iΩtð Þ, V uð Þ ¼ ω2
0

2
u2 þ γ4

4
u4 þ Bu,

ωb ≪ 1, E ξ tð Þf g ¼ 0, E ξ tð Þξ t0ð Þf g ¼ 4ωbσ2 � δ t� t0ð Þ:
(29)

The appearance of new types of SR in systems far from the conventional static double-well
potential shows that SR is a very general phenomenon. In other words, there are many
physical situations where noise can be used to increase the response of a system to periodic
driving. The effect is not confined to systems with coexisting static stable states. Correspond-
ingly, SR may be more widespread in nature, and potentially of wider relevance in science and
technology, than has hitherto been appreciated.

Figure 13. Alternative operators: (a) monostable system; (b) bistable system with periodically modulated noise; (c)
system with coexisting periodic attractors.
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(iv) Logistic map. Let us note that each of differential operators above can be formulated in term
of its discretized variant. Then the whole stochastic differential system can be rewritten in form
of a logistic map:

uiþ1 ¼ ui;ui�1;…; ti; ti�1;…ð Þ (30)

where ui is the state vector of the system in i-th point. This scheme includes an explicit time
point to indicate that additive excitation (deterministic, stochastic in time) is acting. This
discretized version is widely used if the immediate stochastic simulation is foreseen. Anyway,
a care should be taken and Ito system is to be formulated the first respecting principles of
manipulation with stochastic processes, see, e.g., [20–22]. These operations related with SR are
very close to optimal (suboptimal) filtering and other stochastic data treatment. They can
provide valuable contribution to SR application especially in numerical processing. This con-
cerns particularly one-pass filtering where evaluation processes with SR algorithms are very
close. For details see, for instance, [23] and other monographs, where even more general
models than Eq. (30) are formulated.

6.2. NonGaussian driving noise

Although Gaussian random noise is mostly used as driving component, there approved well
also other than Gaussian processes. This finding results from the inherent nature of a number
of processes originally characterized by different PDF.

(i) α-stable processes. A number of papers deal with α-stable processes in the role of SR
generator. For comprehensive acquainting with α �stable and other useful nonGaussian
processes monographs [83, 84] are recommended, see Figure 14. Indeed, α-stable processes
are suitable for use in nondynamical application, see, e.g., [88]. Authors thoroughly analyzed
specific attributes of this class of problems and show doubtless advantages of α-stable
instead Gaussian processes in certain nondynamical cases. They obtained these conclusions
by means of theoretical and experimental procedures with white and arbitrarily colored
noise. Further contribution being neurophysiology motivated are papers [40, 41]. These large

Figure 14. α-stable, Gaussian, and Cauchy processes.
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discretized version is widely used if the immediate stochastic simulation is foreseen. Anyway,
a care should be taken and Ito system is to be formulated the first respecting principles of
manipulation with stochastic processes, see, e.g., [20–22]. These operations related with SR are
very close to optimal (suboptimal) filtering and other stochastic data treatment. They can
provide valuable contribution to SR application especially in numerical processing. This con-
cerns particularly one-pass filtering where evaluation processes with SR algorithms are very
close. For details see, for instance, [23] and other monographs, where even more general
models than Eq. (30) are formulated.

6.2. NonGaussian driving noise

Although Gaussian random noise is mostly used as driving component, there approved well
also other than Gaussian processes. This finding results from the inherent nature of a number
of processes originally characterized by different PDF.

(i) α-stable processes. A number of papers deal with α-stable processes in the role of SR
generator. For comprehensive acquainting with α �stable and other useful nonGaussian
processes monographs [83, 84] are recommended, see Figure 14. Indeed, α-stable processes
are suitable for use in nondynamical application, see, e.g., [88]. Authors thoroughly analyzed
specific attributes of this class of problems and show doubtless advantages of α-stable
instead Gaussian processes in certain nondynamical cases. They obtained these conclusions
by means of theoretical and experimental procedures with white and arbitrarily colored
noise. Further contribution being neurophysiology motivated are papers [40, 41]. These large

Figure 14. α-stable, Gaussian, and Cauchy processes.
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studies treat problems of robust SR and adaptive SR in noisy neurons based on mutual
information assessment.

(ii) Impuls chains–Poisson driven processes. Concerning nonGaussian driving noise, the impuls
chains and various Poisson driven processes can be used in special cases [46]. A couple of
authors investigated the basis of signal detection and adaptation in impulsive driving noise in
framework of plasma physic, see [89].

(iii) Colored noise. Employment of colored noise is studied in review and particular problem
focused articles. This noise being used intentionally has an effect, which is close to window
filtering. It can be adjusted suitably to instantaneous needs. If it follows from the frequency
limited “white noise” (finite correlation times), then influence of this low pass filter should be
examined. The role of such physically realistic noise is studied for exponentially correlated
Gaussian noise with constant intensity, see, e.g., [46, 90], etc. In principle, in over-damped
dynamics (first order equation of SDOF system), the role of colored noise generally results in a
reduction of SR efficiency. In contrast, finite inertia effects (second order equation of SDOF
system), induced by moderate damping, tends to increase SR system response.

(iv) High frequency deterministic signal. Interesting idea is to use a high frequency deterministic
signal in a meaning of a driving noise instead a random noise. For this reason, the final
phenomenon is called vibrational resonance (VR), see [91]. This phenomenon analogous with
SR occurs when the excitation frequency is well separated from the forcing frequency of the
potential well. This setting approved very well when machine vibration is treated. Machine
vibration is never truly stochastic, this provides a mechanism to link stochastic resonance to
real mechanical devices, such as those used for vibrational energy harvesting, see section 3 or 4
referring among others about vibration damping.

6.3. Some other nonconventional settings

Let us briefly remark some specific SR settings. They are valuable not only for the area where
they usually have been evolved, but serve as a possible inspiration for the whole SR commu-
nity. Although for the full understanding, the adequate papers should be studied, have a look
at some of them:

(i) Useful signal has the impulsive or rectangular form. Driving random signal is still Gaussian
white noise. Amplification and distortion of a periodic rectangular driving signal by a noisy
bistable system has been studied in [92]. Impulsive signals emerging in plasma physics are
thoroughly reported in a series of publications by Nurujjaman et al. see [89]. Anyway, these
papers attract attention also beyond plasma physics being interesting from general methodo-
logical points of view.

(ii) SR in systems exhibiting chaos. Dynamical systems in the regime of deterministic chaos
evolve under certain conditions through a sequence of intermittent jumps between two pre-
ferred regions of phase space and without the intervention of a driving noise. Such systems,
which give rise to multi-modal probability distributions, display an enhanced sensitivity to
external periodic forcings through a stochastic resonance-like mechanism, see, e.g., [87]. For
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further reading about chaotic response of deterministic systems, see monographs e.g., [93]
or [94].

Let us include to this paragraph also reference to the adaptive SR, see, e.g., [41]. This approach
seems to be promising as it makes possible to change parameters of the system dynamically
during signal transmission in noisy neurons ambiance. The main goal of that concept consists
in the fact that fuzzy and other adaptive systems can learn to induce SR based only on samples
from the process. Application in other fields like control of electro-hydraulic testing equipment
or smart control of vibration damping are obvious.

(iii) Slowly varying parameters. In many systems, the dynamics in the absence of both noise and
forcing is controlled by a number of parameters λi describing the constraints acting from the
external world. Ordinarily these parameters are assumed to remain constant, but there are
situations where this strategy constitutes an oversimplification (gradual switching on/off a
device, man-biosphere-climate interactions, etc.). In the absence of external periodic forcing,
the simultaneous action of noise and of a slow variation of λi in the form of a ramp may lead to
freezing of the system in a preferred state by practically quenching the transitions across the
barrier. The interaction between SR and the action of the ramp provides an alternative method
for the control of the transition rates by allowing the system to perform (transiently) a certain
number of transitions (depending on the forcing frequency and the noise strength) prior to
quenching.

7. Conclusion

The chapter tried to indicate the essence of SR. This is for the first view counter-intuitive
phenomenon brings a large impact on physical, biological, and engineering systems. It is clear
that SR is generic enough to be observable in a large variety of systems. The SR emerges in all
scales, we can imagine. It governs the processes from nuclear fusion in the sun to the intra-
atomic structures on the level of quantum mechanics. Amazing results of the basic research
have been achieved and excellent industrial programs have been launched being based on
many variants of SR. This concept of SR enabled to obtain an insight and exact description of
many effects in macro and micro (nano) world and to fight successfully against various
nondesirable phenomena in engineering. It resulted in many actually nonreplaceable products
of signal sensing and processing, medical instruments, and treatment procedures. Many SR-
inspired neurophysiological implants represent cornerstones at the field.

The SR can be perceived as a natural phenomenon ruling inside of certain dynamic systems. In
such a case, it can act either positively as for instance to help stabilize the dynamic system and
therefore, to improve the system reliability or oppositely it can affect the system negatively,
e.g., as a strong periodic exciting force, which is necessary to be avoided. The second view of
SR understanding is considered in active synthesis and manipulation with the noise. Addition
of appropriate dose of (mostly) random noise onto the useful signal provides a significant
increase of sensitivity and reliability of the equipment and enlarge its ability of data sensing,
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processing, and possibly their usage in a feedback. The same is valid concerning an increase of
information transfer capacity and reliability.

The chapter outlines a short history of SR. An overview of SR utilization in various disci-
plines in physical, life, and social sciences is briefly looked through. Some possibilities of
modeling in dynamics using SR strategy are indicated. Mathematical treatment and the most
popular solution methods of investigation are pointed out including semi-analytic, numeri-
cal, simulation based and experimental approaches. Nevertheless, aspects related with Engi-
neering Dynamics make intentionally a core of the chapter. Also the section dealing with
energy harvesting has been highlighted as it shares many joint attributes with dynamics
itself.

The phenomenon of SR in whatever variant is worthy to be employed in Engineering
Dynamics having a large potential of specific basic research as well as of engineering
applications. Industrial aerodynamics seems to be promising wide branch where several
effects of stability loss could be explained as effects related with SR. This approach
approved to describe the divergence stability loss in the nonlinear formulation of a slender
beam post-critical behavior in a cross flow. Additional problems are waiting for similar
type of theoretical description and subsequent experimental verification. The same proba-
bly emerge at area of panel flutter, various variants of buffeting, etc. This strategy could
enable to formulate new ideas for development of nonconventional measures for vibration
damping. Another area of SR application prove to be problems of vehicle dynamic stability
and its post-critical behavior. Similarly like in aeroelasticity the results obtained can be used
for development of new generation of vibration quenching devices of both passive and
actively controlled types.

It should be highlighted that adequate experiments will be absolutely necessary. However,
they should be newly proposed and performed properly, as they will differ in many ways
from conventional experiments. On the other hand, a lot of inspiration at both theoretical
as well as experimental fields can be taken from solid state physics and energy harvesting
area.

Let us be aware that SR is a challenging discipline for Engineering Dynamics offering a large
variety of possibilities of new developments at theoretical as well as experimental platform. It
could significantly enhance the top areas of nonlinear and stochastic dynamics closely related
with Computational Mechanics, which is very advanced and widely used in comparison with
other fields of numerical analysis. It provides strong support to Engineering Dynamics, which
stands on the threshold to enter the field of research and application of SR.
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Abstract

Existence of different, frequently incommensurate scales is a common phenomenon in
nature. Interactions between processes characterized by different scales can result in a
multitude of emergent phenomena when a system cannot be described as a scale-
separated hierarchy of underlying processes but presents a substantially new entity with
qualitatively new properties and behavior. Striking examples are life, fractals, and
chaos. Here, we shall demonstrate the quite nontrivial phenomena: chaotic and stochas-
tic resonances and anti-resonance on examples of laser systems. The phenomena of
resonant stochastization (stochastic anti-resonance), self-ordering (stochastic resonance),
and resonant chaotization of coherent structures (dissipative solitons) are considered on
the examples of mode-locked lasers and Raman fiber amplifiers. Despite a well-known
effect of noise suppression and global regularization of dynamics due to the resonant
interaction of noise and regular external periodic perturbation, here we report about the
reverse situation when the regular and noise-like perturbations result in the emergent
phenomena ranging from the coherent structure formation to the fine-grained chaotic/
noisy dynamics. We guess that the nonlinear optical systems can be considered in this
context as an ideal test-bed for “metaphorical modeling” in the area of deterministic and
stochastic dynamics of resonance systems.

Keywords: chaotic and stochastic resonance/anti-resonance, soliton-emergence
phenomena, resonant soliton–linear wave interaction, noise-assisted coherence,
“metaphorical” optical modeling, resonance vector mode-locking

1. Introduction

Is a noise so destructive? This question is not only philosophical because it is directly address-
able. We live in a noisy environment, and who knows, would such environment be extremely
constructive, namely constructive? Why not? For instance, the growth of initial quantum
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gravitational perturbations gives birth to our Universe as a quite-ordered structure, and our
brains are very flowing but constructive, isn’t that so? The key point is a resonant interaction of
noise with a nonlinear system [1, 2]. The resonance phenomena in nonlinear systems are
fraught with counterintuitive consequences. Noise can enhance a system’s internal coherence
[stochastic resonance, (SR)] or damage it [stochastic anti-resonance, (SAR)]. Both effects are reso-
nantly sensible to the system parameters that allow naming both phenomena as a resonance
with taking into account a principal difference between the linear and nonlinear systems far
from an equilibrium state [3].

The notion of SR occurred unexpectedly from the studies regarding the long-term climatic
changes (i.e., the ice ages) when the short-term (1-year scaled) climatic noise enhances reso-
nantly an incommensurable weak variation (~105 years) of the Earth ecliptic [4, 5]. The excel-
lent surveys expose a further progress forwarding this direction [3, 6–11]. A development of
the SR ideology in the fields of neuroscience, biology, and information processes was especially
exciting. A noise-induced resonant enhancement of neural sensibility, adaptivity, and learning
capability was demonstrated and analyzed [10, 12–18].

The classical theory of SR was based on the resonant transitions in noisy bi-stable nonlinear
systems [19–21]. Further studies revealed that both SR and SAR cover an extremely broad
range of phenomena including escape from the metastable state, threshold “firing” dynam-
ics, dynamics assisted by deterministic chaos, regularization induced by coherent periodic
or continuous structures without a noise assistance, etc [3, 22, 23]. Therefore, the terms of
SR and SAR can be misleading in some respects, and it is better to speak about a broad
range of phenomena in the nonlinear systems far from equilibrium, which is caused by
the resonant-like interaction between processes with incommensurable characteristic scales
[3, 24].

As a classical illustration of SR, one may consider the so-called FitzHugh-Nagumo (FN) model
(e.g., see [3] and references ibidem), which describes a noise excitable evolution in a very
simple two-dimensional form:

E
dx
dt

¼ f xð Þ � y,
dy
dt

¼ γx� βy� s tð Þ þ
ffiffiffiffiffiffiffi
2D

p
ζ tð Þ, (1)

where a potential function is defined as f(t) = x� ax3, typically E defines a ratio of evolutional
scales between x and y variables, γ is a coupling parameter, β is a friction coefficient, and s(t)
is a periodic external force (s(t) =α cos[ωt], usually). The last term in Eq. (1) describes a
Wiener stochastic process with volatility 2D. The stochastic Eq. (1) is treated in the
Stratonovich’s sense. Evolution of dynamical variables in the absence of noise and periodic
modulation is shown in Figure 1, which demonstrates a relaxation to local minimum of
potential.

Separated effects of small harmonic modulation and noise are shown in Figure 2. One can see
that they have a “perturbative” character and induce the small oscillations/fluctuations around
the potential local minimum.
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However, the situation changes drastically under the common action of noise and external
modulation (Figure 3). Extremal and almost regular spikes appear at a frequency, which is
lower than the modulational one and incommensurable with the noise scale. One may con-
sider this example based on the FN-model as an impressive and quite simple illustration of SR.

At this moment, there is a huge amount of work concerning the SR and SAR as well as their
variations and modifications. We refer a reader to the above-cited books and surveys (the
reference list is not exhaustive, of course). A spectacular demonstration of SR in a ring dye
laser [25] gave impetus to an intensive exploration of this field. Therefore, we intend to discuss
some aspects of SR, SAR, coherent resonant, and multi-scale phenomena regarding laser optics
and solitonics.

Figure 1. Evolution of x(t) (the lower curve) and y(t) (the upper curve) in the absence of stochastic and modulation terms
in Eq. (1) (i.e., (D,α) = 0) within the range of t∈ [0, 2]. E = 0.01, a = 1, b = 0.6, β = 1, γ = 1.5.

Figure 2. Left: Evolution of x(t) (the lower curve) and y(t) (the upper curve) in the absence of stochastic and presence of
modulation terms in Eq. (1); α = 0.05 and ω = 5. Right: Ten stochastic trajectories for x(t) in the absence of harmonic
modulation; D = 0.01. Other parameters correspond to Figure 1.
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This paper is organized as follows. In the next section, we expose the SAR phenomenon in a
Raman fiber amplifier. Then, the chaotic resonance of dissipative soliton with linear waves will
be considered. Further, the SR and SAR as well as multi-scale resonant phenomena in mode-
locked lasers will be exposed. Finally, the resonance vector mode-locking will be described in a
nutshell.

2. SAR in a Raman fiber amplifier

A Raman amplifier can be considered as a test-bed for the study of SAR and multi-scale
dynamics due to a comparative simplicity and realizability and, simultaneously, high
practical significance. The latter is defined by the fact that Raman amplification provides
an efficient tool for optical telecommunication lines with frequency multiplexing (for
details see [26]). In such lines, there are very different scales: a length corresponding to
the width of pulse carrying information (~10 – 100 mm), commensurable lengths of polar-
ization beats and inherent stochastic distortions of a fiber (~10 – 100 m), attenuation length
(~10 km), nonlinear and dispersion lengths (>100 km), and overall propagation length
(>107 m) [27].

The Raman amplification is sensitive to the relative polarization of gain and signal—a gain is
maximum for copolarized pump and signal but minimum for their mutually transverse polar-
izations. Since beat rates for signal (bs) and pump (bp) differ, it causes a periodical modulation
of the Raman gain with fiber length [26]. Simultaneously, the polarization properties (birefrin-
gence) of fiber are sensitive to the inevitable stochastic breakdowns of the fiber cylindrical
symmetry [27]. Thus, one has all necessary prerequisites for the manifestation of SR and SAR
phenomena.

The extended vector theory of the stimulated Raman scattering with taking into account the
random birefringence is presented in [26–28]. The system of stochastic differential equations

Figure 3. SR appearing under joined action of factors illustrated in Figure 2.
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describing an evolution of copropagating pump and signal states of polarization (SOP) under
the action of random fiber birefringence can be written in the following form [27]:

d S
!

dz
¼ gR

2
P
!���
��� S! þ S

!���
���P!

� �
� αs S

! þβ

S2
�S1
0

0
B@

1
CAþ 2bs

0

�S3
S2

0
B@

1
CA, (2a)

dP
!

dz
¼ �ωp

ωs

gR
2

P
!���
��� S! þ S

!���
���P!

� �
� αp P

! þβ

P2

�P1

0

0
B@

1
CAþ 2bp

0

�P3

P2

0
B@

1
CA, (2b)

where S
! ¼ S0 s! and P

! ¼ P0 p
! are the projections of signal and pump powers with the corre-

sponding unit vectors s! and p! (S0 ¼ S
!���
���, P0 ¼ P

!���
���) in the Stokes representation. The Raman gain

coefficient is gR, and the pump/signal frequencies areωp, s, respectively. The attenuation constants
for the pump and signal are αp, s. The most interesting parameters are bp, s = 2π/Lp, s (Lp, s are the
pump/signal beat lengths, respectively) and theWiener stochastic termwith the zero drift and the
volatility σ2 = 1/Lc: 〈β(z), β(z

0
)〉 =σ2δ(z� z

0
) (Lc is a correlation length of the stochastic material

birefringence).

The variation of Lc (correlation length defining a noise “strength”) relatively Lp, s (periods of the
deterministic polarization beatings) causes a transition between the different regimes.

i. A strong polarization pump/signal coupling (Figure 4, left) corresponds to a case of
Lp, s≫ Lc when a noise is too “fine-grained” and cannot distort nonlinear trapping of
signal by pump. As a result, the mutual polarizations of pump and signal are highly
correlated, and the signal fluctuations are small (≈1% in the case under consideration; see
Figure 5, left).

ii. When Lp, s approach Lc (i.e., relative strength of noise increases), the signal and pump
decouple (Figure 4, middle), and the signal evolution becomes extremely noisy (Figure 5,
middle).

Figure 4. PDF of the normalized output signal-pump scalar product S
!
P
!
= S

!���
��� P!
���
��� with lowering beat lengths Lp, s [29].

Lc = 100 m, Ls = 1 km (left), 150 m (middle), 30 m (right); Lp = 1.55Ls/1.465 (an Er-doped fiber), the propagation length
L= 5 km. The input powers of pump and signal are 1 and 0.01 W, respectively.
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iii. Further decrease of Lp, s relatively Lc causes almost complete decoupling of pump and
signal (so-called diffusion limit; Figure 4, right) when a fiber behaves like an isotropic
medium. Noise plays important but diminishing role (Figure 5, right).

Such a resonant-like enhancement of irregularity that depends on the relative strengths of
noise and regular oscillations is an example of SAR. Figure 6 is a spectacular illustration of
this phenomenon based on the model of Eqs. (2a) and (2b) [30]. We can see here the resonant

enhancement of a Raman gain standard deviation defined as σG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
!

Lð Þ
���

���
2.

S
!

Lð Þ
���

���
2
� 1

r
in

dependence on a fiber length L and a polarization mode-dispersion parameter Dp ¼
2λs

ffiffiffiffiffi
Lc

p
=cLs defining relative contribution of stochastic and deterministic polarization effects

(λs and c are the signal wavelength and the speed of light, respectively).

The phenomenon of SAR can be explained as an escape from ametastable state corresponding to
pump-signal pulling with an effective potential barrier ΔU and an “intra-well relaxation time”

Figure 5. PDF of the output signal power S
!���
���
2
(in Watts) with lowering beat lengths Lp, s as in Figure 4 [29].

Figure 6. Relative standard deviation of the maximum Raman gain coefficient illustrating the SAR in a fiber Raman
amplifier [30].
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(or length in our case) τi (Figure 7, left) [27, 31]. The random fluctuations can cause an escape
from this metastable state with an escape rate r∝ exp � ΔU

D

� � ¼ 1=τk defined by the so-called
Kramers time (length) τk (D is an effective “temperature” defining a noise strength) [6, 32]. The
periodic (T) modulation of potential barrier caused by the polarization beatings can enlarge this
effective temperature and, thereby, increase the escape rate (Figure 7, right) [27, 31].

Thus, a Raman fiber amplifier can be considered as a simple and practically valuable test-bed
for a demonstration of SAR that is a phenomenon of noise-induced escape from the metastable
state. Practical control of this phenomenon is especially important for the development of
modern high-speed optical communication lines that promise to exceed the limits of existing
broadband information infrastructure.

3. Chaotic resonance between a dissipative soliton and linear waves

Dissipative soliton (DS) is a well-localized structure self-emergent in dissipative systems. Such
structures appear in different areas ranging from physics to biology, medicine, and even
economy and sociology [33, 34]. The simplest equation regarding the DS modeling is the so-
called generalized complex nonlinear Ginzburg-Landau equation (CNGLE) [33–35]:

∂A z; tð Þ
∂z

¼ �σþ α
∂2

∂t2
þ κ 1� ζ A z; tð Þj j2

� �
A z; tð Þj j2

h i� �
A z; tð Þ þ i

β2
2

∂2

∂t2
� γ A z; tð Þj j2

� �
A z; tð Þ

þ β3
6

∂3

∂t3
A z; tð Þ þ s tð Þ,

(3)

where a field of amplitude A, slowly-varying with a local time t, propagates along a coordinate
z under action of dissipative (first braces) and nondissipative (second braces) factors. Then,

Figure 7. Left: Noise causes an escape from metastable (polarization pulling) state through a potential barrier ΔU
controlled by periodic modulation T induced by regular polarization beating. Right: Dependence of Kramers length τk
(solid curve) and intra-well relaxation length τi (dashed curve) on the polarization mode-dispersion parameter Dp [27, 31].
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σ-parameter corresponds to energy-dependent net-loss, α-parameter defines spectral losses,
κ- and ζ-parameters describe effective nonlinear gain and its depletion, respectively.Nondissipative
factors are self-phase modulation (SPM, γ), group-delay dispersion (GDD, β2) with low-order
correction to the latter (third-order dispersion or TOD, β3). s(t) describes a complexwhite noise.

The general-form of DS solutions of Eq. (3) is unknown, and the extensive numerical simula-
tions are required to investigate the complexity of DS dynamics. However, there are some very
simple considerations based on resonance/balance relations, which allow understanding some
basic properties of DS.

Indeed, a steady-state solution of Eq. (3) has a form A(t, z) =E(t) exp(�iqz), where the soliton
wave number q is related to the carrier-envelope offset [36], which results from nonlinear
phase shift caused by SPM: q =γP0 (P0 is a DS peak power) [37]. The dispersion relation for
linear waves is k(ω) = β2ω

2/2. Hence, to be stable (i.e., nonradiating), the DS spectrum has to be
truncated at the frequencies �Δ : k(�Δ) = q, where Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γP0=β2
p

(Figure 8) [35].

Simultaneously, the spectral loss ~αΔ2 has to be compensated by the nonlinear gain ~κP0. This
condition plus the resonant condition give the rough stability criterion for DS:

αγ=κβ2 ≤ 1=2, (4)

which interrelates dissipative and nondissipative factors contributing to DS formation (more
precise analysis can be found in [38]).

Figure 8. Resonance condition (black and gray crosses at the bottom panel) for the DS defines the spectrum width 2Δ.
Changing the power and/or the dispersion (solid and dashed lines in the bottom panel) controls the spectrum width.
Lines in the top panel show the experimental spectra corresponding to different energies [35].
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TOD modifies the dispersion condition for a linear wave so that the resonant condition

becomes: q ¼ β2ω
2

2 þ β3ω
3

6 (black/red online/curve in Figure 9c). It can cause an appearance of
additional resonant frequency which proximity to DS spectrum (i.e., to one of the other
resonant frequencies) can initiate chaotic dynamics [39, 40]. This conjecture was confirmed in
[35] both experimentally and numerically.

Figure 9 demonstrates an example of such chaotization obtained from numerical simulations
of Eq. (3) (for details, see [35]). The Wigner function (time-frequency diagram, Figure 9a)
consists of strongly distorted DS-part near 2.3 μm (dark-red region online) and long dispersive
tale in spectral domain around 2.4 μm (yellow – light blue region online), which co-propagates
with DS and, as an analysis shows, collides with it in time domain. As a result, the DS
spectrum becomes modulated chaotically (Figure 9b), but the averaged spectrum looks quite
smooth with the characteristic shape of “Boa constrictor digesting an elephant” (Figure 9d) [35].
As was mentioned, these phenomena can be explained as a nonlinear resonance of three-
coupled oscillators [41, 42] when the TOD-induced resonant point (DW in Figure 9c)
approaches one of the other two (R2, in our case).

The last statement can be confirmed by a reconstruction of phase space corresponding to the
chaotic dynamics in Figure 9. Such a reconstruction is based on the standard lag-delayed
procedure when one tries to reconstruct an N-dimensional phase space from time-series data
V(t) by the means of following discretization: [V(t),V(t + L),V(t + 2L), …,V(t + (N� 1)L)], where
L is a time-lag [43]. As a rule, an appropriative time-lag is defined from the first zero of
autocorrelation function of time-series (peak powers in our case). The corresponding recon-
struction is shown in Figure 10 [35]. One can see, that the chaotic trajectory of P0(t) is

Figure 9. Chaotization of DS dynamics due to resonant interaction with a linear wave in the presence of TOD. (a) Single-
shot Wigner function (time-frequency diagram) of DS. (b) Spectra of DS over the 7000 laser cavity round-trips. (c) Round-
trip phase (gray) and group delays (black, red online). (d) Accumulated spectrum [35].
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completely embedded in the three-dimensional manifold, and the attracting manifold has a
typical toroidal shape. Both facts validate a model of nonlinear resonance of three coupled
oscillators.

4. Stochastic resonance and anti-resonance in mode-locked lasers

A laser, as a device locking electromagnetic waves, possesses a discrete set of longitudinal
modes, i.e., set of standing waves, which interacts irregularly due to random mutual phases.
Locking of a mutual phase between modes, namely mode-locking, results in the generation of
a high-intensive ultra-short laser pulse circulating with the repetition rate multiple of the
period of laser resonator (e.g., see [44, 45]). In the time domain, the ultra-short pulse formation
can be described in the frameworks of the so-called fluctuation model [46, 47], which treats a
pulse1 emerging as a process of amplification and selection of noise fluctuations (see Figure 11).
Such a model demonstrates a crucial role of noise in ultra-short pulse dynamics. The noise is
not only a source of pulse formation, but it can also affect the pulse dynamics at all stages. In
particular, it is a source of “linear” (dispersive) waves, which can resonantly interact with a
pulse and randomize its dynamics (see the previous section).

The typical equation with “distributed” laser parameters is Eq. (3). It describes a multitude of
realistic phenomena intrinsic to the pulse dynamics. But in many real-world situations, the
“discretized” models are more relevant. For instance, let us consider a system of laser

Figure 10. Phase space reconstructed from the experimental DS peak power set [35].

1We use the term “pulse” instead of DS because it is more appropriate to “discretized” systems for which the notion
“soliton” can be misleading.
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resonantly coupled with an external resonator. In the dispersion-less case, the field evolution in
a laser can be described as follows [49]:

A0 z; tð Þ ¼ A z; tð Þ exp g tð Þ � iγ A z; tð Þj j2
h i

þ s tð Þ,
∂g tð Þ
∂t

¼ σ14 gm � g tð Þ� �
Ip=hνp � σ32g tð Þ A z; tð Þj j2=hν� g tð Þ

T31
:

(5)

Here, both z and t are discretised so that z is a cavity transit number, and t is a local time
discretised with a step Δt. The coefficient g(t) describes a local gain for a 4-level active medium
with the maximal gain gm for full population inversion: σ14, σ32, and T31 are absorption,
emission cross-section, and gain relaxation time, respectively. νp and ν are pump and genera-
tion wavelength, respectively.

s tð Þ ¼ s t� Δtð Þ exp � Δt
tcoh

� �
þ s0 exp iφ tð Þ� �

, (6)

is a noise term with the coherence time tcoh, a noise level s0, and a random phase ϕ(t) [50].

Spectral dissipation is provided by a Fabry-Pérot etalon with a group-delay tf [51]:

A
0 0
z; tð Þ ¼ 1� Rf

� �
A0 z; tð Þ þ RfA

0 0
z; t� Δtð Þ, (7)

where Rf = tf/(tf + Δt).

The field A is coupled with the field in external resonator B(z, t) [49]:

A zþ 1; tð Þ ¼ RA
0 0
z; tð Þ � iθT exp iπφ

� �
B z; tð Þ,

B zþ 1; tð Þ ¼ �iθTA
0 0
z; tð Þ þ θ2R exp iπφ

� �
B z; tð Þ,

(8)

where R, T, and θ are reflection, transmission, and coupling coefficients, respectively.

Figure 11. Formation of the ultra-short pulse from initial noise fluctuations (P is a normalized power, t is a local time, z is
a cavity round-trip number) [48]. Noise is suppressed on the final stage, but remains on a “vacuum level.”.
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It is interesting to consider the question about disruptiveness of noise for pulse formation.
Figure 12 shows the regions of formation of stable pulses from noise (so-called regions of
mode-locking self-start) for different tcoh. One can see, that the decrease of noise coherence is
destructive from the points of view of the mode-locking regions size and the threshold pump
intensity providing mode-locking.

However, the simulations demonstrate that even very low-frequency external modulation
(e.g., by moving resonator mirror inducing the Doppler shift of optical wave) can suppress
noise (see Figure 13) and stabilize dynamics [52, 53]. This phenomenon can be interpreted as a
manifestation of resonant interaction of scale-incommensurable processes. Moreover, exactly
such a resonance provides mode-locking self-start in the majority of lasers (moving mirror
technique [54] or even simple mirror knocking).

In close connection with the phenomenon mentioned above, one has to note that a nonlinear
interconnection between the scale-incommensurate processes is a crucial factor defining all
considered phenomena. An interesting example closely connected with previous one is a laser
mode-locked by external phase modulation [55, 56]. This system can be described by following
equation (compare with Eq. (3)):

∂A z; tð Þ
∂z

¼ �σ� δ
∂
∂t

þ α
∂2

∂t2
� iγ A z; tð Þj j2

� �
A z; tð Þ þ iωtA z; tð Þ, (9)

where �σ is a saturated gain, ω is a modulation frequency normalized to modulation depth,
and δ is a mismatch between the modulation and cavity periods. In the absence of SPM, the

Figure 12. Regions of mode-locking self-start for the model (5–8). γhν/σ32Tcav = 0.01, ϕ = 0, tf = 1 ps, tcor =∞ (bottom region),
1 μs (middle region), and 1 ps (top region). Tcav is a cavity period.
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pulse width τ is τ ¼ 2
ffiffiffiffiffiffiffi�σ

p
= ωj j. It increases with saturated net-gain �σ, is closely associated

with the modulation frequency ω, and exceeds substantially the minimal value
ffiffiffi
α

p
defined by

spectral dissipation. However, the nonlinearity (namely, SPM) can modify a situation crucially
[55, 56]. Firstly, the pulse width decreases (not increases) with a gain that allows generating
high energy, and simultaneously, short pulses. Secondly, and it is a first nontrivial fact, pulse
width can be extremely short (� 10

ffiffiffi
α

p
) and reach scales incommensurable with the modula-

tion frequency. Third impressive fact is that the modulation frequency providing stable mode-
locking can be extremely small in comparison with the laser cavity period (ω is lower by
approximately three orders of magnitude in comparison with a linear case). It seems that this
effect is closely related to the above considered noise suppression due to the Doppler shift.

Returning to an effect of noise on the mode-locking self-start illustrated in Figure 12, one may
consider another interesting manifestation of SR/SAR in mode-locked lasers. External resona-
tor providing mode-locking can be considered as a Fabry-Pérot interferometer resonantly
matched with a laser cavity (see above). This interferometer can contain a nonlinear medium,
and such a system possesses rich dynamical properties, in particular, it can cause spontaneous
formation of ultra-short pulses (mode-locking). Examples of regions of such mode-locking are

Figure 13. Evolution of noisy pulse with external phase modulation (moving mirror, the modulation frequency is 1 kHz)
[53]. (a) Initial noisy pulse; (b) pulse at 1000th cavity transit (noise is sweeping out due to Doppler effect); (c) pulse at
5000th cavity transit (noise is swept out).
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shown in Figure 12. It is interesting that such regions are inhomogeneous. Figure 14 demon-
strates the mean-square deviation σI of pulse peak intensity inside two such regions in depen-
dence on pump.

One can see, that the pulse is highly stable inside the mode-locking region and destabilizes
only on stability border in the case of (1). But in the case of (2), the behavior of σI becomes
strongly nonmonotonic. Pronounced peaks in the σI-dependence is the classical SAR manifes-
tation caused by the excitation of noise with subsequent formation of the pulse satellites whose
interaction with main pulse perturbs strongly the latter. The regions of SAR alternate with the
regions of regular dynamics. Thus, the mode-locking region can be granulated.

In all examples above considered, a mode-locking resulting in the pulse appearance was
caused by either loss self-modulation or external periodical modulation. However, the mode-
locking can appear spontaneously due to spontaneous multimode instability (so-called
Risken-Nummedal-Graham-Haken effect, RNGH) [57, 58]. However, such self-mode-locking
is unstable. Nevertheless, the stable self-mode-locking was obtained in Er-fiber laser due to
beatings induced by the difference of intra-laser (fiber + polarization components) birefrin-
gence and that induced by polarization hole burning in active medium (Er-doped fiber).
That is the so-called resonance vector mode-locking [59]. The beatings generate the spectral
satellites (sidebands) for each laser mode produced by multimode instability (see Figure 15).
Adjusting of intra-laser birefringence by polarization controller shifts these sidebands to
adjacent modes that cause a resonance between them with subsequent stable mode-locking.

But that is not all. The generated comb of locked modes can excite the transverse acoustic
waves in a fiber through electrostriction effect [61]. The resonance between the comb and these
waves lock (trap) a pulse in time domain that provides an unprecedented stability of the pulse
train. The last is highly required for metrology, high-resolution spectroscopy, etc [62].

Figure 14. Dependence of mean-square deviation of pulse intensity on the pump in a laser mode-locked by a nonlinear
Fabry-Pérot interferometer [53] for the phase mismatch ϕ =π, reflection coefficients of coupling mirror 0.96 (1), 0.7 (2), and
internal transmission of interferometer 0.9 (1), 0.5 (2).
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5. Conclusions

The nonlinear resonance phenomena are illustrated as examples of fiber Raman amplifiers and
mode-locked lasers. These systems proved their advantage as an ideal test-bed for “meta-
phoric modeling” of complex nonlinear systems due to comparative simplicity, high-speed
statistic gathering, and precise controllability.

We considered the phenomenon of the so-called stochastic anti-resonance as examples of a fiber
Raman amplifier and a laser mode-locked by resonant coupling with a nonlinear Fabry-Pérot
interferometer.

In the first case, the regular polarization beatings between pump and Raman signal are
coupled resonantly with the stochastic birefringence caused by material defects (stochastic
changes of fiber symmetry). As a result, there is a region of parameters (first of all, so-called
polarization mode-dispersion parameter) where the evolution of the state of polarization
becomes highly irregular that manifests itself in resonance growth of relative standard devia-
tion of Raman gain. This phenomenon was interpreted as a noise-induced escape from meta-
stable state and quantitatively characterized by an abrupt decrease of the characteristic
Kramers length.

In the second case, it is shown a crucial dependence of mode-locking ability on noise correla-
tion time so that the growth of irregularity squeezes the mode-locking region and increases the

Figure 15. Evolution of spectrum in the vicinity of allocated mode “B” neighboring with modes “A” and “C” [59].
Control parameter is an intra-laser birefringence 2β, Δβ is a birefringence caused by polarization hole burning in the active
fiber [60].
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mode-locking threshold. Nontrivial effect of noise manifests itself inside the region of param-
eters, where spontaneously born pulse exists. Namely, a monotonic variation of the pump
causes the alternation of maximums and minimums of the pulse peak intensity mean-square
deviation. Thus, the stochastic anti-resonances exist inside the mode-locking region, which,
thereby, has a granular structure.

The interesting example of scale hierarchy in a mode-locked laser is demonstrated. The matter is
that extremely slow (~1 kHz), external modulation can suppress noise in mode-locked laser
through the Doppler effect. This effect is broadly known for experimenters using the resonator
mirror knocking for the mode-locking self-start.

