
Advances in
Evolutionary Algorithms

Edited by Witold Kosinski

Edited by Witold Kosinski

With the recent trends towards massive data sets and significant computational
power, combined with evolutionary algorithmic advances evolutionary computation

is becoming much more relevant to practice. Aim of the book is to present recent
improvements, innovative ideas and concepts in a part of a huge EA field.

Photo by baronvsp / iStock

ISBN 978-953-7619-11-4

A
dvances in Evolutionary A

lgorithm
s

Advances in Evolutionary Algorithms

Advances in Evolutionary Algorithms
http://dx.doi.org/10.5772/73
Edited by Witold Kosinski

© The Editor(s) and the Author(s) 2008
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2008 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Advances in Evolutionary Algorithms
Edited by Witold Kosinski

p. cm.

ISBN 978-953-7619-11-4

eBook (PDF) ISBN 978-953-51-5796-0

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,400+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

118,000+
International authors and editors

130M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Part I:

Foundations and New Methods

Part I:

Foundations and New Methods

1

Limit Properties of Evolutionary Algorithms
Witold Kosiński1,3 and Stefan Kotowski1,2

1 Faculty of Computer Science Polish-Japanese Institute of Information Technology,
 2 Institute of Fundamental Technological Research IPPT PAN,

3 Institute of Environmental Mechanics and Applied Computer Science Kazimierz Wielki
University

 Poland

1. Introduction
In the chapter limit properties of genetic algorithms and theproblem of their classification
are elaborated. Recently one can observe an increasing interest in properties of genetic
algorithms modelled by Markov chains (Vose, Rowe). However, the known results are
mainly limited to existence theorems. They say that there exists a limit distribution for a
Markov chain describing a simple genetic algorithm. In the chapter we perform the next
step on this way and present a formula for this limit distribution for a Markov chain.
Moreover, we claim that our convergence theorems can be extended to algorithms which
admit the change in the mutation rate and others parameters.
The formula for a limit distribution requires some knowledge about the distribution of the
fitness function on the whole solution space. However, it suggests the methods to control
the algorithm parameters to get better convergence rate. The formula can play an important
role in deriving new classification tools for genetic algorithms that use methods of the
theory of dynamical systems. That tools will exploit real dynamics of the search and be
independent of the taxonomic methods of classification that are used nowadays.
On the base of the knowledge of the limit distribution we construct an optimal genetic
algorithm in the probabilistic sense. Generally this algorithm is impossible to describe. This
is an open problem at the moment, however, its existence and its form suggest an
improvement of the original algorithm by changing its parameters. Constructed in this way
the optimal genetic algorithm is an answer to one of the questions stayed by famous No Free
Lunch Theorem. Moreover, it is a complementary result to this theorem. On the base of this
theoretical result we perform a classification of algorithms and show empirical
(computational) results in getting which the entropy, fractal dimension, or its
approximations: the box-counting dimension or information dimension, are used.
One of the most difficult, however, of practical importance, problems is the choice of an
algorithm to given optimisation problem.
The distinguishing between an optimisation problem and the algorithm and its choice
creates to the main difficulty. Consequently, the distinguishing is an artificial operation
because it abstains from the idea of genetic algorithm (GA), since the fitness function, arises
from the cost function (i.e. the function to be optimised) is the main object of the genetic
algorithm and it emerges from the formulation of the optimisation problem and it is difficult

1

Limit Properties of Evolutionary Algorithms
Witold Kosiński1,3 and Stefan Kotowski1,2

1 Faculty of Computer Science Polish-Japanese Institute of Information Technology,
 2 Institute of Fundamental Technological Research IPPT PAN,

3 Institute of Environmental Mechanics and Applied Computer Science Kazimierz Wielki
University

 Poland

1. Introduction
In the chapter limit properties of genetic algorithms and theproblem of their classification
are elaborated. Recently one can observe an increasing interest in properties of genetic
algorithms modelled by Markov chains (Vose, Rowe). However, the known results are
mainly limited to existence theorems. They say that there exists a limit distribution for a
Markov chain describing a simple genetic algorithm. In the chapter we perform the next
step on this way and present a formula for this limit distribution for a Markov chain.
Moreover, we claim that our convergence theorems can be extended to algorithms which
admit the change in the mutation rate and others parameters.
The formula for a limit distribution requires some knowledge about the distribution of the
fitness function on the whole solution space. However, it suggests the methods to control
the algorithm parameters to get better convergence rate. The formula can play an important
role in deriving new classification tools for genetic algorithms that use methods of the
theory of dynamical systems. That tools will exploit real dynamics of the search and be
independent of the taxonomic methods of classification that are used nowadays.
On the base of the knowledge of the limit distribution we construct an optimal genetic
algorithm in the probabilistic sense. Generally this algorithm is impossible to describe. This
is an open problem at the moment, however, its existence and its form suggest an
improvement of the original algorithm by changing its parameters. Constructed in this way
the optimal genetic algorithm is an answer to one of the questions stayed by famous No Free
Lunch Theorem. Moreover, it is a complementary result to this theorem. On the base of this
theoretical result we perform a classification of algorithms and show empirical
(computational) results in getting which the entropy, fractal dimension, or its
approximations: the box-counting dimension or information dimension, are used.
One of the most difficult, however, of practical importance, problems is the choice of an
algorithm to given optimisation problem.
The distinguishing between an optimisation problem and the algorithm and its choice
creates to the main difficulty. Consequently, the distinguishing is an artificial operation
because it abstains from the idea of genetic algorithm (GA), since the fitness function, arises
from the cost function (i.e. the function to be optimised) is the main object of the genetic
algorithm and it emerges from the formulation of the optimisation problem and it is difficult

 Evolutionary Algorithms

2

to speak about genetic algorithm as an operator without the fitness function. However, in
our consideration we will simultaneously use both notions of the genetic algorithms. The
first notion as an operator acting on the cost (fitness) function, the second - as a specific
(real) algorithm for which the fitness is the main component being the algorithm's
parameter.
This dual meaning of the genetic algorithm is crucial for ou consideration, because our main
aim is to try to classify genetic algorithms. The classification should lead to a specific choice
of methodology of genetic algorithms understood as operators. It is expected that in terms of
this methodology one will be able to choose the appropriate algorithm to given optimisation
problem. We claim that using this classification one could improve existing heuristic
methods of assortment of genetic algorithms that are based mainly on experiences and
programmer intuition.
There is the so-called "No-free lunch theorem" [12] according to which it does not exist a
best evolutionary algorithm and moreover, one cannot find most suitable operator between
all possible mechanisms of crossover, mutation and selection without referring to the
particular class of optimisation problems under investigation. Evolutionary algorithms are
the methods of optimizations which use a limited knowledge about investigated problem.
On the other hand, our knowledge about the algorithm in use is often limited as well [13,
14].
The "no free lunch" results indicate that matching algorithms to problems give higher
average performance than those applying a fixed algorithm to all problems. In the view of
these facts, the choice of the best algorithm may be correctly stated only in the context of the
optimisation problem.
These facts imply the necessity of searching particular genetic algorithms suitable to the
problem at hand.
The present paper is an attempt to introduce an enlarged investigation method to the theory
of genetic (evolutionary) algorithms. We aim at
1. the investigation of convergence properties of genetic algorithms,
2. the formulation of a new method of analysis of evolutionary algorithms regarded as

dynamical processes, and
3. the development of some tools suitable for characterization of evolutionary algorithms

based on the notions of the symbolic dynamics.
Genetic algorithm (GA) performs a multi-directional search by maintaining a population of
potential solutions and encourages information formation and exchange between these
directions. A population undergoes a simulated evolution due to the iterative action with
some probability distributions of a composition of mutation, crossover and selection
operators. The action of that composition is a random operation on populations.
If we imagine that a population is a point in the space Z of (encoded) potential solutions
then the efect of one iteration of this composition is to move that population to another
point. In this way the action of GA is a discrete (stochastic) dynamical system. We claim that
by implementing the methods and the results of the theory of dynamical systems, especially
those known from the analysis of dynamics of 1D mappings, one can move towards the goal
of the theory of GA, which is the explanation of the foundations of genetic algorithm's
operations and their features.
In GA with the known fitness function the proportional selection can be treated as a
multiplication of each component of the frequency vector by the quotient of the fitness of the

Limit Properties of Evolutionary Algorithms

3

corresponding element to the average fitness of the population. This allows to write the
probability distribution for the next population in the form of the multiplication of the
diagonal matrix times the population (frequency) vector. Moreover, results of the mutation
can also be written as a product of another matrix with the population (probability) vector.
Finally the composition of both operations is a matrix, which leads to the general form of the
transition operator (cf.(17)) acting on a new probability vector representing a probability
distribution of appearance of all populations of the same PopSize. The matrix appearing
there turns to be Markovian and each subsequent application of SGA is the same as the
subsequent composition of that matrix with itself. (cf.(19)). Thanks to the well-developed
theory of Markov operators ([18, 22, 26, 27]) new conditions for the asymptotic stability of
the transition operator are formulated.

2. Genetic algorithms
In the paper we use the term population in two meanings; in the first it is a finite multi-set (a
set with elements that can repeat) of solutions, in the second it is a frequency vector
composed of fractions, i.e. the ratio of the number of copies of each element zk ∈Z to the total
population size PopSize.
In our analysis we are concerned with probability distributions of each population for a
particular case of the simple genetic algorithm (SGA) in which the crossover follows the
mutation and the proportional selection. In the case of a binary genetic algorithm (BGA) the
mutation can be characterized by the bitwise mutation rate μ - the probability of the
mutation of one bit of a chromosome. In the paper, however, we are not confined to binary
operators; the present discussion and results are valid under very week assumptions
concerning the mutation and selection operators.

2.1 Population and frequency vector
Let

be the set of individuals called chromosomes. 1By a population we understand any multi-set of
r chromosomes from Z, then r is the population size: PopSize.
Definition 1. By a frequency vector of population we understand the vector

(1)

where ak is a number of copies of the element zk.
The set of all possible populations (frequency vectors) is

()

1 If one considers all binary l-element sequences then after ordering them one can compose
the set Z with s = 2l elements.

 Evolutionary Algorithms

2

to speak about genetic algorithm as an operator without the fitness function. However, in
our consideration we will simultaneously use both notions of the genetic algorithms. The
first notion as an operator acting on the cost (fitness) function, the second - as a specific
(real) algorithm for which the fitness is the main component being the algorithm's
parameter.
This dual meaning of the genetic algorithm is crucial for ou consideration, because our main
aim is to try to classify genetic algorithms. The classification should lead to a specific choice
of methodology of genetic algorithms understood as operators. It is expected that in terms of
this methodology one will be able to choose the appropriate algorithm to given optimisation
problem. We claim that using this classification one could improve existing heuristic
methods of assortment of genetic algorithms that are based mainly on experiences and
programmer intuition.
There is the so-called "No-free lunch theorem" [12] according to which it does not exist a
best evolutionary algorithm and moreover, one cannot find most suitable operator between
all possible mechanisms of crossover, mutation and selection without referring to the
particular class of optimisation problems under investigation. Evolutionary algorithms are
the methods of optimizations which use a limited knowledge about investigated problem.
On the other hand, our knowledge about the algorithm in use is often limited as well [13,
14].
The "no free lunch" results indicate that matching algorithms to problems give higher
average performance than those applying a fixed algorithm to all problems. In the view of
these facts, the choice of the best algorithm may be correctly stated only in the context of the
optimisation problem.
These facts imply the necessity of searching particular genetic algorithms suitable to the
problem at hand.
The present paper is an attempt to introduce an enlarged investigation method to the theory
of genetic (evolutionary) algorithms. We aim at
1. the investigation of convergence properties of genetic algorithms,
2. the formulation of a new method of analysis of evolutionary algorithms regarded as

dynamical processes, and
3. the development of some tools suitable for characterization of evolutionary algorithms

based on the notions of the symbolic dynamics.
Genetic algorithm (GA) performs a multi-directional search by maintaining a population of
potential solutions and encourages information formation and exchange between these
directions. A population undergoes a simulated evolution due to the iterative action with
some probability distributions of a composition of mutation, crossover and selection
operators. The action of that composition is a random operation on populations.
If we imagine that a population is a point in the space Z of (encoded) potential solutions
then the efect of one iteration of this composition is to move that population to another
point. In this way the action of GA is a discrete (stochastic) dynamical system. We claim that
by implementing the methods and the results of the theory of dynamical systems, especially
those known from the analysis of dynamics of 1D mappings, one can move towards the goal
of the theory of GA, which is the explanation of the foundations of genetic algorithm's
operations and their features.
In GA with the known fitness function the proportional selection can be treated as a
multiplication of each component of the frequency vector by the quotient of the fitness of the

Limit Properties of Evolutionary Algorithms

3

corresponding element to the average fitness of the population. This allows to write the
probability distribution for the next population in the form of the multiplication of the
diagonal matrix times the population (frequency) vector. Moreover, results of the mutation
can also be written as a product of another matrix with the population (probability) vector.
Finally the composition of both operations is a matrix, which leads to the general form of the
transition operator (cf.(17)) acting on a new probability vector representing a probability
distribution of appearance of all populations of the same PopSize. The matrix appearing
there turns to be Markovian and each subsequent application of SGA is the same as the
subsequent composition of that matrix with itself. (cf.(19)). Thanks to the well-developed
theory of Markov operators ([18, 22, 26, 27]) new conditions for the asymptotic stability of
the transition operator are formulated.

2. Genetic algorithms
In the paper we use the term population in two meanings; in the first it is a finite multi-set (a
set with elements that can repeat) of solutions, in the second it is a frequency vector
composed of fractions, i.e. the ratio of the number of copies of each element zk ∈Z to the total
population size PopSize.
In our analysis we are concerned with probability distributions of each population for a
particular case of the simple genetic algorithm (SGA) in which the crossover follows the
mutation and the proportional selection. In the case of a binary genetic algorithm (BGA) the
mutation can be characterized by the bitwise mutation rate μ - the probability of the
mutation of one bit of a chromosome. In the paper, however, we are not confined to binary
operators; the present discussion and results are valid under very week assumptions
concerning the mutation and selection operators.

2.1 Population and frequency vector
Let

be the set of individuals called chromosomes. 1By a population we understand any multi-set of
r chromosomes from Z, then r is the population size: PopSize.
Definition 1. By a frequency vector of population we understand the vector

(1)

where ak is a number of copies of the element zk.
The set of all possible populations (frequency vectors) is

()

1 If one considers all binary l-element sequences then after ordering them one can compose
the set Z with s = 2l elements.

 Evolutionary Algorithms

4

When a genetic algorithm is realized, then we act on populations, and new populations are
generated. The transition between two subsequent populations is random and is realized by
a probabilistic operator. Hence, if one starts with a frequency vector, a probabilistic vector
can be obtained. It means that in some cases pi cannot be rational any more. Hence the
closure of the set Λ, namely

(3)

is more suitable for our analysis of such random processes acting on probabilistic vectors;
they are in the setΛ .

2.2 Selection operator
Let a fitness function f : Z →R+ and population p be given. If we assume the main genetic

operator is the fitness proportional selection, then the probability that the element zk will
appear in the next population equals

(4)

where f (p) is the average population fitness denoted by

(5)

We can create the matrix S of the size s, where its values on the main diagonal are

 (6)

Then the transition from the population p into the new one, say q is given by

(7)

and the matrix S describes the selection operator [21, 23, 24].

2.3 Mutation operator
Let us define a matrix

U = [Uij] ,

with Uij as the probability of mutation of the element zj into the element zi, and Uii - the
probability of the surviving of the element (individual) zi. One requires that

Limit Properties of Evolutionary Algorithms

5

1. Uij ≥ 0 ;

2.

 (8)

In the case of the binary uniform mutation with parameter μ as the probability of changing
bits 0 into 1 or vice versa, if the chromosome zi differs from zj at c positions then

 (9)

describes the probability of mutation of the element zj into the element zi.

2.4 Crossover operation
In order to define the operator of crossover C one needs to introduce additional denotation.

Let matrices C0,…,Cs-1 be such that the element (i, j) of the matrix Ck denotes the probablity

that an element zi crossovered with an element zj will generate an element zk.
For the presentation simplicity let us consider the case of chromosoms of the lenght l = 2.
Then elements of the space B will be of the form

z0 = 00, z1 = 01, z2 = 10, z3 = 11. (10)

For the uniform crossover operation when all elements may take part, the matrix C0 has the
form

(11)

One can define the remaining matrices; all matrices C k are symmetric. Finally, the operator
C in the action on a population p gives

 (12)

where the dot · denotes the formal scalar product of two vectors from s-dimentional space.
Hence, from a given population (say, p) to the next population (say, q) the action of the
simple genetic algorithm (SGA) [21, 23, 24] is described by the operator G being a
composition of three operators: selection, mutation and crossover:

 (13)

The reader interested in the detailed descrition of the operators is referred to the positions
[21, 23]. In what follows the crossover is not present. However, most of the results of
subsequent sections hold if the crossover is present.

 Evolutionary Algorithms

4

When a genetic algorithm is realized, then we act on populations, and new populations are
generated. The transition between two subsequent populations is random and is realized by
a probabilistic operator. Hence, if one starts with a frequency vector, a probabilistic vector
can be obtained. It means that in some cases pi cannot be rational any more. Hence the
closure of the set Λ, namely

(3)

is more suitable for our analysis of such random processes acting on probabilistic vectors;
they are in the setΛ .

2.2 Selection operator
Let a fitness function f : Z →R+ and population p be given. If we assume the main genetic

operator is the fitness proportional selection, then the probability that the element zk will
appear in the next population equals

(4)

where f (p) is the average population fitness denoted by

(5)

We can create the matrix S of the size s, where its values on the main diagonal are

 (6)

Then the transition from the population p into the new one, say q is given by

(7)

and the matrix S describes the selection operator [21, 23, 24].

2.3 Mutation operator
Let us define a matrix

U = [Uij] ,

with Uij as the probability of mutation of the element zj into the element zi, and Uii - the
probability of the surviving of the element (individual) zi. One requires that

Limit Properties of Evolutionary Algorithms

5

1. Uij ≥ 0 ;

2.

 (8)

In the case of the binary uniform mutation with parameter μ as the probability of changing
bits 0 into 1 or vice versa, if the chromosome zi differs from zj at c positions then

 (9)

describes the probability of mutation of the element zj into the element zi.

2.4 Crossover operation
In order to define the operator of crossover C one needs to introduce additional denotation.

Let matrices C0,…,Cs-1 be such that the element (i, j) of the matrix Ck denotes the probablity

that an element zi crossovered with an element zj will generate an element zk.
For the presentation simplicity let us consider the case of chromosoms of the lenght l = 2.
Then elements of the space B will be of the form

z0 = 00, z1 = 01, z2 = 10, z3 = 11. (10)

For the uniform crossover operation when all elements may take part, the matrix C0 has the
form

(11)

One can define the remaining matrices; all matrices C k are symmetric. Finally, the operator
C in the action on a population p gives

 (12)

where the dot · denotes the formal scalar product of two vectors from s-dimentional space.
Hence, from a given population (say, p) to the next population (say, q) the action of the
simple genetic algorithm (SGA) [21, 23, 24] is described by the operator G being a
composition of three operators: selection, mutation and crossover:

 (13)

The reader interested in the detailed descrition of the operators is referred to the positions
[21, 23]. In what follows the crossover is not present. However, most of the results of
subsequent sections hold if the crossover is present.

 Evolutionary Algorithms

6

3. Transition operator

Let p = (p0,…,ps-1) be a probabilistic vector. If we consider p ∈Λ , then transition operators
should transform set Λ into itself. The action of the genetic algorithm at the first and at all
subsequent steps is the following: if we have a given population p then we sample with
returning r-elements from the set Z, and the probability of sampling the elements z0,…, zs-1 is
described by the vector G(p), where

(14)

This r-element vector is our new population q.
Let us denote by W the set of all possible r-element populations composed of elements
selected from the set Z, where elements in the population could be repeated. This set is finite
and let its cardinality be M: It can be proven that the number M is given by some
combinatoric formula

(15)

Let us order all populations, then we identify the set W with the list W = {w1,…,wM}. Every
wk, k = 1, 2,…,M, is some population for which we used the notation p in the previous
section. According to what we wrote, the population will be identified with its frequency
vector or probabilistic vector. This means that for the population

, the number k
iw , for i ∈ {0,…,s – 1}, denotes the probability of

sampling from the population wk the individual zi (or the fraction of the individual zi in the
population wk).
Let us assume that we begin our implementation of SGA from an arbitrary population
p = wk. In the next stage each population w1,…,wM can appear with the probability
β1k, β lk,…, β Mk which can be determined from our analysis. In particular, if in the next stage
the population has to be q, with the position l on our list W, then this probability [23, 28, 31]
is equal

(16)

Notice that for every k = 1, 2,…,M. After two steps, every population
w1,…,wM will appear with some probability, which is a double composition of this formula2.
It will be analogously in the third step and so on. Then it is well founded to analyze the

2 With our choice of denotations for the populations p and q in (16), the element βlk of the
matrix will give transition probability from the population with the number k into the
population with the number l.

Limit Properties of Evolutionary Algorithms

7

probability distribution of the population's realization in the next steps. This formula gives a
possibility of determining all elements of a matrix T which defines the probability
distribution of appearance of populations in the next steps, if we have current probability
distribution of the populations.
It is important that elements of the matrix are determined once forever, independently of the
number of steps. The transition between elements of different pairs of populations is
described by different probabilities (16) represented by different elements of the matrix.
Let us denote by

where the set of new M-dimensional probabilistic vectors. A
particular component of the vector y represents the probability of the appearance of this
population from the list W of all M populations. The set Γ is composed of all the possible
probability distributions for M populations. Described implementation transforms at every
step the set Γ into the same.
On the set Γ the basic, fundamental transition operator,

 (17)

is defined. If u ∈Γ, then is the probability distribution
for M populations in the step number t, if we have begun our implementation of SGA given
by G ((14)) from the probability distribution u = (u1,…,uM) ∈ Γ, by t – application of this
method. The number denotes the probability of appearance
of the population wk in the step of number t. By the definition G(p) in (14),(16) and the
remarks made at the end of the previous section the transition operator T(t) is linear for all
natural t.
Let us compose a nonnegative, square matrix T of dimension M, with elements βlk, l, k = 1,
2,…,M, i.e

T = [βlk]. (18)

We will call it the transition matrix. Then the probability distribution of all M populations in
the step t is given by the formula

T t u, t = 0, 1, 2, …

Elements are independent from the number of steps of the algorithm. The above introduced
transition operator T(t) is linked with the transition matrix by the dependence

T(t) = T t . (19)

Notice that though the formula (16) determining individual entries (components) of the
matrix T are population dependent, and hence nonlinear, the transition operator T(t) is
linear thanks to the order relation introduced in the set W of all M populations. The multi-

 Evolutionary Algorithms

6

3. Transition operator

Let p = (p0,…,ps-1) be a probabilistic vector. If we consider p ∈Λ , then transition operators
should transform set Λ into itself. The action of the genetic algorithm at the first and at all
subsequent steps is the following: if we have a given population p then we sample with
returning r-elements from the set Z, and the probability of sampling the elements z0,…, zs-1 is
described by the vector G(p), where

(14)

This r-element vector is our new population q.
Let us denote by W the set of all possible r-element populations composed of elements
selected from the set Z, where elements in the population could be repeated. This set is finite
and let its cardinality be M: It can be proven that the number M is given by some
combinatoric formula

(15)

Let us order all populations, then we identify the set W with the list W = {w1,…,wM}. Every
wk, k = 1, 2,…,M, is some population for which we used the notation p in the previous
section. According to what we wrote, the population will be identified with its frequency
vector or probabilistic vector. This means that for the population

, the number k
iw , for i ∈ {0,…,s – 1}, denotes the probability of

sampling from the population wk the individual zi (or the fraction of the individual zi in the
population wk).
Let us assume that we begin our implementation of SGA from an arbitrary population
p = wk. In the next stage each population w1,…,wM can appear with the probability
β1k, β lk,…, β Mk which can be determined from our analysis. In particular, if in the next stage
the population has to be q, with the position l on our list W, then this probability [23, 28, 31]
is equal

(16)

Notice that for every k = 1, 2,…,M. After two steps, every population
w1,…,wM will appear with some probability, which is a double composition of this formula2.
It will be analogously in the third step and so on. Then it is well founded to analyze the

2 With our choice of denotations for the populations p and q in (16), the element βlk of the
matrix will give transition probability from the population with the number k into the
population with the number l.

Limit Properties of Evolutionary Algorithms

7

probability distribution of the population's realization in the next steps. This formula gives a
possibility of determining all elements of a matrix T which defines the probability
distribution of appearance of populations in the next steps, if we have current probability
distribution of the populations.
It is important that elements of the matrix are determined once forever, independently of the
number of steps. The transition between elements of different pairs of populations is
described by different probabilities (16) represented by different elements of the matrix.
Let us denote by

where the set of new M-dimensional probabilistic vectors. A
particular component of the vector y represents the probability of the appearance of this
population from the list W of all M populations. The set Γ is composed of all the possible
probability distributions for M populations. Described implementation transforms at every
step the set Γ into the same.
On the set Γ the basic, fundamental transition operator,

 (17)

is defined. If u ∈Γ, then is the probability distribution
for M populations in the step number t, if we have begun our implementation of SGA given
by G ((14)) from the probability distribution u = (u1,…,uM) ∈ Γ, by t – application of this
method. The number denotes the probability of appearance
of the population wk in the step of number t. By the definition G(p) in (14),(16) and the
remarks made at the end of the previous section the transition operator T(t) is linear for all
natural t.
Let us compose a nonnegative, square matrix T of dimension M, with elements βlk, l, k = 1,
2,…,M, i.e

T = [βlk]. (18)

We will call it the transition matrix. Then the probability distribution of all M populations in
the step t is given by the formula

T t u, t = 0, 1, 2, …

Elements are independent from the number of steps of the algorithm. The above introduced
transition operator T(t) is linked with the transition matrix by the dependence

T(t) = T t . (19)

Notice that though the formula (16) determining individual entries (components) of the
matrix T are population dependent, and hence nonlinear, the transition operator T(t) is
linear thanks to the order relation introduced in the set W of all M populations. The multi-

 Evolutionary Algorithms

8

index (l, k) of the component βlk kills, in some sense, this nonlinearity, since it is responsible
for a pair of populations between which the transition takes place. The matrix T in (18) is a
Markovian matrix. This fact permits us to apply the theory of Markov operators to analyze
the convergence of genetic algorithms [18, 22, 26, 27].
Let ek ∈ Γ be a vector which at the k-th position has one and zeroes at the other positions.
Then ek describes the probability distribution in which the population wk is attained with the
probability 1.
By the notation T(t)wk we will understand

 (20)

which means that we begin the GA at the specific population wk . Further on we will assume
Ujj > 0 for j ∈ {0,…,s – 1}.
For a given probability distribution u = (u1,…,uM) ∈ Γ it is easy to compute that the
probability of sampling the individual zi, for i∈{0,…,s – 1}, is equal to

(21)

where k
iw is the probability of sampling from k-th population the chromosome z i, and uk -

the probability of appearance of the k-th population. By an expected population we call the
vector from Rs of which i-th coordinate is given by (21). Since for k
∈{1,…,M}, i ∈ {0,…, s – 1} and

the vector belongs to Λ . From (21) we obtain that the expected population is given by

(22)

Obviously, it is possible that the expected population could not be any possible population
with r-elements.
For every u ∈ Γ and for every t certain probability distribution for M populations
T(t)u is given. Consequently the expected population in this step is known. By

 we denote the expected population at the step t, if we
begun our experiment from the distribution u ∈ Γ; of course we have R(t)u ∈ Λ .

3.1 Asymptotic stability
Definition 2. We will say that the model is asymptotically stable if there exist u* ∈ Γ such that:

 (23)

Limit Properties of Evolutionary Algorithms

9

 (24)

Since for k ∈{1,…, M} we have

 (25)

then (24) will give

 (26)

It means that probability of appearance of the population wk in the step number t converges
to a certain fixed number *

ku independently of the initial distribution u. It is realized in some
special case, when our implementation began at one specific population p = w j .
Theorem 1. If the model is asymptotically stable, then

 (27)

where p* ∈Λ is the expected population adequate to the distribution u*. Particularly, we have also

 (28)

Proof. From (22) we have

and

Then

On the basis of (24) the equality follows (27). Taking into account our notation, given in (20),
the formula (28) is the particular case of (27).
Theorem 1 states that for the asymptotically stable case the expected population stabilizes,
converging to p* ∈Λ independently of initial conditions. This result has a fundamental
meaning for the analysis of the convergence of genetic algorithms. This generalization will
be the subject of our next paper. Moreover, this theorem is an extension of Th.4.2.2.4 4 from

 Evolutionary Algorithms

8

index (l, k) of the component βlk kills, in some sense, this nonlinearity, since it is responsible
for a pair of populations between which the transition takes place. The matrix T in (18) is a
Markovian matrix. This fact permits us to apply the theory of Markov operators to analyze
the convergence of genetic algorithms [18, 22, 26, 27].
Let ek ∈ Γ be a vector which at the k-th position has one and zeroes at the other positions.
Then ek describes the probability distribution in which the population wk is attained with the
probability 1.
By the notation T(t)wk we will understand

 (20)

which means that we begin the GA at the specific population wk . Further on we will assume
Ujj > 0 for j ∈ {0,…,s – 1}.
For a given probability distribution u = (u1,…,uM) ∈ Γ it is easy to compute that the
probability of sampling the individual zi, for i∈{0,…,s – 1}, is equal to

(21)

where k
iw is the probability of sampling from k-th population the chromosome z i, and uk -

the probability of appearance of the k-th population. By an expected population we call the
vector from Rs of which i-th coordinate is given by (21). Since for k
∈{1,…,M}, i ∈ {0,…, s – 1} and

the vector belongs to Λ . From (21) we obtain that the expected population is given by

(22)

Obviously, it is possible that the expected population could not be any possible population
with r-elements.
For every u ∈ Γ and for every t certain probability distribution for M populations
T(t)u is given. Consequently the expected population in this step is known. By

 we denote the expected population at the step t, if we
begun our experiment from the distribution u ∈ Γ; of course we have R(t)u ∈ Λ .

3.1 Asymptotic stability
Definition 2. We will say that the model is asymptotically stable if there exist u* ∈ Γ such that:

 (23)

Limit Properties of Evolutionary Algorithms

9

 (24)

Since for k ∈{1,…, M} we have

 (25)

then (24) will give

 (26)

It means that probability of appearance of the population wk in the step number t converges
to a certain fixed number *

ku independently of the initial distribution u. It is realized in some
special case, when our implementation began at one specific population p = w j .
Theorem 1. If the model is asymptotically stable, then

 (27)

where p* ∈Λ is the expected population adequate to the distribution u*. Particularly, we have also

 (28)

Proof. From (22) we have

and

Then

On the basis of (24) the equality follows (27). Taking into account our notation, given in (20),
the formula (28) is the particular case of (27).
Theorem 1 states that for the asymptotically stable case the expected population stabilizes,
converging to p* ∈Λ independently of initial conditions. This result has a fundamental
meaning for the analysis of the convergence of genetic algorithms. This generalization will
be the subject of our next paper. Moreover, this theorem is an extension of Th.4.2.2.4 4 from

 Evolutionary Algorithms

10

[24] for the case when it is possible to attain any population in a finite number of steps, (not
only in one step). It means that the transition operator does not need to be positively
defined, but there exists such k, that the k-th power of the transition matrix possesses a
column which is strongly positive. The same concerns Th.4.2.2 1 of [24, 25] which is true
only for a positively defined transition matrix.
We shall say that from the chromosome za it is possible to obtain zb in one mutation step with
a positive probability if Uba > 0. We shall say that from the chromosome za it is possible to
get the chromosome zb with positive probability in n-step mutation if there exists a sequence
of chromosomes

0l
z ,…,

nl
z , such that

0l
z = za, nl

z = zb, and for any k = 1,…, n it is possible

to attain the chromosome
kl

z from
1kl −

z in one step with a positive probability.
Definition 3. Model is pointwise asymptotically stable if there exists such a population w j that

 (29)

Condition (29) denotes that in successive steps the probability of appearance of a population
other than w j tends to zero. It is a special case of the asymptotic stability for which

u*= e j .

Theorem 2. Model is pointwise asymptotically stable if and only if there exists exactly one
chromosome za with such a property that it is possible to attain it from any chromosome in a finite
number of steps with a positive probability. In this situation the population wj is exclusively composed
of the chromosomes za and

 (30)

holds. Moreover, the probability of appearance of population other than wj tends to zero in
the step number t with a geometrical rate, i.e. there exists λ ∈ (0, 1), D∈ R+ such that

(31)

The proofs of our theorems and auxiliary lemmas are stated in other articles [29-31, 33].
From the formula (30) it follows, that from a population wj we receive wj with the probability
equal 1. Moreover, if wj becomes once, then from this moment on we shall permanently have
populations wj . Numbers λ and D could be determined for a specific model. It will be the
subject of the next articles.
Theorem 2 states that the convergence to one population could occur only under specific
assumptions. This justifies the investigation of the asymptotic stability which is different
from that in Definition 3.
Definition 4. By an attainable chromosome we denote za ∈ Z such that it is possible to attain it from
any other chromosome in a finite number of steps with a positive probability. Let us denote by Z* the
set of all za with this property.

Limit Properties of Evolutionary Algorithms

11

Theorem 3. Model is asymptotically stable if and only if Z* ≠ 0.

Theorem 4. Let us assume that the model is asymptotically stable. Then the next relationship holds:

 (war) *
ku > 0 if and only if the population wk is exclusively composed of chromosomes

belonging to the set Z*.

Corollary 1. If Z*= Z then *
ku > 0 for all k ∈ {1,…,M}.

Here we set the summary of our results:
1. Z*= 0 ⇒ lack of asymptotic stability;

2. Z*≠ 0 ⇒asymptotic stability but:

3. cardinality (Z*) = 1 ⇒ pointwise asymptotic stability (in some sense convergence to one
population);

4. cardinality (Z*) > 1 ⇒ asymptotic stability, but there is no pointwise asymptotic
stability.

If one restricts to a binary simple genetic algorithm with a positive mutation probability,
then it is possible to attain any individual (chromosome) from any other individual. Then
there is more than one binary chromosome which is possible to attain from any other in a
finite number of steps with a positive probability, and by Corollary 1, it is impossible to get
the population composed exclusively of one type of chromosome. It could be interesting to
consider non-binary cases for which the above observation does not hold.

3.2 Genetic algorithms with parameters adaptation
Genetic algorithm is realized as an adaptation process, hence it is natural to expect, that
during its action its parameters are adapted on the base of some internal dynamics of the
algorithm. It follows from the conjecture, that at different states, i.e. at different steps of the
algorithm, values of algorithm parameters could be changed in the optimal way to
accelerate the process convergence.
Till now the problem of algorithm parameters fitting is complex and not well defined, and it
has an undefined structure. However, there exist many arguments for parameters
adaptations that can improve action of actual genetic algorithm. There exists an opinion that
by adding individual algorithm or metha-algorithm related to the actual one one can
improve the solution of the problem. Such situation may be realized by an adaptation of
genetic algorithms parameters on the base of the present state of the process (i.e. the actual
population). It is conducted, for example, by introducing the methodology of parameters
changing, which uses information on populations and values of the fitness function. The
same can be proposed by a modification of the fitness function only.
In most case such adaptation is realised by increasing not only the dimension of
chromosoms but also the search space, and consequently the population vector. Then, there
appears an extra meta-algorithm, which runs parallel to the actual genetic one.
Even in such situations our algorithm model is conserved (16), and then the search space is
enlarged (the arguments set) and in consequence the number of possible populations grow.
The dimension of the Markovian matrix describing new, composed algorithm 18 grows.
However, the transition operator (19) has the same properties as in the classical simple

 Evolutionary Algorithms

10

[24] for the case when it is possible to attain any population in a finite number of steps, (not
only in one step). It means that the transition operator does not need to be positively
defined, but there exists such k, that the k-th power of the transition matrix possesses a
column which is strongly positive. The same concerns Th.4.2.2 1 of [24, 25] which is true
only for a positively defined transition matrix.
We shall say that from the chromosome za it is possible to obtain zb in one mutation step with
a positive probability if Uba > 0. We shall say that from the chromosome za it is possible to
get the chromosome zb with positive probability in n-step mutation if there exists a sequence
of chromosomes

0l
z ,…,

nl
z , such that

0l
z = za, nl

z = zb, and for any k = 1,…, n it is possible

to attain the chromosome
kl

z from
1kl −

z in one step with a positive probability.
Definition 3. Model is pointwise asymptotically stable if there exists such a population w j that

 (29)

Condition (29) denotes that in successive steps the probability of appearance of a population
other than w j tends to zero. It is a special case of the asymptotic stability for which

u*= e j .

Theorem 2. Model is pointwise asymptotically stable if and only if there exists exactly one
chromosome za with such a property that it is possible to attain it from any chromosome in a finite
number of steps with a positive probability. In this situation the population wj is exclusively composed
of the chromosomes za and

 (30)

holds. Moreover, the probability of appearance of population other than wj tends to zero in
the step number t with a geometrical rate, i.e. there exists λ ∈ (0, 1), D∈ R+ such that

(31)

The proofs of our theorems and auxiliary lemmas are stated in other articles [29-31, 33].
From the formula (30) it follows, that from a population wj we receive wj with the probability
equal 1. Moreover, if wj becomes once, then from this moment on we shall permanently have
populations wj . Numbers λ and D could be determined for a specific model. It will be the
subject of the next articles.
Theorem 2 states that the convergence to one population could occur only under specific
assumptions. This justifies the investigation of the asymptotic stability which is different
from that in Definition 3.
Definition 4. By an attainable chromosome we denote za ∈ Z such that it is possible to attain it from
any other chromosome in a finite number of steps with a positive probability. Let us denote by Z* the
set of all za with this property.

Limit Properties of Evolutionary Algorithms

11

Theorem 3. Model is asymptotically stable if and only if Z* ≠ 0.

Theorem 4. Let us assume that the model is asymptotically stable. Then the next relationship holds:

 (war) *
ku > 0 if and only if the population wk is exclusively composed of chromosomes

belonging to the set Z*.

Corollary 1. If Z*= Z then *
ku > 0 for all k ∈ {1,…,M}.

Here we set the summary of our results:
1. Z*= 0 ⇒ lack of asymptotic stability;

2. Z*≠ 0 ⇒asymptotic stability but:

3. cardinality (Z*) = 1 ⇒ pointwise asymptotic stability (in some sense convergence to one
population);

4. cardinality (Z*) > 1 ⇒ asymptotic stability, but there is no pointwise asymptotic
stability.

If one restricts to a binary simple genetic algorithm with a positive mutation probability,
then it is possible to attain any individual (chromosome) from any other individual. Then
there is more than one binary chromosome which is possible to attain from any other in a
finite number of steps with a positive probability, and by Corollary 1, it is impossible to get
the population composed exclusively of one type of chromosome. It could be interesting to
consider non-binary cases for which the above observation does not hold.

3.2 Genetic algorithms with parameters adaptation
Genetic algorithm is realized as an adaptation process, hence it is natural to expect, that
during its action its parameters are adapted on the base of some internal dynamics of the
algorithm. It follows from the conjecture, that at different states, i.e. at different steps of the
algorithm, values of algorithm parameters could be changed in the optimal way to
accelerate the process convergence.
Till now the problem of algorithm parameters fitting is complex and not well defined, and it
has an undefined structure. However, there exist many arguments for parameters
adaptations that can improve action of actual genetic algorithm. There exists an opinion that
by adding individual algorithm or metha-algorithm related to the actual one one can
improve the solution of the problem. Such situation may be realized by an adaptation of
genetic algorithms parameters on the base of the present state of the process (i.e. the actual
population). It is conducted, for example, by introducing the methodology of parameters
changing, which uses information on populations and values of the fitness function. The
same can be proposed by a modification of the fitness function only.
In most case such adaptation is realised by increasing not only the dimension of
chromosoms but also the search space, and consequently the population vector. Then, there
appears an extra meta-algorithm, which runs parallel to the actual genetic one.
Even in such situations our algorithm model is conserved (16), and then the search space is
enlarged (the arguments set) and in consequence the number of possible populations grow.
The dimension of the Markovian matrix describing new, composed algorithm 18 grows.
However, the transition operator (19) has the same properties as in the classical simple

 Evolutionary Algorithms

12

genetic algorithm. Consequently, all theorems on convergence of genetic algorithms from
the previous sections are conserved, as well as the results concerning the limit algorithm of
the next Section 4.2 and the form of the optimal algorithm in probabilistic sense.

4. Classification of algorithms and its invariants
The convergence of GAs is one of the main issues of the theoretical foundations of GAs, and
has been investigated by means of Markov's chains. The model of GA as a Markov's chain is
relatively close to the methods known in the theory of dynamical systems.
In the analysis of GAs regarded as (stochastic) dynamical systems one can use the fact,
(proven by Ornstein and Friedman [4, 10]) which states that mixing Markov's chains are
Bernoulli's systems and consequently, the entropy of the systems is a complete metric
invariant.
Those facts enable us to classify GAs using the entropy. The systems for which the entropies
have the same value are isomorphic. Hence the entropy makes it possible to classify GAs by
splitting them into equivalence classes.

4.1 Isomorphism of algorithms
The domain of research of the ergodic theory is a space with measure and mappings which
preserve it. The measure space is the point set X with a measure m (when normalised to one,
it is called the probability) defined on - algebra of its subsets B, called measureable. To use
results of the theory some defintions [16, 15] must be introduced.
Definition 5. Let (X1, B1, m1), (X2, B2, m2) be measure spaces. We say that a mapping φ : X1 →X2 is
measure preserving if: i) it is measurable, i.e. φ -1(A) ∈ B1 for every A ∈ B2, and ii) m1(φ -1(A)) =
m2(A). If X1 = X2 and m1 = m2 =: m and φ preserves a measure m then we say that m is φ-invariant
(or invariant under φ).
In the example below we will say that so-called 1D backer's transformation3preserves
Lebesgue measure of the line. Let X = [0; 1) and consider φ1(x) = 2x (mod 1). Notice that even
though the mapping doubles the length of an interval I, its inverse image has two pieces in
general, each of which has the length of I, and when we add them, the sum equals the
original lenght of I. So φ1 preserves Lebesgue measure.
The generalization of the above mapping to 2D is the backer' transformation defined4 on the
square X = [0, 1] × [0, 1] as

(32)

which presereves the 2D Lebesgue measure on the unit square.
Definition 6. Probability spaces (X1, B1, m1), (X2, B2, m2) are said to be isomorphic if there exist
M1 ∈ B1, M2 ∈ B2 with m1(M1) = 1 = m2(M2) and an invertible measure preservimg
transformation φ : M1 → M2.

3 It is also called 1D Bernoulli shift.
4 The transformation is the composition of three transformations of the unit square first,
press down the square, cut in the midle and move the right half to the top of the left half.

Limit Properties of Evolutionary Algorithms

13

In [16] the defintion is more general and requires the mapping φ to be defined on whole X1

and be almost everywhere bijective from X1 onto X2, i.e. it must be bijective except for the
sets of measure zero. However, in view of Definition 6 the sets X1\M1 and X2\M2 have zero
measure.
In order to investigate genetic algorithms and their similarity (or even more - isomorphism)
we need to consider mappings defined on probability space.
Definition 7. Suppose probability spaces (X1, B1, m1), (X2, B2, m2) together with measure preserving
transformations T1 : X1→ X1; T2 : X2 → X2. We say that T1 is isomorphic to T2 if there exist M1 ∈
B1, M2 ∈ B2 with m1(M1) = m2(M2) = 1 such that: i) T1(M1) ⊆ M1, T2(M2) ⊆M2, and ii) there is an
invertible measure-preserving transformation

Consider infinite strings made of k symbols from [1,…, k]. Put An
element x of X is denoted by (x1 x2 x3…).5 Let a finite sequence p1, p2,…, pk, where for each i

the number pi ∈ [0, 1] be such that

For t ≥ 1 define a cylinder set (or a block) of

length n by

 (33)

With this denotation let us introduce the main definition of the Bernoulli shift which plays
the main role in our approach [15, 16].
Definition 8. Define a measure μ on cylinder sets by

 (34)

A probability measure on X, again denoted by μ, is uniquely defined on the - algebra generated by
cylinder sets. We call μ the (p1,…,pk)-Bernoulli measure and X is the Bernoulli shift space. The one-
sided Bernoulli shift transformation T on X defined by

 (35)

Similarly, we may define the two-sided Bernoulli shift transformation by

on where * denotes the 0-th coordinate in a sequence. Let us notice that the
shift preserves the measure μ.
In the case of a binary sequence when we have two symbols only and if each symbol has
probablity the space X identified with is (,)-Bernoulli shift space.
Moreover, the space X is somorphic to [0, 1] with Lebesgue measure if each element x = (b1,
b2,…) ∈ X and the transformation is defined by

5 If k = 2 then x is said to be a binary sequence.

 Evolutionary Algorithms

12

genetic algorithm. Consequently, all theorems on convergence of genetic algorithms from
the previous sections are conserved, as well as the results concerning the limit algorithm of
the next Section 4.2 and the form of the optimal algorithm in probabilistic sense.

4. Classification of algorithms and its invariants
The convergence of GAs is one of the main issues of the theoretical foundations of GAs, and
has been investigated by means of Markov's chains. The model of GA as a Markov's chain is
relatively close to the methods known in the theory of dynamical systems.
In the analysis of GAs regarded as (stochastic) dynamical systems one can use the fact,
(proven by Ornstein and Friedman [4, 10]) which states that mixing Markov's chains are
Bernoulli's systems and consequently, the entropy of the systems is a complete metric
invariant.
Those facts enable us to classify GAs using the entropy. The systems for which the entropies
have the same value are isomorphic. Hence the entropy makes it possible to classify GAs by
splitting them into equivalence classes.

4.1 Isomorphism of algorithms
The domain of research of the ergodic theory is a space with measure and mappings which
preserve it. The measure space is the point set X with a measure m (when normalised to one,
it is called the probability) defined on - algebra of its subsets B, called measureable. To use
results of the theory some defintions [16, 15] must be introduced.
Definition 5. Let (X1, B1, m1), (X2, B2, m2) be measure spaces. We say that a mapping φ : X1 →X2 is
measure preserving if: i) it is measurable, i.e. φ -1(A) ∈ B1 for every A ∈ B2, and ii) m1(φ -1(A)) =
m2(A). If X1 = X2 and m1 = m2 =: m and φ preserves a measure m then we say that m is φ-invariant
(or invariant under φ).
In the example below we will say that so-called 1D backer's transformation3preserves
Lebesgue measure of the line. Let X = [0; 1) and consider φ1(x) = 2x (mod 1). Notice that even
though the mapping doubles the length of an interval I, its inverse image has two pieces in
general, each of which has the length of I, and when we add them, the sum equals the
original lenght of I. So φ1 preserves Lebesgue measure.
The generalization of the above mapping to 2D is the backer' transformation defined4 on the
square X = [0, 1] × [0, 1] as

(32)

which presereves the 2D Lebesgue measure on the unit square.
Definition 6. Probability spaces (X1, B1, m1), (X2, B2, m2) are said to be isomorphic if there exist
M1 ∈ B1, M2 ∈ B2 with m1(M1) = 1 = m2(M2) and an invertible measure preservimg
transformation φ : M1 → M2.

3 It is also called 1D Bernoulli shift.
4 The transformation is the composition of three transformations of the unit square first,
press down the square, cut in the midle and move the right half to the top of the left half.

Limit Properties of Evolutionary Algorithms

13

In [16] the defintion is more general and requires the mapping φ to be defined on whole X1

and be almost everywhere bijective from X1 onto X2, i.e. it must be bijective except for the
sets of measure zero. However, in view of Definition 6 the sets X1\M1 and X2\M2 have zero
measure.
In order to investigate genetic algorithms and their similarity (or even more - isomorphism)
we need to consider mappings defined on probability space.
Definition 7. Suppose probability spaces (X1, B1, m1), (X2, B2, m2) together with measure preserving
transformations T1 : X1→ X1; T2 : X2 → X2. We say that T1 is isomorphic to T2 if there exist M1 ∈
B1, M2 ∈ B2 with m1(M1) = m2(M2) = 1 such that: i) T1(M1) ⊆ M1, T2(M2) ⊆M2, and ii) there is an
invertible measure-preserving transformation

Consider infinite strings made of k symbols from [1,…, k]. Put An
element x of X is denoted by (x1 x2 x3…).5 Let a finite sequence p1, p2,…, pk, where for each i

the number pi ∈ [0, 1] be such that

For t ≥ 1 define a cylinder set (or a block) of

length n by

 (33)

With this denotation let us introduce the main definition of the Bernoulli shift which plays
the main role in our approach [15, 16].
Definition 8. Define a measure μ on cylinder sets by

 (34)

A probability measure on X, again denoted by μ, is uniquely defined on the - algebra generated by
cylinder sets. We call μ the (p1,…,pk)-Bernoulli measure and X is the Bernoulli shift space. The one-
sided Bernoulli shift transformation T on X defined by

 (35)

Similarly, we may define the two-sided Bernoulli shift transformation by

on where * denotes the 0-th coordinate in a sequence. Let us notice that the
shift preserves the measure μ.
In the case of a binary sequence when we have two symbols only and if each symbol has
probablity the space X identified with is (,)-Bernoulli shift space.
Moreover, the space X is somorphic to [0, 1] with Lebesgue measure if each element x = (b1,
b2,…) ∈ X and the transformation is defined by

5 If k = 2 then x is said to be a binary sequence.

 Evolutionary Algorithms

14

(36)

To see why, notice that not every y ∈ [0, 1] has unique binary expansion, but the set of such
points has measure zero, and we ignore them. Hence the transformation (36) is almost
everywhere bijective (cf. remark below Def. 6) and measure preserving.
The next notions are related to Markov measure and Markov shift. As previously consider
the space and let P = (Pij) be a k×k stochastic matrix with the right hand
operation6. Suppose that π = (πi) be the right probability eigenvector of P, i.e. it satisfies

 and Pπ = π. Define ν on the cylinder sets by

 (37)

Notice that the sequence of appearance is a1, a2,…, an.
Definition 9. A unique shift invariant probability measure, again denoted by ν, on the -algebra
generated by the cylinder sets, we call the Markov measure and then X is called the Markov shift
space.
Notice that the matrix P defines the transition probabilty

which is the conditional probabilty (of an event xn+1 = j given that an event xn = i has
occured). Notice that Markov shifts are Bernoulli shifts if the columns of the matrix B are
identical. Moreover, the numbers satisfy

for any a ∈ {1, 2,…,k}.
We can identify a Bernoulli measure or a Markov measure with a measure on the interval [0,
1] through the binary expansion (36) (i.e. each binary sequence x = (b1, b2,…) is identified
with the sum of R.H.S. of (36)). If the probability p ∉ {0,1/2, 1}, then the (p, 1-p)- Bernoulli
measure represented on [0, 1] is singular continuous [16].

4.2 Limit distribution
Now, after [16] we are ready to formualate main facts concerning the limit distribution of
the Markov matrix.
Theorem 5. Let T = (Tij) be a M×M stochastic matrix. Suppose that π = (πi) be a right probability

eigenvector of T , i.e. it satisfies

 and

 Tπ = π. (38)

Then the following relationship hold:

6 Choe in [16] considers the left hand operation.

Limit Properties of Evolutionary Algorithms

15

i. there exists .

ii. Q is stochastic (i.e. Markovian) matrix ,

iii. QT = TQ = Q ,

iv. If Tv = v then Qv = v.

Theorem 6. All columns of Q are identical and equal to the column vector π.

Since each Markov shift is a Bernoulli shift if columns of the Markov matrix are identical,
the limit distribution may be regarded as a Bernoulli shift. Hence the isomorphism of the
limit distribution may be treated in the same way as for Bernoulli shifts, i.e. with the help of
the entropy, cf. Theorem 9.
Theorem 7. The convergence Tn - Q is of exponential type, when n→ ∞.

One may ask whether it is possible to find a convergence bound in terms of the second
eigenvalue of the matrix T and how it is related to the eigenvalues of the matrix Q?

Moreover, the limit operator Q is a projection operator QQ = Q. Its eigenspace is composed
of one eigenvector π and its properties will help in finding relations to NFL. It will be the
subject of the next publication [32].
Theorem 8. If a genetic algorithm (14) is described by a transition matrix (18) that possesses the
eigenvector π as a probability vector corresponding to the unit eigenvalue, i.e. the matrix satisfies Eq.
(38), then there exists an optimal algorithm in the probabilistic sense. It means that the algorithm
starting at an arbitrary initial distribution of populations in one step generates the limit distribution.
This limit distribution is desrcibed by the matrix Q appearing in Theorem 5.

Proof. Let a vector c = (ci) describe the initial distribution of populations, with .

Let us take an arbitrary row of the matrix Q, say j. Then in view of Theorem 6 all elements of

this row are the same and equal to πj . Then making the product Qc we will get for this row

This means that Qc = π.
The recent theorem is in some sense complementary to the No Free Lunch Theorem. NFL
Theorem describes the whole universe of optimization problems and algorithms used to
solve them. The present theorem, on the other side, concernes on an individual algorithm
dedicated to an individual optimization problem. The former theorem tells that in the mean
all algorithms behave in similar way as far as all problems are concerned. The latter
theorem, however, states that for allmost every genetic (evolutionary) algorithm and every
single optimization problem there exists not only the better algorithm but also the best
(optimal) in the probabilistic sense. This algorithm cannot be, in general, deterministic, since
the assumptions concerning the pointwise asymptotic stability may not hold (cf. Definition 3
and Theorem 2). The problem of determining, even in the approximate form, the best
algoritm is still open. It is hope that the pointwise asymptotic stability can be helpful here.

 Evolutionary Algorithms

14

(36)

To see why, notice that not every y ∈ [0, 1] has unique binary expansion, but the set of such
points has measure zero, and we ignore them. Hence the transformation (36) is almost
everywhere bijective (cf. remark below Def. 6) and measure preserving.
The next notions are related to Markov measure and Markov shift. As previously consider
the space and let P = (Pij) be a k×k stochastic matrix with the right hand
operation6. Suppose that π = (πi) be the right probability eigenvector of P, i.e. it satisfies

 and Pπ = π. Define ν on the cylinder sets by

 (37)

Notice that the sequence of appearance is a1, a2,…, an.
Definition 9. A unique shift invariant probability measure, again denoted by ν, on the -algebra
generated by the cylinder sets, we call the Markov measure and then X is called the Markov shift
space.
Notice that the matrix P defines the transition probabilty

which is the conditional probabilty (of an event xn+1 = j given that an event xn = i has
occured). Notice that Markov shifts are Bernoulli shifts if the columns of the matrix B are
identical. Moreover, the numbers satisfy

for any a ∈ {1, 2,…,k}.
We can identify a Bernoulli measure or a Markov measure with a measure on the interval [0,
1] through the binary expansion (36) (i.e. each binary sequence x = (b1, b2,…) is identified
with the sum of R.H.S. of (36)). If the probability p ∉ {0,1/2, 1}, then the (p, 1-p)- Bernoulli
measure represented on [0, 1] is singular continuous [16].

4.2 Limit distribution
Now, after [16] we are ready to formualate main facts concerning the limit distribution of
the Markov matrix.
Theorem 5. Let T = (Tij) be a M×M stochastic matrix. Suppose that π = (πi) be a right probability

eigenvector of T , i.e. it satisfies

 and

 Tπ = π. (38)

Then the following relationship hold:

6 Choe in [16] considers the left hand operation.

Limit Properties of Evolutionary Algorithms

15

i. there exists .

ii. Q is stochastic (i.e. Markovian) matrix ,

iii. QT = TQ = Q ,

iv. If Tv = v then Qv = v.

Theorem 6. All columns of Q are identical and equal to the column vector π.

Since each Markov shift is a Bernoulli shift if columns of the Markov matrix are identical,
the limit distribution may be regarded as a Bernoulli shift. Hence the isomorphism of the
limit distribution may be treated in the same way as for Bernoulli shifts, i.e. with the help of
the entropy, cf. Theorem 9.
Theorem 7. The convergence Tn - Q is of exponential type, when n→ ∞.

One may ask whether it is possible to find a convergence bound in terms of the second
eigenvalue of the matrix T and how it is related to the eigenvalues of the matrix Q?

Moreover, the limit operator Q is a projection operator QQ = Q. Its eigenspace is composed
of one eigenvector π and its properties will help in finding relations to NFL. It will be the
subject of the next publication [32].
Theorem 8. If a genetic algorithm (14) is described by a transition matrix (18) that possesses the
eigenvector π as a probability vector corresponding to the unit eigenvalue, i.e. the matrix satisfies Eq.
(38), then there exists an optimal algorithm in the probabilistic sense. It means that the algorithm
starting at an arbitrary initial distribution of populations in one step generates the limit distribution.
This limit distribution is desrcibed by the matrix Q appearing in Theorem 5.

Proof. Let a vector c = (ci) describe the initial distribution of populations, with .

Let us take an arbitrary row of the matrix Q, say j. Then in view of Theorem 6 all elements of

this row are the same and equal to πj . Then making the product Qc we will get for this row

This means that Qc = π.
The recent theorem is in some sense complementary to the No Free Lunch Theorem. NFL
Theorem describes the whole universe of optimization problems and algorithms used to
solve them. The present theorem, on the other side, concernes on an individual algorithm
dedicated to an individual optimization problem. The former theorem tells that in the mean
all algorithms behave in similar way as far as all problems are concerned. The latter
theorem, however, states that for allmost every genetic (evolutionary) algorithm and every
single optimization problem there exists not only the better algorithm but also the best
(optimal) in the probabilistic sense. This algorithm cannot be, in general, deterministic, since
the assumptions concerning the pointwise asymptotic stability may not hold (cf. Definition 3
and Theorem 2). The problem of determining, even in the approximate form, the best
algoritm is still open. It is hope that the pointwise asymptotic stability can be helpful here.

 Evolutionary Algorithms

16

There is of course the question of uniquenss: two different genetic algoritms may lead to
two different limit distributions. Moreover, to two different algorithms may correspond one
optimal algorithm. This remark may be used in formulation new methods of classification of
genetic algorithms, additional to the entropy and the fractal dimension.

5. Trajectory of BGA

Let X be a space of solutions of an optimisation problem characterized by a fitness function
f : X → R ;X ⊂ Rm for which a binary genetic algorithm (BGA) will be invented. Each

element x ∈ X will be encoded in the form of a binary chromosome of the length l (cf.
Section 2.1). The coding function ϕ: X → {0, 1}l = B maps elements of X into chromosome
from the B space.
Let us assume that the genetic algorithm acts on r-element populations. Each population
forms a multiset [Pr] in the product space Br. For the i-th generation we will use the
denotation [r

iP], for the population and each element of this multiset can be identified with
a vector

 (39)

rembering that a population is an equivalent class of points from the vector space Br. The
equivalent relation is defined by the class of all possible permutations of the set of r-th
numbers {1, 2,…, r}. Notice that in view of our denotation from Sec.2.1 each i

jx , j = 1, 2,…, r
is one of elements of the set Z.
Let us notice that we can identify points from X with their encoded targets in B under the
action of space Xr. By a trajectory of the genetic algorithm of the duration N we mean a set

(40)

where N is the number of steps (generations) of the genetic algorithm which is realized.
Let pm and pc be the probabilities of the mutation and crossover, respectively, while ps is the
probability of selection, all independent from the generation.
Then, for such a genetic algorithm the probability of the appearance of the population [1

r
iP+]

at the generation i + 1 after the population [r
iP] at the generation i, is the conditional

probability

 (41)

Here by f(r
iP) we understand the vector{valued function of the form [f(1

ix), f(2
ix),…, f(i

rx)].

The initial population [1
rP] is generated by the use of a uniform probability distribution

over the set B, i.e. each point from B has the same probability of being selected as a member

Limit Properties of Evolutionary Algorithms

17

(component) of [1
rP]. Next populations following that one, i.e. chosen in next generations,

are results of the action of the GA and, hence, may have a non-uniform probability
distribution.
Let us notice that in view of our assumptions it follows from (41) that the probability of the
appearance of each population depends on the previous population and does not depend on
the history (i.e. on earlier population; the probabilities pm, pc and ps can be regarded as
parameters of the function P).
Now, if we look at the trajectory of the GA defined by (40), we can see that its generation is
an ergodic (mixing) process and Markov's one. Subsequent populations (i.e. points of the
trajectory) are states of the process about which we can say that each state is accessible with
the probability 1.

6. Entropy
Let us denote by Ti the operator which maps i-th generation (point of the trajectory) into the
next one. Having the probability distribution (41) characterizing the mapping Ti from one
population to another, we can define the entropy of the mapping

(42)

where [1,
r

i jP+] is a possible population from the coding space B, j = 1, 2,…, 2 rN ,…,M:

According to our previous proposition the initial population is generated by the use of a
uniform probability, and the entropy may attain the maximal value generated by the GA. In
the next step the probabilities of populations are not uniform and differ at each generation;
this is the essence of the action of GA. Consequently the entropy of the mapping Ti

decreases. In the limit case when the number of steps tends to infinity one could expect that
the terminal population will be composed of r copies (exactly speaking, according to (39) { a
cartesian product) of the same element (an optimal solution). However, this case will be
possible only in the case of the pointwise asymptotic stability of GA. In general, the entropy
will tend to minimum.
Entropy as a function of the probability of mutation and selectio grows with the growing
mutation probability and decreases when the selection pressure grows. Then the entropy
could realize a measure of interactions between mutations and selection operators. Entropy
also depends on the number of elements in population and it is decreasing when the
population grows. The entropy value of the trajectory could be linked with computational
complexity of the evolutionary algorithms.
Now several questions arise. Does an optimal form of the entrop change exist? What is its
limit value, if it is different from zero for the optimisation process performed by GA ? Does
an optimal process of the entropy change exist along which an optimal value of the solution
can be reached?
Since the determination of the probability of the mapping Ti, as well as the entropy Hi, in an
analytical way is rather difficult to be performed, we are proposing to substitute them with
a fractal dimension which is related to the entropy [10] and can characterize non-

 Evolutionary Algorithms

16

There is of course the question of uniquenss: two different genetic algoritms may lead to
two different limit distributions. Moreover, to two different algorithms may correspond one
optimal algorithm. This remark may be used in formulation new methods of classification of
genetic algorithms, additional to the entropy and the fractal dimension.

5. Trajectory of BGA

Let X be a space of solutions of an optimisation problem characterized by a fitness function
f : X → R ;X ⊂ Rm for which a binary genetic algorithm (BGA) will be invented. Each

element x ∈ X will be encoded in the form of a binary chromosome of the length l (cf.
Section 2.1). The coding function ϕ: X → {0, 1}l = B maps elements of X into chromosome
from the B space.
Let us assume that the genetic algorithm acts on r-element populations. Each population
forms a multiset [Pr] in the product space Br. For the i-th generation we will use the
denotation [r

iP], for the population and each element of this multiset can be identified with
a vector

 (39)

rembering that a population is an equivalent class of points from the vector space Br. The
equivalent relation is defined by the class of all possible permutations of the set of r-th
numbers {1, 2,…, r}. Notice that in view of our denotation from Sec.2.1 each i

jx , j = 1, 2,…, r
is one of elements of the set Z.
Let us notice that we can identify points from X with their encoded targets in B under the
action of space Xr. By a trajectory of the genetic algorithm of the duration N we mean a set

(40)

where N is the number of steps (generations) of the genetic algorithm which is realized.
Let pm and pc be the probabilities of the mutation and crossover, respectively, while ps is the
probability of selection, all independent from the generation.
Then, for such a genetic algorithm the probability of the appearance of the population [1

r
iP+]

at the generation i + 1 after the population [r
iP] at the generation i, is the conditional

probability

 (41)

Here by f(r
iP) we understand the vector{valued function of the form [f(1

ix), f(2
ix),…, f(i

rx)].

The initial population [1
rP] is generated by the use of a uniform probability distribution

over the set B, i.e. each point from B has the same probability of being selected as a member

Limit Properties of Evolutionary Algorithms

17

(component) of [1
rP]. Next populations following that one, i.e. chosen in next generations,

are results of the action of the GA and, hence, may have a non-uniform probability
distribution.
Let us notice that in view of our assumptions it follows from (41) that the probability of the
appearance of each population depends on the previous population and does not depend on
the history (i.e. on earlier population; the probabilities pm, pc and ps can be regarded as
parameters of the function P).
Now, if we look at the trajectory of the GA defined by (40), we can see that its generation is
an ergodic (mixing) process and Markov's one. Subsequent populations (i.e. points of the
trajectory) are states of the process about which we can say that each state is accessible with
the probability 1.

6. Entropy
Let us denote by Ti the operator which maps i-th generation (point of the trajectory) into the
next one. Having the probability distribution (41) characterizing the mapping Ti from one
population to another, we can define the entropy of the mapping

(42)

where [1,
r

i jP+] is a possible population from the coding space B, j = 1, 2,…, 2 rN ,…,M:

According to our previous proposition the initial population is generated by the use of a
uniform probability, and the entropy may attain the maximal value generated by the GA. In
the next step the probabilities of populations are not uniform and differ at each generation;
this is the essence of the action of GA. Consequently the entropy of the mapping Ti

decreases. In the limit case when the number of steps tends to infinity one could expect that
the terminal population will be composed of r copies (exactly speaking, according to (39) { a
cartesian product) of the same element (an optimal solution). However, this case will be
possible only in the case of the pointwise asymptotic stability of GA. In general, the entropy
will tend to minimum.
Entropy as a function of the probability of mutation and selectio grows with the growing
mutation probability and decreases when the selection pressure grows. Then the entropy
could realize a measure of interactions between mutations and selection operators. Entropy
also depends on the number of elements in population and it is decreasing when the
population grows. The entropy value of the trajectory could be linked with computational
complexity of the evolutionary algorithms.
Now several questions arise. Does an optimal form of the entrop change exist? What is its
limit value, if it is different from zero for the optimisation process performed by GA ? Does
an optimal process of the entropy change exist along which an optimal value of the solution
can be reached?
Since the determination of the probability of the mapping Ti, as well as the entropy Hi, in an
analytical way is rather difficult to be performed, we are proposing to substitute them with
a fractal dimension which is related to the entropy [10] and can characterize non-

 Evolutionary Algorithms

18

deterministic features of GA. It should be mentioned that in [8] general statistical and
topological methods of analysis of GAs have been introduced from another viewpoint.
Theorem 9. (Ornstein [10]) Every two Bernoulli shifts with the same entropy are isomorphic.

Lemma 1. (Choe [16])) Let be the (p, 1- p) Bernoulli shift space that is regarded
as the unit interval [0, 1) endowed with the Euclidean metric. Let Xp denote the set of all binary
sequences x ∈ X such that

then Hausdorff dimension of the set Xp is equal to the entropy -p log2 p- (1 - p) log2(1 - p) of the
Bernoulli shift transformation. Similar results can be obtained for a Markov shift space.

Moreover one can use the Hausdorff dimension or its approximation as an invariant of
equivalence of algorithms.

7. Fractal dimensions

To be more evident, let us recall the notion of the s-dimensional7 Hausdorff measure ([5]) of
the subset E ⊂ Rl, where s ≥ 0. If E ⊂ Ui Ui and the diameter of Ui, denoted by (Ui), is less

than ε for each i, we say that {Ui} is an ε - cover of E. For ε > 0, let us define

(43)

where the in_mum is over all ε-covers {Ui} of E. The limit of as ε → 0 denoted by Hs(E),
is the s-dimensional Hausdorff measure of E.
Let us notice that in the space Rl one can prove that Hl(E)= klLl(E), where Ll is the l-

dimensional Lebesgue measure and kl is a ratio of volume of the l - dimensional cube to

l - dimensional ball inscribed in the cube.

It is evident that (E) increases as the maximal diameter ε of the sets Ui tends to zero,
therefore, it requires to take finer and finer details, that might not be apparent in the larger
scale into account. On the other hand for the Hausdorff measure the value Hs(E) decreases as
s increases, and for large s this value becomes 0. Then the Hausdorff dimension of E is
defined by

 (44)

and it can be verified that .
Working with compact subsets of a metric space (X, d) new dimension is introduced. This
dimension is also less accurate than the Hausdorff dimension. To calculate this dimension

7 This s has nothing to do with s introduced in Section 2.

Limit Properties of Evolutionary Algorithms

19

for a set S ⊂ X imagine this set lying on an evenly-spaced grid. Let us count how many
boxes are required to cover the set. The box-counting dimension is calculated by observing
how this number changes as we make the grid finer. Suppose that N(ε) is the number of
boxes of the side length ε required to cover the set. Then the box-counting dimension is
defined as:

(45)

In Appendix more detailed presentation of properties of the Hausdorff and box-counting
dimensions is included. Harrison in [5] recommends the box-counting dimension to be used
only for closed sets, although even for compact sets it can differ from Hausdorff dimension
and, moreover, the box dimension gives the most natural result than the measure Hs.

8. Dimension of trajectory
By inventing the fractal (Hausdorff) dimension the trajectory of GA's or its attractor can be
investigated. Algorithms could be regarded as equivalent if they have the same
computational complexity while solving the same problem. As the measure of
computational complexity of genetic algorithm, we propose a product of population's size
and the number of steps after which an optimal solution is reached. This measure of
computational complexity of genetic algorithms joins the memory and the temporal
complexity.
During the execution of genetic algorithms, a trajectory is realized and should "converge" to
some attraction set. It is expected that an ideal genetic algorithm produces an optimal
solution which, in the term of its trajectory, leads to an attractor which is one{ element set.
On the other hand, for an algorithm without selection the attractor is the whole space. Then,
we could say that algorithms are equivalent when they produce similar attractors [6].
Our proposal is to use fractal dimensions to measure the similarity of attractors on the base
of Lemma 1.
Definition 10. Two genetic algorithms are equivalent if they realize trajectories with the same
fractal dimension.
Hence, instead of the entropy, the fractal dimension will be use as an indicator, or better to
say - a measure of the classifications of GAs.
The transfer from the entropy to the new indicator can be made with the help of particular
gauges. The first gauge could be the so-called ρ-entropy based dimension introduced by
Pontrjagin and Schnirelman in 1932 (and repeated by Kolmogorov and Tihomirov in 1959),
in the following way: among all collections of balls of radius ρ that cover a set E in Rl (or in
more general case, in some metric space) is by definition one that requires the smallest
number of balls. When E is bounded, this smallest number is finite and can be denoted by
N(ρ) and called ρ - entropy. Their dimension, called the lower entropy dimension, was
defined by

(46)

 Evolutionary Algorithms

18

deterministic features of GA. It should be mentioned that in [8] general statistical and
topological methods of analysis of GAs have been introduced from another viewpoint.
Theorem 9. (Ornstein [10]) Every two Bernoulli shifts with the same entropy are isomorphic.

Lemma 1. (Choe [16])) Let be the (p, 1- p) Bernoulli shift space that is regarded
as the unit interval [0, 1) endowed with the Euclidean metric. Let Xp denote the set of all binary
sequences x ∈ X such that

then Hausdorff dimension of the set Xp is equal to the entropy -p log2 p- (1 - p) log2(1 - p) of the
Bernoulli shift transformation. Similar results can be obtained for a Markov shift space.

Moreover one can use the Hausdorff dimension or its approximation as an invariant of
equivalence of algorithms.

7. Fractal dimensions

To be more evident, let us recall the notion of the s-dimensional7 Hausdorff measure ([5]) of
the subset E ⊂ Rl, where s ≥ 0. If E ⊂ Ui Ui and the diameter of Ui, denoted by (Ui), is less

than ε for each i, we say that {Ui} is an ε - cover of E. For ε > 0, let us define

(43)

where the in_mum is over all ε-covers {Ui} of E. The limit of as ε → 0 denoted by Hs(E),
is the s-dimensional Hausdorff measure of E.
Let us notice that in the space Rl one can prove that Hl(E)= klLl(E), where Ll is the l-

dimensional Lebesgue measure and kl is a ratio of volume of the l - dimensional cube to

l - dimensional ball inscribed in the cube.

It is evident that (E) increases as the maximal diameter ε of the sets Ui tends to zero,
therefore, it requires to take finer and finer details, that might not be apparent in the larger
scale into account. On the other hand for the Hausdorff measure the value Hs(E) decreases as
s increases, and for large s this value becomes 0. Then the Hausdorff dimension of E is
defined by

 (44)

and it can be verified that .
Working with compact subsets of a metric space (X, d) new dimension is introduced. This
dimension is also less accurate than the Hausdorff dimension. To calculate this dimension

7 This s has nothing to do with s introduced in Section 2.

Limit Properties of Evolutionary Algorithms

19

for a set S ⊂ X imagine this set lying on an evenly-spaced grid. Let us count how many
boxes are required to cover the set. The box-counting dimension is calculated by observing
how this number changes as we make the grid finer. Suppose that N(ε) is the number of
boxes of the side length ε required to cover the set. Then the box-counting dimension is
defined as:

(45)

In Appendix more detailed presentation of properties of the Hausdorff and box-counting
dimensions is included. Harrison in [5] recommends the box-counting dimension to be used
only for closed sets, although even for compact sets it can differ from Hausdorff dimension
and, moreover, the box dimension gives the most natural result than the measure Hs.

8. Dimension of trajectory
By inventing the fractal (Hausdorff) dimension the trajectory of GA's or its attractor can be
investigated. Algorithms could be regarded as equivalent if they have the same
computational complexity while solving the same problem. As the measure of
computational complexity of genetic algorithm, we propose a product of population's size
and the number of steps after which an optimal solution is reached. This measure of
computational complexity of genetic algorithms joins the memory and the temporal
complexity.
During the execution of genetic algorithms, a trajectory is realized and should "converge" to
some attraction set. It is expected that an ideal genetic algorithm produces an optimal
solution which, in the term of its trajectory, leads to an attractor which is one{ element set.
On the other hand, for an algorithm without selection the attractor is the whole space. Then,
we could say that algorithms are equivalent when they produce similar attractors [6].
Our proposal is to use fractal dimensions to measure the similarity of attractors on the base
of Lemma 1.
Definition 10. Two genetic algorithms are equivalent if they realize trajectories with the same
fractal dimension.
Hence, instead of the entropy, the fractal dimension will be use as an indicator, or better to
say - a measure of the classifications of GAs.
The transfer from the entropy to the new indicator can be made with the help of particular
gauges. The first gauge could be the so-called ρ-entropy based dimension introduced by
Pontrjagin and Schnirelman in 1932 (and repeated by Kolmogorov and Tihomirov in 1959),
in the following way: among all collections of balls of radius ρ that cover a set E in Rl (or in
more general case, in some metric space) is by definition one that requires the smallest
number of balls. When E is bounded, this smallest number is finite and can be denoted by
N(ρ) and called ρ - entropy. Their dimension, called the lower entropy dimension, was
defined by

(46)

 Evolutionary Algorithms

20

The second gauge is the so-called information dimension of the trajectory defined by:

(47)

where W(ε) is the number of elements of the trajectory which are contained in a l -
dimensional cube with the edge length equal to ε, and is the probability of finding
of i - th element, and Ni - number of points in i-th hypercube, N - number of trajectory points.
In further analysis we are going to replace (47) and (45) with its approximation, namely the
box or capacity dimension.
In [6] the box counting dimension de_ned in [3] has been introduced with its approximated
formula (cf. (2) in [6]).
Here we use another approach to the approximation. Let N(T, ε) be the minimum number of
r-dimensional cubes with the edge length equal to ε , that covers the trajectory T ⊂ X , and X
is a l- dimensional search space. To be more evident let us consider the case when ε = 2-k and
diminish the length of cube edges by half. Then the following ratio will approximate the box
counting dimension of trajectory T

(48)

due to the fact that log2 x = log2 e ln x. The approximated expression (48) of the box
dimension counts the increase in the number of cubes when the length of their edges is
diminished by half.

8.1 Compression ratio
It is our conjecture that some characteristic feature of the trajectory of GA can be obtained by
analysing the ration of the compressed trajectory to itself. We decided to investigate
Lempel-Ziv compression algorithm [17] applied to populations executed by various genetic
algorithms. We implemented five De Jong's functions with 10 different parameters sets.
Each experiment was run 10 times. All together we obtained 500 different trajectories. The
following settings of algorithms were considered

Limit Properties of Evolutionary Algorithms

21

where EXP is the experiment number; CROS is type of crossover operator (one point, two
point, uniform); PC and PM are probabilities of crossover and mutation, respectively; and
SEL is type of selection operator (tournament, rank, and proportional). In each experiment
the population consisted of 25 points and the genetic algorithm was realized on 100
generations (points).
We have performed numerous experiments on compressing particula generations with
Lempel-Ziv algorithm of various bit resolution. We have measured number of prefixes
resulting from compression process and corresponding compression ratio in scenarios of
two types. The first one has considered single generations, and for each trajectory we have
obtained corresponding trajectory of number of prefixes used. In the second scenario, each
next generation was added to all past generations forming an ascending family of sets of
generations. Compressing elements of such family gave an overall picture how number of
prefixes used in the compression stabilizes over time.

8.2 Experiments with dimensions
The first experiments with attractors generated by GAs and the expression (48) have been
performed by our co-worker in [6]. His results allow us to claim that the present approach
can be useful in the GA's dynamics research.
In our paper we include new calculation results. 12 benchmark functions were used (cf. [13,
7]) in the analysis. Experiments were performed for different dimension: 10, 15, 20 bits with
operator parameters and Popsize. Then the box counting dimension was used to calculate
the trajectory dimension.

Fig. 1. Final joint results of fractal dimension

As far as the analytical approach and the formal definitions of dimensions (43) and (47) are
concerned their computer implementation needs additional investigations. Computer
accuracy is finite, hence all limits with e tending to zero will give unrealistic results. For
example, if in (47) the calculation drops below the computing accuracy the expression value
becomes zero or undefined. It means that we have to stop taking limit values in early stage.

 Evolutionary Algorithms

20

The second gauge is the so-called information dimension of the trajectory defined by:

(47)

where W(ε) is the number of elements of the trajectory which are contained in a l -
dimensional cube with the edge length equal to ε, and is the probability of finding
of i - th element, and Ni - number of points in i-th hypercube, N - number of trajectory points.
In further analysis we are going to replace (47) and (45) with its approximation, namely the
box or capacity dimension.
In [6] the box counting dimension de_ned in [3] has been introduced with its approximated
formula (cf. (2) in [6]).
Here we use another approach to the approximation. Let N(T, ε) be the minimum number of
r-dimensional cubes with the edge length equal to ε , that covers the trajectory T ⊂ X , and X
is a l- dimensional search space. To be more evident let us consider the case when ε = 2-k and
diminish the length of cube edges by half. Then the following ratio will approximate the box
counting dimension of trajectory T

(48)

due to the fact that log2 x = log2 e ln x. The approximated expression (48) of the box
dimension counts the increase in the number of cubes when the length of their edges is
diminished by half.

8.1 Compression ratio
It is our conjecture that some characteristic feature of the trajectory of GA can be obtained by
analysing the ration of the compressed trajectory to itself. We decided to investigate
Lempel-Ziv compression algorithm [17] applied to populations executed by various genetic
algorithms. We implemented five De Jong's functions with 10 different parameters sets.
Each experiment was run 10 times. All together we obtained 500 different trajectories. The
following settings of algorithms were considered

Limit Properties of Evolutionary Algorithms

21

where EXP is the experiment number; CROS is type of crossover operator (one point, two
point, uniform); PC and PM are probabilities of crossover and mutation, respectively; and
SEL is type of selection operator (tournament, rank, and proportional). In each experiment
the population consisted of 25 points and the genetic algorithm was realized on 100
generations (points).
We have performed numerous experiments on compressing particula generations with
Lempel-Ziv algorithm of various bit resolution. We have measured number of prefixes
resulting from compression process and corresponding compression ratio in scenarios of
two types. The first one has considered single generations, and for each trajectory we have
obtained corresponding trajectory of number of prefixes used. In the second scenario, each
next generation was added to all past generations forming an ascending family of sets of
generations. Compressing elements of such family gave an overall picture how number of
prefixes used in the compression stabilizes over time.

8.2 Experiments with dimensions
The first experiments with attractors generated by GAs and the expression (48) have been
performed by our co-worker in [6]. His results allow us to claim that the present approach
can be useful in the GA's dynamics research.
In our paper we include new calculation results. 12 benchmark functions were used (cf. [13,
7]) in the analysis. Experiments were performed for different dimension: 10, 15, 20 bits with
operator parameters and Popsize. Then the box counting dimension was used to calculate
the trajectory dimension.

Fig. 1. Final joint results of fractal dimension

As far as the analytical approach and the formal definitions of dimensions (43) and (47) are
concerned their computer implementation needs additional investigations. Computer
accuracy is finite, hence all limits with e tending to zero will give unrealistic results. For
example, if in (47) the calculation drops below the computing accuracy the expression value
becomes zero or undefined. It means that we have to stop taking limit values in early stage.

 Evolutionary Algorithms

22

Hence, the questions arise: to which minimal value of e the calculation should be performed
and whether and how the relations with limits should be substituted with finite, non-
asymptotic, expression? This, however, will be the subject of our further research.
The main idea of our experiments was the verification and confrontation of our theoretical
considerations and conjectures with real genetic algorithms.

Fig. 2. Average results of fractal dimension

Fig. 3. Joint results of fractal dimension

On the basis of our experiments we can conclude that:
1. Selection.
Change of the selection methods while preserving the other parameters does not effect the
values of fractal dimension.

Limit Properties of Evolutionary Algorithms

23

2. Crossover.
When the number of crossover positions is changing the fractal dimension is growing with
roulette selection method and is decreasing when selection is a tournament.
3. Populations.
Fractal dimension is growing with the number of individuals in population.
4. Mutation probability changes have small implication on the value of fractal dimension.
The analysis of the experimental result.
The value of box-counting dimension of the trajectory of genetic algorithms is not random.
When we use the same fitness function and the same configurations, then the box
dimensions become clustered near the same value. Whole trials of the independent running
attains the same values. Moreover with the different functions but the same configuration
we deal with the conservation of box-counting dimension clustering.
Average values of the box-counting dimension for the united trajectories of the algorithms
from the same trial were similar to these which were calculated by averaging of the
dimension of individual trajectories. This fact acknowledges the conjectures that box-
counting dimension could characterize the complexity of algorithms. Box-counting
dimension describes the way of evolution during search. Algorithms which attain the
maximum in a wide loose set have bigger dimension than others which trajectories were
narrow, with small differences between individuals.
One can say that bigger box dimension characterizes more random algorithms. The main
result of the experiments states that fractal dimension is the same in the case when some
boxes contains one individual as well as when these boxes contain many elements
(individuals). Box dimension does not distinguish the fact that two or more elements are in
the same place. They undergo counting as one element. The value of dimension should
depend on the number of elements placed in each box. Our main conclusion is that good
characterization is the information dimension.

9. Conclusions
One of the main results reported in this Chapter is the limiting algorithm and populations'
distribution at the end of infinite steps. Theorem 5 does not tell about the form of the next
population when actual population is known; it gives rather the limit distribution of all
possible populations of the algorithm considered. The limiting algorithm describes globally
the action of the genetic algorithm. It plays the role of the law of big numbers, known from
the probability theory, however, for genetic algorithms. Knowledge the limiting algorithm
could help in standard calculations: just in one step one could obtain the limit distribution. It
could accelerate calculations and gives chance to omit the infinite numbers of calculation
steps.
If the limiting algorithm is known an extra classification tool is for our disposal, and new
hierarchial classification method can be suggested. It will base not only on entropy, fractal
and dimensions of trajectory, but on transition matrix T, its eigenvalues, eigenvectors and
limiting matrix Q. This hierarchie could be as follows:
• Two genetic algorithms are equivalent if their transition matrices are the same.
• Two genetic algorithms are equivalent if they have the same limit distribution π.
• Two genetic algorithms are equivalent if their limiting algorithm, described by the

matrix Q is the same.

 Evolutionary Algorithms

22

Hence, the questions arise: to which minimal value of e the calculation should be performed
and whether and how the relations with limits should be substituted with finite, non-
asymptotic, expression? This, however, will be the subject of our further research.
The main idea of our experiments was the verification and confrontation of our theoretical
considerations and conjectures with real genetic algorithms.

Fig. 2. Average results of fractal dimension

Fig. 3. Joint results of fractal dimension

On the basis of our experiments we can conclude that:
1. Selection.
Change of the selection methods while preserving the other parameters does not effect the
values of fractal dimension.

Limit Properties of Evolutionary Algorithms

23

2. Crossover.
When the number of crossover positions is changing the fractal dimension is growing with
roulette selection method and is decreasing when selection is a tournament.
3. Populations.
Fractal dimension is growing with the number of individuals in population.
4. Mutation probability changes have small implication on the value of fractal dimension.
The analysis of the experimental result.
The value of box-counting dimension of the trajectory of genetic algorithms is not random.
When we use the same fitness function and the same configurations, then the box
dimensions become clustered near the same value. Whole trials of the independent running
attains the same values. Moreover with the different functions but the same configuration
we deal with the conservation of box-counting dimension clustering.
Average values of the box-counting dimension for the united trajectories of the algorithms
from the same trial were similar to these which were calculated by averaging of the
dimension of individual trajectories. This fact acknowledges the conjectures that box-
counting dimension could characterize the complexity of algorithms. Box-counting
dimension describes the way of evolution during search. Algorithms which attain the
maximum in a wide loose set have bigger dimension than others which trajectories were
narrow, with small differences between individuals.
One can say that bigger box dimension characterizes more random algorithms. The main
result of the experiments states that fractal dimension is the same in the case when some
boxes contains one individual as well as when these boxes contain many elements
(individuals). Box dimension does not distinguish the fact that two or more elements are in
the same place. They undergo counting as one element. The value of dimension should
depend on the number of elements placed in each box. Our main conclusion is that good
characterization is the information dimension.

9. Conclusions
One of the main results reported in this Chapter is the limiting algorithm and populations'
distribution at the end of infinite steps. Theorem 5 does not tell about the form of the next
population when actual population is known; it gives rather the limit distribution of all
possible populations of the algorithm considered. The limiting algorithm describes globally
the action of the genetic algorithm. It plays the role of the law of big numbers, known from
the probability theory, however, for genetic algorithms. Knowledge the limiting algorithm
could help in standard calculations: just in one step one could obtain the limit distribution. It
could accelerate calculations and gives chance to omit the infinite numbers of calculation
steps.
If the limiting algorithm is known an extra classification tool is for our disposal, and new
hierarchial classification method can be suggested. It will base not only on entropy, fractal
and dimensions of trajectory, but on transition matrix T, its eigenvalues, eigenvectors and
limiting matrix Q. This hierarchie could be as follows:
• Two genetic algorithms are equivalent if their transition matrices are the same.
• Two genetic algorithms are equivalent if they have the same limit distribution π.
• Two genetic algorithms are equivalent if their limiting algorithm, described by the

matrix Q is the same.

 Evolutionary Algorithms

24

• Two genetic algorithms are equivalent if the entropy of their trajectories is the same.
• Two genetic algorithms are equivalent if the fractal (box-counting, information,

Hausdorff) dimensions of their trajectories are the same.
• Two genetic algorithms are equivalent if they generate the same order in populations.
We can see that the proposed scheme of classification referes to concepts known in the
probability theory and the theory of dynamical systems. The open question is the role of
different concepts and their importance. Is it possible to introduce the order relations in the
proposed scheme? This will be investigated in the next publications.

10. Acknowledgement
The research work on the paper was partially done by W.K and S.K. in the framework of the
KBN Project (State Committee for Scientific Research) No. 3 T11 C007 28. Authors thanks
Professor Zbigniew Michalewicz and Dr. Jolanta Soca la for the inspiration and valuable
discussions.

11. Appendix
Fractal and box - counting dimensions
To make the definitions more evident let us notice that for the graph Γf of a smooth, i.e. C1,
real function f of one variable we have dimH(Γf) = 1, while if the function f is Cε (i.e. Hölder
continuous of class ε) then dimH(Γf) ≤ 2 - ε. The Hausdorff dimension of the Peano curve has
dimension 2 while the Hausdorff dimension of the Cantor middle set is log2=log3, while its
topological dimension DT is zero. In most cases Hausdorff dimension ≥ the topological one.
In its classical form a fractal is by definition a set for which the Hausdorff dimension strictly
exceeds the topological dimension.
Topological dimension takes non-negative integer values and is invariant under
homeomorphism, while the Hausdorff dimension is invariant under bi-Lipschitz maps
(sometimes called quasi-isometries). For self-similar sets ([5, 3]) that are built from pieces
similar to the entire set but on a finer and finer scale, and can be regarded as an invariant set
for a finite set of contraction maps on Rl, the Hausdorff dimension is the same as its
similarity dimension8 It is the theory of fractal and its main object of interest, namely
iterated function systems where fractal dimensions are commonly in use [2]. Deterministic
and random algorithms are constructed for computing fractals from iterated function
systems. However, such procedure are mostly implemented for 2D case, i.e. for fractals in
R2. For genetic algorithm applications such tools are of small importance. More
investigations on the similarities between genetic algorithms and iterated function systems
with probabilities ([2]) are needed.
In fractal geometry, the Minkowski dimension is a way of determining the fractal dimension
of a set S in a Euclidean space Rn, or more generally of a metric space (X, d). This dimension
is also, less accurately, sometimes known as the packing dimension or the box-counting

8 Let frig be the contraction ratios of the family of contraction maps (S1, S2,…,Sm) and E be
the invariant set for this family, then the unique positive number s such that is
the similarity dimension of E ([5]).

Limit Properties of Evolutionary Algorithms

25

dimension. To calculate this dimension for a fractal S, imagine this fractal lying on an
evenly-spaced grid, and count how many boxes are required to cover the set. The box-
counting dimension is calculated by seeing how this number changes as we make the grid
finer. Suppose that N(ε) is the number of boxes of side length ε required to cover the set.
Then the box-counting dimension is defined as:

(49)

If the limit does not exist then one must talk about the upper box dimension and the lower
box dimension which correspon to the upper limit and lower limit respectively in the
expression above. In other words, the box-counting dimension is well defined only if the
upper and lower box dimensions are equal. The upper box dimension is sometimes called
the entropy dimension, Kolmogorov dimension, Kolmogorov capacity or upper Minkowski
dimension, while the lower box dimension is also called the lower Minkowski dimension.
Both are strongly related to the more popular Hausdorff dimension. Only in very
specialized applications is it important to distinguish between the three. See below for more
details. Also, another measure of fractal dimension is the correlation dimension.
Both box dimensions are finitely additive, i.e. if a finite collection of sets {A1,A2,…,An} is
given then

However, they are not countably additive, i.e. this equality does not hold for an infinite
sequence of sets. For example, the box dimension of a single point is 0, but the box
dimension of the collection of rational numbers in the interval [0, 1] has dimension 1. The
Hausdorff dimension by comparison, is countably additive. An interesting property of the
upper box dimension not shared with either the lower box dimension or the Hausdorff
dimension is the connection to set addition. If A and B are two sets in a Euclidean space then
A + B is formed by taking all the couples of points a, b where a is from A and b is from B and
adding a + b. One has

Relations to the Hausdorff dimension The box-counting dimension is one of a number of
definitions for dimension that can be applied to fractals. For many well behaved fractals all
these dimensions are equal. For example, the Hausdorff dimension, lower box dimension,
and upper box dimension of the Cantor set are all equal to log(2)/ log(3). However, the
definitions are not equivalent. The box dimensions and the Hausdorff dimension are related
by the inequality

 (50)

In general both inequalities may be strict. The upper box dimension may be bigger than the
lower box dimension if the fractal has different behaviour in different scales. For example,
examine the interval [0, 1], and examine the set of numbers satisfying the condition for any
n, all the digits between the 22n-th digit and the 22n+1-1-th digit are zero. The digits in the

 Evolutionary Algorithms

24

• Two genetic algorithms are equivalent if the entropy of their trajectories is the same.
• Two genetic algorithms are equivalent if the fractal (box-counting, information,

Hausdorff) dimensions of their trajectories are the same.
• Two genetic algorithms are equivalent if they generate the same order in populations.
We can see that the proposed scheme of classification referes to concepts known in the
probability theory and the theory of dynamical systems. The open question is the role of
different concepts and their importance. Is it possible to introduce the order relations in the
proposed scheme? This will be investigated in the next publications.

10. Acknowledgement
The research work on the paper was partially done by W.K and S.K. in the framework of the
KBN Project (State Committee for Scientific Research) No. 3 T11 C007 28. Authors thanks
Professor Zbigniew Michalewicz and Dr. Jolanta Soca la for the inspiration and valuable
discussions.

11. Appendix
Fractal and box - counting dimensions
To make the definitions more evident let us notice that for the graph Γf of a smooth, i.e. C1,
real function f of one variable we have dimH(Γf) = 1, while if the function f is Cε (i.e. Hölder
continuous of class ε) then dimH(Γf) ≤ 2 - ε. The Hausdorff dimension of the Peano curve has
dimension 2 while the Hausdorff dimension of the Cantor middle set is log2=log3, while its
topological dimension DT is zero. In most cases Hausdorff dimension ≥ the topological one.
In its classical form a fractal is by definition a set for which the Hausdorff dimension strictly
exceeds the topological dimension.
Topological dimension takes non-negative integer values and is invariant under
homeomorphism, while the Hausdorff dimension is invariant under bi-Lipschitz maps
(sometimes called quasi-isometries). For self-similar sets ([5, 3]) that are built from pieces
similar to the entire set but on a finer and finer scale, and can be regarded as an invariant set
for a finite set of contraction maps on Rl, the Hausdorff dimension is the same as its
similarity dimension8 It is the theory of fractal and its main object of interest, namely
iterated function systems where fractal dimensions are commonly in use [2]. Deterministic
and random algorithms are constructed for computing fractals from iterated function
systems. However, such procedure are mostly implemented for 2D case, i.e. for fractals in
R2. For genetic algorithm applications such tools are of small importance. More
investigations on the similarities between genetic algorithms and iterated function systems
with probabilities ([2]) are needed.
In fractal geometry, the Minkowski dimension is a way of determining the fractal dimension
of a set S in a Euclidean space Rn, or more generally of a metric space (X, d). This dimension
is also, less accurately, sometimes known as the packing dimension or the box-counting

8 Let frig be the contraction ratios of the family of contraction maps (S1, S2,…,Sm) and E be
the invariant set for this family, then the unique positive number s such that is
the similarity dimension of E ([5]).

Limit Properties of Evolutionary Algorithms

25

dimension. To calculate this dimension for a fractal S, imagine this fractal lying on an
evenly-spaced grid, and count how many boxes are required to cover the set. The box-
counting dimension is calculated by seeing how this number changes as we make the grid
finer. Suppose that N(ε) is the number of boxes of side length ε required to cover the set.
Then the box-counting dimension is defined as:

(49)

If the limit does not exist then one must talk about the upper box dimension and the lower
box dimension which correspon to the upper limit and lower limit respectively in the
expression above. In other words, the box-counting dimension is well defined only if the
upper and lower box dimensions are equal. The upper box dimension is sometimes called
the entropy dimension, Kolmogorov dimension, Kolmogorov capacity or upper Minkowski
dimension, while the lower box dimension is also called the lower Minkowski dimension.
Both are strongly related to the more popular Hausdorff dimension. Only in very
specialized applications is it important to distinguish between the three. See below for more
details. Also, another measure of fractal dimension is the correlation dimension.
Both box dimensions are finitely additive, i.e. if a finite collection of sets {A1,A2,…,An} is
given then

However, they are not countably additive, i.e. this equality does not hold for an infinite
sequence of sets. For example, the box dimension of a single point is 0, but the box
dimension of the collection of rational numbers in the interval [0, 1] has dimension 1. The
Hausdorff dimension by comparison, is countably additive. An interesting property of the
upper box dimension not shared with either the lower box dimension or the Hausdorff
dimension is the connection to set addition. If A and B are two sets in a Euclidean space then
A + B is formed by taking all the couples of points a, b where a is from A and b is from B and
adding a + b. One has

Relations to the Hausdorff dimension The box-counting dimension is one of a number of
definitions for dimension that can be applied to fractals. For many well behaved fractals all
these dimensions are equal. For example, the Hausdorff dimension, lower box dimension,
and upper box dimension of the Cantor set are all equal to log(2)/ log(3). However, the
definitions are not equivalent. The box dimensions and the Hausdorff dimension are related
by the inequality

 (50)

In general both inequalities may be strict. The upper box dimension may be bigger than the
lower box dimension if the fractal has different behaviour in different scales. For example,
examine the interval [0, 1], and examine the set of numbers satisfying the condition for any
n, all the digits between the 22n-th digit and the 22n+1-1-th digit are zero. The digits in the

 Evolutionary Algorithms

26

"odd places", i.e. between 22n + 1 and 22n+2 -1 are not restricted and may take any value. This
fractal has upper box dimension 2/3 and lower box dimension 1/3, a fact which may be
easily verified by calculating N(ε) for ε = 210

n
− and noting that their values behaves

differently for n even and odd. To see that the Hausdorff dimension may be smaller than the
lower box dimension, return to the example of the rational numbers in [0, 1] discussed
above. The Hausdorff dimension of this set is 0.
Box counting dimension also lacks certain stability properties one would expect of a
dimension. For instance, one might expect that adding a countable set would have no effect
on the dimension of set. This property fails for box dimension. In fact

It is possible to define the box dimensions using balls, with either the covering number or
the packing number. The covering number Ncovering(ε) is the minimal number of open balls of
radius ε required to cover the fractal, or in other words, such that their union contains the

fractal. We can also consider the intrinsic covering number '
coveringN (ε), which is defined the

same way but with the additional requirement that the centers of the open balls lie inside
the set S. The packing number Npacking(ε) is the maximal number of disjoint balls of radius ε
one can situate such that their centers would be inside the fractal. While N, Ncovering,

'
coveringN and Npacking are not exactly identical, they are closely related, and give rise to identical

definitions of the upper and lower box dimensions. This is easy to prove once the following
inequalities are proven:

 (51)

The logarithm of the packing and covering numbers are sometimes referred to as entropy
numbers, and are somewhat analogous (though not identical) to the concepts of
thermodynamic entropy and information-theoretic entropy, in that they measure the
amount of "disorder" in the metric space or fractal at scale ε, and also measure how many
"bits" one would need to describe an element of the metric space or fractal to accuracy ε.
Sometimes it is just too hard to find the Hausdorff dimension of a set E, but possible for
other definitions that have some restriction on the ε -covers considered in the definition. We
recall here the most common alternative. It is the box dimension, introduced by
Kolmogorov in 1961 (cf.[5]), and which is defined in the same way as Hausdorff dimension
except that in the definition of measure only balls (discs) in Rl of the same radius ε are
considered for covers of E. It follows that box dimension of E is always ≥ dim(E). Moreover
the box dimension of the closure of E is the same as for the set E itself. Since the box-
counting dimension is so often used to calculate the dimensions of fractal sets, it is
sometimes referred to as “fractal dimension”. We prefer the term box dimension, however,
because sometimes the term “fractal dimension” might refer to box dimension, Hausdorff
dimension, or even other measures of dimension such as the information dimension or
capacity dimension.
Sometimes box counting dimension is referred to as “similarity dimension” in the context of
self-similar sets. If a set is self-similar, there is an expansion factor r by which one can blow

Limit Properties of Evolutionary Algorithms

27

up a small copy to get the whole set. If there are exactly N such small copies that make up
the entire set, the box dimension is easily seen to be lnN/ ln r .
Let us consider the be the set of rational numbers in the interval
[0, 1], that is p ≤ q are relatively prime integers. Since the rationals are dense in [0, 1], any
interval we choose contains some. This means for every ε we need boxes to cover

the whole Q. Consequently . Thus the box dimension of the

rational numbers is 1.
The last example will be given by the new set P = {x ∈ [0, 1]} x has a decimal expansion
which does not contain 4 nor 5. Notice that 0.4 has the two representations, namely .4 and
.39999(9). The set P is disconnected: it does not contain the open interval (0.4, 0.6). We shall
see that the set is closed and also self-similar: any small piece of it can be scaled up to look
like the whole thing just by multiplying by an appropriate power of 10. It can be proven that

At the same time the topological dimension of P is zero.

12. References
Baker G.L. and Gollub J.P.: Chaotic Dynamics: an Introduction, Cambridge Univ. Press,

Cambridge, 1992.
Barnsley M. F.: Lecture notes on iterated function systems, in Chaos and Fractals.The

Mathematics Behind the Computer Graphics, Proc.Symp. Appl. Math., vol. 39, R. L.
Denamney and L. Keen (eds.) American Mathematical Society, Providence, Rhode
Island, pp. 127-144, 1989.

Falconer K.J.: Fractal geometry, Math. Found. Appl. John Wiley, Chichester, pp.15 -25, 1990.
Friedman N.A., Ornstein D.S.: On isomorphisms of weak Bernoulli transformations, Adv. in

Math. , 5, pp. 365-394, 1970.
Harrison J.: An introduction to fractals, in Chaos and Fractals. The Mathematics Behind the

Computer Graphics, Proc.Symp. Appl. Math., vol. 39, R. L. Denamney and L. Keen
(eds.) American Mathematical Society, Providence, Rhode Island, pp. 107-126, 1989.

Kieś P.: Dimension of attractors generated by a genetic algorithm, in Proc. of Workshop
Intelligent Information Systems IX held in Bystra, Poland, June 12-16, pp. 40-45, 2000.

Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd, rev. edition,
Springer, Berlin, Heidelberg et al., 1996.

Ossowski A.: Statistical and topological dynamics of Statistical and topological dynamics of
evolutionary algorithms, in Proc. of Workshop Intelligent Information Systems IX held
in Bystra, Poland, June 12-16, pp. 94-103, 2000.

Ott E.: Chaos in Dynamical Systems Cambridge Univ. Press, Cambridge, 1996.
Ornstein D.S.: Ergodic theory, Randomness and Dynamical Systems, Yale Univ. Press, 1974.
Vose M.D.: Modelling Simple Genetic Algorithms, Evolutionary Computation, 3 (4) 453-472,

1996.
Wolpert D.H. and Macready W.G.: No Free Lunch Theorems for Optimization, IEEE

Transaction on Evolutionary Computation, 1 (1), 67-82, 1997, http://ic.arc.nasa.gov
/people/dhw/papers/78.pdf

 Evolutionary Algorithms

26

"odd places", i.e. between 22n + 1 and 22n+2 -1 are not restricted and may take any value. This
fractal has upper box dimension 2/3 and lower box dimension 1/3, a fact which may be
easily verified by calculating N(ε) for ε = 210

n
− and noting that their values behaves

differently for n even and odd. To see that the Hausdorff dimension may be smaller than the
lower box dimension, return to the example of the rational numbers in [0, 1] discussed
above. The Hausdorff dimension of this set is 0.
Box counting dimension also lacks certain stability properties one would expect of a
dimension. For instance, one might expect that adding a countable set would have no effect
on the dimension of set. This property fails for box dimension. In fact

It is possible to define the box dimensions using balls, with either the covering number or
the packing number. The covering number Ncovering(ε) is the minimal number of open balls of
radius ε required to cover the fractal, or in other words, such that their union contains the

fractal. We can also consider the intrinsic covering number '
coveringN (ε), which is defined the

same way but with the additional requirement that the centers of the open balls lie inside
the set S. The packing number Npacking(ε) is the maximal number of disjoint balls of radius ε
one can situate such that their centers would be inside the fractal. While N, Ncovering,

'
coveringN and Npacking are not exactly identical, they are closely related, and give rise to identical

definitions of the upper and lower box dimensions. This is easy to prove once the following
inequalities are proven:

 (51)

The logarithm of the packing and covering numbers are sometimes referred to as entropy
numbers, and are somewhat analogous (though not identical) to the concepts of
thermodynamic entropy and information-theoretic entropy, in that they measure the
amount of "disorder" in the metric space or fractal at scale ε, and also measure how many
"bits" one would need to describe an element of the metric space or fractal to accuracy ε.
Sometimes it is just too hard to find the Hausdorff dimension of a set E, but possible for
other definitions that have some restriction on the ε -covers considered in the definition. We
recall here the most common alternative. It is the box dimension, introduced by
Kolmogorov in 1961 (cf.[5]), and which is defined in the same way as Hausdorff dimension
except that in the definition of measure only balls (discs) in Rl of the same radius ε are
considered for covers of E. It follows that box dimension of E is always ≥ dim(E). Moreover
the box dimension of the closure of E is the same as for the set E itself. Since the box-
counting dimension is so often used to calculate the dimensions of fractal sets, it is
sometimes referred to as “fractal dimension”. We prefer the term box dimension, however,
because sometimes the term “fractal dimension” might refer to box dimension, Hausdorff
dimension, or even other measures of dimension such as the information dimension or
capacity dimension.
Sometimes box counting dimension is referred to as “similarity dimension” in the context of
self-similar sets. If a set is self-similar, there is an expansion factor r by which one can blow

Limit Properties of Evolutionary Algorithms

27

up a small copy to get the whole set. If there are exactly N such small copies that make up
the entire set, the box dimension is easily seen to be lnN/ ln r .
Let us consider the be the set of rational numbers in the interval
[0, 1], that is p ≤ q are relatively prime integers. Since the rationals are dense in [0, 1], any
interval we choose contains some. This means for every ε we need boxes to cover

the whole Q. Consequently . Thus the box dimension of the

rational numbers is 1.
The last example will be given by the new set P = {x ∈ [0, 1]} x has a decimal expansion
which does not contain 4 nor 5. Notice that 0.4 has the two representations, namely .4 and
.39999(9). The set P is disconnected: it does not contain the open interval (0.4, 0.6). We shall
see that the set is closed and also self-similar: any small piece of it can be scaled up to look
like the whole thing just by multiplying by an appropriate power of 10. It can be proven that

At the same time the topological dimension of P is zero.

12. References
Baker G.L. and Gollub J.P.: Chaotic Dynamics: an Introduction, Cambridge Univ. Press,

Cambridge, 1992.
Barnsley M. F.: Lecture notes on iterated function systems, in Chaos and Fractals.The

Mathematics Behind the Computer Graphics, Proc.Symp. Appl. Math., vol. 39, R. L.
Denamney and L. Keen (eds.) American Mathematical Society, Providence, Rhode
Island, pp. 127-144, 1989.

Falconer K.J.: Fractal geometry, Math. Found. Appl. John Wiley, Chichester, pp.15 -25, 1990.
Friedman N.A., Ornstein D.S.: On isomorphisms of weak Bernoulli transformations, Adv. in

Math. , 5, pp. 365-394, 1970.
Harrison J.: An introduction to fractals, in Chaos and Fractals. The Mathematics Behind the

Computer Graphics, Proc.Symp. Appl. Math., vol. 39, R. L. Denamney and L. Keen
(eds.) American Mathematical Society, Providence, Rhode Island, pp. 107-126, 1989.

Kieś P.: Dimension of attractors generated by a genetic algorithm, in Proc. of Workshop
Intelligent Information Systems IX held in Bystra, Poland, June 12-16, pp. 40-45, 2000.

Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd, rev. edition,
Springer, Berlin, Heidelberg et al., 1996.

Ossowski A.: Statistical and topological dynamics of Statistical and topological dynamics of
evolutionary algorithms, in Proc. of Workshop Intelligent Information Systems IX held
in Bystra, Poland, June 12-16, pp. 94-103, 2000.

Ott E.: Chaos in Dynamical Systems Cambridge Univ. Press, Cambridge, 1996.
Ornstein D.S.: Ergodic theory, Randomness and Dynamical Systems, Yale Univ. Press, 1974.
Vose M.D.: Modelling Simple Genetic Algorithms, Evolutionary Computation, 3 (4) 453-472,

1996.
Wolpert D.H. and Macready W.G.: No Free Lunch Theorems for Optimization, IEEE

Transaction on Evolutionary Computation, 1 (1), 67-82, 1997, http://ic.arc.nasa.gov
/people/dhw/papers/78.pdf

 Evolutionary Algorithms

28

Igel, C., and Toussaint, M.: "A No-Free-Lunch Theorem for Non-Uniform Distributions of
Target Functions," Journal of Mathematical Modelling and Algorithms 3, 313-322, 2004.

English, T.: No More Lunch: Analysis of Sequential Search, Proceedings of the 2004 IEEE
Congress on Evolutionary Computation, pp. 227-234. 2004,
http://BoundedTheoretics.com /CEC04.pdf

Szlenk W., An Introduction to the Theory of Smooth Dynamical Systems.,PWN, Warszawa,John
Wiley&Sons, Chichester, 1984 G.H.

Choe G. H., Computational Ergodic Theory. Springer, Heidelber, New York 2005
G. Frizelle G., Suhov Y.M.: An entropic measurement of queueing behaviour in a class of

manufacturing operations. Proc. Royal Soc. London A (2001) 457, 1579- 1601.
A. Lasota, Asymptotic properties of semigroups of Markov operators (in Polish), Matematyka

Stosowana. Matematyka dla Społeczeństwa,PTM, Warszawa, 3(45), 2002, 39-51.
P. Kieś and Z. Michalewicz, Foundations of genetic algorithms (in Polish), Matematyka

Stosowana. Matematyka dla Społeczeństwa , PTM Warszawa 1(44), 2000, 68{91.
Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin,

1996.
M. D. Vose, The Simple Genetic Algorithm: Foundation and Theory, MIT Press, Cambridge, MA,

1999.
A. Lasota, J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans.

Amer. Math. Soc. 273 (1982), 375{384.
J. E. Rowe, The dynamical system models of the simple genetic algorithm, in Theoretical

Aspects of Evolutionary Computing, Leila Kallel, Bart Naudts, Alex Rogers (Eds.),
Springer, 2001, pp.31-57.

R. Schaefer, Podstawy genetycznej optymalizacji globalnej (in Polish), Wydawnictwo
Uniwersytetu Jagiellońskiego, Kraków 2002.

R. Schaefer, Foundations of Global Genetic Optimization, Series: Studies in Computational
Intelligence, Vol. 74, Springer, Berlin, Heidelberg, 2007,

R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad.
Sci. Math., 43 (1995), 245-262.

J. Socała, Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice,
Ann. Polon. Math., 68 (1), (1998), 1-16.

J. Socała, W. Kosiński, S. Kotowski, On asymptotic behaviour of a simple genetic algorithm
(in Polish: O asymptotycznym zachowaniu prostego algorytmu genetycznego),
Matematyka Stosowana. Matematyka dla Społeczeństwa , PTM, Warszawa,6 (47), 2005,
70-86.

J. Socała, W. Kosiński, Lower-bound function method in the converegence analysis of
genetic algorithms, (in Polish: Zastosowanie metody funkcji dolnej do badania
zbieżności algorytmów genetycznych, Matematyka Stosowana. Matematyka dla Spo
leczeństwa, PTM, Warszawwa, 8 (49), 2007 , 33-44.

J. Socała, W. Kosiński, On convergence of a simple genetic algorithm, ICAICS, 9-th
International Conference on Artifical Intelligence and Soft Computing, 2008, LNAI,
Springer, Berlin, Heidelberg, poz.366, in print.

J. Socała, Markovian approach to genetic algorithms, under preparation.
S.Kotowski, W. Kosiński, Z. Michalewicz, J. Nowicki, B. Przepiórkiewicz, Fractal dimension

of trajectory as invariant of genetic algorithms, ICAICS, 9-th International Conference
on Artifical Intelligence and Soft Computing, 2008, LNAI, Springer, Berlin, Heidelberg,
poz.401, in print.