Active mode-locked lasers can demonstrate another aspect of scale hierarchy in the nonlinear
resonance phenomena. The laser phase nonlinearity coupled with the external phase modula-
tion can provide generation of pulses whose widths are not limited by modulation frequency
but only by intra-laser spectral dissipation. Moreover, laser mode-locking can be reached at
anomalously low (in comparison with laser resonator round-trip) modulation frequencies.
One may bring the last effect into correlation with that mentioned in the previous paragraph,
but this issue demands a further consideration.

The phenomenon, which is connected closely with the resonance in systems possessing a scale
hierarchy, is a so-called resonance vector mode-locking. In this case, a spontaneous locking of laser
modes emerging as a result of multimode instability (RNGH) is stabilized due to the polariza-
tion beating caused by intra-laser birefringence and birefringence induced by polarization hole
burning in the active medium. That results in stable self-mode-locking, which is stabilized
additionally through a resonant coupling with the acoustic waves excited by the mode-locking
itself through the electrostriction effect.

The dissipative soliton resonance with linear waves originating from noise can be considered
separately in some way. It is shown, that this resonance defines the dissipative soliton charac-
teristics, namely, its spectral width. When the resonant conditions change due to the contribu-
tion of higher-order dispersions (third-order in our case), the dissipative soliton can emit a
radiation, which interacts with soliton in turn. As a result, the dissipative soliton dynamics
becomes chaotic, that can be classified as chaotic resonance in terms of nonlinear resonance of
three coupled oscillators.

The unified viewpoint on the nonlinear stochastic and chaotic phenomena in the field of laser
physics and solitonics remains undeveloped yet. Such a viewpoint would be a part of general
thermodynamic and kinetic theory of dissipative systems promising a strong practical impact
in different areas ranging from physics to biology, medicine, and sociology.
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Abstract

In this chapter, the optimization method of double-well bistable stochastic resonance 
(SR) system and one of its applications in cognitive radio networks are introduced, 
especially in the energy detection problem. The chapter will be divided into five sec-
tions. Firstly, the conventional double-well bistable stochastic resonance system is intro-
duced with its special properties. Then based on the conventional discrete overdamped 
double-well bistable SR oscillator, the optimization method and the analyses results 
are given especially under low signal-to-noise ratio (SNR). In the applications, a novel 
spectrum sensing approach used in the cognitive radio networks (CRN) based on SR is 
proposed. The detection probability is also derived theoretically under a constant false-
alarm rate (CFAR). Moreover, a cooperative spectrum sensing technique in CRN based 
on the data fusion of various SR energy detectors is proposed. Finally the whole chapter 
is summarized.

Keywords: stochastic resonance, optimization, cognitive radio networks, spectrum sensing, 
energy detection, cooperative spectrum sensing

1. Introduction of conventional double-well bistable stochastic resonance 
system

In many different dynamic systems, it can be found that the stochastic resonance (SR) is a kind 
of complex nonlinear phenomenon with many applications [1, 2]. In this kind of dynamic 
system, it possesses some good performances, while it can help to increase the periodic driv-
ing signal power under some special conditions. A lot of researches have demonstrated that 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



the SR system may help to convert some power of the state variable signal in the SR system 
into the spectral power of the single-frequency driving signal in the SR system [1–3]. So, the 
SR system has been widely used in many applications, such as the weak target identification, 
weak signal detection and estimation, and so on [4–6].

In the dynamic SR processing, according to the SR noise power influence to the SR system, it 
can be found that the improvement effects, which include the signal power amplification and 
the signal-to-noise ratio (SNR) enhancement, have great relationships between the SR driving 
sinusoidal signal power and the SR noise power [3].

Mathematically, an SR system in a continuous form can be written as [3]

   dx (t)  /  dt = f  [x (t) , r (t) ] ,   (1)

while in the above equation, f [⋅] is the dynamic SR system, x(t) is the state vector, and r(t) is 
the driving signal of the SR system.

In many SR systems, it can be found that the quartic double-well bistable system is a widely 
used SR system with many researches and discussions, and it has been applied in many appli-
cations. It can be expressed as

   dx (t)  /  dt = ax (t)  −  bx   3  (t)  + k ⋅ r (t) .   (2)

In the expression above, x(t) is the state variable of the SR system, parameters a and b deter-
mine the properties of the SR system, and the driving parameter k influences the effect of 
driving signal r(t) seriously. In many studies, r(t) is set as a single-frequency sinusoidal signal, 
which is also influenced by some additive noise n(t), which is

  r (t)  = ε sin  ω  s   t + n (t) ,  (3)

while in the above equation, the parameters ε and ωs are the corresponding signal amplitude 
and signal angular frequency of the driving signal; n(t) is the additive noise. To simplify the 
analyses, n(t) can always be supposed to obey the Gaussian distribution, which possesses 
mean 0 and variance   σ  

n
  2  . So, the SNR of the driving signal r(t) (or the SNR of the input SR 

system) can be expressed by

    SNR  i   =  ε   2  /  2  σ  n  2 .   (4)

According to the linear response theory of SR system [3], the output of the SR system state 
variable x(t) can be expressed as a sum of two components as

  x (t)  =  ε  o   sin  ( ω  s   t +  ϕ  o  )  +  n  o   (t) ,  (5)

where εo is amplitude of the output signal, φo is the phase of the output signal at the input 
frequency point ωs, and no(t) is the additive noise in the output signal.
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Based on the above assumptions, when ωs→0 or even ωs = 0, the output SNR of the SR system 
may be estimated by [2]

   SNR  o   ≈  [   √ 
__

 2   a  ε   2   c   2  _____  k   3   σ  n  4 
    e   −   

2 U  0   ____  k   2  σ  n  2 
   ]  ⋅   [1 −  (  4  a   2   ε   2   c   2  ______  π   2   k   3   σ  n  4 

   e   −   
4 U  0   ____  k   2  σ  n  2 

   )  /   (  
2  a   2  ___  π   2     e   −   

4 U  0   ____  k   2  σ  n  2 
    +  ω  s  2 ) ]    

−1

 ,  (6)

where  c =  √ 
___

 a /  b    and U0 = a2/4b are constants corresponding to the selection of parameters a and 
b in (2). It can also be found in (6) that in many real applications, the parameter k is the only 
parameter which can be adjusted, and also it cannot influence the parameter SNRi in (4), so it 
is a very important factor which can determine the SR phenomenon [2].

2. Optimization of double-well bistable stochastic resonance system

2.1. System optimization and performance analyses

As described in last section, to make the SR system more applicable to the weak target iden-
tification or detection problems, we investigate a kind of optimization method to the quartic 
double-well bistable SR system in (2), and the target is to guarantee the enhancement of the 
signal SNR and also reach a maximal output SNR at the same time.

Although the result in (6) is based on the assumption ωs → 0, when under some conditions 
that ωs → 0 cannot be guaranteed, some traditional down-conversion methods can be applied 
if the frequency of the sinusoidal signal cannot fulfill ωs → 0. Without loss of generality, an 
additive SR noise n1(t) is also introduced into the SR system, which possesses mean 0 and vari-
ance 1; then the quartic double-well bistable system in (2) can be rewritten as

   
 dx (t)  /  dt = ax (t)  −  bx   3  (t)  +  k  1   ⋅ r (t)  /   ‖r (t) ‖  +  k  2    n  1   (t)                       = ax (t)  −  bx   3  (t)  +  k  1   ε sin  ω  s   t /   ‖r (t) ‖  +  k  1   n (t)  /   ‖r (t) ‖  +  k  2    n  1   (t) , 

   (7)

where k1 and k2 are the positive driving parameters corresponding to r(t) and n1(t), respec-
tively. r(t) is normalized by ‖r(t)‖ to simplify the analyses, which is defined by

    ‖  r(t ) ‖     =   
def

    lim  
N→∞

     1 __ N    ∑ 
t=1

  
N

     r   2 (t ) =   1 __ 2    ε   2  +  σ  n  2 ,  (8)

where N is the sampling number. And when SNRi is small enough, we have

    σ ̂    n  2   ≈  ‖r (t) ‖ .  (9)

Based on the analyses in Ref. [4], if we want to reach an optimal result, it requires that the SR 
noise should be symmetric, and then n1(t) can also be chosen as a kind of noise signal with 
Gaussian distribution. So, (7) can be rewritten as

   dx (t)  /  dt = ax (t)  −  bx   3  (t)  +  k  3   ε sin  ω  s   t +  k  4    n  SR   (t) ,   (10)

where the parameters are defined by
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    k  3     =   def   k  1   /   ‖r (t) ‖ ,   (11)

   k  4     =   def   √ 
_______________

   k  1  2  ⋅   σ ̂    n  2   /     ‖r (t) ‖    2  +  k  2  2   ,  (12)

and nSR(t) in (10) is a Gaussian noise with mean 0 and variance 1.

With the assumptions above, the SNRo in (6) can be rewritten as

   SNR  o   ≈  [ √ 
__

 2    ak  3  2   ε   2   c   2   k  4  −4   e   −   
 2 U  0   ___  k  4  2 

   ]  ⋅   [1 − 2  k  3  2   ε   2   c   2   k  4  −4 ]    −1  =   
 √ 

__
 2    ak  3  2   ε   2   c   2 

 ________  k  4  4  − 2  k  3  2   ε   2   c   2     e   −   
2 U  0   ___  k  4  2 

   .  (13)

Firstly, to ensure the SNR improvement effect of the SR system, it requires SNRo > SNRi, so

    
 √ 

__
 2    ak  3  2   ε   2   c   2 

 ________  k  4  4  − 2  k  3  2   ε   2   c   2     e   −   
2 U  0   ___  k  4  2 

    >    ε   2  ___ 2  σ  n  2 
  .  (14)

And when SNRi is low enough, (14) can be simplified to

    k  3  2  >  k  4  4   e     
2 U  0   _  k  4  2 

    /   (2  √ 
_

 2    U  0    σ  n  2 ) .   (15)

When U0 and   σ  
n
  2   are fixed, it is obvious that   k  

4
   =  √ 

___
  U  

0
      will lead to the maximal value of the right 

side expression of (15). So when we have:

    k  3  2  >  U  0    e   2  /   (2  √ 
_

 2     σ ̂    n  2  ) ,   (16)

the SNR enhancement can be achieved.

What is more, to reach the maximum output SNR of the system, we can set up an optimiza-
tion problem, where we suppose (13) as the corresponding objective function and let k1 be 
fixed, and then we let

   ∂  SNR  o   /   ∂  k  4  2  = 0.   (17)

And the result can be changed to

   k  4  6  −  U  0    k  4  4  + 2  U  0    k  3  2   ε   2   c   2  = 0,  (18)

or k4 is the solution of the above equation.

By calculating the discriminant Δ of (18), we have

  Δ =  U  0  2   k  3  4   ε   4   c   4  −   2 __ 27    U  0  4   k  3  2   ε   2   c   2  =   
 U  0  2   ak  3  2   ε   2   c   2 

 ________ 216  b   2    (216  k  3  2   ε   2  b −  a   3 ) .  (19)

Then the optimization result can be decided by the power or the amplitude of the driving 
sinusoidal signal. It can be found that k3 should also satisfy (16), so we can choose a reason-
able k3 big enough to fulfill Δ > 0 and guarantee that the optimization result of k4 can be 
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_______________

   k  1  2  ⋅   σ ̂    n  2   /     ‖r (t) ‖    2  +  k  2  2   ,  (12)
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__

 2    ak  3  2   ε   2   c   2   k  4  −4   e   −   
 2 U  0   ___  k  4  2 

   ]  ⋅   [1 − 2  k  3  2   ε   2   c   2   k  4  −4 ]    −1  =   
 √ 

__
 2    ak  3  2   ε   2   c   2 

 ________  k  4  4  − 2  k  3  2   ε   2   c   2     e   −   
2 U  0   ___  k  4  2 
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 2    ak  3  2   ε   2   c   2 
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2 U  0   ___  k  4  2 

    >    ε   2  ___ 2  σ  n  2 
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2 U  0   _  k  4  2 
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 2    U  0    σ  n  2 ) .   (15)
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0
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_

 2     σ ̂    n  2  ) ,   (16)
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achieved. When substituting the optimal values of k3 and k4 into (11) and (12), the optimal 
driving parameters k1 and k2 can finally be achieved.

2.2. Computer simulations

To testify the effectiveness of the above proposed optimization method, we give out a testify-
ing example and carry out corresponding computer simulation results based on the analyses 
in the last section.

To simplify the simulations, a single-frequency sinusoidal signal corrupted with additive 
white Gaussian noise (AWGN) is assumed as the signal r(t), and the amplitude and angular 
frequency of the signal are chosen as ε = 1, ωs = 0.01, respectively. The sampling number is 
N = 1 × 105; and the parameters are chosen as a = 1 and b = 1 in the SR system.

In the following computer simulations, the maximum likelihood estimate (MLE) method [7] 
is applied to estimate the amplitude of the signal as

   ε ̂   =  √ 
______

   α ̂    1  2  +   α ̂    2  2   ,  (20)
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where we have

    α ̂    1   =   2 __ N    ∑ 
t=0

  
N−1

    r (t)  cos  ω  s   t,   α ̂    2   =   2 __ N    ∑ 
t=0

  
N−1

    r (t)  sin  ω  s   t.  (21)

Eq. (7) is changed to the following difference equation for simulations [8]:

   x (t + 1)  = x (t)  + ∆t ⋅  [ax (t)  −  bx   3  (t)  +  k  1   ⋅ r (t)  /   ‖r (t) ‖  +  k  2    n  1   (t) ] ,   (t = 0, 1, ⋯, N − 2)  ,  (22)

where the parameter Δt is chosen as 0.0195.

Figure 1 gives the SNRo vs. SNRi comparison performance through the proposed method, 
while the range of SNRi is between −25 dB and 10 dB. From the result, it can be discovered 
that the SNR of r(t) has been enhanced especially under low SNR, for example, SNRi < 0 dB.

Figure 2 shows a result regarding to the SNR enhancement through the proposed optimal SR 
method. The SNRi also changes from −25 dB to 10 dB. It can be found that the SNR enhance-
ment can also be reached even under low SNR.

Figure 3 shows the SNRo performance when the parameters k1 and k2 are adjustable under 
SNRi = −25 dB. It can be discovered clearly that a maximal SNRo can be reached with some cer-
tain optimal k1 and k2 values. Figure 4 shows the performance of SNRo vs. k2 under optimal k1 
under the condition SNRi = −25 dB. Figures 5 and 6 give the same computer simulation results 
under the condition SNRi = −20 dB, and they also verify the reliability of the proposed method.
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Figure 3. Performance of SNRo under SNRi = −25 dB when k1 and k2 are adjustable.

Figure 4. SNRo vs. k2 under optimal k1 and SNRi = −25 dB.
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Figure 5. Performance of SNRo under SNRi = −20 dB when k1 and k2 are adjustable.

Figure 6. SNRo vs. k2 under optimal k1 and SNRi = −20 dB.

Resonance98



Figure 5. Performance of SNRo under SNRi = −20 dB when k1 and k2 are adjustable.

Figure 6. SNRo vs. k2 under optimal k1 and SNRi = −20 dB.
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3. Applications in the energy detection problem in cognitive radio 
networks

3.1. Energy detection problem in cognitive radio networks

In the past years, the research works in the area of cognitive radio (CR) network have been 
widely reported with fast progress. A lot of novel research developments make the research 
topics in the related areas more and more attractive [9]. As is known, in CR, the spectrum 
sensing approaches play an important role in CR network because it helps the secondary 
or opportunistic users (SUs) to detect the existence of the primary users (PUs) and define 
whether they can transmit the information or not [10]. Without loss of generality, we suppose 
that only the overlay mode in CR networks is considered in this discussion. The main target 
of spectrum sensing is to define the presence of PUs under some unpredictable noisy wireless 
communications conditions. So when the PUs are detected to be absent, the SUs are permitted 
to use the spectrum holes on an opportunistic basis which are occupied by PUs before, so that 
it can enhance the spectrum utility significantly [11]. In other words, the spectrum sensing can 
be regarded as a base of CR networks seriously.

In the literatures, many approaches have been proposed to ensure the performance of spec-
trum sensing and minimize the interference to some other users, including the PUs [9]. With 
the previous studies, it is found that the energy detection is a very general spectrum sens-
ing method which does not need any prior knowledge of PUs; and based on the traditional 
Neyman-Pearson criterion [7], the spectrum sensing problem can be converted to a detection 
problem as the following two hypotheses:

   
 H  0   : r (t)  = n (t) ,  (t = 0, 1, … , N − 1) 

    
 H  1   : r (t)  = h ⋅ s (t)  + n (t) ,  (t = 0, 1, … , N − 1) ,   (23)

where r(t) is the signal at the receiver, s(t) is the PU signal, and it is assumed that s(t) obeys 
the distribution with mean 0 and variance   σ  s  2   and h is the channel fading factor between 
the transmitter (PU) and the receiver (SU). In the wireless communications applications, 
it can always be assumed that it has Rayleigh distribution with the second-order moment  
E [ h   2 ]  =  m  

h
  2   independent to PU, and n(t) is the additive noise independent to s(t) and h. 

Simultaneously, sometimes the co-channel interference or multiuser interference of the PU 
signal can also be regarded as another additive part of n(t). So to simplify the analyses, we 
suppose that h is predictable or can be estimated properly at the receiver and n(t) also obeys 
the additive white Gaussian noise (AWGN) distribution with mean 0 and variance   σ  n  2  .

For the traditional Neyman-Pearson detection, the assumption or decision H1 can be made 
when the likelihood ratio exceeds a certain threshold γ, as follows:

   L (r)  = p (r;  H  1  )  /  p (r;  H  0  )  > γ,   (24)
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where r = [r(0), r(1),  … , r(N − 1)]T is the receiving signal vector and p(r; H0) and p(r; H1) repre-
sent the probability density functions (PDFs) of the receiving signal vector r under H0 and H1, 
respectively, while L(r) is the likelihood ratio to be calculated.

Based on the analyses above, under two different hypotheses, the receiving signal r obeys 
Gaussian distribution with different variances, which can be expressed by

  r~N (0,  σ  n  2  I)  under  H  0  ,  (25)

  r~N (0,  ( m  h  2   σ  s  2  +  σ  n  2 ) I)  under  H  1  .  (26)

Thus, H1 is decided when

  T (r)  =  ∑ 
t=0

  
N−1

     r   2  (t)  >  [2 ln γ − N ln  (   σ  n  2  _______  m  h  2   σ  s  2  +  σ  n  2 
  ) ]  [ σ  n  2  ( m  h  2   σ  s  2  +  σ  n  2 ) ]   m  h  −2   σ  s  −2  =  γ  ED  ,  (27)

where T(r) is the statistic of the traditional energy detector and γED is the threshold to satisfy 
Pfa = α for a given CFAR α. Because the Neyman-Pearson detector calculates the energy of the 
receiving signal r(t), it is also called an energy detector.

In the following, the corresponding false alarm rate Pfa(ED) and the detection probability Pd(ED) 
of the above energy detector can be given as

   P  fa (ED)    = Pr  {T (r)  >  γ  ED  ;  H  0  }  = Pr  {  T (r)  ____  σ  n  2 
   >   

 γ  ED  
 ___  σ  n  2 
  ;  H  0  }  =  Q   χ  N  2     (   γ  ED  

 ___  σ  n  2 
  ) ,  (28)

   P  d (ED)    = Pr  {T (r)  >  γ  ED  ;  H  1  }  = Pr  {  T (r)  _______  m  h  2   σ  s  2  +  σ  n  2 
   >   

 γ  ED  
 _______  m  h  2   σ  s  2  +  σ  n  2 

  ;  H  1  }  =  Q   χ  N  2     (   γ  ED  
 _______  m  h  2   σ  s  2  +  σ  n  2 

  ) ,  (29)

while   Q   χ  
N
  2     (⋅)   is the right-tail probability function with N degrees of freedom.

It can be found in the researches that this kind of energy detection method could perform well 
under high SNR. But its performance degrades seriously when SNR is reduced, especially 
when SNR < −10 dB. For example, the value of detection probability Pd under N = 103 and 
Pfa(ED) = 0.1 will decrease from 0.795 to 0.283 when the SNR changes from −10 dB to −15 dB, 
which may be a very general case in CR networks [12].

3.2. SR-based spectrum sensing approach

In this subsection, we propose a novel spectrum sensing method with the combination of 
traditional energy detector and the SR processing. First, let the receiving signal pass the SR 
system, and the amplified signal can be observed at the output of the SR system. Then the 
amplified signal goes through the conventional energy detector to get the final spectrum sens-
ing decision.

In this proposed scheme based on SR, first, we set the normalized signal of r(t) in (23), say r0(t), 
as the input of an SR system f [⋅]; then we have

Resonance100



where r = [r(0), r(1),  … , r(N − 1)]T is the receiving signal vector and p(r; H0) and p(r; H1) repre-
sent the probability density functions (PDFs) of the receiving signal vector r under H0 and H1, 
respectively, while L(r) is the likelihood ratio to be calculated.

Based on the analyses above, under two different hypotheses, the receiving signal r obeys 
Gaussian distribution with different variances, which can be expressed by

  r~N (0,  σ  n  2  I)  under  H  0  ,  (25)

  r~N (0,  ( m  h  2   σ  s  2  +  σ  n  2 ) I)  under  H  1  .  (26)

Thus, H1 is decided when

  T (r)  =  ∑ 
t=0

  
N−1

     r   2  (t)  >  [2 ln γ − N ln  (   σ  n  2  _______  m  h  2   σ  s  2  +  σ  n  2 
  ) ]  [ σ  n  2  ( m  h  2   σ  s  2  +  σ  n  2 ) ]   m  h  −2   σ  s  −2  =  γ  ED  ,  (27)

where T(r) is the statistic of the traditional energy detector and γED is the threshold to satisfy 
Pfa = α for a given CFAR α. Because the Neyman-Pearson detector calculates the energy of the 
receiving signal r(t), it is also called an energy detector.

In the following, the corresponding false alarm rate Pfa(ED) and the detection probability Pd(ED) 
of the above energy detector can be given as

   P  fa (ED)    = Pr  {T (r)  >  γ  ED  ;  H  0  }  = Pr  {  T (r)  ____  σ  n  2 
   >   

 γ  ED  
 ___  σ  n  2 
  ;  H  0  }  =  Q   χ  N  2     (   γ  ED  

 ___  σ  n  2 
  ) ,  (28)

   P  d (ED)    = Pr  {T (r)  >  γ  ED  ;  H  1  }  = Pr  {  T (r)  _______  m  h  2   σ  s  2  +  σ  n  2 
   >   

 γ  ED  
 _______  m  h  2   σ  s  2  +  σ  n  2 

  ;  H  1  }  =  Q   χ  N  2     (   γ  ED  
 _______  m  h  2   σ  s  2  +  σ  n  2 

  ) ,  (29)

while   Q   χ  
N
  2     (⋅)   is the right-tail probability function with N degrees of freedom.

It can be found in the researches that this kind of energy detection method could perform well 
under high SNR. But its performance degrades seriously when SNR is reduced, especially 
when SNR < −10 dB. For example, the value of detection probability Pd under N = 103 and 
Pfa(ED) = 0.1 will decrease from 0.795 to 0.283 when the SNR changes from −10 dB to −15 dB, 
which may be a very general case in CR networks [12].

3.2. SR-based spectrum sensing approach

In this subsection, we propose a novel spectrum sensing method with the combination of 
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system, and the amplified signal can be observed at the output of the SR system. Then the 
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   x    ̇   (t)  = f [x (t) ,  r  0   (t)  +  n  0   (t) ] ,  (30)

     r  0   (t)  = r (t)  /    √ 
_

 var [r (t) ]   ,    (t = 0, 1, …, N − 1)    (31)

where x(t) is still the SR system status vector and n0(t) is the SR noise with mean 0 and variance   
σ   n  0  

  2   , so r0(t) + n0(t) can be taken as the drive signal of the SR system.

Based on the SR linear response theory [3], the status vector of SR system can be divided into 
two independent additive parts, say

  x (t)  =  s  SR   (t)  +  n  SR   (t) ,  (32)

where sSR(t) is the system response signal corresponding to the normalized PU signal  
  h⋅s (t)  /   √ 

______
 var[r(t)]     and nSR(t) is the system response signal corresponding to the noise signal   

 n (t)  / √ 
______

 var[r(t)]    +  n  
0
   (t)   . It can be found that the additive channel noise n(t) also plays a part role of 

SR noise.

From the above analyses, to reach a maximal SNRo, the optimal variance of the introduced SR 
noise   σ   n  

0
   (opt)   

2    can be calculated according to the derivations in the last section.

3.3. Experimental and comparison results

In the following, we present some experimental and comparison outcomes. In the computer 
simulations, the discrete overdamped bistable oscillator in (22) is used as the dynamic SR 
system model.

As is known QPSK and QAM are the mostly used modulation methods [13, 14] in the broad-
casting systems. So in the computer simulations thereafter, a QPSK signal as the PU signal 
together with a co-channel interference QPSK signal with AWGN through the Rayleigh fad-
ing channel is utilized as the driving signal of the SR system, which can be expressed by

  r (t)  = h ⋅  [ A  P   ⋅ sin  ( ω  P   t +  φ  P  )  +  A  M   ⋅ sin  ( ω  M   t +  φ  M  ) ]  + n (t) ,  (33)

where h is the Rayleigh channel gain with mean 1; AP, ωP, and φP are the amplitude, angular 
frequency, and phase of the PU sinusoidal carrier signal; AM, ωM, and φM are the amplitude, 
angular frequency, and phase of the multiuser interference sinusoidal carrier signal, respec-
tively. Here, φP , φM ∈ {π/4, 3π/4, 5π/4, 7π/4} in QPSK. In this case, the input SNR can be calcu-
lated by [15]

    SNR  i   =   1 _ 2    m  h  2   A  P  2  /   (  1 _ 2    m  h  2   A  M  2   +  σ  n  2 ) .   (34)

In the following simulations, we choose ωP = 0.04π, ωM = 0.2π, and   σ  n  
2  = 1 . So the optimal vari-

ance of the introduced white Gaussian SR noise with mean 0 can be calculated through the 
analyses in the last section, and we can get   σ   n  0   (opt) 

  2   = 1 −  k   2   which requires k ≤ 1.
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Figures 7 and 8 give the performance comparison results of the receiver operating character-
istic (ROC) plots between the traditional energy detector and the proposed SR-based energy 
detector under the conditions SNR = −15 dB and SNR = −20 dB. The total sampling number 
is N = 103. In the figures, both the theoretical results and the computer simulation results of 
the above two methods are given, and the theoretical results of detection probability of the 
proposed method are calculated based on (29). It can be discovered that the detection prob-
abilities of the proposed approach are higher than the energy detector, especially under low 
SNR as SNR < −10 dB, which is a good performance to the real applications; and it can also 
be discovered that even under SNR = −20 dB which is also very common in CR networks, the 
proposed detection method can still perform better than the energy detection method with a 
significant detection probability enhancement.

Besides the ROC curve performance comparison, the results of the detection probability ver-
sus SNR under CFAR are also presented. Figures 9 and 10 give the performance comparison  
results between the proposed detection method and the conventional energy detection 
method under Pfa = 0.05 and Pfa = 0.1, respectively. The total sampling number is still selected 
as N = 103. In the following simulations, the input SNR changes from −20 dB to 0 dB. And both 
the theoretical analyses results and the computer simulation results are given in Figures 9 
and 10. It is obvious that the detection probability of the proposed SR-based method can be 
improved, especially under low SNR of SNR < −10 dB, and also it can be discovered that a 
5 dB SNR enhancement can be achieved. Based on the simulation results, the main problems 
of the conventional energy detection method can be solved.

Figure 7. ROC curves of different spectrum sensing approaches under SNR = −15 dB.
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Figure 7. ROC curves of different spectrum sensing approaches under SNR = −15 dB.
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Figure 8. ROC curves of different spectrum sensing approaches under SNR = −20 dB.

Figure 9. Detection probability versus SNR under Pfa = 0.05.

Optimization of Double-Well Bistable Stochastic Resonance Systems and Its Applications…
http://dx.doi.org/10.5772/intechopen.70517

103



4. Application of cooperative stochastic resonance in the energy detection 
problem in cognitive radio networks

4.1. Cooperative SR-based spectrum sensing approach

In these years’ studies, the spectrum sensing techniques in physical layer can be divided into 
two classes: noncooperative sensing techniques and cooperative sensing techniques. Recently 
it has become a new direction by introducing some cooperation methods into the spectrum 
sensing or PU signal detection procedure with the cooperation of different secondary user 
(SU) sensing results [16, 17]. So based on the results in the last two sections, here we introduce 
the chaotic stochastic resonance (CSR) system to improve the spectrum sensing performance 
especially under low SNR circumstances.
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Weibull distribution noise, etc. Here we list the noise-type candidates as {β1(t), β2(t),…, βK(t)}. 
When some certain CSR system f [.] and the noise types are fixed, the corresponding optimal 
parameters with these noise-type candidates can also be calculated.

Theoretically and without loss of generality, it can be assumed that all the receiving signal at 
different SU obey the same distribution, so (23) is suitable for each SU. To simplify the analy-
ses thereafter, we suppose that h = 1. So we have

   {    H  0   :  E [ A  1   (x) ]  = E [ A  2   (x) ]  = ⋯ = E [ A  K   (x) ]  = E [A (x) ]  =  σ  n  2 ,       
  H  1   :  E [ A  1   (x) ]  = E [ A  2   (x) ]  = ⋯ = E [ A  K   (x) ]  = E [A (x) ]  =  σ  s  2  +  σ  n  2 , 

    (35)

while A1(x), A2(x), …, and AK(x) are the statistics of SUs 1, 2, …, K, respectively.

In the data fusion processing, we introduce the traditional Bayesian fusion method to real-
ize the cooperative spectrum sensing. Simultaneously, if the same traditional energy detec-
tion method and the same threshold γED are used at each SU detector, the expectation result 
E[A1 , 2 ,  ⋯  , K(x)] of the Bayesian fusion can be written as

  E [ A   1,2,⋯,K  (x) ]  =   
 ∏ k=1  K    E [ A  k   (x)  | A  k   (x)  =   1 __ N    ∑ t=1  N     x  k  2  (t)  ]    _____________________________   

 ∏ k=1  K    E [ A  k   (x)  | A  k   (x)  =   1 ____ N − 1    ∑ t=1  N−1     x  k  2  (t)  ] 
   ⋅ E [ A   1,2,⋯,K  (x)  | A  k   (x)   

=   1 ____ N − 1    ∑ t=1  N−1     x  k  2  (t)  ]  = E [A (x) ] ,  (36)

where xk(t) is the output of the kth SU’s CSR system.

Let the receiving signal r(t) goes through the dynamic CSR system with different CSR noise 
β1(t), β2(t),…, βK(t), and we can denote the output of each SU’s CSR energy detector to be B1(x), 
B2(x), …, BK(x), respectively. Introducing the conventional Bayesian fusion method to fuse all 
K SUs’ statistical results {A1(x), A2(x), …, AK(x)}, {B1(x), B2(x), …, BK(x)}, and A1,2…,K(x), then the 
following Theorem 1 [18] could verify the effectiveness of the proposed cooperative spectrum 
sensing method.

Theorem 1. The cooperative spectrum sensing approach proposed by using the Bayesian 
fusion to all K SUs’ statistics {A1(x), A2(x), …, AK(x)}, {B1(x), B2(x), …, BK(x)}, and A1,2,…,K(x) shown 
in Figure 1 can improve the sensing performance of conventional energy detection method.

Proof: Please refer Theorem 1 in Ref. [18] for details.

4.2. Computer simulation results

In the following, some computer simulations are carried out to certify the correctness of the 
proposed method. Here, a QPSK signal is selected as the PU signal, that is

  s (t)  =  A  P   sin  ( ω  P   t +  φ  P  ) ,  (37)

where AP, ωP, and φP are the amplitude, angular frequency, and phase of the PU signal and 
φP ∈ {±π/4, ±3π/4} in QPSK. In the following simulations, we set AP = 5 and ωP = 0.02π.
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Also in the simulations, a kind of conventional discrete overdamped bistable oscillator is uti-
lized as the CSR system, that is [19]

   x  i   (t + 1)  =  [g ⋅  x  i   (t)  −  x  i  3  (t) ]   e   − x  i  2  (t)  /  h  + d ⋅ r (t)  +  β  i   (t) .  (38)

In the equation above, xi(t) is the state variable and g and h are the corresponding param-
eters which determine the performance of the system seriously. In the simulations, we choose 
g = 2.85 and h = 10. d is the driving parameter of the CSR system.

The additive channel noise n(t) is supposed to be composed by a sinusoidal interference sig-
nal and an AWGN signal in the computer simulations as

  n (t)  =  n  0   (t)  + ε ⋅ sin  ω  ε   t,  (39)

while n0(t) is the AWGN signal, and the amplitude and angular frequency of the sinusoidal 
signal are set as ε = 0.1 and ωε = 0.8π.

Simultaneously, we choose the following types of CSR noise: uniform distribution noise, 
Weibull distribution noise, and lognormal distribution noise. While the uniform distribution 
noise is evenly distributed within the range [−1,+1].

The pdf of the Weibull distribution noise is

  g (x; u, v)  =  uv   −u   x   u−1   e   −  (x /  v)    u  ,  (40)

Figure 11. ROC curves of different spectrum sensing approach under SNR = −20 dB.
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where u = 2 and v = 1. The pdf of the Lognormal distribution noise is

   g (x; μ, σ)  =  e   −  (ln x−μ)    2  /  2 σ   2   /   (x𝜎𝜎𝜎𝜎  √ 
_

 2π  ) ,   (41)

where the parameters of are fixed as μ = 1 and σ = 1.

In the computer simulations, the total sampling number is N = 106, and the Bayesian fusion 
process is performed under the CSR energy detection spectrum sensing driven by these three 
various kinds of noises, respectively.

Both Figures 11 and 12 give the ROC curves of different spectrum sensing results under 
SNR = −20 dB and −15 dB, respectively. It can be found obviously that the proposed coop-
erative approach can achieve some better performance than the conventional noncooperative 
spectrum sensing methods.

5. Summary

In this chapter, some conventional double-well bistable SR systems are introduced first. Then 
based on the conventional discrete overdamped double-well bistable SR oscillator, the opti-
mization method and the corresponding analyses results are given especially under low SNR 
circumstances. Besides, a novel spectrum sensing approach used in CRN based on SR is pro-
posed. And a cooperative spectrum sensing technique in CRN based on the data fusion tech-
nique is also proposed. The last section summarizes the whole chapter.

Figure 12. ROC curves of different spectrum sensing approach under SNR = −15 dB.
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The optimization approach introduced is especially applicable under low SNR, which are 
familiar in the wireless communications. In the applications, the performance analyses and 
computer simulations show that the effectiveness of the proposed spectrum sensing approach 
is better than the traditional energy detection methods, and this methodology can be extended 
to some other problems with the same two-hypothesis decisions.
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Abstract

We investigate resonant interactions in a specific electrical lattice that supports left-
handed (LH) waves. The impact of LH waves on the three-wave mixing process, which
is the most fundamental resonant interaction, is illustrated. In contrast to the ordinary
right-handed (RH) waves, the phase of the LH wave moves to the different direction
from its power. This exotic property together with the lattice’s dispersive features results
in the resonant phenomena that are effectively utilized for practical electrical engineer-
ing, including the significant harmonic wave generation via head-on collisions, har-
monic resonance, and short pulse generation driven by soliton decay. These resonances
are quantified by the asymptotic expansion and characterized by numerical and/or
experimental methods, together with several design criteria for their practical utiliza-
tion. To cope with dissipation, a field-effect transistor (FET) is introduced in each cell. In
particular, we characterize the stationary pulse resulting from the balance between
dissipation and FET gain.

Keywords: three-wave mixing, soliton decay, harmonic resonance, left-handedness,
electrical lattices, composite right- and left-handed transmission lines, traveling-wave
field-effect transistors, coherent structures

1. Introduction

Resonances have been utilized as the powerful tool to achieve harmonic wave generation in
electrical engineering. This chapter introduces left-handedness to the interacting waves and
discusses its impact in that field. In ordinary, that is, right-handed (RH) media, the wave vector
directs to the same direction as the Poynting vector, so that the phase and power move to a
common direction. In left-handed (LH) media, the situation is reversed.

To achieve strong resonant interactions, frequencies and wave numbers must be preserved. For
example, when a wave of frequency ω1 and wave number k1 interacts with one of ω3 and k3, a
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significant third wave ofω2 and k2 will be generated if the conditionsω1 +ω3 =ω2 and k1 + k3 = k2
are satisfied. The sum of the wavenumber decreases for the head-on collision, because the
wave vector of the left-moving wave has the opposite sign as that of the right-moving one. In
contrast, the sum frequency increases. The phase and power are transferred with the phase
and group velocities, respectively. In addition, the group velocity is given by the slope of the
dispersion curve, so that the frequency increases at least locally as the wavenumber decreases
in LH media, so that they can satisfy the resonant conditions for head-on colliding waves.

To investigate resonances involving LH waves, we introduce nonlinearity to composite right-
and left-handed (CRLH) transmission lines. CRLH transmission lines have been investigated
in electrical engineering community as the practical and broadband platform to support LH
waves [1–4]. The line has noteworthy dispersive property that the propagating wave exhibits
LH (RH) properties when its carrier frequency is greater (less) than the line’s characteristic
frequencies. Furthermore, several activities have clarified the wave dynamics in CRLH lines
with nonlinearity introduced by voltage-controlled devices [5–13]. In our case, the shunt
capacitor each cell of a CRLH line contains is replaced with the Schottky varactor [10, 14]. The
three-wave resonant interaction (3WRI) equations have been derived from the transmission
equations of that nonlinear CRLH line via the derivative expansion method and is used to
characterize the head-on collision of LH waves.

Even when ω1 = ω3 and k1 = k3, the significant energy is transferred from the fundamental to the
second harmonic when the conditions ω2 = 2ω1 and k2 = 2k1 are satisfied. This process, termed
harmonic resonance, is a special case of the three-wave resonant interaction, resulting from
resonance of two identical waves. The dispersion of a nonlinear CRLH line can cause harmonic
resonance for the LH fundamental and RH second harmonic waves. The phase of the LH
fundamental wave advances toward the input end. Accordingly, that of the second harmonic
wave should also move to the input. Because the fundamental wave increases to that direction,
the harmonic resonance generates the second harmonic wave more when it travels longer. The
generation efficiency of the second harmonic waves becomes enhanced through this behavior
via supplemental cavity resonance. It should be noted that the fundamental wave is spontane-
ously converted into its second harmonic one without the aid of pump waves.

Similar spontaneous resonant interaction is expected in nonlinear CRLH lines. The soliton
decay is realized for three waves having different group velocities. It requires the situation
where the wave having the middle group velocity is incident to the line. Then, a soliton
contained in the incident wave decays into the fast and slow solitons spontaneously. Inevita-
bly, the slow soliton(s) occupies the LH branch for the nonlinear CRLH line; therefore, it starts
to travel to the opposite direction to the incident and fast solitons, leading to the shortening of
the fast soliton. By solving the eigenvalue problem of the Zakharov-Shabat (ZS) equation
relating with the 3WRI equation, it is found that the fast soliton can become shorter for longer
incident wave. Through these observations, we can utilize the soliton decay in the nonlinear
CRLH line for generating broadband envelope pulses.