S. Kotowski, Analysis of genetic algorithms as dynamical systems (in Polish: Analiza
algorytmów genetycznych jako układów dynamicznych, under preparation, 2008.

2

Evolutionary Systems Identification:
New Algorithmic Concepts and Applications

Michael Affenzeller, Stephan Winkler and Stefan Wagner
Upper Austrian University of Applied Sciences

School of Informatics, Communications and Media
Heuristic and Evolutionary Algorithms Laboratory

Softwarepark 11, 4232 Hagenberg,
Austria

1. Introduction
There are many problems in various theoretical and practical disciplines that require robust
structure identification techniques with as few restricting assumptions in terms of model
structure and potentially relevant input variables (features) as possible. Due to its implicit
variable selection and the possibility to identify also nonlinear model structures, the basic
concept of Genetic Programming (GP) has the required descriptive potential and provides
results in form of easily interpretable formulae as an additional benefit. However, when
using standard GP techniques, the potential of GP is still rather limited and restricted to
special applications.
This chapter presents further developed algorithmic concepts which can be combined with a
Genetic Algorithm (GA) as well as with Genetic Programming (GP). Especially the latter
combination provides a very powerful, generic and stable algorithm for the identification of
nonlinear systems, no matter if the application at hand is in the context of regression,
classification or time-series analysis.
After a general introduction in heuristic optimization and Evolutionary Algorithms, the
further developed algorithmic concepts are explained. Furthermore, some exemplary
applications of Genetic Programming to data based system identification problems are
illustrated.

2. Heuristic optimization
Many practical and theoretical optimization problems are characterized by their highly
multimodal search spaces. These problems include NP-hard problems of combinatorial
optimization, the identification of complex structures, or multimodal function optimization.
In the area of production planning and logistics such problems occur especially frequently
(as for example task allocation, routing, machine sequencing, container charging). The
application of conventional methods of Operations Research (OR) like dynamic
programming, the simplex method, or gradient techniques, often fails for these kinds of
problems, because the computation effort grows exponentially with the problem dimension.
Therefore, heuristic methods with much lower computational costs are applied quite
frequently, even if they can no longer assure the achievement of a global optimal solution.

 Evolutionary Algorithms

28

Igel, C., and Toussaint, M.: "A No-Free-Lunch Theorem for Non-Uniform Distributions of
Target Functions," Journal of Mathematical Modelling and Algorithms 3, 313-322, 2004.

English, T.: No More Lunch: Analysis of Sequential Search, Proceedings of the 2004 IEEE
Congress on Evolutionary Computation, pp. 227-234. 2004,
http://BoundedTheoretics.com /CEC04.pdf

Szlenk W., An Introduction to the Theory of Smooth Dynamical Systems.,PWN, Warszawa,John
Wiley&Sons, Chichester, 1984 G.H.

Choe G. H., Computational Ergodic Theory. Springer, Heidelber, New York 2005
G. Frizelle G., Suhov Y.M.: An entropic measurement of queueing behaviour in a class of

manufacturing operations. Proc. Royal Soc. London A (2001) 457, 1579- 1601.
A. Lasota, Asymptotic properties of semigroups of Markov operators (in Polish), Matematyka

Stosowana. Matematyka dla Społeczeństwa,PTM, Warszawa, 3(45), 2002, 39-51.
P. Kieś and Z. Michalewicz, Foundations of genetic algorithms (in Polish), Matematyka

Stosowana. Matematyka dla Społeczeństwa , PTM Warszawa 1(44), 2000, 68{91.
Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin,

1996.
M. D. Vose, The Simple Genetic Algorithm: Foundation and Theory, MIT Press, Cambridge, MA,

1999.
A. Lasota, J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans.

Amer. Math. Soc. 273 (1982), 375{384.
J. E. Rowe, The dynamical system models of the simple genetic algorithm, in Theoretical

Aspects of Evolutionary Computing, Leila Kallel, Bart Naudts, Alex Rogers (Eds.),
Springer, 2001, pp.31-57.

R. Schaefer, Podstawy genetycznej optymalizacji globalnej (in Polish), Wydawnictwo
Uniwersytetu Jagiellońskiego, Kraków 2002.

R. Schaefer, Foundations of Global Genetic Optimization, Series: Studies in Computational
Intelligence, Vol. 74, Springer, Berlin, Heidelberg, 2007,

R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad.
Sci. Math., 43 (1995), 245-262.

J. Socała, Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice,
Ann. Polon. Math., 68 (1), (1998), 1-16.

J. Socała, W. Kosiński, S. Kotowski, On asymptotic behaviour of a simple genetic algorithm
(in Polish: O asymptotycznym zachowaniu prostego algorytmu genetycznego),
Matematyka Stosowana. Matematyka dla Społeczeństwa , PTM, Warszawa,6 (47), 2005,
70-86.

J. Socała, W. Kosiński, Lower-bound function method in the converegence analysis of
genetic algorithms, (in Polish: Zastosowanie metody funkcji dolnej do badania
zbieżności algorytmów genetycznych, Matematyka Stosowana. Matematyka dla Spo
leczeństwa, PTM, Warszawwa, 8 (49), 2007 , 33-44.

J. Socała, W. Kosiński, On convergence of a simple genetic algorithm, ICAICS, 9-th
International Conference on Artifical Intelligence and Soft Computing, 2008, LNAI,
Springer, Berlin, Heidelberg, poz.366, in print.

J. Socała, Markovian approach to genetic algorithms, under preparation.
S.Kotowski, W. Kosiński, Z. Michalewicz, J. Nowicki, B. Przepiórkiewicz, Fractal dimension

of trajectory as invariant of genetic algorithms, ICAICS, 9-th International Conference
on Artifical Intelligence and Soft Computing, 2008, LNAI, Springer, Berlin, Heidelberg,
poz.401, in print.

S. Kotowski, Analysis of genetic algorithms as dynamical systems (in Polish: Analiza
algorytmów genetycznych jako układów dynamicznych, under preparation, 2008.

2

Evolutionary Systems Identification:
New Algorithmic Concepts and Applications

Michael Affenzeller, Stephan Winkler and Stefan Wagner
Upper Austrian University of Applied Sciences

School of Informatics, Communications and Media
Heuristic and Evolutionary Algorithms Laboratory

Softwarepark 11, 4232 Hagenberg,
Austria

1. Introduction
There are many problems in various theoretical and practical disciplines that require robust
structure identification techniques with as few restricting assumptions in terms of model
structure and potentially relevant input variables (features) as possible. Due to its implicit
variable selection and the possibility to identify also nonlinear model structures, the basic
concept of Genetic Programming (GP) has the required descriptive potential and provides
results in form of easily interpretable formulae as an additional benefit. However, when
using standard GP techniques, the potential of GP is still rather limited and restricted to
special applications.
This chapter presents further developed algorithmic concepts which can be combined with a
Genetic Algorithm (GA) as well as with Genetic Programming (GP). Especially the latter
combination provides a very powerful, generic and stable algorithm for the identification of
nonlinear systems, no matter if the application at hand is in the context of regression,
classification or time-series analysis.
After a general introduction in heuristic optimization and Evolutionary Algorithms, the
further developed algorithmic concepts are explained. Furthermore, some exemplary
applications of Genetic Programming to data based system identification problems are
illustrated.

2. Heuristic optimization
Many practical and theoretical optimization problems are characterized by their highly
multimodal search spaces. These problems include NP-hard problems of combinatorial
optimization, the identification of complex structures, or multimodal function optimization.
In the area of production planning and logistics such problems occur especially frequently
(as for example task allocation, routing, machine sequencing, container charging). The
application of conventional methods of Operations Research (OR) like dynamic
programming, the simplex method, or gradient techniques, often fails for these kinds of
problems, because the computation effort grows exponentially with the problem dimension.
Therefore, heuristic methods with much lower computational costs are applied quite
frequently, even if they can no longer assure the achievement of a global optimal solution.

 Advances in Evolutionary Algorithms

30

About three decades ago, inspired by nature, literature started to discuss generic heuristic
methods which often surpass problem specific heuristics and are moreover much more
flexible concerning modifications in the problem definition.
These optimization techniques derived from nature include Simulated Annealing (SA)
which draws an analogy between the annealing of material to its lowest energetic state and
an optimization problem, or Evolutionary Algorithms (EAs) which are basically inspired by
biological evolution. Further recent approaches like Tabu Search (TS), Ant-Colony
Optimization (ACO), or Particle Swarm Optimization (PSO) are also mentionable in the
context of bionically inspired optimization techniques. Agent theory is also on the verge of
achieving greater importance in the field of heuristic optimization.

Fig. 1. Taxonomy of optimization techniques
A well-established taxonomy of optimization techniques is given in Fig. 1 whereby our
classification describes those classes of methodologies in more detail which are more
relevant in the context of the present contribution. This has especially been done for the
class of Evolutionary Algorithms which is described in further detail in the following
section. The detailed analysis of variants of Genetic Algorithms as shown in Fig. 1 can in
principle also be applied to Genetic Programming since it is based on the same algorithmic
and methodological concepts.

3. Evolutionary computation
3.1 Evolutionary algorithms: genetic algorithms, evolution strategies and genetic
programming
Literature generally distinguishes Evolutionary Algorithms into Genetic Algorithms (GAs),
Evolution Strategies (ES), and Genetic Programming (GP).
Genetic Algorithms, possibly the most prevalent representative of Evolutionary
Computation, were first presented by Holland (Holland, 1975). Based upon Holland's ideas
the concept of the Standard Genetic Algorithm (SGA), which is still very much influenced
by the biological archetype, became accepted (described e.g. in (Tomassini, 1995). Due to the

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

31

enormous increase of computational power since 1975, the potential of GAs has been tapped
more and more. Consequently the popularity of GA-concepts increased steadily and many
groups around the world started to solve various problems with GAs. However, it soon
became clear that for most practical tasks the binary encoding originally used by Holland
was not at all sufficient. Accordingly many different encodings, and also necessary new
crossover and mutation operators, were introduced which showed qualitatively very
diverse behavior. An overview of different encodings and operators developed for various
applications can for instance be found in (Dumitrescu et al., 2000). Since then GAs have been
successfully applied to a wide range of problems including many combinatorial
optimization problems, multimodal function optimization, machine learning, and the
evolution of complex structures such as neural networks. An overview of GAs and their
implementation in various fields is given by Goldberg (Goldberg, 1989) and Michalewicz
(Michalewicz, 1996).
Evolution Strategies, the second major representative of Evolutionary Algorithms, were
introduced by Rechenberg (Rechenberg, 1973) and Schwefel (Schwefel, 1994). Evolution
Strategies tend to find local optima quite efficiently. Though, in the case of multimodal
solution spaces, Evolution Strategies tend to detect a global optimum hardly, if none of the
starting values is located in the absorbing region of such a global optimum. Nevertheless, ES
have lead the way in the implementation of self-adaptive concepts in the area of
Evolutionary Computation and are considered one of the most powerful and efficient
concepts for the optimization of real-valued parameter vectors.
Genetic Programming (GP) has been established as an independent branch in the field of
Evolutionary Computation even if this technique could also be interpreted as a special class
of GAs. Based on the basic considerations of Koza (Koza, 1992) to interpret the underlying
problem representation in a more general and dynamic way than a usual GA, the basic
mechanisms of selection, recombination, and mutation are adapted and applied in a similar
manner as found within GAs. The more general problem representation of GP allows the
definition of individuals of a population as structures, formulas, or even more generally as
programs. This allows the consideration of new applications of EAs like data based systems
identification, for example; however, it still seems to be a very ambitious goal to generate
more complex programs by means of Genetic Programming.

Fig. 2. The GP Lifecycle (Langdon & Poli, 2002)

 Advances in Evolutionary Algorithms

30

About three decades ago, inspired by nature, literature started to discuss generic heuristic
methods which often surpass problem specific heuristics and are moreover much more
flexible concerning modifications in the problem definition.
These optimization techniques derived from nature include Simulated Annealing (SA)
which draws an analogy between the annealing of material to its lowest energetic state and
an optimization problem, or Evolutionary Algorithms (EAs) which are basically inspired by
biological evolution. Further recent approaches like Tabu Search (TS), Ant-Colony
Optimization (ACO), or Particle Swarm Optimization (PSO) are also mentionable in the
context of bionically inspired optimization techniques. Agent theory is also on the verge of
achieving greater importance in the field of heuristic optimization.

Fig. 1. Taxonomy of optimization techniques
A well-established taxonomy of optimization techniques is given in Fig. 1 whereby our
classification describes those classes of methodologies in more detail which are more
relevant in the context of the present contribution. This has especially been done for the
class of Evolutionary Algorithms which is described in further detail in the following
section. The detailed analysis of variants of Genetic Algorithms as shown in Fig. 1 can in
principle also be applied to Genetic Programming since it is based on the same algorithmic
and methodological concepts.

3. Evolutionary computation
3.1 Evolutionary algorithms: genetic algorithms, evolution strategies and genetic
programming
Literature generally distinguishes Evolutionary Algorithms into Genetic Algorithms (GAs),
Evolution Strategies (ES), and Genetic Programming (GP).
Genetic Algorithms, possibly the most prevalent representative of Evolutionary
Computation, were first presented by Holland (Holland, 1975). Based upon Holland's ideas
the concept of the Standard Genetic Algorithm (SGA), which is still very much influenced
by the biological archetype, became accepted (described e.g. in (Tomassini, 1995). Due to the

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

31

enormous increase of computational power since 1975, the potential of GAs has been tapped
more and more. Consequently the popularity of GA-concepts increased steadily and many
groups around the world started to solve various problems with GAs. However, it soon
became clear that for most practical tasks the binary encoding originally used by Holland
was not at all sufficient. Accordingly many different encodings, and also necessary new
crossover and mutation operators, were introduced which showed qualitatively very
diverse behavior. An overview of different encodings and operators developed for various
applications can for instance be found in (Dumitrescu et al., 2000). Since then GAs have been
successfully applied to a wide range of problems including many combinatorial
optimization problems, multimodal function optimization, machine learning, and the
evolution of complex structures such as neural networks. An overview of GAs and their
implementation in various fields is given by Goldberg (Goldberg, 1989) and Michalewicz
(Michalewicz, 1996).
Evolution Strategies, the second major representative of Evolutionary Algorithms, were
introduced by Rechenberg (Rechenberg, 1973) and Schwefel (Schwefel, 1994). Evolution
Strategies tend to find local optima quite efficiently. Though, in the case of multimodal
solution spaces, Evolution Strategies tend to detect a global optimum hardly, if none of the
starting values is located in the absorbing region of such a global optimum. Nevertheless, ES
have lead the way in the implementation of self-adaptive concepts in the area of
Evolutionary Computation and are considered one of the most powerful and efficient
concepts for the optimization of real-valued parameter vectors.
Genetic Programming (GP) has been established as an independent branch in the field of
Evolutionary Computation even if this technique could also be interpreted as a special class
of GAs. Based on the basic considerations of Koza (Koza, 1992) to interpret the underlying
problem representation in a more general and dynamic way than a usual GA, the basic
mechanisms of selection, recombination, and mutation are adapted and applied in a similar
manner as found within GAs. The more general problem representation of GP allows the
definition of individuals of a population as structures, formulas, or even more generally as
programs. This allows the consideration of new applications of EAs like data based systems
identification, for example; however, it still seems to be a very ambitious goal to generate
more complex programs by means of Genetic Programming.

Fig. 2. The GP Lifecycle (Langdon & Poli, 2002)

 Advances in Evolutionary Algorithms

32

In (Koza, 1992) it has been pointed out that virtually all problems in artificial intelligence,
machine learning, adaptive systems, and automated learning can be recast as a search for a
computer program, and that genetic programming provides a way to successfully conduct
the search for a computer program in the space of computer programs. Similar to GAs, GP
works by imitating aspects of natural evolution: A population of solution candidates evolves
through many generations towards a solution using evolutionary operators (crossover and
mutation) and a "survival-of-the-fittest" selection scheme. Whereas GAs are intended to find
an array of characters or integers representing the solution of a given problem, the goal of a
GP process is to produce a computer program solving the optimization problem at hand. As
in every evolutionary process, new individuals (in GP's case, new programs) are created.
They are tested, and the fitter ones in the population succeed in creating children of their
own. Unfit ones die and are removed from the population (Langdon & Poli, 2002). This
procedure is graphically illustrated in Fig. 2.

3.2 Considerations about selected theoretical aspects of evolutionary computation
techniques
Fig. 1 indicates that this classification - especially of the bionic methods - is mainly inspired
by the natural role-model. For a more directed consideration of algorithmic concepts of the
different methods, it is reasonable to differentiate these methods by their basic idea. One
possible (and especially in the context of further considerations drawn in this paper) well-
suited classification is the distinction between neighbourhood-based and non-
neighbourhood-based search techniques as illustrated in Fig. 3.

Fig. 3. Classification of heuristic optimization techniques due to their mode of operation

As some kind of approximation for the gradient information which is not available for
problems of combinatorial optimization, a conventional neighbourhood search aims to
obtain information about the descent/increase of the objective function in the local
neighbourhood at a certain point. Conventional neighbourhood searches start from an
arbitrary point in the solution space and iteratively move to more and more promising
points along a given neighbourhood structure (with respect to the objective function) as
long as no better solution can be detected in the local neighbourhood. The self-evident
drawback of this method is that for more complex functions the algorithm converges and
gets stuck in the next attracting local optimum which is often far away of a global optimum.
It is a common feature of all methods based upon neighbourhood searches to counteract this
essential handicap. Simulated Annealing, on the one hand, also allows moves to worse
neighbourhood solutions with a certain probability which decreases as the search process
progresses in order to scan the solution space broader at the beginning, and to become more
and more goal-oriented as the search process goes on. A Tabu Search on the other hand

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

33

introduces some kind of memory in terms of a so-called tabu list which stores moves that
are considered to lead to already visited areas of the search space. However, Evolution
Strategies (ES), a well-known representative of Evolutionary Computation, also have to be
considered as some kind of parallel neighbourhood search, as asexual mutation (a local
operator) is the only way to create new individuals (solution candidates) in the standard ES-
versions. Therefore, in the case of multimodal test functions, global optima can be detected
by Evolution Strategies only if one of the starting values is located in the absorbing region of
a global optimum.
Genetic Algorithms (and certainly also GP), the non-neighbourhood-based search
techniques in our classification of heuristic methods, take a fundamentally different
approach to optimization, by considering recombination (crossover) as their main operator,
whereas the essential difference to neighbourhood-based techniques is given by the fact that
recombination is a sexual operator, i.e. properties of individuals from different regions of
the search space are combined in new individuals. Therefore, provided that the used
problem representation and the operators are adequate, the advantage of applying GAs to
hard optimization problems lies in their ability to search broader regions of the solution
space than heuristic methods based upon neighbourhood search do. Nevertheless, GAs are
also frequently faced with a problem which, at least in its impact, is quite similar to the
problem of stagnating in a local but not global optimum. This drawback, called premature
convergence in the terminology of GAs, occurs when the population of a GA reaches such
suboptimal state that the genetic operators can no longer produce offspring which
outperform their parents (Fogel, 1994).
A very essential question about the general performance of a GA is, whether or not good
parents are able to produce children of comparable or even better fitness (the building block
hypothesis implicitly relies on this). In natural evolution, this is almost always true. For
Genetic Algorithms this property is not so easy to guarantee. The disillusioning fact is that
the user has to take care of an appropriate coding in order to make this fundamental
property hold. In order to overcome this strong requirement we have developed an
advanced selection mechanism (Affenzeller & Wagner 2004) which is based on the idea to
consider not only the fitness of the parents, in order to produce a child for the ongoing
evolutionary process. Additionally, the fitness value of the evenly produced offspring is
compared with the fitness values of its own parents. The offspring is accepted as a candidate
for the further evolutionary process if and only if the reproduction operator was able to
produce an offspring that could outperform the fitness of its own parents. This strategy
guarantees that evolution is presumed mainly with crossover results that were able to mix
the properties of their parents in an advantageous way. Via these means we are already in a
position to attack one of the reasons for premature convergence. Furthermore, this strategy
has proven to act as a precise mechanism for self-adaptive selection pressure steering, which
is of major importance in the migration phases of parallel Evolutionary Algorithms. All
these new generic concepts are very promisingly combined in the SASEGASA-algorithm
(Affenzeller & Wagner, 2004). Even if the aspect of parallelization is mainly used to improve
global convergence in our research so far, the next obvious step is to transform these
massively parallel concepts to parallel computing environments. Furthermore, already
established parallel GAs should benefit from the recently developed new theoretical
concepts as the essential genetic information can be assembled much more precisely in the
migration phases.

 Advances in Evolutionary Algorithms

32

In (Koza, 1992) it has been pointed out that virtually all problems in artificial intelligence,
machine learning, adaptive systems, and automated learning can be recast as a search for a
computer program, and that genetic programming provides a way to successfully conduct
the search for a computer program in the space of computer programs. Similar to GAs, GP
works by imitating aspects of natural evolution: A population of solution candidates evolves
through many generations towards a solution using evolutionary operators (crossover and
mutation) and a "survival-of-the-fittest" selection scheme. Whereas GAs are intended to find
an array of characters or integers representing the solution of a given problem, the goal of a
GP process is to produce a computer program solving the optimization problem at hand. As
in every evolutionary process, new individuals (in GP's case, new programs) are created.
They are tested, and the fitter ones in the population succeed in creating children of their
own. Unfit ones die and are removed from the population (Langdon & Poli, 2002). This
procedure is graphically illustrated in Fig. 2.

3.2 Considerations about selected theoretical aspects of evolutionary computation
techniques
Fig. 1 indicates that this classification - especially of the bionic methods - is mainly inspired
by the natural role-model. For a more directed consideration of algorithmic concepts of the
different methods, it is reasonable to differentiate these methods by their basic idea. One
possible (and especially in the context of further considerations drawn in this paper) well-
suited classification is the distinction between neighbourhood-based and non-
neighbourhood-based search techniques as illustrated in Fig. 3.

Fig. 3. Classification of heuristic optimization techniques due to their mode of operation

As some kind of approximation for the gradient information which is not available for
problems of combinatorial optimization, a conventional neighbourhood search aims to
obtain information about the descent/increase of the objective function in the local
neighbourhood at a certain point. Conventional neighbourhood searches start from an
arbitrary point in the solution space and iteratively move to more and more promising
points along a given neighbourhood structure (with respect to the objective function) as
long as no better solution can be detected in the local neighbourhood. The self-evident
drawback of this method is that for more complex functions the algorithm converges and
gets stuck in the next attracting local optimum which is often far away of a global optimum.
It is a common feature of all methods based upon neighbourhood searches to counteract this
essential handicap. Simulated Annealing, on the one hand, also allows moves to worse
neighbourhood solutions with a certain probability which decreases as the search process
progresses in order to scan the solution space broader at the beginning, and to become more
and more goal-oriented as the search process goes on. A Tabu Search on the other hand

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

33

introduces some kind of memory in terms of a so-called tabu list which stores moves that
are considered to lead to already visited areas of the search space. However, Evolution
Strategies (ES), a well-known representative of Evolutionary Computation, also have to be
considered as some kind of parallel neighbourhood search, as asexual mutation (a local
operator) is the only way to create new individuals (solution candidates) in the standard ES-
versions. Therefore, in the case of multimodal test functions, global optima can be detected
by Evolution Strategies only if one of the starting values is located in the absorbing region of
a global optimum.
Genetic Algorithms (and certainly also GP), the non-neighbourhood-based search
techniques in our classification of heuristic methods, take a fundamentally different
approach to optimization, by considering recombination (crossover) as their main operator,
whereas the essential difference to neighbourhood-based techniques is given by the fact that
recombination is a sexual operator, i.e. properties of individuals from different regions of
the search space are combined in new individuals. Therefore, provided that the used
problem representation and the operators are adequate, the advantage of applying GAs to
hard optimization problems lies in their ability to search broader regions of the solution
space than heuristic methods based upon neighbourhood search do. Nevertheless, GAs are
also frequently faced with a problem which, at least in its impact, is quite similar to the
problem of stagnating in a local but not global optimum. This drawback, called premature
convergence in the terminology of GAs, occurs when the population of a GA reaches such
suboptimal state that the genetic operators can no longer produce offspring which
outperform their parents (Fogel, 1994).
A very essential question about the general performance of a GA is, whether or not good
parents are able to produce children of comparable or even better fitness (the building block
hypothesis implicitly relies on this). In natural evolution, this is almost always true. For
Genetic Algorithms this property is not so easy to guarantee. The disillusioning fact is that
the user has to take care of an appropriate coding in order to make this fundamental
property hold. In order to overcome this strong requirement we have developed an
advanced selection mechanism (Affenzeller & Wagner 2004) which is based on the idea to
consider not only the fitness of the parents, in order to produce a child for the ongoing
evolutionary process. Additionally, the fitness value of the evenly produced offspring is
compared with the fitness values of its own parents. The offspring is accepted as a candidate
for the further evolutionary process if and only if the reproduction operator was able to
produce an offspring that could outperform the fitness of its own parents. This strategy
guarantees that evolution is presumed mainly with crossover results that were able to mix
the properties of their parents in an advantageous way. Via these means we are already in a
position to attack one of the reasons for premature convergence. Furthermore, this strategy
has proven to act as a precise mechanism for self-adaptive selection pressure steering, which
is of major importance in the migration phases of parallel Evolutionary Algorithms. All
these new generic concepts are very promisingly combined in the SASEGASA-algorithm
(Affenzeller & Wagner, 2004). Even if the aspect of parallelization is mainly used to improve
global convergence in our research so far, the next obvious step is to transform these
massively parallel concepts to parallel computing environments. Furthermore, already
established parallel GAs should benefit from the recently developed new theoretical
concepts as the essential genetic information can be assembled much more precisely in the
migration phases.

 Advances in Evolutionary Algorithms

34

4. Advanced algorithmic concepts for genetic algorithms
4.1 General remarks on variable selection pressure within genetic algorithms
Our first attempt for adjustable selection pressure handling was the so-called Segregative
Genetic Algorithm (SEGA) (Affenzeller, 2001) which introduces birth surplus in the sense of
a (μ, λ)-Evolution Strategy (Beyer, 1998) into the general concept of a GA and uses this
enhanced flexibility primary for adaptive selection pressure steering in the migration phases
of the parallel GA in order to improve achievable global solution quality. The SASEGASA,
which stands for Self Adaptive Segregative Genetic Algorithm with aspects of Simulated
Annealing, is a further development of SEGA and distinguishes itself mainly in its ability to
self-adaptively adjust selection pressure in order to achieve progress in solution quality
without loosing essential genetic information which would lead to unwanted premature
convergence. The SASEGASA is generic in that sense that all algorithmic extensions are
problem-independent so that they do not depend on a certain problem representation and
the corresponding operators.
Therefore we have decided to combine the further deloped algorithmic concepts of
SASEGASA with Genetic Programming (GP). However, we have observed two major
differences when combining SASEGASA and Genetic Programming compared to the
experience in the application of SASEGASA in other domains like combinatorial
optimization or real-valued optimization (Affenzeller, 2005):
• The potential in terms of achievable solution quality in comparison with the standard

algorithms seems to be considerably higher in the field of GP than in standard
applications of GAs.

• By far not all algorithmic extensions of SASEGASA are relevant in GP. Only some
algorithmic aspects of the rather complex SASEGASA concept are really relevant in the
GP domain which makes the handling and especially parameter adjustment easier and
more robust.

Therefore, the discussion in this article will focus on the algorithmic parts of SASEGASA
which are really relevant for GP. In doing so, this section is structured as follows: The first
subsection describes the general idea of SASEGASA in a quite compact way, whereas the
second subsection focusses on that parts of SASEGASA in further detail which are really
relevant for the present contribution and discusses the reasons for that.
For a more detailed description of all involved algorithmic aspects the interested reader is
referred to the book (Affenzeller, 2005).
In principle, the SASEGASA introduces two enhancements to the basic concept of Genetic
Algorithms. Firstly, it brings in a variable and self-adaptive selection pressure in order to
control the diversity of the evolving population in a goal-oriented way w.r.t. the objective
function. The second concept introduces a separation of the population to increase the
broadness of the search process and joins the subpopulation after their evolution in order to
end up with a population including all genetic information sufficient for locating a global
optimum.
At the beginning of the evolutionary process the whole population is divided into a certain
number of subpopulations. These subpopulations evolve independently from each other
until the fitness increase stagnates in all subpopulations because of too similar individuals
within the subpopulations, i.e. local premature convergence. Thanks to offspring selection

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

35

this can be triggered exactly when an upper limit of selection pressure is exceeded (cf.
Subsection 4.2). Then a reunification from n to (n-1) subpopulations is performed by joining
an appropriate number of adjacent subpopulation members.
Metaphorically speaking this means, that the villages (subpopulations) at the beginning of
the evolutionary process are slowly growing together to bigger towns, ending up with one
big city containing the whole population at the end of evolution. By this approach of width-
search essential building blocks can evolve independently in different regions of the search
space at the beginning and during the evolutionary process.

4.2 Offspring selection in SASEGASA
In (Affenzeller & Wagner, 2004) it has been shown that the aspect of segregation and
reunification is highly relevant in order to systematically improve the achievable global
solution quality of combinatorial optimization problems as for example the travelling
salesman problem (TSP). Still, we have not used this parallel approach for our GP-based
modelling studies. On the one hand, this would lead to a high increase of runtime
consumption; on the other hand, anyway, we do not expect any significant increase of
solution quality using this concept for GP-based modelling as results summarized in
(Affenzeller, 2005) indicate that this parallel approach does not remarkably effect the
solution quality of optimization problems others than combinatorial problems.
A very essential question about the general performance of GAs or GP is, whether or not
good parents are able to produce children of comparable or even better fitness (the building
block hypothesis implicitly relies on this). In natural evolution, this is almost always true.
For artificial evolution and exceptionally for Genetic Programming this property is not so
easy to guarantee. Offspring selection assures exactly that property.
Offspring selection considers not only the fitness of the parents, in order to produce a child
for the ongoing evolutionary process. Additionally, the fitness value of the evenly produced
offspring is compared with the fitness values of its own parents. The offspring is accepted as
a candidate for the further evolutionary process if and only if the reproduction operator was
able to produce an offspring that could outperform the fitness of its own parents. This
strategy guarantees that evolution is presumed mainly with crossover results that were able
to mix the properties of their parents in an advantageous way.
As in the case of conventional GAs, or GP, offspring are generated by parent selection,
crossover, and mutation. In a second (offspring) selection step, the number of offspring to be
generated is defined to depend on a predefined ratio-parameter giving the quotient of next
generation members that have to outperform their own(!) parents (success ratio, SuccRatio).
As long as this ratio is not fulfilled, further children are created and only the successful
offspring will definitely become members of the next generation; this procedure is
illustrated in Fig. 4. When the postulated ratio is reached, the rest of the next generation
members are randomly chosen from the children that did not reach the success criterion.
Within our new selection model, selection pressure is defined as the ratio of generated
candidates to the population size. An upper limit for selection pressure gives a quite
intuitive termination heuristics: If it is no more possible to find a sufficient number of
offspring that outperform their parents, the algorithm terminates in the simple version as
being used here or new genetic information is brought in by reunification in the more
general formulation of the parallel SASEGASA.

 Advances in Evolutionary Algorithms

34

4. Advanced algorithmic concepts for genetic algorithms
4.1 General remarks on variable selection pressure within genetic algorithms
Our first attempt for adjustable selection pressure handling was the so-called Segregative
Genetic Algorithm (SEGA) (Affenzeller, 2001) which introduces birth surplus in the sense of
a (μ, λ)-Evolution Strategy (Beyer, 1998) into the general concept of a GA and uses this
enhanced flexibility primary for adaptive selection pressure steering in the migration phases
of the parallel GA in order to improve achievable global solution quality. The SASEGASA,
which stands for Self Adaptive Segregative Genetic Algorithm with aspects of Simulated
Annealing, is a further development of SEGA and distinguishes itself mainly in its ability to
self-adaptively adjust selection pressure in order to achieve progress in solution quality
without loosing essential genetic information which would lead to unwanted premature
convergence. The SASEGASA is generic in that sense that all algorithmic extensions are
problem-independent so that they do not depend on a certain problem representation and
the corresponding operators.
Therefore we have decided to combine the further deloped algorithmic concepts of
SASEGASA with Genetic Programming (GP). However, we have observed two major
differences when combining SASEGASA and Genetic Programming compared to the
experience in the application of SASEGASA in other domains like combinatorial
optimization or real-valued optimization (Affenzeller, 2005):
• The potential in terms of achievable solution quality in comparison with the standard

algorithms seems to be considerably higher in the field of GP than in standard
applications of GAs.

• By far not all algorithmic extensions of SASEGASA are relevant in GP. Only some
algorithmic aspects of the rather complex SASEGASA concept are really relevant in the
GP domain which makes the handling and especially parameter adjustment easier and
more robust.

Therefore, the discussion in this article will focus on the algorithmic parts of SASEGASA
which are really relevant for GP. In doing so, this section is structured as follows: The first
subsection describes the general idea of SASEGASA in a quite compact way, whereas the
second subsection focusses on that parts of SASEGASA in further detail which are really
relevant for the present contribution and discusses the reasons for that.
For a more detailed description of all involved algorithmic aspects the interested reader is
referred to the book (Affenzeller, 2005).
In principle, the SASEGASA introduces two enhancements to the basic concept of Genetic
Algorithms. Firstly, it brings in a variable and self-adaptive selection pressure in order to
control the diversity of the evolving population in a goal-oriented way w.r.t. the objective
function. The second concept introduces a separation of the population to increase the
broadness of the search process and joins the subpopulation after their evolution in order to
end up with a population including all genetic information sufficient for locating a global
optimum.
At the beginning of the evolutionary process the whole population is divided into a certain
number of subpopulations. These subpopulations evolve independently from each other
until the fitness increase stagnates in all subpopulations because of too similar individuals
within the subpopulations, i.e. local premature convergence. Thanks to offspring selection

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

35

this can be triggered exactly when an upper limit of selection pressure is exceeded (cf.
Subsection 4.2). Then a reunification from n to (n-1) subpopulations is performed by joining
an appropriate number of adjacent subpopulation members.
Metaphorically speaking this means, that the villages (subpopulations) at the beginning of
the evolutionary process are slowly growing together to bigger towns, ending up with one
big city containing the whole population at the end of evolution. By this approach of width-
search essential building blocks can evolve independently in different regions of the search
space at the beginning and during the evolutionary process.

4.2 Offspring selection in SASEGASA
In (Affenzeller & Wagner, 2004) it has been shown that the aspect of segregation and
reunification is highly relevant in order to systematically improve the achievable global
solution quality of combinatorial optimization problems as for example the travelling
salesman problem (TSP). Still, we have not used this parallel approach for our GP-based
modelling studies. On the one hand, this would lead to a high increase of runtime
consumption; on the other hand, anyway, we do not expect any significant increase of
solution quality using this concept for GP-based modelling as results summarized in
(Affenzeller, 2005) indicate that this parallel approach does not remarkably effect the
solution quality of optimization problems others than combinatorial problems.
A very essential question about the general performance of GAs or GP is, whether or not
good parents are able to produce children of comparable or even better fitness (the building
block hypothesis implicitly relies on this). In natural evolution, this is almost always true.
For artificial evolution and exceptionally for Genetic Programming this property is not so
easy to guarantee. Offspring selection assures exactly that property.
Offspring selection considers not only the fitness of the parents, in order to produce a child
for the ongoing evolutionary process. Additionally, the fitness value of the evenly produced
offspring is compared with the fitness values of its own parents. The offspring is accepted as
a candidate for the further evolutionary process if and only if the reproduction operator was
able to produce an offspring that could outperform the fitness of its own parents. This
strategy guarantees that evolution is presumed mainly with crossover results that were able
to mix the properties of their parents in an advantageous way.
As in the case of conventional GAs, or GP, offspring are generated by parent selection,
crossover, and mutation. In a second (offspring) selection step, the number of offspring to be
generated is defined to depend on a predefined ratio-parameter giving the quotient of next
generation members that have to outperform their own(!) parents (success ratio, SuccRatio).
As long as this ratio is not fulfilled, further children are created and only the successful
offspring will definitely become members of the next generation; this procedure is
illustrated in Fig. 4. When the postulated ratio is reached, the rest of the next generation
members are randomly chosen from the children that did not reach the success criterion.
Within our new selection model, selection pressure is defined as the ratio of generated
candidates to the population size. An upper limit for selection pressure gives a quite
intuitive termination heuristics: If it is no more possible to find a sufficient number of
offspring that outperform their parents, the algorithm terminates in the simple version as
being used here or new genetic information is brought in by reunification in the more
general formulation of the parallel SASEGASA.

 Advances in Evolutionary Algorithms

36

Fig. 4. Flowchart for embedding offspring selection into a Genetic Algorithm.

5. Data based systems identification
Data mining is understood as the practice of automatically searching large stores of data for
patterns. Incredibly large (and quickly growing) amounts of data are collected not only in
commercial, administrative, and scientific, but also in medical databases; this is the reason
why intelligent computer systems that can extract useful information (such as general rules
or interesting patterns) from large amounts of observations are needed. In short, "data
mining is the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data" (Fayyad et al. 1996). This is why data based
machine learning algorithms have to be applied in order to retrieve additional insights into
human biological processes, how environment factors influence human health or how
certain human parameters are related. The following three classes of data analysis problems
are relevant within medical data analysis: Regression, classification and time series analysis.
In any of these cases, statistical algorithms are supposed to "learn" functions by analyzing a
set of input-output examples ("training samples").
In statistics, regression analysis is understood as the act of modelling the relationship
between variables, namely between one or more target ("dependent") variables and other
variables (also called input or explanatory variables). I.e., the goal is to find a mathematical
function f which can be used for calculating the target variable Y using the input variables
X1..p:

Y = f(X1, ..., Xp)

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

37

Classification is understood as the act of placing an object into a set of categories, based on
the object's properties. Objects are classified according to an (in most cases hierarchical)
classification scheme also called taxonomy. A statistical classification algorithm is supposed
to take feature representations of objects and map them to a special, predefined
classification label. Such a classification algorithm is designed to learn a function f which
maps a vector of object features X1,…,Xp into one of several classes. A given sample xi can so
be classified using f and X1,…,Xp:

Class(xi) = f(X1(i), ..., Xp(i))
There are several approaches which are nowadays used for solving classification problems;
the most common ones are (as described in (Mitchell, 2000), e.g.) decision tree learning,
instance-based learning, inductive logic programming (such as in Prolog, e.g.) and
reinforcement learning.
Finally, there are two main goals of time series analysis: On the one hand one tries to
identify the cause of a phenomenon represented by a sequence of observations and its
relationships with other sequences of observations, and on the other hand the goal is to
predicting future values of time series variables. Both of these goals require that the pattern
of observed time series data is identified and more or less formally described. I.e., for the
target variable Y one wants to identify a function f so that Y at time t can be calculated using
values of other variables and (if available) also information about the history of Y:

Y(t) = f(X1(t-{0..z}), ….. , Xp(t-{0..z}), Y(t-{0..z}))
where z is the maximum time offset for variables used in f. Detailed discussions of time
series and methods applicable can for example be found in (Box & Jenkins, 1976) or Kendall
& Ord, 1990).

6. GP-Based structure identification
6.1 Introduction, general remarks
The concept of structure identification is not very common in the literature. Indeed, it is well
known that every model consists of an equation set (the structure) and of values
(parameters). System identification actually implies both, but usually the definition of the
structure is considered either obvious or as the less critical issue, while the consistent
estimation of the parameters especially in presence of noise receives the largest part of the
attention. By its very general problem statement, GP allows to approach the problem of
structure identification and the problem of parameter identification simultaneously. As a
consequence, GP techniques are used for identifying various kinds of technical systems;
some approaches use genetic programming to identify the structure in addition to standard
parameter estimation techniques, many other ones use GP for determining both the
structure and the parameters of the model of a nonlinear system as for example described in
(Rodriguez et al., 2000) and (Beligiannis et al., 2005).
GP-based, data driven systems identification works on a set of training examples with
known properties (X1...Xn). One of these properties (Xt) has to represent the system's target
values. On the basis of the training examples, the algorithm tries to evolve (or, as one could
also say, to "learn") a solution, i.e. a formula, that represents the function that maps a vector
of input values to the respective target values. In other words, each presented instance of the

 Advances in Evolutionary Algorithms

36

Fig. 4. Flowchart for embedding offspring selection into a Genetic Algorithm.

5. Data based systems identification
Data mining is understood as the practice of automatically searching large stores of data for
patterns. Incredibly large (and quickly growing) amounts of data are collected not only in
commercial, administrative, and scientific, but also in medical databases; this is the reason
why intelligent computer systems that can extract useful information (such as general rules
or interesting patterns) from large amounts of observations are needed. In short, "data
mining is the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data" (Fayyad et al. 1996). This is why data based
machine learning algorithms have to be applied in order to retrieve additional insights into
human biological processes, how environment factors influence human health or how
certain human parameters are related. The following three classes of data analysis problems
are relevant within medical data analysis: Regression, classification and time series analysis.
In any of these cases, statistical algorithms are supposed to "learn" functions by analyzing a
set of input-output examples ("training samples").
In statistics, regression analysis is understood as the act of modelling the relationship
between variables, namely between one or more target ("dependent") variables and other
variables (also called input or explanatory variables). I.e., the goal is to find a mathematical
function f which can be used for calculating the target variable Y using the input variables
X1..p:

Y = f(X1, ..., Xp)

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

37

Classification is understood as the act of placing an object into a set of categories, based on
the object's properties. Objects are classified according to an (in most cases hierarchical)
classification scheme also called taxonomy. A statistical classification algorithm is supposed
to take feature representations of objects and map them to a special, predefined
classification label. Such a classification algorithm is designed to learn a function f which
maps a vector of object features X1,…,Xp into one of several classes. A given sample xi can so
be classified using f and X1,…,Xp:

Class(xi) = f(X1(i), ..., Xp(i))
There are several approaches which are nowadays used for solving classification problems;
the most common ones are (as described in (Mitchell, 2000), e.g.) decision tree learning,
instance-based learning, inductive logic programming (such as in Prolog, e.g.) and
reinforcement learning.
Finally, there are two main goals of time series analysis: On the one hand one tries to
identify the cause of a phenomenon represented by a sequence of observations and its
relationships with other sequences of observations, and on the other hand the goal is to
predicting future values of time series variables. Both of these goals require that the pattern
of observed time series data is identified and more or less formally described. I.e., for the
target variable Y one wants to identify a function f so that Y at time t can be calculated using
values of other variables and (if available) also information about the history of Y:

Y(t) = f(X1(t-{0..z}), ….. , Xp(t-{0..z}), Y(t-{0..z}))
where z is the maximum time offset for variables used in f. Detailed discussions of time
series and methods applicable can for example be found in (Box & Jenkins, 1976) or Kendall
& Ord, 1990).

6. GP-Based structure identification
6.1 Introduction, general remarks
The concept of structure identification is not very common in the literature. Indeed, it is well
known that every model consists of an equation set (the structure) and of values
(parameters). System identification actually implies both, but usually the definition of the
structure is considered either obvious or as the less critical issue, while the consistent
estimation of the parameters especially in presence of noise receives the largest part of the
attention. By its very general problem statement, GP allows to approach the problem of
structure identification and the problem of parameter identification simultaneously. As a
consequence, GP techniques are used for identifying various kinds of technical systems;
some approaches use genetic programming to identify the structure in addition to standard
parameter estimation techniques, many other ones use GP for determining both the
structure and the parameters of the model of a nonlinear system as for example described in
(Rodriguez et al., 2000) and (Beligiannis et al., 2005).
GP-based, data driven systems identification works on a set of training examples with
known properties (X1...Xn). One of these properties (Xt) has to represent the system's target
values. On the basis of the training examples, the algorithm tries to evolve (or, as one could
also say, to "learn") a solution, i.e. a formula, that represents the function that maps a vector
of input values to the respective target values. In other words, each presented instance of the

 Advances in Evolutionary Algorithms

38

structure identification problem is interpreted as an instance of an optimization problem; a
solution is found by a heuristic optimization algorithm. Further details about the operators
used are given for example in (Winkler et al., 2006a). The goal of the implemented GP
identification process is to produce an algebraic expression from a database containing the
measured results of the experiments to be analyzed. Thus, the GP algorithm works with
solution candidates that are tree structure representations of symbolic expressions. These
tree representations consist of nodes and are of variable length; the nodes can either be
nonterminal or terminal ones:
• Nonterminal nodes represent functions performing some actions on one or more

property values within the structure to produce the values of the target property (which
should be the property which indicates which class the objects belong to);

• A terminal node represents an input variable (i.e., a pointer to one of the objects'
properties) or a constant.

The nonterminal nodes have to be selected from a library of possible functions, a pool of
potential nonlinear model structural components; as with every GP modeling process, the
selection of the library functions is an important part since this library should be able to
represent a wide range of systems. When the evolutionary algorithm is executed, each
individual of the population represents one structure tree.
Since the tree structures have to be usable by the evolutionary algorithm, mutation and
crossover operators for the tree structures have to be designed. Both crossover and mutation
processes are applied to randomly chosen branches (in this context a branch is the part of a
structure lying below a given point in the tree). Crossing two trees means randomly
choosing a branch in each parent tree and replacing the branch of the tree, that will serve as
the root of the new child (randomly chosen, too), by the branch of the other tree.
Mutation in the context of genetic algorithms means modifying a solution candidate
randomly and so creating a new individual. In the case of identifying structures, mutation
works by choosing a node and changing it: A function symbol could become another
function symbol or be deleted, the value of a constant node or the index of a variable could
be modified. This procedure is less likely to improve a specific structure but it can help the
optimization algorithm to reintroduce genetic diversity in order to re-stimulate genetic
search.
Examples of genetic operations on tree structures are shown in Fig. 5: The crossover of
parent1 (representing the expression “5/x1(t-5)+ln(x2(t-2))” and parent2 (“x3(t) * x2(t-1)-1.5”)
yields child1 (“5/x1(t-5)+x3(t)*x2(t-1)”), child2 and child3 are possible mutants of child1
representing “5/x1(t-5)+x3(t)” and “5-x1(t-5)+x3(t-1)*x2(t)”.
Since the GP algorithm tries to maximize or minimize some objectiv fitness function (better
model structures evolve as the GP algorithm minimizes the fitness function), every solution
candidate has to be evaluated. In the context of data based modeling, this function should be
an appropriate measure of the level of agreement between the original target variable's
values and those calculated using the model to be evaluated. Calculating the sum of squared
errors J between original values oi and calculated values ci is a simple as well as robust
measurement of the quality of the formula at hand:

J = ∑
=

−
n

i
ii eo

1

2)(

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

39

Fig. 5. Genetic Operations on Tree Structures.

6.2 GP Based structure identification: the HeuristicModeler
On the basis of preliminary work on the identification of nonlinear structures in dynamic
technical systems (Winkler et al, 2005a), (Winkler et al, 2005b), (Del Re et al, 2005) as well as
several other enhanced algorithmic and problem specific mechanisms we have implemented
the HeuristicModeler (Winkler et al, 2006c), a multi-purpose machine learning algorithm
that is able to evolve models for various different machine learning problem classes. The
framework used for the implementation of the HeuristicModeler is the HeuristicLab
(Wagner & Affenzeller, 2005), a framework for prototyping and analyzing optimization
techniques for which both generic concepts of evolutionary algorithms and many functions
for analyzing them are available.
The algorithmic basis for the HeuristicModeler is the SASEGASA (for an explanation see
Section 4. There are several new hybrid evolutionary concepts combined in this algorithmic
basis, the most important ones being on the one hand the self-adaptive selection pressure
steering and on the other hand the so-called Offspring Selection concept.
The selection pressure measures how hard it is to produce individuals out of the current
population that improve the overall fitness. As soon as this internal selection pressure
reaches a pre-defined maximum value, the algorithm is terminated and presents the best
actual model as the result of the training process. Details can be found in (Affenzeller &
Wagner, 2004) and (Affenzeller, 2005).
As already explained in further detail in Section 4, the basic idea of Offspring Selection is
that individuals are first compared to their own parent solution candidates and accepted as
members of the new generation's population if they meet certain criteria. In the context of
structure identification and machine learning we have realized that the use of very rigid
settings yields best results (Winkler et al., 2006b).

 Advances in Evolutionary Algorithms

38

structure identification problem is interpreted as an instance of an optimization problem; a
solution is found by a heuristic optimization algorithm. Further details about the operators
used are given for example in (Winkler et al., 2006a). The goal of the implemented GP
identification process is to produce an algebraic expression from a database containing the
measured results of the experiments to be analyzed. Thus, the GP algorithm works with
solution candidates that are tree structure representations of symbolic expressions. These
tree representations consist of nodes and are of variable length; the nodes can either be
nonterminal or terminal ones:
• Nonterminal nodes represent functions performing some actions on one or more

property values within the structure to produce the values of the target property (which
should be the property which indicates which class the objects belong to);

• A terminal node represents an input variable (i.e., a pointer to one of the objects'
properties) or a constant.

The nonterminal nodes have to be selected from a library of possible functions, a pool of
potential nonlinear model structural components; as with every GP modeling process, the
selection of the library functions is an important part since this library should be able to
represent a wide range of systems. When the evolutionary algorithm is executed, each
individual of the population represents one structure tree.
Since the tree structures have to be usable by the evolutionary algorithm, mutation and
crossover operators for the tree structures have to be designed. Both crossover and mutation
processes are applied to randomly chosen branches (in this context a branch is the part of a
structure lying below a given point in the tree). Crossing two trees means randomly
choosing a branch in each parent tree and replacing the branch of the tree, that will serve as
the root of the new child (randomly chosen, too), by the branch of the other tree.
Mutation in the context of genetic algorithms means modifying a solution candidate
randomly and so creating a new individual. In the case of identifying structures, mutation
works by choosing a node and changing it: A function symbol could become another
function symbol or be deleted, the value of a constant node or the index of a variable could
be modified. This procedure is less likely to improve a specific structure but it can help the
optimization algorithm to reintroduce genetic diversity in order to re-stimulate genetic
search.
Examples of genetic operations on tree structures are shown in Fig. 5: The crossover of
parent1 (representing the expression “5/x1(t-5)+ln(x2(t-2))” and parent2 (“x3(t) * x2(t-1)-1.5”)
yields child1 (“5/x1(t-5)+x3(t)*x2(t-1)”), child2 and child3 are possible mutants of child1
representing “5/x1(t-5)+x3(t)” and “5-x1(t-5)+x3(t-1)*x2(t)”.
Since the GP algorithm tries to maximize or minimize some objectiv fitness function (better
model structures evolve as the GP algorithm minimizes the fitness function), every solution
candidate has to be evaluated. In the context of data based modeling, this function should be
an appropriate measure of the level of agreement between the original target variable's
values and those calculated using the model to be evaluated. Calculating the sum of squared
errors J between original values oi and calculated values ci is a simple as well as robust
measurement of the quality of the formula at hand:

J = ∑
=

−
n

i
ii eo

1

2)(

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

39

Fig. 5. Genetic Operations on Tree Structures.

6.2 GP Based structure identification: the HeuristicModeler
On the basis of preliminary work on the identification of nonlinear structures in dynamic
technical systems (Winkler et al, 2005a), (Winkler et al, 2005b), (Del Re et al, 2005) as well as
several other enhanced algorithmic and problem specific mechanisms we have implemented
the HeuristicModeler (Winkler et al, 2006c), a multi-purpose machine learning algorithm
that is able to evolve models for various different machine learning problem classes. The
framework used for the implementation of the HeuristicModeler is the HeuristicLab
(Wagner & Affenzeller, 2005), a framework for prototyping and analyzing optimization
techniques for which both generic concepts of evolutionary algorithms and many functions
for analyzing them are available.
The algorithmic basis for the HeuristicModeler is the SASEGASA (for an explanation see
Section 4. There are several new hybrid evolutionary concepts combined in this algorithmic
basis, the most important ones being on the one hand the self-adaptive selection pressure
steering and on the other hand the so-called Offspring Selection concept.
The selection pressure measures how hard it is to produce individuals out of the current
population that improve the overall fitness. As soon as this internal selection pressure
reaches a pre-defined maximum value, the algorithm is terminated and presents the best
actual model as the result of the training process. Details can be found in (Affenzeller &
Wagner, 2004) and (Affenzeller, 2005).
As already explained in further detail in Section 4, the basic idea of Offspring Selection is
that individuals are first compared to their own parent solution candidates and accepted as
members of the new generation's population if they meet certain criteria. In the context of
structure identification and machine learning we have realized that the use of very rigid
settings yields best results (Winkler et al., 2006b).

 Advances in Evolutionary Algorithms

40

Research results obtained within the last two years have lead to the conclusion that a
simplified version of offspring selection together with a slightly modified parent selection
shows the best and most robust results in the context of GP-applications. Thus, SuccRatio
should be set to 1.0, i.e. every offspring for the next generation is forced to pass the success
criterion. Furthermore, it is beneficial in GP applications to state that a child is better than its
parents if and only if it is better than the better of the two parents. In the context of
combinatorial optimization problems where some intermediate value of the parents fitness
values is used as a threshold value for the success criterion, such settings would massively
tend to support premature convergence. But in the field of Genetic Programming
applications these parameter settings lead to high-quality results quite robustly.
However, there is one aspect concerning parent selection that is to considered in this
application domain. It is - applying the parameter settings of offspring selection mentioned
above – most effective to use different selection methods for the selection of the two parents
which are chosen for crossover. In the present context this gender specific selection aspect
(Wagner & Affenzeller, 2005) is implemented most effectively by selecting one parent
conventionally by roulette-wheel selection and the other parent randomly.
All together, this especial variant of adapted sexual selection combined with a simplified
version of offspring selection aims to cross one above-average parent with a randomly
selected parent (which brings in diversity) as long as a whole new population could be filled
up with children that were better than their better parent. An upper limit for selection
pressure acts as termination criterion in that sense that the algorithm stops, if too many
trials (|POP| * maxSelPress) were already taken and still no new population consisting of
successful offspring could be generated. In other words, this indicates that it is not possible
to generate a sufficient amount of children that outperform their parents out of the current
gene pool; obviously, this seems to be a reasonable termination criterion for an Evolutionary
Algorithm. This special version of SASEGASA or offspring selection respectively is
schematically shown in Fig. 6.
The GP-based structure identification methods described in the previous section have been
implemented as plug-ins for the HeuristicLab forming the problem specific basis of the
HeuristicModeler. The following modeling specific extensions have been integrated into the
general GP workflow:
• During the execution of a structure identification algorithm it can easily happen that a

model showing a very suitable structure is assigned a very bad fitness value only due to
inadequate parameter settings. Therefore we have implemented an additional local
parameter optimization stage based on real-values encoded Evolution Strategies and
integrated it into the execution of the Genetic Programming algorithm.

• As the GP-based model training algorithm tries to evolve better models, it can easily
happen that models become more and more complex; the more complex models are, the
better they can fit given training data, but they are also negative effects, namely
increasing runtime consumption as well as the danger of overfitting. Therefore a
heuristic tree pruning algorithm has also been integrated into the HeuristicModeler; in
certain intervals, selected models included in the actual models pool are selected and
pruned systematically, i.e. formula parts that do not seem to have a measurable
influence on the model's evaluation are deleted in order to retrieve simpler models
without significantly losing quality.

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

41

Fig. 6. Flowchart for embedding a simplified version of offspring selection into the GP
process.

Due to its flexible and wide functional basis and the extended concepts described above, the
GP-based modelling concept implemented in the HeuristicModeler is less exposed to the
danger of overfitting than other machine learning algorithms; recent results and
comparisons to other data-based modelling techniques are for example summarized in
(DelRe et al., 2005), (Winkler et al, 2006f) and (Winkler et al., 2006a). Furthermore, as we will
show in the following section, the results generated using the HeuristicModeler can easily
be analyzed and interpreted using the HeuristicModelAnalyzer, a tool for analyzing
solutions for data analysis problems that includes several enhanced evolutionary modelling
aspects.

7. Examples and applications of GP in data based structure identification
7.1 Regression
For demonstrating the use of our evolutionary machine learning approach for attacking
regression problems we have generated a synthetic data set including 5 variables and 400
samples. This data was analyzed using the HeuristicModeler and a model was trained; this
model is graphically shown in Fig. 7. There are several possibilities how to evaluate a
regression model using the HeuristicModelAnalyzer: Apart from drawing the (original and
estimated) values and a graphical representation of the formula as a structure tree, the
average squared error can be calculated as well as an overview of the errors distribution (as
exemplarily shown later in Fig. 11.

 Advances in Evolutionary Algorithms

40

Research results obtained within the last two years have lead to the conclusion that a
simplified version of offspring selection together with a slightly modified parent selection
shows the best and most robust results in the context of GP-applications. Thus, SuccRatio
should be set to 1.0, i.e. every offspring for the next generation is forced to pass the success
criterion. Furthermore, it is beneficial in GP applications to state that a child is better than its
parents if and only if it is better than the better of the two parents. In the context of
combinatorial optimization problems where some intermediate value of the parents fitness
values is used as a threshold value for the success criterion, such settings would massively
tend to support premature convergence. But in the field of Genetic Programming
applications these parameter settings lead to high-quality results quite robustly.
However, there is one aspect concerning parent selection that is to considered in this
application domain. It is - applying the parameter settings of offspring selection mentioned
above – most effective to use different selection methods for the selection of the two parents
which are chosen for crossover. In the present context this gender specific selection aspect
(Wagner & Affenzeller, 2005) is implemented most effectively by selecting one parent
conventionally by roulette-wheel selection and the other parent randomly.
All together, this especial variant of adapted sexual selection combined with a simplified
version of offspring selection aims to cross one above-average parent with a randomly
selected parent (which brings in diversity) as long as a whole new population could be filled
up with children that were better than their better parent. An upper limit for selection
pressure acts as termination criterion in that sense that the algorithm stops, if too many
trials (|POP| * maxSelPress) were already taken and still no new population consisting of
successful offspring could be generated. In other words, this indicates that it is not possible
to generate a sufficient amount of children that outperform their parents out of the current
gene pool; obviously, this seems to be a reasonable termination criterion for an Evolutionary
Algorithm. This special version of SASEGASA or offspring selection respectively is
schematically shown in Fig. 6.
The GP-based structure identification methods described in the previous section have been
implemented as plug-ins for the HeuristicLab forming the problem specific basis of the
HeuristicModeler. The following modeling specific extensions have been integrated into the
general GP workflow:
• During the execution of a structure identification algorithm it can easily happen that a

model showing a very suitable structure is assigned a very bad fitness value only due to
inadequate parameter settings. Therefore we have implemented an additional local
parameter optimization stage based on real-values encoded Evolution Strategies and
integrated it into the execution of the Genetic Programming algorithm.

• As the GP-based model training algorithm tries to evolve better models, it can easily
happen that models become more and more complex; the more complex models are, the
better they can fit given training data, but they are also negative effects, namely
increasing runtime consumption as well as the danger of overfitting. Therefore a
heuristic tree pruning algorithm has also been integrated into the HeuristicModeler; in
certain intervals, selected models included in the actual models pool are selected and
pruned systematically, i.e. formula parts that do not seem to have a measurable
influence on the model's evaluation are deleted in order to retrieve simpler models
without significantly losing quality.

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

41

Fig. 6. Flowchart for embedding a simplified version of offspring selection into the GP
process.

Due to its flexible and wide functional basis and the extended concepts described above, the
GP-based modelling concept implemented in the HeuristicModeler is less exposed to the
danger of overfitting than other machine learning algorithms; recent results and
comparisons to other data-based modelling techniques are for example summarized in
(DelRe et al., 2005), (Winkler et al, 2006f) and (Winkler et al., 2006a). Furthermore, as we will
show in the following section, the results generated using the HeuristicModeler can easily
be analyzed and interpreted using the HeuristicModelAnalyzer, a tool for analyzing
solutions for data analysis problems that includes several enhanced evolutionary modelling
aspects.

7. Examples and applications of GP in data based structure identification
7.1 Regression
For demonstrating the use of our evolutionary machine learning approach for attacking
regression problems we have generated a synthetic data set including 5 variables and 400
samples. This data was analyzed using the HeuristicModeler and a model was trained; this
model is graphically shown in Fig. 7. There are several possibilities how to evaluate a
regression model using the HeuristicModelAnalyzer: Apart from drawing the (original and
estimated) values and a graphical representation of the formula as a structure tree, the
average squared error can be calculated as well as an overview of the errors distribution (as
exemplarily shown later in Fig. 11.

 Advances in Evolutionary Algorithms

42

Fig. 7. A solution to a regression problem, analyzed using the HeuristicModelAnalyzer.

7.2 Classification
Several widely used benchmark classification datasets storing medical data (mainly survey
records and diagnosis information) have already been analyzed using HeuristicModeler and
HeuristicModelAnalyzer. In (Winkler et al., 2006b), (Winkler et al., 2006a) and (Winkler et
al., 2006e) we have documented the results achieved for several medical classification
benchmark problems, for example for the Wisconsin and the Thyroid datasets, which are
parts of the UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/).
Summarizing the results documented in the publications mentioned above, GP-based
training of classifiers is able to outperform other training methods (kNN classification, linear
modeling and ANNs) especially on test data. There are several possibilities how to evaluate
a classification model using the HeuristicModelAnalyzer:
Apart from drawing the (original and estimated) values and a graphical representation of
the formula as a structure tree and calculating the average squared error, confusion matrices
and (enhanced) receiver operating characteristics (ROC) curves can be generated.
Furthermore, optimal thresholds are also identified automatically on the basis of a
misclassification matrix storing information about how to weight misclassification
dependent on the respective classes involved. This matrix is initially set so that all
misclassifications are weighted equally; in various different applications it can be necessary
to manipulate this weighting as it is, for example in the context of medical data analysis,

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

43

more critical misclassifying a diseased patient as not diseased than vice versa. In Fig. 8 we
show a graphical representation of a solution for the Wisconsin classification problem that
was generated using the HeuristicModeler and analyzed using the HeuristicModelAnalyzer.
As confusion matrices are also frequently used for evaluating classifiers, these are also
automatically displayed when analyzing a model using the HeuristicModelAnalyzer.

Fig. 8. A solution for the Wisconsin classification problem, generated by the
HeuristicModeler and analyzed using the HeuristicModelAnalyzer.

Of course, classification problems occur not only in medical data analysis, but for example
also in the context of data based quality pre-assessment in steel production. In (Winkler et
al., 2006f) we report on an analysis done within an enhanced data processing process in
cooperation with a large-scale industrial partner in steel industry. It was shown successfully
that GP based structure identification is able to identify relationships between process
parameters and the quality of steel products; on the basis of these results, high quality
classification pre-estimators for the quality of the final results were formed.
Last, but not least the HeuristicModelAnalyzer enables the evaluation of classifiers for
multi-class classification problems on the basis of a multi-class extension of ROC curves.
Basic ROC analysis provides a convenient graphical display of the trade-off between true
and false positive classification rates for two class problems (Zweig & Vampell, 1993). In the
context of two class classification, ROC curves are calculated as follows: For each possible
threshold value discriminating two given classes, the numbers of true and false

 Advances in Evolutionary Algorithms

42

Fig. 7. A solution to a regression problem, analyzed using the HeuristicModelAnalyzer.

7.2 Classification
Several widely used benchmark classification datasets storing medical data (mainly survey
records and diagnosis information) have already been analyzed using HeuristicModeler and
HeuristicModelAnalyzer. In (Winkler et al., 2006b), (Winkler et al., 2006a) and (Winkler et
al., 2006e) we have documented the results achieved for several medical classification
benchmark problems, for example for the Wisconsin and the Thyroid datasets, which are
parts of the UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/).
Summarizing the results documented in the publications mentioned above, GP-based
training of classifiers is able to outperform other training methods (kNN classification, linear
modeling and ANNs) especially on test data. There are several possibilities how to evaluate
a classification model using the HeuristicModelAnalyzer:
Apart from drawing the (original and estimated) values and a graphical representation of
the formula as a structure tree and calculating the average squared error, confusion matrices
and (enhanced) receiver operating characteristics (ROC) curves can be generated.
Furthermore, optimal thresholds are also identified automatically on the basis of a
misclassification matrix storing information about how to weight misclassification
dependent on the respective classes involved. This matrix is initially set so that all
misclassifications are weighted equally; in various different applications it can be necessary
to manipulate this weighting as it is, for example in the context of medical data analysis,

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

43

more critical misclassifying a diseased patient as not diseased than vice versa. In Fig. 8 we
show a graphical representation of a solution for the Wisconsin classification problem that
was generated using the HeuristicModeler and analyzed using the HeuristicModelAnalyzer.
As confusion matrices are also frequently used for evaluating classifiers, these are also
automatically displayed when analyzing a model using the HeuristicModelAnalyzer.

Fig. 8. A solution for the Wisconsin classification problem, generated by the
HeuristicModeler and analyzed using the HeuristicModelAnalyzer.

Of course, classification problems occur not only in medical data analysis, but for example
also in the context of data based quality pre-assessment in steel production. In (Winkler et
al., 2006f) we report on an analysis done within an enhanced data processing process in
cooperation with a large-scale industrial partner in steel industry. It was shown successfully
that GP based structure identification is able to identify relationships between process
parameters and the quality of steel products; on the basis of these results, high quality
classification pre-estimators for the quality of the final results were formed.
Last, but not least the HeuristicModelAnalyzer enables the evaluation of classifiers for
multi-class classification problems on the basis of a multi-class extension of ROC curves.
Basic ROC analysis provides a convenient graphical display of the trade-off between true
and false positive classification rates for two class problems (Zweig & Vampell, 1993). In the
context of two class classification, ROC curves are calculated as follows: For each possible
threshold value discriminating two given classes, the numbers of true and false

 Advances in Evolutionary Algorithms

44

classifications for one of the classes are calculated. For example, if the two classes "true" and
"false" are to be discriminated using a given classifier, a fixed set of equidistant thresholds is
tested and the true positives (TP) and the false positives (FP) are counted for each of them.
Each pair of TP and FP values produces a point of the ROC curve. The main idea of Multi-
ROC charts as presented in (Winkler et al., 2006d) is that for each given class ci the numbers
of true and false classifications are calculated for each possible pair of thresholds between
the classes ci-1 and ci as well as between ci and ci+1 (assuming that the n classes can be
represented as real numbers and that ci < ci+1 holds for every i ∈ [1,(n-1)]). The resulting
tuples of (FP,TP) values are stored in a matrix which can be plotted easily. This obviously
yields a set of points which can be interpreted analog to the interpretation of "normal" ROC
curves: the closer the point are located to the left upper corner, the higher is the quality of
the classifier at hand. For getting sets of ROC curves instead of ROC points, an arbitrary
threshold ta between the classes ci-1 and ci is fixed and the FP and TP values for all possible
thresholds tb between ci and ci+1 are calculated. This produces one single ROC curve; it is
executed for all possible values of ta. An example showing 10 ROC curves is given in Fig. 9;
this MROC chart was generated for a classifier learned for a synthetical data set storing 2000
samples divided into 6 classes and is taken from (Winkler et al., 2006d).

Fig. 9. An exemplary Multi-ROC chart.

7.3 Timeseries analysis
There is a lot of experience using the HeuristicModeler for solving time series problems on
data recorded in the context of mechatronical systems. For example, in (Del Re et al., 2005)
and (Winkler et al., 2005b) we report on models trained for the NOx emissions of Diesel
engines using the GP-based identification method incorporated in the HeuristicModeler.
Fig. 10 and 11 show the evaluation of one of these models using the
HeuristicModelAnalyzer: Apart from drawing the (original and estimated) values and a
graphical representation of the formula as a structure tree, an overview of the errors
distribution is given.

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

45

Fig. 10. A model for the NOx emissions of a BMW Diesel engine, generated using the
HeuristicModeler.

Fig. 11. Evaluation of the model shown in Figure 10.

8. Conclusion
In this paper we have described a multi-purpose machine learning approach based on
various evolutionary computation concepts that is applicable for several data mining

 Advances in Evolutionary Algorithms

44

classifications for one of the classes are calculated. For example, if the two classes "true" and
"false" are to be discriminated using a given classifier, a fixed set of equidistant thresholds is
tested and the true positives (TP) and the false positives (FP) are counted for each of them.
Each pair of TP and FP values produces a point of the ROC curve. The main idea of Multi-
ROC charts as presented in (Winkler et al., 2006d) is that for each given class ci the numbers
of true and false classifications are calculated for each possible pair of thresholds between
the classes ci-1 and ci as well as between ci and ci+1 (assuming that the n classes can be
represented as real numbers and that ci < ci+1 holds for every i ∈ [1,(n-1)]). The resulting
tuples of (FP,TP) values are stored in a matrix which can be plotted easily. This obviously
yields a set of points which can be interpreted analog to the interpretation of "normal" ROC
curves: the closer the point are located to the left upper corner, the higher is the quality of
the classifier at hand. For getting sets of ROC curves instead of ROC points, an arbitrary
threshold ta between the classes ci-1 and ci is fixed and the FP and TP values for all possible
thresholds tb between ci and ci+1 are calculated. This produces one single ROC curve; it is
executed for all possible values of ta. An example showing 10 ROC curves is given in Fig. 9;
this MROC chart was generated for a classifier learned for a synthetical data set storing 2000
samples divided into 6 classes and is taken from (Winkler et al., 2006d).

Fig. 9. An exemplary Multi-ROC chart.

7.3 Timeseries analysis
There is a lot of experience using the HeuristicModeler for solving time series problems on
data recorded in the context of mechatronical systems. For example, in (Del Re et al., 2005)
and (Winkler et al., 2005b) we report on models trained for the NOx emissions of Diesel
engines using the GP-based identification method incorporated in the HeuristicModeler.
Fig. 10 and 11 show the evaluation of one of these models using the
HeuristicModelAnalyzer: Apart from drawing the (original and estimated) values and a
graphical representation of the formula as a structure tree, an overview of the errors
distribution is given.

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

45

Fig. 10. A model for the NOx emissions of a BMW Diesel engine, generated using the
HeuristicModeler.

Fig. 11. Evaluation of the model shown in Figure 10.

8. Conclusion
In this paper we have described a multi-purpose machine learning approach based on
various evolutionary computation concepts that is applicable for several data mining

 Advances in Evolutionary Algorithms

46

aspects in data driven systems identification. We have exemplarily shown how regression,
classification and time series problems can be attacked using this algorithm. Especially in
the context of analyzing time series problems of mechatronical systems as well as medical
data sets we have already achieved very good results. Furthermore, we have also
demonstrated how to analyze the results for data mining problems as well as selected
aspects of the underlying enhanced evolutionary algorithm.

9. Acknowledgements
The work described in this paper was partially done within the Translational Research
Program project L284-N04 "GP-Based Techniques for the Design of Virtual Sensors"
sponsored by the Austrian Science Fund (FWF). This project is executed as a joint venture by
the Upper Austrian University of Applied Sciences Hagenberg, Austria and the Johannes
Kepler University Linz, Austria.

10. References
Affenzeller, M. (2001). Segregative Genetic Algorithms (SEGA): A Hybrid Superstructure

Upwards Compatible to Genetic Algorithms for Retarding Premature Convergence.
International Journal of Computers, Systems and Signals (IJCSS), Vol. 2, No. 1, (Feb.
2002) 18 -- 32, ISSN 1608-5655

Affenzeller, M. (2005). Population Genetics and Evolutionary Computation: Theoretical and
Practical Aspects, Trauner Verlag, ISBN 3-85487-823-0, Linz, Austria

Affenzeller M & Wagner S. (2004). SASEGASA: A New Generic Parallel Evolutionary
Algorithm for Achieving Highest Quality Results. Journal of Heuristics - Special Issue
on New Advances on Parallel Meta-Heuristics for Complex Problems, Vol. 10, 239--263,
ISSN

Affenzeller M. & Wagner S. (2003). A Self-Adaptive Model for Selective Pressure Handling
within the Theory of Genetic Algorithms, Proceedings of EUROCAST 2003, pp. 384-
393, LNCS 2809, Las Palmas, Feb. 2003, Springer, Heidelberg

Beligiannis, G.N.; Skarlas, L.V.; Likothanassis, S.D.. & Perdikouri, K. (2003). Nonlinear
Model Structure Identication of Complex Biomedical Data Using a Genetic
Programming Based Technique, Proceedings of IEEE International Symposium on
Intelligent Signal Processing.

Beyer, H. G. (1998) The Theory of Evolution Strategies. Springer-Verlag Berlin Heidelberg
New York, 1998.

Box; G.E. & Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control. Holden-
Day Inc., San Francisco, 1976.

Del Re, L.; Langthaler, P.; Furtmller, C.; Affenzeller, M. & Winkler, S. (2005). NOx Virtual
Sensor Based on Structure Identification and Global Optimization. Proceedings of
the SAE World Congress 2005.

Dumitrescu, D.; Lazzerini, B.; Jain, L.C. & Dumitrescu A. (2000). Evolutionary Computation.
CRC Press,2000.

Fogel, D.B. (1994). An introduction to simulated evolutionary optimization. IEEE Trans. on
Neural Network, Vol.5, No. 1. 3--14, 1994.

Goldberg, D.E. (1989) Genetic Alogorithms in Search, Optimization and Machine Learning.
Addison Wesley Longman, 1989.

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

47

Holland, J.H. (1975). Adaption in Natural and Artificial Systems. University of Michigan Press,
1975.

Kendall, S.M. & Ord, J.K. (1990). Time Series. Edward Arnold, London, 1990.
Koza, J.R. (1992). Genetic Prohramming: On the Programming of Computers by means of Natural

Selection. The MIT Press, 1992.
Langdon, B. & Poli, R. (2002). Foundations of Genetic Programming. Springer-Verlag Berlin

Heidelberg New York, 2002.
Michaliwicz, Z. (1996). Genetic Algorithms + Data Structurs = Evolution Programs. Springer-

Verlag Berlin Heidelberg New York, 3. edition, 1996.
Mitchell, T.M. (2000). Machine Learning. McGraw-Hill, New York, 2000.
Rechenberg, I. (1973). Evolutionsstrategie. Friedrich Frommann Verlag, 1973.
Rodrguez-Vzquez, K. & Fleming, P.J. (2000). Use of Genetic Programming in the

Identification of Rational Model Structures. Third European Conference on Genetic
Programming (EuroGP'2000), pp 181--192, 2000.

Schwefel, H.P. (1994). Numerische Optimierung von Computer-Modellen mittels
Evolutionsstrategie. Birkhaeuser Verlag. Basel, 1994.

Tomassini M. (1995). A survey of genetic algorithms. Annual Reviews of Computational
Physics, Vol.3: 87--118, 1995.

Wagner, S. & Affenzeller, M. (2005a). Heuristiclab: A generic and extensible optimization
environment. Adaptiveand Natural Computing Algorithms – Proceedings of
ICANNGA 2005, pp. 538 -- 541, 2005.

Wagner, S. & Affenzeller, M (2005b). SexualGA: Gender-specific selection for genetic
algorithms. Proceedings of the 9th World Multi-Conference on Systemics,
Cybernetics and Informatics (WMSCI), pages 76--81, 2005.

Winkler, S.; Affenzeller, M. & Wagner, S. (2005a). New methods for the identification of
nonlinear model structures based upon genetic programming techniques. Journal of
Systems Science, Vol.31, 5--13, 2005.

Winkler, S.; Affenzeller, M. & Wagner, S. (2006a). Advances in applying genetic
programming to machine learning focussing on classi¯cation problems.
Proceedings of the 20th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2006), 2006.

Winkler, S.; Affenzeller, M. & Wagner, S. (2006b). Automatic data based patient
classification using genetic programming. Cybernetics and Systems 2006, 1:251--
256, 2006.

Winkler, S.; Affenzeller, M. & Wagner, S. (2006c). Heuristic Modeler: A Multi-Purpose
Evolutionary Machine Learning Algorithm and its Applications in Medical Data
Analysis. Proceedings of the International Mediterranean Modelling
Multiconference I3M 2006, pp. 629--634, 2006.

Winkler, S.; Affenzeller, M. & Wagner, S. (2006d). Sets of Receiver Operating Characteristic
Curves and their use in the Evaluation of Multi-class Classification. Proceedings of
the Genetic and Evolutionary Computation Conference 2006 (GECCO2006), 2: pp.
1601--1602, 2006.

Winkler, S.; Affenzeller, M. & Wagner, S. (2006e). Using Enhanced Genetic Programming
Techniques for Evolving Classiffers in the Context of Medical Diagnosis - an
Empirical Study. Proceedings of the GECCO 2006 Workshop on Medical
Applications of Genetic and Evolutionary Computation (MedGEC 2006), 2006.

 Advances in Evolutionary Algorithms

46

aspects in data driven systems identification. We have exemplarily shown how regression,
classification and time series problems can be attacked using this algorithm. Especially in
the context of analyzing time series problems of mechatronical systems as well as medical
data sets we have already achieved very good results. Furthermore, we have also
demonstrated how to analyze the results for data mining problems as well as selected
aspects of the underlying enhanced evolutionary algorithm.

9. Acknowledgements
The work described in this paper was partially done within the Translational Research
Program project L284-N04 "GP-Based Techniques for the Design of Virtual Sensors"
sponsored by the Austrian Science Fund (FWF). This project is executed as a joint venture by
the Upper Austrian University of Applied Sciences Hagenberg, Austria and the Johannes
Kepler University Linz, Austria.

10. References
Affenzeller, M. (2001). Segregative Genetic Algorithms (SEGA): A Hybrid Superstructure

Upwards Compatible to Genetic Algorithms for Retarding Premature Convergence.
International Journal of Computers, Systems and Signals (IJCSS), Vol. 2, No. 1, (Feb.
2002) 18 -- 32, ISSN 1608-5655

Affenzeller, M. (2005). Population Genetics and Evolutionary Computation: Theoretical and
Practical Aspects, Trauner Verlag, ISBN 3-85487-823-0, Linz, Austria

Affenzeller M & Wagner S. (2004). SASEGASA: A New Generic Parallel Evolutionary
Algorithm for Achieving Highest Quality Results. Journal of Heuristics - Special Issue
on New Advances on Parallel Meta-Heuristics for Complex Problems, Vol. 10, 239--263,
ISSN

Affenzeller M. & Wagner S. (2003). A Self-Adaptive Model for Selective Pressure Handling
within the Theory of Genetic Algorithms, Proceedings of EUROCAST 2003, pp. 384-
393, LNCS 2809, Las Palmas, Feb. 2003, Springer, Heidelberg

Beligiannis, G.N.; Skarlas, L.V.; Likothanassis, S.D.. & Perdikouri, K. (2003). Nonlinear
Model Structure Identication of Complex Biomedical Data Using a Genetic
Programming Based Technique, Proceedings of IEEE International Symposium on
Intelligent Signal Processing.

Beyer, H. G. (1998) The Theory of Evolution Strategies. Springer-Verlag Berlin Heidelberg
New York, 1998.

Box; G.E. & Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control. Holden-
Day Inc., San Francisco, 1976.

Del Re, L.; Langthaler, P.; Furtmller, C.; Affenzeller, M. & Winkler, S. (2005). NOx Virtual
Sensor Based on Structure Identification and Global Optimization. Proceedings of
the SAE World Congress 2005.

Dumitrescu, D.; Lazzerini, B.; Jain, L.C. & Dumitrescu A. (2000). Evolutionary Computation.
CRC Press,2000.

Fogel, D.B. (1994). An introduction to simulated evolutionary optimization. IEEE Trans. on
Neural Network, Vol.5, No. 1. 3--14, 1994.

Goldberg, D.E. (1989) Genetic Alogorithms in Search, Optimization and Machine Learning.
Addison Wesley Longman, 1989.

Evolutionary Systems Identification: New Algorithmic Concepts and Applications

47

Holland, J.H. (1975). Adaption in Natural and Artificial Systems. University of Michigan Press,
1975.

Kendall, S.M. & Ord, J.K. (1990). Time Series. Edward Arnold, London, 1990.
Koza, J.R. (1992). Genetic Prohramming: On the Programming of Computers by means of Natural

Selection. The MIT Press, 1992.
Langdon, B. & Poli, R. (2002). Foundations of Genetic Programming. Springer-Verlag Berlin

Heidelberg New York, 2002.
Michaliwicz, Z. (1996). Genetic Algorithms + Data Structurs = Evolution Programs. Springer-

Verlag Berlin Heidelberg New York, 3. edition, 1996.
Mitchell, T.M. (2000). Machine Learning. McGraw-Hill, New York, 2000.
Rechenberg, I. (1973). Evolutionsstrategie. Friedrich Frommann Verlag, 1973.
Rodrguez-Vzquez, K. & Fleming, P.J. (2000). Use of Genetic Programming in the

Identification of Rational Model Structures. Third European Conference on Genetic
Programming (EuroGP'2000), pp 181--192, 2000.

Schwefel, H.P. (1994). Numerische Optimierung von Computer-Modellen mittels
Evolutionsstrategie. Birkhaeuser Verlag. Basel, 1994.

Tomassini M. (1995). A survey of genetic algorithms. Annual Reviews of Computational
Physics, Vol.3: 87--118, 1995.

Wagner, S. & Affenzeller, M. (2005a). Heuristiclab: A generic and extensible optimization
environment. Adaptiveand Natural Computing Algorithms – Proceedings of
ICANNGA 2005, pp. 538 -- 541, 2005.

Wagner, S. & Affenzeller, M (2005b). SexualGA: Gender-specific selection for genetic
algorithms. Proceedings of the 9th World Multi-Conference on Systemics,
Cybernetics and Informatics (WMSCI), pages 76--81, 2005.

Winkler, S.; Affenzeller, M. & Wagner, S. (2005a). New methods for the identification of
nonlinear model structures based upon genetic programming techniques. Journal of
Systems Science, Vol.31, 5--13, 2005.

Winkler, S.; Affenzeller, M. & Wagner, S. (2006a). Advances in applying genetic
programming to machine learning focussing on classi¯cation problems.
Proceedings of the 20th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2006), 2006.

Winkler, S.; Affenzeller, M. & Wagner, S. (2006b). Automatic data based patient
classification using genetic programming. Cybernetics and Systems 2006, 1:251--
256, 2006.

Winkler, S.; Affenzeller, M. & Wagner, S. (2006c). Heuristic Modeler: A Multi-Purpose
Evolutionary Machine Learning Algorithm and its Applications in Medical Data
Analysis. Proceedings of the International Mediterranean Modelling
Multiconference I3M 2006, pp. 629--634, 2006.

Winkler, S.; Affenzeller, M. & Wagner, S. (2006d). Sets of Receiver Operating Characteristic
Curves and their use in the Evaluation of Multi-class Classification. Proceedings of
the Genetic and Evolutionary Computation Conference 2006 (GECCO2006), 2: pp.
1601--1602, 2006.

Winkler, S.; Affenzeller, M. & Wagner, S. (2006e). Using Enhanced Genetic Programming
Techniques for Evolving Classiffers in the Context of Medical Diagnosis - an
Empirical Study. Proceedings of the GECCO 2006 Workshop on Medical
Applications of Genetic and Evolutionary Computation (MedGEC 2006), 2006.

 Advances in Evolutionary Algorithms

48

Winkler, S.; Efendic,H.; Affenzeller, M.; Del Re, L. & Wagner, S. (2005b) On-Line Modeling
Based on Genetic Programming. Proceedings of the 1st International Workshop on
Automatic Learning and Real-Time (ALaRT'05), pp. 119--130, 2005.

Winkler, S.; Efendic,H.& Del Re, L. (2006f). Quality Pre-assesment in Steel Industry using
Data Based Estimators. Proceedings of the IFAC Workshop MMM2006 on
Automation in Mining, Mineral and Metal Industry, pp. 185--190, 2006.

Zweig, M. H. & Campbell, G. (1993). Receiver-Operating Characteristics (ROC) Plots: A
Fundamental Evaluation. Clinical Chemistry, Vol. 39: 561--577, 1993.

3

FPBIL: A Parameter-free Evolutionary Algorithm
Gustavo Caldas and Roberto Schirru

CNEN and COPPE/UFRJ
Brazil

1. Introduction
The purpose of this chapter is to describe a new algorithm named FPBIL (parameter-Free
PBIL), an evolution of PBIL (Population-Based Incremental Learning). FPBIL, as well as
PBIL (Baluja, 1994), Genetic Algorithms (GAs) (Holland, 1992) and others are general
purpose population-based evolutionary algorithms. The success of GAs is unquestionable
(Goldberg, 1989). Despite that, PBIL has shown to be superior in many aspects.
PBIL is a evolutionary algorithm developed as an attempt to mimic the behavior of the
Genetic Algorithms in an advanced stage of its execution, “in equilibrium”. The result
shows unexpectedly that the PBIL surpasses (Baluja, 1995) the genetic algorithms in almost
all aspects. The PBIL is faster and finds better results (Machado, 1999). However, PBIL
depends on five parameters which need to be adjusted before each application. For example,
variations in the learning rate produce completely different behaviors (Baluja, 1994).
Up to today, every evolutionary algorithm, like PBIL, just mentioned, depends on at least
one parameter which, if not adjusted properly, can cause the algorithm to be very inefficient.
Consequently, the less parameters an algorithm has, the minor the risk of it not reaching all
its potential in some particular application; and the less the time spent in finding the
appropriate parameter’s values.
One of the benefits of FPBIL—perhaps the most important—is that it is a parameter free
algorithm (the origin of the F in FPBIL), which means that a parameter optimization, an
application-dependent procedure required by other algorithms in order to achieve better
results, is not necessary in FPBIL. Parameter optimization demands intense computational
effort, a precious time often not taken into account when somebody claims that an algorithm
finds a better result in a shorter amount of time.
Based on PBIL, FPBIL is built with the guarantee of a better performance than that of PBIL,
which also means (whenever the PBIL has a good outcome) a better performance in
comparison to other algorithms, besides the advantage of none additional computational
cost in adjusting parameters.
We begin this chapter by describing the PBIL algorithm and, then, we present the main
steps to the FPBIL algorithm it self. Afterwards, we compare the performance of FPBIL
against other algorithms in typical benchmark problems and finally we propose some
concluding remarks.

2. PBIL algorithm
The PBILwas created in 1994, by Shumeet Baluja. It was inspired in its previous work with
Ari Juels (Juels et al., 1993) in an attempt to simulate the behavior of the genetic algorithms

 Advances in Evolutionary Algorithms

48

Winkler, S.; Efendic,H.; Affenzeller, M.; Del Re, L. & Wagner, S. (2005b) On-Line Modeling
Based on Genetic Programming. Proceedings of the 1st International Workshop on
Automatic Learning and Real-Time (ALaRT'05), pp. 119--130, 2005.

Winkler, S.; Efendic,H.& Del Re, L. (2006f). Quality Pre-assesment in Steel Industry using
Data Based Estimators. Proceedings of the IFAC Workshop MMM2006 on
Automation in Mining, Mineral and Metal Industry, pp. 185--190, 2006.

Zweig, M. H. & Campbell, G. (1993). Receiver-Operating Characteristics (ROC) Plots: A
Fundamental Evaluation. Clinical Chemistry, Vol. 39: 561--577, 1993.

3

FPBIL: A Parameter-free Evolutionary Algorithm
Gustavo Caldas and Roberto Schirru

CNEN and COPPE/UFRJ
Brazil

1. Introduction
The purpose of this chapter is to describe a new algorithm named FPBIL (parameter-Free
PBIL), an evolution of PBIL (Population-Based Incremental Learning). FPBIL, as well as
PBIL (Baluja, 1994), Genetic Algorithms (GAs) (Holland, 1992) and others are general
purpose population-based evolutionary algorithms. The success of GAs is unquestionable
(Goldberg, 1989). Despite that, PBIL has shown to be superior in many aspects.
PBIL is a evolutionary algorithm developed as an attempt to mimic the behavior of the
Genetic Algorithms in an advanced stage of its execution, “in equilibrium”. The result
shows unexpectedly that the PBIL surpasses (Baluja, 1995) the genetic algorithms in almost
all aspects. The PBIL is faster and finds better results (Machado, 1999). However, PBIL
depends on five parameters which need to be adjusted before each application. For example,
variations in the learning rate produce completely different behaviors (Baluja, 1994).
Up to today, every evolutionary algorithm, like PBIL, just mentioned, depends on at least
one parameter which, if not adjusted properly, can cause the algorithm to be very inefficient.
Consequently, the less parameters an algorithm has, the minor the risk of it not reaching all
its potential in some particular application; and the less the time spent in finding the
appropriate parameter’s values.
One of the benefits of FPBIL—perhaps the most important—is that it is a parameter free
algorithm (the origin of the F in FPBIL), which means that a parameter optimization, an
application-dependent procedure required by other algorithms in order to achieve better
results, is not necessary in FPBIL. Parameter optimization demands intense computational
effort, a precious time often not taken into account when somebody claims that an algorithm
finds a better result in a shorter amount of time.
Based on PBIL, FPBIL is built with the guarantee of a better performance than that of PBIL,
which also means (whenever the PBIL has a good outcome) a better performance in
comparison to other algorithms, besides the advantage of none additional computational
cost in adjusting parameters.
We begin this chapter by describing the PBIL algorithm and, then, we present the main
steps to the FPBIL algorithm it self. Afterwards, we compare the performance of FPBIL
against other algorithms in typical benchmark problems and finally we propose some
concluding remarks.

2. PBIL algorithm
The PBILwas created in 1994, by Shumeet Baluja. It was inspired in its previous work with
Ari Juels (Juels et al., 1993) in an attempt to simulate the behavior of the genetic algorithms

 Advances in Evolutionary Algorithms

50

(Holland, 1992; Goldberg, 1989) in “equilibrium state”, after repeated applications of the
crossover operator. The algorithm referenced here by “PBIL” had its publication later, in
1995 (Baluja, 1995), in which 27 problems, commonly explored in the literature of genetic
algorithms, were examined by seven different optimization techniques, PBIL having
achieved optimum performance in more than 80% of the cases. PBIL algorithm is shown in
figure 1.

Fig. 1. PBIL Algorithm.

In PBIL, a subset BS of the search space B of some optimization problem is explored from
one hypercube Hn ≡ [0, 1]n, in such a way that each vertex of Hn, that is, each point of
 ≡{0, 1}n corresponds to a point of BS . This correspondence is made by the mapping

FPBIL: A Parameter-free Evolutionary Algorithm

51

(1)

with Ik ≡ [k] ∈ {0, 1}, meaning that n

BS
M maps a bit vector with n bits into a point of BS —

a candidate solution to the problem.
After the vertices of Hn are duly mapped into BS , the PBIL works exactly in the same way,
independently of the current application and this is what makes the PBIL algorithm1
versatile, meaning that the necessary and sufficient condition in order that an optimization
problemcan be boarded by PBIL is the existence of n

BS
M .

A point ∈ Hn is called probability vector and it plays a central role in PBIL-like
algorithms. Its n components pk ≡ [k] ∈ [0, 1] are suitable for representing the probability
of choosing by chance the number 1 in a set Ω= {0, 1}. From is possible to construct an
army of objects. All we have to do is to pick Ik to be 1 or 0, probabilistically, according to
pk—the more pk is close to 1, the more is Ik likely to be 1.
At the beginning of PBIL each point of BS must be treated as potential best solution and P
vertices of Hn are, therefore, chosen randomly from a uniform probability distribution. This
uniform probability distribution is nothing but 0 = (0.5, 0.5, . . . , 0.5), the center of Hn.
In PBIL’s terminology, the P vertices k of Hn selected from forma “population”—the
“generation” G—and each k is called an “individual”. The PBIL algorithm consists in, once
established the individuals of generation 0, constructing 1, which will generate the next
population—generation 1. The process is repeated until an individual of some generation is
considered to be good enough. In this sense, the PBIL algorithm may be viewed as the
motion of inside Hn until gets close enough to some point of corresponding to a
satisfactory solution; the laws of motion being the PBIL rules by which is updated from
generation to generation.
The measure of how good an individual is, is given by the fitness function

(2)

whose form depends explicitly on the application.
The construction of +1 from the individuals of the generation G is the main process in a
PBIL-like algorithm. Any point +1 of Hn different from 0 generates a non-uniform
probability distribution on . The strategy is to modify, generation after generation, this
probability distribution trying to turn ever more likely the sprouting of †, the optimum
solution. In PBIL, +1 is constructed in two steps.
In the first step, the following operations are carried through:

 (3)

1 This is also true for other algorithms working with bitstrings, such as Genetic Algorithms.

 Advances in Evolutionary Algorithms

50

(Holland, 1992; Goldberg, 1989) in “equilibrium state”, after repeated applications of the
crossover operator. The algorithm referenced here by “PBIL” had its publication later, in
1995 (Baluja, 1995), in which 27 problems, commonly explored in the literature of genetic
algorithms, were examined by seven different optimization techniques, PBIL having
achieved optimum performance in more than 80% of the cases. PBIL algorithm is shown in
figure 1.

Fig. 1. PBIL Algorithm.

In PBIL, a subset BS of the search space B of some optimization problem is explored from
one hypercube Hn ≡ [0, 1]n, in such a way that each vertex of Hn, that is, each point of
 ≡{0, 1}n corresponds to a point of BS . This correspondence is made by the mapping

FPBIL: A Parameter-free Evolutionary Algorithm

51

(1)

with Ik ≡ [k] ∈ {0, 1}, meaning that n

BS
M maps a bit vector with n bits into a point of BS —

a candidate solution to the problem.
After the vertices of Hn are duly mapped into BS , the PBIL works exactly in the same way,
independently of the current application and this is what makes the PBIL algorithm1
versatile, meaning that the necessary and sufficient condition in order that an optimization
problemcan be boarded by PBIL is the existence of n

BS
M .

A point ∈ Hn is called probability vector and it plays a central role in PBIL-like
algorithms. Its n components pk ≡ [k] ∈ [0, 1] are suitable for representing the probability
of choosing by chance the number 1 in a set Ω= {0, 1}. From is possible to construct an
army of objects. All we have to do is to pick Ik to be 1 or 0, probabilistically, according to
pk—the more pk is close to 1, the more is Ik likely to be 1.
At the beginning of PBIL each point of BS must be treated as potential best solution and P
vertices of Hn are, therefore, chosen randomly from a uniform probability distribution. This
uniform probability distribution is nothing but 0 = (0.5, 0.5, . . . , 0.5), the center of Hn.
In PBIL’s terminology, the P vertices k of Hn selected from forma “population”—the
“generation” G—and each k is called an “individual”. The PBIL algorithm consists in, once
established the individuals of generation 0, constructing 1, which will generate the next
population—generation 1. The process is repeated until an individual of some generation is
considered to be good enough. In this sense, the PBIL algorithm may be viewed as the
motion of inside Hn until gets close enough to some point of corresponding to a
satisfactory solution; the laws of motion being the PBIL rules by which is updated from
generation to generation.
The measure of how good an individual is, is given by the fitness function

(2)

whose form depends explicitly on the application.
The construction of +1 from the individuals of the generation G is the main process in a
PBIL-like algorithm. Any point +1 of Hn different from 0 generates a non-uniform
probability distribution on . The strategy is to modify, generation after generation, this
probability distribution trying to turn ever more likely the sprouting of †, the optimum
solution. In PBIL, +1 is constructed in two steps.
In the first step, the following operations are carried through:

 (3)

1 This is also true for other algorithms working with bitstrings, such as Genetic Algorithms.

 Advances in Evolutionary Algorithms

52

(4)

where + and - are respectively the best and worst individuals of generation G. That is,

initially is dislocated towards + and then, away from -, with the intention to favor the
occurrence of better individuals in the following generation.
In the second step suffers mutation, whose objective is to allow that some component
of reaching the value 1 (or 0) has the possibility to evolve again—since, once pk = 1 (or pk =
0), it can not change by means of equation (4). Such mutation consists of moving the
components of in the direction of DM (randomly 0 or 1). This means that each

component [j] will suffer, or not, a displacement (according to the “mutation
probability”) in the form of:

 (5)

As can be verified in figure 1, the PBIL algorithm needs five parameters to work, whose
values were determined experimentally in order to maximize the average performance of
the algorithm in a set of different applications. In the next section, we will show how to
extend PBIL to be parameter-free.

3. FPBIL: parameter-Free PBIL
FPBIL is a variation of PBIL which basically tries to eliminate the necessity of the PBIL’s
parameter by modifying some of its fundamental principles. The result is a more efficient
algorithm, with a superior search power and without parameters.
As in PBIL, the FPBIL algorithm presents a probability vector , with n components
pk ∈ [0, 1], from which P individuals k of some generation are created. The characteristic
that differentiates them is that FPBIL uses generic mechanisms to become free of
parameters, especially in the way is updated and the mutation is implemented. The
FPBIL Algorithm is presented in figure 2.

3.1 update: eliminating the parameters α and β
In the algorithm PBIL, the probability vector is updated by suffering a small displacement
approaching to the best individual and another displacement moving away from the worst
individual. In some variants of the PBIL (Baluja & Caruana, 1995; Baluja & Davies, 1998;
Machado, 2005), only the best individual is used, or only the worst individual, or also, the
average of the first best individuals. The fact is that, in order to evaluate who are the best
and worst individuals, all the individuals must be evaluated, which means that all PBIL
algorithms waste almost all the information available about the search space.

FPBIL: A Parameter-free Evolutionary Algorithm

53

Fig. 2. FPBIL Algorithm.

The rule according to which the FPBIL updates its probability vector is

(6)

which reflects exactly an average in which all P individuals are used. The difference is that
this average is weighed by the fitness Fi ≡ F(i) of each individual. In order to appreciate
better the change caused by this detail, it can be deduced that

 Advances in Evolutionary Algorithms

52

(4)

where + and - are respectively the best and worst individuals of generation G. That is,

initially is dislocated towards + and then, away from -, with the intention to favor the
occurrence of better individuals in the following generation.
In the second step suffers mutation, whose objective is to allow that some component
of reaching the value 1 (or 0) has the possibility to evolve again—since, once pk = 1 (or pk =
0), it can not change by means of equation (4). Such mutation consists of moving the
components of in the direction of DM (randomly 0 or 1). This means that each

component [j] will suffer, or not, a displacement (according to the “mutation
probability”) in the form of:

 (5)

As can be verified in figure 1, the PBIL algorithm needs five parameters to work, whose
values were determined experimentally in order to maximize the average performance of
the algorithm in a set of different applications. In the next section, we will show how to
extend PBIL to be parameter-free.

3. FPBIL: parameter-Free PBIL
FPBIL is a variation of PBIL which basically tries to eliminate the necessity of the PBIL’s
parameter by modifying some of its fundamental principles. The result is a more efficient
algorithm, with a superior search power and without parameters.
As in PBIL, the FPBIL algorithm presents a probability vector , with n components
pk ∈ [0, 1], from which P individuals k of some generation are created. The characteristic
that differentiates them is that FPBIL uses generic mechanisms to become free of
parameters, especially in the way is updated and the mutation is implemented. The
FPBIL Algorithm is presented in figure 2.

3.1 update: eliminating the parameters α and β
In the algorithm PBIL, the probability vector is updated by suffering a small displacement
approaching to the best individual and another displacement moving away from the worst
individual. In some variants of the PBIL (Baluja & Caruana, 1995; Baluja & Davies, 1998;
Machado, 2005), only the best individual is used, or only the worst individual, or also, the
average of the first best individuals. The fact is that, in order to evaluate who are the best
and worst individuals, all the individuals must be evaluated, which means that all PBIL
algorithms waste almost all the information available about the search space.

FPBIL: A Parameter-free Evolutionary Algorithm

53

Fig. 2. FPBIL Algorithm.

The rule according to which the FPBIL updates its probability vector is

(6)

which reflects exactly an average in which all P individuals are used. The difference is that
this average is weighed by the fitness Fi ≡ F(i) of each individual. In order to appreciate
better the change caused by this detail, it can be deduced that

 Advances in Evolutionary Algorithms

54

(7)

with

(8)

and

(9)

Note that 1i=∑ P
i /P is approximately so that equation (7) resembles the structure of

equations (3) and (4) corresponding to PBIL.
The advantage in using is that the direction of the displacement is not based only on the
best and worst individuals, but in all the available information about the search space at
some generation (P evaluated individuals). Another detail about is that the averages are
not simple, but weighed by the differences between the fitness of each individual and the
average fitness, so that very bad or very good individuals exert more influence than others
with fitness next to the average.
It is worth noting that each point of Hn can be associated to an average fitness F
through

(10)

The reason is that from , each individual i has a probability (i) of being picked. After
P tries, the individual i is picked Pi times. In the limit when P becomes sufficiently big, we
have

(11)

(12)

Since F is such an average, it is continuous, differentiable and it doesn’t have any local

maximum or minimum in Hn - , which means that the extreme points of F in Hn

occurs for † and ┴ in , with † F = F(†) and ┴ F = F(┴)—where ┴
represents the worst individual in . And that is just interesting.

FPBIL: A Parameter-free Evolutionary Algorithm

55

In each generation of FPBIL, we have F ≈ F and the P individuals k are divided

into two groups: those with F(k) > F and those with F(k) < F . If we represent each
of these groups respectively by the points

(13)

and

(14)

we see from equation (9) that FPBIL works in such a way that moves in the direction that
F grows, leading, theorically at least, to +. Just to compare, in PBIL, + and - are

used instead of > and <, which means that PBIL is much easier to get caught by local
optimums.
Obviously we can only bet that the approximation F ≈ F is good enough. Only in the

limit P → ∞ can we be sure. The same limit when we would have already evaluated every
element of , so that we would no longer need a search algorithm. Fortunately, the FPBIL
algorithm also have proper mechanisms that compensate for the finiteness of P. ξ can be
considered to be one of those.
It can be verified that ξ plays a similar role just like α or β, related to the intensity of the

displacement suffered by . While α and β are constants, ξ varies in accordance to the

fitness distribution of each generation. More precisely, ξ is the half of the mean absolute
deviation, relative to the average, of the fitness:

(15)

(16)

(17)

The mean absolute deviation (δ) is a measure of dispersion of a distribution, just like the

standard deviation. δr is only another way to express the same dispersion relative to the
average.
At the beginning of an execution of the FPBIL, the individuals generally possess a very bad
fitness. While no individual detaches, ξ is small—the algorithm does not take risks by

 Advances in Evolutionary Algorithms

54

(7)

with

(8)

and

(9)

Note that 1i=∑ P
i /P is approximately so that equation (7) resembles the structure of

equations (3) and (4) corresponding to PBIL.
The advantage in using is that the direction of the displacement is not based only on the
best and worst individuals, but in all the available information about the search space at
some generation (P evaluated individuals). Another detail about is that the averages are
not simple, but weighed by the differences between the fitness of each individual and the
average fitness, so that very bad or very good individuals exert more influence than others
with fitness next to the average.
It is worth noting that each point of Hn can be associated to an average fitness F
through

(10)

The reason is that from , each individual i has a probability (i) of being picked. After
P tries, the individual i is picked Pi times. In the limit when P becomes sufficiently big, we
have

(11)

(12)

Since F is such an average, it is continuous, differentiable and it doesn’t have any local

maximum or minimum in Hn - , which means that the extreme points of F in Hn

occurs for † and ┴ in , with † F = F(†) and ┴ F = F(┴)—where ┴
represents the worst individual in . And that is just interesting.

FPBIL: A Parameter-free Evolutionary Algorithm

55

In each generation of FPBIL, we have F ≈ F and the P individuals k are divided

into two groups: those with F(k) > F and those with F(k) < F . If we represent each
of these groups respectively by the points

(13)

and

(14)

we see from equation (9) that FPBIL works in such a way that moves in the direction that
F grows, leading, theorically at least, to +. Just to compare, in PBIL, + and - are

used instead of > and <, which means that PBIL is much easier to get caught by local
optimums.
Obviously we can only bet that the approximation F ≈ F is good enough. Only in the

limit P → ∞ can we be sure. The same limit when we would have already evaluated every
element of , so that we would no longer need a search algorithm. Fortunately, the FPBIL
algorithm also have proper mechanisms that compensate for the finiteness of P. ξ can be
considered to be one of those.
It can be verified that ξ plays a similar role just like α or β, related to the intensity of the

displacement suffered by . While α and β are constants, ξ varies in accordance to the

fitness distribution of each generation. More precisely, ξ is the half of the mean absolute
deviation, relative to the average, of the fitness:

(15)

(16)

(17)

The mean absolute deviation (δ) is a measure of dispersion of a distribution, just like the

standard deviation. δr is only another way to express the same dispersion relative to the
average.
At the beginning of an execution of the FPBIL, the individuals generally possess a very bad
fitness. While no individual detaches, ξ is small—the algorithm does not take risks by

 Advances in Evolutionary Algorithms

56

making a decision on which direction to follow. When the first good individuals appear, ξ

increases considerably. As the average fitness goes up, ξ diminishes gradualy—preventing

itself from premature convergence. Finally, when the optimum solution is near, ξ becomes
very small, making sure that will not have great oscillations around it but, instead, it
might be reached.

3.2 Mutation: eliminating the parameters and γ
The role of mutation is to give “second chances” to the components of that reach the
values 0 or 1 when they were not supposed to do so. In the limit P →∞, FPBIL would not
need mutation at all, as we have already discussed. But in a real situation, mutation is
another mechanism that compensates for finite P, and it is essential to FPBIL.
The PBIL carries mutation probabilistically (in accordance to) through random
displacements (proportional to γ) in the components of . The FPBIL algorithm follows a
more direct strategy, exploring the meaning of the probability vector. First, the algorithm
hinders any component of from reaching the values 0 or 1. This way the emergence of any
individual in is always possible. That is accomplished by restricting every component pk

of to the interval [d, 1 — d]. As a consequence, the probability of choosing by chance any
individual from will always be between dn and (1 — d)n.
Given any value d, the number c of components of with pk ≤ d or pk ≥ 1 — d is considere to
be the number of components which are in the correct position. Then it is possible to find
the optimum value of d, so that it maximizes the probability of choosing from an
individual with the corresponding c correct components and so that is also capable of
inverting the trend of some component going toward the wrong direction. The probability
which must be maximized is, therefore,

 (18)

giving

(19)

The FPBIL algorithm takes d to be initially (in generation 0) d2 = 1/3—the biggest value of dc

different from 0.5. After is updated to , we count how many (c) components of
 satisfy pk ≤ d2 (or pk ≥ 1 — d2). If c ≥ 3, d becomes d3 = 1/4. If d = d3 and c ≥ 4 (the number

of components of that satisfy pk ≤ d3 (or pk ≥ 1 — d3)), d becomes d4 = 1/5, and so on.
Thus, it is possible to diminish d gradually as P gets close to some point in — +,
expectedly.
But there is also a mechanism that allows d to grow. If, for example, d = d5 = 1/6 but c 6,

we count how many (c′) components of satisfy pk ≤ d4 (or pk ≥ 1—d4). If c’ < 5, d
becomes d4 = 1/5. If d = d4, c 5 and c′< 4 (the number of components that satisfy
pk ≤ d3 (or pk ≥ 1 — d3)), d becomes d3 = 1/4, and so on, until d hits the value d2 = 1/3, the
biggest allowed.

FPBIL: A Parameter-free Evolutionary Algorithm

57

After we count c and c′and update d, mutation do its real job: it brings back to d (or to
1—d) any component smaller than d (or bigger than 1—d), transforming into

. FPBIL’s mutation is illustrated in figure 3, where each point represents a
component of . As we can see, d values work as “gates” that open or close depending on
the values of c and c′.

Fig. 3. Two examples of mutation: in the first, d diminishes; in the second, it grows.

3.3 Variable population size and reinitializations: eliminating the parameter P
The size of is 2n, which is usually very large. The population sizes commonly used in
PBIL are very small fractions of this value. Therefore, it is reasonable to use the relation

 2=P
n
w (20)

for some w.
Perhaps the most remarkable aspect of FPBIL (and PBIL) is that the population size does not
have to be a constant—sheer nonsense for GA users. Since every population is generated
from instantly after is created, it does not matter whether we generate only one or a
thousand individuals. There is no higher complexity involved than choosing how many
individuals we want.
As the number c of correct components of increases, we must, therefore, need only

 Advances in Evolutionary Algorithms

56

making a decision on which direction to follow. When the first good individuals appear, ξ

increases considerably. As the average fitness goes up, ξ diminishes gradualy—preventing

itself from premature convergence. Finally, when the optimum solution is near, ξ becomes
very small, making sure that will not have great oscillations around it but, instead, it
might be reached.

3.2 Mutation: eliminating the parameters and γ
The role of mutation is to give “second chances” to the components of that reach the
values 0 or 1 when they were not supposed to do so. In the limit P →∞, FPBIL would not
need mutation at all, as we have already discussed. But in a real situation, mutation is
another mechanism that compensates for finite P, and it is essential to FPBIL.
The PBIL carries mutation probabilistically (in accordance to) through random
displacements (proportional to γ) in the components of . The FPBIL algorithm follows a
more direct strategy, exploring the meaning of the probability vector. First, the algorithm
hinders any component of from reaching the values 0 or 1. This way the emergence of any
individual in is always possible. That is accomplished by restricting every component pk

of to the interval [d, 1 — d]. As a consequence, the probability of choosing by chance any
individual from will always be between dn and (1 — d)n.
Given any value d, the number c of components of with pk ≤ d or pk ≥ 1 — d is considere to
be the number of components which are in the correct position. Then it is possible to find
the optimum value of d, so that it maximizes the probability of choosing from an
individual with the corresponding c correct components and so that is also capable of
inverting the trend of some component going toward the wrong direction. The probability
which must be maximized is, therefore,

 (18)

giving

(19)

The FPBIL algorithm takes d to be initially (in generation 0) d2 = 1/3—the biggest value of dc

different from 0.5. After is updated to , we count how many (c) components of
 satisfy pk ≤ d2 (or pk ≥ 1 — d2). If c ≥ 3, d becomes d3 = 1/4. If d = d3 and c ≥ 4 (the number

of components of that satisfy pk ≤ d3 (or pk ≥ 1 — d3)), d becomes d4 = 1/5, and so on.
Thus, it is possible to diminish d gradually as P gets close to some point in — +,
expectedly.
But there is also a mechanism that allows d to grow. If, for example, d = d5 = 1/6 but c 6,

we count how many (c′) components of satisfy pk ≤ d4 (or pk ≥ 1—d4). If c’ < 5, d
becomes d4 = 1/5. If d = d4, c 5 and c′< 4 (the number of components that satisfy
pk ≤ d3 (or pk ≥ 1 — d3)), d becomes d3 = 1/4, and so on, until d hits the value d2 = 1/3, the
biggest allowed.

FPBIL: A Parameter-free Evolutionary Algorithm

57

After we count c and c′and update d, mutation do its real job: it brings back to d (or to
1—d) any component smaller than d (or bigger than 1—d), transforming into

. FPBIL’s mutation is illustrated in figure 3, where each point represents a
component of . As we can see, d values work as “gates” that open or close depending on
the values of c and c′.

Fig. 3. Two examples of mutation: in the first, d diminishes; in the second, it grows.