The use of nonlinear CRLH lines is sometimes limited because of wave attenuation caused by
finite electrode resistance and substrate current leakage. In order to achieve loss compensation,
a traveling-wave field-effect transistor (TWFET) is considered [15]. For the voltage waves
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traveling over FET electrodes, two CRLH lattices are required, which are, respectively, loaded
with the gate and drain in each cell. The unit-cell FET can be biased via the LH inductors. In
addition, the inter-cell direct current flow is cut off by the LH capacitors. The device introduces
LC resonant pairs in each cell, which can operate as nonlinear oscillators with the aid of FET
gain; therefore, the device can be considered as a kind of spatially extended oscillator systems.
Hereafter, we call the device as the CRLH-TWFET. In the case of supercritical Andronov-Hopf
bifurcation, the oscillation amplitude gradually increases when the bifurcation parameter
passes a critical value. Then, the relaxation time needed to initiate autonomous oscillation
becomes sufficiently large; therefore, it succeeds in effectively suppressing autonomous oscil-
lation to guarantee the loss-compensated propagation of LH pulse waves. On the other hand,
the amplitude grows to become discontinuously finite in subcritical cases, where the system
affords the coexistence of an oscillatory region with a nonoscillatory region in addition to the
homogeneous oscillatory state [16]. The resulting coherent structures function as the building
blocks of the spatiotemporal patterns appearing in the system. When both boundaries at the
ends of the oscillatory region preserve their relative positions, the oscillatory region preserving
this envelope is called a pulse. Possibly, the boundary velocity vanishes, so that the pulse
becomes localized and stationary [17, 18]. From the scientific viewpoint, a convenient elec-
tronic system to support such solitary waves is valuable for clarifying their interacting dynam-
ics using either numerical or experimental method.

After describing the structure and dispersive properties of the nonlinear CRLH line, the head-
on collision of envelope pulses is characterized numerically on that line to illustrate significant
generation of harmonic waves through resonances. Next, the process is quantified by the 3WRI
equations derived by applying the derivative expansion method to the transmission equations
of a nonlinear CRLH line. Subsequently, two spontaneous resonant interactions: harmonic
resonance and soliton decay are characterized, where the same 3WRI equations are used to
model the wave dynamics. Finally, the development of a stationary pulse in a CRLH-TWFET is
discussed.

2. Fundamental properties of nonlinear CRLH TLs

Because the nonlinear electrical lattice we investigate is based on CRLH lines, we first describe
their fundamental properties. The unit-cell structure is shown at the top of Figure 1(a), where
CR, LR, CL, and LL represent the shunt capacitor, series inductor, series capacitor, and shunt
inductor, respectively. It is shown that two different frequencies are allowed to be supported
on the line for a wavenumber k. As shown below, the high frequency mode exhibits a RH
property and the low frequency one becomes left-handed; therefore, we denote the dispersion
relationships of the two as ω = ωRH,LH(k) (ωRH is for the RH and ωLH for LH). Under the sixth
order long wavelength approximation, these two are explicitly given by

ωRH kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

x kð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4

x kð Þ � 1
CLC0LLLR

svuut , (1)
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.Furthermore, Vg(k) represents the group velocity of the line explicitly given by

Vg kð Þ ¼ k k4 � 20k2 þ 120
� �

240C0LR

ω kð Þ
ω2

x kð Þ � ω2 kð Þ , (4)

where ω = ωLH(k) for the LH branch and ω = ωRH(k) for the RH branch. Typical behavior of ω(k)
is shown in Figure 1(b). There are two essential frequencies that characterize the lines’disper-
sive nature ωse and ωsh defined by 1=
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CLLR

p
and1=

ffiffiffiffiffiffiffiffiffiffi
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p
, respectively. It is found that the line

exhibits a LH property at frequencies lower than ωl�min(ωse,ωsh) and an ordinary RH prop-
erty at frequencies higher than ωu�max(ωse,ωsh). When ωse = ωsh, the LH branch is continu-
ously connected with the RH one, and the line is called balanced. On the other hand, when ωse is
not coincident with ωsh, a stop band, where all supporting modes become evanescent, appears
between ωl and ωu, and the line is called unbalanced. One of the noteworthy properties of LH
waves is that the wavelength becomes longer as the frequency increases at least locally. In

Figure 1. Structure of nonlinear CRLH lines. (a) The cell structures of linear (upper) and nonlinear (lower) CRLH lines
and (b) the dispersion curve of CRLH lines.
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addition, the envelop wave (accordingly, the power) moves to the different direction from its
carrier wave, because Vg(k) has the opposite sign to the phase velocity.

To introduce nonlinearity, we employ the Schottky varactor in place of CR as shown at the
bottom of Figure 1(a). The Schottky varactor is a special type of a diode, whose capacitance is
varied by the terminal voltage that biases reversely. In general, its capacitance voltage relation-
ship is modeled as

C Vð Þ ¼ C0 1þ V0

VJ

� �m

1þ V
VJ

� ��m

, (5)

where C0, VJ, and m are the zero-bias junction capacitance, junction potential, and grading
coefficient, respectively. In addition, the cathode of the Schottky varactor is biased at V0. Using
this representation, the transmission equations are given by

LR
d2In
dt2

¼ � In
CL

� d
dt

Vn � Vn�1ð Þ, (6)

CR
d2Vn

dt2
¼ �Vn

LL
þ d
dt

In � Inþ1ð Þ � dCR

dV
dVn

dt

� �2

, (7)

where In and Vn are the current and voltage at the nth cell, respectively.

3. Head-on collision of LH waves

It is well known that the efficiency of resonant interactions between two waves is maximized,
when the phase-matching condition: k2 = m1 k1 + m3 k3, ω2 = m1ω1 + m3ω3, where k1,3 and ω1,3

represent the wavenumbers and angular frequencies of interacting waves, and k2 and ω2

represents those of the wave generated by the interaction. Moreover, m1,3 are integers that are
specified by the order of the generated harmonics. When the incident pulses have a common
carrier frequency and are traveling in opposite directions, it results in the condition k1 = �k3.
Hence, the maximal second harmonic generation can be observed when k2 = 0. Similarly, for
the third harmonic generation, k2 has to be close to k1. For RH waves, the higher the frequency,
the shorter the wavelength; therefore, it is impossible to satisfy this condition. On the other
hand, when the carrier frequencies of the interacting waves are both set to ω l/2, any CRLH
lines can generate second harmonic waves effectively via head-on collisions because the sec-
ond harmonic frequency ω l corresponds to zero wavenumber. Figure 2 shows the head-on
collision of envelop pulses whose carrier frequencies correspond to ω l/2 (=1.6 GHz). To obtain
Figure 2, we set C0, CL, LR, and LL to 1.0 pF, 1.0 pF, 2.5 nH, and 2.5 nH, respectively, so that the
line becomes balanced with ω u = ω l = 3.2 GHz. In Figure 2(a), the dispersion curve is shown,
where P1, P2, P3, and P4 represent the positions on the dispersive curve the fundamental,
second, third, and fourth harmonic waves occupy, respectively. Note that the wavenumber at
P2 is equal to zero, and either P3 or P4 exhibits coincident wavenumber with that of P1. Figure 2(b)
shows the calculated waveforms, where six spatial waveforms are recorded in 60-ns increments.
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Long wavelength envelope pulses result from the head-on collision as indicated by red circles.
Another example is shown in Figure 3. The carrier frequency of the colliding pulses is set to
1.9 GHz, such that the wavenumber of the second harmonic becomes nonzero, and the
wavenumber of the third harmonic becomes close to that of the fundamental wave; therefore,
the resonance conditions can be satisfied for (m1, m3) = (1, 2) and/or (2, 1). As expected, we can
see that the wavelengths of the collision-induced pulses are comparable to that of the incident
ones in Figure 3(b). Actually, the spectral peak of the collision-induced pulses is located at

Figure 2. Second harmonic generation via head-on collision of LH waves. (a) The dispersive properties of interacting
waves and (b) the numerically obtained time-domain waveforms.

Figure 3. Fourth harmonic generation via head-on collision of LH waves. (a) The dispersive properties of interacting
waves and (b) the numerically obtained time-domain waveforms.
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5.6 GHz, being close to the third harmonic. Note that P3 occupies the RH branch, so that the
LH waves are converted into the RH ones through resonances.

The resonance is briefly discussed for the two colliding pulses having different carrier frequen-
cies [19]. Let the carrier frequency of the left (right)-moving pulse denote as ω1(2). Then, we set
ω1 slightly higher than ωl/2, while ω2 is fixed at ωl/2. The resulting amplitude of the
wavenumber of the right-moving pulse surpasses that of the left-moving one. Both of incident
pulses exhibit left-handedness; therefore, the wave vector directs to the left for the second
harmonic wave. Because the second harmonic wave is carried by the RH mode, the collision-
induced envelope pulse moves to the left. Similarly, only the right-moving envelope pulse
develops, if ω2 is set slightly higher than ωl/2, while ω1 is fixed at ωl/2. These expectations were
validated experimentally using bread-boarded test circuit [20].

In the next section, the evolution equations of the envelope functions of the incident and
collision-induced pulses are obtained by the application of the derivative expansion method
to the transmission equation of a nonlinear CRLH line [21]. In particular, the generation
efficiency of the second-harmonic wave is formulated for the case when the left- and right-
moving pulses have a common frequency and wavelength.

4. Three-wave mixing of LH waves

In the present study, we consider the case where the pulse spreads over many cells, and the
lattice is regarded as being homogeneous, such that the discrete spatial coordinate n can be
replaced by a continuous one x. Then, by series-expanding Eqs. (6) and (7), the evolution
equation of the continuous counterpart of the line voltage ψ = ψ(x, t) is given by

CRCLLRLL
∂4Ψ

∂t4
þ 4CLLRLL

dCR

dV
∂Ψ
∂t

∂3Ψ

∂t3
þ 3CLLRLL

dCR

dV
∂2Ψ

∂t2

� �2

þ 6CLLRLL
d2CR

dV2
∂Ψ
∂t

� �2 ∂2Ψ

∂t2
þ

CLLRLL
d3CR

dV3
∂Ψ
∂t

� �4

þ CLLR þ CRLLð Þ ∂
2Ψ

∂t2
þΨ� CLLL

∂4

∂t2∂x2
Ψþ 1

12
∂2Ψ
∂x2

þ 1
360

∂4Ψ
∂x4

� �
¼ 0,

(8)

where CR = C(ψ � V0). To quantify the resonant nonlinear processes in a nonlinear CRLH line,
we apply the derivative expansion method [22] to that evolution equation. It leads to the
evolution equations of envelop functions of the involved waves. We first expand the spatial
and temporal derivatives as

∂
∂x

¼ ∂
∂x0

þ E
∂
∂x1

þ E2
∂
∂x2

þ⋯, (9)

∂
∂t

¼ ∂
∂t0

þ E
∂
∂t1

þ E2
∂
∂t2

þ⋯, (10)

for ε << 1. For describing the three-wave mixing process of two waves having a wave number
of k1 and k3, then the wave number of the resulting wave k2 satisfies the condition k2 = k1 + k3.
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As mentioned above, for efficient three-wave mixing, the frequencies must satisfy the resonant
condition, that is, ω(k2) = ω(k1) + ω(k3). The voltage variable is then assumed to have a form of

Ψ x; tð Þ ¼
X3

j¼1

Ajei ωj t0�kjx0ð Þ þ c:c:, (11)

where ωj�ω(kj) and Ai denotes the envelope function of variables x1, x2,… and t1, t2,…
Substituting Eq. (11) into Eq. (8), the terms proportional to ei(kjx0

�ω
j
t
0
) (j = 1, 2, 3) of each order

of ε are collected to be vanished. From O(ε2) terms, the evolution equations of envelope
functions are governed by the 3WRI equations given by

∂Aj

∂t
þ Vg kj

� � ∂Aj

∂x
¼ GjA∗

jþ1A
∗
jþ2, (12)

where j = 1, 2, 3, mod 3, and the coupling coefficients are given by

Gj ¼
�i180mωjC0LL �1þ CLLRω2

j

� �

V0 þ VJ
� � �CLLLk2j 360� 30k2j þ k4j

� �
� 360CLLR þ 360C0LL �1þ 2CLLRω2

j

� �n o , (13)

whose denominator becomes zero only at ω2 ¼ C0LRCLLLð Þ14 ∈ ωl;ωuð Þ so that G2 does not
exhibit any diverging behavior for frequencies in either the RH or LH branches. In particular,
the head-on collision of two envelope pulses having common wavenumber, there are two
cases ω2 = ωLH(0),

G2 ¼
�i

m
2 V0 þ VJ
� � 1ffiffiffiffiffiffiffiffiffiffi

C0LL
p , ωse > ωsh,

0, ωse < ωsh:

8<
: (14)

For ω2 = ωRH(0)

G2 ¼
0, ωse > ωsh,

�i
m

2 V0 þ VJ
� � 1ffiffiffiffiffiffiffiffiffiffi

C0LL
p , ωse < ωsh:

8<
: (15)

In summary, the value of G2 becomes finite only when the second harmonic frequency is
matched to ωsh. In contrast, for a balanced CRLH line,

G2 ¼ �i
m

4 V0 þ VJ
� � 1ffiffiffiffiffiffiffiffiffiffi

C0LL
p : (16)

Based on this G2 property, a scheme can be proposed for converting the carrier frequency of the
incident pulsed wave into its second-harmonic wave without deteriorating pulse duration.
Figure 4(a) shows the circuit configuration of the generator creating the pulsed second har-
monic waves. The nonlinear CRLH line is divided into two segments. The first and second
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segments are represented by black and grey elements, respectively. The line parameter values
used in the present demonstration are listed in Table 1. The biasing voltage to shunt varactors
is the unique difference between the segments, which are labeled as V0 and V1 for the first and
second segments, respectively. Increasing V0 decreases the capacitance of the Schottky
varactors and then increases ωsh. The first segment is then arranged for V0 to be sufficiently
large to satisfy the condition ωsh > ωse. An envelope pulse, whose carrier frequency fin is half as
high as ωsh/2Π, is then inputted to the first segment. In contrast, V1 is set to be small in order to
lower ωsh such that the stop band includes fin. The typical dispersion that the segments must
have is shown in Figure 4(b). Here, V0 and V1 are set to 2.7 and 0.2 V, respectively. The left- and
right-side dispersion curves are for the first and second segments, respectively. The incident
pulse cannot be transmitted into the second segment because f1 is designed to be in the stop
band. It is then reflected at the interface. The reflected pulse interacts with the incident pulse in
the same manner as the oppositely traveling pulse. The condition ωsh > ωse guarantees that
G1 becomes finite. Consequently, the second-harmonic wave develops in the first segment at
the vicinity of the segments interface. Because the group velocity at ωRH(0) is zero in the first
segment, the second-harmonic wave remains around the interface. This stationary oscillation is
partially transmitted into the second segment, resulting in the pulsed second harmonic wave

LR (nH) 2.8 CL (pF) 1.0 LL (nH) 2.5

C0 (pF) 1.0 VJ (V) 2.0 m 2.0

Table 1. Parameter values used to obtain Figure 4.

Figure 4. Effective method of second harmonic generation. (a) The device structure (upper), dispersive property of each
segment (lower), and (b) the numerically obtained time-domain waveforms.
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moving to the right on the second segment. The second harmonic pulse is uniquely obtained at
the end of the second segment. Figure 4(c) shows the numerically obtained evolution of a
single soliton having a carrier frequency of fin. Five spatial waveforms recorded at 45 ns
intervals are plotted. We can observe that the right-moving incident pulsed wave is reflected
at interface P, and a small envelope pulse is transmitted into the second segment. The trans-
mitted pulse has only one-fifth the amplitude of the incident pulse; however, it preserves pulse
shape and successfully doubles its carrier frequency.

5. Harmonic resonance

In this section, we investigate harmonic resonance in a nonlinear CRLH line [23]. As discussed
in Section 1, the harmonic resonance becomes significant when the phase velocities of the
fundamental and second harmonic waves are coincident. Figure 5(a) shows the typical disper-
sion of a CRLH line, where LR, LL, CL, and C0 are set to 2.5 nH, 2.5 nH, 1.0 pF, and 0.6 pF,
respectively. For convenience, we also define α�CLLR/C0LL. Notice that the line is balanced
when α = 1.0. Two points P1 and P2 in Figure 5(a) correspond to the fundamental and second
harmonic waves, respectively, for significant harmonic resonance. Both points are placed on a
common line passing through the origin, so that the second harmonic wave has the same
phase velocity as the fundamental. With kf and ωf as the wave number and angular frequency
of the fundamental wave, harmonic resonance becomes eminent when the second harmonic
wave satisfies the two conditions ks = 2kf and ωs = 2ωf, where ks and ωs represent the wave
number and angular frequency of the second harmonic wave, respectively. The second har-
monic wave must occupy the RH branch. Thus, the latter condition is more precisely written as
ωRH(2kf) =2 ωLH(kf). Note that both P1 and P2 exhibit relatively small wave numbers; the

Figure 5. Harmonic resonance in nonlinear CRLH lines. (a) The operating points in dispersion curve and (b) the steady-
state voltage profiles of fundamental and second harmonic waves.
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second-order long-wavelength approximation suffices to describe the processes involved;
therefore, the equation ωRH(2kf) = 2 ωLH(kf) is explicitly solved for kf to give

kf ¼ 1
2

ffiffiffiffiffiffiffiffi
C0

5CL

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4α2 þ 17α� 4

αþ 1

r
, (17)

ωf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

5
4C0LL

r ffiffiffiffiffiffiffiffiffiffiffiffi
1

αþ 1

r
: (18)

.Note that αmust be in (1/4, 4) for the real kf. The fundamental and second harmonic waves are

then shown to have the characteristic impedance Zf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
LL=CL

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� αð Þ= 4α� 1ð Þp

and

Zs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
LL=CL

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α� 1ð Þ= 4� αð Þp

, respectively. Note that Zf = Zs at α = 1.0. According to the
derivative expansion method mentioned above, the 3WRI equations that describe the funda-
mental and second harmonic envelope functions are described as

∂Af

∂t1
þ vgf

∂Af

∂x1
¼ iρf AsA∗

f þ γf Af , (19)

∂As

∂t1
þ vgs

∂As

∂x1
¼ iρsA

2
f þ γsAs, (20)

where vgf and vgs are the group velocities of the fundamental and second harmonic waves,
respectively, explicitly given by

vgf ¼ � 1ffiffiffiffiffiffiffiffiffiffiffi
C0LR

p 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 4α� 1ð Þ 4� αð Þp
16α2 þ 7αþ 16

, (21)

vgs ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
C0LR

p 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 4α� 1ð Þ 4� αð Þp
�α2 þ 23α� 1

: (22)

.Note that vgf becomes negative because the fundamental wave is left-handed. The strength of
harmonic resonance is determined by the coupling coefficients ρf , s. Because of the term A2

f , the

fundamental wave is spontaneously converted into the second harmonic. Ordinarily, the
product ρfρs is negative, so that the increase of As results in the reduction of Af. This negative
feedback stabilizes both waves. On the other hand, the coupling coefficients are presently
given by

ρf ¼
5
ffiffiffi
5

p
m

4 V0 þ VJ
� � ffiffiffiffiffiffiffiffiffiffi

C0LL
p 4� α

16α2 þ 7αþ 16

ffiffiffiffiffiffiffiffiffiffiffiffi
1

αþ 1

r
, (23)

ρs ¼
5
ffiffiffi
5

p
m

4 V0 þ VJ
� � ffiffiffiffiffiffiffiffiffiffi

C0LL
p 4α� 1

�α2 þ 23α� 1

ffiffiffiffiffiffiffiffiffiffiffiffi
1

αþ 1

r
: (24)

Both ρf and ρs are then shown to be positive for α∈ (1/4, 4), such that the developing As

enhances Af. The second harmonic envelope wave travels backward because the phase of the
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fundamental wave travels in the opposite direction to its envelope. This means that the ampli-
tude of both the fundamental and second harmonic waves increases as the phase advances.
Figure 5(b) demonstrates the principle of operation, where the numerically obtained steady-
state profile of the voltage envelopes of the fundamental and second harmonic waves. The cell
number is set to 2000. In addition, the input and output impedances are set to the characteristic
impedances of the second harmonic and fundamental waves, respectively. The second har-
monic wave generated by the harmonic resonance should travel to the input end. The reflec-
tion of the second harmonic wave at the input end was suppressed via the matched
impedance, so the effect of the fundamental’s left-handedness on the profile of the second
harmonic could be seen. Small line resistors were used to suppress multiple reflections. In
addition, α and λf were set to 1.5 and 20 cells, respectively. We applied a 0.5-V sinusoidal
voltage at the left end (ff = 1.0 GHz). Through Fourier transformation, filtering, and inverse
transformation the calculated spatial voltages are separated into each wave component. The
second harmonic wave was superposed in-phase and gained amplitude in the direction to the
input end, as clearly shown in Figure 5(b).

By setting f0 and Zin to ff and Zf, respectively, we achieve effective second harmonic generation.
By the matched impedances, the fundamental waves can travel along the line without reflec-
tions at the ends. On the other hand, the second harmonic wave begins to travel to the input
(left) end and is reflected significantly in a line that satisfies the condition Zs >> Zf. The load
impedance also differs from Zs, such that the second harmonic wave exhibits multiple reflec-
tions. Hence, the second harmonic wave becomes resonant in cavity when the cell size of the
line is an integer multiple of λf/2, as illustrated in Figure 6. This cavity resonance makes the
nonlinear CRLH line become an effective platform for second harmonic wave generation
together with the above-mentioned positive feedback.

Figure 6. Practical structure for second harmonic generation using harmonic resonance.
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6. Soliton decay

To describe the soliton decay in a nonlinear CRLH line, we again consider the 3WRI equations

of a nonlinear CRLH line. By introducing Qj ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gjþ1
�� �� Gjþ2

�� ��q
Aj, Eq. (12) is transformed into

the standard 3WRI equation, that is,

∂Qj

∂t
þ Vg kj

� � ∂Qj

∂x
¼ γjQ

∗
jþ1Q

∗
jþ2, (25)

where γ1,3 = 1 and γ2 = �1. In what follows, an envelope having a carrier frequency of ωj is
called ωj-envelope for brevity. When a ω2-envelope is uniquely applied to the line and the
group velocities satisfy Vg(k1) < Vg(k2) < Vg(k3), its evolution is predicted by solving the eigen-
value problem of the following ZS equation in the framework of the inverse scattering trans-
form:

∂u1
∂x

þ iλu1 ¼ qu2, (26)

∂u2
∂x

þ iλu2 ¼ �qu1, (27)

where λ and (u1, u2)
T are the eigenvalue and corresponding eigenvector, respectively [24, 25].

In addition, q = q(x) is defined by

q xð Þ ¼ � Q 0ð Þ
2 xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vg k2ð Þ � Vg k1ð Þ� �
Vg k3ð Þ � Vg k1ð Þ� �q , (28)

for the spatial waveform Q 0ð Þ
2 xð Þ of the incident ω2-envelope. The stability of the ω1- or ω3-

envelope solitons is shown to be secured, that is, the original envelopes never lose the solitons,
while the ω2-envelope solitons are always unstable, which decay into both the slow and fast

envelope ones. The latter phenomenon is called soliton decay. When Q 0ð Þ
2 xð Þ evolves into N

solitons, the ZS equation must have N pure imaginary eigenvalues in the upper half plane,
whose norms are inversely proportional to the spatial width of the corresponding soliton. Let

λ 2ð Þ
m m ¼ 1;⋯;Nð Þ be such eigenvalues of Eqs. (26) and (27). Then, it is shown that

λ 1ð Þ
m ¼ Vg k3ð Þ � Vg k2ð Þ

Vg k3ð Þ � Vg k1ð Þλ
2ð Þ
m , (29)

λ 3ð Þ
m ¼ 1� Vg k3ð Þ � Vg k2ð Þ

Vg k3ð Þ � Vg k1ð Þ
� �

λ 2ð Þ
m , (30)

where λ jð Þ
m j ¼ 1; 3ð Þ defines the eigenvalue corresponding to the soliton in the ωj-envelope

resulting from the decay of the soliton in the ω2-envelope corresponding to λ 2ð Þ
m . For example,
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the line can be designed to exhibit dispersive property shown in Figure 7, where the incident
envelope occupies the region in the neighborhood of P2. Then, due to the resonant conditions,
ω1,3-envelope is shown to be around P1,3 uniquely. Notice that group velocities satisfy

Vg(k1) < Vg(k2) < Vg(k3) and P1 is on the LH branch. Due to the negative Vg(k1), λ 1ð Þ
m takes a small

value, while λ 3ð Þ
m becomes rather large. As a result, the solitons in ω1-envelope start to travel

backward with a relatively wide width. Conversely, the ω3-solitons become short.

We validate the analysis with the numerical integration of Eqs. (6) and (7). The line is designed
to be balanced by setting CL, LL, C0, and LR to 1.0 pF, 2.5 nH, 1.69 CL, and 1.69 LL, respectively.
In addition, m, VJ, V0, and ω2 are set to 2.0, 2.0 V, 1.0 V, 4.54 GHz, respectively. Figure 8(a)

Figure 7. Dispersive properties of waves involved by soliton decay.

Figure 8. Numerically obtained waveforms exhibiting soliton decay. The dynamics are shown for (a) short and (b) wide
envelope pulse incidences.
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shows calculated waveforms on the line, where five spatial waveforms recorded at 250-ns
increments are plotted. A 0.25 V hyperbolic secant envelope with 3.5-ns duration is applied at
the left end. The incident ω2-envelope decays into a unique pair of the fast and slow solitons,
which are labeled at the fourth waveform as A and A0, respectively. The duration of the
incident ω2-envelope is varied to be 10.5 ns in Figure 8(b). Three times wider pulse is inputted
for Figure 8(b) than one for Figure 8(a). The incident ω2-envelope decays into three pairs of the
fast and slow solitons, which are labeled as (A, A0), (B, B0), and (C, C0). As expected, the widths
of the emitted solitons become narrower in Figure 8(b) than those in Figure 8(a).

As a broadband pulse generator, it suffices for a nonlinear CRLH line to succeed in the
emission of the first pair of solitons. To output the short envelope pulse uniquely, we only set
up a band-pass filter extracting frequencies around ω3 in the subsequent stage [26].

7. CRLH-TWFETs

Figure 9(a) shows the structure of a CRLH-TWFET. Two coupled transmission lines are
periodically loaded with FETs in such a way that one of the lines is connected to the gate and
the other to the drain [15]. The gate line consists of the series inductor, series capacitor, shunt
inductor, and shunt varactor, whose values are respectively denoted as LRg, CLg, LLg, and the
Schottky varactor modeled by Eq. (5) is assigned to Cgs, which is introduced to control bifur-
cation property of the line via VSD. The biasing voltage VGG is applied to each transistor
through the shunt inductance. On the other hand, LRd, CLd, LLd, and Cds configure the unit cell
of the drain line. The biasing voltage VDD is applied to the drain of each transistor through LLd.
Each inductor has finite parasitic resistances, which are denoted as RRg, RRd, RLg, and RLd for
LRg, LRd, LLg, and LLd, respectively. The gate and drain lines are coupled via the gate-drain
capacitor denoted as Cgd. Because of the couplings, there are at most two different modes for
each frequency. Moreover, the lowest and second lowest frequency modes exhibit a LH prop-
erty, whereas the other two modes exhibit right-handedness.

As in the case of nonlinear CRLH lines, the device can generate long wavelength harmonic
wave via head-on collision of LH waves. Interestingly, such collision-induced wave evolves to
a stationary pulse. Figure 9(b) demonstrates that, for the varactor, m and VJ are set to 1.5 and
5.0 V, respectively. We then set C0 to the value, for which Cgs becomes 140 pF at V = V0 = VGG.
The other reactance values are listed in Table 2. In general, the resistances tend to be propor-
tional to the corresponding inductances. VSD is set to 18.0 V to guarantee subcritical bifurca-
tion. The cell size is 500. Both ends are excited by a sech-shaped envelope pulse whose carrier
frequency is 7.7 MHz. The inset of Figure 9(b) shows the steady-state profile of the stationary
solitary wave, which has a flattop waveform with a width of 30 cells.

In practice, the line parameter values fluctuate, such that finite disorder is introduced to the
lattice dynamics, which effectively serves the Pieres-Nabarro potential to the wave dynamics.
When the pulse cannot overcome the potential, it is partially reflected to become a stationary
pulse via resonance. Thus, the stationary pulse is expected to develop more frequently on the
line when the fluctuation increases. To examine the property of the practical line, we fabricated
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a test line on print circuit board. Actually, the parameter values used to obtain Figure 9(b)
simulate those of the test line. Figure 10(a) shows the measured spatiotemporal voltage profile.
A sech-shaped envelope pulse was inputted only at the near end. The pulse moving to the far
end was significantly reflected near the 300th cell and two different stationary pulses developed
after reflection. Figure 10(b) shows the calculated voltage profile to simulate the measured

Figure 9. Head-on collision of envelop pulses in a TWFET. (a) The unit-cell structure and calculated spatiotemporal
profile is shown in (b). No fluctuation of device parameter values is assumed.

CLg (pF) 22.0 CLd (pF) 22.0 LLg (μH) 10.0 LLd (μH) 4.7 LRg (μH) 4.7

LRd (μH) 10.0 RLg (Ω) 9.7 RLd (Ω) 4.5 RRg (Ω) 4.5 RRd (Ω) 9.7

Cds (pF) 47.0 Cgd (pF) 13.0 Cgs0 (pF) 137.0 VJ (V) 4.96 m 1.5

Table 2. Parameter values used to obtain Figure 9(b).

Figure 10. Envelope pulses in disordered lattice. The spatiotemporal voltage profile obtained by (a) the measurement and
(b) calculation.
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result, where the fluctuation has 7% standard deviation. The device fluctuation cannot be
modeled exactly. However, it successfully demonstrates both the reflection and the develop-
ment of a stationary pulse. With the balance between the dissipation and FET gain in a disor-
dered lattice, resonant interactions lead to this interesting wave dynamics.

8. Conclusions

We first describe the three-wave mixing process in nonlinear CRLH lines. The head-on colli-
sion of LH waves results in a significant amount of harmonic waves, whose efficiency is
accurately predicted by the asymptotic method.

The CRLH dispersion allows us two spontaneous resonant processes to generate harmonic
waves: the harmonic resonance and soliton decay. The harmonic resonance in a nonlinear CRLH
line succeeds in generating second-harmonic waves even under the presence of finite line
resistance, when the line is designed for the second-harmonic waves to cause cavity resonance.
The left-handedness of the fundamental wave guarantees that both the fundamental and second
harmonic waves can gain amplitude as phase advances. The soliton decay in a nonlinear CRLH
line gives the effective way for generating broadband envelope pulses. The incident envelope
spontaneously emits several pairs of the fast and slow solitons. In general, slow solitons exhibit
left-handedness to travel backward and their fast counterparts become shorter than the incident
pulse. In addition, the wider the incident pulse, the narrower the fast solitons.

A CRLH-TWFET is shown to support stationary nonlinear oscillatory pulse waves, which is
generated by the collision of two counter-moving waves through resonance. The presence of
disorder helps the development of stationary pulses. The bias voltage of varactor in each cell
can be set independently and control the position and number of such stationary pulses.
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Abstract

This chapter will give an introduction to linear and nonlinear oscillators and will propose
literature to this topic. Most importantly, hands on examples with numerical simulations
are illustrating oscillations and resonance phenomena and where useful, also analytical
methods to treat nonlinear behavior are given.

Keywords: parametric resonance, autoparametric resonance, nonlinear vibration,
Mathieu equation, Hopf bifurcation, Strutt diagram, nonlinear natural frequency,
instability domain, basepoint excited primary and secondary system

1. Introduction

When a mechanical system has at least two vibrating components, the vibration of one of the
components may influence the other component. This influence effect which might stabilize
or destabilize the system is called autoparametric resonance. This chapter will introduce auto-
parametric resonance by examining hands on examples for such systems. In particular,
basepoint excited systems are analyzed. Beside purely mechanical systems, also examples of
an electrical system with two coupled resonators are investigated.

There are three main types of oscillation: (1) free oscillation, (2) forced excited oscillation and
(3) self-excited oscillation.

Free oscillation is defined as temporal fluctuations of the state variables of a system. Such
temporal fluctuations can be defined as deviations from a mean value. Vibrations are present
in many mechanical systems and occur always in feedback systems. The concept of free
oscillation is misleading since nearly all physical systems are subject to attenuation. However,
it depends on the size (and thus the time). Exceptions could be, for example, orbit oscillations
of planets (macroscopic) or oscillations of electrons (microscopic). The two systems mentioned
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are also subjected to a type of damping, since both systems cannot remain stable indefinitely,
but for an extremely long time.

A forced excited spring mass systemmight be a mechanically forced oscillator. Such systems of
translational motions are discussed in Sections 2 and 3. Beside translatory oscillations, rotatory
oscillations and resonance is of vital interest to design engineers of aircraft turbines, etc.
Unbalanced rotating machine parts are sources of unwanted vibrations and might resonate
when excited accordingly.

Self-excited oscillation, also called as self-oscillation, self-induced, maintained or autonomous
oscillation is known in electronics as parasitic oscillation and in mechanical engineering liter-
ature as hunting. Such systems are discussed in Section 3.

Table 1 depicts relevant parameters for characterization motion in translational and rotational
structures. The parameters for displacement, velocity and acceleration have been written as
absolute values – knowing that depending on the application, they might be vectors, depe-
nding on the chosen frame of reference. In the most general case, they form a four vector. The
force is written as mass times acceleration (Newton’s second law) and therefore force is also a
vector. That brings us to Newton's first law, which states that an object that is at rest will stay at
rest unless a force acts upon it or inversely an object will not change its velocity unless a force
acts upon it. For completeness, also Newton’s third law shall be given: Actio et Reactio – all
forces between two objects exist in equal magnitude and opposite direction. A treaty to
Newton's laws of dynamics can be found, for example in chapter 9 of volume I [1].

D'Alembert’s principle is a statement of the fundamental classical laws of motion. It is the
dynamic analogue to the principle of virtual work for applied forces in a static system and in
fact is more general than Hamilton's principle, avoiding restriction to holonomic systems1.

Translational Rotational

Symbol Description SI Unit Symbol Description SI Unit

s Displacement m ϕ Angle rad

v ¼ ds
dt

Velocity m
s ω ¼ ϕ d

dt
Angular velocity rad

s

a ¼ dv
dt

m
s2 α ¼ ω d

dt
Angular acceleration rad

s2

m Mass kg J Inertia kg m2

F = m a Force N T = J α Torque Nm

I = m v Momentum Ns L = J ω Angular momentum Nms

T ¼ 1
2m v2 Kinetic energy Nm T ¼ 1

2 J ω
2 Kinetic Energy Nm

U ¼ 1
2 k y

2 Potential energy Nm U ¼ 1
2 c ϕ

2 Potential energy Nm

W =
Ð
Fds Work J W =

Ð
Tdϕ Work J

P = F v Power W P = J ω Angular power W

Table 1. Comparison of translational and rotational motion parameter characteristics.

1A holonomic constraint depends only on the coordinates and time and does not depend on velocities.
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If the negative terms in accelerations are recognized as inertial forces, the statement of
d'Alembert's principle becomes “the total virtual work of the impressed forces plus the inertial
forces vanishes for reversible displacements”. The principle does not apply for irreversible
displacements, such as sliding friction, and more general specification of the irreversibility is
required. A derivation of the Lagrangian equation of motion is well explained in Chapter 1 of
[2] or [3]. In (1), the non-conservative energy term defined as the Lagrangian (L) is, composed
of the kinetic energy T and the potential energy U.

L ¼ T �U (1)

In (2) the Lagrangian equation is given with generalized coordinates qi of a dynamic system
and dissipative generalized forces Qi.

d
dt

∂L
∂ _qi

� �
� ∂L
∂qi

¼ Qi (2)

The sum of all kinetic energies T in the system, whether translational or rotational character
(see also Table 1) needs to be included. The sum of all potential energies U in the system,
whether it stems from the gravitation or energy from linear or nonlinear springs or whatever
scalar field. Elastic potential energy from any linear or nonlinear spring can be obtained
calculating its potential energy. The Lagrangian formalism can also be used for mechanical
systems with mass explicitly dependent on position, see for example [4]. In the following
chapters, all analyzed dynamical systems are derived using this elegant and powerful method.

Looking at translational (classic) mechanical springs, the displacement dependent force F(qt)
can be written as shown in (3) using spring stiffness k1 N

m

� �
, the generalized translational

coordinates qt and having also introduced a nonlinear spring term kn and an exponent n for
setting nonlinearity of spring. For linear springs, where the force is proportional to the dis-
placement (Hooke's law), this nonlinear spring term will be zero.

F qt
� � ¼ k1 qt þ kn qt

n (3)

The elastic energy Eelastic of the spring is obtained by integrating the exerted force over its
covered path s.

Eelastic sð Þ ¼
ðs
0
F qt
� �

dqt ¼
ðs
0
k1 qt þ kn qt

n ¼ 1
2
k1 þ kn

1þ n
qt

1þn s
0

�����

Eelastic sð Þ ¼ 1
2
k1 s2 þ kn

1þ n
s1þn with n > �1 (4)

The elastic energy Eelastic (a potential U) for a linear translational spring is given also in Table 1.
For (rotational) torsion springs, the procedure is the same and a given spring torque can be
expressed as shown in (5) with torsion coefficient D1

Nm
rad

� �
, the generalized translational coor-

dinates qr and having also introduced a nonlinear torsion spring term Dn.
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T qr
� � ¼ D1 qr þDn qr

n (5)

The elastic rotational energy can be expressed as follows (6):

Eelastic ϕð Þ ¼
ðϕ
0
T qr
� �

dqr ¼
ðϕ
0
D1 qr þDn qr

n dqr ¼
1
2
D1 qr

2 þ kn
1þ n

Dn qr
1þn ϕ

0

�����

Eelastic ϕð Þ ¼ 1
2
D1 ϕ2 þ 1

1þ n
Dnϕ1þn with n > �1 (6)

In Figure 1, sketches on the top show translational springs (from left to right linear, nonlinear and
nonlinear unsymmetrical) and sketches on the bottom depict rotational springs (from left to right
linear, nonlinear and nonlinear unsymmetrical). The origin is depicted with an O and the spring
displacement is depicted as y and ϕ, respectively. For the translational magnetic spring systems,
the lower and upper magnets are fixed to the reference frame with origin O. The nonlinear
symmetric magnetic spring uses three identical block or diskmagnets. Suchmagnetic springs have
a nonlinear term kn > 0 – forming so called hardening springs if kn < 0 in literature referred to
softening springs, see for example [5]). The nonlinear unsymmetrical translational magnetic spring
is also shown in the neutral position and the displacement around the origin is unsymmetrical.