3.3 Variable population size and reinitializations: eliminating the parameter P
The size of is 2n, which is usually very large. The population sizes commonly used in
PBIL are very small fractions of this value. Therefore, it is reasonable to use the relation

 2=P
n
w (20)

for some w.
Perhaps the most remarkable aspect of FPBIL (and PBIL) is that the population size does not
have to be a constant—sheer nonsense for GA users. Since every population is generated
from instantly after is created, it does not matter whether we generate only one or a
thousand individuals. There is no higher complexity involved than choosing how many
individuals we want.
As the number c of correct components of increases, we must, therefore, need only

 Advances in Evolutionary Algorithms

58

(21)

individuals, where the factor k/(1—d)c only appears to assure that the correct component are
reproduced with 99.9% of probability (for k = 7) (Caldas, 2006). Using equation (19), it can be
written as

(22)

where P0 is the initial population, corresponding c = 0. FPBIL is initiated with P0 = Pn and

every time c suffers a fluctuation, P0 is increased by 1. That occurs because, when the time

average Gc of c stops varying, the algorithm must be imprisoned in a local optimum, so it

must be reinitiated. The difference is that in each reinitialization P0 will be each time bigger
(due to the fluctuations of c), increasing gradually the power of search of the FPBIL. A
fluctuation in c will be computed whenever c does not grow or decrease directly, that is,
whenever c, as a function of G, reaches a minimum, a maximum or simply remains constant;

and Gc stands for the time average of c between reinitializations.

3.4 About the fitness function
Although FPBIL is parameters-free, it still depends on the form of the fitness function. There
are several functional forms for F capable of determining the same order F(-) ≤ F(i) ≤

F(j) ≤ ・ ・ ・≤ F(+) and each one of them can generate different and ξ values, which
would result in equally different behaviors. Consider the analysis of equations (8) and (9) in
two simple examples:
1. With the transformation F '

i = f ・Fi (f ∈ R), one has ′ = e ξ′ = ξ, that is, the

multiplication of the fitness by a constant factor, does not modify anything in the
behavior of FPBIL.

2. With the transformation F '
i = t + Fi (t ∈ R), however, ′ = , but

(23)

meaning that if t >> F then ξ′ ≈ 0, that is, the addition of the fitness to a constant term
modifies the intensity of the steps of the FPBIL, making the FPBIL impracticable for big
values of t.

Item 2 suggests that one good practice may be the use of the fitness F '
i = Fi—F(-),

guaranteeing that ξ will never be smaller than necessary. Following such recommendation, a
generic procedure was adopted to construct the fitness—based on the procedure used by
Koza in the genetic programming algorithm (Koza, 1992)—described as follows.

FPBIL: A Parameter-free Evolutionary Algorithm

59

The raw fitness Fr is the natural amount of the problem that one desires to maximize or
minimize, also called objective function. From the raw fitness, the standard fitness Fs is
constructed, which possesses the characteristic of having 0 ≤ Fs(a) < Fs(b) whenever a is

better than b, and, preferentially, with Fs(+) = 0. From the standard fitness, the adjusted
fitness Fa is calculated from

(24)

Finally, following the recommendation of having F '
i = Fi—F(-), the fitness function used

everywhere in this work (excep when expressly told) will be

(25)

where Fa(1
−

−G) it is the adjusted fitness of the worse individual of the previous generation.

The excuse for using Fa(1
−

−G) is that, to find F(-), it is necessary to evaluate all the

individuals of a generation, which implies that, in order to calculate F '
i = Fi —F(-), all the

individualsmust be evaluated twice every generation or all the individuals of a generation
must be stored in some data structure. The adopted solution, besides economical, does not
harm too much the original recommendation since generally Fa(1

−

−G) ≈Fa (-).

Next, we will see how to put all this into practice.

4. Problems
This section is intended to show how PBIL and FPBIL behave in different problems of
growing complexity. These problems belong to specific classes, which are, ultimately,
numerical or combinatorial, so we can learn how to proceed in both cases. Besides the
opportunity to see how these two algorithms works in practice, we will use the results then
achieved to quantitatively compare them and, whenever interesting, compare their results to
those of other techniques. Let us begin with the simplest.

4.1 A simple problem in 2H
In order to visualize better the differences between FPBIL and PBIL, we will use them in a
very simple problem: to find the greatest number in B = N4 ≡ {1, 2, 3, 4}. We can chose

BS = B, so that we need only n = 2 bits to cover all BS (because 22 = 4 = number of elements
in BS)—FPBIL and PBIL will work in H2, which is nothing but a simple (easy to visualize)
square. That means that we can correspond each point of to a member of BS . We may

choose, for example, n

BSM to be the following map:

 Advances in Evolutionary Algorithms

58

(21)

individuals, where the factor k/(1—d)c only appears to assure that the correct component are
reproduced with 99.9% of probability (for k = 7) (Caldas, 2006). Using equation (19), it can be
written as

(22)

where P0 is the initial population, corresponding c = 0. FPBIL is initiated with P0 = Pn and

every time c suffers a fluctuation, P0 is increased by 1. That occurs because, when the time

average Gc of c stops varying, the algorithm must be imprisoned in a local optimum, so it

must be reinitiated. The difference is that in each reinitialization P0 will be each time bigger
(due to the fluctuations of c), increasing gradually the power of search of the FPBIL. A
fluctuation in c will be computed whenever c does not grow or decrease directly, that is,
whenever c, as a function of G, reaches a minimum, a maximum or simply remains constant;

and Gc stands for the time average of c between reinitializations.

3.4 About the fitness function
Although FPBIL is parameters-free, it still depends on the form of the fitness function. There
are several functional forms for F capable of determining the same order F(-) ≤ F(i) ≤

F(j) ≤ ・ ・ ・≤ F(+) and each one of them can generate different and ξ values, which
would result in equally different behaviors. Consider the analysis of equations (8) and (9) in
two simple examples:
1. With the transformation F '

i = f ・Fi (f ∈ R), one has ′ = e ξ′ = ξ, that is, the

multiplication of the fitness by a constant factor, does not modify anything in the
behavior of FPBIL.

2. With the transformation F '
i = t + Fi (t ∈ R), however, ′ = , but

(23)

meaning that if t >> F then ξ′ ≈ 0, that is, the addition of the fitness to a constant term
modifies the intensity of the steps of the FPBIL, making the FPBIL impracticable for big
values of t.

Item 2 suggests that one good practice may be the use of the fitness F '
i = Fi—F(-),

guaranteeing that ξ will never be smaller than necessary. Following such recommendation, a
generic procedure was adopted to construct the fitness—based on the procedure used by
Koza in the genetic programming algorithm (Koza, 1992)—described as follows.

FPBIL: A Parameter-free Evolutionary Algorithm

59

The raw fitness Fr is the natural amount of the problem that one desires to maximize or
minimize, also called objective function. From the raw fitness, the standard fitness Fs is
constructed, which possesses the characteristic of having 0 ≤ Fs(a) < Fs(b) whenever a is

better than b, and, preferentially, with Fs(+) = 0. From the standard fitness, the adjusted
fitness Fa is calculated from

(24)

Finally, following the recommendation of having F '
i = Fi—F(-), the fitness function used

everywhere in this work (excep when expressly told) will be

(25)

where Fa(1
−

−G) it is the adjusted fitness of the worse individual of the previous generation.

The excuse for using Fa(1
−

−G) is that, to find F(-), it is necessary to evaluate all the

individuals of a generation, which implies that, in order to calculate F '
i = Fi —F(-), all the

individualsmust be evaluated twice every generation or all the individuals of a generation
must be stored in some data structure. The adopted solution, besides economical, does not
harm too much the original recommendation since generally Fa(1

−

−G) ≈Fa (-).

Next, we will see how to put all this into practice.

4. Problems
This section is intended to show how PBIL and FPBIL behave in different problems of
growing complexity. These problems belong to specific classes, which are, ultimately,
numerical or combinatorial, so we can learn how to proceed in both cases. Besides the
opportunity to see how these two algorithms works in practice, we will use the results then
achieved to quantitatively compare them and, whenever interesting, compare their results to
those of other techniques. Let us begin with the simplest.

4.1 A simple problem in 2H
In order to visualize better the differences between FPBIL and PBIL, we will use them in a
very simple problem: to find the greatest number in B = N4 ≡ {1, 2, 3, 4}. We can chose

BS = B, so that we need only n = 2 bits to cover all BS (because 22 = 4 = number of elements
in BS)—FPBIL and PBIL will work in H2, which is nothing but a simple (easy to visualize)
square. That means that we can correspond each point of to a member of BS . We may

choose, for example, n

BSM to be the following map:

 Advances in Evolutionary Algorithms

60

 (26)

Given the simplicity of this problem and the fact that we are, in this first moment, more
interested in seeing what happens inside the hypercube, a few simplifications will be done:
we will fix the population size; there will be no reinitializations; and the fitness will be the
raw fitness, which we choose to be:

 (27)

We make two experiments. In the first, we fix the population size to be P= 1, 000, 000, which
compared to the size of BS can be considered to be infinite. The result is shown in figure 4.

The contour lines represent constant values of F , according to equation (10) for the
fitness defined in equation (27). The lines describe the movement of FPBIL’s and PBIL’s
probability vectors.

Fig. 4. Comparison between FPBIL and PBIL in H2; P=1,000,000.

We see clearly that PBIL certainly finds the result to be “4”, but FPBIL’s line ends
mysteriously. This is FPBIL’s mutation in action. Since n = 2, the minimum value of d
allowed is dn = d2 = 1/3—FPBIL’s can move only inside [1/3, 2/3]2. This doesn’t mean
FPBIL can’t find the result “4”. In fact, from point (2/3, 1/3), the probability of getting the
result “4” is 4/9, 2 times higher than the probability of getting “1” or “2” and 4 times higher
than that of getting the result “3”.The mutation in PBIL is more subtle and can be observed
in the two sudden breaks suffered by PBIL’s line.
We also highlight, in the same figure, the blue arrows which represent the gradient of
F . Note that before the FPBIL’s line reach the limits of [1/3, 2/3]2, it (differently from

PBIL’s line) follows a direction very near from that of the gradient, which is just excellent,

FPBIL: A Parameter-free Evolutionary Algorithm

61

considering the discussion in section 3.1, meaning that in the limit of big values of P,

FPBIL’s line can follow the gradient of F to the optimum solution.
From this first experiment we are tempted to think PBIL is much better. But let us not forget
this was an “almost infinite” population size experiment. In real applications we generally
cannot span completely (whenever we can, we surely will not need FPBIL). Hence, in the
second experiment, we fix P = 2 (at maximum, half the elements of BS). The results are in
figure 5. This time we see what generally happens in a real world problem. Both PBIL and
FPBIL get more confused, but while FPBIL’s mechanisms keep it doing its search inside
[1/3, 2/3]2, PBIL converges prematurely to a local optimum.
The next problem is, in a sense, a tougher version of this first.

Fig. 5. Comparison between FPBIL and PBIL in H2; P=2.

4.2 Banana
The banana problem consists in minimizing the Rosenbrocks function (Gill et al., 1981):

 (28)

From a simple observation of the expression of this equation, we may conclude, without
trouble, that a minimum of B(x, y) occurs for (x, y) = (1, 1). Also it is not difficult to show
analytically that this is the only point where B(x, y) becomes stationary. However, looking at
the graph of B(x, y) it is impossible to come to the same conclusion.
It is quite obvious the existence of a valley located at y = x2, but finding the exact point of the
valley where B(x, y) is minimal is not simple at all. The difficulty in having such a view is
due to the factor 100 that multiplies only (y—x2)2 , leaving out the term (1—x)2. Only when
observed in a logarithmic scale, such as in figure 6, does the region where the minimum is
located become apparent. The white line is a contour line that shows the banana shape,
which names the problem.

 Advances in Evolutionary Algorithms

60

 (26)

Given the simplicity of this problem and the fact that we are, in this first moment, more
interested in seeing what happens inside the hypercube, a few simplifications will be done:
we will fix the population size; there will be no reinitializations; and the fitness will be the
raw fitness, which we choose to be:

 (27)

We make two experiments. In the first, we fix the population size to be P= 1, 000, 000, which
compared to the size of BS can be considered to be infinite. The result is shown in figure 4.

The contour lines represent constant values of F , according to equation (10) for the
fitness defined in equation (27). The lines describe the movement of FPBIL’s and PBIL’s
probability vectors.

Fig. 4. Comparison between FPBIL and PBIL in H2; P=1,000,000.

We see clearly that PBIL certainly finds the result to be “4”, but FPBIL’s line ends
mysteriously. This is FPBIL’s mutation in action. Since n = 2, the minimum value of d
allowed is dn = d2 = 1/3—FPBIL’s can move only inside [1/3, 2/3]2. This doesn’t mean
FPBIL can’t find the result “4”. In fact, from point (2/3, 1/3), the probability of getting the
result “4” is 4/9, 2 times higher than the probability of getting “1” or “2” and 4 times higher
than that of getting the result “3”.The mutation in PBIL is more subtle and can be observed
in the two sudden breaks suffered by PBIL’s line.
We also highlight, in the same figure, the blue arrows which represent the gradient of
F . Note that before the FPBIL’s line reach the limits of [1/3, 2/3]2, it (differently from

PBIL’s line) follows a direction very near from that of the gradient, which is just excellent,

FPBIL: A Parameter-free Evolutionary Algorithm

61

considering the discussion in section 3.1, meaning that in the limit of big values of P,

FPBIL’s line can follow the gradient of F to the optimum solution.
From this first experiment we are tempted to think PBIL is much better. But let us not forget
this was an “almost infinite” population size experiment. In real applications we generally
cannot span completely (whenever we can, we surely will not need FPBIL). Hence, in the
second experiment, we fix P = 2 (at maximum, half the elements of BS). The results are in
figure 5. This time we see what generally happens in a real world problem. Both PBIL and
FPBIL get more confused, but while FPBIL’s mechanisms keep it doing its search inside
[1/3, 2/3]2, PBIL converges prematurely to a local optimum.
The next problem is, in a sense, a tougher version of this first.

Fig. 5. Comparison between FPBIL and PBIL in H2; P=2.

4.2 Banana
The banana problem consists in minimizing the Rosenbrocks function (Gill et al., 1981):

 (28)

From a simple observation of the expression of this equation, we may conclude, without
trouble, that a minimum of B(x, y) occurs for (x, y) = (1, 1). Also it is not difficult to show
analytically that this is the only point where B(x, y) becomes stationary. However, looking at
the graph of B(x, y) it is impossible to come to the same conclusion.
It is quite obvious the existence of a valley located at y = x2, but finding the exact point of the
valley where B(x, y) is minimal is not simple at all. The difficulty in having such a view is
due to the factor 100 that multiplies only (y—x2)2 , leaving out the term (1—x)2. Only when
observed in a logarithmic scale, such as in figure 6, does the region where the minimum is
located become apparent. The white line is a contour line that shows the banana shape,
which names the problem.

 Advances in Evolutionary Algorithms

62

The Rosenbrocks function have been classically used to test optimization algorithms, exactly
because of the difficulty that this function imposes, especially for gradient-based search
algorithms.
The set BS ⊂ R to be codified into binary vectors, for the use of PBIL and FPBIL algorithms

will be [- 4.194304; 4.194304)2, with a granularity of 0.000001 in both variables x and y. This
means that each variable needs 23 bits to represent BS , resulting in a total of 246 = 70, 368,
744, 177, 664 possibilities.
More formally we have, with n = 2 ・23 = 46,

 (29)

With

(30)

(31)

Fig. 6. Contour lines of log10 B(x, y). The white curve, in a banana shape, highlights the blue
area where the minimum occurs.

Where G1() is the decoding of the first half of and G2(), of the second, both using Gra
code2 (Knuth, 2002). The fitness function of the banana problem used in this work is simply
B(x, y):

 (32)

2 The use of Gray code may improve results considerably (Baluja, 1995).

FPBIL: A Parameter-free Evolutionary Algorithm

63

Since we are dealing with a minimization problem and Fp(+) = 0, the standard fitness we
use will be the raw fitness itself:

 (33)

In order to compare FPBIL to PBIL, we executed each algorithm 100 times and computed the
average of the corresponding best individuals after a number of fitness evaluations. The
result is shown in figure 7. We can see that the initial advantage of PBIL is amply overcome
in the last fitness evaluations (approximately by a factor of 106). PBIL stagnates after 2, 000
fitness evaluations while FPBIL keeps finding better results in a constant rate until the end.
The next problem is a classical one concerning evolutionary search algorithms based on bit
vectors.

Fig. 7. Comparison between FPBIL and PBIL.

4.3 The four peaks problem
Consider the two functions defined on 100:

 O() = number of contiguous 1’s of starting in position 1; (34)

 Z() = number of contiguous 0’s of ending in position 100; (35)

where, for example, O(011 ⋅ ⋅ ⋅ 111) = 0, O(111 ⋅ ⋅ ⋅ 111) = 100, Z(111 ⋅ ⋅ ⋅ 110) = 1 and

Z(000 ⋅ ⋅ ⋅ 010) = 1. Consider also the reward function

(36)

defined on {0, 1, 2, . . . , 100}2 ×{0, 1, 2, . . . , 50}. In the four peaks problem, the objective is to
maximize the function

 Advances in Evolutionary Algorithms

62

The Rosenbrocks function have been classically used to test optimization algorithms, exactly
because of the difficulty that this function imposes, especially for gradient-based search
algorithms.
The set BS ⊂ R to be codified into binary vectors, for the use of PBIL and FPBIL algorithms

will be [- 4.194304; 4.194304)2, with a granularity of 0.000001 in both variables x and y. This
means that each variable needs 23 bits to represent BS , resulting in a total of 246 = 70, 368,
744, 177, 664 possibilities.
More formally we have, with n = 2 ・23 = 46,

 (29)

With

(30)

(31)

Fig. 6. Contour lines of log10 B(x, y). The white curve, in a banana shape, highlights the blue
area where the minimum occurs.

Where G1() is the decoding of the first half of and G2(), of the second, both using Gra
code2 (Knuth, 2002). The fitness function of the banana problem used in this work is simply
B(x, y):

 (32)

2 The use of Gray code may improve results considerably (Baluja, 1995).

FPBIL: A Parameter-free Evolutionary Algorithm

63

Since we are dealing with a minimization problem and Fp(+) = 0, the standard fitness we
use will be the raw fitness itself:

 (33)

In order to compare FPBIL to PBIL, we executed each algorithm 100 times and computed the
average of the corresponding best individuals after a number of fitness evaluations. The
result is shown in figure 7. We can see that the initial advantage of PBIL is amply overcome
in the last fitness evaluations (approximately by a factor of 106). PBIL stagnates after 2, 000
fitness evaluations while FPBIL keeps finding better results in a constant rate until the end.
The next problem is a classical one concerning evolutionary search algorithms based on bit
vectors.

Fig. 7. Comparison between FPBIL and PBIL.

4.3 The four peaks problem
Consider the two functions defined on 100:

 O() = number of contiguous 1’s of starting in position 1; (34)

 Z() = number of contiguous 0’s of ending in position 100; (35)

where, for example, O(011 ⋅ ⋅ ⋅ 111) = 0, O(111 ⋅ ⋅ ⋅ 111) = 100, Z(111 ⋅ ⋅ ⋅ 110) = 1 and

Z(000 ⋅ ⋅ ⋅ 010) = 1. Consider also the reward function

(36)

defined on {0, 1, 2, . . . , 100}2 ×{0, 1, 2, . . . , 50}. In the four peaks problem, the objective is to
maximize the function

 Advances in Evolutionary Algorithms

64

 (37)

Observing FT’s plot in figure 8, one perceives that the four peaks problem is highly
deceptive. There are two regions. One rewarded, corresponding to the upper surface, and
another one, not rewarded, corresponding to the lower one. No point of the not-rewarded
region (which increases with T) supplies us with any indication of the existence of the
reward, giving the wrong impression of the existence of just peaks P1 and P2—
corresponding to FT() = 100—while there still are the peaks P3 and P4—corresponding to
FT() = 200, the global optimums.

Fig. 8. Plot of FT(), the objective function of the four peaks problem.

All the tests of the four peaks problem , carried through in this work have had T = 30
corresponding to a great bigger difficulty than the maximum difficulty used in (Baluja &
Caruana, 1995), when, amongst a 25 total executions, the PBIL prematurely converged 20
times (the best result) and the genetic algorithms, between 22 and 25 times.
The raw fitness used in the four peaks problem was simply the value of FT(): Fr(i) =

FT(i). Since one is dealing with a maximization problem and Fs(+) = 200, the standard

fitness was Fs(i) = 200—FT(i). Figure 9 shows the comparison between FPBIL and PBIL,
where the averages of the best fitness, after a number of fitness evaluations, are plotted for
each algorithm. In 100 runs, PBIL was not able to reach the rewarded region, while the
FPBIL did it every time, having as worst result Fr(i) = 178.
In the four peaks problem, the observation of the probability vector’s evolution gives avery
interesting insight into the algorithms. Figure 10, for example, illustrates a typical FPBIL
run. It can be very clearly seen that during the first 1, 000, 000 fitness evaluations there were
4 reinitializations. After the second reinitialization, around the 2000th generation, FPBIL
clearly reaches the global optimum. The PBIL, on the other hand, as shown in figure 11,
converges, by the 2000th generation, to P2. It is also worth noting the occurrence of mutation
in PBIL. The white region corresponds to the probability vector’s component equal to 1. The
many red spots are the effects of mutation on the several components, making them change
toward the value 0.5.

FPBIL: A Parameter-free Evolutionary Algorithm

65

Fig. 9. Comparison between FPBIL and PBIL.

Fig. 10. Typical evolution of the probability vector in FPBIL.

4.4 TSP Rykel48
A traveling salesman must visit N cities, returning, in the end, to the city of origin, so that no
city is visited twice. There are several possible routes (for N > 2). In fact, the number of
routes is (N—1)!. The traveling salesman problem (TSP) consists in finding the shortest
route.
The TSP is a NP problem, meaning that there is not yet an algorithm of polynomial order
that can solve it. TheNP class can be considered as an intermediary computational

 Advances in Evolutionary Algorithms

64

 (37)

Observing FT’s plot in figure 8, one perceives that the four peaks problem is highly
deceptive. There are two regions. One rewarded, corresponding to the upper surface, and
another one, not rewarded, corresponding to the lower one. No point of the not-rewarded
region (which increases with T) supplies us with any indication of the existence of the
reward, giving the wrong impression of the existence of just peaks P1 and P2—
corresponding to FT() = 100—while there still are the peaks P3 and P4—corresponding to
FT() = 200, the global optimums.

Fig. 8. Plot of FT(), the objective function of the four peaks problem.

All the tests of the four peaks problem , carried through in this work have had T = 30
corresponding to a great bigger difficulty than the maximum difficulty used in (Baluja &
Caruana, 1995), when, amongst a 25 total executions, the PBIL prematurely converged 20
times (the best result) and the genetic algorithms, between 22 and 25 times.
The raw fitness used in the four peaks problem was simply the value of FT(): Fr(i) =

FT(i). Since one is dealing with a maximization problem and Fs(+) = 200, the standard

fitness was Fs(i) = 200—FT(i). Figure 9 shows the comparison between FPBIL and PBIL,
where the averages of the best fitness, after a number of fitness evaluations, are plotted for
each algorithm. In 100 runs, PBIL was not able to reach the rewarded region, while the
FPBIL did it every time, having as worst result Fr(i) = 178.
In the four peaks problem, the observation of the probability vector’s evolution gives avery
interesting insight into the algorithms. Figure 10, for example, illustrates a typical FPBIL
run. It can be very clearly seen that during the first 1, 000, 000 fitness evaluations there were
4 reinitializations. After the second reinitialization, around the 2000th generation, FPBIL
clearly reaches the global optimum. The PBIL, on the other hand, as shown in figure 11,
converges, by the 2000th generation, to P2. It is also worth noting the occurrence of mutation
in PBIL. The white region corresponds to the probability vector’s component equal to 1. The
many red spots are the effects of mutation on the several components, making them change
toward the value 0.5.

FPBIL: A Parameter-free Evolutionary Algorithm

65

Fig. 9. Comparison between FPBIL and PBIL.

Fig. 10. Typical evolution of the probability vector in FPBIL.

4.4 TSP Rykel48
A traveling salesman must visit N cities, returning, in the end, to the city of origin, so that no
city is visited twice. There are several possible routes (for N > 2). In fact, the number of
routes is (N—1)!. The traveling salesman problem (TSP) consists in finding the shortest
route.
The TSP is a NP problem, meaning that there is not yet an algorithm of polynomial order
that can solve it. TheNP class can be considered as an intermediary computational

 Advances in Evolutionary Algorithms

66

complexity class, between classes P and EXP; as only a great amount of combinations is
responsible for the demand of time (Lewis & Papadimitriou, 2000), the evaluation of each
combination is usually the easy part.

Fig. 11. Typical evolution of the probability vector in PBIL.

Rykel48 (TSPLIB, 2006) is a asymmetrical TSP with 48 cities resulting in a total of 258,623,
241,511,168,180,642,964,355,153,611,979,969,197,632,389,120,000,000,000 possible routes. In an
asymmetric TSP the distance from one city A to another city B may be different from the
distance from B to A, modeling, perhaps, single handed roads. Although the symmetric and
asymmetric TSPs share the same number of routes (for the same amount of N), the
asymmetry mixes up the search space topology, resulting in more complexes TSPs.
An important difference between Rykel48 TSP and the former problems is that the
restriction that no city can be visited more than once prevents the direct codification of
routes into bit vectors. The routes must be represented in an indirect way. In this work, we
used the random keys representation (Bean, 1994; Caldas, 2006).
The Rykel48 TSP’s raw fitness used in this work was simply the length of each route Ci

corresponding to individual i :

 (38)

Since it is a minimization problem, we could have Fp(i) = Fb(i). But since Fp(+) = 14, 422
≠ 0, the standard fitness used will be

 (39)

Figure 12 shows the result. As it can be seen, FPBIL keeps the lead formost of its execution,
especially in the latest 500,000 fitness evaluations.

FPBIL: A Parameter-free Evolutionary Algorithm

67

Figure 13 shows the minimum and maximum values found after a number of the algorithms
execution. The shortest route found by FPBIL was 14, 674, only 1.75% higher than the global
optimum. Note that the PBIL presented a greater dispersion around the average.
At this point, it must be emphasized that the route length 14, 422 is not easily reached by
any general purpose search algorithm. For example, the genetic algorithms only reach
values close to 16, 500 (Machado, 1999) and the algorithms based on ant colonies—designed
specifically to find smaller routes—achieve the optimum value only when processed in
parallel, even so, only when assisted with heuristics (de Lima, 2005). Fig. 13 shows that PBIL
is capable of reaching values just below 15, 000. The fact that FPBIL finds routes with the
length of 14, 674 is a remarkable achievement.

Fig. 12. Comparison between FPBIL and PBIL.

Fig. 13. Maximum and minimum values after a number of executions.

 Advances in Evolutionary Algorithms

66

complexity class, between classes P and EXP; as only a great amount of combinations is
responsible for the demand of time (Lewis & Papadimitriou, 2000), the evaluation of each
combination is usually the easy part.

Fig. 11. Typical evolution of the probability vector in PBIL.

Rykel48 (TSPLIB, 2006) is a asymmetrical TSP with 48 cities resulting in a total of 258,623,
241,511,168,180,642,964,355,153,611,979,969,197,632,389,120,000,000,000 possible routes. In an
asymmetric TSP the distance from one city A to another city B may be different from the
distance from B to A, modeling, perhaps, single handed roads. Although the symmetric and
asymmetric TSPs share the same number of routes (for the same amount of N), the
asymmetry mixes up the search space topology, resulting in more complexes TSPs.
An important difference between Rykel48 TSP and the former problems is that the
restriction that no city can be visited more than once prevents the direct codification of
routes into bit vectors. The routes must be represented in an indirect way. In this work, we
used the random keys representation (Bean, 1994; Caldas, 2006).
The Rykel48 TSP’s raw fitness used in this work was simply the length of each route Ci

corresponding to individual i :

 (38)

Since it is a minimization problem, we could have Fp(i) = Fb(i). But since Fp(+) = 14, 422
≠ 0, the standard fitness used will be

 (39)

Figure 12 shows the result. As it can be seen, FPBIL keeps the lead formost of its execution,
especially in the latest 500,000 fitness evaluations.

FPBIL: A Parameter-free Evolutionary Algorithm

67

Figure 13 shows the minimum and maximum values found after a number of the algorithms
execution. The shortest route found by FPBIL was 14, 674, only 1.75% higher than the global
optimum. Note that the PBIL presented a greater dispersion around the average.
At this point, it must be emphasized that the route length 14, 422 is not easily reached by
any general purpose search algorithm. For example, the genetic algorithms only reach
values close to 16, 500 (Machado, 1999) and the algorithms based on ant colonies—designed
specifically to find smaller routes—achieve the optimum value only when processed in
parallel, even so, only when assisted with heuristics (de Lima, 2005). Fig. 13 shows that PBIL
is capable of reaching values just below 15, 000. The fact that FPBIL finds routes with the
length of 14, 674 is a remarkable achievement.

Fig. 12. Comparison between FPBIL and PBIL.

Fig. 13. Maximum and minimum values after a number of executions.

 Advances in Evolutionary Algorithms

68

5. Conclusion
It can be affirmed, in conclusion to this chapter, that the FPBIL is an evolutionary algorithm,
competitive with the best current optimization techniques, compact, relatively modest in the
use of computational resources—like PBIL—, well founded, efficient, robust, self-adaptable,
simple and parameterless.
Furthermore, the examples show that the FPBIL is efficient at both numerical and
combinatorial problems. Here we should highlight the Four Peaks Problem, a highly
deceptive problem handled very well by FPBIL.
FPBIL is conceptually simple and intuitive, since it does not require much sophisticated
knowledge; it is compact, in the sense that it can be programmed with a few lines of code;
and uses little amount of memory, since there is no need to store individuals of a population
in some data structure.
The radically different way the mutation is handled in FPBIL is based on the probabilitie
distribution inherent of the probability vector itself. This is updated using all the available
information in each generation. These modifications enable the FPBIL to acquire self-
adjustable features—such as the mechanism of variable population size—making the
algorithm more efficient and more robust. Efficient in the sense that it finds solutions in less
time; robust, meaning it has more resources to escape from local optimums.
With the proposition of FPBIL, we expect to have added relevant theoretical and practical
tools, presenting feasible improvements with a considerable economic return, in both cost
and benefit.
There still are, however, improvements which might be incorporated into FPBIL. After
escaping from a local optimum, the FPBIL tends to approach the global optimum more
slowly than other algorithms—PBIL, for example. Considering the process as a whole, the
FPBIL takes advantage (since PBIL get caught more easily), but maybe it is possible to
combine FPBIL with some other fast search algorithm, resulting in an even more efficient
algorithm.
Other improvements can appear by constructing a multi-objective FPBIL— adapting the
techniques from (Machado, 2005)—or even a parallel FPBIL—based on the techniques of (de
Lima, 2005). One can still try to incorporate some kind of heuristic to the FPBIL perhaps
some described in (de Lima, 2005). Works in these directions prove that these
complementary techniques tends to produce better solutions.

6. Acknowledgments
In first place, I must thank God for all the great things he has done for me; for giving me
strength and wisdom to conclude this work.
I also thank the invitation done by Dr. Vedran Kordic who started all of this; who has shown
always very interested and helpful in his cordial emails.
Rubem and Lucia Caldas contributed with a fat slice of the costs for the publication of this
material. I Thank them very much for this and also for the affection always demonstrated.
I would like to make a special thanks to Rubem Natan, Gisele Flores and Walter Aiken III,
for the time they have spent trying to eliminate the maximum number of errors that I hid
inside this chapter while I was preparing it. You guys are great!

FPBIL: A Parameter-free Evolutionary Algorithm

69

I thank also all my colleagues from CNEN and COPPE/UFRJ for the support, specially
those guys from room 429. You are insane!
I thank a lot my family, which have always encouraged and loved me. Rubem, Lúcia, Mrs.
Rose, Mr. Antônio, Gisele, Elso, Ricardo, Anna, Luciana, Rosimar, Alexandre, Antônio Jr.
and Tarsila. In particular, I would like to thank my wife, Renata, who promptly changed our
vacation for this project. Love you! (not because of that!!!).
I also wanna thank my newest group of friends: Elthom, Susanne, Gustavo, Graciana, Victor
and Leilane. You guys have been very important to me lately. You rock!

7. References
Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic

search based function optimization and competitive learning. Tech. Rep. CMU-CS-
94-163, Pittsburgh, PA. URL http://citeseer.ist.psu.edu/baluja94population.html

Baluja, S. (1995). An empirical comparison of seven iterative and evolutionary function
optimization heuristics. Tech. Rep. CMU-CS-95-193. URL http://
citeseer.ist.psu.edu/baluja95empirical.html

Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic algorithm.
In A. Prieditis, & S. Russel (Eds.) The Int. Conf. on Machine Learning 1995, (pp. 38–
46). San Mateo, CA: Morgan Kaufmann Publishers. URL http://citeseer.ist.psu.edu
/baluja95removing.html

Baluja, S., & Davies, S. (1998). Fast probabilistic modeling for combinatorial optimization. In
AAAI/IAAI, (pp. 469–476). URL http://citeseer.ist.psu.edu/baluja98fast.html

Bean, J. C. (1994). “genetic algorithms and random keys for sequencing and optimization”.
ORSA Journal on Computing, 6(2).

Caldas, G. H. F. (2006). Algoritmo Evolucionário não Parametrizado Aplicado ao Problema da
Otimiza¸cão de Recargas de Reatores Nucleares. Ph.D. thesis, COPPE/UFRJ, Brazil.

de Lima, A. M. M. (2005). Recarga de Reatores Nucleares Utilizando Redes Conectivas de Colônias
Artificiais. Ph.D. thesis, COPPE/UFRJ, Rio de Janeiro.

Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical Optimization. San Diego: Academic
Press.

Goldberg, D. E. (1989). GENETIC ALGORITHMS in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. Massachusetts: MIT Press,
second ed.

Juels, A., Baluja, S., & Sinclair, A. (1993). The equilibrium genetic algorithm and the role of
crossover. URL http://citeseer.ist.psu.edu/juels93equilibrium.html

Knuth, D. E. (2002). The Art of Computer Programming. Stanford: Addison-Wesley, pre fascicle
2A ed.

Koza, J. R. (1992). Genetic Programming - On the Programming of Computers by Means of
Natural Selection. Cambridge: MIT Press.

Lewis, H. R., & Papadimitriou, C. H. (2000). Elementos de teoria da Computação. Porto Alegre:
Bookman, second ed.

 Advances in Evolutionary Algorithms

68

5. Conclusion
It can be affirmed, in conclusion to this chapter, that the FPBIL is an evolutionary algorithm,
competitive with the best current optimization techniques, compact, relatively modest in the
use of computational resources—like PBIL—, well founded, efficient, robust, self-adaptable,
simple and parameterless.
Furthermore, the examples show that the FPBIL is efficient at both numerical and
combinatorial problems. Here we should highlight the Four Peaks Problem, a highly
deceptive problem handled very well by FPBIL.
FPBIL is conceptually simple and intuitive, since it does not require much sophisticated
knowledge; it is compact, in the sense that it can be programmed with a few lines of code;
and uses little amount of memory, since there is no need to store individuals of a population
in some data structure.
The radically different way the mutation is handled in FPBIL is based on the probabilitie
distribution inherent of the probability vector itself. This is updated using all the available
information in each generation. These modifications enable the FPBIL to acquire self-
adjustable features—such as the mechanism of variable population size—making the
algorithm more efficient and more robust. Efficient in the sense that it finds solutions in less
time; robust, meaning it has more resources to escape from local optimums.
With the proposition of FPBIL, we expect to have added relevant theoretical and practical
tools, presenting feasible improvements with a considerable economic return, in both cost
and benefit.
There still are, however, improvements which might be incorporated into FPBIL. After
escaping from a local optimum, the FPBIL tends to approach the global optimum more
slowly than other algorithms—PBIL, for example. Considering the process as a whole, the
FPBIL takes advantage (since PBIL get caught more easily), but maybe it is possible to
combine FPBIL with some other fast search algorithm, resulting in an even more efficient
algorithm.
Other improvements can appear by constructing a multi-objective FPBIL— adapting the
techniques from (Machado, 2005)—or even a parallel FPBIL—based on the techniques of (de
Lima, 2005). One can still try to incorporate some kind of heuristic to the FPBIL perhaps
some described in (de Lima, 2005). Works in these directions prove that these
complementary techniques tends to produce better solutions.

6. Acknowledgments
In first place, I must thank God for all the great things he has done for me; for giving me
strength and wisdom to conclude this work.
I also thank the invitation done by Dr. Vedran Kordic who started all of this; who has shown
always very interested and helpful in his cordial emails.
Rubem and Lucia Caldas contributed with a fat slice of the costs for the publication of this
material. I Thank them very much for this and also for the affection always demonstrated.
I would like to make a special thanks to Rubem Natan, Gisele Flores and Walter Aiken III,
for the time they have spent trying to eliminate the maximum number of errors that I hid
inside this chapter while I was preparing it. You guys are great!

FPBIL: A Parameter-free Evolutionary Algorithm

69

I thank also all my colleagues from CNEN and COPPE/UFRJ for the support, specially
those guys from room 429. You are insane!
I thank a lot my family, which have always encouraged and loved me. Rubem, Lúcia, Mrs.
Rose, Mr. Antônio, Gisele, Elso, Ricardo, Anna, Luciana, Rosimar, Alexandre, Antônio Jr.
and Tarsila. In particular, I would like to thank my wife, Renata, who promptly changed our
vacation for this project. Love you! (not because of that!!!).
I also wanna thank my newest group of friends: Elthom, Susanne, Gustavo, Graciana, Victor
and Leilane. You guys have been very important to me lately. You rock!

7. References
Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic

search based function optimization and competitive learning. Tech. Rep. CMU-CS-
94-163, Pittsburgh, PA. URL http://citeseer.ist.psu.edu/baluja94population.html

Baluja, S. (1995). An empirical comparison of seven iterative and evolutionary function
optimization heuristics. Tech. Rep. CMU-CS-95-193. URL http://
citeseer.ist.psu.edu/baluja95empirical.html

Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic algorithm.
In A. Prieditis, & S. Russel (Eds.) The Int. Conf. on Machine Learning 1995, (pp. 38–
46). San Mateo, CA: Morgan Kaufmann Publishers. URL http://citeseer.ist.psu.edu
/baluja95removing.html

Baluja, S., & Davies, S. (1998). Fast probabilistic modeling for combinatorial optimization. In
AAAI/IAAI, (pp. 469–476). URL http://citeseer.ist.psu.edu/baluja98fast.html

Bean, J. C. (1994). “genetic algorithms and random keys for sequencing and optimization”.
ORSA Journal on Computing, 6(2).

Caldas, G. H. F. (2006). Algoritmo Evolucionário não Parametrizado Aplicado ao Problema da
Otimiza¸cão de Recargas de Reatores Nucleares. Ph.D. thesis, COPPE/UFRJ, Brazil.

de Lima, A. M. M. (2005). Recarga de Reatores Nucleares Utilizando Redes Conectivas de Colônias
Artificiais. Ph.D. thesis, COPPE/UFRJ, Rio de Janeiro.

Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical Optimization. San Diego: Academic
Press.

Goldberg, D. E. (1989). GENETIC ALGORITHMS in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. Massachusetts: MIT Press,
second ed.

Juels, A., Baluja, S., & Sinclair, A. (1993). The equilibrium genetic algorithm and the role of
crossover. URL http://citeseer.ist.psu.edu/juels93equilibrium.html

Knuth, D. E. (2002). The Art of Computer Programming. Stanford: Addison-Wesley, pre fascicle
2A ed.

Koza, J. R. (1992). Genetic Programming - On the Programming of Computers by Means of
Natural Selection. Cambridge: MIT Press.

Lewis, H. R., & Papadimitriou, C. H. (2000). Elementos de teoria da Computação. Porto Alegre:
Bookman, second ed.

 Advances in Evolutionary Algorithms

70

Machado, M. D. (1999). Um Novo Algoritmo Evolucionário com Aprendizado LVQ para a
Otimização de Problemas Combinatórios como a Recarga de Reatores Nucleares. Master’s
thesis, COPPE/UFRJ, Rio de Janeiro.

Machado, M. D. (2005). Algoritmo Evolucionário PBIL Multi Objetivo Aplicado ao Problema da
Recarga de Reatores Nucleares. Ph.D. thesis, COPPE/UFRJ, Rio de Janeiro.

TSPLIB (2006). TSPLIB - a library of traveling salesman problem and related problem
instances. URL http://nhse.cs.rice.edu/softlib/catalog/tsplib/tsp/

Part II:

Hybrid and Harmony Search

 Advances in Evolutionary Algorithms

70

Machado, M. D. (1999). Um Novo Algoritmo Evolucionário com Aprendizado LVQ para a
Otimização de Problemas Combinatórios como a Recarga de Reatores Nucleares. Master’s
thesis, COPPE/UFRJ, Rio de Janeiro.

Machado, M. D. (2005). Algoritmo Evolucionário PBIL Multi Objetivo Aplicado ao Problema da
Recarga de Reatores Nucleares. Ph.D. thesis, COPPE/UFRJ, Rio de Janeiro.

TSPLIB (2006). TSPLIB - a library of traveling salesman problem and related problem
instances. URL http://nhse.cs.rice.edu/softlib/catalog/tsplib/tsp/

Part II:

Hybrid and Harmony Search

4

A Memetic Algorithm Assisted by an Adaptive
Topology RBF Network and Variable Local

Models for Expensive Optimization Problems
Yoel Tenne and S.W. Armfield

School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney,
Australia

1. Introduction
A common practice in modern engineering is that of simulation-driven optimization. This
implies replacing costly and lengthy laboratory experiments with computer experiments,
i.e. computationally-intensive simulations which model real world physics with high
fidelity. Due to the complexity of such simulations a single simulation run can require up to
several hours of CPU time of a high-performance computer [45, 56, 61].
With computer experiments the simulation-driven optimization process is cast as a
nonlinear optimization problem having three distinct features:
- There is typically no analytic expression for the relation between inputs (candidate

designs) and outputs, i.e. it is a black-box function.
- Each simulation run is expensive so only a small number (∼ 200) of runs can be made.
- The underlying real-world physics and/or numerical solution often yield an inputs–

output landscape which is multimodal and nonsmooth.
A promising approach to tackle such problems is the surrogate-assisted memetic
optimization. A memetic algorithm combines an evolutionary algorithm (EA) with an
efficient local search so as to obtain both efficient exploration and exploitation during the
optimization search [21, 65]. A surrogate-model is a computationally cheaper mathematical
approximation of the expensive objective function and is used during the optimization
search in lieu of the expensive function [2, 45] (in some references the term metamodel is
used synonymously while ‘surrogate-model’ is reserved for a lower-fidelity simulation [42,
87]). Thus, using surrogate-models circumvents the problem of simulation cost and allows
evaluation of many candidate designs.
In this study we propose a surrogate-assisted memetic algorithm which builds upon recent
advances in computational intelligence and optimization [9, 53, 60, 83–85, 94]. The proposed
algorithm aims to address four open issues:
- Obtaining a global model with a small generalization error is too expensive: analysis

has shown the number of sites required to achieve a fixed generalization error grows
exponentially with the problem dimension [79]. To avoid allocating all function
evaluations to the global model we employ a combination of global and local
surrogate-models to achieve an efficient optimization search.

4

A Memetic Algorithm Assisted by an Adaptive
Topology RBF Network and Variable Local

Models for Expensive Optimization Problems
Yoel Tenne and S.W. Armfield

School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney,
Australia

1. Introduction
A common practice in modern engineering is that of simulation-driven optimization. This
implies replacing costly and lengthy laboratory experiments with computer experiments,
i.e. computationally-intensive simulations which model real world physics with high
fidelity. Due to the complexity of such simulations a single simulation run can require up to
several hours of CPU time of a high-performance computer [45, 56, 61].
With computer experiments the simulation-driven optimization process is cast as a
nonlinear optimization problem having three distinct features:
- There is typically no analytic expression for the relation between inputs (candidate

designs) and outputs, i.e. it is a black-box function.
- Each simulation run is expensive so only a small number (∼ 200) of runs can be made.
- The underlying real-world physics and/or numerical solution often yield an inputs–

output landscape which is multimodal and nonsmooth.
A promising approach to tackle such problems is the surrogate-assisted memetic
optimization. A memetic algorithm combines an evolutionary algorithm (EA) with an
efficient local search so as to obtain both efficient exploration and exploitation during the
optimization search [21, 65]. A surrogate-model is a computationally cheaper mathematical
approximation of the expensive objective function and is used during the optimization
search in lieu of the expensive function [2, 45] (in some references the term metamodel is
used synonymously while ‘surrogate-model’ is reserved for a lower-fidelity simulation [42,
87]). Thus, using surrogate-models circumvents the problem of simulation cost and allows
evaluation of many candidate designs.
In this study we propose a surrogate-assisted memetic algorithm which builds upon recent
advances in computational intelligence and optimization [9, 53, 60, 83–85, 94]. The proposed
algorithm aims to address four open issues:
- Obtaining a global model with a small generalization error is too expensive: analysis

has shown the number of sites required to achieve a fixed generalization error grows
exponentially with the problem dimension [79]. To avoid allocating all function
evaluations to the global model we employ a combination of global and local
surrogate-models to achieve an efficient optimization search.

 Advances in Evolutionary Algorithms

72

- The accuracy of a global Lagrangian model can degrade due to over-fitting: a
Lagrangian model learns the exact features of the data which can lead to over-fitting
and degrades its generalization ability. To address this we use as a global surrogate-
model an artificial neural network based on a RBF network (RBFN) with an adaptive
network topology. We describe an efficient method for adapting and training the
network.

- Convergence to a false optimum: the local search relies on local models, hence if these
are badly inaccurate the local search may converge to a false optimum. To address this
we employ a trust-region framework applied to general nonlinear local models. Such
models can describe a complicated landscape better than the quadratic models of the
classical trust-region approach. We propose a framework for safeguarding and
improving the models’ accuracy.

- Difficulty in selecting an optimal model: different models can be used during the local
search, e.g. RBF and Kriging. Due to lack of information the user typically chooses an
inoptimal model which degrades the local search performance. To address this we
describe a method for model selection based on an approximate generalization error.
The method results in local models which vary during the local search.

Accordingly, in this chapter we propose a framework of memetic optimization using
variable global and local surrogate-models for expensive optimization problems. To obtain a
global model with good generalization ability it uses an RBFN artificial neural network.
During the local search it makes an extensive use of accuracy assessment to select the local
models and to improve them if necessary. It also employs the trust-region approach but
replaces the quadratic models with the more general RBF and Kriging models. Rigorous
performance analysis shows the proposed algorithm outperforms several variants of a
reference surrogate-assisted EA.
This chapter is organized as follows: Sect. 2 reviews related work and Sect. 3 describes in
detail the proposed algorithm. This is followed by Sect. 4 which provides the performance
analysis and lastly Sect. 5 summarizes this chapter.

2. Related work
2.1 Expensive optimization problems
Since EAs require many function evaluations to converge several approaches have been
studied so as to make them applicable to expensive optimization problems.
One such approach is fitness inheritance, where only a fraction of the offspring are
evaluated with the computationally expensive objective function and the rest inherit their
fitness from their parents [32, 75].
A second approach is that of hierarchical or variable-fidelity optimization which uses
several computer simulations of varying computational cost (fidelity); promising candidate
solutions migrate from low- to high-fidelity simulations and vice versa [15, 68, 71].
A third approach, which we adapt in this study, is that of surrogate-assisted optimization
[2, 20, 26, 30, 53, 63, 77, 83, 85, 94]. As mentioned, a surrogate-model is a mathematically-
cheaper approximation of the expensive function (typically an interpolant). A least-squares
quadratic model (originally designed for real-world experiments which are noisy) are used
in the Response Surface Methodology [5, 48]. Recent studies have used neural-networks [29,
61], Kriging [63, 72] and radial basis functions [85, 94]. The framework of surrogate-assisted

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

73

optimization also involves the design of computer experiments [25, 73] and accuracy
assessment of surrogate-models [42, 74].

2.2 Memetic optimization
Heuristics using random processes, such as EAs, are efficient in exploring the objective
function landscape and can escape non-global optima. However, in late stages the
optimization search focuses on a small subset of the search space so exploiting the local
function behavior is preferred. This motivates the hybridization of random-based heuristics
with efficient local search algorithms to balance exploration–exploitation, i.e. an efficient
global and local search [88]. Within the framework of evolutionary optimization such
algorithms are termed hybrid algorithms or memetic algorithms.
Examples include hybridization of an EA with a quasi-Newton and conjugate directions
algorithms [21, 62, 66] and various direct search methods [33, 65, 91, 92]. Multiobjective
memetic algorithms were studied in [19, 61] and a parallel algorithm was studied in [10]. An
algorithm for selection among candidate local searchs was studied in [52]. Memetic
algorithms aimed for expensive optimization problems were studied in [53, 54, 83, 84, 93,
94].

3. The proposed algorithm
3.1 Initialization and main loop
Analysis shows the number of sites required to achieve a fixed interpolation error grows
exponentially with problem dimension [79]. This implies it is inefficient to allocate most or
even all function evaluations to a single model as this may still result in an inaccurate
model. Accordingly, we use a sequential approach where we only aim for a coarse global
model and then use the remaining function evaluations to converge to an optimum [87]. As
such, the algorithm begins by generating a Latin Hypercube sample (LHS) of N0 = 0.2femax

where femax is the prescribed limit on evaluations of the expensive function. This provides a
space-filling sample which improves the model accuracy [41, 73]. The sites are evaluated
with the true objective function to obtain their corresponding responses and both are copied
into a cache which is initially empty. Next, a global model is generated based on all cached
sites using the procedure described in Sect. 3.2. We then search for an optimum of this
model using a memetic algorithm. Lastly in the optimization iteration, a local search is
initiated from the predicted optimum so as to converge to an optimum of the expensive
function, as described in Sect. 3.4. The main loop terminates when the number of function
evaluations reaches the prescribed limit femax (femax = 100, 150 and 200 were used for
performance analysis). A pseudocode of the main algorithm is given in Algorithm 1.

 Advances in Evolutionary Algorithms

72

- The accuracy of a global Lagrangian model can degrade due to over-fitting: a
Lagrangian model learns the exact features of the data which can lead to over-fitting
and degrades its generalization ability. To address this we use as a global surrogate-
model an artificial neural network based on a RBF network (RBFN) with an adaptive
network topology. We describe an efficient method for adapting and training the
network.

- Convergence to a false optimum: the local search relies on local models, hence if these
are badly inaccurate the local search may converge to a false optimum. To address this
we employ a trust-region framework applied to general nonlinear local models. Such
models can describe a complicated landscape better than the quadratic models of the
classical trust-region approach. We propose a framework for safeguarding and
improving the models’ accuracy.

- Difficulty in selecting an optimal model: different models can be used during the local
search, e.g. RBF and Kriging. Due to lack of information the user typically chooses an
inoptimal model which degrades the local search performance. To address this we
describe a method for model selection based on an approximate generalization error.
The method results in local models which vary during the local search.

Accordingly, in this chapter we propose a framework of memetic optimization using
variable global and local surrogate-models for expensive optimization problems. To obtain a
global model with good generalization ability it uses an RBFN artificial neural network.
During the local search it makes an extensive use of accuracy assessment to select the local
models and to improve them if necessary. It also employs the trust-region approach but
replaces the quadratic models with the more general RBF and Kriging models. Rigorous
performance analysis shows the proposed algorithm outperforms several variants of a
reference surrogate-assisted EA.
This chapter is organized as follows: Sect. 2 reviews related work and Sect. 3 describes in
detail the proposed algorithm. This is followed by Sect. 4 which provides the performance
analysis and lastly Sect. 5 summarizes this chapter.

2. Related work
2.1 Expensive optimization problems
Since EAs require many function evaluations to converge several approaches have been
studied so as to make them applicable to expensive optimization problems.
One such approach is fitness inheritance, where only a fraction of the offspring are
evaluated with the computationally expensive objective function and the rest inherit their
fitness from their parents [32, 75].
A second approach is that of hierarchical or variable-fidelity optimization which uses
several computer simulations of varying computational cost (fidelity); promising candidate
solutions migrate from low- to high-fidelity simulations and vice versa [15, 68, 71].
A third approach, which we adapt in this study, is that of surrogate-assisted optimization
[2, 20, 26, 30, 53, 63, 77, 83, 85, 94]. As mentioned, a surrogate-model is a mathematically-
cheaper approximation of the expensive function (typically an interpolant). A least-squares
quadratic model (originally designed for real-world experiments which are noisy) are used
in the Response Surface Methodology [5, 48]. Recent studies have used neural-networks [29,
61], Kriging [63, 72] and radial basis functions [85, 94]. The framework of surrogate-assisted

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

73

optimization also involves the design of computer experiments [25, 73] and accuracy
assessment of surrogate-models [42, 74].

2.2 Memetic optimization
Heuristics using random processes, such as EAs, are efficient in exploring the objective
function landscape and can escape non-global optima. However, in late stages the
optimization search focuses on a small subset of the search space so exploiting the local
function behavior is preferred. This motivates the hybridization of random-based heuristics
with efficient local search algorithms to balance exploration–exploitation, i.e. an efficient
global and local search [88]. Within the framework of evolutionary optimization such
algorithms are termed hybrid algorithms or memetic algorithms.
Examples include hybridization of an EA with a quasi-Newton and conjugate directions
algorithms [21, 62, 66] and various direct search methods [33, 65, 91, 92]. Multiobjective
memetic algorithms were studied in [19, 61] and a parallel algorithm was studied in [10]. An
algorithm for selection among candidate local searchs was studied in [52]. Memetic
algorithms aimed for expensive optimization problems were studied in [53, 54, 83, 84, 93,
94].

3. The proposed algorithm
3.1 Initialization and main loop
Analysis shows the number of sites required to achieve a fixed interpolation error grows
exponentially with problem dimension [79]. This implies it is inefficient to allocate most or
even all function evaluations to a single model as this may still result in an inaccurate
model. Accordingly, we use a sequential approach where we only aim for a coarse global
model and then use the remaining function evaluations to converge to an optimum [87]. As
such, the algorithm begins by generating a Latin Hypercube sample (LHS) of N0 = 0.2femax

where femax is the prescribed limit on evaluations of the expensive function. This provides a
space-filling sample which improves the model accuracy [41, 73]. The sites are evaluated
with the true objective function to obtain their corresponding responses and both are copied
into a cache which is initially empty. Next, a global model is generated based on all cached
sites using the procedure described in Sect. 3.2. We then search for an optimum of this
model using a memetic algorithm. Lastly in the optimization iteration, a local search is
initiated from the predicted optimum so as to converge to an optimum of the expensive
function, as described in Sect. 3.4. The main loop terminates when the number of function
evaluations reaches the prescribed limit femax (femax = 100, 150 and 200 were used for
performance analysis). A pseudocode of the main algorithm is given in Algorithm 1.

 Advances in Evolutionary Algorithms

74

3.2 A variable-topology RBFN global model
A global model which is a Lagrangian interpolant, i.e. satisfying the conditions of exact
interpolation

 (1)

can suffer from two demerits: a) it can generalize poorly due to over-fitting to the given data
[4, 7, 34] and b) it can become computationally-expensive (since it accounts for all sites) and
numerically unstable (due to ill-conditioning) [6, 11, 28].
To circumvent these issues we use for the global model an artificial neural network with
radial basis functions neurons (processing units), a design termed an RBF network (RBFN).
Such networks have two merits: a) both theoretical analysis and real-world experience have
shown they generalize well [22, 43, 59, 81] and b) they have a simpler topology compared to
other networks and hence are more easily implemented and trained [46, 57, 58].

Fig. 1. An RBFN with three neurons (processing units).