The rotational magnetic spring systems have a ferromagnetic stator fixed to the reference
frame and a rotating hollow shaft carrying two permanent magnets, in this scenario also made
of ferromagnetic material. The spring is drawn in the unstable equilibrium position. Exemplarily
spring characteristics for such translational and rotational spring systems are depicted in Figure 2.

Figure 1. Sketches of translational and rotational spring systems.
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Note that integrating the force or torque response will add up to zero for rotational and
translational spring systems. The given exemplarily spring characteristics of drawn spring
systems in Figure 1 are shown in Figure 2. On the left-hand side, exemplarily translational
spring characteristics are shown and on the right-hand side rotational spring characteristics are
depicted. The linear case where the force and torque are proportional to the displacement is
shown in blue. In red, symmetric nonlinear – here for translational and rotational systems a
permanent magnet system is shown, but also mechanical spring systems could be envisaged.
The curves of the nonlinear asymmetric cases are depicted in orange. In the appendix A.1,
more simulations have been depicted for translational symmetric spring systems using ring
magnets.

Equivalence of electrical and mechanical systems are shown in Table 2. On the left-hand side, a
mechanical system with only one degree of freedom in y direction is shown and its equivalent
electrical structure with charge q and current i on the right-hand side. Kinetic energies are
denoted with TT (translational kinetic energy) and TL (inductive kinetic energy), potentials are
written as US (spring potential) and UC (capacitive potential) and the gravitational potential
denoted as UG and the DC battery voltage is UB. Non-conservative components are in the
mechanical system the viscous damping force and in the electrical system the electrical resistor.

The Lagrange energy function is shown for the mechanical system in (7) and its equivalent
electrical system in (8).

Lmech ¼ TT � US þUGð Þ ¼ 1
2
m y02 þ 1

2
k y2 �m ɡ y (7)

Lel ¼ TL � UC þUBð Þ ¼ 1
2
L q02 þ 1

2
1
C

q2 �U0 q (8)

Applying the Lagrangian formalism (1) and (2) to these SDoF systems, will lead to the
resulting DE's as shown in (9) and (10). Note that the sign of the (viscous) damping must be
introduced always with a negative sign using the generalized coordinates – as its velocity is

Figure 2. Exemplarily displacement-force signals (l) and angular displacement-torque signals (r) of the shown spring
systems of Figure 1.
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always opposing the system velocity. In the electrical circuit, having the flowing charge veloc-
ity q’ for example, current i defined in clockwise direction, the battery voltage, as it is a source,
must act in the opposite direction and therefore this potential energy must be introduced with
a negative sign.

m y
0 0 þ d y0 þ k y ¼ ɡ m (9)

L q
0 0 þ R q0 þ 1

C
q ¼ U0 (10)

Both systems (9) a force DE, (10) a voltage DE, belong to the same class of ordinary linear
second-order DE. Resonance frequency for the mechanical system (9) is ωmech

2 ¼ k
m and for the

electrical system (10) ωel
2 ¼ 1

L C.

2. Linear resonance systems

2.1. Linear single degree of freedom systems

In this section, a linear basepoint excited single degree of freedom systems is discussed. The
lumped parameter model for the examined system (Figure 3) consists of a linear oscillator with

Mechanical kinetic energy: Electrical kinetic energy:

TT ¼ 1
2m y02 TL ¼ 1

2L q02

Mechanical potential energies: Electrical potential energies:

US ¼ 1
2 k y

2 UC ¼ 1
2
1
C q2

UG = m ɡ y UB = U0 q

Mechanical damping force: Electrical damping voltage:

Fd = d y0 Vd = R q0

Table 2. Equivalence of electrical and mechanical systems.
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mass m damping factor d, a linear spring with a spring rate k1 and an external basepoint
excited harmonic force with amplitude y0(t). System coordinate origin is placed at the
basepoint excitation.

The kinetic energy (11) of this system and the potential energy (12) form the non-dissipative
energy of this system. The dissipative force Fd of this system –we consider only viscous friction
– is shown in (13) and the driving force F0 (14) assuming a harmonic basepoint excitation with
amplitude A and driving frequency ω.

T ¼ 1
2
m y02 (11)

U ¼ m ɡ yþ 1
2
k1 y2 (12)

Fd ¼ d y0 (13)

F0 ¼ m
d2

dt2
A cos ωtð Þ ¼ �mAω2 cos ωt (14)

Applying the Lagrangian formalism (1) and (2), we deal with SDoF system, will lead to the
resulting DE shown in (15). Note that the sign of the viscous damping must be introduced with
a negative sign using the generalized coordinates. The driving force F0, as it is a harmonic
signal, can be introduced with a positive or a negative sign, resulting in a phase shift of 180�.

m y
0 0 � �mɡ� k1yð Þ ¼ �Fd � F0 (15)

m y
0 0 þ d y0 þ k1yþmɡ ¼ mAω2 cos ωt (16)

Introducing dimensionless notation, by using a dimensionless time τ, a dimensionless system
resonance frequencyΩ, the damping factor ξ1 and the gravity offset term ϱ (17) and setting the
dimensionless displacement u (18).

τ ¼ t ω1;Ω ¼ ω
ω1

;ω1
2 ¼ k1

m
; ξ1 ¼

d
2 m ω1

; ϱ ¼ ɡ
A ω1

2 (17)

Figure 3. Linear single degree of freedom (SDoF) spring mass damper model of a resonant harmonic basepoint excited
oscillator.
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path u τð Þ ¼ y tð Þ
A

(18)

By replacing parameters of (16) with (17, 18), we obtain (19). We can drop the gravity offset
term ϱ, as it will only add a non-time dependent offset to the solution u (20).

u
0 0 þ 2ξ1u0 þ uþ ϱ ¼ Ω2 cos Ωτð Þ (19)

u
0 0 þ 2ξ1u0 þ u ¼ Ω2 cos Ωτð Þ (20)

Frequency domain behavior is obtained by applying the Laplace Transformation (21–24) and
by replacing s = jΩ we obtain the frequency response (25).

U sð Þ ¼ L u τð Þf g ¼
ð∞

0

u τð Þe�sτdτ (21)

L u
0 0 þ 2ξ1u0 þ u

n o
¼ � d2

dt2
cos Ωτð Þ (22)

U sð Þs2 þ 2ξ1U sð ÞsþU sð Þ ¼ s2Y0 sð Þ (23)

G sð Þ ¼ U sð Þ
Y0 sð Þ ¼

s2

1þ 2ξ1sþ s2
(24)

G ξ1;Ωð Þ ¼ U jΩð Þ
Y0 jΩð Þ ¼

Ω2

1þΩ2 þ j2ξ1Ω

�����

����� (25)

G represents the relative motion of the oscillation. As long as the excitation frequency can be
represented by a Fourier series of harmonic functions, this obtained solution is valid and a very
powerful result. (24) and (25) are represented in Figure 4. The advantage of the Bode Plot

Figure 4. Representation of frequency response of a linear SDoF system using (24) Bode diagram (left) and absolute value
representation of (25) (right).
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representation is to have also the phase shown. As smaller the dimensionless damping ξ1
become, as larger becomes the scaled resonance at the dimensionless frequency ration Ω.

2.2. Linear two degree of freedom systems (2DoF systems)

In this section, a linear basepoint excited two degree of freedom systems is discussed. The
lumped parameter model for the examined system (Figure 5) consists of two linear oscillators
with mass m1 and m2, damping factors d1 and d2, linear springs with spring rates k1 and k2 and
an external basepoint excited harmonic force with amplitude y0(t). System coordinate origin is
placed at the basepoint excitation.

T ¼ 1
2
m1 y1

02 þ 1
2
m2y2

02 (26)

U ¼ m1 ɡ y1 þm2 ɡ y2 þ
1
2
k1 y1

2 þ 1
2
k2 y2 � y1
� �2 (27)

Fd ¼ d1 y1
0 þ d2 y2

0 (28)

F0 ¼ m1 þm2ð Þ d
2

dt2
A cos ωtð Þ ¼ � m1 þm2ð ÞAω2 cos ωt (29)

Applying the Lagrangian formalism (1) and (2) to this 2DoF problem, we obtain the coupled
DE system shown in (30) and (31).

m1 y1
0 0 þ d1y01 þ k1y1 � k2 y2 � y1

� �þm1g ¼ m1 þm2ð ÞAω2 cos ωt (30)

m2 y2
0 0 þ d2y02 þ k2 y2 � y1

� �þm2ɡ ¼ 0 (31)

DE system shown in (30), (31) is represented dimensionless in equation DE system (32), (33)
using the dimensionless parameters of (34), (35).

Figure 5. Linear 2DoF spring mass damper model of a resonant harmonic basepoint excited oscillator.
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u
0 0
τð Þ þ 2ξ1u0 τð Þ þ u τð Þ þ λmΩ0

2u τð Þ � λmΩ0
2v τð Þ þ ϱ ¼ Ω2 cos τΩð Þ (32)

v
0 0
τð Þ þ 2ξ2Ω0v0 τð Þ þΩ0

2v τð Þ �Ω0
2u τð Þ þ ϱ ¼ 0 (33)

Similar to dimensionless parameters of (17), (18), the dimensionless time τ, a dimensionless
system resonance frequency Ω, damping factors ξ1 and ξ2, a gravity offset term ϱ, system
resonance frequencies of each oscillator ω1 and ω2 plus a mass ratio λ_m and an oscillator
frequency ratio Ω0 plus dimensionless displacements u and v.

τ ¼ t ω1;Ω ¼ ω
ω1

;ω1
2 ¼ k1

m1
;ω2

2 ¼ k2
m2

; ξ1 ¼
d1

2 m1 ω1
; ξ2 ¼

d2
2 m2 ω2

;Ω0 ¼ ω2

ω1
;λm ¼ m2

m1
; ϱ ¼ ɡ

A ω1
2 (34)

path u τð Þ ¼ y1 tð Þ
A

and path v τð Þ ¼ y2 tð Þ
A

(35)

The frequency response of this coupled oscillator system can again be obtained using the
Laplace transformation introduced in (21). The system in the frequency domain is shown in
(36) and (37) using the same steps as shown in the SDoF system (22)–(25).

U sð Þs2 þ 2ξ1U sð ÞsþU sð Þ 1þ λmΩ0
2� �� λmΩ0

2V sð Þ þ ϱ ¼ s2Y0 sð Þ (36)

V sð Þs2 þ 2ξ2Ω0 V sð Þsþ V sð ÞΩ0
2 �U sð ÞΩ0

2 þ ϱ ¼ 0 (37)

As (36) and (37) represent two algebraic equations, U(s) and V(s) can be separated, resulting in
(38) and (39). Note that the gravity term ϱ in the numerator will introduce an additional
damping of the transfer function.

U sð Þ ¼ � �ρλmΩ0
2 þ s2 þ 2sξ2Ω0 þΩ0

2� � �ρþ s2Y0 sð Þ� �

λmΩ0
4 � s2 þ 2sξ2Ω0 þΩ0

2� �
1þ s2 þ 2sξ1 þ λmΩ0

2� � (38)

V sð Þ ¼ �ρ 1þ s2 þ 2sξ1 þ 1þ λmð ÞΩ0
2� �þ s2Ω0

2Y0 sð Þ
s4 þΩ0

2 þ 2s3 ξ1 þ ξ2Ω0ð Þ þ 2sΩ0 ξ2 þ ξ1Ω0 þ λmξ2Ω0
2� �þ s2 1þΩ0 4ξ1ξ2 þΩ0 þ λmΩ0ð Þð Þ (39)

Figure 6 depicts the relative oscillation response in the frequency (left) and time domain (right) of
the derived 2DoF system. The frequency response is given as a dimensionless ratio Ω, see also
(34). The dimensionless simulation parameters have been set exemplarily to ξ1 = ξ2 = 0.021, λm =
0.42 andΩ0 = 1. As we have two resonators with same system frequencies ω1 ¼ ω2 ¼ 169 rad

s , two
resonances will occur.This system reaches resonances at 0.71 Ω (19Hz) and at 1.41 Ω (38Hz) for
Ω0 = 1 and 0.82 Ω and at 6.1Ω forΩ0 = 5 (dashed lines).

The time-domain response from this coupled DE system with lumped parameter model
Figure 5 and (32) and (33) is shown in Figure 7. On the left-hand side, the ^dimensionless
basepoint acceleration signal is given and its dimensionless response signals of first (blue) and
second (red) DoF, simulating 50 periods and starting with settled initial conditions (amplitude
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U sð Þ ¼ � �ρλmΩ0
2 þ s2 þ 2sξ2Ω0 þΩ0

2� � �ρþ s2Y0 sð Þ� �

λmΩ0
4 � s2 þ 2sξ2Ω0 þΩ0

2� �
1þ s2 þ 2sξ1 þ λmΩ0

2� � (38)

V sð Þ ¼ �ρ 1þ s2 þ 2sξ1 þ 1þ λmð ÞΩ0
2� �þ s2Ω0

2Y0 sð Þ
s4 þΩ0

2 þ 2s3 ξ1 þ ξ2Ω0ð Þ þ 2sΩ0 ξ2 þ ξ1Ω0 þ λmξ2Ω0
2� �þ s2 1þΩ0 4ξ1ξ2 þΩ0 þ λmΩ0ð Þð Þ (39)

Figure 6 depicts the relative oscillation response in the frequency (left) and time domain (right) of
the derived 2DoF system. The frequency response is given as a dimensionless ratio Ω, see also
(34). The dimensionless simulation parameters have been set exemplarily to ξ1 = ξ2 = 0.021, λm =
0.42 andΩ0 = 1. As we have two resonators with same system frequencies ω1 ¼ ω2 ¼ 169 rad

s , two
resonances will occur.This system reaches resonances at 0.71 Ω (19Hz) and at 1.41 Ω (38Hz) for
Ω0 = 1 and 0.82 Ω and at 6.1Ω forΩ0 = 5 (dashed lines).

The time-domain response from this coupled DE system with lumped parameter model
Figure 5 and (32) and (33) is shown in Figure 7. On the left-hand side, the ^dimensionless
basepoint acceleration signal is given and its dimensionless response signals of first (blue) and
second (red) DoF, simulating 50 periods and starting with settled initial conditions (amplitude
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of by1start < 1μm and by2start < 1μm). The main simulation parameters are shown in the heading,
a variant of this setup using nonlinear springs is given in the appendix A.3.

3. Nonlinear resonance systems

In the introduction, Section 1, we distinguished three cases of vibration. The class forced
excitation will be further investigated in this section. In Figure 8 five systems are depicted that
can potentially exhibit parametric resonance effects. The term parametric means that of cases
where the external excitation appears as a time varying modification of a system parameter. A
“normal” forced excitation system whether linear or nonlinear, will respond to the excitation

Figure 6. Bode diagram of a linear 2DoF system represented by (38) and (39) (left); first oscillator with mass m1 in blue
and second with m2 in red with Ω0 = 1 and Ω0 = 5 (dashed lines) and constructed frequency response using time domain
signals (right).

Figure 7. Numerical simulation results of the linear basepoint excited 2DoF system shown in (32) and (33) using a
constant acceleration of 0.5g and a basepoint excitation of ω = 25 Hz.
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with or without resonance using the energy fed into it and no time varying modification of a
system parameter might excite additionally the system.

The five depicted systems in Figure 8 might show an exponential amplitude growth when
excited externally in presence of a system damping factor. In the two electrical systems on the
right-hand side, any of the three components R (here not drawn), L or C that is parametrically
excited will respond with an exponential amplitude growth, if the mathematical physical
system model has at least one degree of freedom of the Mathieu DE (40) or the Hill DE (41).

q
0 0 þ q aþ b cos Ωtð Þ ¼ 0 (40)

The Hill differential equation is a generalized form of (40), in which the harmonic function is
replaced with any periodic function, shown in (41).

q
0 0 þ q aþ f p tð Þ

� �
¼ 0 (41)

It is most interestingly that any system parameter including also damping factors with time
varying influence of a system parameter will result in an exponential growth of the response
amplitude. To give a concrete example of this behavior, we consider here the example from
Section 3.2 and inspect the resulting (dimensioned) DE system with (62) as primary system
and (63) as secondary system of such a behavior.

The primary system has no such configuration, but the secondary system (63) is of Mathieu
type. To simplify the treated system, we use instead of the basepoint excitation y0 the primary
system y, compare also the lumped parameter model in Figure 12 (in an experiment we would
simply make the stiffness k of the system very large, for example, replacing the spring with a
fixed stiff rod). Now the new induced basepoint excitation y will excite the secondary system
directly. As y is appearing in (63) as acceleration, we adjust this basepoint excitation simply in
form of an acceleration (42).

y ¼ A cos ωtð Þ ! y
0 0 ¼ A ω2 cos ωtð Þ (42)

Writing (63) as an acceleration DE (dividing by m2 l) and inserting it the acceleration of (42), it
is read (43).

Figure 8. Examples of physical systems exhibiting potential parametric resonance effects, adapted after [2].
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l ϕ
0 0 þ D

m2 l
ϕ0 þ ɡ sin ϕþ A ω2 cos ωtð Þ sin ϕ ¼ 0 (43)

Rearranging the terms and setting sinϕ ffi ϕ, we get (44), which is a Mathieu type DE with

parameters a ¼ g
l and b ¼ � A ω2

l .

ϕ
0 0 þ D

m2
ϕ0 þ sin ϕ

ɡ
l
þ A ω2

l
cos ωtð Þ

� �
¼ 0 (44)

For generating parametric resonances, the (natural) system frequency needs to be coupled with
the excitation frequency ω. Using the same nomenclature as in (64), we define the pendulum
system frequency ω2

2 ¼ g
l. For generating parametric resonances for which the angle ϕ(t) is

growing exponentially, a frequency ratio ω : ω2 = 1 : 1 is sufficient (as well as the ratio
ω : ω2 = 2 : 1), see also left-hand side of Figure 9. In case of letting the displacement term be

Figure 10. Response signals of a parametrically excited pendulum examining DE (47) with keeping damping term D = 0,
l = 108.1 mm, A = 100 mm and ω1 = 10 rad.

Figure 9. Nonlinear single degree of freedom (SDoF) spring mass damper model of a resonant harmonic basepoint excited
oscillator.
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harmonic (left-and right-hand side of Figures 9), the frequency ratio must be very close to a 2:1
ratio to have a large amplitude response. The ratio tolerance for having a large growth has a
band width of ca. 1 rad to keep a large amplitude growth going.

Note that the response signal in orange on the left-hand side of Figure 10 is using an approx-
imated linear displacement function sin(ϕ(t)) ! ϕ(t) and is scaled down by factor 10�4.The
generated beat frequency signal is obtained using the exact harmonic displacement function.

3.1. Nonlinear single degree of freedom systems

Similar to the case in Section 2.1, also a SDoF system will be discussed, but this time a linear
and a nonlinear spring will be present. The nonlinearity of this spring shall have the form
shown in (3) having a nonlinear exponent n = 2 and k3 > 0 , a parameterization like that is
generally used for a magnetic spring (see also top middle sketch in Figure 1 and appendix
A.1). The lumped parameter model for the examined system (Figure 10) consists beside this
spring system with linear spring rate k1 and nonlinear spring rate k3 of an oscillator mass m, a
viscous damping factor d and an external basepoint excited harmonic force with amplitude
y0(t). System coordinate origin is placed at the basepoint excitation.

The elastic energy of this nonlinear spring system with n = 2 will lead to the following spring
energy, see also derivation in (4).

Eelastic yð Þ ¼ 1
2
k1y2 þ 1

4
k3 y4 (45)

Adding up all kinetic energies and all potential energies, disturbances in form of a viscous
damping and a basepoint excited force is given in (46)–(49).

T ¼ 1
2
m y02 (46)

U ¼ m g yþ 1
2
k1 y2 þ 1

4
k3 y4 (47)

Fd ¼ d y0 (48)

F0 ¼ m
d2

dt2
A cos ωtð Þ ¼ �mAω2 cos ωt (49)

Applying the Lagrangian formalism (1) and (2), we deal again with a SDoF system, will lead to
the resulting DE shown in (50), similar to the result derived in Section 2.1 – but here we have
now introduced a nonlinear spring system.

m y
0 0 þ d y0 þ k1yþ k3y3 þmɡ ¼ mAω2 cos ωt (50)

Introducing dimensionless notation, by using a dimensionless time τ , a dimensionless system
resonance frequencyΩ, the damping factor ξ1 and the gravity offset term ϱ (51) and setting the
dimensionless displacement u (52).
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τ ¼ t ω1;Ω ¼ ω
ω1

;ω1
2 ¼ k1

m
; β ¼ k3

k1
A2; ξ1 ¼ d

2 m ω1
; ϱ ¼ ɡ

A ω1
2 (51)

path u τð Þ ¼ y tð Þ
A

(52)

By replacing parameters of (50) with (51), (52) we obtain (53), including the dimensionless
gravity term ϱ as well.

u
0 0 þ 2ξ1u0 þ uþ βu3 þ ϱ ¼ Ω2 cos Ωτð Þ (53)

DE (53) is nonlinear, as we have also a path dependent function to the power of 3 and a
dimensionless factor β which is generally small. If this factor β is positive, we deal with a
nonlinear spring hardening system, if β is negative, it is a spring softening system. Unfortu-
nately, such a system cannot be examined using the Laplace or Laplace-like transformation,
such as [6], as this transformation can deal only with linear functions, respectively, nonlinear
quadratic functions. For solving this nonlinear so-called Duffing DE, there are several methods
available, such as averaging method or the harmonic balancing method. The averaging
method assumes that a solution of the DE can be obtained using harmonic functions In Ref.
[7], chapter 9.3, a general solution for nonlinearity terms with a positive integer exponent βun is
obtained using the averaging method. Another method to get analytic solutions is, as said, the
harmonic balance method, which is well explained in the textbook [8], chapter 2.3.4; the DE
case of (53) is discussed in the same book, chapter 4.1 and there are many research papers to
discuss this nonlinear DE, see for example [9, 10]. Note that this case is of nonlinear nature, as
it includes the nonlinear term βu3, but cannot exert parametric resonance. However, there are
also many research papers where such nonlinearities coupled with a Mathieu DE are
discussed, see for example [11].

The depicted Figure 11 shows simulation results of DE (53). The time domain behavior (top
left) and its dimensionless phase space behavior (top right) is shown with simulating 50
periods with settled initial conditions (amplitude of by < 1μmÞ. The top row depicts one
simulation point in the bottom row, where a frequency sweep has been done, sweeping the
basepoint excitation from ω = 5…40Hz and keeping the acceleration signal constant at 0.5 g.
To make sure that only non-transient amplitudes are selected to create the frequency
response, only in the last 5 periods (out of 50) the maximal and minimal value is selected).
The top row is using a constant angular excitation of 25 Hz and depicts only one simulation
point of the generated frequency response. The main simulation parameters are shown in the
heading, a variant of this simulation is given in the appendix A.3. Note the shown simulated
data are taken from a validated electromagnetic SDoF vibration energy harvester system by
the author.

3.2. Nonlinear two degree of freedom systems

Let us consider the lumped parameter model in Figure 12. A pendulum with a stiff rod of
length l and mass m2 suspended on a spring damper system with mass m1 and stiffness k and
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Figure 11. Numerical simulation results of the nonlinear basepoint excited SDoF system shown in (53) using a constant
acceleration of 0.5 g and a basepoint excitation ofω = 25Hz (top row) and its sweep behaviorω = 5…40Hz (bottom row).

Figure 12. Nonlinear two degree of freedom (2DoF) spring mass damper model.
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damping factor d. Mass m1 can move only in the depicted y direction and pendulum only in
the X-Y plane.

Governing equations are derived using again the Lagrange formalism. Considering the frame
of reference at the origin shown in Figure 12 and defining in Cartesian coordinates first the two
degrees of freedom vector ry and rϕ (54).

ry ¼ 0
y tð Þ

� �
and rϕ ¼ l sin ϕ tð Þ

y tð Þ � l cos ϕ tð Þ
� �

(54)

The kinetic energy for both degrees of freedom are shown in (55, 56).

Ty ¼ 1
2
m1

d
dt
ry:x

� �2

þ d
dt

ry:y

� �2
 !

¼ 1
2
m1 y02 (55)

Tϕ ¼ 1
2
m2

d
dt
rϕ:x

� �2

þ d
dt

rϕ:y

� �2
 !

¼ 1
2
m2 l2 cos ϕð Þ2ϕ02 þ 1

2
m2 y0 þ l sin ϕ ϕ0ð Þ2 (56)

The potential energies derived from the same vectors lead to (57) and (58).

Uy ¼ m1ɡ yþ 1
2
k y2 (57)

Uϕ ¼ m2ɡ y� l cos ϕð Þ (58)

The Lagrange energy function L becomes:

L ¼ Ty þ Tϕ � ðUy þUϕÞ (59)

The viscous friction for both degree of freedoms is given in (60) and the basepoint excited
driving force is given in (61).

Fdy ¼ d y0 and Tdϕ ¼ D ϕ0 (60)

F0 ¼ � m1 þm2ð Þ d
2

dt2
A cos ωtð Þ ¼ m1 þm2ð ÞAω2 cos ωt (61)

Applying the Lagrange formalism (2) for both degrees q1 = y and q2 = ϕ lead to the coupled DE
system of (62), (63), representing a force DE respectively a torque DE. On the right-hand side of
those DE's, the defined viscous frictions of (60) and the basepoint excitation (61) is present.

m1 þm2ð Þy0 0 þ ɡ m1 þm2ð Þ þ kyþ lm2 ϕ02 cos ϕþ ϕ
0 0
sin ϕ

� �
¼ �d y0 þ F0 (62)

m2l2ϕ
0 0 þ ɡlm2 sin ϕþ lm2y

0 0
sin ϕ ¼ �D ϕ0 (63)

The parameters for non dimensionalization are given in (64), (65). Note that the reference
system frequency ω1 is set to the 1. DoF (also called primary, the mass spring system) and the
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second system frequency ω2 to the 2. DoF (the pendulum – also called secondary system). The
excitation frequency is associated to ω.

τ ¼ t ω1;λm ¼ m2

m1 þm2
¼ m2

m
;Ω ¼ ω

ω1
;ω1

2 ¼ k
m
;ω2

2 ¼ ɡ
l
;Ω0

2 ¼ ω2
2

ω1
2 ;λl ¼ l

A
;

ξ1 ¼
d

2 m1 ω1
; ξ2 ¼

D
2 m2 l2 ω2

; ϱ ¼ ɡ
A ω1

2 (64)

path u τð Þ ¼ y tð Þ
A

and angle θ τð Þ ¼ ϕ tð Þ
ϕ0

(65)

u
0 0 þ 2ξ1u0 þ uþ λmλl θ02 cos θþ θ

0 0
sin θ

� �
þ ϱ ¼ Ω2 cos Ωτð Þ (66)

θ
0 0 þ 2ξ2Ω0 θ0 þ sin θ Ω0

2 þ λl
�1 u

0 0
� �

¼ 0 (67)

Figure 13 depicts left the excitation (magenta) and the time response signals of y (blue) and ϕ
(red) and its phase space behavior on the right-hand side.The parameters are chosen in such a
way,that the pendulum starts rotate.The excitation primary system has a resonance ratio of
ω : ω1 = 1 : 1 and secondary primary frequency ratio is ω2 : ω1 = 2 : 1. The stability of such a
pendulum is described in chapter 4.4 of [7], where so called semi trivial and nontrivial solu-
tions for this system are discussed.

A treaty of such a system, a kinetic energy harvesting device, with additionally a nonlinear
spring system on the primary and an electromagnetic harvester on the secondary system is
given in Ref. [12]. Note that the derivation of the system equations there have been made
without the Lagrangian formalism and the found system equations are equivalent.

Figure 13. Numerical simulation results of the nonlinear basepoint excited 2DoF system shown in (66, 67) using a
constant acceleration of 0.2 g and a constant basepoint excitation of fexc = 22.22 Hz.

Resonance148



second system frequency ω2 to the 2. DoF (the pendulum – also called secondary system). The
excitation frequency is associated to ω.

τ ¼ t ω1;λm ¼ m2

m1 þm2
¼ m2

m
;Ω ¼ ω

ω1
;ω1

2 ¼ k
m
;ω2

2 ¼ ɡ
l
;Ω0

2 ¼ ω2
2

ω1
2 ;λl ¼ l

A
;

ξ1 ¼
d

2 m1 ω1
; ξ2 ¼

D
2 m2 l2 ω2

; ϱ ¼ ɡ
A ω1

2 (64)

path u τð Þ ¼ y tð Þ
A

and angle θ τð Þ ¼ ϕ tð Þ
ϕ0

(65)

u
0 0 þ 2ξ1u0 þ uþ λmλl θ02 cos θþ θ

0 0
sin θ

� �
þ ϱ ¼ Ω2 cos Ωτð Þ (66)

θ
0 0 þ 2ξ2Ω0 θ0 þ sin θ Ω0

2 þ λl
�1 u

0 0
� �

¼ 0 (67)

Figure 13 depicts left the excitation (magenta) and the time response signals of y (blue) and ϕ
(red) and its phase space behavior on the right-hand side.The parameters are chosen in such a
way,that the pendulum starts rotate.The excitation primary system has a resonance ratio of
ω : ω1 = 1 : 1 and secondary primary frequency ratio is ω2 : ω1 = 2 : 1. The stability of such a
pendulum is described in chapter 4.4 of [7], where so called semi trivial and nontrivial solu-
tions for this system are discussed.

A treaty of such a system, a kinetic energy harvesting device, with additionally a nonlinear
spring system on the primary and an electromagnetic harvester on the secondary system is
given in Ref. [12]. Note that the derivation of the system equations there have been made
without the Lagrangian formalism and the found system equations are equivalent.

Figure 13. Numerical simulation results of the nonlinear basepoint excited 2DoF system shown in (66, 67) using a
constant acceleration of 0.2 g and a constant basepoint excitation of fexc = 22.22 Hz.

Resonance148

4. Conclusions

In the introduction, we showed the equivalence of rotary and translatory mechanical systems
as well as the equivalence of mechanical and electrical resonance systems. Also, a brief intro-
duction to the Lagrangian formalism is given. In preparation to nonlinear resonance systems,
also rotational and translational springs are discussed. Three classes of spring systems have
been identified: linear springs nonlinear symmetric springs and nonlinear asymmetric springs.
Throughout the chapter further readings are proposed.

In Section 2, linear resonance systems with one and two degrees of freedom have been
investigated using basepoint excited systems. Using the Laplace Transformation is most useful
to analyze any linear resonance system with a periodic excitation.

Section 3 deals with nonlinear resonance systems. When in such a dynamical system one of the
resulting DE's is of Mathieu or Hill type, the response amplitude of such a system might grow
exponentially. This is exemplary demonstrated in Section 3.2 identifying the system differential
equations of a basepoint excited two degree of freedom system. Some dynamic properties of
such a system is demonstrated.

A. Appendix

A.1. Nonlinear symmetric spring systems

Using instead of disk magnets ring magnets, strong nonlinearities can be generated. The
following series in Figure A1 depicts a few simulation cases. Some of shown simulation cases
have been validated and proven experimentally.

A.2. Variant of linear 2DoF system

Instead of using linear springs, magnetic nonlinear springs can be used (see also a selection of
such spring characteristics in A.1). Using nonlinear springs and making the system nonlinear
(instead of having only a linear spring term, we have for each spring also a term of the form
β1 u

3 and β2 v
3). The relative response signals of such a system is depicted in Figure A2.

It is interesting, that the relative motion of the 2. DoF is responding with resonance between
19…25.5 Hz.The first degree of freedom has a nonlinear spring hardening behavior, reaching
App = 7.9 mm at 25.5 Hz.

A.3. Variant of nonlinear SDoF system

A created tool by the author in Matlab/Simulink has been used to simulate many basepoint
excited SDoF or nDoF systems with rotational or translational or mixed structures.
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It allows to simulate such systems with constant amplitude or constant acceleration, can
handle hard or soft-impact of the oscillating proof mass(es). In addition, one sided spring
characteristics can be simulated, see also Figure A3 – a feature that is especially interesting in
relation with magnetic springs. Main disadvantage of such one-sided bound springs is the fact,
that they need to be installed upright. The behavior of such a one-sided magnetic spring is
depicted in Figure A3. It has a frequency response similar to a softening spring. The maximal

Figure A1. Spring force behavior of ring magnets using different distances of non-movable magnets.
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amplitude of 3.65 mm occurs at 17.5 Hz (the two-sided classical hardening magnetic spring
reaches an amplitude maximum of 4.3 mm at 27 Hz). Such a spring system could also be
analytically described, by introducing for example continuous piecewise functions.
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University of Applied Sciences and Arts Northwestern Switzerland, Switzerland

Figure A2. Response signals of a 2DoF system using lumped parameter model in Figure 5: Instead of having linear
springs, also nonlinear springs are present.

Figure A3. Response signals of a one-sided bound magnetic spring.
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Abstract

Nanofibrous layers have unique acoustic properties due to the large specific surface area
of the nanofibers, where viscous losses may occur and also the ability of the nanofiber
layer to resonate at its own frequency. The resonance membrane is then, upon impact of
sound waves of low frequency, brought into forced vibrations, whereby the kinetic
energy of the membrane is converted into thermal energy by friction of individual
nanofibers, by the friction of the membrane with ambient air, and possibly with other
layers of material arranged in its proximity, and part of the energy is also transmitted to
the frame, by which means the vibrations of the resonance membrane are damped.
When sound waves hit the nanofiber membrane, they introduce forced vibrations in
the case of resonance which have maximal amplitude. The principle of the technology is
achieved by the synergy of perforated plate in the form of a cavity resonator with
nanofibrous layer in the form of resonant membrane. The parameters of the resonant
nanofibrous membrane together with the shape and volume of the perforations then
determine which sound frequencies will be damped and to what extent.

Keywords: membrane, nanofibers, sound absorption, foil

1. Introduction

The confusion between sound insulation and sound absorption is often phenomenon. Sound-
absorbing materials play an indispensable part in controlling noise generated within a room or
in reverberant areas. Although such materials are highly effective as sound absorbers, they are
relatively poor sound insulators because of their soft, porous, and lightweight construction.
Sound insulation prevents sound traveling from one place to another such as between apart-
ments in a building. A part of sound energy is absorbed, the next part is reflected, and the
rest is transmitted to the second room. The sound attenuation is due to the air viscosity,
nonreversible deformation of material, and the thermal conduction between the fibers and the
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air. The sound absorption also depends on structure characteristics, that is, fiber arrangement,
fiber fineness, density of fiber, porosity, and so on. The sound absorption of lower frequencies
becomes the main problem of this acoustic section.

Nanofibrous layers have unique acoustic properties due to the large specific surface area of the
nanofibers, where viscous losses may occur and also the ability of the nanofiber layer to
resonate at its own frequency. The resonance membrane is then, upon impact of sound waves
of low frequency, brought into forced vibrations, whereby the kinetic energy of the membrane
is converted into thermal energy by friction of individual nanofibers, by the friction of the
membrane with ambient air, and possibly with other layers of material arranged in its prox-
imity, and part of the energy is also transmitted to the frame, by which means the vibrations of
the resonance membrane are damped. When sound waves hit the nanofiber membrane, they
introduce forced vibrations in the case of resonance which have maximal amplitude.

1.1. Membrane resonators

Materials based on resonance principle can be divided into three groups: arrangements behav-
ing as vibrating membranes, arrangements behaving as vibrating plates, and arrangements
consisting in the principle of Helmholtz resonators.

The work [1] uses a mechanic analogy of an acoustic resonance system consisting of an acoustic
mass ma connected to an acoustic plasticity ca, the movement of which is dampened by an
acoustic resistance Ra. The behavior of the membrane (plate) can be compared to the behavior
of a corpus with a certain mass flexibly connected to a spring (represented by an air cushion, of
by the air in material pores). Assuming that the elements representing the mass are perfectly stiff
and the elements representing the flexibility have no mass, this problem can be compared to the
theory of linear circuits in the field of electrical engineering, where the coils are considered as
having no capacity, condensers having no inductivity, and resistors being purely ohmic [2]. As in
the field of electrical engineering, where the notion of electrical impedance is introduced, which
is defined as the ratio between the voltage and current, a similar variable can be introduced for
acoustic systems—the acoustic impedance Z. It is defined as the ratio of the pressure affecting the
system and the volumetric rate at which the system vibrates thanks to the effect of the
abovementioned force. For individual elements, apply the following:

Zm ¼ jωma, ZR ¼ Ra, Zc ¼ 1
jωca

(1)

where j is an imaginary unit, ω the angular frequency, in s�1.

Assuming that the system is not damped (Ra = 0), it meets the equation

jωma þ 1
jωca

¼ 0; (2)

the resonance of the system according to Ref. [1] then occurs at the frequency
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ρ

msqd
;

r
(3)

where c is the speed of sound propagation through the environment, in m s�1, ρ is the air
density, in kg m�3,msq is the surface density of the membrane, in kg m�2, and d is the thickness
of the air cushion in m.

The influence of the surface density of the membrane on the resonance frequency of the
system, or the sound absorption coefficient that increases with this characteristics, is also
apparent. We can also notice the shift in the maximums of the sound absorption coefficient
toward lower frequencies.

A thin circular membrane is defined in Ref. [3] as a structure that arises by stretching, for
example, a thin homogeneous elastic film with a constant surface density to a rigid circular
frame. The membrane gains its rigidity by means of this stretching induced by radially acting
force. The resonance frequency of a thin circular membrane is defined using the relation

f i ¼
a0, i
2πR

ffiffiffiffiffiffiffi
ν
msq

r
; (4)

where a0,i are constants of symmetric vibrations of the circular membrane for i-modes, R is the
membrane diameter, in m, and ν radially acting stretching force related to the unit of the frame
diameter (membrane tension), in N m�1.

From the above, it shows that the resonance frequency of the membrane decreases with
its increasing surface density. Membrane resonators based on a resonant principle of a
nanofibrous layer function effectively as slim lightweight absorbing solutions. Contrary to
conventionally used microscale sound absorbers, sound-absorbing membranes based on sub-
micron fibers show a higher absorption abilities—due to the possibility of resonating on its
own resonant frequency, the nanofibrous membrane is able to absorb critical lower sound
frequencies. These unique properties come from the nature of nanofibrous layers, that is, small
fibrous diameter (respectively, high specific surface area) and high porosity. This makes it
possible to reach higher viscous loss inside the material and consequently to dissipate the
acoustic energy. Nanofibrous elements and optimal rigidity of the membrane itself then allow
an acoustic system to vibrate more efficiently [4, 5]. Resonant nanofibrous membranes of insig-
nificant thickness are prepared from different polymer solutions in the form of electrospun
nanofibers captured on a substrate layer via electrospinning method.

The theoretical bases of sound absorption characteristics that the paper deals with are studies
performed by Sakagami et al. The study [6] focuses on a membrane-type sound absorber. To
analyze the absorption mechanism, the solution is rearranged in a form which points out the
contribution from each element of the membrane. The effects of the parameters of the sound
absorption system are discussed in the light of the calculated results. Also, the method used for
predicting the peak frequency and the peak value of the oblique-incident absorption coefficient
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of the membrane-type sound absorber is presented and satisfactorily explains the relationship
between the absorption characteristics and the parameters.