Figure 1 shows a diagram of a typical RBFN. It comprises of three layers: the input layer, the
processing layer comprised of neurons and the output layer which is a weighted sum of the
neuron responses. An RBFN generalizes well and avoids over-fitting since it generates an
abstraction of the data set. This is achieved by using fewer neurons than sample sites (so the
centres of the neuron RBFs typically do not coincide with any of the data sites) and careful
training of the network parameters. The response of an RBFN is given as

(2)

where N is the number of neurons, λ j is a coefficient, jt is a basis-function (or kernel)

centre and jc is a shape parameter (or hyper-parameter). The neurons are RBF Gaussian
functions which assist in modelling nonlinear functions [22, 43, 49, 57].
To avoid ill-conditioning and expensive calculation the network needs to be compact
(minimizing the number of neurons N) while still be capable of generalizing well. Also, it is
difficult to prescribe an optimal topology so the network should be self-adaptive [18, 30, 31,
39, 58]. Accordingly, we implement such a self-adaptive network which operates as follows.
Initially, the data set is split into a training set (Xtra) and a testing set (Xtra) which are disjoint
(we use a 80–20 training–testing ratio). Starting from a single neuron, the network is trained

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

75

with Xtra and is tested with Xtes , an approach termed holdout [23, 82]. The generalization
error is measured by the normalized root mean square error (NRMSE) over Xtes , i.e.

(3)

where xi is the ith site in the testing set Xtes and the numerator is the sum of the Gaussian
loss-function (or discrepancy)

 (4)

over then training set [34]. The denominator is the variance of the responses in the testing
set. Besides the NRMSE the loss-function values over the training and testing set are also
calculated, i.e.

(5)

and similarly for the training set yielding Ltra . If NRMSE > NRMSE
⋆
 where NRMSE

⋆
 is

prescribed than 0.1|Xtra| neurons are added to the network and the new network is trained

as explained below. The network stops growing if NRMSE ≤ NRMSE
⋆
 or if the number of

neurons equals the number of training sites (N =|Xtra|) . After the network stopped
growing the chosen topology is that which had the lowest weighted error

 (6)

where a larger weight is given to the testing error over the training error.
For each number of neurons the network parameters (RBF centres, coefficients, shape
parameters) need to be trained to achieve good generalization. While it is possible to train
the network in a fully supervised manner by minimization of the generalization error
convergence is slow [46]. Accordingly, we implement a fully unsupervised learning where
the RBF centres are obtained by a k-means clustering algorithm [31, 46], the shape
parameters are obtained from

 (7)

whered is the mean l2 distance between all sites in the data set X (related to the Gaussian

rate of decay) [57, 58]), and the coefficients λ are obtained from the normal least-squares
equations

, (8)

 Advances in Evolutionary Algorithms

74

3.2 A variable-topology RBFN global model
A global model which is a Lagrangian interpolant, i.e. satisfying the conditions of exact
interpolation

 (1)

can suffer from two demerits: a) it can generalize poorly due to over-fitting to the given data
[4, 7, 34] and b) it can become computationally-expensive (since it accounts for all sites) and
numerically unstable (due to ill-conditioning) [6, 11, 28].
To circumvent these issues we use for the global model an artificial neural network with
radial basis functions neurons (processing units), a design termed an RBF network (RBFN).
Such networks have two merits: a) both theoretical analysis and real-world experience have
shown they generalize well [22, 43, 59, 81] and b) they have a simpler topology compared to
other networks and hence are more easily implemented and trained [46, 57, 58].

Fig. 1. An RBFN with three neurons (processing units).

Figure 1 shows a diagram of a typical RBFN. It comprises of three layers: the input layer, the
processing layer comprised of neurons and the output layer which is a weighted sum of the
neuron responses. An RBFN generalizes well and avoids over-fitting since it generates an
abstraction of the data set. This is achieved by using fewer neurons than sample sites (so the
centres of the neuron RBFs typically do not coincide with any of the data sites) and careful
training of the network parameters. The response of an RBFN is given as

(2)

where N is the number of neurons, λ j is a coefficient, jt is a basis-function (or kernel)

centre and jc is a shape parameter (or hyper-parameter). The neurons are RBF Gaussian
functions which assist in modelling nonlinear functions [22, 43, 49, 57].
To avoid ill-conditioning and expensive calculation the network needs to be compact
(minimizing the number of neurons N) while still be capable of generalizing well. Also, it is
difficult to prescribe an optimal topology so the network should be self-adaptive [18, 30, 31,
39, 58]. Accordingly, we implement such a self-adaptive network which operates as follows.
Initially, the data set is split into a training set (Xtra) and a testing set (Xtra) which are disjoint
(we use a 80–20 training–testing ratio). Starting from a single neuron, the network is trained

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

75

with Xtra and is tested with Xtes , an approach termed holdout [23, 82]. The generalization
error is measured by the normalized root mean square error (NRMSE) over Xtes , i.e.

(3)

where xi is the ith site in the testing set Xtes and the numerator is the sum of the Gaussian
loss-function (or discrepancy)

 (4)

over then training set [34]. The denominator is the variance of the responses in the testing
set. Besides the NRMSE the loss-function values over the training and testing set are also
calculated, i.e.

(5)

and similarly for the training set yielding Ltra . If NRMSE > NRMSE
⋆
 where NRMSE

⋆
 is

prescribed than 0.1|Xtra| neurons are added to the network and the new network is trained

as explained below. The network stops growing if NRMSE ≤ NRMSE
⋆
 or if the number of

neurons equals the number of training sites (N =|Xtra|) . After the network stopped
growing the chosen topology is that which had the lowest weighted error

 (6)

where a larger weight is given to the testing error over the training error.
For each number of neurons the network parameters (RBF centres, coefficients, shape
parameters) need to be trained to achieve good generalization. While it is possible to train
the network in a fully supervised manner by minimization of the generalization error
convergence is slow [46]. Accordingly, we implement a fully unsupervised learning where
the RBF centres are obtained by a k-means clustering algorithm [31, 46], the shape
parameters are obtained from

 (7)

whered is the mean l2 distance between all sites in the data set X (related to the Gaussian

rate of decay) [57, 58]), and the coefficients λ are obtained from the normal least-squares
equations

, (8)

 Advances in Evolutionary Algorithms

76

where f is the vector of responses and Φ is the interpolation matrix

(9)

Figure 2 shows an example of a model training with the variations in Ltra and Ltes . When the
network is over-trained the testing error begins to grow. The parameters are taken from the
cycle which minimized ew before over-training. Figure 3 shows an example of the adaptation
of the proposed RBFN. Algorithm 2 gives a pseudocode of the proposed algorithm for the
adaptive RBFN.

Fig. 2. An example of the RBFN training with the Rastrigin-5D objective function. As the
number of neurons increases both training error and testing error decrease until
overtraining commences at 9 neurons (indicated by an increase in the testing error). The
chosen topology has the minimal weighted error.

 (a) 4 neurons (b) 9 neurons

Fig. 3. An example of the RBFN topology adaptation with the Rastrigin-2D function. A
sample of 20 sites was split into training (■) and testing (▲) sites. We show each topology
by its RBFN centres () and the corresponding shape parameters (the radius of the circles).

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

77

3.3 Memetic search for an optimum of the global model
After generating the global model S(x) we use a memetic algorithm to search for an
optimum of it. The memetic algorithm first employs a real-coded EA [8] for efficient
exploration. The EA uses a population size spop = 50 , linear ranking, stochastic universal

sampling (SUS), intermediate recombination, elitism with a generation gap ggap = 0.9 and the
breeder-genetic-algorithm mutation operator with probability pm = 0.05 [47]. The
evolutionary search is stopped when no improvement is observed after gn.i. = 10 generations;
the small setting for gn.i. is since we do not require the EA to converge to a very accurate
solution, as this is accomplished by the following step. The optimum found by the EA is
then used as the initial solution for an SQP solver which uses the finite-differences quasi-
Newton BFGS algorithm. This yields an improved predicted optimum of the global
model. During the memetic optimization stage approximate function values are obtained
from the surrogate-model (the objective function is not used).

3.4 The local search
Since the global model is coarse may be a bad approximation to a true optimum of the
expensive function. Accordingly, we use as an initial guess for a local search to search
for a true optimum. Two considerations with the local search are efficiency (which suggests
using local models requiring fewer sites than the global model) and accuracy (which
suggests using a procedure to safeguard against convergence to a false optimum). Both of
these goals are accomplished by using a trust-region approach, as described below. To
further improve the local search we propose a method for selecting the model type (as either
RBF or Kriging) and to improve the models, if necessary; this results in local models which
vary during the local search.

3.4.1 A trust-region approach
The classical trust-region approach generates at each iteration a quadratic model and obtains
its constrained optimum (a truncated Newton step) as a quadratic programming problem.
However, such models cannot adequately describe a complicated or multimodal landscape
so instead we generate more flexible local models (either RBF or Kriging) and obtain their

 Advances in Evolutionary Algorithms

76

where f is the vector of responses and Φ is the interpolation matrix

(9)

Figure 2 shows an example of a model training with the variations in Ltra and Ltes . When the
network is over-trained the testing error begins to grow. The parameters are taken from the
cycle which minimized ew before over-training. Figure 3 shows an example of the adaptation
of the proposed RBFN. Algorithm 2 gives a pseudocode of the proposed algorithm for the
adaptive RBFN.

Fig. 2. An example of the RBFN training with the Rastrigin-5D objective function. As the
number of neurons increases both training error and testing error decrease until
overtraining commences at 9 neurons (indicated by an increase in the testing error). The
chosen topology has the minimal weighted error.

 (a) 4 neurons (b) 9 neurons

Fig. 3. An example of the RBFN topology adaptation with the Rastrigin-2D function. A
sample of 20 sites was split into training (■) and testing (▲) sites. We show each topology
by its RBFN centres () and the corresponding shape parameters (the radius of the circles).

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

77

3.3 Memetic search for an optimum of the global model
After generating the global model S(x) we use a memetic algorithm to search for an
optimum of it. The memetic algorithm first employs a real-coded EA [8] for efficient
exploration. The EA uses a population size spop = 50 , linear ranking, stochastic universal

sampling (SUS), intermediate recombination, elitism with a generation gap ggap = 0.9 and the
breeder-genetic-algorithm mutation operator with probability pm = 0.05 [47]. The
evolutionary search is stopped when no improvement is observed after gn.i. = 10 generations;
the small setting for gn.i. is since we do not require the EA to converge to a very accurate
solution, as this is accomplished by the following step. The optimum found by the EA is
then used as the initial solution for an SQP solver which uses the finite-differences quasi-
Newton BFGS algorithm. This yields an improved predicted optimum of the global
model. During the memetic optimization stage approximate function values are obtained
from the surrogate-model (the objective function is not used).

3.4 The local search
Since the global model is coarse may be a bad approximation to a true optimum of the
expensive function. Accordingly, we use as an initial guess for a local search to search
for a true optimum. Two considerations with the local search are efficiency (which suggests
using local models requiring fewer sites than the global model) and accuracy (which
suggests using a procedure to safeguard against convergence to a false optimum). Both of
these goals are accomplished by using a trust-region approach, as described below. To
further improve the local search we propose a method for selecting the model type (as either
RBF or Kriging) and to improve the models, if necessary; this results in local models which
vary during the local search.

3.4.1 A trust-region approach
The classical trust-region approach generates at each iteration a quadratic model and obtains
its constrained optimum (a truncated Newton step) as a quadratic programming problem.
However, such models cannot adequately describe a complicated or multimodal landscape
so instead we generate more flexible local models (either RBF or Kriging) and obtain their

 Advances in Evolutionary Algorithms

78

constrained optimum (in the trust-region) using a memetic search. The trust-region
framework safeguards the model accuracy and ensures convergence to an optimum of the
expensive objective function, i.e. it is a framework for managing models [1, 12, 68].
The initial trust-region is taken as a cuboid centred at xc the predicted optimum of the global
model and is of size Δ (with an initial size Δ 0 = 0.1), i.e.

 (10)

All cached sites which are in the trust-region are used to generate the local surrogate-model.
We exclude remote sites to emphasize only the local function behaviour.
The model type is selected using the algorithm described in Sect. 3.2 and the constrained
optimum of the local model in T , , is obtained by the memetic search described in Sect.
3.3.
Following the classical trust-region approach the predicted optimum is evaluated with the
true objective function and a merit value is calculated

(11)

where S() now denotes the current local surrogate-model.
A main difference to the classical trust-region framework is that the latter assumes the
quadratic model is accurate (i.e. based on an exact gradient and Hessian) while here we also
need to account for model inaccuracy due to the interpolation on a finite set. As such, the
model may be inaccurate due to an insufficient number of sites in the trust-region. Reducing
the trust-region size too quickly due to model inaccuracy can lead to premature termination
of the local search [9]. To avoid this we relate the model accuracy to the number of sites in
the trust-region, denoted as . A reasonable criterion to consider the model accurate is when
 ≥ d + 1 (d being the problem dimension). This threshold is based on the number of sites

required to model the gradient of the objective function (and hence to identify a descent
direction) by well-established methods like quasi-Newton finite-differences or polynomial
interpolation [9]. However, if the allowed number of function evaluations femax is small and
the problem dimension is high too many sites are needed to consider the model accurate.
Accordingly, we use the threshold value s⋆ = min{d + 1 , 0.1femax}.
Based on ρ, s and s⋆ the proposed algorithm performs one of the following updates:
- if ρ > 0: then the surrogate-model is accurate since a better solution has been found.

Following the classical trust-region framework we centre the trust-region at the new
optimum xm and increase the trust-region size by a factor δ+ .

- if ρ ≤ 0 and s < s⋆: the local model is inaccurate but this is attributed to an insufficient
number of sites in the trust-region. Thus we improve the accuracy of the local model in
the trust-region by adding a site using the model improvement algorithm (Sect. 3.4.3).

- if ρ ≤ 0 and s ≥ s⋆: the local model is based on a sufficient number of sites but fails to
predict an improvement due to the trust-region size. Following the classical trust-region
framework we decrease the trust-region size by a factor δ_.

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

79

After the model and trust-region have been updated the current local search iteration is
finished. The local search is stopped if the trust-region is small enough Δ < Δmin (we use
Δmin = Δ0 · δ 2

_) or if the number of evaluations of the true objective function exceeds femax.

Some additional comments on the local search:
- At most only two evaluations of the true function are performed at each local search

iteration.
- All sites evaluated during the local search are added to the cache for later use.
Figure 4 shows an example of a local search with the proposed trust-region approach used
with the Branin function. A pseudocode of the proposed trust-region local search is given in
Algorithm 3.

 (a) Iteration 2 (b) Iteration 5

Fig. 4. An example of the trust-region local search using local models (RBF or Kriging). The
objective function is Branin. For iterations 2 and 5 the chosen model (Kriging) and the
corresponding trust-region are shown.

 Advances in Evolutionary Algorithms

78

constrained optimum (in the trust-region) using a memetic search. The trust-region
framework safeguards the model accuracy and ensures convergence to an optimum of the
expensive objective function, i.e. it is a framework for managing models [1, 12, 68].
The initial trust-region is taken as a cuboid centred at xc the predicted optimum of the global
model and is of size Δ (with an initial size Δ 0 = 0.1), i.e.

 (10)

All cached sites which are in the trust-region are used to generate the local surrogate-model.
We exclude remote sites to emphasize only the local function behaviour.
The model type is selected using the algorithm described in Sect. 3.2 and the constrained
optimum of the local model in T , , is obtained by the memetic search described in Sect.
3.3.
Following the classical trust-region approach the predicted optimum is evaluated with the
true objective function and a merit value is calculated

(11)

where S() now denotes the current local surrogate-model.
A main difference to the classical trust-region framework is that the latter assumes the
quadratic model is accurate (i.e. based on an exact gradient and Hessian) while here we also
need to account for model inaccuracy due to the interpolation on a finite set. As such, the
model may be inaccurate due to an insufficient number of sites in the trust-region. Reducing
the trust-region size too quickly due to model inaccuracy can lead to premature termination
of the local search [9]. To avoid this we relate the model accuracy to the number of sites in
the trust-region, denoted as . A reasonable criterion to consider the model accurate is when
 ≥ d + 1 (d being the problem dimension). This threshold is based on the number of sites

required to model the gradient of the objective function (and hence to identify a descent
direction) by well-established methods like quasi-Newton finite-differences or polynomial
interpolation [9]. However, if the allowed number of function evaluations femax is small and
the problem dimension is high too many sites are needed to consider the model accurate.
Accordingly, we use the threshold value s⋆ = min{d + 1 , 0.1femax}.
Based on ρ, s and s⋆ the proposed algorithm performs one of the following updates:
- if ρ > 0: then the surrogate-model is accurate since a better solution has been found.

Following the classical trust-region framework we centre the trust-region at the new
optimum xm and increase the trust-region size by a factor δ+ .

- if ρ ≤ 0 and s < s⋆: the local model is inaccurate but this is attributed to an insufficient
number of sites in the trust-region. Thus we improve the accuracy of the local model in
the trust-region by adding a site using the model improvement algorithm (Sect. 3.4.3).

- if ρ ≤ 0 and s ≥ s⋆: the local model is based on a sufficient number of sites but fails to
predict an improvement due to the trust-region size. Following the classical trust-region
framework we decrease the trust-region size by a factor δ_.

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

79

After the model and trust-region have been updated the current local search iteration is
finished. The local search is stopped if the trust-region is small enough Δ < Δmin (we use
Δmin = Δ0 · δ 2

_) or if the number of evaluations of the true objective function exceeds femax.

Some additional comments on the local search:
- At most only two evaluations of the true function are performed at each local search

iteration.
- All sites evaluated during the local search are added to the cache for later use.
Figure 4 shows an example of a local search with the proposed trust-region approach used
with the Branin function. A pseudocode of the proposed trust-region local search is given in
Algorithm 3.

 (a) Iteration 2 (b) Iteration 5

Fig. 4. An example of the trust-region local search using local models (RBF or Kriging). The
objective function is Branin. For iterations 2 and 5 the chosen model (Kriging) and the
corresponding trust-region are shown.

 Advances in Evolutionary Algorithms

80

3.4.2 Model selection
To assist the optimization search we wish to generate a surrogate-model which is optimal,
i.e. as accurate as possible. We select among two candidate models, namely radial basis
functions (RBFs) or Kriging, as these have performed well in benchmark tests against other
models [17, 25, 73, 74].
The RBF surrogate-model is a Lagrangian interpolant which is a linear combination of basis
functions. To ensure the non-singularity of the interpolation matrix we consider an RBF
model which uses linear basis functions [44] such that

(12)

where n is the number of sites, φi(x) are the linear radial basis functions and the coefficients

λi are obtained from the linear system

 (13)

A Kriging (or a spatial-correlation) model uses a global ‘drift’ function o which a stationary
Gaussian process is overlaid; the former captures the global trend while the latter provides
local adjustments [40, 45, 69]. We adapt the common approach where the drift function is
taken as constant (e.g. set to 1) so the model is given by

 (14)

where β is the drift function coefficient and Z(x) is the Gaussian process function [45, 69].
The Gaussian process is assumed to have a mean zero and variance σ. Deviating from the
random error approach of the Response Surface Methodology, the response at any site is
considered correlated with other sites. The correlation between two sites x1 and x2 is defined
by a covariance function

 (15)

where R(x1, x2) is a prescribed spatial correlation function (SCF). Following [45] we consider
the exponential SCF

(16)

The Kriging model is defined once β and θ have been fixed. For a given data set the value of
θ is obtained by maximum likelihood estimation [37]. Having found the optimal θ and
assuming a constant drift function then the Kriging model is

 (17)

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

81

where R is the correlation matrix for data set X, r is the correlation vector between x and

X and β̂ is the least-squares estimate of β

 (18)

Details of the Kriging code implementation are given in [78].
The two different possible models, namely linear RBF and Kriging, introduces the issue of
model selection. To assist the local search we wish to select the most accurate model, i.e.
having the least generalization error. Similarly to Section 3.2 we approximate the
generalization error based on the available data set. While it is possible to use the holdout
method for approximating the generalization error a better estimate is obtained if repeated
models are generated and all sites are used both for training and for testing, an approach
known as the leave-one-out cross-validation (LOOCV) [42, 80]. The estimate is obtained as
follows: given a candidate model (in our case a linear RBF or Kriging) then for each site xi ,
i = 1…n a surrogate-model is generated using all sites except xi and the Gaussian loss-
function of this surrogate-model is calculated at xi . The estimated generalization error is
then the mean of all observed errors. The model corresponding to the smallest LOOCV error
is assumed to be the most accurate. In this basic form the LOOCV procedure requires
generating n surrogate-models, which is expensive. To circumvent this, for the RBF we use
an efficient procedure proposed in [67] while for the Kriging we use a procedure proposed
in [45].

 (a) Rosenbrock-10D (b) Rastrigin-20D

Fig. 5. Examples of the model selection algorithms. The solid line (—) indicates which model
was more accurate based on a large sample of 250 sites while the dot (•) indicates which
model was selected by the proposed method based on a small sample.

Figure 5 shows two examples of the proposed model selection algorithm. The following
procedure was repeated 30 times to obtain statistically significant results. We used the
Rosenbrock-10D and Rastrigin-20D test functions and 50 sites generated by LHS. The
proposed method was used to select between an RBF model and a Kriging model. A
separate testing sample of 250 LHS sites was used to obtain a more accurate estimate of the
true generalization error of the models. It follows the proposed method selects (in the large
majority of cases) the model whose true generalization error is indeed smaller.
The outcome of the model selection is that the proposed memetic algorithm uses variable
surrogate-models (either linear RBF or Kriging) during the local search. A pseudocode of
the model selection algorithm is given in Algorithm 4.

 Advances in Evolutionary Algorithms

80

3.4.2 Model selection
To assist the optimization search we wish to generate a surrogate-model which is optimal,
i.e. as accurate as possible. We select among two candidate models, namely radial basis
functions (RBFs) or Kriging, as these have performed well in benchmark tests against other
models [17, 25, 73, 74].
The RBF surrogate-model is a Lagrangian interpolant which is a linear combination of basis
functions. To ensure the non-singularity of the interpolation matrix we consider an RBF
model which uses linear basis functions [44] such that

(12)

where n is the number of sites, φi(x) are the linear radial basis functions and the coefficients

λi are obtained from the linear system

 (13)

A Kriging (or a spatial-correlation) model uses a global ‘drift’ function o which a stationary
Gaussian process is overlaid; the former captures the global trend while the latter provides
local adjustments [40, 45, 69]. We adapt the common approach where the drift function is
taken as constant (e.g. set to 1) so the model is given by

 (14)

where β is the drift function coefficient and Z(x) is the Gaussian process function [45, 69].
The Gaussian process is assumed to have a mean zero and variance σ. Deviating from the
random error approach of the Response Surface Methodology, the response at any site is
considered correlated with other sites. The correlation between two sites x1 and x2 is defined
by a covariance function

 (15)

where R(x1, x2) is a prescribed spatial correlation function (SCF). Following [45] we consider
the exponential SCF

(16)

The Kriging model is defined once β and θ have been fixed. For a given data set the value of
θ is obtained by maximum likelihood estimation [37]. Having found the optimal θ and
assuming a constant drift function then the Kriging model is

 (17)

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

81

where R is the correlation matrix for data set X, r is the correlation vector between x and

X and β̂ is the least-squares estimate of β

 (18)

Details of the Kriging code implementation are given in [78].
The two different possible models, namely linear RBF and Kriging, introduces the issue of
model selection. To assist the local search we wish to select the most accurate model, i.e.
having the least generalization error. Similarly to Section 3.2 we approximate the
generalization error based on the available data set. While it is possible to use the holdout
method for approximating the generalization error a better estimate is obtained if repeated
models are generated and all sites are used both for training and for testing, an approach
known as the leave-one-out cross-validation (LOOCV) [42, 80]. The estimate is obtained as
follows: given a candidate model (in our case a linear RBF or Kriging) then for each site xi ,
i = 1…n a surrogate-model is generated using all sites except xi and the Gaussian loss-
function of this surrogate-model is calculated at xi . The estimated generalization error is
then the mean of all observed errors. The model corresponding to the smallest LOOCV error
is assumed to be the most accurate. In this basic form the LOOCV procedure requires
generating n surrogate-models, which is expensive. To circumvent this, for the RBF we use
an efficient procedure proposed in [67] while for the Kriging we use a procedure proposed
in [45].

 (a) Rosenbrock-10D (b) Rastrigin-20D

Fig. 5. Examples of the model selection algorithms. The solid line (—) indicates which model
was more accurate based on a large sample of 250 sites while the dot (•) indicates which
model was selected by the proposed method based on a small sample.

Figure 5 shows two examples of the proposed model selection algorithm. The following
procedure was repeated 30 times to obtain statistically significant results. We used the
Rosenbrock-10D and Rastrigin-20D test functions and 50 sites generated by LHS. The
proposed method was used to select between an RBF model and a Kriging model. A
separate testing sample of 250 LHS sites was used to obtain a more accurate estimate of the
true generalization error of the models. It follows the proposed method selects (in the large
majority of cases) the model whose true generalization error is indeed smaller.
The outcome of the model selection is that the proposed memetic algorithm uses variable
surrogate-models (either linear RBF or Kriging) during the local search. A pseudocode of
the model selection algorithm is given in Algorithm 4.

 Advances in Evolutionary Algorithms

82

3.4.3 Model improvement
If the local model is deemed inaccurate, i.e. there is an insufficient number of sites in the
trust-region then a new site is generated to improve the model accuracy (reduce its
generalization error). Analysis of various surrogate-models (polynomial, RBF and Kriging)
relates their generalization error to the distribution of sites [9, 28, 70]. Clustered sites do not
provide sufficient information on the objective function and lead to an ill-conditioned
interpolation matrix which further degrades the model accuracy. The distribution of sites is
measured by the fill distance

 (19)

i.e. the radius of the largest ball in the feasible domain F which does not contain any sites in
its interior [36, 70]. To improve the model accuracy (increase h) new sites should be added
such that they are remote from existing sites. Thus, to improve the model in the trust-region
we seek a site which maximizes the fill distance for the augmented set { TX ∪ xi } where TX

is the set of sites in the trust-region. To obtain the model-improving site xi we formulate the
nonlinear optimization problem

(20)

We solve (20) by generating an initial sample of candidate sites and starting an SQP solver
from the best one (having the maximum separation distance). This results in sites
distributed similarly to the maximin design [27]. After xi has been found it is evaluated with
the true objective function and is added to the cache. A pseudocode of the model
improvement iteration is given in Algorithm 5.

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

83

3.5 Additional remarks
In this section we provide additional remarks on the complete algorithm.
- The local search is initiated only if the distance of the predicted optimum xc from all
 cached sites is larger than Δmin

- As the cache grows the interpolation matrix Φ becomes ill-conditioned and this
degrades the solution accuracy of (8) [28]. To circumvent this we solve (13) by the
numerically stable truncated singular value decomposition (TSVD) such that

 (21)

where Σ is the diagonal matrix of singular values σi of Φ. Given the responses vector f
and defining

 (22)

and a vector y such that

(23)

the solution vector is

 (24)

Thus the solution vector is generated by the span of the vectors corresponding to a
sufficiently large singular value. We use εSVD = 10ε, where ε is the machine precision.

4. Performance analysis
We assessed the performance of the proposed algorithm using both mathematical test
functions and a real-world problem of airfoil shape optimization. In these tests the proposed
algorithm was also benchmarked against two variants of a reference surrogate-assisted EA
which is representative of many others [64]; Algorithm 6 gives its pseudocode.

The two variants differ by the surrogate-model they use, namely either a linear RBF model
or a Kriging model with an exponential spatial correlation function.

 Advances in Evolutionary Algorithms

82

3.4.3 Model improvement
If the local model is deemed inaccurate, i.e. there is an insufficient number of sites in the
trust-region then a new site is generated to improve the model accuracy (reduce its
generalization error). Analysis of various surrogate-models (polynomial, RBF and Kriging)
relates their generalization error to the distribution of sites [9, 28, 70]. Clustered sites do not
provide sufficient information on the objective function and lead to an ill-conditioned
interpolation matrix which further degrades the model accuracy. The distribution of sites is
measured by the fill distance

 (19)

i.e. the radius of the largest ball in the feasible domain F which does not contain any sites in
its interior [36, 70]. To improve the model accuracy (increase h) new sites should be added
such that they are remote from existing sites. Thus, to improve the model in the trust-region
we seek a site which maximizes the fill distance for the augmented set { TX ∪ xi } where TX

is the set of sites in the trust-region. To obtain the model-improving site xi we formulate the
nonlinear optimization problem

(20)

We solve (20) by generating an initial sample of candidate sites and starting an SQP solver
from the best one (having the maximum separation distance). This results in sites
distributed similarly to the maximin design [27]. After xi has been found it is evaluated with
the true objective function and is added to the cache. A pseudocode of the model
improvement iteration is given in Algorithm 5.

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

83

3.5 Additional remarks
In this section we provide additional remarks on the complete algorithm.
- The local search is initiated only if the distance of the predicted optimum xc from all
 cached sites is larger than Δmin

- As the cache grows the interpolation matrix Φ becomes ill-conditioned and this
degrades the solution accuracy of (8) [28]. To circumvent this we solve (13) by the
numerically stable truncated singular value decomposition (TSVD) such that

 (21)

where Σ is the diagonal matrix of singular values σi of Φ. Given the responses vector f
and defining

 (22)

and a vector y such that

(23)

the solution vector is

 (24)

Thus the solution vector is generated by the span of the vectors corresponding to a
sufficiently large singular value. We use εSVD = 10ε, where ε is the machine precision.

4. Performance analysis
We assessed the performance of the proposed algorithm using both mathematical test
functions and a real-world problem of airfoil shape optimization. In these tests the proposed
algorithm was also benchmarked against two variants of a reference surrogate-assisted EA
which is representative of many others [64]; Algorithm 6 gives its pseudocode.

The two variants differ by the surrogate-model they use, namely either a linear RBF model
or a Kriging model with an exponential spatial correlation function.

 Advances in Evolutionary Algorithms

84

Table 1. Parameter Settings for the Proposed Memetic Algorithm

All relevant parameters (e.g. initial surrogate-model sample and evolutionary parameters)
were the same as in the proposed algorithm. Parameter settings are given in Table 1. To
obtain statistically-significant results 30 runs were repeated for each test with the proposed
algorithm and the two variants.

4.1 Mathematical test functions
For the mathematical tests functions we used the well-known Branin, Hartman 3 and
Hartman 6 functions with a maximum evaluations limit of femax = 100 [13]. To asses the
impact of the ‘curse of dimensionality’ [3] we also used the well-known chained Rosenbrock
(high epistasis) and Rastrigin function (high multimodality) functions with femax = 200 [86,
90]. We set these small values for femax to measure performance under a constraint of
resources (as function evaluations are considered expensive) [89]. Details of the test
functions are given in Table 2. Test statistics are given in Table 3 which indicate the
proposed algorithm outperformed the two surrogate-assisted EAs.
To determine in a rigorous manner if there is a statistically-significant difference between
the results of the proposed algorithm and the two variants we applied the nonparametric
one-tailed Mann–Whitney (or Wilcoxon) test which provides a test statistic U [35]. The null
and alternative hypothesis are:

 (25a)

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

85

 (25b)

where P(xi < xp) is the probability that a score of the proposed algorithm is larger (worse)
than a score of one of the variants (i = 1, 2). Table 4 provides the test statistics for
comparisons with the two variants over the five test functions and the decision rules. For the

Table 2. Mathematical Test Functions

Table 3. Results for Mathematical Tests Functions

 Advances in Evolutionary Algorithms

84

Table 1. Parameter Settings for the Proposed Memetic Algorithm

All relevant parameters (e.g. initial surrogate-model sample and evolutionary parameters)
were the same as in the proposed algorithm. Parameter settings are given in Table 1. To
obtain statistically-significant results 30 runs were repeated for each test with the proposed
algorithm and the two variants.

4.1 Mathematical test functions
For the mathematical tests functions we used the well-known Branin, Hartman 3 and
Hartman 6 functions with a maximum evaluations limit of femax = 100 [13]. To asses the
impact of the ‘curse of dimensionality’ [3] we also used the well-known chained Rosenbrock
(high epistasis) and Rastrigin function (high multimodality) functions with femax = 200 [86,
90]. We set these small values for femax to measure performance under a constraint of
resources (as function evaluations are considered expensive) [89]. Details of the test
functions are given in Table 2. Test statistics are given in Table 3 which indicate the
proposed algorithm outperformed the two surrogate-assisted EAs.
To determine in a rigorous manner if there is a statistically-significant difference between
the results of the proposed algorithm and the two variants we applied the nonparametric
one-tailed Mann–Whitney (or Wilcoxon) test which provides a test statistic U [35]. The null
and alternative hypothesis are:

 (25a)

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

85

 (25b)

where P(xi < xp) is the probability that a score of the proposed algorithm is larger (worse)
than a score of one of the variants (i = 1, 2). Table 4 provides the test statistics for
comparisons with the two variants over the five test functions and the decision rules. For the

Table 2. Mathematical Test Functions

Table 3. Results for Mathematical Tests Functions

 Advances in Evolutionary Algorithms

86

Table 4. Mann–Whitney Test Statistics

Branin function and the RBF variant we cannot reject the null hypothesis at the 0.01
significance level, which is attributed to the relative low difficulty of the problem (d = 2) so
the difference between the proposed algorithm and the variant is not statistically-significant.
For all other tests we reject H0 at both significance levels α = 0.05 and 0.01 and accept there is
a statistically significant difference between the results obtained by the proposed algorithm
and by each of the variants for both test functions, i.e. the proposed algorithm outperforms
the two variants of the reference algorithm.

4.2 A real-world application
We have also applied the proposed algorithm to a real-world application of airfoil shape
optimization. The goal is to find an airfoil shape which maximizes the lift-to-drag ratio
(equivalently minimizes the drag-to-lift ratio) at the prescribed cruise conditions [51, 56], i.e.

(26)

where the thickness constraint is based on [55] and the cruise conditions are based on [16,
p.484–487] (modified from M = 0.57 , h = 25, 000[ft]) .
Accordingly, to normalize the objectives cD / cL and the thickness to the interval [0,1] we
defined the objective function

(27)

where cL,min = −0.5 , cD,max = 0.2 are the assumed minimum cL and maximal cD, respectively.
For the latter two only reasonable estimates are needed as they are only used to normalize
the objectives.
Candidate airfoils were generated using the PARSEC parameterization [50, 76] which
involves 11 design variables as shown in Figure 6. Bounds for these design variables were
set according to previous studies [24, 56] and are given in Table 5. To ensure a closed airfoil
shape the leading edge gap was set as Δz TE = 0. Candidate airfoils were evaluated with
XFoil, an analysis code for subsonic isolated airfoils based on the panel method [14]. Each

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

87

airfoil evaluation required approximately 30 seconds on a desktop computer. We set the
limit of function evaluations to femax = 150.

Fig. 6. PARSEC design variables.

Table 5. PARSEC design variables bounds.

Figure 7 shows an airfoil found by the proposed algorithm and the distribution of the
pressure coefficient along its upper and lower surfaces. The airfoil yields a lift to drag ratio
of cL/cD = 4.557 and satisfies the minimum thickness requirement (minimum thickness at
0.2–0.8 of chord is t = 0.120).
We benchmarked the proposed algorithm against the two reference algorithms from the
previous subsection and test statistics are given in Table 6. A nonparametric analysis similar
to that of the previous section gives a Mann–Whitney test statistic of U = 3.918 and 4.110 for
the RBF and Kriging variants respectively.

 1 standard deviation
Table 6. Benchmarks for the airfoil shape optimization

 Advances in Evolutionary Algorithms

86

Table 4. Mann–Whitney Test Statistics

Branin function and the RBF variant we cannot reject the null hypothesis at the 0.01
significance level, which is attributed to the relative low difficulty of the problem (d = 2) so
the difference between the proposed algorithm and the variant is not statistically-significant.
For all other tests we reject H0 at both significance levels α = 0.05 and 0.01 and accept there is
a statistically significant difference between the results obtained by the proposed algorithm
and by each of the variants for both test functions, i.e. the proposed algorithm outperforms
the two variants of the reference algorithm.

4.2 A real-world application
We have also applied the proposed algorithm to a real-world application of airfoil shape
optimization. The goal is to find an airfoil shape which maximizes the lift-to-drag ratio
(equivalently minimizes the drag-to-lift ratio) at the prescribed cruise conditions [51, 56], i.e.

(26)

where the thickness constraint is based on [55] and the cruise conditions are based on [16,
p.484–487] (modified from M = 0.57 , h = 25, 000[ft]) .
Accordingly, to normalize the objectives cD / cL and the thickness to the interval [0,1] we
defined the objective function

(27)

where cL,min = −0.5 , cD,max = 0.2 are the assumed minimum cL and maximal cD, respectively.
For the latter two only reasonable estimates are needed as they are only used to normalize
the objectives.
Candidate airfoils were generated using the PARSEC parameterization [50, 76] which
involves 11 design variables as shown in Figure 6. Bounds for these design variables were
set according to previous studies [24, 56] and are given in Table 5. To ensure a closed airfoil
shape the leading edge gap was set as Δz TE = 0. Candidate airfoils were evaluated with
XFoil, an analysis code for subsonic isolated airfoils based on the panel method [14]. Each

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

87

airfoil evaluation required approximately 30 seconds on a desktop computer. We set the
limit of function evaluations to femax = 150.

Fig. 6. PARSEC design variables.

Table 5. PARSEC design variables bounds.

Figure 7 shows an airfoil found by the proposed algorithm and the distribution of the
pressure coefficient along its upper and lower surfaces. The airfoil yields a lift to drag ratio
of cL/cD = 4.557 and satisfies the minimum thickness requirement (minimum thickness at
0.2–0.8 of chord is t = 0.120).
We benchmarked the proposed algorithm against the two reference algorithms from the
previous subsection and test statistics are given in Table 6. A nonparametric analysis similar
to that of the previous section gives a Mann–Whitney test statistic of U = 3.918 and 4.110 for
the RBF and Kriging variants respectively.

 1 standard deviation
Table 6. Benchmarks for the airfoil shape optimization

 Advances in Evolutionary Algorithms

88

 (c) Airfoil geometry (d) Pressure distribution

Fig. 7. Obtained airfoil.

We thus reject the null hypothesis at both α = 0.05 and 0.01 and accept there are statistically-
significant differences between the results. This shows that also in this real-world
application the proposed algorithm outperformed the surrogate-assisted variants.

5. Summary
We have proposed a surrogate-assisted memetic algorithm for expensive optimization
problems. The algorithm combines global and local models and makes extensive use of
model selection to assist the optimization search. The global model is an RBF artificial neural
network (RBFN) whose topology is adapted incrementally to achieve both a compact
network and good generalization. For the local models the proposed algorithm selects
between an RBF and a Kriging model based on an accuracy assessment of the models. To
ensure convergence to a true optimum of the expensive function these models are used in a
trust-region framework, i.e. they replace the quadratic models; the proposed trust-region
framework safeguards the accuracy of the local models and improves them, if necessary.
Extensive performance analysis shows the proposed algorithm outperforms variants of a
reference surrogate-assisted EA.

6. References
N. M. Alexandrov, J. E. Dennis, R. M. Lewis, and V. Torczon. A trust region framework for

managing use of approximation models in optimization. Structural Optimization,
15(1):16–23, 1998.

J. F. M. Barthelemy and R. T. Haftka. Approximation concepts for optimum structural
design—a review. Structural optimization, 5:129–144, 1993.

R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,
Princeton, N.J., 1961.

A. G. Bors and M. Gabbouj. Minimal topology for a radial basis functions neural network for
pattern classification. Digital Signal Processing, 4:173–188, 1994.

G. E. P. Box and N. R. Draper. Empirical Model Building and Response Surface. John Wiley and
Sons, New York, NY, 1987.

R. R. Burton. Metamodeling: A state of the art review. In D. J. Medeiros, E. F. Watson, J. S.
Carson, and M. S. Manivannan, editors, Proceedings of the 30th Conference on Winter
Simulation–WSC 1998, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

89

S. Chen, C. Cowan, and P. M. Grant Orthogonal least squares learning algorithm for radial
basis function networks. IEEE Transactions on Neural Networks, 2(2):302–309, 1991.

A. Chipperfield, P. Fleming, H. Pohlheim, and C. Fonseca. Genetic Algorithm TOOLBOX For
Use with MATLAB, Version 1.2. Department of Automatic Control and Systems
Engineering, University of Sheffield.

A. R. Conn, K. Scheinberg, and P. L. Toint. Recent progress in unconstrained nonlinear
optimization without derivatives. Mathematical Programming, 79:397–414, 1997.

P. S. de Souza and S. N. Talukdar. Genetic algorithms in asynchronous teams. In R. K. Belew
and L. B. Booker, editors, Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 392–397, San Mateo, Calif, 1991. Morgan Kaufmann.

J. W. Demmel. The geometry of ill-conditioning. Computer Journal, 3(2):201–229, 1987.
J. E. Dennis, Jr and V. Torczon. Managing approximation models in optimization. In N. M.

Alexandrov and M. Y. Hussaini, editors, Multidisciplinary Design Optimization: State
of the Art, pages 330–347. SIAM, Philadelphia, 1997.

L. C. W. Dixon and G. P. Szegö. The global optimization problem: An introduction. In L. C.
W. Dixon and G. P. Szegö, editors, Towards Global Optimisation 2, pages 1–15. North-
Holland Publishing Company, Amsterdam; New York; Oxford, 1978.

M. Drela and H. Youngren. XFOIL 6.9 User Primer. Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 2001.

D. Eby, R. C. Averill, W. F. I. Punch, and E. D. Goodman. Evaluation of injection island GA
performance on flywheel design optimization. In Proceedings of the Third Conference
on Adaptive Computing in Design and Manufacturing, pages 121–136, Plymouth,
England, 1998. Springer Verlag.

A. Filippone. Flight Performance of Fixed and Rotary Wing Aircraft. Elsevier, first edition, 2006.
R. Franke. Scattered data interpolation: Tests of some methods. Mathematics of Computation,

38(157):181–200, 1982.
B. Fritzke. Fast learning with incremental RBF networks. Neural Processing Letters, 1(1):2–5,

1994.
A. Gaspar-Cunha and A. Vieira. A multi-objective evolutionary algorithm using neural

networks to approximate fitness evaluations. International Journal of Computers,
Systems and Signals, 6(1):18–36, 2005.

K. C. Giannakoglou. Design of optimal aerodynamic shapes using stochastic optimization
methods and computational intelligence. International Review Journal Progress in
Aerospace Sciences, 38(1):43–76, 2002.

W. E. Hart and R. K. Belew. Optimization with genetic algorithm hybrids that use local
search. In R. K. Belew and M. Mitchell, editors, Adaptive Individuals in Evolving
Populations: Models and Algorithms, Santa Fe Institute Studies in the Sciences of
Complexity, chapter 27, pages 483–496. Addison-Wesley, Reading, MA, 1995.

E. J. Hartman, J. D. Keeler, and J. M. Kowalski. Layered neural networks with Gaussian
hidden units as universal approximations. Neural Computation, 2:210–215, 1990.

W. H. Highleyman. The design and analysis of pattern recognition experiments. Bell Systems
Technical Journal, 41:723–744, 1962.

T. L. Holst and T. H. Pulliam. Aerodynamic shape optimization using a real-
numberencoded genetic algorithm. Technical Report 2001-2473, AIAA, 2001.

R. Jin, W. Chen, and T. W. Simpson. Comparative studies of metamodeling techniques
under multiple modeling criteria. Structural Optimization, 23(1):1–13, 2001.

 Advances in Evolutionary Algorithms

88

 (c) Airfoil geometry (d) Pressure distribution

Fig. 7. Obtained airfoil.

We thus reject the null hypothesis at both α = 0.05 and 0.01 and accept there are statistically-
significant differences between the results. This shows that also in this real-world
application the proposed algorithm outperformed the surrogate-assisted variants.

5. Summary
We have proposed a surrogate-assisted memetic algorithm for expensive optimization
problems. The algorithm combines global and local models and makes extensive use of
model selection to assist the optimization search. The global model is an RBF artificial neural
network (RBFN) whose topology is adapted incrementally to achieve both a compact
network and good generalization. For the local models the proposed algorithm selects
between an RBF and a Kriging model based on an accuracy assessment of the models. To
ensure convergence to a true optimum of the expensive function these models are used in a
trust-region framework, i.e. they replace the quadratic models; the proposed trust-region
framework safeguards the accuracy of the local models and improves them, if necessary.
Extensive performance analysis shows the proposed algorithm outperforms variants of a
reference surrogate-assisted EA.

6. References
N. M. Alexandrov, J. E. Dennis, R. M. Lewis, and V. Torczon. A trust region framework for

managing use of approximation models in optimization. Structural Optimization,
15(1):16–23, 1998.

J. F. M. Barthelemy and R. T. Haftka. Approximation concepts for optimum structural
design—a review. Structural optimization, 5:129–144, 1993.

R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,
Princeton, N.J., 1961.

A. G. Bors and M. Gabbouj. Minimal topology for a radial basis functions neural network for
pattern classification. Digital Signal Processing, 4:173–188, 1994.

G. E. P. Box and N. R. Draper. Empirical Model Building and Response Surface. John Wiley and
Sons, New York, NY, 1987.

R. R. Burton. Metamodeling: A state of the art review. In D. J. Medeiros, E. F. Watson, J. S.
Carson, and M. S. Manivannan, editors, Proceedings of the 30th Conference on Winter
Simulation–WSC 1998, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

89

S. Chen, C. Cowan, and P. M. Grant Orthogonal least squares learning algorithm for radial
basis function networks. IEEE Transactions on Neural Networks, 2(2):302–309, 1991.

A. Chipperfield, P. Fleming, H. Pohlheim, and C. Fonseca. Genetic Algorithm TOOLBOX For
Use with MATLAB, Version 1.2. Department of Automatic Control and Systems
Engineering, University of Sheffield.

A. R. Conn, K. Scheinberg, and P. L. Toint. Recent progress in unconstrained nonlinear
optimization without derivatives. Mathematical Programming, 79:397–414, 1997.

P. S. de Souza and S. N. Talukdar. Genetic algorithms in asynchronous teams. In R. K. Belew
and L. B. Booker, editors, Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 392–397, San Mateo, Calif, 1991. Morgan Kaufmann.

J. W. Demmel. The geometry of ill-conditioning. Computer Journal, 3(2):201–229, 1987.
J. E. Dennis, Jr and V. Torczon. Managing approximation models in optimization. In N. M.

Alexandrov and M. Y. Hussaini, editors, Multidisciplinary Design Optimization: State
of the Art, pages 330–347. SIAM, Philadelphia, 1997.

L. C. W. Dixon and G. P. Szegö. The global optimization problem: An introduction. In L. C.
W. Dixon and G. P. Szegö, editors, Towards Global Optimisation 2, pages 1–15. North-
Holland Publishing Company, Amsterdam; New York; Oxford, 1978.

M. Drela and H. Youngren. XFOIL 6.9 User Primer. Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 2001.

D. Eby, R. C. Averill, W. F. I. Punch, and E. D. Goodman. Evaluation of injection island GA
performance on flywheel design optimization. In Proceedings of the Third Conference
on Adaptive Computing in Design and Manufacturing, pages 121–136, Plymouth,
England, 1998. Springer Verlag.

A. Filippone. Flight Performance of Fixed and Rotary Wing Aircraft. Elsevier, first edition, 2006.
R. Franke. Scattered data interpolation: Tests of some methods. Mathematics of Computation,

38(157):181–200, 1982.
B. Fritzke. Fast learning with incremental RBF networks. Neural Processing Letters, 1(1):2–5,

1994.
A. Gaspar-Cunha and A. Vieira. A multi-objective evolutionary algorithm using neural

networks to approximate fitness evaluations. International Journal of Computers,
Systems and Signals, 6(1):18–36, 2005.

K. C. Giannakoglou. Design of optimal aerodynamic shapes using stochastic optimization
methods and computational intelligence. International Review Journal Progress in
Aerospace Sciences, 38(1):43–76, 2002.

W. E. Hart and R. K. Belew. Optimization with genetic algorithm hybrids that use local
search. In R. K. Belew and M. Mitchell, editors, Adaptive Individuals in Evolving
Populations: Models and Algorithms, Santa Fe Institute Studies in the Sciences of
Complexity, chapter 27, pages 483–496. Addison-Wesley, Reading, MA, 1995.

E. J. Hartman, J. D. Keeler, and J. M. Kowalski. Layered neural networks with Gaussian
hidden units as universal approximations. Neural Computation, 2:210–215, 1990.

W. H. Highleyman. The design and analysis of pattern recognition experiments. Bell Systems
Technical Journal, 41:723–744, 1962.

T. L. Holst and T. H. Pulliam. Aerodynamic shape optimization using a real-
numberencoded genetic algorithm. Technical Report 2001-2473, AIAA, 2001.

R. Jin, W. Chen, and T. W. Simpson. Comparative studies of metamodeling techniques
under multiple modeling criteria. Structural Optimization, 23(1):1–13, 2001.

 Advances in Evolutionary Algorithms

90

Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation.
Journal of Soft Computing, 9(1):3–12, 2005.

M. E. Johnson, L. M. Moore, and D. Ylvisaker. Minimax and maximin distance designs.
Journal of Statistical Planning and Inference, 26(2):131–148, 1990.

E. J. Kansa and Y.-C. Hon. Circumventing the ill-conditioning problem with multiquadric
radial basis functions: Applications to elliptic partial differential equations.
Computers and Mathematics with Applications, 39(7):123–137, 2000.

M. K. Karakasis and K. C. Giannakoglou. On the use of surrogate evaluation models in
multi-objective evolutionary algorithms. In Proceedings of the European Conference on
Computational Methods in Applied Sciences and Engineering–ECCOMAS 2004, 2004.

M. K. Karakasis and K. C. Giannakoglou. Metamodel-assisted multi-objective evolutionary
optimization. In R. Schilling, editor, Proceedings of the 6th on Evolutionary and
Deterministic Methods for Design, Optimization and Control with Applications to
Industrial and Societal Problems–Eurogen 2005, 2005.

N. B. Karayiannis and G. W. Mi. Growing radial basis neural networks:Merging supervised
and unsupervised learning with network growth techniques. IEEE Transactions on
Neural Networks, 8(6):1492–1506, 1997.

H.-S. Kim and S.-B. Cho. An efficient genetic algorithm with less fitness evaluation by
clustering. In Proceedings of 2001 IEEE Conference on Evolutionary Computation, pages
887–894. IEEE, 2001.

K.-H. Liang, X. Yao, and C. Newton. Evolutionary search of approximated N dimensional
landscapes. International Journal of Knowledge-Based Intelligent Engineering Systems,
4(3):172–183, 2000.

H. Linhart and W. Zucchini. Model Selection. Wiley Series in Probability and Mathematical
Statistics. Wiley-Interscience Publication, New York; Chichester, 1986.

H. B. Mann and D. R. Whitney. On a test whether one of two variables is stochastically
larger than the other. The Annals of Mathematical Statistics, 18:50–60, 1947.

S. D. Marchi. On optimal center locations for radial basis function interpolation:
Computational aspects. Rendiconti del Seminario Matematico, 61(3):343–358, 2003.

K. Marida and R. Marshall. Maximum likelihood estimation of models for residual
covariance in spatial regression. Biometrika, 71(1):135–146, 1984.

J. D. Martin and T. W. Simpson. Use of kriging models to approximate deterministic
computer models. AIAA Journal, 43(4):853–863, 2005.

S. Matej and R. M. Lewitt. Practical considerations for 3-D image reconstruction using
spherically symmetric volume elements. IEEE Transactions on Medical Imaging,
15(1):68–78, 1996.

C. Matheron. Principles of geostatistics. Economic Geology, 58:1246–1266, 1963.
M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for

selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245, 1979.

M. Meckesheimer, A. J. Booker, R. R. Burton, and T. W. Simpson. Computationally
inexpensive metamodel assessment strategies. AIAA Journal, 40(10):2053–2060,
2002.

H. N. Mhaskar. Neural networks for optimal approximation of smooth and analytic
functions. Neural Computation, 8:164–177, 1995.

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

91

C. A. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive
definite functions. Constructive Approximation, 2:11–22, 1986.

T. J. Mitchell and M. D. Morris. Bayesian design and analysis of computer experiments: Two
examples. Statistica Sinica, 2, 359–379 1992.

J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing units.
Neural Computation, 1(2):281–294, 1989.

H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic
algorithm I: Continuous parameter optimization. Evolutionary Computations,
1(1):25– 49, 1993.

R. H. Myers and D. C. Montgomery. Response Surface Methodology: Process and Product
Optimization Using Designed Experiments. John Wiley and Sons, New York, 1995.

M. Niranjan and F. Fallside. Neural networks and radial basis functions in classifying static
speech patterns. Computer Speech and Language, 4(3):275–289, 1990.

S. Obayashi. Airfoil shape optimization for evolutionary computation. In Genetic Algorithms
for Optimization in Aeronautics and Turbomachinery, VKI Lecture Series 2000-07.
Rhode Saint Genese, Belgium and Von Karman Institute for Fluid Dynamics, 2000.

S. Obayashi, K. Nakahashi, A. Oyama, and N. Yoshino. Design optimization of supersonic
wings using evolutionary algorithms. In Proceedings of the European Conference on
Computational Methods in Applied Sciences and Engineering–ECCOMAS 1998, pages
575–579, 1998.

Y.-S. Ong and A. J. Keane. Meta-Lamarckian learning in memetic algorithm. IEEE
Transactions On Evolutionary Computation, 8(2):99–110, 2004.

Y.-S. Ong, P. B. Nair, and A. J. Keane. Evolutionary optimization of computationally
expensive problems via surrogate modeling. American Institute of Aeronautics and
Astronautics Journal, 41(4):687–696, 2003.

Y.-S. Ong, P. B. Nair, and K. Y. Lum. Max-min surrogate-assisted evolutionary algorithm for
robust aerodynamic design. IEEE Transactions on Evolutionary Computation,
10(4):392–404, 2006.

A. Oyama, S. Obayashi, and K. Nakahashi. Real-coded adaptive range genetic algorithm
and its application to aerodynamic design. International Journal of the Japan Society of
Mechanical Engineering, 43(2):124–129, 2000.

A. Oyama, S. Obayashi, and T. Nakahashi. Real-coded adaptive range genetic algorithm
applied to transonic wing optimization. In M. Schoenauer, editor, The 6th
International Conference on Parallel Problem Solving from Nature–PPSN VI, pages 712–
721, Berlin ; New York, 2002. Springer.

J. Park and I. W. Sandberg. Universal approximation using radial basis function networks.
Neural Computation, 3:247–257, 1991.

J. Platt. A resource–allocating network for function interpolation. Neural Computation,
3(2):213–225, 1991.

T. Poggio and F. Girosi. A theory of networks for approximation and learning. A. I. Memo
1140, Massachusetts Institute of Technology, Artificial Intelligence Laboratory and
Center for Biological Information Processing, 1989.

T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE,
78(9):1481–1497, 1990.

C. Poloni, A. Giurgevich, L. Onseti, and V. Pediroda. Hybridization of a multi-objective
genetic algorithm, a neural network and a classical optimizer for a complex design

 Advances in Evolutionary Algorithms

90

Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation.
Journal of Soft Computing, 9(1):3–12, 2005.

M. E. Johnson, L. M. Moore, and D. Ylvisaker. Minimax and maximin distance designs.
Journal of Statistical Planning and Inference, 26(2):131–148, 1990.

E. J. Kansa and Y.-C. Hon. Circumventing the ill-conditioning problem with multiquadric
radial basis functions: Applications to elliptic partial differential equations.
Computers and Mathematics with Applications, 39(7):123–137, 2000.

M. K. Karakasis and K. C. Giannakoglou. On the use of surrogate evaluation models in
multi-objective evolutionary algorithms. In Proceedings of the European Conference on
Computational Methods in Applied Sciences and Engineering–ECCOMAS 2004, 2004.