Resonant behavior of a microperforated panel for various perforation ratios in comparison with
a panel-/membrane-type absorber is presented in Ref. [7], considering back-wall surface effect.
The effectiveness of a fiber-based sound absorbance material involves several parameters such as
porosity, tortuosity, fiber diameter, surface density, and thickness [8]. The optimal material types
and structural characteristics of such membranes are in the deep interest of researchers, and
although some have been proposed, it still remains as a subject of research. Kalinová has
demonstrated that the resonance frequency of polyvinyl alcohol (PVA) nanofibrous acoustic
membranes decreases with an increasing surface density and the average diameter of the
nanofibers [5]. Rabbi et al. sandwiched polyacrylonitrile (PAN) and polyurethane (PUR)
nanofibrous membrane between two nonwoven layers of polyester (PET) and wool. All mate-
rials with electrospun membrane(s) were found to significantly increase its absorbance. More-
over, the effect of nanofiber layer’s number and its surface density was investigated [9].
Asmatulu et al. tested the sound absorbance property of electrospun polyvinyl chloride (PVC)
mat of different thickness and with fiber diameters ranging from a few hundred nanometers to a
few microns. When the fiber diameter goes beyond 500 nm, the sound absorbance shift toward
the lower frequency with a thicker mesh but absorption coefficients remain the same [4].

1.2. Helmholtz’s resonators

Helmholtz’s resonators are acoustic systems that consist of a swinging air plug and a
connected air volume. It can have a variety of forms: an empty wine bottle, corpus of a string
instrument, bass reflex enclosures of loudspeakers, and wall coverings made of perforated
panel. These acoustic systems can be arranged either separately or jointly to the perforated
board, which is mounted to a certain distance from the wall [10].

In the study [11], the variable system of sound absorption power by the chairs in the low-
frequency range was examined. As the results of scale model experiments (1/10 scale) in the
reverberation room, the absorption power was controlled in the low-frequency range by the
opening and closing of holes of the resonator. The diameter of holes, a neck's length, and a
cavity volume of the seat were evaluated. The result was obtained for 125 or 250 Hz by
changing the cavity volume of the seat in the experiment.

An acoustical structure consisting of a large-scale isolated resonator with a large-diameter
cylindrical cavity has been studied in the work [12]. This resonator differs from the classical
Helmholtz’s resonator where the cavity is only several millimeters in diameter and lined with a
sound-absorbing material. The impedance of the cavity and the impedance of the volume of
the resonator are calculated. Calculations show that the sound energy is absorbed by resonators
made of sound-reflecting materials. Absorption is of a resonant character with the resonant
frequency at 60 Hz. A resonator measuring 200 � 200 cm, with the cavity diameter of 50 cm
and the distance to the rigid surface being 30 cm, absorbs 3.5 m2 of sound energy at the
resonant frequency. At very low frequencies, changes in the imaginary parts of both cavity
and radiation impedances occur along with the increase in the cavity diameter and frequency.
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The study [13] deals with the effect of orifice geometry on the resonance frequency of
Helmholtz’s resonators. Helmholtz’s theoretical formula for calculating resonant frequency fH
is as follows:

fH ¼ c
2π

ffiffiffiffiffiffiffi
a
V
,

r
(5)

where c is the sound velocity, a is the diameter of orifice, and V is the volume of cavity. Further,
Sondhauss’s calculation of resonant frequency fS with the correction δ = 4a/3π is then

f H ¼ c
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

V lþ 2δð Þ ,
s

(6)

where A is the orifice area and l is the orifice thickness.

1.3. Measuring methods

Vibration phenomena can be investigated by the noninvasive optical methods. One of the most
widely used methods for vibration measurement and analysis is laser vibrometry that can be
combined with the high-speed camera. This approach can be seen in different application
fields, for example, the development and monitoring of high-speed milling devices [14–21].
Nabavi describes the utilization of the particle image velocimetry technique to measure the
velocity of the standing waves within an air-filled rigid-walled square channel subjected to
acoustic standing waves. The data were compared with the analytical results obtained from
the time-harmonic solution of the wave equation [22].

The resonant effect of nanofibrous membrane has been studied by means of high-speed digital
camera in the author’s paper [23]. The study attempted to predict the sound absorption
behavior of the PVA nanofibrous membrane in comparison with the homogeneous membrane
structure using an experimental setup involving a high-speed camera. The membrane has been
exposed to plane sinusoidal sound wave and its deflection was picked by the high-speed
digital camera. The resonant peaks of oscillating nanofibrous membrane as well as homoge-
neous membrane occur (see Figure 1). The recent study [24] shows how except for the lowest
frequencies (first resonance peak), the resonant behavior of the membrane is affected by the
resonance of the tube when the effect of mass per unit area on resonance frequencies of the
membrane placed in an open and closed tubes is investigated.

Two-microphone impedance measurement tube type 4206 is used to measure the absorption
coefficient in the frequency ranges from 100 Hz to 6.4 kHz. This is achieved by measuring the
incident and reflected components of random noise, which is generated inside the tube. From
the incident and reflected components of the sound pressure at two microphone positions, the
frequency response functions are calculated due to the cross-spectrum of the two microphone
signals. Using these values, the sound absorption coefficient can be determined. An apparatus
is used to determine the sound absorption coefficient of laboratory circular samples with a
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diameter of 100 mm for a frequency range of 100–1600 Hz and 29 mm for a frequency range of
500–6400 Hz, according to the standard ASTM E1050-08.

Due to the fact that the quad perforations in the plate were almost the same size as the
diameter of the small tube of the measuring apparatus, the samples were measured only in a
large tube with a diameter of 100 mm for a limited frequency range of 100–1600 Hz. These
frequencies, however, cover the area particularly focusing on middle and lower frequencies.

2. Acoustic element design

2.1. Production of nanofibrous layer for membrane resonator design

For the production of nanofibrous membranes, roller electrospinning method (nanospider
machine) was used. In this method, there is a roller that is connected to a high voltage supplier,
and at the top of the roller there is a counterelectrode that was grounded. Taylor cones are
created on the roller surface toward counterelectrode (Figure 2). Individual nanofibrous layer
of very low basis weight of about 0.1–2 g/m2 is not self-supporting. That is why the nanofibers
are deposited on a thin supporting textile. This carrier has to be sound permeable with a low
basis weight of about 20–50 g/m2. Process parameters such as roller speed, distance between
the electrodes, voltage, and so on are set for an optimal nanofiber diameter and the basis
weight of nanofibrous membrane.

For the production of PA6 nanofibrous membranes, the cord electrospinning method was
used [25]. In this method, the cord was connected to a high voltage supply, and at the top of
the cord there was a counterelectrode, which was grounded. The liquid polymeric material is
applied onto the cord around its whole circumference, and then the application means moving
reversibly along the active spinning zone of the cord and the process of electrostatic spinning
of the liquid polymeric material is started. Taylor cones were created on the cord surface
toward the counterelectrode.

Figure 1. The resonance peaks of nanofibers compared with foil (took over author’s paper 23).
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2.2. Cavity resonator together with nanofibrous resonant membrane

The principle of the technology is achieved by the synergy of the perforated plate in the form of
a cavity resonator with nanofibrous layer in the form of a resonant membrane. The resonant
nanofibrous membrane is arranged on the surface of the cavity resonator, to which it is fixedly
attached, for example, glued or laminated, and so on. Its parts, which overlap the orifices
leading into the cavities of the cavity resonator, constitute separate resonant surfaces, whereby
the resonant frequency of each of them is determined, apart from the overall properties of the
resonant membrane, also by their size and shape. Upon impact of sound waves, these resonant
surfaces are brought into forced vibrations, which are subsequently damped by friction in the
inner structure of the resonant membrane, by the friction of the resonant membrane against
ambient air, and possibly against other layers of the material arranged in its proximity,
wherein part of the kinetic energy of the resonating membrane is transmitted to the cavity
resonator. Moreover, friction in the inner structure of the resonant membrane is further
increased by the fact that the neighboring resonant surfaces can vibrate with mutually differ-
ent periods or deviation.

At the same time, it is possible—while maintaining the thickness of the acoustic element—to
damp sound frequencies which could be normally damped by the cavity resonator with
extremely large air gap. In order to obtain the required sound-absorbing properties, the
resonant membrane can be arranged on both opposing surfaces of the cavity resonator.

The acoustic element is based on a quad hollow plate (see Figure 3) whose reverse side is
covered by a thin carrier layer with a nanofibrous membrane which to a certain extent protects
the frame against mechanical damage. For the final application in the room acoustic, the space
between the nanofibrous membrane covering the thin perforated plate and the wall or ceiling

Figure 2. Schematic diagram of roller electrospinning method used for PVA nanofibrous membrane production.
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(20–50-mm air gap in the mentioned experimental) is of huge benefit to the new technology. It
can be used for the installation of lighting, audio speakers or heating, and so on. The sound-
absorbing means can be used, for example, for the production of acoustic bodies, interior
blinds, tiling, ceilings, screens, and separating walls for interiors, or, as the case may be,
segment or profile elements for the transportation industry (paneling of cabin).

Figure 3 (on the right) shows the final lighted prototype of acoustic system based on
nanofibrous membrane covering the thin perforated plate. The resonance frequency of the
acoustic system is then determined especially by dimensions of plate perforations, by the size
and shape of the inlet orifices, and by its material and thickness of the plate.

Table 1 shows the calculation of resonant frequency for each of quad perforated plates that
have been studied at the experimental section of this work.

Firstly, due to the fact that the quad perforations in the plate were almost the same size as the
diameter of the small tube of the measuring apparatus, the samples were measured only in a

Figure 3. Components used to design the acoustic elements—aluminum quad hollow plate 9/11 (size of perforation is 9�
9 mm, span of perforation is 11 � 11 mm) with a thickness of 1 mm (left) covered with a nanofiber layer (middle) lighted
(right).

Quad hollow plate (quad size in mm/quad span in mm) fH (Hz) fS (Hz)

3/5 2682 2467

4/6 2581 2462

5/7 2473 2415

8/10 2190 2219

9/11 2112 2155

10/12 2040 2095

25/30 1290 1369

Table 1. Calculated resonant frequency of separate perforated plates based on Helmoltz’s (fH) formula (5) and
Sondhauss’s (fS) formula (6).
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large tube with a diameter of 100 mm for a limited frequency range of 100–1600 Hz. These
frequencies, however, do not cover the resonant frequencies of separate perforated plates
calculated in Table 1. Secondly, in the case of nanofibrous layer in a form of resonant mem-
brane, the measurement of membrane tension ν for resonant frequency calculation according
to formula 4 is impossible because of the low tension together with non-homogeneous
nanofibrous layer. It is why the resonant frequency of nanofibrous membrane has been deter-
mined by the optical method [24] where the first resonant peak was detected around 100 Hz.
Then, the results of nanofibers-covering perforated plate and the separate perforated plate are
compared only by way of sound absorption curves.

3. Sound absorption results

In this section, the sound absorption measurements of acoustic means with nanofibrous mem-
brane are shown. Two-microphone impedance measurement tube type 4206 was used to
measure the sound absorption coefficient in a limited frequency range of 100–1600 Hz.

The following figures show a graphs of sound absorption coefficients α in dependence on the
frequency of sound for separate aluminum plate having different size of orifices and spacing
between quad orifices, which is deposited in different distances from the wall (i.e., separate
Helmholtz resonator), as well as for sound-absorbing means comprising this perforated plate,
whose surface is overlapped by the resonant membrane formed by the layer of nanofibers
from polyamide 6 (PA6) having a basis weight of 0.2 g m�2 deposited on a thin carrier having a
basis weight of 25 g m�2. One of the configurations is filled by a foam or a fleece having a
thickness of 20 mm.

The individual perforated plate and the same perforated plate covered by a thin carrier with
nanofibers have been compared and are shown in Figure 4. The huge growth of sound
absorption of middle frequencies can be seen. Starting with 500 Hz, the sound absorption
curve of nanofibers improved element is constant contrary of the unstable curve of individual

Figure 4. Frequency dependence of the sound absorption coefficient; quad hollow plate 9/11 (side of quad perforation is
9 mm, span of quad perforation is 11 mm) with a thickness of 1 mm with an air gap of 20 (blue - dotted), 30 (green - dash-
dotted), 40 (red – dashed), and 50 mm (black) on the left. Nanofibrous membrane of 0.2 g/m2 on a carrier of 25 g/m2

covering the same perforated plate (quad 9/11) on the right.
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perforated plate. For the verification of nanofibrous membrane efficient, the individual
nanofiber carrier without nanofibers has been evaluated and is shown in Figure 5. Then, it is
evident that the carrier-covering perforated plate improves the sound absorption of high
frequencies but it does not provide wide-frequency efficiency as well as nanofibers improving
plate.

Quad perforated plate of different sizes and spans has been evaluated and is shown in Figure 6.
When the size of the perforation is 9 � 9 mm and the span of the perforation is 11 � 11 mm,
then it is marked (9/11).

Figure 5. Frequency dependence of the sound absorption coefficient; individual carrier of 25 g/m2 covering the perforated
plate (quad 9/11) with an air gap of 20 (blue - dotted), 30 (green - dash-dotted), 40 (red – dashed), and 50 mm (black)
between the acoustic element and the wall.

Figure 6. Frequency dependence of the sound absorption coefficient; nanofibrous membrane of 0.2 g/m2 on a carrier of
25 g/m2 covering the quad perforated plate of different size with a thickness of 1 mm with an air gap of 50 mm. Quad
perforated plate of 3/5 (blue - dotted), 4/6 (green - dash-dotted), 5/7 (red – dashed), and 8/10 (black) of side/span (left).
Quad perforated plate of 8/10 (black), 9/11 (green - dash-dotted), 10/12 (red – dashed), and 25/30 (blue - dotted) of side/
span (right).
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With an increasing size of quad hole, the sound absorption achieves the wide-frequency
efficiency generally as can be seen in Figure 6. The best arrangement of quad hole seems to be
9-mm side of quad and the span of 11 mm (9/11), where the nanofibrous resonant membrane
interacts with the perforated panel to achieve optimal parameters of the acoustic system.

Due to two effects, the large specific surface area of the nanofibers and also the ability of the
nanofibrous layer to resonate at its own frequency, the nanofibrous membrane achieves broad-
band sound absorption compared to the narrowband effect of homogeneous foil on the same
perforated plate (see Figure 7). Starting with 500 Hz, the sound absorption curve of nanofibers
improved element is constant contrary of the unstable curve of foil improved perforated plate.

When the perforated plate is improved by the nanofibrous membrane on each of both
sides, then the sound absorption of higher frequencies falls slightly (see Figure 8). Then, the

Figure 7. Frequency dependence of the sound absorption coefficient; quad perforated plate of 9/11 (left) and 10/12 (right)
is covered by the nanofibrous membrane of 0.2 g/m2 on a carrier of 25 g/m2 (black) or foil of 7 g/m2 (red – dashed) or foil of
40 g/m2 (green - dash-dotted). The air gap between the 1-mm thick panel and the wall is 50 mm.

Figure 8. Frequency dependence of the sound absorption coefficient; quad perforated plate of 8/10 (left) and 10/12 (right)
is covered at the top by the single nanofibrous membrane of 0.2 g/m2 on a carrier of 25 g/m2 (black) or it is covered by the
nanofibrous membrane of 0.2 g/m2 on a carrier of 25 g/m2 (red – dashed) from both sides. The air gap between the 1-mm
thick panel and the wall is 50 mm.
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membrane resonators covering the mass of Helmholtz’s resonator obstruct the sound absorp-
tion inside the cavity.

The individual perforated plates in a form of cavity resonators should be filled for sound
absorption of higher frequencies. Figure 9 shows the comparison of acoustic system consisting
of nanofibers-covering quad perforated plate and the same perforated plate without covering
but filled. The filling has been chosen from the standard sound absorbers line. The first is
melamine foam of 9.5 � 1.5 kg/m3 and 20-mm thickness (Figure 9 on the left) and the second
polyester fleece of 24 kg/m3 � 10% and 20-mm thickness (Figure 9 on the right). From the
comparison, it can be seen that the inferior sound absorption results if the perforated plate is
filled (red – dashed curve) in comparison with nanofibers covering the same perforated plate
without filling (black curve). Then, the resonance capability of nanofibrous membrane more
than compensates a mass of filling. Regarding the applicability of nanofibers-covering perfo-
rated plate, the gap between the panel and the wall can be used for light or audio installation.
If the nanofiber-covering plate is filled (green - dash-dotted curve), then the sound absorption
is slightly better than that of non-filled. However, the benefit of air gap outweighs the nominal
sound absorption growth.

4. Conclusions

The resonance ability of nanofibrous layer has been verified in the last author’s paper. The
membrane has been exposed to plane sinusoidal sound wave and its deflection was picked by
the high-speed digital camera. The resonant peaks of oscillating nanofibrous membrane as
well as homogeneous membrane occur around 70–100, 300–400, and 550–600 Hz depending on
their parameters. The calculated resonant frequency of the perforated plate is around 2–2.5 kHz.
The sound absorption peaks of nanofibers-covering perforated plate are around 500 Hz. From
the comparison of resonant frequencies perforated plate in a form of Helmoltz’s resonator,

Figure 9. Frequency dependence of the sound absorption coefficient; quad perforated plate (9/11) covered by the
nanofibrous membrane of 0.2 g/m2 on a carrier of 25 g/m2. The air gap between the 1-mm thick panel and the wall is
20 mm (black): the same nanofibers-covering perforated plate filled (green - dash-dotted) by the foam (left) or fleece
(right); the same separated plate filled (red – dashed) by the foam (left) or fleece (right); the separated fillings (blue -
dotted) of foam (left) or fleece (right). The thickness of the whole acoustic system is 20 mm in all configurations.
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separate nanofibrous layer in a form of membrane resonator, and final nanofibers-covering
perforated plate, the major effect of the resonant frequency of the nanofibrous layer together
with a distance of the final plate from the wall can be seen.

The diameter of nanofibers, the basis weight, and the polymer of the nanofibrous membrane as
well as the shape, size, and span of perforations of Helmholtz’s resonator affect the sound
absorption behavior of acoustic element.

The two applied nanofibrous membranes have not almost any effect on sound absorption. The
improvement would be redundant.
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Abstract

The influence of a dielectric shell on metallic spherical nanoparticles [core-shell nano-
particles (CSNps)] in the resonant modal response of a surface plasmon resonance
(SPR)-type sensor is presented. The planar multilayer sensor structure, based on the
Kretschmann and surface plasmon coupled emission (SPCE) configurations, is coupled
to a periodic array of these nanoparticles. In the first configuration, the CSNps are
considered as a homogeneous layer with effective permittivity given by the Clausius-
Mossotti mixing formula and polarizability of a core shell for a quasi-static scattering
regime. In the second configuration, it performed an evaluation via the discrete complex
image method (DCIM). Electromagnetic wave propagation is evaluated by the general-
ized reflection coefficient for multilayer structures. The analytical results are validated
by numerical simulations performed via finite element method and also by experimen-
tal data. We observed that the dielectric shell thickness affects considerably the sensibil-
ity of the sensor when analyzing the change in other parameters of the CSNps array.

Keywords: SPR sensor, wave propagation, modal analysis, core-shell metallic
nanoparticle, Kretschmann sensor, SPCE configuration

1. Introduction

Surface plasmon resonance (SPR) sensor is a photonic device capable to detect sensitive
variations in the effective electromagnetic refraction index near its multi-layered structure,
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which can be related to intermolecular interactions or the detection of immobilized analytes,
from the interaction between the analyzed samples and the evanescent field generated
by surface plasmon polaritons (SPPs) wave, which propagate in the metal-dielectric inter-
face [1].

Despite the first observations of the SPP that have been referenced at the beginning of the last
century [2, 3], only at the beginning of the 1980s, SPP-based devices began to be applied to
optical sensors with applications in gas detection and biosensors [4, 5], characterizing and
quantifying biomolecular interactions [6], medical diagnostics, and viral monitoring [7],
among others. The researches in SPR sensors have been increased mainly due to the develop-
ment of modern nanofabrication techniques, such as the colloidal lithography, focused ion
beam (FIB), and electron beam lithography (EBL) [8].

We evaluate an SPR sensor based on Kretschmann configuration (KR) [9] and surface
plasmon coupled emission (SPCE) [10] coupled to the periodic array of (CSNps), which
can represent the surface immobilization of metal nanopollutants generated, for example,
from the nanocomposites manufacturing process [11]. The former has a structure
(Figure 1) comprising a multilayer formed by a prism (dielectric), a thin metal film (gold),
a dielectric spacer (silicon dioxide), the periodic array of CSNps and air. The second one
has a similar structure (Figure 10) and differs from the first one by the direct incidence of
the optical excitation over the immobilized nanoparticles and by the suppression of
a layer.

Figure 1. A functional illustration of the SPR sensor based on Kretschmann configuration, coupled to a microfluidic
channel with a sample to analyze.
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2. Kretschmann configuration

2.1. Functioning description

A functional illustration of the SPR sensor based on the Kretschmann configuration is shown
in Figure 1, where the structure is coupled to a microfluidic channel with a sample flowing at a
controlled rate, while a ligand substance immobilizes only the target nanoparticles (analytes)
in the functionalized sensor surface. The optical excitation, coupled through the prism, is
linearly polarized on transversal magnetic (TM) or transversal electric (TE) and configured in
angular modulation, this is with fixed wavelength λ = 632.8 nm and variable incidence angle θ
[1]. The intensities of the incident and reflected beams are used to determine the angular
reflectivity Γ(θ) curve, which is the base information to determine the sensor response.

For TM polarization, the SPP is excited in the gold-SiO2 interface (Figure 1) when the phase
condition Re β

� � ¼ k0
ffiffiffiffiffiεpp sin θð Þmatches only for θ greater than the attenuated total reflection

(ATR) angle, which implies in a trough point of Γ(θ) [12]. The parameter β is the SPP complex
propagation constant, εp is the prism electric permittivity, and k0 is the propagation constant in
free space [13].

The alterations in Γ(θ) can be related to the analytes because the coupling conditions of the SPP
wave change when the sample material interacts with the sensor field. In this case, we use the
angular shifting (Δθ) of the minimum points in Γ(θ) as the sensor output, and thus, the sensor
sensibility is proportional to Δθ [1].

The extra dielectric layer allows the excitation of multiple resonant wave modes, like guides
modes, even in TE polarization [12]. Using both TE and TM Γ(θ) curves, the amount of
information about the CSNps increases and improves the estimation of parameters such as
surface density, size, and distance between immobilized nanopollutants [1, 14]. This paramet-
ric estimation can be performed using the approximated model of Clausius-Mossotti, or even
using tools such as Winspal free software [15].

2.2. Theoretical modeling

The SPR sensor in Figure 1 is modeled by the multilayer planar structure depicted in
Figure 2. The incident beam, reflected beam, and incidence angle θ refer internally to the
prism. The CSNps have a dielectric shell of thickness b, composed of fused silica for this
study, to provide stability to a nanoparticle, preventing agglomeration, and decreasing
their surface interaction [16]. The periodic planar array of CSNps is described by the
geometric period of dþ 2 aþ bð Þ, where a is the nanoparticle core radius and d is the
distance between them.

The applied relative permittivity was prism (SF4) εp = 3.0615, gold film εAu = � 11.66 + 1.35i1,
and SiO2 εd = 2.132 [15, 17]. The CSNps array is treated as a homogeneous layer with thickness
of hCS ¼ 2 aþ bð Þ and effective permittivity εeff in Eq. (1), given by the Clausius-Mossotti

1Obtained from the Lorentz-Drude model with one term of interband and time dependence with exp(�iωt).
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mixing formula and the core-shell polarizability of [18], set to the quasi-static scattering regime
[13, 19]. The resulting planar structure of the sensor is shown in Figure 2(b).

εeff ¼ ε0
1� 2f sΛ
1� f sΛ

� �
(1)

In Eq. (1): f s ¼ 2π=3 aþ bð Þ= dþ 2 aþ bð Þð Þ½ �2is the CSNps volume fraction in the planar array;

and the parameter Λ is defined in Eq. (2), where f ¼ a3= aþ bð Þ3 is the core volume fraction in
the CSNps [19]. The parameter fs is zero for no immobilized CSNps (εeff ¼ ε0) and
f s ¼ π=6≃ 52:36% when the distance d is zero. To eliminate the shell of the CSNps, we set
εd ¼ ε0 and b = 0 nm in Eq. (2), obtaining the Maxwell-Garnett mixing formula [20, 21]

Λ ¼ f εAu � εdð Þ ε0 þ 2εdð Þ þ εAu þ 2εdð Þ εd � ε0ð Þ
f εAu � εdð Þ 2εd � ε0ð Þ þ εAu þ 2εdð Þ 2εd þ ε0ð Þ (2)

The propagation of the electromagnetic wave in the sensor planar structure (Figure 1(b)) is
performed, in the frequency domain with time dependence of exp(�iωt), by the generalized
reflection coefficient in Eq. (3), which considers the multiple reflections and transmissions in all
layers [22]. In Eqs. (3) and (5), Rn,nþ1 and Tn,nþ1 are the Fresnel’s reflection and transmission
coefficients, respectively, set to TM or TE polarization in accordance with the excitation. For TM
case, the transverse magnetic fieldHn,y in the n-th layer is given in Eq. (4) and for TE case, Eq. (4) is
set to the electric field En,y . In Eq. (4), An is the field amplitude in the n-th layer, given by Eq. (5).

~Rn,nþ1 ¼ Rn,nþ1 þ ~Rnþ1,nþ2 exp i2kn,z dnþ1 � dnð Þ½ �
1þ Rn,nþ1 ~Rnþ1, nþ2 exp i2kn,z dnþ1 � dnð Þ½ � (3)

Hn,y ¼ An exp �ikn, z zð Þ þ ~Rn,nþ1 exp ikn, z zþ 2dnð Þð Þ� �
exp ikx xð Þ (4)

Figure 2. (a) The multilayer structure model of the SPR sensor coupled to the periodic array of CSNps. The inset
highlights the CSNps with gold-core (εAu) of radius a and dielectric shell (εd) of thickness b; (b) Resulting planar structure
using the effective layer to approximate the CSNps array.
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An ¼ Tn�1,n An�1 exp i kn�1, z � kn,zð Þdn�1½ �
1� Rn,n�1 ~Rn,nþ1 exp i2knþ1, z dnþ1 � dnð Þ½ � (5)

For the recursive expressions, Eqs. (3)–(5): A1 = 1 is the incident field amplitude in prism layer;
k2n ¼ k20 εn is the propagation constant in the n-th layer, considering no magnetics in all the
materials; kx ¼ k1 sin θð Þ is the wave vector in x-axis direction, which is the same for all layers;
and ~RN,Nþ1 = 0 is the reflection coefficient in the last layer, where N = 5 is the number of layers
in the sensor structure (Figure 2(b)) [22]. The angular reflectivity curve is obtained from Eq. (3)

for the gold-SiO2 interface by Γ θð Þ ¼ ~R1,2
�� ��2.

2.3. Model validation and modal analysis

Herein, we compare the approximate analytical model with the results obtained by numerical
simulations and experimental data to achieve the theoretical consistency between the models
and study the parametric interval for validation. The numerical results were obtained through
the 3D simulation environment COMSOL Multiphysics, based on the finite element method
[23]. We obtained the experimental data from the SPR spectrometer described in [24], which
uses a He-Ne laser as the excitation source and a rotary base to control the incident angle. The
sensor’s structure is fabricated by e-beam vacuum deposition process.

In Figure 3, we compare the analytical (An.), numerical (Num.), and experimental (Exp.) Γ(θ)
curves for no CSNps case. The experimental curves are restricted in θ to the interval of TM2
and TM1 modes in Figure 3(a) due to limitations in the SPR spectrometer [15, 24]. The
thickness of the sensor structure used in Figure 3 was estimated by curve fitting using the free
software Winspal [15]. The minimum of Γ(θ) highlights in Figure 3 represents the resonant
guide modes of order 1 (TM1 and TE1), order 2 (TM2 and TE2), and the SPP2 mode [12].

2The SPP wave is named TM0, this is a zero-order guide mode in TM polarization.

Figure 3. Comparison of the angular reflectivity curves Exp., An., and Num. for no CSNps on the sensor for (a) TM
polarization and (b) TE polarization. The layer’s thickness in the structure is tAu = 48 nm and tSiO2 = 677 nm.
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The deviations An.-Exp. and Num.-Exp. in Figure 3 are 2.39 and 2.12% for the TM curves, and
1.97 and 2.05% for the TE curves, showing high accuracy for the numerical simulation and the
analytical model. The differences may be due to measurement errors and roughness in the
fabricated multilayer structure [15, 24].

Figure 4 shows the magnitudes of the transversal fields, in the z-axis of Figure 2(b), for the
resonant mode highlights in Figure 3. One can note in Figure 4(a) the high field amplitude in
the gold-SiO2 interface for the TM0 mode and its characteristic evanescent field in both gold
and SiO2 layers [13]. This is also observed for the modes TM1 (Figure 4(b)) and TM2 (Figure 4(c)),
but with a predominant intensity in the SiO2 layer, like guide modes [12]. For the TE modes TE1
(Figure 4(d)) and TE2 (Figure 4(e)), there is no surface wave in the gold-SiO2 interface because the
plasmonic wave only exists for TM polarization [13].

To validate the analytical model, in Figure 5, we compare it with Num. simulations in three cases
for the sensor: (i) No CSNps; (ii) CSNpswith b = 0 nm; and (iii) CSNpswith b = 10 nm. The relative
deviationAn.-Num. in Figure 5 are 8.88% (b = 0 nm) and 9.18% (b = 10 nm) for the TM curves, and
0.74% (b = 0 nm) and 1.22% (b = 10 nm) for the TE curves. Therefore, the deviationAn.-Num. tends
to increase for tested values of b, and a possible cause is the increase of the CSNps size.

The hypothesis that generally increases the relative deviation characterizes the An. model
limitation, such as (A) scattering losses [13, 21]; (B) dipole field interaction between CSNps in
the array [18]; and (C) the restriction as thin of the effective layer thickness [12, 19]. As (A)
grows with the CSNp size (parameters a and b), the relative deviation tends to increase with a
and b, so, these parameters need to be restricted [19]. The phenomenon (B) and the relative
deviation decrease with the distance d in the array, because this here is used the minimum

Figure 4. Magnitude of the transversal field in z-axis of Figure 2(b) for the resonant modes highlights in Figure 3(a): (a)
TM0 in θ = 67�, (b) TM1 in θ = 51.11�, (c) TM2 in θ = 38.92�; and in Figure 3(b): (d) TE1 in θ = 53.465�, (e) TE2 in θ = 44.88�.
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value of d = 50 nm. The limitation (C) can modify the direct and inverse behavior in the relative
deviation with the limitations (A) and (B), respectively, for other values of a and d.

In Figure 6, we compare the An. and Num. real magnetic fields, in the zx-plane of Figure 2(b),
for the mode minimum points in the TM curve b = 10 nm of Figure 5(a). Note that, in general,
the An. and Num. results are very similar, differing basically due to the high field amplitude in
the metal-core surface of the nanoparticles (Figure 6(b), (d)).

Based on Figure 6, in Figure 7, we compare the An. and Num. transversal fields for the TE
curve b = 10 nm of Figure 5(b). Different from the TM fields in Figure 6, the TE mode fields
present a low field amplitude in the shell and a constant electric field in the CSNps metal core.
The visual analysis of Figures 4–7 indicates a greater interaction with the sensing layer for the
wave modes in which the minimum region is closest to the ATR angle, even for TE modes,

Figure 5. Comparison of the An. and Num. curves for the cases (i) No CSNps; (ii) CSNps with fixe b = 0 nm; and (iii)
CSNps with fixe b = 10 nm. (a) TM polarization and (b) TE polarization. For all cases are set the fixed parameters a = 30
nm, d = 100 nm, tAu = 46 nm, and tSiO2 = 600 nm.

Figure 6. Comparison of the An. and Num. real magnetic fields for the TM modes in Figure 5(a), for the curve b = 10 nm.
An.: (a) TM1 in θ = 50.04� and (c) TM2 in θ = 37.09�; and Num.: (b) TM1 in θ = 50.12�; and (d) TM2 in θ = 37.36�.
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because of the greater field intensity and the consequent greater interaction with the CSNps
[25]. In [17], one can note that the thickness of the SiO2 layer, in the sensor structure, can
regulate the reflectivity minimum point of the resonant wave modes, and the wave order in
the same curve, so this parameter can improve the sensor sensibility.

2.4. Sensitivity analysis

To evaluate the sensibility, we vary the CSNps array parameters a, b, and d, and calculate the
angular shift Δθ only for the more sensitive TM2 mode in the minimum points of Γ(θ). First,

Figure 7. Comparison of the An. and Num. real electric fields for the TE modes in Figure 5(b), curve b = 10 nm. An.: (a)
TE1 in θ = 52.93� and (c) TE2 in θ = 43.04�; Num.: (b) TE1 in θ = 52.92� and (d) TE2 in θ = 43.07�.

Figure 8. Curves of Δθ � b for the values of: (a) distance d = 50, 100, 150, and 200 nm, and the fixed parameter a = 20 nm;
and (b) radius a = 20, 30, 40, 50, and 60 nm, and the fixed d = 100 nm.
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we analyze the sensibility to one of the parameters, and then we verify how other parameters
influence in the sensibility, setting some different values. For this analysis, we use only the
analytical model, that presents low costs in computing, and the fixed parameters were tAu = 46 nm
and tSiO2 = 600 nm.

2.4.1. Sensitivity to the shell thickness b

In Figure 8, we present the curves of Δθ in function of b (Δθ � b curve), relative to the initial
curve b = 0 nm. In Figure 8(a), each curve is defined for different values of the distance d and in
Figure 8(b), they are for values of a. The shifting of the minimum region to right is the positive
direction of the Δθ.

Note in Figure 8(a), Δθ � b decreases as d increases, which declines the sensor sensibility.
However, higher values of d decrease, in general, the sensor sensitivity and the contrary are
true for lower values of d. For the parameter a, the sensitivity by the curves Δθ� b in Figure 8(b)
increases for the most cases, but for the curves a = 50 nm and a = 60 nm, one can visualize the
tendency of an inverse behavior. This can turn the CSNps characterizing process more complex
because we can obtain, for the same value of Δθ, more than one value of b. To avoid this, we can
restrict a < 50 nm and b < 20 nm.

2.4.2. Sensitivity to the distance d

Figure 9 presents the Δθ of TM2 mode in function of d (Δθ � d curve), relative to the initial
curve d = 50 nm. In Figure 9(a), the curves differ in the values of b and in Figure 9(b) in the
values of a. The increasing of d, corresponding to the concentration decrease of the immobilized
CSNps on the sensor, basically, its shifts the minimum points to left, explaining the negative

Figure 9. Curves of Δθ � d for TM2 modes for the values of: (a) dielectric shell thickness b = 0, 10, and 20 nm, and the
fixed parameter a = 20 nm; and (b) radius core a = 20, 40, and 60 nm, and the fixed parameter b = 10 nm.
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values of Δθ in Figure 9. In Figure 9, the great sensitivity response when CSNps are quite close
or for small values of d.

In Figure 9(a) we note that the increasing of b results in greater values of Δθ, this is a better
sensitivity response of the sensor. In Figure 9(b), we can observe that both parameters a and b
increase the sensor response because the sensor is more sensitive to variation in the CSNps
core radius. This behavior was also observed in [17] and is expected due to the increase of the
resonant field interaction with the array when the metal core of the CSNps is bigger. While b
increases, it increases the CSNps size, decreasing the field interaction.

3. SPCE configuration

3.1. Functional description

The functioning of an SPR sensor in SPCE configuration (Figure 10) is based on the interaction
of the field radiated by the immobilized analytes with the sensor structure, composed by a thin
metal film deposited on the prism [10]. These interactions generate the SPP wave on the air-
gold surface and radiating modes in the prism, that is a high directional emission in a specific
SPCE angle and depending on the nanoparticle [26]. The high directional nature of the SPCE
emission also increases the efficiency of coupled emission detection [27]. Similar to the sensor
in the Kretschmann configuration, here the SPCE configuration is excited by a laser beam
operating at the wavelength of 632.8 nm.

In Figure 10(a), the sensor in the SPCE configuration is illustrated. First, a solution with the
suspended analytes flows in the microfluidic channel while the target nanoparticles are
immobilized on the sensor surface by a specific ligand substance. Then, the solution flow is
cut off and drained until only the immobilized CSNps remain to be analyzed. The CSNps

Figure 10. (a) A functional illustration of the analyzed SPCE sensor coupled to a microfluidic channel. (b) The approxi-
mate model of the SPCE sensor in (a) by a multilayered planar structure and a resonant dipole.
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can be held by the ligand substance at z’ or by a dielectric spacer of same thickness with a
ligand substance of negligible height. An optical detector evaluates the SPCE angle of the
analyte [28].

An approximate model of the sensor in Figure 10(a) is presented in Figure 10(b), where
the structure is a planar multilayer with three layers: air, thin gold film, and SF4 optical
prism, all represented by their respective complex permittivity. The interaction of the laser
beam with the analytes and their re-annealing is equivalently modeled by a dipole, which
represents the immobilized CSNps and is situated at the height z’ in the layer 1 of
Figure 10(b).

Although the dipole-type optical emitter is nonpolarized, the coupled field targeting the
detector in Figure 10(b) is highly polarized in the TM [29]. This occurs because part of the
CSNps emission is naturally in the TM polarization and can excite the SPP wave on the air-
gold interface, which evanescent wave passes through the thin metallic layer and radiate in the
prism as a propagating wave polarized in the TM polarization. Therefore, the SPR sensor in
the SPCE configuration can be understood as a reverse functioning of the Kretschmann con-
figuration.

Note the existence of different nanoparticles in the fluidic channel (Figure 10(a)); however,
only the target nanoparticles are immobilized on the sensor surface. Here, the sensor is
analyzed with only immobilized CSNps and the result is a radiating TM field in a specific
angle of coupling in the prism that corresponds to this nanoparticle. However, when using
different ligand substances, for multichannel evaluation, different coupling angles would be
detected, each angle related to a different particle of interest [30].

3.2. Theoretical modeling

For the SPR sensor in SPCE configuration, the SPP wave is created from interactions of the
sensor structure and immobilized nanoparticles, which emit radiation and evanescent field
when excited by a source. In the SPCE sensor, the nanoparticles on the substrate have
dimensions smaller than the excitation wavelength, so they are represented here by infini-
tesimal dipoles with equivalent dipole moments or by elementary currents given by Eq. (6)
[31, 32]:

J ¼ J0pδ r; rp
� � ¼ ξpE

t
p

� �
δ r; rp
� � ¼ ξp Ei rp

� �þ Er rp
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3
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(6)

The elementary current of the equivalent dipole is orientated by the laser source. To
determine the induced dipole moments of an array of P dipoles on a multilayer structure, one
must solve the following system of linear equations for p, q ∈ {1,2, …, P}, where rp are the

positions of the P dipoles, E
t
p is the total external field of excitation on the equivalent dipole,

that is the sum of all the fields that arrive in the dipole p, and ξp is the polarization constant
that depends on the type of element considered (CSNps, biomolecules, QDs) [31].
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For the total E
t
p in Eq. (6), that has four terms, is considered a linear dependence with the

dipole. The first term of E
t
p represents the incident field, the second one, the reflection of the

field incident on the structure, the third term, the radiation of each dipole, and the fourth term,
the reflections in the structure of the field radiated by each dipole.

The total electric field of the dipole defined in Eq. (6), for an arbitrary direction in a homoge-
neous medium, can be derived from the dyadic Green’s functions in Eq. (7) [32]:

bGe
r; r

0
� �

¼ iωμ bI þ 1
k2

∇∇
� �

J
ejk r�r

0�� ��
4π r� r

0�� �� (7)

wherebI is a unitary dyad, r is the point of observation, and r
0
is the source point. The dipoles

irradiated nonpolarized spherical waves; thus, a spherical wave radiated can be expanded as
an integral of conical or cylindrical waves in the direction ρ times a plane wave in the z-
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Fourier transform. For simplicity, only the z-direction component is evaluated, thus, the for-
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where indices s and r are treated here as a spectral contribution related to incidence and reflection in
themultilayer structure. These integrals are extremely complicated to calculate and the solutions do
not have closed forms. Some difficulties of the integral representation are highlighted [34, 35]: Low
integrationkernel convergence, branchingpoints, andbranch cuts arise, the appearance of functions
of double or multiple values, the choice of a single appropriate Riemann surface, possibility of
complexpoles, amongothers. Thatway, the lack of analytical expressions in a closed formcombined
with a heavy computational cost associated with the direct integration for this integral, which have
low convergence, make direct numerical evaluation an impractical approach to our analysis.

When solving problems involving integrals like Eq. (10), several recent approaches have been
proposed [36, 37], all consist of the evaluation of spectral functions using the Sommerfeld
Identity with variants of the discrete complex image method (DCIM) as an acceleration tool.
Here, we evaluate the integral equations directly from the electric field into a versatile applica-
tion for the use of DCIM and applies the DCIM directly on the integral field equations.

The DCIM method expands the integral equations of (11) and (12) into a sum of complex
terms, that is, it estimates values of complex integrals over an integration path in the complex
domain, usually with a range of (0, ∞), by a finite number of samples of the integrand. A
solution based on a two-level path is used [38]. We use a sophisticated scheme, where the
integrand is approximated by a superposition of complex exponentials, and this approxima-
tion is semi-analytical since it is not an exact but approximate solution.

3.3. Modal analysis

In this section, we analyze the SPR sensor of Figure 10(b) using the same relative permittivity
presented in Section 2.2 for the excitation source wavelength of λ = 632.8 nm. It is considered
that the radiation of the analyte occurs at this same wavelength. The results are presented for
the near and far field.

3.3.1. Numerical example

Figure 11(a) shows the real part of the field Ez in the multilayer structure of Figure 10(b) and
one can observe that the waves radiated by the immobilized nanoparticles induce the surface
plasmonic mode in the air-gold interface, whereas in the prism, formed waves are concen-
trated at specific angles. Figure 11(b) shows that the plasmonic mode is excited throughout the
air-gold interface as a cylindrical wave symmetrical to the z-axis; it is possible to visualize the
excited SPPs on the first interface and the rapid fading of the electric field from the source.

Figure 12(a) shows the two-dimensional radiation diagram of the SPCE sensor, where
maintaining the operating wavelength at λ = 632.8 nm makes an evaluation of the intensity of
the distant field at different heights: z’ = 20, 50, 100, 150, and 200 nm. It is observed that the far
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field strength is greater for height z’ = 20 nm. Note that the intensity of the lower lobes, which
depend on the field coupled in the prism, as well as on the upper lobes that depend on the total
field in the first layer, increase in intensity according to the decrease in height z’.

Figure 12(b) shows the far field three-dimensional diagram of the SPCE sensor for the permis-
siveness values presented above and optimized height for z’ = 20 nm. The emission coupled to
the prism forms a circular cone. Note that the lower lobes have well-directed beams at a very
characteristic coupling angle θ = 145.2�, that is, electric field coupled at the angle of θSPCE = 34.8�.

Figure 11. (a) Electric field distribution Re{Ez} obtained via DCIM in all three layers air, gold, and prism (SF4). (b) Electric
field distribution 20log10{abs[Re(Ez)]} obtained in the xy plane via DCIM at the air-gold interface.

Figure 12. (a) Two-dimensional radiation diagram of the SPCE sensor, evaluation of the intensity of the distant field at
different heights: z’ = 20, 50, 100, 150, and 200 nm. (b) Far field three-dimensional diagram of the SPCE sensor for
optimized height for z’ = 20 nm. Note that electric field coupled at the angle of θSPCE = 34.8�.
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3.4. Reciprocity between SPR sensors in the KR and SPCE configuration

The SPCE sensor is physically the reverse structure of the KR sensor. In this topic, a previous
evaluation of the electromagnetic reciprocity between the KR and SPCE configuration sensors is
presented. In both configurations, the same materials are used, that is, air, gold, and prism (SF4).
The sensor operates on a standard λ = 632.8 nmwavelength, with a gold layer of 50 nm thickness.

Figure 13 presents results for evaluation of reciprocity between the KR and SPCE sensors with
the configurations described above, where Figure 13(a) shows the real part of the Hy field for a
plane wave over the plasma resonance angle θSPP = 36.8� in the KR sensor. Figure 13(b)

Figure 13. (a) Re(Hy) for plane wave incident with θSPP = 36.8163�obtained analytically for the sensor KR, (b) Re(Ez) for
vertical dipole at z ‘= 20 nm for the sensor SPCE, (c) Angle of Hy obtained analytically for the KR sensor, (d) Angle of Hy
obtained in the for the SPCE sensor.

Modal Analysis of Surface Plasmon Resonance Sensor Coupled to Periodic Array of Core-Shell Metallic…
http://dx.doi.org/10.5772/intechopen.70522

183



describes the real part Ez field for the SPCE sensor with the source at z’ = 20 nm. In Figure 13(b),
it is possible to observe the formation of surface plasma as a consequence of particle radiation
above of the gold layer. Note that the z-axis was inverted only for reciprocal visualization.
Figure 13(c) represents the phase of Hy obtained analytically for the KR sensor; it is possible to
identify the incident phase of the plane wave on the gold layer.

Figure 13(d) illustrates the Hy phase obtained for the SPCE sensor. Note that, in the prism
layer, magnetic transverse plane (TM) waves are obtained with the reciprocal phase of the
KR sensor phase. The appearance of this polarized wave in the TM mode is explained
because part of the emitter ’s optical emission is naturally in the TM mode and excites an
SPP wave on the air/gold surface; then, after the evanescent wave passes through the thin
metallic layer, it will radiate in the prism as a polarized propagation wave in TM mode.

So, a coupling angle was set on the SPCE sensor equal to the angle of plasma resonance
occurred at the KR sensor, which was actually found θSPCE = 34.8� ≈ θKR = 36.8�. It was
observed that a gradual increase in the discretization of the meshes used to represent the
dipole approximates the coupling angle of the SPCE sensor of the angle of resonance of the
KR sensor, which in fact proves its electromagnetic reciprocity between the plasmonic modes
of the KR and SPCE sensor.

4. Conclusion

In this article was presented a theoretical analysis of an SPR sensor in Kretschmann (KR) and
SPCE configurations, when a periodic array of core-shell nanoparticles (CSNps) is immobilized
on the sensor sensitive surface. For the SPR sensor in KR configuration, the CSNps array has
approximated by an effective homogeneous layer to treat the resultant structure as a planar
multilayer, which improved the computational processing. For the SPCE configuration, the
CSNps array has been treated as equivalent dipoles and the study is performed by the discrete
complex image method (DCIM).

The approximate model of the KR sensor was validated for low size of the CSNp, parameters a
and b, and high distance d in the periodic array from the comparison with the numerical
simulations using finite element method. We observed that the increase of the shell thickness
tends to depress the validation of this approximate model, such as the metal-core radius, and
the parameter d, instead, tends to improve the validation.

The modal analysis of the KR configuration reveled that, besides the SPP surface wave,
multiples guide wave modes can be excited, even in TE polarization. The thickness of the
SiO2 layer can alter the order of these guide modes and for configured value guide wave
modes of order 1 and 2 was observed. The characteristic field of the guide modes in TM
polarization presents a surface wave in the gold-SiO2 interface, such as the SPP wave. We
observed better validation of the approximate model for the TE curves.

There are evidences, such as the higher field intensity in the CSNps array region, that can
indicate a greater sensitivity response for the wave modes which the minimum point is closest
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to the critical ATR angle. As the SiO2 layer thickness can regulate the minimum point position,
this parameter can also improve the sensor sensibility.

The sensitivity analysis revealed that both radius core and shell thickness increase the sensor
response, but the radius core presented a greater influence in this behave, showing larger
sensitivity to the parameter a. Because the dielectric shell reduces the sensor field interaction
with the nanoparticles array, although this increases the size of the CSNps which, in general,
intensifies the sensor response. The parameter d always tends to decrease the sensor response
due to the reduction of the CSNps concentration in the array.

To develop the modal analysis of the SPCE sensor, we focus in the solution of the field equations
for a resonant dipole over a multiple planar structure. The equations are optimized for direct
application via DCIM method. The evaluation of the near field is presented and we observe that
the waves radiated by the immobilized nanoparticles induce the surface plasmonic mode in the
air-gold interface and radiating modes in the prism concentrated at specific angles.

The DCIM method was applied for a general solution of multilayer media using the general-
ized reflection coefficients. The far field results are presented by numerical simulations
performed via finite element method and we observe that in SPCE configuration, the intensity
of the lower lobes increases with the decrease in height z’. It is observed that the far field
strength is greater for height z’ = 20 nm.

By the last analysis of the sensor in the SPCE configuration, we demonstrated the reciprocity of
the SPP modes in the configurations KR and SPCE. It has been found that the coupling angle of
the SPP mode in the SPCE configuration is equal to the angle of maximum coupling of TM0
mode KR configuration.
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Abstract

In this chapter, Fano resonances in simple structures with high permittivity such as
spheres or core-shell particles are analyzed by Mie theory. The Mie scattering coeffi-
cients can be decomposed into slow varying backgrounds and narrow resonances,
which cause the Fano resonances in scattered field. For structures of arbitrary shapes,
temporal coupled-mode theory is applied to explain the Fano resonances found in the
scattering cross section. At last, we analyze the periodic structures by using band
diagram, and it shows that the Fano resonances can be viewed as the superposition of
the Bloch wave and the Mie scattering wave.

Keywords: Fano resonance, Mie theory, temporal coupled-mode theory, photonic
crystal, sensor

1. Introduction

Fano resonance was first discovered in quantum systems to describe the asymmetrically
shaped ionization spectral lines of atoms [1]. The asymmetric profile is caused by the interfer-
ence between a broad background state and a narrow discrete state. The interference phenom-
enon also exists in electromagnetic system and was first observed by Wood [2]. With the
development of metamaterials, Fano resonances have been observed in many classical oscilla-
tor systems, such as nonconcentric ring/disk cavities [3], asymmetric split rings, and dolmen
structures [4]. Such Fano systems are caused by symmetry breaking of the geometry and are
usually consisted of metal and dielectric. Recently, metamaterials composed of high refractive
index materials have attracted researchers’ attentions since they can enhance efficiency signif-
icantly [5]. Fano resonances occur in these metamaterials usually have larger quality factor
since metal is replaced by lossless high-permittivity dielectric, which makes Fano curve
sharper compared with conventional metamaterials.
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In this chapter, we will investigate the Fano resonances in high-permittivity objects theoreti-
cally and do the simulations to verify the accuracy of theories, which will provide a guidance
for the further study and applications. The chapter is organized as follows:

In the second section, we analyze the Fano resonances in high-permittivity spheres, which are
the simplest structures that can be analyzed by applying Mie theory easily.

In the third section, we will use the Mie theory to investigate the Fano resonances in core-shell
particles. With more degrees of freedom for design, core-shell structures are more suitable for
applications such as sensors.

In the fourth section, a new method called temporal coupled-mode theory (TCMT) is used to
explain the Fano resonances found in high permittivity arbitrarily shaped objects. Combined
with cylindrical wave expansion (2D) or spherical wave expansion (3D), we can use TCMT to
model the Fano resonances in scattering by an arbitrary object.

In the fifth section, we do some numerical simulation on periodic array of cylinders and show
that Fano resonances can be observed in transmission spectra as a result of interference of
leaky guided modes of cylinders with an incident electromagnetic wave.

In the last section, we will draw a conclusion briefly.

2. Fano resonances in high-permittivity spheres

2.1. Mie theory

Mie scattering was first discovered by Mie in 1908 [6]. In spite of the long history, Mie theory
still governs the forefront optical devices such as nanoantennas [7] and metamaterials [8]. It
describes the scattering of a plane wave by a homogeneous sphere. The solution takes form of
an infinite series of spherical multipole partial waves. For different electromagnetic modes, the
positions of resonances which can be calculated by Mie theory are different. Resonance arises
when the incident wave reaches an eigenmode frequency and excites localized modes in
the sphere.

Let us assume the radius of sphere is a. The relative permittivities and permeabilities of sphere
(r ≤ a) and embedding medium (r > a) are (E1, μ1) and (e, μ), respectively. The Mie scattering
coefficients are [6]:

an ¼ μ1xjn xð Þ mxjn mxð Þ� �0 � μm2xjn mxð Þ xjn xð Þ� �0

�μ1xh
1ð Þ
n xð Þ mxjn mxð Þ� �0 þ μm2xjn mxð Þ xh 1ð Þ

n xð Þ
h i0 (1)

bn ¼ μxjn xð Þ mxjn mxð Þ� �0 � μ1xjn mxð Þ xjn xð Þ� �0

�μxh 1ð Þ
n xð Þ mxjn mxð Þ� �0 þ μ1xjn mxð Þ xh 1ð Þ

n xð Þ
h i0 (2)

where x = ka (k = ω/c is the wavenumber of incident wave) is the size parameter of the sphere,
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and m ¼
ffiffiffiffiffiffiffi
E1μ1
Eμ

q
is the relative refractive index. jn(x) and h 1ð Þ

n xð Þ stand for spherical Bessel

functions and Hankel functions of the first kind, respectively.

2.2. Decomposition of Mie scattering coefficients

For simplicity, the embedding medium is considered to be vacuum in the following analysis,
so we have e = 1, μ = 1. We assume the relative permeability of sphere to be 1 and the relative
permittivity E1 to be a purely real number, so the relative refractive index m ¼ ffiffiffiffi

E1
p

. Eq. (1),
which represents electric scattering coefficients can be rewritten by

an ¼ � xjn xð Þ� �0

xh 1ð Þ
n xð Þ

h i0 þ
i

xh 1ð Þ
n xð Þ½ �02

E1xjn
ffiffiffi
E1

p
xð Þffiffiffi

E1
p

xjn
ffiffiffi
E1

p
xð Þ½ �0 �

xh 1ð Þ
n xð Þ

xh 1ð Þ
n xð Þ½ �0

(3)

where � xjn xð Þ� �0
= xh 1ð Þ

n xð Þ
h i0

means a slow varying background and i

xh 1ð Þ
n xð Þ½ �02 =

E1xjn
ffiffiffi
E1

p
xð Þffiffiffi

E1
p

xjn
ffiffiffi
E1

p
xð Þ½ �0 �

�

xh 1ð Þ
n xð Þ

xh 1ð Þ
n xð Þ½ �0Þ means a narrow resonance when high-permittivity dielectric sphere is considered [9].

As shown in Figure 1, squared norm of Mie coefficient |a1|
2 is plotted when E1 = 1000. It can be

described by superposition of narrow resonance and slow varying background.
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Figure 1. Squared norm of Mie coefficient |a1|
2 (blue curve), slow varying background

xj1 xð Þ½ �0
xh 1ð Þ

1 xð Þ½ �0
����

����
2

(green curve), and

narrow resonance (red dot-dash line) for a sphere with E1 = 1000.
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Similarly, magnetic scattering coefficient ∣bn∣ can be decomposed into two parts:

bn ¼ � jn xð Þ
h 1ð Þ
n xð Þ þ

�i
xh 1ð Þ

n xð Þ½ �2ffiffiffi
E1

p
xjn

ffiffiffi
E1

p
xð Þ½ �0

xjn
ffiffiffi
E1

p
xð Þ � xh 1ð Þ

n xð Þ½ �0
xh 1ð Þ

n xð Þ

(4)

where �jn xð Þ=h 1ð Þ
n xð Þ represents a slow varying background and �i

xh 1ð Þ
n xð Þ½ �2 =

ffiffiffi
E1

p
xjn

ffiffiffi
E1

p
xð Þ½ �0

xjn
ffiffiffi
E1

p
xð Þ �

�

xh 1ð Þ
n xð Þ½ �0

xh 1ð Þ
n xð Þ Þ represents a narrow resonance (as shown in Figure 2).

The slow varying backgrounds are the same as scattering coefficients of PEC spheres.

2.3. Rewrite Mie coefficients in the form of Fano function

Normalized Fano function can be expressed as 1
1þq2

qþx�x0
Γð Þ2

1þ x�x0
Γð Þ2, where x0, Γ, and q represent

resonance position, resonance width, and Fano parameter, respectively. Compared with con-
ventional Lorentz resonance, Fano resonance will exhibit asymmetric line shape and usually
has sharper resonant curve.

When the permittivity of sphere is high, we can rewrite the Mie coefficients in the form of Fano
function. The resonance position, resonance width, and Fano parameter can be achieved by
following Eqs. (10):
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Figure 2. Squared norm of Mie coefficient |b1|
2 (blue curve), slow varying background j1 xð Þ

h 1ð Þ
1 xð Þ

����
����
2

(green curve), and narrow

resonance (red dot-dash line) for a sphere with E1 = 1000.
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E1x0jn
ffiffiffiffi
E1

p
x0

� �
ffiffiffiffi
E1

p
x0jn

ffiffiffiffi
E1

p
x0

� �� �0 ¼ Re
x0h 1ð Þ

n x0ð Þ
x0h 1ð Þ

n x0ð Þ
h i0

0
B@

1
CA (5)

q ¼ x0yn x0ð Þ� �0
x0jn x0ð Þ� �0 sign

Im x0h
1ð Þ
n x0ð Þ

x0h
1ð Þ
n x0ð Þ½ �0

� �

∂
E1xjn

ffiffiffiE1p xð ÞffiffiffiE1p xjn
ffiffiffiE1p xð Þ½ �0

∂ω

�����
ω¼ω0

0
BBBBB@

1
CCCCCA

(6)

Γ ¼
Im x0h

1ð Þ
n x0ð Þ

x0h
1ð Þ
n x0ð Þ½ �0

� �

∂
E1xjn

ffiffiffiE1p xð ÞffiffiffiE1p xjn
ffiffiffiE1p xð Þ½ �0

∂ω

�����
ω¼ω0

�����������

�����������

(7)

In Eqs. (5)–(7), Re(x) and Im(x) mean the real and imaginary part of x, yn(x) represent the
spherical Neumann functions, sign(x) denotes the sign function. These equations are the
rewrite of electric scattering coefficients. Similarly, magnetic scattering coefficients can also be
rewritten in the form of Fano function [10].

As shown in Figure 3, the approximate model which can be written in the form of Fano
function matches well with the exact Mie scattering coefficient.

3. Fano resonances in core-shell particles with high-permittivity covers

In most researches [11, 12], Fano resonances observed in coated spheres are derived in the
Rayleigh limit. However, the approximation may suffer a loss of precision when frequency
gets higher. An exact analysis based on Mie theory is proposed to analyze Fano resonances by
coated spheres with high-permittivity covers in a precise way [13].

Figure 3. The exact value of Mie scattering coefficients (blue line) and Fano curve predicted by approximate model (red
dot-dash line) are shown for (a) electric dipole |a1|

2 when ω0 = 3 � 1015 rad/s , a = 64.33 nm , E1 = 1000 and (b) magnetic
dipole |b1|

2 when ω0 = 3 � 1015 rad/s , a = 148.97 nm , E1 = 1000.
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3.1. Theoretical analysis

Let us assume the inner radius of core-shell particle is a1 and the outer radius is a. The ratio of
a1 and a can be denoted as η = a1/a. The relative permittivities and permeabilities of core
(0 < r ≤ a1), shell (a1 < r ≤ a), and embedding medium (r > a) are (E1, μ1), (E2, μ2), and (E0, μ0),
respectively. The solution of scattering by coated spheres can be described by Mie theory. For
simplicity, the embedding medium is considered to be vacuum in the following analysis which
means E0 = 1, μ0 = 1. Also, we assume μ1 = μ2 = 1, which means both core and shell are
nonmagnetic. When the core-shell particles are covered by high-permittivity dielectric shells,
we can decompose the scattering coefficients cTMn and cTEn into slow varying backgrounds and
narrow resonances, which are similar to the high-permittivity spheres. For electric scattering
coefficients, we have

cTMn ¼ sTMn þ rTMn (8)

where

sTMn ¼ � xjn xð Þ� �0

xh 1ð Þ
n xð Þ

h i0 (9)

x = k0a is the size parameter of outer sphere. sTMn represents the slow varying background and
its expression is given in Eq. (9). As we can see, the background is the same as the electric
scattering coefficient of a PEC sphere with radius a. rTMn represents the narrow resonance, and
it can be calculated formally by subtracting sTMn from cTMn . The expression for narrow resonance
can be found in [13].

Similarly, we can decompose magnetic scattering coefficients into two parts:

cTEn ¼ sTEn þ rTEn (10)

where

sTEn ¼ � jn xð Þ
h 1ð Þ
n xð Þ (11)

As shown in Figure 4, the scattering coefficients can be viewed as the cascade of Fano reso-
nances.

3.2. Application of sensors

Due to the sharp resonances near the resonance frequencies, Fano resonances have great poten-
tial applications in sensing problems [14–16]. Although some of them may have high sensitivity,
the structures which are designed to produce Fano resonances are usually complicated and
cannot be analyzed by formula exactly. Because of the simple structure, core-shell particles have
the potential to be a great platform for sensing since they can be fabricated easily. In fact, core-
shell particles consisted of metal and dielectric, can exhibit Fano resonances due to the
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hybridization between the plasmon resonances of the core and shell [17, 18]. However, the loss in
metal may flatten the shape of Fano curve, which affects the sensitivity of Fano resonance sensor.
Hence, we use lossless high-permittivity dielectric to replace the metal.

For the high-permittivity shell sensors, we can fill the core with unknown materials. The
permittivity of the unknown material can be varied continuously such as liquid solvents. By
detecting the scattering field over a discrete set of frequencies near Fano resonance position,
we can achieve the permittivity we want with high accuracy.

The sensitivity for Fano resonance sensing can be examined by comparing the changes in the
scattering coefficients between core-shell structure with high-permittivity shell and homoge-
neous sphere when the permittivity of material changes. We can define the sensitivity as an
analogy to [14]

STMn ¼ lim
ΔE!0

Δ cTMn
�� ��2
ΔE

(12)

As shown in Figure 5(a), the difference of sensitivity between core-shell structure and sphere is
plotted. As for the core-shell structure, the relative permittivity of core is increased by ΔE1 = 0.1.

The maximum value of Δ cTM1
�� ��2 occurs at x = 0.49495 (located by a vertical blue line) when

0.493 ≤ x ≤ 0.496, which is Δ cTM1
�� ��2 ¼ 0:1971. In order to make a comparison with Fano

resonance sensor, we figure out the scattering coefficients of a sphere with different permittiv-
ities as given for the core in core-shell structure. As shown in Figure 5(b), the maximum value

Δ cTM1
�� ��2 ¼ 4:2259� 10�5 occurs at x = 0.496, which shows that the Fano resonance sensor offers

a high sensitivity.

Since Fano resonances of high permittivity core-shell particles mentioned above only exist in
scattering coefficients of multipole partial waves, it is difficult to achieve these coefficients
separately by measuring the electromagnetic field distribution around the scatterers. In fact,
by choosing operating frequency range properly, we can achieve the scattering coefficient of a

Figure 4. Squared norm of Mie coefficient (a) cTM1
�� ��2 (blue curve), slow varying background

xj1 xð Þ½ �0
xh 1ð Þ

1 xð Þ½ �0
����

����
2

(green curve) and

narrow resonances (red dot-dash line) (b) cTE1
�� ��2 (blue curve), slow varying background j1 xð Þ

h 1ð Þ
1 xð Þ

����
����
2

(green curve), and narrow

resonances (red dot-dash line) for a core-shell particle with a = 100 nm , a1 = 80 nm , E1 = 10 , E2 = 1000.
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single partial wave (cTM1 for example) without filtering out from the total electromagnetic fields.
When size parameter x is small, most of the scattering coefficients cTMn , cTEn are zero, except for
several coefficients with small n. We choose the first resonance frequency of cTM1 as the operat-
ing frequency. Since Fano resonance is usually sharp and narrow, we find that overlap between
different modes can be avoided if the frequency range narrows down. To explain it explicitly,
we define the scattering cross section as [19]

Qsca ¼
2
x2
X∞
n¼1

2nþ 1ð Þ cTMn
�� ��2 þ cTEn

�� ��2� �
(13)

The contribution of cTM1 to Eq. (13) can be defined as

QTM
1 ¼ 6

x2
cTM1
�� ��2 (14)

As shown in Figure 6, when we choose the first Fano resonance position of cTM1 as the
operating frequency, we find that the scattering cross section of multipole partial waves is the
same as the scattering cross section of cTM1 for a narrow frequency range. As shown in Figure 6(a),
Fano resonance can also be observed in scattering cross section which can be used to sense the
permittivity.

Figure 5. (a) cTM1
�� ��2 as a function of x for core-shell structure with different core permittivities E1 = 1.4 (blue line) and

E1 = 1.5 (red line), high-permittivity shell E2 = 1000 , η = 0.8. (b) cTM1
�� ��2 as a function of x for sphere structure with E1 = 1.4

(blue line) and E1 = 1.5 (red line).

Figure 6. For the core-shell particle with high-permittivity shell E2 = 1000, η = 0.8, (a) log10(Qsca) is plotted as a function of x and
E1when the summation inEq. (13) is truncated ton = 5. (b) log10 QTM

1

� �
(calculated byEq. (14)) is plotted as a function of x and E1.
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ing frequency. Since Fano resonance is usually sharp and narrow, we find that overlap between
different modes can be avoided if the frequency range narrows down. To explain it explicitly,
we define the scattering cross section as [19]

Qsca ¼
2
x2
X∞
n¼1

2nþ 1ð Þ cTMn
�� ��2 þ cTEn

�� ��2� �
(13)

The contribution of cTM1 to Eq. (13) can be defined as

QTM
1 ¼ 6

x2
cTM1
�� ��2 (14)

As shown in Figure 6, when we choose the first Fano resonance position of cTM1 as the
operating frequency, we find that the scattering cross section of multipole partial waves is the
same as the scattering cross section of cTM1 for a narrow frequency range. As shown in Figure 6(a),
Fano resonance can also be observed in scattering cross section which can be used to sense the
permittivity.

Figure 5. (a) cTM1
�� ��2 as a function of x for core-shell structure with different core permittivities E1 = 1.4 (blue line) and

E1 = 1.5 (red line), high-permittivity shell E2 = 1000 , η = 0.8. (b) cTM1
�� ��2 as a function of x for sphere structure with E1 = 1.4

(blue line) and E1 = 1.5 (red line).

Figure 6. For the core-shell particle with high-permittivity shell E2 = 1000, η = 0.8, (a) log10(Qsca) is plotted as a function of x and
E1when the summation inEq. (13) is truncated ton = 5. (b) log10 QTM

1

� �
(calculated byEq. (14)) is plotted as a function of x and E1.
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The asymmetry parameter 〈cosΘ〉 is defined as the average cosine of the scattering angle Θ.
For a spherical particle, the asymmetry parameter can be calculated by [20]

cosΘh i ¼ 4π
x2Qsca

Re
X∞
n¼1

n nþ 2ð Þ
nþ 1

cTMn cTMnþ1

� �∗ þ cTEn cTEnþ1

� �∗h i� � !

þ 4π
x2Qsca

Re
X∞
n¼1

2nþ 1
n nþ 1ð Þ cTMn cTEn

� �∗h i� � ! (15)

The asymmetry parameter is positive if the particle scatters more light toward the forward
direction while it is negative if more light is scattered toward the backscattering direction.

As shown in Figure 7, the width between maximum and minimum for a fixed core permittiv-
ity E1 narrows down compared with scattering cross section which is shown in Figure 6. With
the increase of size parameter x, the asymmetry parameter reaches its maximum and decreases
sharply to its minimum.

To check the average scattering direction changes from front to back, we use numerical
simulation software COMSOL 5.0 to simulate the scattering of a plane wave by a core-shell

Figure 7. The asymmetry parameters for high-permittivity shell particles with E2 = 1000 , η = 0.8.
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structure. The incident wave travels in the +z-direction and the electric field is oriented in the x-
direction. Draw a horizontal line at E1 = 1.5 in Figure 7, and we can find the average cosine of
the scattering angle 〈cosΘ〉 has a lineshape of Fano resonance as a function of size parameter x.
As shown in Figure 8(a), the high-permittivity shell structure scatters more light to the forward
direction at x = 0.498672. When x increases, the asymmetry parameter decreases sharply from
positive value to negative value. The minimum value is achieved at x = 0.499276 and the
scattering wave is concentrated in the backward direction as shown in Figure 8(c). Among
the maximum value and the minimum value of asymmetry parameter, we find 〈cosΘ〉 ≈ 0 at
x = 0.498980, which means the scattering is symmetric with respect to the plane z = 0.

Hence, Fano resonances in core-shell particles can be used to detect the slight changes of core
permittivity since they are sensitive in both magnitude and direction.

4. Fano resonances in arbitrary objects with high-permittivity dielectric

When the structure gets more complicated, the Mie theory is no longer valid for the solution of
scattering field. We have to use the temporal coupled-mode theory (TCMT) to replace Mie

Figure 8. Scattering pattern of a high-permittivity shell particle with E2 = 1000 , E1 = 1.5 , η = 0.8 , a = 100 nm when (a)
x = 0.498672 (b) x = 0.498980 (c) x = 0.499276.
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theory when investigating the Fano resonances in arbitrary objects with high-permittivity
dielectric.

4.1. Temporal coupled-mode theory

The temporal coupled-mode theory provides a useful general framework to study the interac-
tion of a resonance with external waves. It has been well developed when dealing with
particles that have cylindrical or spherical shapes [21]. In [22], TCMT has been generalized to
analysis the scattering of arbitrary shape structures. The temporal coupled-mode equations
can be expressed as [23]

dA
dt

¼ �iω0 � 1
τ

� �
Aþ κTsþ

s� ¼ Bsþ þ Ad

8><
>:

(16)

In Eq. (16), |A|2 corresponds to the energy inside the resonator. s+ and s� represent incoming
waves and outgoing waves, respectively. They couple directly by the resonant mode A is
coupled with the outgoing waves s� through d and is excited by the incoming waves s+

through κT. ω0 is the resonance frequency and 1
τ is the external leakage rate.

There exists some constrains between B, d, and κ, which are imposed by energy conservation
and time-reversal invariance [22]. The constrain conditions are

dj j2 ¼ 2
τ

κTd∗ ¼ 2
τ

Bd∗ þ d ¼ 0

8>>>><
>>>>:

(17)

For a 2D arbitrary object, we can expand scattering field into cylindrical waves

Hsca ¼
X∞
m¼�∞

H0 am H 1ð Þ
mj j kρ
� �

eimθ (18)

s+ and s� in Eq. (16) can be viewed as coefficients of input wave and outgoing wave on the
basis of cylindrical waves.

The incident plane wave can also be expanded into cylindrical waves

eikr ¼
X∞
m¼�∞

i mj je�iθ0m
H 1ð Þ

mj j kρ
� �þH 2ð Þ

mj j kρ
� �

2

0
@

1
A� eiθm (19)

where θ0 is the incident angle. Combined with cylindrical wave expansion, we can use TCMT
to describe the Fano resonances in arbitrary objects with high-permittivity dielectric.
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4.2. Numerical simulation

The method we determine the coefficients in Eq. (16) is similar to the method described in [22].
Firstly, we use eigenmode analysis in COMSOL 5.0 to figure out the resonance frequency ω0

and the external leakage rate 1
τ. Secondly, being different from the method in [22] where they

set B = I, we calculate the B through the simulation results of the arbitrary object covered by
PEC illuminated by the plane wave. Since the slow varying background of high-permittivity
sphere is the PEC sphere as mentioned above, it is intuitive to assume the slow varying
background of arbitrary object which is described by B is the same as the object covered by
PEC. Thirdly, combined with the field distribution of eigenmode simulation and background
scattering matrix B, we can figure out the resonant radiation coefficients d. At last, κ can be
solved through constrain conditions in Eq. (17).

Once the coefficients in Eq. (16) are determined, we can use the TCMT to predict the scattering
fields by different incident frequencies and incident angles.

As shown in Figure 9, the relative permittivity of rounded-corner triangle is 600. The struc-
ture has a resonance frequency of ω0 = 0.12172ωp and the leakage rate is 1

τ ¼ 1:1771� 10�4,
which can be figured out by COMSOL. We use Matlab to set the temporal coupled-mode
model as shown in Eq. (16). By comparing with the simulation results of COMSOL at
different incident frequencies (near the resonance frequency) and incident angles, we can
prove the validity of TCMT.

When a TM wave impinges on the scatterer, the scattering cross section can be defined as

Csct ¼ Psct

I0
(20)

where Psct is the rate at which energy is scattered across the circle far away from the scatterer

and I0 ¼ 1
2

ffiffiffiffi
μ0
E0

q
H0j j2 is the intensity of the incident plane wave. For TCMT, the scattering cross

section can be calculated by [22]

Figure 9. (a) Rounded-corner triangle with r ¼ 0:15λp, a1 ¼ 0:3λp,φ ¼ π
6 , E ¼ 600. (b) The real part of Hz for the eigen-

mode analysis at the frequency ω0 = 0.12172ωp.
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Csct ¼ S� Ið Þsþð Þ† S� Ið Þsþ
I0

(21)

where

S ¼ Bþ dκT

iω0 � iωþ 1
τ

(22)

As shown in Figure 10(b, c), for different incident angles, scattering cross sections predicted by
TCMTmatch well with the results simulated by COMSOL.

As shown in Figure 11, the green line represents the assumption in [22] that the back-
ground scattering matrix B can be set to I while the blue line represents the assumption
that B is achieved through the simulation results of the arbitrary object covered by PEC. As
we can see, when the incident frequency equals to the resonance frequency, both the green
line and blue line (TCMT models with different parameters) can match the simulation
results. However, when the incident frequency deviates from the resonance frequency, our
TCMT model shows a better accuracy compared with the TCMT model in [22], which
indicates that the background scattering matrix B cannot be set to I easily when the
permittivity of object is high.

Figure 10. (a) Scattering cross section predicted by TCMT as a function of incident frequency ω and incident angle θ0.
Comparison between TCMT and COMSOL simulation results for different incident angles θ0 = 0 (b) and θ0 ¼ π

2 (c).
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5. Fano resonances in periodic structures

Fano resonances have been widely observed in the various periodic structures [24, 25]. The
theory of Fano resonance in periodic structures is well developed. In [26], temporal coupled-
mode theory is applied to analysis the transmission spectra of photonic crystal slab. According
to the TCMT, the Fano resonances existed in transmission spectra are the result of the coupling
of leaky mode to the external waves. Recently, the experimental discovery of Fano resonances
involving interference between Mie scattering and Bragg scattering is studied in [27]. By
comparing the disordered system with the periodic structure, they conclude the sharp reso-
nances in periodic structure are caused by the Bloch waves. In order to study the interference
between Mie scattering and Bragg scattering theoretically, the inverse dispersion method is
proposed to calculate the photonic band diagram and distinguish unambiguously between
Bragg and Mie gaps in the spectra [28]. The method reduces Maxwell’s equations to a problem
with the eigenvalue k while ω is considered to be a real parameter. It is not so intuitive since
conventional approach will reduce the Maxwell’s equations to standard eigenproblem for the

Figure 11. The far-field amplitude of the scattering field with different incident frequencies and angles of (a)ω =ω0 , θ0 = 0,
(b) ω ¼ ω0,θ0 ¼ π

2, (c) ω = ω0 + 2Γ , θ0 = 0, (d) ω ¼ ω0 þ 2Γ,θ0 ¼ π
2.
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frequency [29]. In [30], the author shows that the frequencies of observed Fano resonances
existed in a linear array of dielectric cylinders coincide with the position of narrow frequency
bands found in the spectra of corresponding two-dimensional photonic crystals. Inspired by
[28, 30], we figure out the eigenfrequency of the photonic crystal slab and compare with the
band diagram of two-dimensional photonic crystal. We are surprised to find that the occur-
rence of Fano resonances in photonic crystal slab can be predicted by the band diagram of
photonic crystal.

5.1. Transmission spectra of the photonic Crystal slab

The structure of photonic crystal slab is shown in Figure 12. We assume the dielectric cylinders
are parallel to the z axis. When TE waves with different angles incident on the slab, we can
calculate the transmission coefficients and plot them in Figure 13.

As shown in Figure 13, Fano resonances with narrow resonance width can be observed. The
permittivity of photonic crystal slab does not need to be as high as single cylinder in order to
achieve same quality factor and such materials may be easily found in nature.

Figure 12. Photonic crystal slab with radius of cylinders r = 0.4a (a is the period of the slab), e = 12, μ = 1.

Figure 13. Transmission coefficient of plane wave incident on the photonic crystal slab. The incident angles are (a) ϕ = 0
and (b) ϕ ¼ π

100.
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Let us assume the Fano resonances in Figure 13 satisfy the Fano function 1
1þq2

qþω�ω0
Γð Þ2

1þ ω�ω0
Γð Þ2. Firstly,

we use eigenmode analysis in COMSOL to figure out the eigenfrequency of photonic crystal
slab. The real and imaginary part of eigenfrequency represent the resonance frequency ω0 and
resonance width Γ respectively. Secondly, we use the fitting method in Matlab to get the
optimal Fano parameter q in Fano function. Thirdly, with given ω0, Γ, and q, we can plot the
Fano function with respect to frequency ω. As shown in Figure 14, the Fano curve matches
well with the transmission coefficient simulated by COMSOL. The horizontal ordinate is
chosen as a/λ for convenience, which is proportional to frequency ω.