M. K. Karakasis and K. C. Giannakoglou. Metamodel-assisted multi-objective evolutionary
optimization. In R. Schilling, editor, Proceedings of the 6th on Evolutionary and
Deterministic Methods for Design, Optimization and Control with Applications to
Industrial and Societal Problems–Eurogen 2005, 2005.

N. B. Karayiannis and G. W. Mi. Growing radial basis neural networks:Merging supervised
and unsupervised learning with network growth techniques. IEEE Transactions on
Neural Networks, 8(6):1492–1506, 1997.

H.-S. Kim and S.-B. Cho. An efficient genetic algorithm with less fitness evaluation by
clustering. In Proceedings of 2001 IEEE Conference on Evolutionary Computation, pages
887–894. IEEE, 2001.

K.-H. Liang, X. Yao, and C. Newton. Evolutionary search of approximated N dimensional
landscapes. International Journal of Knowledge-Based Intelligent Engineering Systems,
4(3):172–183, 2000.

H. Linhart and W. Zucchini. Model Selection. Wiley Series in Probability and Mathematical
Statistics. Wiley-Interscience Publication, New York; Chichester, 1986.

H. B. Mann and D. R. Whitney. On a test whether one of two variables is stochastically
larger than the other. The Annals of Mathematical Statistics, 18:50–60, 1947.

S. D. Marchi. On optimal center locations for radial basis function interpolation:
Computational aspects. Rendiconti del Seminario Matematico, 61(3):343–358, 2003.

K. Marida and R. Marshall. Maximum likelihood estimation of models for residual
covariance in spatial regression. Biometrika, 71(1):135–146, 1984.

J. D. Martin and T. W. Simpson. Use of kriging models to approximate deterministic
computer models. AIAA Journal, 43(4):853–863, 2005.

S. Matej and R. M. Lewitt. Practical considerations for 3-D image reconstruction using
spherically symmetric volume elements. IEEE Transactions on Medical Imaging,
15(1):68–78, 1996.

C. Matheron. Principles of geostatistics. Economic Geology, 58:1246–1266, 1963.
M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for

selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245, 1979.

M. Meckesheimer, A. J. Booker, R. R. Burton, and T. W. Simpson. Computationally
inexpensive metamodel assessment strategies. AIAA Journal, 40(10):2053–2060,
2002.

H. N. Mhaskar. Neural networks for optimal approximation of smooth and analytic
functions. Neural Computation, 8:164–177, 1995.

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

91

C. A. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive
definite functions. Constructive Approximation, 2:11–22, 1986.

T. J. Mitchell and M. D. Morris. Bayesian design and analysis of computer experiments: Two
examples. Statistica Sinica, 2, 359–379 1992.

J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing units.
Neural Computation, 1(2):281–294, 1989.

H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic
algorithm I: Continuous parameter optimization. Evolutionary Computations,
1(1):25– 49, 1993.

R. H. Myers and D. C. Montgomery. Response Surface Methodology: Process and Product
Optimization Using Designed Experiments. John Wiley and Sons, New York, 1995.

M. Niranjan and F. Fallside. Neural networks and radial basis functions in classifying static
speech patterns. Computer Speech and Language, 4(3):275–289, 1990.

S. Obayashi. Airfoil shape optimization for evolutionary computation. In Genetic Algorithms
for Optimization in Aeronautics and Turbomachinery, VKI Lecture Series 2000-07.
Rhode Saint Genese, Belgium and Von Karman Institute for Fluid Dynamics, 2000.

S. Obayashi, K. Nakahashi, A. Oyama, and N. Yoshino. Design optimization of supersonic
wings using evolutionary algorithms. In Proceedings of the European Conference on
Computational Methods in Applied Sciences and Engineering–ECCOMAS 1998, pages
575–579, 1998.

Y.-S. Ong and A. J. Keane. Meta-Lamarckian learning in memetic algorithm. IEEE
Transactions On Evolutionary Computation, 8(2):99–110, 2004.

Y.-S. Ong, P. B. Nair, and A. J. Keane. Evolutionary optimization of computationally
expensive problems via surrogate modeling. American Institute of Aeronautics and
Astronautics Journal, 41(4):687–696, 2003.

Y.-S. Ong, P. B. Nair, and K. Y. Lum. Max-min surrogate-assisted evolutionary algorithm for
robust aerodynamic design. IEEE Transactions on Evolutionary Computation,
10(4):392–404, 2006.

A. Oyama, S. Obayashi, and K. Nakahashi. Real-coded adaptive range genetic algorithm
and its application to aerodynamic design. International Journal of the Japan Society of
Mechanical Engineering, 43(2):124–129, 2000.

A. Oyama, S. Obayashi, and T. Nakahashi. Real-coded adaptive range genetic algorithm
applied to transonic wing optimization. In M. Schoenauer, editor, The 6th
International Conference on Parallel Problem Solving from Nature–PPSN VI, pages 712–
721, Berlin ; New York, 2002. Springer.

J. Park and I. W. Sandberg. Universal approximation using radial basis function networks.
Neural Computation, 3:247–257, 1991.

J. Platt. A resource–allocating network for function interpolation. Neural Computation,
3(2):213–225, 1991.

T. Poggio and F. Girosi. A theory of networks for approximation and learning. A. I. Memo
1140, Massachusetts Institute of Technology, Artificial Intelligence Laboratory and
Center for Biological Information Processing, 1989.

T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE,
78(9):1481–1497, 1990.

C. Poloni, A. Giurgevich, L. Onseti, and V. Pediroda. Hybridization of a multi-objective
genetic algorithm, a neural network and a classical optimizer for a complex design

 Advances in Evolutionary Algorithms

92

problem in fluid dynamics. Computer Methods in Applied Mechanics and Engineering,
186:403–420, 2000.

D. Quagliarella and A. Vicini. Coupling genetic algorithms and gradient based optimization
techniques. In D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, editors, Genetic
Algorithms in Engineering and Computer Science, chapter 14, pages 288–309. John
Wiley and Sons, 1997.

A. Ratle. Accelerating the convergence of evolutionary algorithms by fitness landscape
approximations. In A. E. Eiben, Bäck, Thomas, M. Schoenauer, and H. -P. Schwefel,
editors, Proceedings of the 5th International Conference on Parallel Problem Solving from
Nature–PPSN V, volume 1498 of Lecture Notes in Computer Science, pages 87– 96,
Berlin Heidelberg, 1998. Springer-Verlag.

A. Ratle. Optimal sampling strategies for learning a fitness model. In The 1999 IEEE Congress
on Evolutionary Computation–CEC 1999, pages 2078–2085, New York, 1999. IEEE.

J.-M. Renderes and H. Bersini. Hybridizing genetic algorithms with hill-climbing methods
for global optimization: Two possible ways. In A. Sebald and L. J. Fogel, editors,
Proceedings of the Third Annual Conference on Evolutionary Programming, pages 312–
317. World Scientific, 1994.

J.-M. Renderes and S. P. Flasse. Hybrid methods using genetic algorithms for global
optimization. IEEE Transactions on Systems, Man, and Cybernetics–Part B, 26(2):243–
258, 1996.

S. Rippa. An algorithm for selecting a good value for the parameter c in radial basis function
interpolation. Advances in Computational Mathematics, 11(2–3):193–210, 1999.

J. F. Rodríguez, J. E. Renaud, and L. T. Watson. Convergence of trust region augmented
Lagrangian methods using variable fidelity approximation data. Structural
Optimization, 15(3/4):141–156, 1998.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer
experiments. Statistical Science, 4(4):409–435, 1989.

R. Schaback. Multivariate interpolation and approximation by translates of a basis function.
In C. Chui and L. Schumaker, editors, Approximation Theory VIII, pages 491–514.
Vanderbilt University Press, 1996.

M. Sefrioui and J. Périaux. A hierarchical genetic algorithm using multiple models for
optimization. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. M.
Guervós, and H.-P. Schwefel, editors, Proceedings of the 6th International Conference
on Parallel Problem Solving from Nature–PPSN VI, number 1917 in Lecture Notes in
Computer Science, pages 879–888. Springer-Verlag, 2000.

T. W. Simpson, A. J. Booker, D. Ghosh, A. Giunta, P. Koch, and R.-J. Yang. Approximation
methods in multidisciplinary analysis and optimization: a panel discussion.
Structural and Multidisciplinary Optimization, 27:302–313, 2004.

T. W. Simpson, D. K. J. Lin, and W. Chen. Sampling strategies for computer experiments:
Design and analysis. International Journal of Reliability and Applications, 2(3):209–240,
2001.

T.W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen. Metamodels for computer based
engineering design: Survey and recommendations. Engineering with Computers,
17:129–150, 2001.

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

93

R. E. Smith, B. Dike, and S. Stegmann. Fitness inheritance in genetic algorithms. In K. M.
George, editor, Proceedings of the 1995 ACM Symposium on Applied Computing–SAC
95, pages 345–350. ACM Press, 1995.

H. Sobieckzy. Parametric airfoils and wings. In K. Fujii and G. S. Dulikravich, editors, Recent
Development of Aerodynamic Design Methodologies-Inverse Design and Optimization,
volume 68 of Notes on Numerical Fluid Mechanics, pages 71–88. Vieweg Verlag,
Germany, 1999.

J. Sobieszczansk-Sobieski and R. Haftka. Multidisciplinary aerospace design optimization:
Survey of recent developments. Structural Optimization, 14(1):1–23, 1997.

L. N. Søren, H. B. Nielsen, and J. Søndergaard. DACE: A MATLAB Kriging toolbox.
Technical Report IMM-TR-2002-12, Informatik and Mathematical Modelling,
Technical University of Denmark, 2002.

C. J. Stone. Optimal global rates of convergence for nonparametric regression. Annals of
Statistics, 10(4):1040–1053, 1982.

M. Stone. Cross-validatory choice and assessment of statistical predictors. Journal of the Royal
Statistical Society Series B (Methodological), 36(2):111–147, 1974.

L. Sukhan and R. M. Kil. A Gaussian potential function network with hierarchically self-
organizing learning. Neural Networks, 4:207–224, 1991.

Y. Tenne. Metamodel accuracy assessment in evolutionary optimization. In Proceedings of the
IEEE World Congress on Computational Intelligence–WCCI 2008. IEEE, 2008. 1505-
1512, 2008. IEEE.

Y. Tenne and S. W. Armfield. A memetic algorithm using a trust-region derivative-free
optimization with quadratic modelling for optimization of expensive and noisy
blackbox functions. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary
Computation in Dynamic and Uncertain Environments, volume 51 of Studies in
Computational Intelligence, pages 389–415. Springer-Verlag, 2007.

Y. Tenne and S. W. Armfield. A versatile surrogate-assisted memetic algorithm for
optimization of computationally expensive functions and its engineering
applications. In A. Yang, Y. Shan, and L. Thu Bui, editors, Success in Evolutionary
Computation, volume 92/2008, pages 43–72. Springer, Berlin; Heidelberg, 2008.

Y. Tenne, S. Obayashi, and S. W. Armfield. Airfoil shape optimization using an algorithm
for minimization of expensive and discontinuous black-box functions. In
Proceedings of the AIAA InfoTec 2007, number AIAA-2007-2874. American Institute
for Aeronautics and Astronautics (AIAA), 2007.

P. L. Toint. Some numerical results using a sparse matrix updating formula in
unconstrained optimization. Mathematics of Computation, 32(143):839–851, 1978.

V. Torczon and M. W. Trosset. Using approximations to accelerate engineering design
optimization. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, pages 738–748, Reston, Va, 1998.
American Institute for Aeronautics and Astronautics (AIAA).

A. Törn. Global optimization as a combination of global and local search. In Proceedings of
Computer Simulation Versus Analytical Solutions for Business and Economic Models,
number 17 in BAS Business Administration Studies, pages 191–206. School of
Business Administration, Gothenburg, 1973.

A. Törn, M. M. Ali, and S. Viitanen. Stochastic global optimization: Problems classes and
solution techniques. Journal of Global Optimization, 14:437–447, 1999.

 Advances in Evolutionary Algorithms

92

problem in fluid dynamics. Computer Methods in Applied Mechanics and Engineering,
186:403–420, 2000.

D. Quagliarella and A. Vicini. Coupling genetic algorithms and gradient based optimization
techniques. In D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, editors, Genetic
Algorithms in Engineering and Computer Science, chapter 14, pages 288–309. John
Wiley and Sons, 1997.

A. Ratle. Accelerating the convergence of evolutionary algorithms by fitness landscape
approximations. In A. E. Eiben, Bäck, Thomas, M. Schoenauer, and H. -P. Schwefel,
editors, Proceedings of the 5th International Conference on Parallel Problem Solving from
Nature–PPSN V, volume 1498 of Lecture Notes in Computer Science, pages 87– 96,
Berlin Heidelberg, 1998. Springer-Verlag.

A. Ratle. Optimal sampling strategies for learning a fitness model. In The 1999 IEEE Congress
on Evolutionary Computation–CEC 1999, pages 2078–2085, New York, 1999. IEEE.

J.-M. Renderes and H. Bersini. Hybridizing genetic algorithms with hill-climbing methods
for global optimization: Two possible ways. In A. Sebald and L. J. Fogel, editors,
Proceedings of the Third Annual Conference on Evolutionary Programming, pages 312–
317. World Scientific, 1994.

J.-M. Renderes and S. P. Flasse. Hybrid methods using genetic algorithms for global
optimization. IEEE Transactions on Systems, Man, and Cybernetics–Part B, 26(2):243–
258, 1996.

S. Rippa. An algorithm for selecting a good value for the parameter c in radial basis function
interpolation. Advances in Computational Mathematics, 11(2–3):193–210, 1999.

J. F. Rodríguez, J. E. Renaud, and L. T. Watson. Convergence of trust region augmented
Lagrangian methods using variable fidelity approximation data. Structural
Optimization, 15(3/4):141–156, 1998.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer
experiments. Statistical Science, 4(4):409–435, 1989.

R. Schaback. Multivariate interpolation and approximation by translates of a basis function.
In C. Chui and L. Schumaker, editors, Approximation Theory VIII, pages 491–514.
Vanderbilt University Press, 1996.

M. Sefrioui and J. Périaux. A hierarchical genetic algorithm using multiple models for
optimization. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. M.
Guervós, and H.-P. Schwefel, editors, Proceedings of the 6th International Conference
on Parallel Problem Solving from Nature–PPSN VI, number 1917 in Lecture Notes in
Computer Science, pages 879–888. Springer-Verlag, 2000.

T. W. Simpson, A. J. Booker, D. Ghosh, A. Giunta, P. Koch, and R.-J. Yang. Approximation
methods in multidisciplinary analysis and optimization: a panel discussion.
Structural and Multidisciplinary Optimization, 27:302–313, 2004.

T. W. Simpson, D. K. J. Lin, and W. Chen. Sampling strategies for computer experiments:
Design and analysis. International Journal of Reliability and Applications, 2(3):209–240,
2001.

T.W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen. Metamodels for computer based
engineering design: Survey and recommendations. Engineering with Computers,
17:129–150, 2001.

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and
Variable Local Models for Expensive Optimization Problems

93

R. E. Smith, B. Dike, and S. Stegmann. Fitness inheritance in genetic algorithms. In K. M.
George, editor, Proceedings of the 1995 ACM Symposium on Applied Computing–SAC
95, pages 345–350. ACM Press, 1995.

H. Sobieckzy. Parametric airfoils and wings. In K. Fujii and G. S. Dulikravich, editors, Recent
Development of Aerodynamic Design Methodologies-Inverse Design and Optimization,
volume 68 of Notes on Numerical Fluid Mechanics, pages 71–88. Vieweg Verlag,
Germany, 1999.

J. Sobieszczansk-Sobieski and R. Haftka. Multidisciplinary aerospace design optimization:
Survey of recent developments. Structural Optimization, 14(1):1–23, 1997.

L. N. Søren, H. B. Nielsen, and J. Søndergaard. DACE: A MATLAB Kriging toolbox.
Technical Report IMM-TR-2002-12, Informatik and Mathematical Modelling,
Technical University of Denmark, 2002.

C. J. Stone. Optimal global rates of convergence for nonparametric regression. Annals of
Statistics, 10(4):1040–1053, 1982.

M. Stone. Cross-validatory choice and assessment of statistical predictors. Journal of the Royal
Statistical Society Series B (Methodological), 36(2):111–147, 1974.

L. Sukhan and R. M. Kil. A Gaussian potential function network with hierarchically self-
organizing learning. Neural Networks, 4:207–224, 1991.

Y. Tenne. Metamodel accuracy assessment in evolutionary optimization. In Proceedings of the
IEEE World Congress on Computational Intelligence–WCCI 2008. IEEE, 2008. 1505-
1512, 2008. IEEE.

Y. Tenne and S. W. Armfield. A memetic algorithm using a trust-region derivative-free
optimization with quadratic modelling for optimization of expensive and noisy
blackbox functions. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary
Computation in Dynamic and Uncertain Environments, volume 51 of Studies in
Computational Intelligence, pages 389–415. Springer-Verlag, 2007.

Y. Tenne and S. W. Armfield. A versatile surrogate-assisted memetic algorithm for
optimization of computationally expensive functions and its engineering
applications. In A. Yang, Y. Shan, and L. Thu Bui, editors, Success in Evolutionary
Computation, volume 92/2008, pages 43–72. Springer, Berlin; Heidelberg, 2008.

Y. Tenne, S. Obayashi, and S. W. Armfield. Airfoil shape optimization using an algorithm
for minimization of expensive and discontinuous black-box functions. In
Proceedings of the AIAA InfoTec 2007, number AIAA-2007-2874. American Institute
for Aeronautics and Astronautics (AIAA), 2007.

P. L. Toint. Some numerical results using a sparse matrix updating formula in
unconstrained optimization. Mathematics of Computation, 32(143):839–851, 1978.

V. Torczon and M. W. Trosset. Using approximations to accelerate engineering design
optimization. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, pages 738–748, Reston, Va, 1998.
American Institute for Aeronautics and Astronautics (AIAA).

A. Törn. Global optimization as a combination of global and local search. In Proceedings of
Computer Simulation Versus Analytical Solutions for Business and Economic Models,
number 17 in BAS Business Administration Studies, pages 191–206. School of
Business Administration, Gothenburg, 1973.

A. Törn, M. M. Ali, and S. Viitanen. Stochastic global optimization: Problems classes and
solution techniques. Journal of Global Optimization, 14:437–447, 1999.

 Advances in Evolutionary Algorithms

94

A. Törn and A. Žilinskas. Global Optimization. Number 350 in Lecture Notes In Computer
Science. Springer-Verlag, Berlin; Heidelberg; New York; London, 1989.

J. Yen, J. C. Liao, B. Lee, and D. Randolph. A hybrid approach to modeling metabolic
systems using a genetic algorithm and simplex method. IEEE Transactions on
Systems, Man, and Cybernetics–Part B, 28(2):173–191, 1998.

Y. Yun, M. Gen, and S. Seo. Various hybrid methods based on genetic algorithm with fuzzy
logic controller. Journal of Intelligent Manufacturing, 14:401–419, 2003.

Z. Zhou, Y.-S. Ong, M. Lim, and B. Lee. Memetic algorithms using multi-surrogates for
computationally expensive optimization problems. Journal of Soft Computing,
11(10):957–971, 2007.

Z. Zhou, Y.-S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum. Combining global and local
surrogate models to accelerate evolutionary optimization. IEEE Transactions On
Systems, Man and Cybernetics-Part C, 37(1):66–76, 2007.

5

An Adaptive Evolutionary Algorithm Combining
Evolution Strategy and Genetic Algorithm

(Application of Fuzzy Power System Stabilizer)
Gi-Hyun Hwang and Won-Tae Jang

Dept. of Computer Information Engineering, Dongseo University, Pusan 609-735,
South Korea

1. Introduction
The research of power system stabilizer (PSS) for improving the stability of power system
has been conducted from the late 1960's. Conventionally lead-lag controller has been widely
used as PSS. Root locus and Bode plot to determine the coefficient of lead-lag controller (Yu,
1983; Larsen and Swann, 1981; Kanniah et al., 1984), pole-placement and eigenvalue control
(Chow & Sanchez-Gasca, 1989; Ostojic & Kovacevic, 1990) and a linear optimal controller
theory (Fleming & Jun Sun, 1990; Mao et al., 1990) have been used. These methods, using a
model linearlized in the specific operating point, show a good control performance in the
specific operating point. But these approaches are difficult to obtain a good control
performance in case of operating conditions such as change of load or three phase fault, etc.
Therefore, several methods based on adaptive control theory (Chen et al., 1993; Park & Kim,
1996) have been proposed to give an adaptive capability to PSS for nonlinear characteristic
of power system. These methods can improve the dynamic characteristic of power system,
but these approaches cannot be applied for the real time control because of long execution
time.
Recently the research for intelligence control method such as fuzzy logic controller (FLC)
and neural network for PSS has greatly improved the dynamic characteristic of power
system (Hassan et al., 1991; Hassan & Malik, 1993). Fuzzy rules and membership functions
shape should be adjusted to obtain the best control performance in FLC. Conventionally the
adjustment is done by the experience of experts or trial and error methods. Therefore it is
difficult to determine the suitable membership functions without the knowledge of the
system. Recently, evolutionary computations (EC) that is a kind of a probabilistic optimal
algorithm is employed to adjust the membership functions and fuzzy rules of FLC.
The EC is based on the natural genetics and evolutionary theory. The results of this
approach show a good performance (Abido and Abdel-Magid, 1998, 1999).
EC is based on the principles of genetics and natural selection. There are three broadly
similar avenues of investigation in EC: genetic algorithm (GA), evolution strategy (ES), and
evolutionary programming (EP) (] Fogel, 1995). GA simulates the crossover and mutation of
natural systems, having a global search capability (Goldberg, 1989), whereas ES simulates
the evolution of an asexually reproducing organism. ES can find a global minimum, and by
combining another EC it also could be efficient local search technique (Gong et al., 1996).

 Advances in Evolutionary Algorithms

94

A. Törn and A. Žilinskas. Global Optimization. Number 350 in Lecture Notes In Computer
Science. Springer-Verlag, Berlin; Heidelberg; New York; London, 1989.

J. Yen, J. C. Liao, B. Lee, and D. Randolph. A hybrid approach to modeling metabolic
systems using a genetic algorithm and simplex method. IEEE Transactions on
Systems, Man, and Cybernetics–Part B, 28(2):173–191, 1998.

Y. Yun, M. Gen, and S. Seo. Various hybrid methods based on genetic algorithm with fuzzy
logic controller. Journal of Intelligent Manufacturing, 14:401–419, 2003.

Z. Zhou, Y.-S. Ong, M. Lim, and B. Lee. Memetic algorithms using multi-surrogates for
computationally expensive optimization problems. Journal of Soft Computing,
11(10):957–971, 2007.

Z. Zhou, Y.-S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum. Combining global and local
surrogate models to accelerate evolutionary optimization. IEEE Transactions On
Systems, Man and Cybernetics-Part C, 37(1):66–76, 2007.

5

An Adaptive Evolutionary Algorithm Combining
Evolution Strategy and Genetic Algorithm

(Application of Fuzzy Power System Stabilizer)
Gi-Hyun Hwang and Won-Tae Jang

Dept. of Computer Information Engineering, Dongseo University, Pusan 609-735,
South Korea

1. Introduction
The research of power system stabilizer (PSS) for improving the stability of power system
has been conducted from the late 1960's. Conventionally lead-lag controller has been widely
used as PSS. Root locus and Bode plot to determine the coefficient of lead-lag controller (Yu,
1983; Larsen and Swann, 1981; Kanniah et al., 1984), pole-placement and eigenvalue control
(Chow & Sanchez-Gasca, 1989; Ostojic & Kovacevic, 1990) and a linear optimal controller
theory (Fleming & Jun Sun, 1990; Mao et al., 1990) have been used. These methods, using a
model linearlized in the specific operating point, show a good control performance in the
specific operating point. But these approaches are difficult to obtain a good control
performance in case of operating conditions such as change of load or three phase fault, etc.
Therefore, several methods based on adaptive control theory (Chen et al., 1993; Park & Kim,
1996) have been proposed to give an adaptive capability to PSS for nonlinear characteristic
of power system. These methods can improve the dynamic characteristic of power system,
but these approaches cannot be applied for the real time control because of long execution
time.
Recently the research for intelligence control method such as fuzzy logic controller (FLC)
and neural network for PSS has greatly improved the dynamic characteristic of power
system (Hassan et al., 1991; Hassan & Malik, 1993). Fuzzy rules and membership functions
shape should be adjusted to obtain the best control performance in FLC. Conventionally the
adjustment is done by the experience of experts or trial and error methods. Therefore it is
difficult to determine the suitable membership functions without the knowledge of the
system. Recently, evolutionary computations (EC) that is a kind of a probabilistic optimal
algorithm is employed to adjust the membership functions and fuzzy rules of FLC.
The EC is based on the natural genetics and evolutionary theory. The results of this
approach show a good performance (Abido and Abdel-Magid, 1998, 1999).
EC is based on the principles of genetics and natural selection. There are three broadly
similar avenues of investigation in EC: genetic algorithm (GA), evolution strategy (ES), and
evolutionary programming (EP) (] Fogel, 1995). GA simulates the crossover and mutation of
natural systems, having a global search capability (Goldberg, 1989), whereas ES simulates
the evolution of an asexually reproducing organism. ES can find a global minimum, and by
combining another EC it also could be efficient local search technique (Gong et al., 1996).

 Advances in Evolutionary Algorithms

96

The performance of EC is influenced by parameters such as size of population, fitness,
probability of crossover, and mutation, etc. If these parameters are not adequately selected,
execution time will be longer and premature convergence to local minimum can occur. To
solve problems above, several approaches have been proposed. To enhance the performance
of GA, the population size, the probability of crossover, mutation and operation method
should be adaptively modified in each generation (Arabas et al., 1994; Schlierkamp-Voosen
& Muhlenbein, 1996). To enhance the performances of ES and EP, the mutation parameters
should be adapted while running ES and EP (Goldberg, 1989; Fogel et al., 1991).
In conventional ES, parameter values and operator probabilities for the GA and ES are
adapted to find a solution efficiently. In this paper, however, we propose adaptive
evolutionary algorithm (AEA). The ratio of population to which GA and ES will apply is
adaptively modified in reproducing according to the fitness. We use ES to optimize locally,
while the GA optimizes globally. The resulting hybrid scheme produces improved and
reliable results by using the “global” nature of the GA as well as the “local” improvement
capability of the ES.
AEA was applied to search the optimal parameters of the membership functions and the
suitable gains of the inputs and outputs for fuzzy power system stabilizer (FPSS). The
effectiveness of FPSS is demonstrated by computer simulation for single-machine infinite
bus system (SIBS) and multi-machine power system (MPS). To show the superiority of FPSS,
its performances are compared with those of conventional power system stabilizer (CPSS).
The proposed FPSS shows the better control performances than the CPSS in three-phase
fault under a heavy load, which is system condition in tuning FPSS. To show the robustness
of the proposed FPSS, it is applied to the system with disturbances such as change of the
mechanical torque and three-phase fault under nominal and heavy load conditions.

2. Adaptive evolutionary algorithm
2.1 Motivation
GA, one of the probabilistic optimization methods, is robust and is able to solve complex
and global optimization problem. But GA can suffer from the long computation time before
providing an accurate solution because it uses prior knowledge minimally and does not
exploit local information (Renders & Flasse, 1996). ES, which simulates the evolution of
asexually reproducing organisms, has efficient local search capability. To solve complex
problem, however, it better to a hybrid EC (Gong et al., 1996).
In this paper, to reach the global optimum accurately and reliably in a short execution time,
we designed an AEA by using GA and ES together. In AEA, GA operators and ES operators
are applied simultaneously to the individuals of the present generation to create the next
generation. Individual with higher fitness value has the higher probability of contributing
one or more chromosomes to the next generation. This mechanism gives greater rewards to
either GA or ES operation depending on what produces superior offspring.

2.2 Adaptive evolutionary algorithm
In AEA, the number of individuals created by GA and ES operations is changed adaptively.
An individual is represented as a real-valued chromosome that makes it possible to
hybridize GA and ES operations.
ES forms a class of optimization technique motivated by the reproduction of biological
system and the population of individuals evolves toward the better solutions by means of

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

97

the mutation and selection operation. In this paper, we adopted a (μ, λ)-ES. That is, only the
λ offspring generated by mutation competes for survival and the μ parents are completely
replaced in each generation. Also, self-adaptive mutation step sizes are used in ES.
For AEA to self-adapt its use of GA and ES operators, each individual has an operator code
for determining which operator to use. Suppose a ‘0’ refers to GA, and a ‘1’ to ES. At each
generation, if it is more beneficial to use the GA, ‘0’s should appear at the end of
individuals. If it is more beneficial to use the ES, ‘1’s should appear. After reproduction by
roulette wheel selection according to the fitness, GA operations (crossover and mutation) are
performed on the individuals that have the operator code of ‘0’ and the ES operation
(mutation) is performed on the individuals that have an operator code of ‘1’. Elitism is also
used. The best individual in the population reproduces both the GA population and ES
population in the next generation. The major procedures of AEA are as follows:
1) Initialization: The initial population is randomly generated. Operator code is randomly

initialized for each individual. According to the operator code, GA operations are
performed on the individuals with operator code ‘0’, while ES operations are applied
where the operator code is ‘1’.

2) Evaluation and Reproduction: Using the selection operator, individual chromosomes
are selected in proportional to their fitness, which is evaluated by the defined objective
function. After reproduction, GA operations are performed on the individuals having
an operator code of ‘0’ and the ES operations are performed on the individuals having
an operator code ‘1’. At each generation, the percentages of ‘1’s and ‘0’s in the operator
code indicate the performance of GA and ES operators.

3) Preservation of Minimum Number of Individuals: At each generation, AEA may fall
into a situation where the percentage of the offspring by one operation is nearly 100%
and the offspring by other operation dies off. Therefore, it is necessary for AEA to
preserve certain amount of individuals for each EC operation. In this paper, we
randomly changed the operator code of the individuals with a higher percentage until
the numbers of individuals for each EC operation become higher than a certain amount
of individuals to be preserved. The predetermined minimum number of individuals to
be preserved is set to 20% of the population size.

4) Genetic Algorithm and Evolution Strategy: The real-valued coding is used to represent
a solution (Michalewicz, 1992; Mitsuo Gen and Cheng, 1997). Modified simple
crossover and uniform mutation are used as genetic operators. The modified simple
crossover operator is a way to generate offstrings population, selecting two strings
randomly in parent population, as shown in Fig. 1. If crossover occurs in k-th variable,
selecting randomly two strings in t-th generation, offstrings of t+1-th generation are
shown in Fig. 1.

In uniform mutation, we selected a random k-th gene in an individual. If an individual and
the k-th component of the individual is the selected gene, the resulting individual is as
shown in Fig. 2.
Only the λ offspring generated by mutation operation competes for survival and the μ
parents are completely replaced in each generation. Mutation is then performed
independently on each vector element by adding a normally distributed Gaussian random
variable with mean zero and standard deviation (σ), as shown in Eq. (1). After adapting the
mutation operator for ES population, if the improved ratio of individual number is lesser

 Advances in Evolutionary Algorithms

96

The performance of EC is influenced by parameters such as size of population, fitness,
probability of crossover, and mutation, etc. If these parameters are not adequately selected,
execution time will be longer and premature convergence to local minimum can occur. To
solve problems above, several approaches have been proposed. To enhance the performance
of GA, the population size, the probability of crossover, mutation and operation method
should be adaptively modified in each generation (Arabas et al., 1994; Schlierkamp-Voosen
& Muhlenbein, 1996). To enhance the performances of ES and EP, the mutation parameters
should be adapted while running ES and EP (Goldberg, 1989; Fogel et al., 1991).
In conventional ES, parameter values and operator probabilities for the GA and ES are
adapted to find a solution efficiently. In this paper, however, we propose adaptive
evolutionary algorithm (AEA). The ratio of population to which GA and ES will apply is
adaptively modified in reproducing according to the fitness. We use ES to optimize locally,
while the GA optimizes globally. The resulting hybrid scheme produces improved and
reliable results by using the “global” nature of the GA as well as the “local” improvement
capability of the ES.
AEA was applied to search the optimal parameters of the membership functions and the
suitable gains of the inputs and outputs for fuzzy power system stabilizer (FPSS). The
effectiveness of FPSS is demonstrated by computer simulation for single-machine infinite
bus system (SIBS) and multi-machine power system (MPS). To show the superiority of FPSS,
its performances are compared with those of conventional power system stabilizer (CPSS).
The proposed FPSS shows the better control performances than the CPSS in three-phase
fault under a heavy load, which is system condition in tuning FPSS. To show the robustness
of the proposed FPSS, it is applied to the system with disturbances such as change of the
mechanical torque and three-phase fault under nominal and heavy load conditions.

2. Adaptive evolutionary algorithm
2.1 Motivation
GA, one of the probabilistic optimization methods, is robust and is able to solve complex
and global optimization problem. But GA can suffer from the long computation time before
providing an accurate solution because it uses prior knowledge minimally and does not
exploit local information (Renders & Flasse, 1996). ES, which simulates the evolution of
asexually reproducing organisms, has efficient local search capability. To solve complex
problem, however, it better to a hybrid EC (Gong et al., 1996).
In this paper, to reach the global optimum accurately and reliably in a short execution time,
we designed an AEA by using GA and ES together. In AEA, GA operators and ES operators
are applied simultaneously to the individuals of the present generation to create the next
generation. Individual with higher fitness value has the higher probability of contributing
one or more chromosomes to the next generation. This mechanism gives greater rewards to
either GA or ES operation depending on what produces superior offspring.

2.2 Adaptive evolutionary algorithm
In AEA, the number of individuals created by GA and ES operations is changed adaptively.
An individual is represented as a real-valued chromosome that makes it possible to
hybridize GA and ES operations.
ES forms a class of optimization technique motivated by the reproduction of biological
system and the population of individuals evolves toward the better solutions by means of

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

97

the mutation and selection operation. In this paper, we adopted a (μ, λ)-ES. That is, only the
λ offspring generated by mutation competes for survival and the μ parents are completely
replaced in each generation. Also, self-adaptive mutation step sizes are used in ES.
For AEA to self-adapt its use of GA and ES operators, each individual has an operator code
for determining which operator to use. Suppose a ‘0’ refers to GA, and a ‘1’ to ES. At each
generation, if it is more beneficial to use the GA, ‘0’s should appear at the end of
individuals. If it is more beneficial to use the ES, ‘1’s should appear. After reproduction by
roulette wheel selection according to the fitness, GA operations (crossover and mutation) are
performed on the individuals that have the operator code of ‘0’ and the ES operation
(mutation) is performed on the individuals that have an operator code of ‘1’. Elitism is also
used. The best individual in the population reproduces both the GA population and ES
population in the next generation. The major procedures of AEA are as follows:
1) Initialization: The initial population is randomly generated. Operator code is randomly

initialized for each individual. According to the operator code, GA operations are
performed on the individuals with operator code ‘0’, while ES operations are applied
where the operator code is ‘1’.

2) Evaluation and Reproduction: Using the selection operator, individual chromosomes
are selected in proportional to their fitness, which is evaluated by the defined objective
function. After reproduction, GA operations are performed on the individuals having
an operator code of ‘0’ and the ES operations are performed on the individuals having
an operator code ‘1’. At each generation, the percentages of ‘1’s and ‘0’s in the operator
code indicate the performance of GA and ES operators.

3) Preservation of Minimum Number of Individuals: At each generation, AEA may fall
into a situation where the percentage of the offspring by one operation is nearly 100%
and the offspring by other operation dies off. Therefore, it is necessary for AEA to
preserve certain amount of individuals for each EC operation. In this paper, we
randomly changed the operator code of the individuals with a higher percentage until
the numbers of individuals for each EC operation become higher than a certain amount
of individuals to be preserved. The predetermined minimum number of individuals to
be preserved is set to 20% of the population size.

4) Genetic Algorithm and Evolution Strategy: The real-valued coding is used to represent
a solution (Michalewicz, 1992; Mitsuo Gen and Cheng, 1997). Modified simple
crossover and uniform mutation are used as genetic operators. The modified simple
crossover operator is a way to generate offstrings population, selecting two strings
randomly in parent population, as shown in Fig. 1. If crossover occurs in k-th variable,
selecting randomly two strings in t-th generation, offstrings of t+1-th generation are
shown in Fig. 1.

In uniform mutation, we selected a random k-th gene in an individual. If an individual and
the k-th component of the individual is the selected gene, the resulting individual is as
shown in Fig. 2.
Only the λ offspring generated by mutation operation competes for survival and the μ
parents are completely replaced in each generation. Mutation is then performed
independently on each vector element by adding a normally distributed Gaussian random
variable with mean zero and standard deviation (σ), as shown in Eq. (1). After adapting the
mutation operator for ES population, if the improved ratio of individual number is lesser

 Advances in Evolutionary Algorithms

98

than δ, standard deviation for the next generation is decreased in proportion to decreased
rates of standard deviation (cd), Otherwise, standard deviation of the next generation is
increased in proportion to increased rates of standard deviation (ci,), as shown in Eq. (2)
(Fogel, 1995).

< Before Crossover > < After Crossover >

Sv = [V1, ... , Vk, ... , Vn]t

Sw = [W1, ... , Wk, ... , Wn]
t

Sv = [V1, ... , Vk, Vk+1 ... , Vn]' ' '

Sw = [W1, ... , Wk, Wk+1 ... , Wn]' ' '

t+1

t+1

Crossover point

Vj = a1 Vj + a2 Wj

Wj = a1 Wj + a2 Vj

where, '

'

a1, a2 : Random numbers from [0, 1]
Vj : j-th gene of the vector Sv

Wj : j-th gene of the vector Sw
'

n : Number of parameters

'

Fig. 1. Modified simple crossover method

< Before Mutation >

Sv = [V1, ... , Vk, ... , Vn]

< After Mutation >
t

Sv = [V1, ... , Vk, Vk+1 ... , Vn]
't+1

Mutation point

where,
'Vk : Random value between upper bound and lower bound

Fig. 2. Uniform mutation method

 1 (0 ,)t t t
k k Nv v σ+ = + (1)

 1

, ()

, ()

, ()

t
d

t t
i

t

if tc
if tc

if t

ϕ δσ

ϕ δσ σ

ϕ δσ

+

⎧ × <
⎪⎪= × >⎨
⎪

=⎪⎩

 (2)

where, N(0,σt) : Vector of independent Gaussian random variable with mean of zero and
standard deviations σ

 Vkt : k-th variable at t-th generation
 φ(t) : Improved ratio of individual number after adapting mutation operator for

population of ES in t-th generation
 δ : Constants
5) Elitism: The best individual in a population is preserved to perform GA and ES

operation in the next generation. This mechanism not only forces GA not to deteriorate
temporarily, but also forces ES to exploit information to guide subsequent local search
in the most promising subspace.

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

99

3. Design of fuzzy power system stabilizer using AEA
Conventionally, we have used the knowledge of experts and trial and error methods to tune
FLC’s for a good control performance, but recently many other ways using EC are proposed
to modify fuzzy rule and shape of fuzzy membership function (Abido and Abdel-Magid,
1998, 1999). Scaling factors of input/output and parameters of membership function of FPSS
are optimized by means of AEA using GA and ES adaptively, as described in chapter 2.
Fig. 3 shows the architecture for tuning scaling factors of input/output and membership
function shape of FPSS using AEA. As shown in Fig. 3, the rotor speed deviation of
generator and the change rate for rotor speed deviation are used as inputs of FPSS. The
control signals of the FPSS are used for enhancing power system damping by
supplementary control signals of generators.

G

FPSS de(t)
dt

AEA

Excitor
and AVR

Vt

Umax

Umin

e(t)

(t)

ref

Vt θ V00 0

Generator

ω

ω

Fig. 3. Configuration for tuning of FPSS using AEA.

The FPSS parameters used in this paper are given below.
- Number of input/output variables : 2/1
- Number of input/output membership functions : 7/7
- Fuzzy inference method : max-min method
- Defuzzification method : center of gravity
Because deviation and change-of-deviation are used as input variables of the FPSS,
proportional-derivative (PD)-like FPSS is used. Rule base for the PD-like FPSS from the two-
dimensional phase plane of the system in terms of deviation (e) and change-of-deviation
(de) is shown in Table 1. As shown in Table 1, the phase plane is divided into two semi-
planes by means of switching-line. Within the semi-planes, positive and negative control
signals are produced, respectively. The magnitude of the control signals depends on the
distance of the state vector from the switching line.

 Advances in Evolutionary Algorithms

98

than δ, standard deviation for the next generation is decreased in proportion to decreased
rates of standard deviation (cd), Otherwise, standard deviation of the next generation is
increased in proportion to increased rates of standard deviation (ci,), as shown in Eq. (2)
(Fogel, 1995).

< Before Crossover > < After Crossover >

Sv = [V1, ... , Vk, ... , Vn]t

Sw = [W1, ... , Wk, ... , Wn]
t

Sv = [V1, ... , Vk, Vk+1 ... , Vn]' ' '

Sw = [W1, ... , Wk, Wk+1 ... , Wn]' ' '

t+1

t+1

Crossover point

Vj = a1 Vj + a2 Wj

Wj = a1 Wj + a2 Vj

where, '

'

a1, a2 : Random numbers from [0, 1]
Vj : j-th gene of the vector Sv

Wj : j-th gene of the vector Sw
'

n : Number of parameters

'

Fig. 1. Modified simple crossover method

< Before Mutation >

Sv = [V1, ... , Vk, ... , Vn]

< After Mutation >
t

Sv = [V1, ... , Vk, Vk+1 ... , Vn]
't+1

Mutation point

where,
'Vk : Random value between upper bound and lower bound

Fig. 2. Uniform mutation method

 1 (0 ,)t t t
k k Nv v σ+ = + (1)

 1

, ()

, ()

, ()

t
d

t t
i

t

if tc
if tc

if t

ϕ δσ

ϕ δσ σ

ϕ δσ

+

⎧ × <
⎪⎪= × >⎨
⎪

=⎪⎩

 (2)

where, N(0,σt) : Vector of independent Gaussian random variable with mean of zero and
standard deviations σ

 Vkt : k-th variable at t-th generation
 φ(t) : Improved ratio of individual number after adapting mutation operator for

population of ES in t-th generation
 δ : Constants
5) Elitism: The best individual in a population is preserved to perform GA and ES

operation in the next generation. This mechanism not only forces GA not to deteriorate
temporarily, but also forces ES to exploit information to guide subsequent local search
in the most promising subspace.

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

99

3. Design of fuzzy power system stabilizer using AEA
Conventionally, we have used the knowledge of experts and trial and error methods to tune
FLC’s for a good control performance, but recently many other ways using EC are proposed
to modify fuzzy rule and shape of fuzzy membership function (Abido and Abdel-Magid,
1998, 1999). Scaling factors of input/output and parameters of membership function of FPSS
are optimized by means of AEA using GA and ES adaptively, as described in chapter 2.
Fig. 3 shows the architecture for tuning scaling factors of input/output and membership
function shape of FPSS using AEA. As shown in Fig. 3, the rotor speed deviation of
generator and the change rate for rotor speed deviation are used as inputs of FPSS. The
control signals of the FPSS are used for enhancing power system damping by
supplementary control signals of generators.

G

FPSS de(t)
dt

AEA

Excitor
and AVR

Vt

Umax

Umin

e(t)

(t)

ref

Vt θ V00 0

Generator

ω

ω

Fig. 3. Configuration for tuning of FPSS using AEA.

The FPSS parameters used in this paper are given below.
- Number of input/output variables : 2/1
- Number of input/output membership functions : 7/7
- Fuzzy inference method : max-min method
- Defuzzification method : center of gravity
Because deviation and change-of-deviation are used as input variables of the FPSS,
proportional-derivative (PD)-like FPSS is used. Rule base for the PD-like FPSS from the two-
dimensional phase plane of the system in terms of deviation (e) and change-of-deviation
(de) is shown in Table 1. As shown in Table 1, the phase plane is divided into two semi-
planes by means of switching-line. Within the semi-planes, positive and negative control
signals are produced, respectively. The magnitude of the control signals depends on the
distance of the state vector from the switching line.

 Advances in Evolutionary Algorithms

100

When AEA is tuning the membership functions, fuzzy rules are used for PD-type, as shown
in Table 1, where, linguistic variable NB means “Negative Big”, NM means “Negative
Medium”, NS means “Negative Small”, etc. Fig. 4 shows triangular membership function
used in this paper. Because we use 7 fuzzy variables (PB, PM, … ,NM, NB) respectively, for
input/output of FPSS, the total membership functions will be 21, so 63 variables that include
the center and width of all the membership function will be adjusted, but it takes a long
calculation time to tune 63 variables using AEA, and suffers from undesirable converging
characteristic. In this paper, we fixed center of ZE to 0 and positive and negative
membership functions are constructed symmetrical for the 0. So the number of parameters
of FPSS will be reduced to 21, which means 3 centers and 4 widths for each variable as
shown in Fig. 4.

 de
 e NB NM NS ZE PS PM PB

NB NB NB NB NM NM NS ZE

NM NB NB NM NM NS ZE PS

NS NB NM NM NS ZE PS PM

ZE NM NM NS ZE PS PM PM

PS NM NS ZE PS PM PM PB

PM NS ZE PS PM PM PB PB

PB ZE PS PM PM PB PB PB

Table 1. Fuzzy rules of proportional-differential type

Fig. 4. Symmetrical membership functions

The flowchart for the design of FPSS using the proposed AEA is shown in Fig. 5. The
procedure for the design of FPSS using AEA is as follows:

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

101

Initilize Population

Evaluation

p> N

Reproduction

p= p+ 1

Preservation of Minimum Number of Individuals

GA
 • Crossover and mutation

ES
 • Mutation

Elitism

g> G

END

g= g+ 1

No

Yes

No

Yes

where, P : Number of population
G : Specified generation
Fig. 5. Flowchart for the design of FPSS using AEA
Step1) Initialize population
Strings are randomly generated between upper bounds and lower bounds of the
membership function parameters and scaling factors of FPSS. The operator code is
randomly set to decide if each string is individual of GA or ES. The configuration of
population is described in Fig. 6. Also scaling factors of the FPSS are tuned by the AEA.

 Advances in Evolutionary Algorithms

100

When AEA is tuning the membership functions, fuzzy rules are used for PD-type, as shown
in Table 1, where, linguistic variable NB means “Negative Big”, NM means “Negative
Medium”, NS means “Negative Small”, etc. Fig. 4 shows triangular membership function
used in this paper. Because we use 7 fuzzy variables (PB, PM, … ,NM, NB) respectively, for
input/output of FPSS, the total membership functions will be 21, so 63 variables that include
the center and width of all the membership function will be adjusted, but it takes a long
calculation time to tune 63 variables using AEA, and suffers from undesirable converging
characteristic. In this paper, we fixed center of ZE to 0 and positive and negative
membership functions are constructed symmetrical for the 0. So the number of parameters
of FPSS will be reduced to 21, which means 3 centers and 4 widths for each variable as
shown in Fig. 4.

 de
 e NB NM NS ZE PS PM PB

NB NB NB NB NM NM NS ZE

NM NB NB NM NM NS ZE PS

NS NB NM NM NS ZE PS PM

ZE NM NM NS ZE PS PM PM

PS NM NS ZE PS PM PM PB

PM NS ZE PS PM PM PB PB

PB ZE PS PM PM PB PB PB

Table 1. Fuzzy rules of proportional-differential type

Fig. 4. Symmetrical membership functions

The flowchart for the design of FPSS using the proposed AEA is shown in Fig. 5. The
procedure for the design of FPSS using AEA is as follows:

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

101

Initilize Population

Evaluation

p> N

Reproduction

p= p+ 1

Preservation of Minimum Number of Individuals

GA
 • Crossover and mutation

ES
 • Mutation

Elitism

g> G

END

g= g+ 1

No

Yes

No

Yes

where, P : Number of population
G : Specified generation
Fig. 5. Flowchart for the design of FPSS using AEA
Step1) Initialize population
Strings are randomly generated between upper bounds and lower bounds of the
membership function parameters and scaling factors of FPSS. The operator code is
randomly set to decide if each string is individual of GA or ES. The configuration of
population is described in Fig. 6. Also scaling factors of the FPSS are tuned by the AEA.

 Advances in Evolutionary Algorithms

102

S1 P11 • • • P19 W11 • • • W112 SF11 SF12 SF13 *
S2 P21 • • • P29 W21 • • • W212 SF21 SF22 SF23 *
 •

•

Sn Pn1 • • • Pn9 Wn1 • • • Wn12 SFn1 SFn2 SFn3 *

where, n : population size
Pij : Center of the membership functions

Wij : Width of the membership functions
SFij : Scaling factors

* : Operator code
Fig. 6. String architecture for tuning membership functions and scaling factors.
Step 2) Evaluation
Each string generated in Step 1 is evaluated using the fitness function in Eq. (3). As shown in
Eq. (3), the absolute deviation between the rotor speed and the reference rotor speed of
generator is used. The flowchart for evaluation part is shown in Fig. 7.

()

0

1
1 | |

T
ref t

t

F itness
ω ω

=

=
+ −∫

 (3)

where, ωref : Reference rotor speed of generator
 ω(t) : Rotor speed of generator
 T : No. of data acquired during specified time

Step 3) Reproduction
We used roulette wheel to reproduce in proportion to fitness. After reproduction, the
individual operator code of ‘0’ is inserted in the population of GA, the individual operator
code of ‘1’ is inserted in the population of ES.
Step 4) Preservation of Minimum Number of Individuals
Among GA and ES, depending on which is stronger, we guarantee minimum number of
individuals to offsprings being disappearing by the remaining iterations.
Step 5) GA and ES operation
The individual with operator code of ‘0’ applied crossover and mutation in GA operators
and generates offsprings. The individual with operator code of ‘1’ apply mutation in ES
operator and generates offsprings.
Step 6) Elitism
We use elitism reproducing the best individual of fitness to GA and ES population by each
one.
Step 7) Convergence criterion
We iterate Step 2 – Step 6 until being satisfied of the specified generation.

4. Simulation studies
4.1 Simulation cases of single-machine infinite bus system
We performed nonlinear simulation for SIBS in Fig. 8 to demonstrate the performance of the
proposed FPSS. A machine has been represented by third order one-axis nonlinear model, as

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

103

Power Flow Calculation
 λ Newton Raphson method

Calculation of Initial Values
 λ Calculate of initial values needed differential equation analysis

t> 10[sec]

 Fitness Calculation

t= t+ Δt

Yes

Disturbance Applying
 λ Apply of disturbances such as three-phase fault, change

 of mechanical torque etc.

Calculation of Output of FPSS
 λ Compute output of FPSS using fuzzy inference and

 defuzzification.

Differential Equation Analysis of Generator
 λ Solve differential equations of generator using Runge

 Kutta

Calculation of Deviation Absolute Value
 λ e(t) = | ωref - ω(t) |

No

Fig. 7 Flowchart for evaluation part

shown in appendix. Details of the system data are given in Yu, 1983. Table 2 shows the
simulation coefficients of AEA used in nonlinear simulation. The execution time in PC 586
(300 MHz) takes about 30 minutes to tune the parameters of FPSS under the condition in
Table 2. Fig. 9 shows membership functions shape of FPSS tuned by AEA, where scaling
constant of deviation is 0.24, scaling constant of deviation rate is 3.50 and scaling constant of

 Advances in Evolutionary Algorithms

102

S1 P11 • • • P19 W11 • • • W112 SF11 SF12 SF13 *
S2 P21 • • • P29 W21 • • • W212 SF21 SF22 SF23 *
 •

•

Sn Pn1 • • • Pn9 Wn1 • • • Wn12 SFn1 SFn2 SFn3 *

where, n : population size
Pij : Center of the membership functions

Wij : Width of the membership functions
SFij : Scaling factors

* : Operator code
Fig. 6. String architecture for tuning membership functions and scaling factors.
Step 2) Evaluation
Each string generated in Step 1 is evaluated using the fitness function in Eq. (3). As shown in
Eq. (3), the absolute deviation between the rotor speed and the reference rotor speed of
generator is used. The flowchart for evaluation part is shown in Fig. 7.

()

0

1
1 | |

T
ref t

t

F itness
ω ω

=

=
+ −∫

 (3)

where, ωref : Reference rotor speed of generator
 ω(t) : Rotor speed of generator
 T : No. of data acquired during specified time

Step 3) Reproduction
We used roulette wheel to reproduce in proportion to fitness. After reproduction, the
individual operator code of ‘0’ is inserted in the population of GA, the individual operator
code of ‘1’ is inserted in the population of ES.
Step 4) Preservation of Minimum Number of Individuals
Among GA and ES, depending on which is stronger, we guarantee minimum number of
individuals to offsprings being disappearing by the remaining iterations.
Step 5) GA and ES operation
The individual with operator code of ‘0’ applied crossover and mutation in GA operators
and generates offsprings. The individual with operator code of ‘1’ apply mutation in ES
operator and generates offsprings.
Step 6) Elitism
We use elitism reproducing the best individual of fitness to GA and ES population by each
one.
Step 7) Convergence criterion
We iterate Step 2 – Step 6 until being satisfied of the specified generation.

4. Simulation studies
4.1 Simulation cases of single-machine infinite bus system
We performed nonlinear simulation for SIBS in Fig. 8 to demonstrate the performance of the
proposed FPSS. A machine has been represented by third order one-axis nonlinear model, as

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

103

Power Flow Calculation
 λ Newton Raphson method

Calculation of Initial Values
 λ Calculate of initial values needed differential equation analysis

t> 10[sec]

 Fitness Calculation

t= t+ Δt

Yes

Disturbance Applying
 λ Apply of disturbances such as three-phase fault, change

 of mechanical torque etc.

Calculation of Output of FPSS
 λ Compute output of FPSS using fuzzy inference and

 defuzzification.

Differential Equation Analysis of Generator
 λ Solve differential equations of generator using Runge

 Kutta

Calculation of Deviation Absolute Value
 λ e(t) = | ωref - ω(t) |

No

Fig. 7 Flowchart for evaluation part

shown in appendix. Details of the system data are given in Yu, 1983. Table 2 shows the
simulation coefficients of AEA used in nonlinear simulation. The execution time in PC 586
(300 MHz) takes about 30 minutes to tune the parameters of FPSS under the condition in
Table 2. Fig. 9 shows membership functions shape of FPSS tuned by AEA, where scaling
constant of deviation is 0.24, scaling constant of deviation rate is 3.50 and scaling constant of

 Advances in Evolutionary Algorithms

104

output part is 2.75. We reviewed the performance of FPSS proposed in this paper and
compared it with CPSS (Yu, 1983). In CPSS, time constants (T1, T2) were designed based on
phase compensation as in Eq. (4), where washout filter (Tw) is 3 sec, stabilization gain (Kpss)
is 7.09, and T1, T2 are 0.1 sec, 0.065 sec respectively.

 w 1

w 2

sT 1 sT
1 sT 1 sTpssV Ks

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

 (4)

where, Vs : Output of PSS

~

Vt e θj

R jX

Voo 0

G

jB

Fig. 8. Single-machine infinite system used in performance evaluation

AEA
Methods

SIBS MPS

Size of population 50 100

Crossover probability 0.95 0.95

Mutation probability 0.005 0.005

δ 0.5 0.5

Cd 0.95 0.95

CI 1.05 1.05

Number of Generation 100 200

Table 2. Coefficients for simulation using AEA

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

105

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

D
eg

re
e

E r r o r

(a) Membership function of deviation

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

D
eg

re
e

E r r o r r a t e

(b) Membership function of change-of-deviation

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

D
eg

re
e

C o n t r o l s i g n a l

(c) Membership function of output part

Fig. 9. Tuned membership function of FPSS

Fig. 10 (a) shows the fitness values by AEA in each generation. Fig. 10 (b) shows the number
of individuals for GA and ES in the AEA. As shown in Fig. 10, the number of individuals of
GA is higher than that of individuals of ES in early generation. But, from generation to
generation, the number of individuals of ES goes higher than that of individuals of GA. The
AEA produces the improved reliability by exploiting the “global” nature of the GA initially
as well as the “local” improvement capabilities of the ES from generation to generation.
Analysis conditions used for comparing control performance of CPSS with FPSS optimized
by AEA are summarized in Table 3. Table 3 is classified into four cases according to the
power system simulation cases used in designing FPSS and in evaluating the robustness of
FPSS. As shown in Table 3, Case-1 is used to design FPSS and tune scaling constant of
input/output variable and membership functions of FPSS by AEA. We used Case-2 and
Case-4 in evaluating the robustness of FPSS.