5.2. Band diagram of photonic Crystal

The photonic crystal slab is periodic in only one direction while two-dimensional photonic
crystal is periodic in two directions. For a photonic crystal as shown in Figure 15, the band
diagram for ky ¼ 0, 0 ≤ kx ≤ π

a is plotted in Figure 16(a). The eigenfrequencies of the photonic
crystal are real while the eigenfrequencies of the photonic crystal slab are complex due to the
existence of radiation loss. Hence, only the real parts of eigenfrequencies are plotted as shown
in Figure 16(b). By comparing the resonance frequencies shown in Figure 13 and eigenfre-
quencies in Figure 16(b), we can conclude that the occurrence of Fano resonances in transmis-
sion spectra of photonic crystal slab can be predicted by the real parts of the eigenfrequencies
of the system. In addition, for the Fano resonances, which are observed in Figure 13(b) but
cannot be observed in Figure 13(a), they all have the eigenfrequencies with Q!∞. Hence, the
resonance widths tend to zero and the resonances cannot be observed.

Figure 14. The Fano curve and the simulation result of photonic crystal slab are plotted.
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As shown in Figure 16, the Fano resonances of the transmission spectra coincide with the band
diagram of the two-dimensional photonic crystal, which further explains that Fano resonances in
periodic structures can be viewed as the superposition of the Bloch wave, which provides the
narrow resonances and the Mie scattering wave which provides the slow varying background.

6. Conclusion

In this chapter, we have presented various structures with high permittivity, which have Fano
resonances, such as spheres, core-shell particles, arbitrary shape objects, and periodic

Figure 15. Photonic crystal with radius of cylinders r = 0.4a (R1 = R2 = a), e = 12, μ = 1.

Figure 16. (a) Band diagram of two-dimensional photonic crystal as shown in Figure 15 when ky ¼ 0, 0 ≤ kx ≤ π
a . (b) Real

parts of eigenfrequencies of photonic crystal slab as shown in Figure 12 with Q > 70 are plotted.
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structures. For each structure, different theoretical methods together with numerical analysis
have been presented. Compared with conventional Fano resonances observed in structures
consisted of metal and dielectric, high-permittivity structures can enhance the quality factor
significantly, which may open up new opportunities for applications such as sensors, switches,
and permittivity measuring technique.
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Abstract

Recent development of laser technology toward the realization of high-power laser has
opened up a new research area exploring various fascinating phenomena governed by
strongly photoexcited electronic states in diverse fields of science. In this chapter, we
review the laser-induced Fano resonance (FR) in condensed matter systems, which is
one of the representative resonance effects successfully exposed by strong laser field.
The FR of concern sharply differs from FR effects commonly observed in conventional
quantum systems where FR is caused by a weak external perturbation in a stationary
system in the following two aspects. One is that the present FR is a transient phenome-
non caused by nonequilibrium photoexcited states. The other is that this is induced by
an optically nonlinear process. Here, we introduce two physical processes causing such
transient and optically nonlinear FR in condensed matter, followed by highlighting
anomalous effects inherent in it. The first is a Floquet exciton realized in semiconductor
superlattices driven by a strong continuous-wave laser, and the second is the coherent
phonon induced by an ultrashort pulse laser in bulk crystals.

Keywords: laser, Fano resonance, photodressed states, exciton, dynamic localization,
Floquet theorem, coherent phonon, ultrafast phenomena, polaronic quasiparticle

1. Introduction

In quantum systems where discrete levels are embedded in energetically degenerate contin-
uum states, resonance phenomenon is likely manifested, that is, characteristic of asymmetric
spectral profiles consisting of both a peak and a dip. This is known as Fano resonance (FR) [1];
this is also termed as either Feshbach resonance or many-channel resonance. FR is one of the
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common and fundamental concepts in diverse fields of physics and chemistry; FR processes
are observed, for instance, in strongly interacting Bose-Einstein condensates in an ultracold
atomic system [2–4], superexcited states of molecules [5], a semiconductor quantum dot in an
Aharonov-Bohm interferometer [6], an electronic transition near Weyl points strongly coupled
with an infrared-active phonon in a Weyl semimetal [7].

In particular, within the restriction just to the FR processes triggered by laser irradiation, these
may be classified in terms of the three categories as shown in Table 1. The first category is
regarding whether a process is a linear one or a nonlinear one with respect to an order of a
laser-matter interaction, as categorized as (a1) and (a2), respectively. For instance, the former is a
photoabsorption process [8–11], and the latter is a multiphoton process [12–16]. The second
category is regarding whether the process results from a built-in interaction between the discrete
level and continuum that is intrinsic to a material itself or from a coupling induced extrinsically
by a laser, as categorized as (b1) and (b2), respectively. For instance, the former is the interaction
of an electron with a longitudinal optical (LO)-phonon in incoherent Raman scattering [17–22],
and the electron-electron interaction brings about autoionization and the Auger process [23]. The
latter FR process is known as a laser-induced continuum structure [2–4, 24]. The third category is
regarding whether the process is a (quasi)stationary one or a transient one, as categorized as (c1)
and (c2), respectively. In other words, this is whether (quasi)time-independent or time-
dependent. For instance, the former is induced by a continuous-wave (cw) laser (monochromatic
laser) [15, 16, 25, 26], and the latter is by a short pulsed laser [27–31].

It is stressed that for the FR categorized as (a2), its physical characters—such as asymmetry in
spectral profile, spectral intensity, resonance position, and spectral width—are controllable in a
quantum-mechanic manner by tuning various laser parameters. Thus, it is expected that under-
lying physics is enriched by intriguing effects inherent in this sort of FR. This differs frommost of
FR processes observed thus far because of being simply classified as (a1)-(b1)-(c1).

Currently, new research areas have been opened up owing to the progress of laser technology
toward the realization of sophisticated high-power light sources. In particular, in the field of
condensed matter physics, the development of high-intensity terahertz (THz) wave enables us to
explore a photodressed quantum state in which a temporally periodic interaction of THz wave
with matter is renormalized in the original quantum state in a nonperturbative manner [32–34].
Such an anomalous state is termed as a Floquet state because of ensuring the Floquet theorem
[35]. Further, the development of ultrashort pulse laser—with its temporal width being of an

Category Characteristic

Optical process (a1) Linear (perturbative) (a2) Nonlinear (nonperturbative)

Interaction
causing FR

(b1) Intrinsic (built-in) (b2) Extrinsic (external)

Light source (c1) Monochromatic, continuous wave
(stationary/quasistationary)

(c2) Pulsed (transient)

Table 1. Classification of FR into three categories.
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order of 10 femtosecond (fs)—enables us to explore ultrafast transitory phenomena governed by
strongly photoexcited electronic states. Bearing in mind such current situations, here, we focus
exclusively on the laser-induced FR effects realized in the following two physical systems. One is
a Floquet exciton formed in semiconductor superlattices (SLs) driven by a strong THz wave, and
the other is a coherent phonon (CP) generated by ultrashort pulse laser in bulk crystals. In the
light of Table 1, the FR effects of concern sharply differ from those commonly observed in
conventional quantum systems classified as (a1)-(b1)-(c1) in the following aspects. Both of the
Floquet exciton and the CP are induced by optically nonlinear processes, and hence the signifi-
cant quantum controls of FR are feasible by means of tuning the respective applied light sources.
Further, the Floquet exciton forms manifolds of quasistationary states with quasienergy as a
constant of motion, where the FR is mediated by the ac-Zener tunneling caused by the THz
wave. Hence, this is classified as (a2)-(b2)-(c1) and is herein termed as dynamic FR (DFR). On
the other hand, the CP is a transient phenomenon caused by the built-in interaction of an
LO-phonon with nonequilibrium photoexcited carriers. Hence, this is classified as (a2)-(b1)-(c2)
and is herein termed as transient FR (TFR).

Below, we survey the present research backgrounds of DFR and TFR in brief. In both cases, the
applied electric field of pumping laser is represented as F(t) = F0(t) cos(ωt) with an envelope
function F0(t) at time t and the center frequency ω.

To begin with the DFR, this is closely related with the photodressed miniband formation [36].
Here, the cw laser with a constant amplitude F0(t)�Fac gives rise to a nonlinear optical
interaction with electron to result in a photodressed miniband with effective width
Δeff = Δ0∣J0(x)∣, where Δ0 and J0(x) represent the width of the original SL miniband and the
zeroth-order Bessel function of the first kind with x = eFacd/ℏω, respectively, and e, d, and ℏ
represent the elementary charge, a lattice constant of the SLs, and Planck’s constant divided by
2π, respectively. Each photodressed miniband forms a sequence of photon sidebands arrayed
at equidistant energy intervals of ℏω following the Floquet theorem. The DFR is caused by the
interaction due to the ac-Zener tunneling between photon sidebands pertaining to different
sequences, and this is coherently controlled by tuning Fac and ω. In particular, it is expected
that an anomalous effect attributed to dynamic localization (DL) on DFR is revealed on the
occasion that all of the photodressed minibands collapse by tuning x to ensure J0(x) = 0 [36–38].
The DL was first observed in electron-doped semiconductor SLs driven by a THz wave [39]. In
addition, this has also been observed in diverse physical systems such as a cold atomic gas in
one-dimensional optical lattices [40], a Bose-Einstein condensate [41], and light in curved
waveguide arrays [42–44].

As regards the TFR, this was observed in a lightly n-doped Si crystal immediately after carriers
were excited by an ultrashort laser pulse [45], where the speculation was made that the observed
FR would show the evidence of the birth of a polaronic-quasiparticle (PQ) likely formed in a
strongly interacting carrier-LO-phonon system in a moment [46]. The TFR of concern has been
observed exclusively in this system and semimetals/metals such as Bi and Zn [47, 48] till now,
however, not observed in p-doped Si and GaAs crystals [49, 50]. Thus far, there are a number of
theoretical studies regarding these experimental findings. The time-dependent Schrödinger
equation in the system of GaAs was calculated to show the asymmetric shape featuring FR
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spectra, though apparently opposed to existing experimental results, as mentioned above [51].
Further, the classical Fano oscillator model was presented based on the Fano-Anderson Hamil-
tonian [52, 53], and the close comparison of the experimental results of the CP signals of Bi was
made with the time signal obtained by taking the Fourier transform of Fano’s spectral formula
into a temporal region [48]. Recently, the authors have constructed a fully quantum-mechanical
model based on the PQ picture in a unified manner on an equal footing between both of polar
and nonpolar semiconductors such as undoped GaAs and undoped Si [31]. Here, it has been
shown that the TFR is manifested in a flash only before the carrier relaxation time (�100 fs) in
undoped Si, whereas this is absent from GaAs.

Acronyms used in the text and the corresponding meanings are summarized in Table 2. The
remainder of this chapter is organized as follows. In Section 2, the theoretical framework is
described, where the models of the DFR and TFR are presented separately in Sections 2.1 and
2.2, respectively. The results and discussion are given in Section 3, and the conclusion with
summary is given in Section 4. Atomic units (a.u.) are used throughout unless otherwise stated.

2. Theoretical framework

2.1. Theoretical model for DFR in the photodressed exciton

2.1.1. Optical absorption spectra

The total Hamiltonian bH DFRð Þ
tð Þ concerned comprises a SL Hamiltonian consisting of field-free

Hamiltonians of the conduction (c) and valence (v) bands, a Coulomb interaction between
electrons, an intersubband interaction caused by the driving laser F(t) polarized in the direction
of crystal growth (the z-axis), and an interband interaction caused by the probe laser f(t) = fpcos
(ωpt) with the center frequency ωp and the constant amplitude fp; it is assumed that Fac ≫ fp and

Acronyms Meanings

CP Coherent phonon

cw Continuous wave

DFR Dynamic FR

DL Dynamic localization

FR Fano resonance

fs Femtosecond

LO Longitudinal optical

PQ Polaronic-quasiparticle

SL Superlattice

TFR Transient FR

THz Terahertz

Table 2. Summary of acronyms used in text in alphabetical order and corresponding meanings.

Resonance212



spectra, though apparently opposed to existing experimental results, as mentioned above [51].
Further, the classical Fano oscillator model was presented based on the Fano-Anderson Hamil-
tonian [52, 53], and the close comparison of the experimental results of the CP signals of Bi was
made with the time signal obtained by taking the Fourier transform of Fano’s spectral formula
into a temporal region [48]. Recently, the authors have constructed a fully quantum-mechanical
model based on the PQ picture in a unified manner on an equal footing between both of polar
and nonpolar semiconductors such as undoped GaAs and undoped Si [31]. Here, it has been
shown that the TFR is manifested in a flash only before the carrier relaxation time (�100 fs) in
undoped Si, whereas this is absent from GaAs.

Acronyms used in the text and the corresponding meanings are summarized in Table 2. The
remainder of this chapter is organized as follows. In Section 2, the theoretical framework is
described, where the models of the DFR and TFR are presented separately in Sections 2.1 and
2.2, respectively. The results and discussion are given in Section 3, and the conclusion with
summary is given in Section 4. Atomic units (a.u.) are used throughout unless otherwise stated.

2. Theoretical framework

2.1. Theoretical model for DFR in the photodressed exciton

2.1.1. Optical absorption spectra

The total Hamiltonian bH DFRð Þ
tð Þ concerned comprises a SL Hamiltonian consisting of field-free

Hamiltonians of the conduction (c) and valence (v) bands, a Coulomb interaction between
electrons, an intersubband interaction caused by the driving laser F(t) polarized in the direction
of crystal growth (the z-axis), and an interband interaction caused by the probe laser f(t) = fpcos
(ωpt) with the center frequency ωp and the constant amplitude fp; it is assumed that Fac ≫ fp and

Acronyms Meanings

CP Coherent phonon

cw Continuous wave

DFR Dynamic FR

DL Dynamic localization

FR Fano resonance

fs Femtosecond

LO Longitudinal optical

PQ Polaronic-quasiparticle

SL Superlattice

TFR Transient FR

THz Terahertz

Table 2. Summary of acronyms used in text in alphabetical order and corresponding meanings.

Resonance212

ω ≪ ωp. The microscopic polarization defined as pλλ0
k∥

tð Þ � a vð Þ†
λk∥

a cð Þ
λ
0
k∥

� �
is examined to shed

light on the detail of DFR of the Floquet exciton; 〈O〉 represents the expectation value of the
operator O. Here, λ(0) = (b(0),l(0)), which represents the lump of the SL miniband index b(0) and the
SL site l(0). In addition, k∥ represents the in-plane momentum associated with the relative motion
of the pair of c band and v band electrons, where the in-plane is defined as the plane normal to

the z-axis; hereafter, the relative position conjugate to k∥ is represented as ρ. Further, a sð Þ†
λk∥

a sð Þ
λk∥

� �

represents the creation (annihilation) operator of the electron with λ and k∥ in band s.

The equation of motion for the microscopic polarization is given by the semiconductor Bloch
equation

i
d
dt

þ 1
T2

� �
pλλ0k∥ tð Þ ¼ ½a vð Þ†

λk∥
a cð Þ
λk∥

; bH DFRð Þ
tð Þ�

� �
(1)

with T2 dephasing time. For the practical purpose of tackling the multichannel scattering
problem of exciton, it is convenient to transform it into the equation for p ρ; zv; zc; tð Þ defined
in the real-space representation as

p ρ; zv; zc; tð Þ ¼ eiωpt
X
λ,λ0

Z
dk∥eik∥�ρ zvjλh ipλλ0k∥ tð Þ λ0jzch i, (2)

where 〈λ|z〉 represents the Wannier function at position z� ld in SL miniband b. The resulting
equation becomes

i
d
dt

þ 1
T2

� iωp

� �
p ρ; zv; zc; tð Þ þ 2πð Þ2eiωptf þð Þ

0 tð Þd vcð Þ
0 δ ρð Þδ zv � zcð Þ

¼ R dz p ρ; zv; z; tð ÞH cð Þ
TB z; zc; tð Þ �H vð Þ

TB zv; z; tð Þp ρ; z; zc; tð Þ
h i

þH ρ; zv; zcð Þp ρ; zv; zc; tð Þ,
(3)

where the rotating wave approximation is employed by replacing f(t) by f þð Þ
0 tð Þ � f p=2

� �
e�iωpt

and d vcð Þ
0 represents the interband dipole moment of a bulk material. Here, the Hamiltonian

H(ρ,zv,zc) for the in-plane motion is given by H ρ; zv; zcð Þ ¼ � ∇2
ρ=2m∥ þ V rð Þ, where m∥ and V

(r) = �1/(ε0r) represent an in-plane reduced mass and the Coulomb interaction, respectively,

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ zv � zcð Þ2

q
and ε0 the dielectricity of vacuum. The nearest-neighbor tight-

binding Hamiltonian of the laser-driven SLs is given by H sð Þ
TB z; z0; tð Þ � zjbH sð Þ

TB tð Þjz0
D E

, where

bH sð Þ
TB tð Þ ¼

X
λ¼ b;lð Þ

ε sð Þ
0b jλ〉〈λj þ

�1ð Þbþσs

4
Δ sð Þ

b jl; bð i lþ 1; bj þ jlþ 1; bh i〈l; bjÞ
" #

� F tð Þ
X
λλ0

∣λiZ sð Þ
λλ0 λ0∣,h

(4)

and ε sð Þ
0b and Δ sð Þ

b represent the band center and the band width of b, respectively, with σs = 0 (for
s = c) and 1 (for s = v). The last term of Eq. (4) represents the dipole interaction induced by the

Laser-Induced Fano Resonance in Condensed Matter Physics
http://dx.doi.org/10.5772/intechopen.70524

213



driving laser F(t) with Z sð Þ
λ,λ0 as a dipole matrix element. It should be noted that the off-diagonal

contribution of Z sð Þ
λ,λ0 with b 6¼b 0 induces the ac-Zener tunneling, which plays a significant role

of quantum control of DFR, as shown below.

The concerned function p ρ; zv; zc; tð Þ can be expressed in terms of the complete set of the
Floquet wave functions {ψEβ(ρ,zv,zc,t)}, that is,

p ρ; zv; zc; tð Þ ¼
Z

dE
X
β

aEβ ψEβ ρ; zv; zc; tð Þ (5)

with aEβ as an expansion coefficient. Here, the Floquet wave function ensures the following
homogeneous equation associated with the inhomogeneous equation of Eq. (3) as

i
d
dt

þ E
� �

ψEβ ρ; zv; zc; tð Þ ¼ R dz ψEβ ρ; zv; z; tð ÞH cð Þ
TB z; zc; tð Þ �H vð Þ

TB zv; z; tð ÞψEβρ; z; zc; tÞ
h i

þH ρ; zv; zcð ÞψEβ ρ; zv; zc; tð Þ, (6)

where the temporally periodic boundary condition ψEβ(ρ,zv,zc,t) = ψEβ(ρ,zv,zc,t+T) is imposed
on it with E and T = 2π/ω as quasienergy and the time period of the driving laser field,
respectively. Equation (6) is the Wannier equation of the Floquet exciton of concern. It should
be noted that this is cast into the multichannel scattering equations and the Floquet state of
ψEβ(ρ,zv,zc,t) forms a continuum spectrum designated by both E and β with β representing the
label of an open channel. Such a multichannel feature is introduced by the strong driving laser
F(t) that closely couples an excitonic-bound state with continua; more detail of the
multichannel scattering problem is described in Section 2.1.2. The expansion coefficient aEβ is
readily obtained by inserting Eq. (5) into Eq. (3) in view of Eq. (6) as

aEβ ¼
2πð Þ2d vcð Þ

0 f p=2
� �

E� ωp � iγ
� �

T

Z T

0
dt0ψEβ t0ð Þ, (7)

where ψEβ tð Þ ¼ R dzψEβ 0; z; z; tð Þ and γ = 1/T2.

Since the macroscopic polarization is given by P tð Þ ¼Pλ,λ0
R
dk∥d

vcð Þ∗
0 pλλ0k∥ tð Þ, the linear opti-

cal susceptibility χ(t) with respect to the weak probe laser f(t) is cast into [54]

χ tð Þ ¼
d vcð Þ
0

���
���
2

ε0

Z
dE
X
β

OEβ tð Þ
E� ωp � iγ

, (8)

where OEβ tð Þ ¼ ψEβ tð Þ=T
h i R T

0 dt0ψ
∗
Eβ t0ð Þ. Taking the Fourier transform of χ(t)�∑je

ijωtχj(ωp;ω),

leads to the expression of the absorption coefficient to be calculated as

Resonance214



driving laser F(t) with Z sð Þ
λ,λ0 as a dipole matrix element. It should be noted that the off-diagonal

contribution of Z sð Þ
λ,λ0 with b 6¼b 0 induces the ac-Zener tunneling, which plays a significant role

of quantum control of DFR, as shown below.

The concerned function p ρ; zv; zc; tð Þ can be expressed in terms of the complete set of the
Floquet wave functions {ψEβ(ρ,zv,zc,t)}, that is,

p ρ; zv; zc; tð Þ ¼
Z

dE
X
β

aEβ ψEβ ρ; zv; zc; tð Þ (5)

with aEβ as an expansion coefficient. Here, the Floquet wave function ensures the following
homogeneous equation associated with the inhomogeneous equation of Eq. (3) as

i
d
dt

þ E
� �

ψEβ ρ; zv; zc; tð Þ ¼ R dz ψEβ ρ; zv; z; tð ÞH cð Þ
TB z; zc; tð Þ �H vð Þ

TB zv; z; tð ÞψEβρ; z; zc; tÞ
h i

þH ρ; zv; zcð ÞψEβ ρ; zv; zc; tð Þ, (6)

where the temporally periodic boundary condition ψEβ(ρ,zv,zc,t) = ψEβ(ρ,zv,zc,t+T) is imposed
on it with E and T = 2π/ω as quasienergy and the time period of the driving laser field,
respectively. Equation (6) is the Wannier equation of the Floquet exciton of concern. It should
be noted that this is cast into the multichannel scattering equations and the Floquet state of
ψEβ(ρ,zv,zc,t) forms a continuum spectrum designated by both E and β with β representing the
label of an open channel. Such a multichannel feature is introduced by the strong driving laser
F(t) that closely couples an excitonic-bound state with continua; more detail of the
multichannel scattering problem is described in Section 2.1.2. The expansion coefficient aEβ is
readily obtained by inserting Eq. (5) into Eq. (3) in view of Eq. (6) as

aEβ ¼
2πð Þ2d vcð Þ

0 f p=2
� �

E� ωp � iγ
� �

T

Z T

0
dt0ψEβ t0ð Þ, (7)

where ψEβ tð Þ ¼ R dzψEβ 0; z; z; tð Þ and γ = 1/T2.

Since the macroscopic polarization is given by P tð Þ ¼Pλ,λ0
R
dk∥d

vcð Þ∗
0 pλλ0k∥ tð Þ, the linear opti-

cal susceptibility χ(t) with respect to the weak probe laser f(t) is cast into [54]

χ tð Þ ¼
d vcð Þ
0

���
���
2

ε0

Z
dE
X
β

OEβ tð Þ
E� ωp � iγ

, (8)

where OEβ tð Þ ¼ ψEβ tð Þ=T
h i R T

0 dt0ψ
∗
Eβ t0ð Þ. Taking the Fourier transform of χ(t)�∑je

ijωtχj(ωp;ω),

leads to the expression of the absorption coefficient to be calculated as
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α ωp;ω
� � ¼ ωp

C

X
j

Imχj ωp;ω
� �

(9)

with C the speed of light; χj=¼0 ωp;ω
� �

vanishes in the limit of Fac!0.

2.1.2. Multichannel scattering problem

The absorption coefficient of Eq. (9) is obtained by evaluating a set of the wave functions,
{ψEβ(ρ,zv,zc,t)}. To do this, first, the wave function is expanded as

ψEβ ρ; zv; zc; tð Þ ¼
X
μ

Φμ zv; zc; tð ÞFμβ ρ
� �

, (10)

where ρ = ∣ρ∣, and just the contribution of the s-angular-momentum component is incorporated
because of little effects from higher-order components. Here, Φμ(zv,zc,t) is the real-space repre-

sentation of the Floquet state ∣Φμ〉, that is, Φμ(zv,zc,t) = 〈zv,zc|Φμ〉, satisfying bHTB � i∂=∂t
� �

∣Φμi ¼ Eμ∣Φβi, where bHTB � bH cð Þ
TB þ bH vð Þ

TB and Eμ is the μth quasienergy. The index μ is consid-

ered as the approximate quantum number μ ≈ μ; k
� �

with μ � bc; bv; np
� �

as a photon sideband
index, where bc and bv are SL miniband indexes belonging to the c- and v-bands, respectively,
and k and np represent the Bloch momentum of the joint miniband of (bc,bv) and the number of
photons relevant to absorption and emission, respectively. The quantum number μ becomes a set
of the good quantum numbers with Fac decreasing, while k always remains conserved because of
the spatial periodicity in the laser-driven SLs of concern. In view of Eq. (10), Eq. (6) is recast into
the coupled equations for the radial wave function Fνβ(ρ), that is,

X
μ

LμνFνβ ρ
� � ¼ EFμβ ρ

� �
, (11)

where Lμν is an operator given by Lμν = δμν[�(2m∥)
1(d2/dρ2+ρ1d/dρ)+Eμ]+Vμν(ρ) and Vμν(ρ) is a

Coulomb matrix element defined as Vμν ρ
� � ¼ T�1 R T

0 dt
R
dzv
R
dzcΦ∗

μ zv; zc; tð ÞV ρ; zv; zc
� �

Φν zv; zc; tð Þ:
The Floquet exciton in the laser-driven SL system pertains to the multichannel scattering
problem, because Vμν(ρ) vanishes at ρ ≫ 1. Actually, for a given E, the channel μ satisfying E
>Eμ is an open channel, while the channel μ satisfying E<Eμ is a closed channel. Thus, the label
μ of Fμβ plays the role of the scattering channel. On the other hand, the label β means the
number of independent solutions satisfying Eq. (11). Here, there are same number of indepen-
dent solutions as open channels, since as many scattering boundary conditions are imposed on
Fμβ at ρ ≫ 1; while evanescent boundary conditions that Fμβ vanishes at ρ ≫ 1 are imposed on
closed channels. Eq. (11) can be numerically evaluated by virtue of the R-matrix propagation
method, which is a sophisticated formalism providing a stable numerical algorithm with
extremely high accuracy [55].

It is expected that the DFR of concern is caused by a coupling between photon sidebands
mediated by ac-Zener tunneling, as mentioned in Section 1. To see this situation in more detail,
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Figure 1 shows the interacting two photon sidebands μ and μ0 � b0c; b
0
v; n

0
p

h i
, where the discrete

Floquet excitonic state is supported by the photon sideband μ, and this is also embedded in the
continuum of the alternative photon sideband μ0. It is likely that the DFR occurs due to a close
coupling between these photon sidebands, and, eventually, the exciton state decays into the
continuum state pertaining to μ0. In fact, it is noted that the Coulomb interaction incorporated
in Eq. (6) also gives rise to FR. Defining the difference between the photon numbers of both
photon sidebands, namely, Δnp ¼ ∣np � n0p∣, the ac-Zener tunneling is featured by Δnp 6¼0, while

the Coulomb coupling is by Δnp = 0. The spectral profile and intensity of FR in the former can be
even more effectively controlled than in the latter by modulating the laser parameters Fac and ω,
since the degree of magnitude of ac-Zener tunneling depends exclusively on both of the external
parameters, differing from the Coulomb interaction. In the region of Fac weak enough to sup-
press the ac-Zener tunneling, the FR is dominated by the Coulomb coupling, similarly to the
conventional FR observed in the original SLs without laser irradiation [56].

2.2. Theoretical model for TFR in the CP generation

2.2.1. Introduction of polaronic quasiparticle operators

The total Hamiltonian bH TFRð Þ
of concern is given by bH TFRð Þ ¼ bHe þ bH 0 tð Þ þ bHp þ bHe�p:Here, bHe

represents an electron Hamiltonian including an interelectronic Coulomb potential, where a
two-band model is employed that consists of the energetically lowest c band and the energet-
ically highest valence v band, and a creation (annihilation) operator of electron with band

index b and Bloch momentum k is represented as a†bk abkð Þ. bHp represents an LO-phonon

Bound states of 
Floquet exciton

ac-Zener 
tunneling

Continuum of 
Floquet exciton

Photon sideband  μ
_

Photon sideband  μ’
_

{
{

Figure 1. Schematic diagram of the DFR formation in the Floquet excitonic system. This shows the coupling mechanism
that a bound state supported by the sideband μ interacts with a continuum state belonging to the sideband μ0 by the ac-
Zener tunneling to result in the Fano decay (from Ref. [15] with partial modification).
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Hamiltonian, where a creation (annihilation) operator of LO-phonon with an energy disper-

sion ω LOð Þ
q at momentum q is represented as c†q cq

� �
. Further, bH 0

tð Þ and bHe�p represent interac-

tion Hamiltonians of electron with the pump pulse and the LO-phonon, respectively. These are
given as follows:

bH 0
tð Þ ¼ � 1

2

X
b, b0 =¼bð Þ, k

Ωbb0 tð Þa†bkab0k þΩ∗
bb0 tð Þa†b0kabk

� �
, (12)

where Ωbb0(t) = dbb0F(t) with dbb0 an electric dipole moment between b and b
0
bands, and

bHe�p ¼
X
b, q, k

gbqcqa
†
bkþqabk þ g∗bqc

†
qa

†
bkabkþq

� �
, (13)

where gbq is a coupling constant of b band electron with the LO-phonon. Here, let the envelope
of F(t) be of squared shape just for the sake of simplicity, that is, F0(t) = F 0θ(t+τL/2)θ(τL/2�t)
with F0 constant, where temporal width τL is of the order of a couple of 10 fs at most,

satisfying τL ≪ 2π=ω LOð Þ
q .

The equation of motion of a composite operator A†
q kbb0ð Þ � a†b,kþqab0k is considered below,

where this represents an induced carrier density with spatial anisotropy determined by q; ∣q∣
is finite, though quite small, that is, q 6¼0. It is convenient to remove from this equation high-
frequency contributions by means of the rotating-wave approximation [57] by replacing

A†
q kbb0ð Þ by eiωbb0 tA

†
q kbb0ð Þ, where ωcv ¼ ω, ωvc ¼ �ω, and ωbb ¼ 0. Thus, the resulting equation

of motion is as follows:

�i
d
dt

þ 1
Tq kbb0ð Þ

 !
A

†
q kbb0ð Þ ¼ bHe tð Þ;A†

q kbb0ð Þ
h i

� A
†
q kbb0ð Þωbb0 þ bHe�p;A

†
q kbb0ð Þ

h i

≈
X

~k~b~b
0
A

†
q

~k~b~b
0� �
Zq

~k~b~b0; kbb0Þ þ bHe�p;A
†
q kbb0ð Þ

h i
,

� (14)

where the total electronic Hamiltonian is defined as bHe tð Þ ¼ bHe þ bH 0
tð Þ, the first commutator

in the right-hand side of the first equality is evaluated by making a factorization approxima-

tion, and Tq(kbb
0
) represents a phenomenological relaxation time constant relevant to A†

q kbb0ð Þ.
Further, Zq represents a non-Hermitian matrix, which is a slowly varying function in time,
since rapidly time-varying contributions are removed owing to the above rotating-wave
approximation, aside from the discontinuity at t = �τL/2.

Bearing in mind this situation, we tackle left and right eigenvalue problems of Zq [58],

described by UL†
q Zq ¼ EqUL†

q and ZqUR
q ¼ UR

qEq, respectively, in terms of an adiabatic-

eigenvalue diagonal matrix Eq and the associated biorthogonal set of adiabatic eigenvectors

UL
q;U

R
q

n o
with time t fixed as a parameter. The orthogonality relation and the completeness

Laser-Induced Fano Resonance in Condensed Matter Physics
http://dx.doi.org/10.5772/intechopen.70524

217



are read as UL†
q UR

q ¼ 1 and UR
qU

L†
q ¼ 1, respectively [58]. Given the relation Zq ¼ UR

qEqUL†
q ,

Eq. (14) is recast into the form of adiabatic coupled equations:

�i
dB†

qα

dt
¼ B†

qαEqα þ i
X
α0

B†
qα0Wqα0α þ bHe�p;B†

qα

h i
, (15)

where the operator B†
qα is defined as B†

qα � A
†
qU

R
qα, Wqα0α � dUL†

qα0=dt
h i

UR
qα, þUL†

qα0T�1
q UR

qα, and

Eqα(t) is complex adiabatic energy at time t associated with the operator B†
qα tð Þ thus introduced.

Hereafter, this operator is termed as a creation operator of quasiboson, and the corresponding

annihilation operator is defined as Bqα � UR†
qαAq: The set of eigenstates {α} is composed of

continuum states represented as β with eigenenergy Eqβ and a single discrete energy state
represented as α1 with eigenenergy Eqα1

, that is, {α} = ({β},α1); the state β corresponds to
electron-hole continuum arising from interband transitions, and the state α1 corresponds to a

plasmon-like mode. It is noted that the relation of Bqα tð Þ;B†
q0α0 tð Þ

h iD E
¼ δqq0δαα0 is assumed,

though Bqα(t) and B†
qα tð Þ do not satisfy the equal-time commutation relations for a real boson,

where bX means an expectation value of operator bX with respect to the ground state; the
validity of the criterion of this relation is discussed in detail in Ref. [31].

Eq. (13) is rewritten as bHe�p ¼
P

q,α cqB†
qαMqα þM∗

qαBqαc†q
� �

with an effective coupling

between quasiboson and LO-phonon as Mqα ¼PkbgbqU
L†
qα kbbð Þ. Thus, the commutator in

Eq. (15) is approximately evaluated as bHe�p;B†
qα

h i
≈M

0∗
qαc

†
q, though M

0∗
qα 6¼ M∗

qα. On the other

hand, the equation of motion of the LO-phonon is described by �idc†q=dt ¼
P

αB
†
qαMqαþ

c†qω
LOð Þ
q : Both of the equations of motion for B†

q and c†q are integrated into a single equation in

terms of matrix notations as follows:

�i
d
dt

B†
q; c

†
q

� �
≈ B†

q; c
†
q

� �
hq þ iB†

qWq; 0
� �

: (16)

Here, the non-Hermitian matrix hq�{hqγγ0} given by hq ¼
Eq Mq

M0†
q ω LOð Þ

q

 !
is introduced with

γ ,γ
0
= 1�N+2, where N represents the number of electron-hole (discretized) continua, namely,

β = 1~N, aside from two discrete states attributed to a plasmon-like mode and an LO-phonon
mode designated by α1 and α2, respectively: {γ} = ({β},α1,α2). In the system of the TFR of
concern, the case is exclusively examined that both of the discrete levels of α1 and α2 are
embedded into the continua {β}. Thus, the following coupled equations for the multichannel
scattering problem are taken account of

X
γ0

hqγγ0VR
qγ0β ¼ VR

qγβEqβ, (17)
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†
q, though M

0∗
qα 6¼ M∗
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P

αB
†
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c†qω
LOð Þ
q : Both of the equations of motion for B†

q and c†q are integrated into a single equation in

terms of matrix notations as follows:

�i
d
dt

B†
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†
q

� �
≈ B†
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†
q

� �
hq þ iB†

qWq; 0
� �

: (16)

Here, the non-Hermitian matrix hq�{hqγγ0} given by hq ¼
Eq Mq

M0†
q ω LOð Þ

q

 !
is introduced with

γ ,γ
0
= 1�N+2, where N represents the number of electron-hole (discretized) continua, namely,
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X
γ0

hqγγ0VR
qγ0β ¼ VR

qγβEqβ, (17)
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where VR
qβ ¼ VR

qγβ

n o
is the right vector representing the solution for given energy Eqβ; simi-

larly to Eq. (11) for the DFR, the indices of γ and β play the roles of a scattering channel and the
number of independent solutions, respectively. Eq. (17) provides the theoretical basis on which
both of LO-phonon and plasmon-like modes are brought into connection with the CP dynam-
ics on an equal footing. In terms of this vector, a set of N-independent operators,
F†qβ β ¼ 1 � N

� �
, is defined as

F†qβ ¼
X
β0

B†
qβ0V

R
qβ0β þ B†

qα1
VR

qα1β þ c†qV
R
qα2β: (18)

In addition, the left vector VL†
qβ ¼ VL†

qβγ

n o
associated with VR

qβ is introduced to ensure the

inverse relations B†
qα ¼ F†qV

L†
qα and c†q ¼ F†qV

L†
qα2

, where VL†
q VR

q ¼ 1 and VR
qV

L†
q ¼ 1. Hereafter,

the operator F†qβ tð Þ thus introduced is termed as a creation operator of PQ, and then the

corresponding annihilation operator is Fqβ(t); these are not bosonic operators. The
bosonization scheme for the PQ operators is similar to that for the quasiboson operators,
where the PQ ground state is given by the direct product of the ground states of quasiboson
and LO-phonon and Eqβ(t) is read as the single-PQ adiabatic energy at time t with mode qβ.

Given Eq. (18), Eq. (16) becomes adiabatic coupled equations for F†q:

�i
d
dt
F†qβ ≈F

†
qβEqβ þ i

X
β0

F†qβ0Iqβ0β, (19)

where Iq ¼ dVL†
q =dt

� �
VR

q þ VL†
q WqVR

q : In terms of Fq and F†q, the associated retarded Green

function is given by [59]

GR
qββ0 t; t

0ð Þ ¼ �iθ t� t0ð Þ Fqβ tð Þ; F†qβ0 t0ð Þ
h iD E

: (20)

2.2.2. Transient induced photoemission spectra

A weak external potential fq(t) additionally introduced in the transient and nonequilibrium

system of concern induces an electron density n indð Þ
q tð Þ given by

n indð Þ
q tð Þ ¼ 1

4πV

Z t

�∞
dt0χ tð Þ

q t; t0ð Þf q t0ð Þ, (21)

based on the linear response theory [59, 60] with V the volume of crystal. It is noted that

n indð Þ
q tð Þ is nonlinear with respect to the pump field. Here, χ tð Þ

q t; t0ð Þ represents the retarded
longitudinal susceptibility that depends on passage of t and the relative time τ = t�t

0
, differing

from equilibrium systems depending solely on τ. Introducing a retarded longitudinal
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susceptibility due to the electron-induced interaction and that of an LO-phonon-induced

interaction represented as χq(t,t
0
) and χ0

q t; t0ð Þ, respectively, χ tð Þ
q t; t0ð Þ is given by [59]

χ tð Þ
q t; t0ð Þ ¼ χq t; t0ð Þ þ χ0

q t; t0ð Þ: (22)

Let fq(t
0
) be assumed to be fq(t

0
) = fq0 δ(t

0 �tp) in the present system; fq0 is independent of t
0
, and

tp represents the time at which fq(t
0
) probes transient dynamics of concern. Thus, it is seen that

χ tð Þ
q t; tp
� �

reveals the way of alteration of n indð Þ
q tð Þ after tp, since Eq. (21) becomes n indð Þ

q tð Þ ¼
f q0χ

tð Þ
q t; tp
� �

θ t� tp
� �

=4πV:

In terms of χ tð Þ
q tp þ τ; tp
� �

, the dielectric function εq(tp+τ,tp) is readily obtained, and by taking

the Fourier transform of it as ~εq tp;ωp
� � ¼ R∞0 dτ e�iωpτεq tp þ τ; tp

� �
, this leads to a transient

absorption coefficient αq(tp;ωp) at time tp. This is given by αq(tp;ωp) = ωAq(tp;ωp)/n(tp;ωp)C,
where Aq tp;ωp

� � ¼ Im~εq tp;ωp
� �

and n(tp;ωp) represents the index of refraction. It is remarked
that according to the definition of the sign of ωp made above, transient photoemission spectra,
where Aq(tp;ωp)<0, peak at positive ωp, while transient photoabsorption spectra, where Aq(tp;
ωp)>0, peak at negative ωp. For the sake of the later convenience, the transient induced
photoemission spectra are defined as Aq tp;ωp

� � ¼ �Aq tp;ωp
� �

:

Based on the PQ model developed in Section 2.2.1, χq(t,t
0
) and χ0

q t; t0ð Þ can be explicitly

expressed in terms of the retarded Green function given by Eq. (20). Here, the obtained results
are shown below; for more detail, consult Ref. [31]:

χ∗
q t; t0ð Þ ¼ 4π

V

X
αα0ββ0

NL∗
qα tð ÞVL

qαβ tð ÞGR
qββ0 t; t

0ð ÞVL†
qβ0α0 t0ð ÞNL

qα0 t0ð Þ, (23)

where NL
qα ¼PkbU

L†
qα kbbð Þ, and this is equivalent to a normalization constant of the left vector

UL†
qα:

χ0
q t; t0ð Þ ¼ 4π

V
g0q
���
���
2
D

0R
q t; t0ð Þ þ D

0R
�q t; t0ð Þ

h i∗� �
, (24)

where g0q is a constant in proportion to (gcq+gvq)/2 and

D
0R
q t; t0ð Þ ¼

X
ββ0

VL
qα2β tð ÞGR

qββ0 t; t
0ð ÞVL†

qβ0α2
t0ð Þ: (25)

Finally, the TFR dynamics caused by the CP generation is mentioned based on the PQ picture.
As shown in Figure 2, the LO-phonon state α2 is embedded in the quasiboson state β, and the
effective coupling between both states induces the formation of transient PQ FR state. This
composite state is deexcited into the PQ ground state via two paths: one is the transient
photoemission from α2, and the other is from β. It is likely that these two paths interfere to
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� � ¼ R∞0 dτ e�iωpτεq tp þ τ; tp

� �
, this leads to a transient

absorption coefficient αq(tp;ωp) at time tp. This is given by αq(tp;ωp) = ωAq(tp;ωp)/n(tp;ωp)C,
where Aq tp;ωp

� � ¼ Im~εq tp;ωp
� �

and n(tp;ωp) represents the index of refraction. It is remarked
that according to the definition of the sign of ωp made above, transient photoemission spectra,
where Aq(tp;ωp)<0, peak at positive ωp, while transient photoabsorption spectra, where Aq(tp;
ωp)>0, peak at negative ωp. For the sake of the later convenience, the transient induced
photoemission spectra are defined as Aq tp;ωp

� � ¼ �Aq tp;ωp
� �

:

Based on the PQ model developed in Section 2.2.1, χq(t,t
0
) and χ0

q t; t0ð Þ can be explicitly

expressed in terms of the retarded Green function given by Eq. (20). Here, the obtained results
are shown below; for more detail, consult Ref. [31]:

χ∗
q t; t0ð Þ ¼ 4π

V

X
αα0ββ0

NL∗
qα tð ÞVL

qαβ tð ÞGR
qββ0 t; t

0ð ÞVL†
qβ0α0 t0ð ÞNL

qα0 t0ð Þ, (23)

where NL
qα ¼PkbU

L†
qα kbbð Þ, and this is equivalent to a normalization constant of the left vector

UL†
qα:

χ0
q t; t0ð Þ ¼ 4π

V
g0q
���
���
2
D

0R
q t; t0ð Þ þ D

0R
�q t; t0ð Þ

h i∗� �
, (24)

where g0q is a constant in proportion to (gcq+gvq)/2 and

D
0R
q t; t0ð Þ ¼

X
ββ0

VL
qα2β tð ÞGR

qββ0 t; t
0ð ÞVL†

qβ0α2
t0ð Þ: (25)

Finally, the TFR dynamics caused by the CP generation is mentioned based on the PQ picture.
As shown in Figure 2, the LO-phonon state α2 is embedded in the quasiboson state β, and the
effective coupling between both states induces the formation of transient PQ FR state. This
composite state is deexcited into the PQ ground state via two paths: one is the transient
photoemission from α2, and the other is from β. It is likely that these two paths interfere to
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give rise to asymmetry in spectra. It is remarked that the contribution from the plasmon-like
mode α1 is omitted because of a negligibly smaller effect on the TFR.

3. Results and discussion

3.1. DFR in the photodressed exciton

For the calculations of DFR spectra, the semiconductor SLs of GaAs/Ga0.75Al0.25As are
employed with 35/11 monolayers (ML) for the well and barrier thickness, where 1 ML = 2.83 Å.
Here, 14 photon sidebands of μ ¼ 1; 1;�3 � 3½ � and [2,1,�3�3] are incorporated by setting ω
to 91 meV; this equals to the difference between the centers of the joint minibands of (1,1) and
(2,1). Other photon sidebands are neglected for the sake of simplicity.

First of all, the calculated quasienergy bands {Eμ} as a function of Fac are shown in Figure 3 to
illustrate the effect of ac-Zener coupling. The two photon sidebands labeled by μ1 = [1,1,0,k]
and μ2 = [2,1,�1,k] are mixed by the coupling induced by the driving laser F(t). With the
increase of Fac, the quasienergy bands are branched into two distinct photon sidebands, termed
as the upper sideband μ+ and the lower sideband μ�, where both labels of μ1 and μ2 are no
longer good quantum numbers, aside from k. It is noted that both of μ+ and μ� form dynamic
localization showing band collapse around two points Fac = FDL1�170 kV/cm and FDL2�395
kV/cm. Figure 4 shows the absorption spectra α(ωp;ω) obtained by solving Eq. (9) in the range
of Fac from 10 to 450 kV/cm. Asymmetric spectral profiles characteristic of DFR are discerned at
the arrowed positions of ωp when Fac≥ 150 kV/cm, where all peaks are followed by dips. These
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Figure 2. Schematic diagram of the TFR dynamics based on the PQ picture, where the LO-phonon state α2 is embedded
in the quasiboson state β. The PQ FR state composed of α2 and β is deexcited by induced photoemission process. For more
detail, consult the text (from Ref. [31] with partial modification).
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Figure 3. The quasienergy ℰμ as a function of Fac. ω is set to 91 meV. The vertical double arrows represent the original SL
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peaks are located just below the upper sideband μ+, thereby being blue shifted. Consulting
Figure 1, the DFR is dominantly formed by the interaction between one open channel μ� and
one closed channel μ+.

To deepen the understanding of the DFR exciton, its characteristic quantities determining the
spectral profiles are extracted from α(ε)�α(ωp;ω) arrowed in Figure 4 by being fitted to Fano’s
Formula [1]:

α εð Þ ¼ α0
εþ q Fð Þ� �2
ε2 þ 1

, (26)

in the vicinity of an excitonic resonance quasienergy Eex, where ε = 2(ωp�Eex)/Γ with the
spectral width Γ and the asymmetry parameter (Fano’s q-parameter) q(F)<0. Figure 5(a) shows
the evaluated values of ∣1/q(F)∣ and Γ as a function of Fac, while Figure 5(b) shows the peak
intensity α(0) = α0[q

(F)]2�αmax and background spectra α(�∞) = α0 as a function of Fac. It is seen
that these functions are affected pronouncedly by Fac; in particular, extrema are formed around
Fac = FDL1. It is remarked that with the decrease in ∣1/q(F)∣ and Γ, the DFR state becomes a pure
bound state. In addition, there still exist faint extrema around Fac = FDL2 in the concerned
quantities except Γ. Therefore, the DL is considered to fulfill a special role of the quantum
control of photodressed excitonic states.

For the purpose of confirming such an effect of DL and the pronounced Fac dependence of
related quantities on the excitonic DFR, one evaluates the transition probability between the
photon sidebands of μ1 and μ2 due to the ac-Zener coupling; this value is represented asM(Fac)
as a function of Fac. This corresponds to the degree of mixing between these two photon

0

0.05

0.1

0

0.05

0.10

200 300 400100
0

0.05

0.1

0

40

80

Fac   (kV/cm)

Γ
 (m

eV)|1
/q

   
|

(a)

(b)

α  
0

α
m

ax
(F

)

ω=91meV

Figure 5. The DFR-related quantities as a function of Fac with the fixed value of ω=91 meV. The calculated results
represented by the filled symbols are connected by the solid lines in order to aid the presentation. (a) ∣1/q(F)∣ and Γ and
(b) α0 and αmax (from Ref. [16] with partial modification).
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sidebands. M(Fac) is readily obtained by solving the associated coupled equations between μ1

and μ2 in an approximate manner of neglecting contributions from all other photon sidebands
[16]. Given Δε and v as the difference of ac-Zener-free quasienergies between μ1 and μ2, and
the matrix element of the ac-Zener coupling between them, respectively, M(Fac) is provided as

M Facð Þ ¼ sin φ=2
� �� �2 ¼ 1

2
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p

� �
, (27)

where z�tanφ = 2∣v∣/∣Δε∣. With x = Facd/ω, v and Δε are evaluated as v∝x and Δε∝cos(kd)J0(x),
respectively; see Section 1. Thus, one has z = 2x/ηJ0(x) where η is a proportional constant
between Δε and v. According to Eq. (27), for finite values of η, with the increase of Fac, M(Fac)
increases from 0 to 1/2 in an oscillating manner; for more detail of the shape of M(Fac) for
several values of η, consult Ref. [16].

The alteration pattern ofM(Fac) with respect to Fac looks somewhat similar to the shapes of the
DFR-related functions shown in Figure 5. In particular, it is noted that M(Fac) has extrema at
zeros of J0(x), which just correspond to DL concerned here; that is, M(Fac) shows extrema at
Fac = FDL1 and FDL2. In fact, M(Fac) shows a clear extremum at Fac = FDL1, while the second
extremum at Fac = FDL2 is not obviously discernible. This is understood by the behavior that the
oscillating component incorporated in J0(x) is overwhelmed by the ac-Zener coupling v for
large x. Therefore, it is concluded that the characteristic Fac dependence of the functions of ∣1/
q(F)∣, Γ, αmax, and α0 is attributed to the competition between the ac-Zener effect and the band
width of the free electron-hole pair states in the vicinity of the DL positions.

Finally, one mentions in brief the ω dependence of the physical quantities ∣1/q(F)∣ and Γ at
Fac=180 kV/cm in the vicinity of Fac = FDL1. As shown in Figure 6(a), ∣1/q(F)∣ decreases sharply
with the increase in ω, while Γ is maximized around ω = 91 meV at which the centers of two
photon sidebands μ1 and μ2 coincide. The tendency of ∣1/q(F)∣ is in harmony with the ω
dependence of the ratio of dc to do, namely, rd = dc/do, as shown in Figure 6(b), where dc and do
represent a dipole-transition matrix from the ground state to the closed channel μ+ and that to
the open channel μ�, respectively. Actually, rd is in proportion to q(F) [16]. Such alteration of rd
is interpreted on the basis of the anticrossing formation of photon sidebands of μ+ and μ� due
to the Autler-Townes effect, though not discussed here; for more detail, consult Ref. [16]. Thus,
it seems that comparing Figure 6(a)with Figure 5(a), the q parameter is even more controllable
by changing ω than by Fac.

3.2. TFR in the CP generation

For the calculations of TFR spectra of undoped Si and undoped GaAs, the associated materials
parameters employed in the present study are shown in Ref. [31], while parameters of a
square-shaped pulse laser employed are as follows. For undoped Si and undoped GaAs,
detuning with reference to energy band gap Δω=82 and 73 meV, respectively, temporal width
τL=15 fs, pulse area AL=0.12π and 0.20π, respectively, and the maximum excited electron
density N0

ex=6.31�1017 and 5.30�1017cm3, respectively; by Δω>0, it is meant that opaque
interband transitions with real excited carriers are examined. Further, two time constants of
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T12 and Tq12 are introduced, which represent phenomenological damping time constants of
induced carrier density with isotropic momentum distribution and anisotropic momentum
distribution with q, respectively. The temporal region t<T12 is termed as the early-time region
during which a great number of carriers still stay in excited states, and the quantum processes
govern the CP dynamics; Tq12 is approximately equal to Tq(kbb

0
) introduced in Eq. (14). On the

other hand, the temporal region t≳T12 is termed as the classical region. For the present
calculations, Tq12 and T12 are set equal to 20 and 90 fs, respectively. As regards experimental
estimates of these time constants for Si, Tq12 and T12 extracted from the CP measurements in
Ref. [45] are 16 and 100 fs, respectively, at N0

ex ¼ 4� 1019 cm�3.

Transient induced photoemission spectra Aq tp;ωp
� �

defined in Section 2.2.2 show the change
of excited electronic structure due to the pump field at probe time tp, and this is crucial to
understand the TFR accompanied by CP generation. The total retarded longitudinal suscepti-
bility consists of the dynamically screened Coulomb interaction induced by electron and the

LO-phonon-induced interaction. That is, ~χ tð Þ
q tp;ωp
� � ¼ ~χq tp;ωp

� �þ ~χ
0
q tp;ωp
� �

, where this is a

Fourier transform of Eq. (22) with respect to τ into the ωp domain. In the small transferred
momentum q limit, ~χq tp;ωp

� �
is proportional to |q|2, while ~χ

0
q tp;ωp
� �

is proportional to |q|2

for the Fröhlich interaction exclusively for a polar crystal such as GaAs and to |q|4 for the
deformation potential interaction. This difference is attributed to the fact that the Fröhlich
interaction is of long range, and the deformation potential interaction is of short range. It is
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noted that in a nonpolar crystal such as Si, a dipole transition for lattice absorption vanishes in
the limit of q = 0 because of the presence of spatial inversion symmetry [61].

In Figures 7 and 8, Aq tp;ωp
� �

of Si and GaAs as a function of ωp is shown, respectively, by solid
lines at tp equal to t1�15, t2�65 and t3�100 fs, where the separate contributions from
~χq tp;ωp
� �

and ~χ
0
q tp;ωp
� �

are also shown by chain and dashed lines, respectively. ~χq tp;ωp
� �

and ~χ
0
q tp;ωp
� �

are mostly governed by the plasmon-like mode α1 and the LO-phonon mode α2,

respectively. In both figures, it is seen that just ~χ
0
q tp;ωp
� �

contributes to the formation of

spectral peaks and becomes dominant over ~χq tp;ωp
� �

in the classical region.

Figure 7(a) shows Aq tp;ωp
� �

of Si at tp = t1<Tq12, where the obtained continuum spectra are

governed by the contribution from ~χq tp;ωp
� �

, whereas the contribution from ~χ
0
q tp;ωp
� �

is

negligibly small due to the proportion of it to |q|4. In Figure 7(b) at tp = t2 with Tq12<tp<T12, the
contributions from ~χq tp;ωp

� �
are damped to be comparable to those from ~χ

0
q tp;ωp
� �

. It is noted

that asymmetric spectra characteristic of FR are manifested with a dip followed by a peak. This is
in sharp contrast with a symmetric Lorentzian profile shown in Figure 7(c) at tp = t3>T12. As
regards Aq tp;ωp

� �
of GaAs, it is shown in Figure 8(a) that at tp = t1, a pronounced peak due to the

α2 mode, is superimposed with a continuum background composed of ~χq tp;ωp
� �

and ~χ
0
q tp;ωp
� �

with comparable order, since both are in proportion to |q|2. The spectra at tp = t2 shown in
Figure 8(b) are dominated by ~χ

0
q tp;ωp
� �

, differing a lot from those shown in Figure 7(b) of Si.

The spectra at tp = t3 in Figure 8(c) are similar to those in Figure 7(c).

The origin of the manifestation of TFR in Si shown in Figure 7(b) is examined below. The
principal difference between Si and GaAs observed here is attributed just to the effective
coupling Mqβ between quasiboson and LO-phonon aside from less significant difference in
other material parameters; this appears in the matrix hq introduced in Eq. (16), and the

approximation of Mq ≈M
0
q is employed here. The primitive coupling constant gbq incorporated

in Mqβ consists of gDbq and gFbq representing the coupling constants due to a phenomenological
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Figure 7. Aq tp;ωp
� �

of undoped Si (solid line) as a function of ωp at tp equal to (a) 15 fs, (b) 65 fs, and (c) 100 fs. Separate

contributions to the spectra from ~χq tp;ωp
� �

and ~χ
0
q tp;ωp
� �

are also shown by chain and dashed lines, respectively. Aq tp;ω
� �

is reckoned from structureless background due to electron-hole continuum states β that are almost constant in the ωp region
concerned. The widths of the spectral peaks are determined by a phenomenological damping constant Tph of LO-phonon due
to lattice anharmonicity: 2/Tph=0.27 meV (from Ref. [31] with partial modification).
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LO-phonon deformation potential interaction and the Fröhlich interaction, respectively, that is,
gbq ¼ gDbq þ gFbq. Here, gDbq is real and approximately independent of q, while gFbq is pure imagi-

nary and ∣gFbq∣ ∝ qj j�1 [61]. In a nonpolar crystal such as Si, gbq ¼ gDbq, whereas in a polar or

partially ionic crystal such as GaAs, gFbq is much dominant to gDbq, namely, gbq ≈ g
F
bq. Actually, the

phase of Mqβ is almost determined by that of gbq, since a residual factor defining Mqβ is almost
considered real. Thus, Mqβ is a complex number given by Mqβ = ∣Mqβ∣eiφqβ in general; φqβ = 0,π
for Si, while φqβ = �π/2 for GaAs.

Next, discussion is made on how such difference ofMqβ affects the spectral profile of Aq tp;ωp
� �

based on the PQ picture depicted in Figure 2. It is seen that there are two transition paths for

the process: one is a direct path mediated by an optical transition matrix D rð Þ
qα2

from LO-phonon

state α2 to the PQ ground state, and the other is a two-step resonant path mediated by Mqβ

from α2 to quasiboson state β, followed by a deexcited process mediated by an optical transi-

tion matrix D cð Þ
qα2

from β to the PQ ground state. Accordingly, owing to Shore’s model [62], the

induced photoemission spectra in the proximity of ωp ≈ω
LOð Þ
q is read as

Aq tp;ωp
� �

≈ Cqβ þ
Aqα2 ωp � ω LOð Þ

q

� �
þ Bqα2Γqα2=2

ωp � ω LOð Þ
q

� �2
þ Γqα2=2
� �2 , (28)

where a set of Shore’s spectral parameters of Aqα2 , Bqα2
, and Cqβ are provided by

Aqα2 ¼ 2∣D cð Þ
qβ ∣∣D

rð Þ
qα2

∣∣Mqβ∣ cosφqβ

Bqα2 ¼ �2∣D cð Þ
qβ ∣∣D

rð Þ
qα2

∣∣Mqβ∣ sinφqβ þ D rð Þ
qα2

���
���
2
Mqβ
�� ��2= Γqα2=2

� �

Cqβ ¼ D cð Þ
qβ

���
���
2

8>>>><
>>>>:

(29)

and the natural spectral width is represented by Γqα2
= 2πρqα2

|Mqα2
|2; ρqα2

and Mqα2
are the

density of state of quasiboson and the coupling matrix at Eqβ ¼ ω LOð Þ
q , respectively. The associ-

ated Fano’s q parameter is determined in terms of Shore’s parameters as qqα2
tp
� � ¼ rqα2 tp

� �

þσqα2 tp
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rqα2 tp
� �� �2 þ 1

q
with rqα2 tp

� � ¼ Bqα2=Aqα2 and σqα2 tp
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An asymmetric spectral profile is exclusively determined by Aqα2. It is seen that Aqα2 tp
� �

van-

ishes for φqβ = �π/2 and Aq tp;ωp
� �

becomes of symmetric shape with ∣qqα2
(tp)∣ infinite. The

spectral profile of GaAs shown in Figure 8(b) corresponds to this case. For φqβ 6¼�π/2, both
Aqα2 tp

� �
and Bqα2

(tp) are finite, and Aq tp;ω
� �

becomes of asymmetric shape with ∣qqα2
(tp)∣ finite.

The spectral profile of Si shown in Figure 7(b) corresponds to this case, where φqβ≈0,π. For

Figures 7(c) and 8(c), since D cð Þ
qα and ∣Mqβ∣ become negligibly small, Aq tp;ω

� �
is governed by the

second term of the expression of Bqα2
(tp), and this becomes symmetric with Γqα2

≈0. To conclude,

the effective coupling Mqβ around Eqβ ≈ω
LOð Þ
q plays the crucial role of the manifestation of TFR,

and the asymmetry of profile is mostly determined by φqβ as long as ∣Mqβ∣ is still large.

Finally, the manifestation of TFR of Si is discussed from the viewpoint of the allocation of time
constants Tq12 and T12, where one sets Tq12<T12. This is an important issue for deepening the
understanding of TFR. As shown in Figure 7(b), in the region of Tq12≲tp<T12, the asymmetric
spectral profile bursts into view from the structureless continuum ~χq tp;ω

� �
. Actually, in the

early-time region of tp<T12, the excited carrier density is still populated enough around the

energy region of Eqβ ≈ω
LOð Þ
q to couple strongly with LO-phonon, while the effect of ~χq tp;ω

� �
is

much suppressed in the region of Tq12≲tp. As regards a different allocation of these time
constants, for instance, Tq12�T12, the TFR profile is no longer observed in the region of tp<
T12, since this is covered with still dominant contributions from ~χq tp;ω

� �
, and the effect ofMqβ

becomes too small to cause TFR in the region of tp≈T12. Therefore, the allocation of time
constants such as Tq12<T12 is a necessary condition for realizing the TFR of Si in Aq tp;ω

� �
;

otherwise this never appears.

4. Conclusion

Transient and optically nonlinear FR in condensed matter is examined here, which differs from
conventional FR processes caused by a weak external perturbation in a stationary system. In
particular, the following two FR processes are discussed: one is the DFR of Floquet exciton
realized in semiconductor superlattices driven by a strong cw laser, and the other is the TFR
accompanied by the CP generated by an ultrashort pulse laser in bulk crystals of undoped Si
and undoped GaAs.

It is shown that the physical quantities relevant to the DFR spectra can be controlled by
modulating Fac and ω. In particular, the quantities as a function of Fac take the extrema due to
the ac-Zener coupling between the photon sidebands of μ1 and μ2, when Fac is suitably
adjusted to satisfy the DL condition. Further, the strong ω dependence is explained on the
basis of the Autler-Townes effect forming the anticrossing between these two photon side-
bands. It is remarked that the spectral width shown in Figures 5 and 6 seems too small to be
confirmed by experiments. Actually, in the present calculations, the Coulomb many-body
effect is neglected. At least at the Hartree-Fock level, the vertex correction to the Rabi energy
would make the net ac-Zener coupling stronger to result in such a great DFR width that
experimental measurement would be accessible.
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As regards the TFR spectra, the PQ model succeeds in demonstrating the appearance of asym-
metric spectral profile in Si in a flash, whereas the profile observed in GaAs remains symmetric;
the obtained results are in harmony with the existing experimental ones [45]. The difference
between Si and GaAs is attributed to the phase factor of the effective coupling Mqβ(tp). To
conclude, it is found that in order to realize the TFR in the CP dynamics, the following conditions
are to be fulfilled simultaneously. First, the coupling of an LO-phonon with an electron-hole
continuum is conducted by the LO-phonon deformation potential interaction rather than by the
Fröhlich interaction. Second, photoexcited carriers are populated enough around the energy

region Eqβ ≈ω
LOð Þ
q in the early-time region Tq12<tp<T12 with Tq12 ≪ T12.
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Abstract

Many technologies have been developed to improve the quality of broadcasting, but persist
with theproblem that avoids the continuityof communicationswhen thephysical conditions
of the media change. However, loss of signal propagation cannot be avoided because the
refractive index of propagation media changes at the same time as magnetization, electro-
magnetic potential and other local parameters. That is, there is neither a device nor theories
that take into account the effect of the sign of the refractive index under the broadcasting
process. Simultaneously with the change of refractive index, conventional waves may find
travel conditions inaccessible to the desired destination. In this chapter, we proposed that a
sudden change in conditions is due to a resonant behavior of the media naturally described
byahomogeneous integral equation of Fredholm. In addition,wepropose amethod to avoid
the loss of the signal due to drastic changes in the broadcasting regime.

Keywords: resonances, broadcasting, evanescent waves, communications, negative
refraction index

1. Introduction

As we mentioned in the abstract, we propose the behavior of the electromagnetic waves
propagating media—a model that consists in the division of the space in several portions and
layers that eventually are considered as a superposition of thin layers of plasma. We must
underline that only when exceptional conditions locally prevail in a particular portion of space,
we can suppose the existence of these plasma layers. When an alternation of unmagnetized
and magnetized layers occurs, we can observe that for some intervals of the magnetization and
electric potential values, the refraction index of the set of alternating plasma layers becomes
negative. That is, we have left-hand material conditions as we have called them. Because
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Xiang-kun Kong et al. [1] found experimentally that they could change the refraction index
sign as they wanted in a succession of magnetized and unmagnetized plasma layers (which
they called as a plasma sandwich), we have applied the plasma sandwich model (PSM) to our
proposal. The reason they assume for the change in the refraction index sign is very different to
the explanation we present nowadays. Xiang-Kun Kong et al. [1], suppose is the coupling
between the electromagnetic polarized waves and the evanescent waves. Instead this reason-
ing, we have shown in several papers that the homogeneous integral equation of Fredholm
(HFE) and its Fourier transform (THFE) give us a simple reason, that is, the brake of confine-
ment of the evanescent waves that turn to be traveling waves. In addition, last explanation is
accompanied by the properties of the resonant solutions of the HFE and THFE equations. One
of the most important resonance properties is the orthogonality that allows the possibility to
send signals with little loss. Another important property of the resonances is the fact that the
resonances cannot live on the original sites where the evanescent waves lived. The generation
of propagation modes from the evanescent ones is due to a resonant behavior mechanism. We
also preserved the term precursor for the evanescent waves that become traveling waves. With
this definition, the traveling resonant waves cannot live where the precursors lived. One of the
advantages of the PSM is the fact that we can model the resonant broadcasting regime from a
little set of PSM parameters. Also, instead of the formalism employed by Xiang-kun Kong et al.
[1], we used our own formalism, the vector matrix formalism (VMF) [2–4]. The most decisive
variables are the electrical potential and the magnetization intensities.

2. Resonances and the Fredholm’s eigenvalue

We remember that we can represent the broadcasting process through a Fourier transform of a
generalized inhomogeneous Fredholm equation (TGIFE) [5,6] for the electric and magnetic
fields that is by the Fourier transform of the equation:

ð1Þ

In Eq. (1), Ej
m(ω) represents any of the electric or the magnetic field components and the

kernel is

ð2Þ

In Eq. (2), is the free Green function and is the interaction.

Then, the Fourier transform of Eq. (1) can be written as [2–4]:

ð3Þ

In Eq. (3), fn(ω) represents the Fourier transform of any of the electric or magnetic fields due to
the source fm(�)(ω), but as we can see from Eq. (1), both are vectors whose components are also
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vectors. Eq. (3) is an example of which we have called the vector-matrix formalism that avoids
a more complicated treatment in terms of integral equations.

From Eq. (3), we can input the condition for the existence of a resonance, which implies that
the source term vanishes; in other words, we are imposing the left-hand material conditions
[5–10]. Simultaneously, for a purpose of mathematical clearance, we let the discrete indexes J

and K in Eq. (1) take continuum values, so we now have a spatial dependence on r and r’; so

Eq. (3) with the left term equal to zero yields

ð4Þ

In this equation, w
R

m
r ω are the resonances, and we have introduced the Fredholm eigenvalue

[2] ηR ω , corresponding to the R resonance. The introduced parameter ηR ω allows for asking
about nontrivial solutions for Eq. (4) by means of Fredholm theory of integral equations. We
have shown that the structure of η ωR can be chosen in the same way as a phase factor [6]:

ηR ω = e ih ωR ð5Þ

For the resonant frequency ωR, where in general it is given as:

ω R = KR − iΛR ð6Þ

So, we must ask for h ωR to be a real number even when refraction index can be complex and
dependent of arbitrary magnetization or ionization conditions.

Resonances analyzed in the present chapter are electromagnetic traveling waves that comes
from the so-called precursors or evanescent waves, but they share very close mathematical
properties with the quantum mechanics resonances; i.e., it fulfills the following theorem we
have tested elsewhere [4]:

Theorem I

Suppose that w l ω and wu ω are solutions of Eq. (4), then,

wl
t ω Awu ω λu

− − λl
− = ð7Þ

We must remember the relation:

wR
m r ω →wR ω ð8Þ

On the other hand, the resonances wR
m r ω comply with the important orthogonality condition

between the eigenvalue function ηR ω and resonance on the site of a punctual antenna located

at rA [5]:

η
R

ω
w
R

m
r
A

ω = ð9Þ
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That implies that the resonances vanish on the sites of the antennas that generate this precursor
signals, but we underline that not on the sites that generates the precursor signals of distinct
resonances wR

m r ω .

3. The VMF formalism

Now, we can return to our discrete proposal where we can put the parameters appeared in the
PSM [2, 3, 5] into the VMF model [2–4]. To this end, let us recall that Eq. (1) can be written as:

ð10Þ

where the kernel is the product of the free Green function  with the interaction A

so explicitly,

ð11Þ

Now, we can find the resonant frequencies in an academic example. To this end, we choose a
convenient kernel ; for simplicity, we do not take into account the three components of
the electromagnetic field. Supposing that we only have one component of the field, but we
have two emitting antennas, a possible kernel is [2]:

ð12Þ

In Eq. (12), we have introduced the PSM parameter δ . This parameter is defined as:

ð13Þ

where dM is the average thickness of the plasma-magnetized layer involved in the change of
sign of the refraction index; κ is the wave number of an incident beam interacting with the
electric and magnetic fields in a way that the whole kernel is expressed in Eq. (12). The
parameter ωp is an average value for the plasma frequency over the referred layer and can be
expressed in terms of the local electron concentration in the layer as:

2
1
2

0

1
2p

Ne
mπ ε

ω = ð14Þ

In Eq. (14), is the permittivity of vacuum, N is the electron concentration and e is the
electronic charge.
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Different broadcasting regimes occur when these parameters change, that is the refraction
index sign changes. The PSM also considers a dynamical condition in the sense that we have
a series of sets of iterated layers changing with time in a random manner and therefore with
different effects for distinct frequencies.

Let us remember that the equation we must solve is Eq. (10) where the kernel is

ð15Þ

The conditions for resonances are that Fredholm’s determinant for Eq. (10) equals zero and that
Fredholm’s eigenvalue equals to one Eq. (16).

These last two conditions allow us to obtain the resonant frequencies for the system consti-
tuted by these two antennas but dependent on the parameters of plasma sandwich model. As
their similar quantum mechanics case, the wave number or the resonant frequency has an
imaginary part; that is, a resonant frequency can be represented by a complex frequency:

= K − iΛω ð16Þ

The transformation of the evanescent waves into traveling waves is a consequence of the
imaginary part Λ that avoids the electromagnetic field to be confined. In addition, we have
the relation between ω and the wave number k , that is,

κ = μεω ð17Þ

By substituting Eq. (12) into Eq. (10), we have that one of the resonance conditions is that the
Fredholm determinant Δ must be zero, that is,

Δ A −B
B A

= ð18Þ

where

A=
ω −ω p δ

ω −ω p δ
− λ ð19Þ

and

    B = i
ω −ω p δ

ω −ω p δ
ð20Þ

In Eq. (19), λ�1 is the Fredholm eigenvalue.

We can put Eq. (16) into Eqs. (18)–(20) and express the Fredholm determinant as:

Resonances and Exceptional Broadcasting Conditions
http://dx.doi.org/10.5772/intechopen.70520

237



Δ = Κ −ω p − iΛ
−

δ − Κ −ω p δ iΛδ + Κ −ω p δ iΛδ

− Κ −ω p − iΛ
−

λ Κ −ω p δ iΛδ + Κ −ω p δ iΛδ  

+λ

ð21Þ

We can explore some of the conditions for the existence of resonances (Figure 1); for example,

if we take Κ = ω p + nπ
δ

, , λ = , and the condition Δ = , we obtain the following equation for Λ:

nπ Λδ − nπ + Λ δ λ =   ð22Þ

or defining

x ≡ Λδ ð23Þ

π x − x −π = ð24Þ

Then, the resonant frequencies will have the following form:

ω res = ω p + nπ
δ

− i x
δ

     ð25Þ

Now, we can put realistic values for δ and ωp taken from reference [1], that is,

Figure 1. Behavior of Eq. (22) with n = 1.
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δ ¼ 1:68� 105Hz (26)

and

ωp ¼ 300� 106Hz: (27)

So, the first two resonances are

ω1,2 � ω� � 3005:1� i 3:778ð Þð Þ � 105Hz, (28)

for x� = ∓ 2.2484.

4. Resonances on a broadcasting process

In the past section, we saw that resonances follow important orthogonal rules. But each
resonance has only a unique associated frequency and not a complete band; indeed, the only
way for using an individual frequency in a broadcasting process is to emit information in a
telegraphic manner; that is, we must have a key and send in the same frequency a succession of
intervals of signals with different lengths in time. Fortunately, communication theory (CT)
brings us some clues about the problem for sending information [11–16]. First, we recall some
statements from this theory, and then we use them. In accordance with these statements,
suppose that f(t) is a function that is a member of a set defined in CT as an ensemble and
suppose in addition that we are interested on functions that are limited to the band from 0 toW
cycles per second, then we have the following theorem [11]:

Theorem II

Let f(t) contain no frequencies over W. Then,

f tð Þ ¼
X∞
�∞

Xn
sin π 2Wt� nð Þ
π 2Wt� nð Þ , (29)

where

Xn ¼ f
n
2W

� �
: (30)

We can see that we have expanded f(t) in terms of orthogonal functions, and the respective
coefficients Xn are coordinates in an infinite dimension space.

Theorem (21) can now be taken as a building stone for very special functions with very
important properties in the broadcasting processes. We have called these functions as commu-
nication packs in previous works. First, we use the cut-off frequency W as a label for
distinguishing different packs; second, we use each pack as a new component or coordinate
of the signal message f(t) that is, to each Wq frequency corresponds a projection or coordinate
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fq(t), and third, we choose eachWq as a resonant frequency that isWq =ωR. Our proposal is that
the complete signal f(t) can be recovered by adding its components fq(t).

5. Why to use communication packs?

We have shown how we can project a signal over different resonant dimensions, but why we
must do this. The reason is that theoretically, each resonance is orthogonal to any other
resonance, which means that there is no interference between signals traveling over different
resonances. Then, we expect that communication packs do not interfere between them because
we use different base functions in each pack but also because their defining frequency is a
resonant one; that is, we have defined a new space for the broadcasting process and each pack
carries a part of the signal over an orthogonal resonant dimension. In addition, we also expect
that the infinite sum in Eq. (26) really have a relatively few dominant terms around the
resonant frequencies in a manner that we do not need to sum an infinite number of terms for
a good approximation. If we want to evaluate the relative broadcasting efficiency between one
channel operating with a nonresonant situation and other channel operating with resonant
conditions, it is necessary to take into account that a resonant wave cannot live where the
precursors lived as we stated above. Therefore, as we have proposed in the abstract, we can
provide a specific device, i.e., a pair of circuits, each one with a different response, by selecting
the best circuit in any instant for a good reception and avoid the blocking effect in the
conventional circuits. In other words, we must remember that resonant solutions vanish at
the point sources. Let us take a simple example in which we have only two resonant frequen-
cies and then we can build their respective communication packs with the recipe based on the
theorem (29) and explicitly given in another previous work [2–4, 9]:

Suppose that Ρ(t) is the specific signal

Ρ tð Þ ¼ sin π 2Wtð Þ
π 2Wtð Þ : (31)

Following Theorem II and using the resonances, we get the two communication packs:

Ρ1 tð Þ ¼
X∞
�∞

Xn,1
sin π 2ω1t� nð Þ
π 2ω1t� nð Þ (32)

Ρ2 tð Þ ¼
X∞
�∞

Xm,2
sin π 2ω2t�mð Þ
π 2ω2t�mð Þ , (33)

with ω1 and ω2 given by Eq. (28):

Xn,1 ¼ Ρ
n

2ω1

� �
(34)

Xm,2 ¼ Ρ
m
2ω2

� �
: (35)
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In example of Section 3, we have obtained two resonances so that the two packs are described
by Eqs. (32)–(35), but with the numerical values obtained before:

Xn,1 ¼
sin π 2W n

2ω1

� �� �

π 2W n
2ω1

� �� � (36)

and

Xm,2 ¼
sin π 2W m

2ω2

� �� �

π 2W m
2ω2

� �� � , (37)

That is,

Xn,1 ¼
sin πWn

ω1

πWn
ω1

(38)

and

Xm,2 ¼
sin πWm

ω2

πWm
ω2

(39)

So, the first CP is

Ρ1 tð Þ ¼
X∞
�∞

sin πWn
ω1

πWn
ω1

 !
sin π 2ω1t� nð Þ
π 2ω1t� nð Þ , (40)

and the second CP is

Ρ2 tð Þ ¼
X∞
�∞

sin πWm
ω2

πWm
ω2

 !
sin π 2ω2t�mð Þ
π 2ω2t�mð Þ : (41)

Eqs. (40) and (41) can be considered the projections of the real signal (31) over the two
dimensions of the resonance space.

6. Concluding remarks

We have shown how we can join several tools that we have developed for the purpose to
enhance the broadcasting process; with this aim, we have incorporated the so-called PSM
parameters into the algebraic equations (vector-matrix equations) of the VMF searching a
way to make communications invulnerable to abrupt changes in the atmospheric conditions.
This is very important particularly for high definition channels, which are more sensitive to
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these abrupt changes, and the PSM (plasma sandwich model) predicts that the mathematical
resonances are associated with the delivery of the so-called evanescent waves or to negative
values of the refraction index. One of our fundamental proposals is that the atmosphere
behaves like a collection of regions with changes from positive to negative (and vice versa)
refraction index with unpredictable frequency, and then we can use the PSM to characterize
them. On the other hand, we propose the use of the resonant frequencies to overcome the
broadcasting barriers by defining a new resonance space created by using the resonances as a
new dimension in which the communication packs are the projections of an arbitrary signal. In
addition, we suppose that the conventional traveling waves change their regular trajectories
when there is a local change in the refraction index sign, so the combined effect of the original
paths and the prevalence of the resonant modes make the broadcasting process very difficult
without the help of our proposals. By using the results of previous works, we also suggest the
use of a device with the possibility for put on and put out of two internal independent circuits
each one with a normal (positive refraction index) or resonant (negative refraction index)
performance. We underline that communication packs can be constructed even when the
current regime is not a resonant.
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Resonance is a common phenomenon, which is observed both in nature and in 
numerous devices and structures. It occurs in literally all types of vibrations. To 

mention just a few examples, acoustic, mechanical, or electromagnetic resonance can 
be distinguished. In the present book, 12 chapters dealing with different aspects of 

resonance phenomena have been presented.
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