 Advances in Evolutionary Algorithms

104

output part is 2.75. We reviewed the performance of FPSS proposed in this paper and
compared it with CPSS (Yu, 1983). In CPSS, time constants (T1, T2) were designed based on
phase compensation as in Eq. (4), where washout filter (Tw) is 3 sec, stabilization gain (Kpss)
is 7.09, and T1, T2 are 0.1 sec, 0.065 sec respectively.

 w 1

w 2

sT 1 sT
1 sT 1 sTpssV Ks

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

 (4)

where, Vs : Output of PSS

~

Vt e θj

R jX

Voo 0

G

jB

Fig. 8. Single-machine infinite system used in performance evaluation

AEA
Methods

SIBS MPS

Size of population 50 100

Crossover probability 0.95 0.95

Mutation probability 0.005 0.005

δ 0.5 0.5

Cd 0.95 0.95

CI 1.05 1.05

Number of Generation 100 200

Table 2. Coefficients for simulation using AEA

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

105

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

D
eg

re
e

E r r o r

(a) Membership function of deviation

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

D
eg

re
e

E r r o r r a t e

(b) Membership function of change-of-deviation

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

D
eg

re
e

C o n t r o l s i g n a l

(c) Membership function of output part

Fig. 9. Tuned membership function of FPSS

Fig. 10 (a) shows the fitness values by AEA in each generation. Fig. 10 (b) shows the number
of individuals for GA and ES in the AEA. As shown in Fig. 10, the number of individuals of
GA is higher than that of individuals of ES in early generation. But, from generation to
generation, the number of individuals of ES goes higher than that of individuals of GA. The
AEA produces the improved reliability by exploiting the “global” nature of the GA initially
as well as the “local” improvement capabilities of the ES from generation to generation.
Analysis conditions used for comparing control performance of CPSS with FPSS optimized
by AEA are summarized in Table 3. Table 3 is classified into four cases according to the
power system simulation cases used in designing FPSS and in evaluating the robustness of
FPSS. As shown in Table 3, Case-1 is used to design FPSS and tune scaling constant of
input/output variable and membership functions of FPSS by AEA. We used Case-2 and
Case-4 in evaluating the robustness of FPSS.

 Advances in Evolutionary Algorithms

106

1) Heavy load condition
Fig. 11 shows generator angular velocity and the phase angle both without PSS and with
CPSS and FPSS under Case-1 in Table 3. As shown Fig. 11, the FPSS shows the better control
performance than CPSS in terms of settling time and damping effect. To evaluate the
robustness of FPSS, Fig. 12 shows generator response characteristic in case that PSS is not
applied. In this case, CPSS and proposed FPSS are applied under Case-2 of Table 3. As
shown in Fig. 12, FPSS shows the better control performance than CPSS in terms of settling
time and damping effect.

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Fi
tn

es
s

G e n e r a t i o n

(a) fitness

0 2 0 4 0 6 0 8 0 1 0 0
0

1 0

2 0

3 0

4 0

5 0

 G A

 E S

N
o.

 o
f

in
di

vi
du

al
s

G e n e r a t i o n

(b) Number of individuals of GA and ES in AEA

Fig. 10. Fitness and number of individuals of GA and ES in each generation

Simulation

cases
Operating
conditions

Disturbanc
e

Fault time
[msec]

Case-1 A 40

Case-2

Heavy load
Pe = 1.3 [pu]

Qe = 0.015 [pu] B -

Case-3 A 40

Case-4

Nominal load
Pe = 1.0 [pu]

Qe = 0.015 [pu] B -

A: Three phase fault
B: Mechanical torque was changed as 0.1 [pu]

Table 3. Simulation cases used in evaluation of controller performance

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

107

(a) Angle velocity of generator

(b) Angle of generator

Fig. 11. Responses of generator when three-phase fault was occurred in heavy load

(a) Angle velocity of generator

(b) Angle of generator

Fig. 12. Responses of generator when mechanical torque was changed into 0.1[pu] in heavy
load
2) Nominal load condition
 To evaluate the robustness of FPSS, Fig. 13-14 show generator response characteristic in
case that PSS is not applied, and CPSS and proposed FPSS are applied under Case-3 and 4 of

 Advances in Evolutionary Algorithms

106

1) Heavy load condition
Fig. 11 shows generator angular velocity and the phase angle both without PSS and with
CPSS and FPSS under Case-1 in Table 3. As shown Fig. 11, the FPSS shows the better control
performance than CPSS in terms of settling time and damping effect. To evaluate the
robustness of FPSS, Fig. 12 shows generator response characteristic in case that PSS is not
applied. In this case, CPSS and proposed FPSS are applied under Case-2 of Table 3. As
shown in Fig. 12, FPSS shows the better control performance than CPSS in terms of settling
time and damping effect.

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Fi
tn

es
s

G e n e r a t i o n

(a) fitness

0 2 0 4 0 6 0 8 0 1 0 0
0

1 0

2 0

3 0

4 0

5 0

 G A

 E S

N
o.

 o
f

in
di

vi
du

al
s

G e n e r a t i o n

(b) Number of individuals of GA and ES in AEA

Fig. 10. Fitness and number of individuals of GA and ES in each generation

Simulation

cases
Operating
conditions

Disturbanc
e

Fault time
[msec]

Case-1 A 40

Case-2

Heavy load
Pe = 1.3 [pu]

Qe = 0.015 [pu] B -

Case-3 A 40

Case-4

Nominal load
Pe = 1.0 [pu]

Qe = 0.015 [pu] B -

A: Three phase fault
B: Mechanical torque was changed as 0.1 [pu]

Table 3. Simulation cases used in evaluation of controller performance

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

107

(a) Angle velocity of generator

(b) Angle of generator

Fig. 11. Responses of generator when three-phase fault was occurred in heavy load

(a) Angle velocity of generator

(b) Angle of generator

Fig. 12. Responses of generator when mechanical torque was changed into 0.1[pu] in heavy
load
2) Nominal load condition
 To evaluate the robustness of FPSS, Fig. 13-14 show generator response characteristic in
case that PSS is not applied, and CPSS and proposed FPSS are applied under Case-3 and 4 of

 Advances in Evolutionary Algorithms

108

Table 3. As shown in Fig. 13-14, the FPSS shows the better control performance than CPSS in
terms of settling time and damping effect.

(a) Angle velocity of generator

(b) Angle of generator

Fig. 13. Responses of generator when three-phase fault was occurred in nominal load

(a) Angle velocity of generator

(b) Angle of generator

Fig. 14. Responses of generator when mechanical torque was changed into 0.1[pu] in
nominal load

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

109

3) Dynamic stability margin
To evaluate the dynamic stability margin (He & Malik, 1997) of CPSS and FPSS, a simulation
study is conducted with the initial operating condition of light, nominal and heavy load as
given in Table 3. The mechanical torque is increased gradually. The dynamic stability
margin is described by the maximum active power in which the system losses synchronism.
Table 4 shows the dynamic stability margin. In Table 4, we can find FPSS increases the
dynamic stability of generator.

 Methods
 Conditions CPSS FPSS

Maximum active power [pu] 1.02 1.06 Light
load Maximum generator phase angle

[rad] 2.44 2.46

Maximum active power [pu] 1.22 1.27 Nominal
load Maximum generator phase angle

[rad] 2.35 2.45

Table 4. Dynamic stability margin (SIBS)

4.2 Simulation cases of multi-machine power system
To demonstrate the performance of the proposed FPSS, we performed nonlinear simulation
for WSCC 3-machine, 9-bus system (Anderson & Found, 1977) as in Fig. 15. Constants of
generator and exciter, load admittance, and load condition used in generator dynamic
characteristic analysis are shown in Appendix (Abido & Abdel-Magid, 1999). Coefficients
for simulation of AEA are shown in Table 2. We compared the proposed FPSS with the
conventional power system stabilizer, CPSS, for multi-machine power system. In CPSS, time
constants (T1, T2) were designed based on phase compensation as in Eq. (5), where washout
filter (Tw) is 1.5 sec, stabilization gain (Kpss) is 15, and T1, T2 are 0.29 sec, 0.029 sec
respectively.

2

w 1

w 2

sT 1 sT
1 sT 1 sTpssV Ks

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

 (5)

As shown in Table 5, simulation cases used in comparing control performance of FPSS with
CPSS are classified into Case-1 to Case-4. Case-1 was for the power operating condition used
in designing FPSS. Case-2 and Case-4 were for evaluating the robustness of FPSS

Simulation
cases

Operating
conditions

Disturbanc
e

Fault time
[msec]

Case-1 A 70
Case-2

Heavy load
B 70

Case-3 A 70
Case-4

Nominal load
B 70

A: Three phase fault in bus-7
B: Three phase fault between bus-5 and bus-7
Table 5. Simulation cases used in evaluation of controller performance

 Advances in Evolutionary Algorithms

108

Table 3. As shown in Fig. 13-14, the FPSS shows the better control performance than CPSS in
terms of settling time and damping effect.

(a) Angle velocity of generator

(b) Angle of generator

Fig. 13. Responses of generator when three-phase fault was occurred in nominal load

(a) Angle velocity of generator

(b) Angle of generator

Fig. 14. Responses of generator when mechanical torque was changed into 0.1[pu] in
nominal load

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

109

3) Dynamic stability margin
To evaluate the dynamic stability margin (He & Malik, 1997) of CPSS and FPSS, a simulation
study is conducted with the initial operating condition of light, nominal and heavy load as
given in Table 3. The mechanical torque is increased gradually. The dynamic stability
margin is described by the maximum active power in which the system losses synchronism.
Table 4 shows the dynamic stability margin. In Table 4, we can find FPSS increases the
dynamic stability of generator.

 Methods
 Conditions CPSS FPSS

Maximum active power [pu] 1.02 1.06 Light
load Maximum generator phase angle

[rad] 2.44 2.46

Maximum active power [pu] 1.22 1.27 Nominal
load Maximum generator phase angle

[rad] 2.35 2.45

Table 4. Dynamic stability margin (SIBS)

4.2 Simulation cases of multi-machine power system
To demonstrate the performance of the proposed FPSS, we performed nonlinear simulation
for WSCC 3-machine, 9-bus system (Anderson & Found, 1977) as in Fig. 15. Constants of
generator and exciter, load admittance, and load condition used in generator dynamic
characteristic analysis are shown in Appendix (Abido & Abdel-Magid, 1999). Coefficients
for simulation of AEA are shown in Table 2. We compared the proposed FPSS with the
conventional power system stabilizer, CPSS, for multi-machine power system. In CPSS, time
constants (T1, T2) were designed based on phase compensation as in Eq. (5), where washout
filter (Tw) is 1.5 sec, stabilization gain (Kpss) is 15, and T1, T2 are 0.29 sec, 0.029 sec
respectively.

2

w 1

w 2

sT 1 sT
1 sT 1 sTpssV Ks

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

 (5)

As shown in Table 5, simulation cases used in comparing control performance of FPSS with
CPSS are classified into Case-1 to Case-4. Case-1 was for the power operating condition used
in designing FPSS. Case-2 and Case-4 were for evaluating the robustness of FPSS

Simulation
cases

Operating
conditions

Disturbanc
e

Fault time
[msec]

Case-1 A 70
Case-2

Heavy load
B 70

Case-3 A 70
Case-4

Nominal load
B 70

A: Three phase fault in bus-7
B: Three phase fault between bus-5 and bus-7
Table 5. Simulation cases used in evaluation of controller performance

 Advances in Evolutionary Algorithms

110

2 3

4

5 6

7

G1 G2

8 9

Load A Load B

Load C

1 ~ : Bus , Load A ~ Load C : Load, G 1, G2 : Generator9

1

Fig. 15. WSCC 3-machine, 9-bus system
1) Heavy load condition
Fig. 16 shows generator phase angles (G1, G2) both without PSS and with CPSS and FPSS
under Case-1 in Table 5. As shown Fig. 16, the FPSS shows the better control performance
than CPSS in terms of settling time and damping effect. To evaluate the robustness of FPSS,
Fig. 17 shows generator phase angles (G1, G2) both without PSS and with CPSS and FPSS
under Case-2 in Table 5. As shown in Fig. 17, FPSS shows the better control performance
than CPSS in terms of settling time and damping effect.

(a) Angle of generator (G1)

(b) Angle of generator (G2)

Fig. 16. Responses of generator when three-phase ground fault was occurred at bus-7 under
heavy load condition

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

111

(a) Angle of generator (G1)

(b) Angle of generator (G2)

Fig. 17. Responses of generator when three-phase ground fault was occurred at bus-5 and
bus-7 under heavy load condition
2) Nominal load condition
To evaluate the robustness of FPSS, Fig. 18-19 shows generator response characteristic in
case that PSS is not applied, and CPSS and proposed FPSS are applied under Case-3 and 4 in
Table 3. As shown in Fig. 18-19, the FPSS shows the better control performance than CPSS in
terms of settling time and damping effect.

(a) Angle of generator (G1)

(b) Angle of generator (G2)

Fig. 18. Responses of generator when three-phase ground fault was occurred at bus-7 under
nominal load condition

 Advances in Evolutionary Algorithms

110

2 3

4

5 6

7

G1 G2

8 9

Load A Load B

Load C

1 ~ : Bus , Load A ~ Load C : Load, G 1, G2 : Generator9

1

Fig. 15. WSCC 3-machine, 9-bus system
1) Heavy load condition
Fig. 16 shows generator phase angles (G1, G2) both without PSS and with CPSS and FPSS
under Case-1 in Table 5. As shown Fig. 16, the FPSS shows the better control performance
than CPSS in terms of settling time and damping effect. To evaluate the robustness of FPSS,
Fig. 17 shows generator phase angles (G1, G2) both without PSS and with CPSS and FPSS
under Case-2 in Table 5. As shown in Fig. 17, FPSS shows the better control performance
than CPSS in terms of settling time and damping effect.

(a) Angle of generator (G1)

(b) Angle of generator (G2)

Fig. 16. Responses of generator when three-phase ground fault was occurred at bus-7 under
heavy load condition

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

111

(a) Angle of generator (G1)

(b) Angle of generator (G2)

Fig. 17. Responses of generator when three-phase ground fault was occurred at bus-5 and
bus-7 under heavy load condition
2) Nominal load condition
To evaluate the robustness of FPSS, Fig. 18-19 shows generator response characteristic in
case that PSS is not applied, and CPSS and proposed FPSS are applied under Case-3 and 4 in
Table 3. As shown in Fig. 18-19, the FPSS shows the better control performance than CPSS in
terms of settling time and damping effect.

(a) Angle of generator (G1)

(b) Angle of generator (G2)

Fig. 18. Responses of generator when three-phase ground fault was occurred at bus-7 under
nominal load condition

 Advances in Evolutionary Algorithms

112

(a) Angle of generator (G1)

(b) Angle of generator (G2)

Fig. 19. Responses of generator when three-phase ground fault was occurred at bus-5 and
bus-7 under nominal load condition
3) Dynamic stability margin
Table 6 shows the dynamic stability margin (He and Malik, 1997) of CPSS and FPSS when
the mechanical torque was increased gradually. In Table 6, we can find FPSS increases the
dynamic stability of generator.

CPSS FPSS Methods
Conditions G1 G2 G1 G2

A 3.04 2.44 3.11 2.51 Heavy
load B 2.25 1.39 2.25 1.46

A 2.84 2.29 2.91 2.36 Nominal
load B 2.52 1.58 2.52 1.63

A : Maximum active power [pu]
B : Maximum generator phase angle [rad]

Table 6. Dynamic stability margin (MPS)

5. Conclusions
In this paper, we tuned membership functions shape and input/output gain of FPSS using
AEA that is algorithm that ratio of population to which GA and ES will adapt is adaptively

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

113

modified in reproduction according to the fitness. In the SIBS and MPS, we analyzed
simulation results of FPSS and CPSS. The results are as following:
① As a result of applying AEA to the design of FPSS, in the early generation, it is shown

the number of population of GA is higher than that of population of ES, also the
number of population of ES grows as the number of generation increases. This shows
that the global search is executed through GA in the early generation and the local
search is executed adaptively by means of ES as the number of generation increases.

② FPSS showed the better control performance than CPSS in terms of settling time and
damping effect when three- phase fault under heavy load that is used in tuning FPSS
occurs. To evaluate the robustness of FPSS, we analyzed dynamic characteristic of
generator for changeable mechanical torque in heavy load, and change of mechanical
torque and three-phase fault in nominal. FPSS showed the better damping effect than
CPSS.

③ As result of finding dynamic stability margin and successive peak damping ratio, FPSS
more increased dynamic stability margin and showed the better result than CPSS in
terms of successive peak damping ratio.

6. Acknowledgments
This research was supported by the Program for the Training of Graduate Students in
Regional Innovation which was conducted by the Ministry of Commerce Industry and
Energy of the Korean Government.

7.Appendix
A. System Model

' 1
[' (')]

'
q

q d d d fd

do

dE E X X I E
dt T

= − + − −

ref
d
dt
δ ω ω= −

[' (')]
2

ref
m q q q d d q

d T E I X X I I
dt H
ω ω

= − − −

1
()

ef a
ref t s fd

a

dE K V V V E
dt T Ta

= − + −

 where, 2 2
t d qV V V= +

e
1

[R (' sin) (')(' cos)]d d e q qI E V X X E Vδ δ∞ ∞= − + + −
Δ

e
1

[R (' cos) (')(' sin)]q q e d dI E V X X E Vδ δ∞ ∞= − − + −
Δ

 Advances in Evolutionary Algorithms

112

(a) Angle of generator (G1)

(b) Angle of generator (G2)

Fig. 19. Responses of generator when three-phase ground fault was occurred at bus-5 and
bus-7 under nominal load condition
3) Dynamic stability margin
Table 6 shows the dynamic stability margin (He and Malik, 1997) of CPSS and FPSS when
the mechanical torque was increased gradually. In Table 6, we can find FPSS increases the
dynamic stability of generator.

CPSS FPSS Methods
Conditions G1 G2 G1 G2

A 3.04 2.44 3.11 2.51 Heavy
load B 2.25 1.39 2.25 1.46

A 2.84 2.29 2.91 2.36 Nominal
load B 2.52 1.58 2.52 1.63

A : Maximum active power [pu]
B : Maximum generator phase angle [rad]

Table 6. Dynamic stability margin (MPS)

5. Conclusions
In this paper, we tuned membership functions shape and input/output gain of FPSS using
AEA that is algorithm that ratio of population to which GA and ES will adapt is adaptively

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

113

modified in reproduction according to the fitness. In the SIBS and MPS, we analyzed
simulation results of FPSS and CPSS. The results are as following:
① As a result of applying AEA to the design of FPSS, in the early generation, it is shown

the number of population of GA is higher than that of population of ES, also the
number of population of ES grows as the number of generation increases. This shows
that the global search is executed through GA in the early generation and the local
search is executed adaptively by means of ES as the number of generation increases.

② FPSS showed the better control performance than CPSS in terms of settling time and
damping effect when three- phase fault under heavy load that is used in tuning FPSS
occurs. To evaluate the robustness of FPSS, we analyzed dynamic characteristic of
generator for changeable mechanical torque in heavy load, and change of mechanical
torque and three-phase fault in nominal. FPSS showed the better damping effect than
CPSS.

③ As result of finding dynamic stability margin and successive peak damping ratio, FPSS
more increased dynamic stability margin and showed the better result than CPSS in
terms of successive peak damping ratio.

6. Acknowledgments
This research was supported by the Program for the Training of Graduate Students in
Regional Innovation which was conducted by the Ministry of Commerce Industry and
Energy of the Korean Government.

7.Appendix
A. System Model

' 1
[' (')]

'
q

q d d d fd

do

dE E X X I E
dt T

= − + − −

ref
d
dt
δ ω ω= −

[' (')]
2

ref
m q q q d d q

d T E I X X I I
dt H
ω ω

= − − −

1
()

ef a
ref t s fd

a

dE K V V V E
dt T Ta

= − + −

 where, 2 2
t d qV V V= +

e
1

[R (' sin) (')(' cos)]d d e q qI E V X X E Vδ δ∞ ∞= − + + −
Δ

e
1

[R (' cos) (')(' sin)]q q e d dI E V X X E Vδ δ∞ ∞= − − + −
Δ

 Advances in Evolutionary Algorithms

114

e
'

' [R (' cos) (')(' sin)]
q

d d q e d d
XV E E V X X E Vδ δ∞ ∞= + − − + −
Δ

e
'

' [R (' sin) (')(' cos)]
d

q q d e q q
XV E E V X X E Vδ δ∞ ∞= − − + + −
Δ

2
eR (')(')e d e qX X X XΔ = + + +

B. Nomenclature

δ : Rotor angle of generator
ω : Rotor speed of generator
ωref : Reference rotor speed of generator
H : Inertia constant of generator
Tm : Mechanical input of generator
Xd : d-axis synchronous reactance of generator
Xd ’ : d-axis transient reactance of generator
Xq : q-axis synchronous reactance of generator
Eq’ : q-axis voltage of generator
Efd : Generator field voltage
Tdo‘ : d-axis transient time constant of generator
Id : d-axis current of generator
Iq : q-axis current of generator
Vt : Terminal voltage
Vref : Reference voltage
Vs : PSS signal
Voo : Voltage of infinite bus
 Ka : AVR gain
Ta : Exciter time constant
Re : Equivalent resistance of transmission line
Xe : Equivalent reactance of transmission line

C. Multi-machine Power System

1. Constants of generator and exciter

 Parameters

Generators

H
[sec]

Xd
[pu]

X’d

[pu]
Xq

[pu]
T’do

[pu]
T’qo
[pu]

G1 6.4 0.8958 0.1198 0.8645 6.0 0.535
G2 5.4 1.3125 0.1813 1.2578 5.89 0.6

2. Load admittance

Load Nominal load Heavy load

Load A 1.261 - j0.504 2.314 – j0.925
Load B 0.878 – j0.293 2.032 – j0.677
Load C 0.969 – j0.339 1.584 – j0.634

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

115

3. Loading conditions

 Generators
Loading condition G1 G2

P [pu] 1.35 0.80 Nominal load
Q [pu] 0.02 - 0.12
P [pu] 1.65 1.05 Heavy

load Q [pu] 0.53 0.35

8. References
Yu ,Y. N., 1983. Electric Power System Dynamics, Academic Press.
Larsen, E. V., Swann, D. A., 19981. Applying Power System Stabilizers Part Ⅰ: General

Concepts. IEEE Transactions on Power Apparatus and System, PAS-100 (6), 3017-
3024.

Kanniah, J., Malik, O. P., Hope, G. S., 1984. Excitation Control of Synchronous Generators
Using Adaptive Regulators Part Ⅰ- Theory and Simulation Result. IEEE
Transactions on Power Apparatus and Systems, PAS-103 (5), 897-904.

Chow, J. H., Sanchez-Gasca, J. J., 1989. Pole-Placement Design of Power System Stabilizers.
IEEE Transactions on Power Systems, 4 (1), 271-277.

Ostojic, D., Kovacevic, B., 1990. On the Eigenvalue Control of Electromechanical Oscillations
by Adaptive Power System Stabilizer. IEEE Transactions on Power Systems, 5 (4),
1118-1126.

Fleming, R. J., Jun Sun, 1990. An Optimal Multivariable Stabilizer for a Multimachine Plant.
IEEE Transactions on Energy Conversion, 5 (1), 15-22.

Mao, C., Malik, O. P., Hope, G. S., Fun, J., 1990. An Adaptive Generator Excitation
Controller Based on Linear Optimal Control. IEEE Transactions on Energy
Conversion, 5 (4), 673-678.

Chen, G. P., Malik, Hope, O. P., G. S., Qin, Y. H., Xu, G. Y., 1993. An Adaptive Power System
Stabilizer Based On The Self-Optimization Pole Shifting Control Strategy. IEEE
Transactions on Energy Conversion, 8 (4), 639-644.

Park, T. M., Kim, W., 1996. Discrete-Time Adaptive Sliding Mode Power System Stabilizer
with Only Input/Output Measurement. Electrical Power Energy Systems, 18 (8),
509-517.

Hassan, M. A. M., Malik, O. P., Hope, G. S., 1991. A Fuzzy Logic Based Stabilizer for a
Synchronous Machine. IEEE Transactions on Energy Conversion, 6 (3), 407-413.

Hassan, M. A. M., Malik, O. P., 1993. Implementation and Laboratory Test Results for a
Fuzzy Logic Based Self-tuned Power System Stabilizer. IEEE Transactions on
Energy Conversion, 8 (2), 221-227.

Abido, M. A., Abdel-Magid, Y. L., 1998. A Genetic-Based Power System Stabilizer. Electric
Machines and Power Systems, 26, 559-571.

Abido, M. A., Abdel-Magid, Y. L., 1999. Hybridizing Rule-Based Power System Stabilizers
with Genetic Algorithms. IEEE Transactions on Power Systems, 14 (2), 600-607.

Fogel, D. B., 1995. Evolutionary Computation: Towards New Philiosophy of Machine
Intelligence. IEEE Press, Piscataway, NJ.

 Advances in Evolutionary Algorithms

114

e
'

' [R (' cos) (')(' sin)]
q

d d q e d d
XV E E V X X E Vδ δ∞ ∞= + − − + −
Δ

e
'

' [R (' sin) (')(' cos)]
d

q q d e q q
XV E E V X X E Vδ δ∞ ∞= − − + + −
Δ

2
eR (')(')e d e qX X X XΔ = + + +

B. Nomenclature

δ : Rotor angle of generator
ω : Rotor speed of generator
ωref : Reference rotor speed of generator
H : Inertia constant of generator
Tm : Mechanical input of generator
Xd : d-axis synchronous reactance of generator
Xd ’ : d-axis transient reactance of generator
Xq : q-axis synchronous reactance of generator
Eq’ : q-axis voltage of generator
Efd : Generator field voltage
Tdo‘ : d-axis transient time constant of generator
Id : d-axis current of generator
Iq : q-axis current of generator
Vt : Terminal voltage
Vref : Reference voltage
Vs : PSS signal
Voo : Voltage of infinite bus
 Ka : AVR gain
Ta : Exciter time constant
Re : Equivalent resistance of transmission line
Xe : Equivalent reactance of transmission line

C. Multi-machine Power System

1. Constants of generator and exciter

 Parameters

Generators

H
[sec]

Xd
[pu]

X’d

[pu]
Xq

[pu]
T’do

[pu]
T’qo
[pu]

G1 6.4 0.8958 0.1198 0.8645 6.0 0.535
G2 5.4 1.3125 0.1813 1.2578 5.89 0.6

2. Load admittance

Load Nominal load Heavy load

Load A 1.261 - j0.504 2.314 – j0.925
Load B 0.878 – j0.293 2.032 – j0.677
Load C 0.969 – j0.339 1.584 – j0.634

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm
(Application of Fuzzy Power System Stabilizer)

115

3. Loading conditions

 Generators
Loading condition G1 G2

P [pu] 1.35 0.80 Nominal load
Q [pu] 0.02 - 0.12
P [pu] 1.65 1.05 Heavy

load Q [pu] 0.53 0.35

8. References
Yu ,Y. N., 1983. Electric Power System Dynamics, Academic Press.
Larsen, E. V., Swann, D. A., 19981. Applying Power System Stabilizers Part Ⅰ: General

Concepts. IEEE Transactions on Power Apparatus and System, PAS-100 (6), 3017-
3024.

Kanniah, J., Malik, O. P., Hope, G. S., 1984. Excitation Control of Synchronous Generators
Using Adaptive Regulators Part Ⅰ- Theory and Simulation Result. IEEE
Transactions on Power Apparatus and Systems, PAS-103 (5), 897-904.

Chow, J. H., Sanchez-Gasca, J. J., 1989. Pole-Placement Design of Power System Stabilizers.
IEEE Transactions on Power Systems, 4 (1), 271-277.

Ostojic, D., Kovacevic, B., 1990. On the Eigenvalue Control of Electromechanical Oscillations
by Adaptive Power System Stabilizer. IEEE Transactions on Power Systems, 5 (4),
1118-1126.

Fleming, R. J., Jun Sun, 1990. An Optimal Multivariable Stabilizer for a Multimachine Plant.
IEEE Transactions on Energy Conversion, 5 (1), 15-22.

Mao, C., Malik, O. P., Hope, G. S., Fun, J., 1990. An Adaptive Generator Excitation
Controller Based on Linear Optimal Control. IEEE Transactions on Energy
Conversion, 5 (4), 673-678.

Chen, G. P., Malik, Hope, O. P., G. S., Qin, Y. H., Xu, G. Y., 1993. An Adaptive Power System
Stabilizer Based On The Self-Optimization Pole Shifting Control Strategy. IEEE
Transactions on Energy Conversion, 8 (4), 639-644.

Park, T. M., Kim, W., 1996. Discrete-Time Adaptive Sliding Mode Power System Stabilizer
with Only Input/Output Measurement. Electrical Power Energy Systems, 18 (8),
509-517.

Hassan, M. A. M., Malik, O. P., Hope, G. S., 1991. A Fuzzy Logic Based Stabilizer for a
Synchronous Machine. IEEE Transactions on Energy Conversion, 6 (3), 407-413.

Hassan, M. A. M., Malik, O. P., 1993. Implementation and Laboratory Test Results for a
Fuzzy Logic Based Self-tuned Power System Stabilizer. IEEE Transactions on
Energy Conversion, 8 (2), 221-227.

Abido, M. A., Abdel-Magid, Y. L., 1998. A Genetic-Based Power System Stabilizer. Electric
Machines and Power Systems, 26, 559-571.

Abido, M. A., Abdel-Magid, Y. L., 1999. Hybridizing Rule-Based Power System Stabilizers
with Genetic Algorithms. IEEE Transactions on Power Systems, 14 (2), 600-607.

Fogel, D. B., 1995. Evolutionary Computation: Towards New Philiosophy of Machine
Intelligence. IEEE Press, Piscataway, NJ.

 Advances in Evolutionary Algorithms

116

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley publishing Company, INC.

Gong, D., Yamazaki, G., Gen, M., 1996. Evolutionary program for Optimal Design of
Material Distribution System. IEEE International Conference on Evolutionary
Computation, 139-143.

Arabas, J., Michalewicz, Z., Mulawka, J., 1994. GAVaPS-a Genetic Algorithm with Varying
Population Size. IEEE International Conference on Evolutionary Computation, 73-
78.

Schlierkamp-Voosen, D., Muhlenbein, H., 1996. Adaptation of Population Sizes by
Competing Subpopulations. IEEE International Conference on Evolutionary
Computation, 330-335.

Fogel, D. B., Fogel , L. J., Atmas, J. W., 1991. Meta-Evolutionary Programming. Proceedings
2sth Asilomar Conference on Systems, Signals and Computers, 540-545.

Michalewicz, Z., 1992. Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag.

Renders, J. M., Flasse, S. P., 1996. Hybrid Methods Using Genetic Algorithms for Global
Optimization. IEEE Transactions on Systems, Man and Cybernetics-Part B:
Cybernetics, 26 (2).

Mitsuo Gen, Cheng, R., 1997. Genetic Algorithms & Engineering Design. A Wiley-
Interscience Publication.

He, J., Malik, O. P., 1997. An Adaptive Power System Stabilizer Based on Recurrent Neural
Networks. IEEE Transactions on Energy Conversion, 12 (4), 413-418.

Anderson, P. M., Found, A. A., 1977. Power System Control and Stability. The IOWA State
Unversity Press.

6

A Simple Hybrid Particle Swarm Optimization
Wei-Chang Yeh

Department of Industrial Engineering and Engineering Management
National Tsing Hua University

Taiwan, R.O.C.

1. Introduction
As a novel stochastic optimization technique, the Particle Swarm Optimization technique
(PSO) has gained much attention towards several applications during the past decade for
solving the global optimization problem or to set up a good approximate solution to the
given problem with a high probability. PSO was first introduced by Eberhart and Kennedy
[Kennedy and Eberhart, 1997]. It belongs to the category of Swarm Intelligence methods
inspired by the metaphor of social interaction and communication such as bird ocking and
sh schooling. It is also associated with wide categories of evolutionary algorithms through
individual improvement along with population cooperation and competition. Since PSO
was rst introduced to optimize various continuous nonlinear functions, it has been
successfully applied to a wide range of applications owing to the inherent simplicity of the
concept, easy implementation and quick convergence [Trelea 2003].
PSO is initialized with a population of random solutions. Each individual is assigned with a
randomized velocity based to its own and the companions ying experiences, and the
individuals, called particles, are then own through hyperspace. PSO leads to an effective
combination of partial solutions in other particles and speedens the search procedure at an
early stage in the generation. To apply PSO, several parameters including the population
(N), cognition learning factor (cp), social learning factor (cg), inertia weight (w), and the
number of iterations (T) or CPU time should be properly determined. Updating the velocity
and positions are the most important parts of PSO as they play a vital role in exchanging
information among particles. The details will be given in the following sections.
The simple PSO often suffers from the problem of being trapped in local optima. So, in this
this paper, the PSO is revised with a simple adaptive inertia weight factor, proposed to
efficiently control the global search and convergence to the global best solution. Moreover, a
local search method is incorporated into PSO to construct a hybrid PSO (HPSO), where the
parallel population-based evolutionary searching ability of PSO and local searching
behavior are reasonably combined. Simulation results and comparisons demonstrate the
effectiveness and efficiency of the proposed HPSO.
The paper is organized as follows. Section 2 describes the acronyms and notations. Section 3
outlines the proposed method in detail. In Section 4, the methodology of the proposed
HPSO is discussed. Numerical simulations and comparisons are provided in Section 5.
Finally, Concluding remarks and directions for future work are given in in Section 6.

 Advances in Evolutionary Algorithms

116

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley publishing Company, INC.

Gong, D., Yamazaki, G., Gen, M., 1996. Evolutionary program for Optimal Design of
Material Distribution System. IEEE International Conference on Evolutionary
Computation, 139-143.

Arabas, J., Michalewicz, Z., Mulawka, J., 1994. GAVaPS-a Genetic Algorithm with Varying
Population Size. IEEE International Conference on Evolutionary Computation, 73-
78.

Schlierkamp-Voosen, D., Muhlenbein, H., 1996. Adaptation of Population Sizes by
Competing Subpopulations. IEEE International Conference on Evolutionary
Computation, 330-335.

Fogel, D. B., Fogel , L. J., Atmas, J. W., 1991. Meta-Evolutionary Programming. Proceedings
2sth Asilomar Conference on Systems, Signals and Computers, 540-545.

Michalewicz, Z., 1992. Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag.

Renders, J. M., Flasse, S. P., 1996. Hybrid Methods Using Genetic Algorithms for Global
Optimization. IEEE Transactions on Systems, Man and Cybernetics-Part B:
Cybernetics, 26 (2).

Mitsuo Gen, Cheng, R., 1997. Genetic Algorithms & Engineering Design. A Wiley-
Interscience Publication.

He, J., Malik, O. P., 1997. An Adaptive Power System Stabilizer Based on Recurrent Neural
Networks. IEEE Transactions on Energy Conversion, 12 (4), 413-418.

Anderson, P. M., Found, A. A., 1977. Power System Control and Stability. The IOWA State
Unversity Press.

6

A Simple Hybrid Particle Swarm Optimization
Wei-Chang Yeh

Department of Industrial Engineering and Engineering Management
National Tsing Hua University

Taiwan, R.O.C.

1. Introduction
As a novel stochastic optimization technique, the Particle Swarm Optimization technique
(PSO) has gained much attention towards several applications during the past decade for
solving the global optimization problem or to set up a good approximate solution to the
given problem with a high probability. PSO was first introduced by Eberhart and Kennedy
[Kennedy and Eberhart, 1997]. It belongs to the category of Swarm Intelligence methods
inspired by the metaphor of social interaction and communication such as bird ocking and
sh schooling. It is also associated with wide categories of evolutionary algorithms through
individual improvement along with population cooperation and competition. Since PSO
was rst introduced to optimize various continuous nonlinear functions, it has been
successfully applied to a wide range of applications owing to the inherent simplicity of the
concept, easy implementation and quick convergence [Trelea 2003].
PSO is initialized with a population of random solutions. Each individual is assigned with a
randomized velocity based to its own and the companions ying experiences, and the
individuals, called particles, are then own through hyperspace. PSO leads to an effective
combination of partial solutions in other particles and speedens the search procedure at an
early stage in the generation. To apply PSO, several parameters including the population
(N), cognition learning factor (cp), social learning factor (cg), inertia weight (w), and the
number of iterations (T) or CPU time should be properly determined. Updating the velocity
and positions are the most important parts of PSO as they play a vital role in exchanging
information among particles. The details will be given in the following sections.
The simple PSO often suffers from the problem of being trapped in local optima. So, in this
this paper, the PSO is revised with a simple adaptive inertia weight factor, proposed to
efficiently control the global search and convergence to the global best solution. Moreover, a
local search method is incorporated into PSO to construct a hybrid PSO (HPSO), where the
parallel population-based evolutionary searching ability of PSO and local searching
behavior are reasonably combined. Simulation results and comparisons demonstrate the
effectiveness and efficiency of the proposed HPSO.
The paper is organized as follows. Section 2 describes the acronyms and notations. Section 3
outlines the proposed method in detail. In Section 4, the methodology of the proposed
HPSO is discussed. Numerical simulations and comparisons are provided in Section 5.
Finally, Concluding remarks and directions for future work are given in in Section 6.

 Advances in Evolutionary Algorithms

118

2. Acronym and notations
Acronym:

PSO : Particle Swarm Optimization Algorithm
SPSO : Traditional PSO
IPSO : An improved PSO proposed in [Jiang et. al. 2007]

HPSO : The proposed Hybrid PSO
Notations:

D : The number of dimensions.
N : The number of particles in each replication.
T : The number of generations in each replication.
R : The total number of independent replications.
r• : The random number uniformly distributed in [0, 1].

cp, cg : The cognition learning factor and the social learning factor, respectively.
w : The inertia weight.

xt,i,j : The dimension of the position of particle i at iteration t, where t=1,2,…,T,
i=1,2,…,N, and j=1,2,…,D.

Xt,i : Xt,i=(xt,i,1,…,xt,i,D) is the position of particle i at iteration t, where t=1,2,…,T,
i=1,2,…,N, and j=1,2,…,D.

vt,i,j : the dimension of the velocity of particle i at iteration t, where t=1,2,…,T,
i=1,2,…,N, and j=1,2,…,D.

Vt,i : Vt,i=(vt,i,1,…,vt,i,D) is the velocity of particle i at iteration t, where t=1,2,…,T,
i=1,2,…,N, and j=1,2,…,D.

Pt,i : Pt,i=(pt,i,1,…,pt,i,D) is the best solution of particle i so far until iteration t, i.e., the
pBest, where t=1,2,…,T, i=1,2,…,N, and j=1,2,…,D.

Gt : Gt=(gt,1,…,gt,D) the best solution among Pt,1,Pt,2,…,Pt,N at iteration t, i.e., the gBest,
where t=1,2,…,T.

F(•) : The fitness function value of •.
U(•),L(•) : The upper and lower bounds for •, respectively.

3. The PSO
In PSO, a solution is encoded as a finite-length string called a particle. All of the particles
have tness values which are evaluated by the tness function to be optimized, and have
velocities which direct the ying of the particles [Parsopoulos et. al. 2001]. PSO is initialized
with a population of random particles with random positions and velocities inside the
problem space, and then searches for optima by updating generations. It combines the local
and global search resulting in high search efficiency. Each particle moves towards its best
previous position and towards the best particle in the whole swarm in every iteration. The
former is a local best and its value is called pBest, and the latter is a global best and its value
is called gBest in the literature. After nding the two best values, the particle updates its
velocity and position with the following equation in continuous PSO:

 vt,i,j = wvt-1,i,j+cprp,i,j(pt-1,i,j-xt-1,i,j)+cprp,i,j(gt-1,j-xt-1,i,j), (1)

 xt,i,j=xt-1,i,j+vt,i,j. (2)

A Simple Hybrid Particle Swarm Optimization

119

The values cprp,i,j and cgrg,i,j determine the weights of the two parts, and cp+cg is usually
limited to 4 [Trelea 2003]. Generally, the value of each component in Xt,i and Vt,i can be
clamped to the range [L(X), U(X)] and [L(V), U(V)], respectively, to limit each particle to
ensure its feasibility.
For example, let

 X3,4=(1.5, 3.6, 3.7, -3.4, -1.9), (3)

 V2,4=(0.4, 0.1, 0.7, -2.7, -3.5), (4)

 P3,4=(1.6, 3.7, 3.5, -2.1, -1.9), (5)

 G3=(1.7, 3.7, 2.2, -3.5, -2.5), (6)

 Rp=(0.21, 0.58, 0.73, 0.9, 0.16), (7)

 Rg=(0.47, 0.45, 0.28, 0.05, 0.77), (8)

 L(X)= (0, 0, 0, -3.6, -3), (9)

 U(X)=(2, 4, 4, 0, 0), (10)

 L(V)=(-4, -4, -4, -4, -4), (11)

 U(V)=(4, 4, 4, 4, 4), (12)

 w=.9, (13)

 cp=cg=2. (14)

Then, from Eq.(1), we have

 V3,4=(0.59, 0.296, -0.502, -0.1, -4.074). (15)

Since -4.074<-4, V3,4 needs to be adjustmented in the following:

 V3,4=(0.59, 0.296, -0.502, -0.1, -4). (16)

Under the guidance of Eq.(2),

 X4,4=(2.09, 3.896, 3.198, -3.5, -5.974), (17)

and

 X4,4=(2.0, 3.896, 3.198, -3.5, -3.0) (18)

after the adjustment according to the upper/lower-bounds of X.
We conducted the preliminary experiments, and the complete computational procedure of
the PSO algorithm can be summarized as follows.
STEP 1: Initialize: Initialize parameters and population with random positions and

velocities.

 Advances in Evolutionary Algorithms

118

2. Acronym and notations
Acronym:

PSO : Particle Swarm Optimization Algorithm
SPSO : Traditional PSO
IPSO : An improved PSO proposed in [Jiang et. al. 2007]

HPSO : The proposed Hybrid PSO
Notations:

D : The number of dimensions.
N : The number of particles in each replication.
T : The number of generations in each replication.
R : The total number of independent replications.
r• : The random number uniformly distributed in [0, 1].

cp, cg : The cognition learning factor and the social learning factor, respectively.
w : The inertia weight.

xt,i,j : The dimension of the position of particle i at iteration t, where t=1,2,…,T,
i=1,2,…,N, and j=1,2,…,D.

Xt,i : Xt,i=(xt,i,1,…,xt,i,D) is the position of particle i at iteration t, where t=1,2,…,T,
i=1,2,…,N, and j=1,2,…,D.

vt,i,j : the dimension of the velocity of particle i at iteration t, where t=1,2,…,T,
i=1,2,…,N, and j=1,2,…,D.

Vt,i : Vt,i=(vt,i,1,…,vt,i,D) is the velocity of particle i at iteration t, where t=1,2,…,T,
i=1,2,…,N, and j=1,2,…,D.

Pt,i : Pt,i=(pt,i,1,…,pt,i,D) is the best solution of particle i so far until iteration t, i.e., the
pBest, where t=1,2,…,T, i=1,2,…,N, and j=1,2,…,D.

Gt : Gt=(gt,1,…,gt,D) the best solution among Pt,1,Pt,2,…,Pt,N at iteration t, i.e., the gBest,
where t=1,2,…,T.

F(•) : The fitness function value of •.
U(•),L(•) : The upper and lower bounds for •, respectively.

3. The PSO
In PSO, a solution is encoded as a finite-length string called a particle. All of the particles
have tness values which are evaluated by the tness function to be optimized, and have
velocities which direct the ying of the particles [Parsopoulos et. al. 2001]. PSO is initialized
with a population of random particles with random positions and velocities inside the
problem space, and then searches for optima by updating generations. It combines the local
and global search resulting in high search efficiency. Each particle moves towards its best
previous position and towards the best particle in the whole swarm in every iteration. The
former is a local best and its value is called pBest, and the latter is a global best and its value
is called gBest in the literature. After nding the two best values, the particle updates its
velocity and position with the following equation in continuous PSO:

 vt,i,j = wvt-1,i,j+cprp,i,j(pt-1,i,j-xt-1,i,j)+cprp,i,j(gt-1,j-xt-1,i,j), (1)

 xt,i,j=xt-1,i,j+vt,i,j. (2)

A Simple Hybrid Particle Swarm Optimization

119

The values cprp,i,j and cgrg,i,j determine the weights of the two parts, and cp+cg is usually
limited to 4 [Trelea 2003]. Generally, the value of each component in Xt,i and Vt,i can be
clamped to the range [L(X), U(X)] and [L(V), U(V)], respectively, to limit each particle to
ensure its feasibility.
For example, let

 X3,4=(1.5, 3.6, 3.7, -3.4, -1.9), (3)

 V2,4=(0.4, 0.1, 0.7, -2.7, -3.5), (4)

 P3,4=(1.6, 3.7, 3.5, -2.1, -1.9), (5)

 G3=(1.7, 3.7, 2.2, -3.5, -2.5), (6)

 Rp=(0.21, 0.58, 0.73, 0.9, 0.16), (7)

 Rg=(0.47, 0.45, 0.28, 0.05, 0.77), (8)

 L(X)= (0, 0, 0, -3.6, -3), (9)

 U(X)=(2, 4, 4, 0, 0), (10)

 L(V)=(-4, -4, -4, -4, -4), (11)

 U(V)=(4, 4, 4, 4, 4), (12)

 w=.9, (13)

 cp=cg=2. (14)

Then, from Eq.(1), we have

 V3,4=(0.59, 0.296, -0.502, -0.1, -4.074). (15)

Since -4.074<-4, V3,4 needs to be adjustmented in the following:

 V3,4=(0.59, 0.296, -0.502, -0.1, -4). (16)

Under the guidance of Eq.(2),

 X4,4=(2.09, 3.896, 3.198, -3.5, -5.974), (17)

and

 X4,4=(2.0, 3.896, 3.198, -3.5, -3.0) (18)

after the adjustment according to the upper/lower-bounds of X.
We conducted the preliminary experiments, and the complete computational procedure of
the PSO algorithm can be summarized as follows.
STEP 1: Initialize: Initialize parameters and population with random positions and

velocities.

 Advances in Evolutionary Algorithms

120

STEP 2: Evaluation: Evaluate the fitness value (the desired objective function) for each
particle.

STEP 3: Find the pBest: If the fitness value of particle i is better than its best fitness value
(pBest) in history, then set current fitness value as the new pBest to particle i.

STEP 4: Find the gBest: If any pBest is updated and is better than the current gBest, then set
gBest to the current value.

STEP 5: Update and adjustment velocity: Update velocity according to Eq.(1). Adjust the
velocity to meet its range if necessary.

STEP 6: Update and adjustment position: Update velocity and move to the next position
according to Eq.(2). Adjust the position to meet their range if necessary.

STEP 7: Stopping criterion: If the number of iterations or CPU time are met, then stop;
otherwise go back to STEP 2.

4. The proposed HPSO
To overcome the weakness of PSO for local searches, this paper aims at creating HPSO by
combining PSO, local search (LS), and vector based (VB) with a linearly varying inertia
weight. The PSO part in the proposed HPSO is similar to the SPSO proposed in section 3.
Hence, only the differences, i.e. the linearly varying inertia weight, LS and VB, are
elaborated in this section.

4.1 Initial population
The initial population is generated randomly in the feasible space such that its lower-
/upper-bounds are satisfied. To construct a direct relationship between the problem domain
and the PSO particles in this study, the ith dimension in the pariticle stands for the value of
the ith variable in the solution.

4.2 The linearly varying inertia weight
One of the most important issues to nd the optimum solution effectively and efficiently
while designing the PSO algorithm is its parameters. The inertia weight represents the
inuence of previous velocity which provides the necessary momentum for particles to
move across the search space. Hence, the inertia weight dictates the balance between
exploration and exploitation in PSO [Jiang et. al. 2007]. Shi and Eberhart (2001) made a
signicant improvement in the performance of the PSO with a linearly varying inertia
weight over the generations, which linearly varies from 0.9 at the beginning of the search to
0.4 at the end. Thus the linearly varying inertia weight is adapted in the proposed HPSO to
achieve trade-off between exploration and exploitation, i.e. the inertia weight of the ith
generation is

 wi=U(w)-(i-1)[U(w)-L(w)]/N. (19)

4.3 Vector based PSO
The underlying principle of the traditional PSO is that the next position of each particle is a
compromise of its current position, the best position in its history so far, and the best
position among all existing particles. The vector synthesis is the original mathematical
foundation of PSO, as shown in the following figure.

A Simple Hybrid Particle Swarm Optimization

121

t
iP

tG

p pC R

g gC R

1t
iV −

1t
ix +

t
iV

t
ix

Fig. 1. The vector synthesis of PSO.

Eqs.(1) and (2) are more complicated than the concept of the vector synthesis in increasing
the diversity of the dimensions of each particle. Hence, the following equations are
implemented in the proposed HPSO instead of Eqs.(1) and (2):

 Vt,i=wiVt-1,i+cprp(Pt-1,i-Xt-1,i)+cgrg(Gt-1-Xt-1,i), (20)

 Xt,i=Xt-1,i+Vt,i. (21)

In the traditional PSO, each particle needs to use two random number vectors (e.g., Rp and
Rq) to move to its next position. However, only two random number (e.g., rp and rq) are
needed in the proposed HPSO. Besides, Eqs(20) and (21) are very easy and efficient in
deciding the next positions for the problems with continuous variables. For example, let P3,4,
X3,4, P3,4, G3, L(X), U(X) are the same as defined in the example in Section 1. Assume rp=0.34
and rg=0.79. From Eq.(19),

 wi=0.9-(4-1)[0.9-0.4]/1000=0.8985. (22)

Plug wi, rp, rg and the other required value into Eq.(20), we have

 V3,4=(0.6974, 0.28985, -1.56505, -1.75795, -3.97275), (23)

 V3,4=(0.6974, 0.28985, -1.56505, -1.75795, -3.97275), (24)

where X4,4 is adjustmented from

 (2.1974, 3.88985, 2.13495, -5.15795, -5.87275). (25)

4.4 Local search method
One of the major drawbacks of PSO is is its very slow convergence. To surmount this
drawback, to guide the search towards unexplored regions in the solution space and to
avoid being trapped into local optimum, LS is implemented for constructing the proposed
HPSO.
In PSO, proper control of global exploration and local exploitation is crucial in nding the
optimum solution efficiently [Liu 2005]. A local optimizer is applied to the best particle (i.e.
gBest) for each run in order to push it to climb the local optimum [Liu 2005]. With the hybrid
method, PSOs are used to perform global exploration around particles except the gBest to
maintain population diversity, while the local optimizer is used to perform local
exploitation to the best particle. Since the properties of PSOs and conventional local
optimizers are complementary, HPSOs are often better than either method operating alone
from the computation exprements shown in Section 5.

 Advances in Evolutionary Algorithms

120

STEP 2: Evaluation: Evaluate the fitness value (the desired objective function) for each
particle.

STEP 3: Find the pBest: If the fitness value of particle i is better than its best fitness value
(pBest) in history, then set current fitness value as the new pBest to particle i.

STEP 4: Find the gBest: If any pBest is updated and is better than the current gBest, then set
gBest to the current value.

STEP 5: Update and adjustment velocity: Update velocity according to Eq.(1). Adjust the
velocity to meet its range if necessary.

STEP 6: Update and adjustment position: Update velocity and move to the next position
according to Eq.(2). Adjust the position to meet their range if necessary.

STEP 7: Stopping criterion: If the number of iterations or CPU time are met, then stop;
otherwise go back to STEP 2.

4. The proposed HPSO
To overcome the weakness of PSO for local searches, this paper aims at creating HPSO by
combining PSO, local search (LS), and vector based (VB) with a linearly varying inertia
weight. The PSO part in the proposed HPSO is similar to the SPSO proposed in section 3.
Hence, only the differences, i.e. the linearly varying inertia weight, LS and VB, are
elaborated in this section.

4.1 Initial population
The initial population is generated randomly in the feasible space such that its lower-
/upper-bounds are satisfied. To construct a direct relationship between the problem domain
and the PSO particles in this study, the ith dimension in the pariticle stands for the value of
the ith variable in the solution.

4.2 The linearly varying inertia weight
One of the most important issues to nd the optimum solution effectively and efficiently
while designing the PSO algorithm is its parameters. The inertia weight represents the
inuence of previous velocity which provides the necessary momentum for particles to
move across the search space. Hence, the inertia weight dictates the balance between
exploration and exploitation in PSO [Jiang et. al. 2007]. Shi and Eberhart (2001) made a
signicant improvement in the performance of the PSO with a linearly varying inertia
weight over the generations, which linearly varies from 0.9 at the beginning of the search to
0.4 at the end. Thus the linearly varying inertia weight is adapted in the proposed HPSO to
achieve trade-off between exploration and exploitation, i.e. the inertia weight of the ith
generation is

 wi=U(w)-(i-1)[U(w)-L(w)]/N. (19)

4.3 Vector based PSO
The underlying principle of the traditional PSO is that the next position of each particle is a
compromise of its current position, the best position in its history so far, and the best
position among all existing particles. The vector synthesis is the original mathematical
foundation of PSO, as shown in the following figure.

A Simple Hybrid Particle Swarm Optimization

121

t
iP

tG

p pC R

g gC R

1t
iV −

1t
ix +

t
iV

t
ix

Fig. 1. The vector synthesis of PSO.

Eqs.(1) and (2) are more complicated than the concept of the vector synthesis in increasing
the diversity of the dimensions of each particle. Hence, the following equations are
implemented in the proposed HPSO instead of Eqs.(1) and (2):

 Vt,i=wiVt-1,i+cprp(Pt-1,i-Xt-1,i)+cgrg(Gt-1-Xt-1,i), (20)

 Xt,i=Xt-1,i+Vt,i. (21)

In the traditional PSO, each particle needs to use two random number vectors (e.g., Rp and
Rq) to move to its next position. However, only two random number (e.g., rp and rq) are
needed in the proposed HPSO. Besides, Eqs(20) and (21) are very easy and efficient in
deciding the next positions for the problems with continuous variables. For example, let P3,4,
X3,4, P3,4, G3, L(X), U(X) are the same as defined in the example in Section 1. Assume rp=0.34
and rg=0.79. From Eq.(19),

 wi=0.9-(4-1)[0.9-0.4]/1000=0.8985. (22)

Plug wi, rp, rg and the other required value into Eq.(20), we have

 V3,4=(0.6974, 0.28985, -1.56505, -1.75795, -3.97275), (23)

 V3,4=(0.6974, 0.28985, -1.56505, -1.75795, -3.97275), (24)

where X4,4 is adjustmented from

 (2.1974, 3.88985, 2.13495, -5.15795, -5.87275). (25)

4.4 Local search method
One of the major drawbacks of PSO is is its very slow convergence. To surmount this
drawback, to guide the search towards unexplored regions in the solution space and to
avoid being trapped into local optimum, LS is implemented for constructing the proposed
HPSO.
In PSO, proper control of global exploration and local exploitation is crucial in nding the
optimum solution efficiently [Liu 2005]. A local optimizer is applied to the best particle (i.e.
gBest) for each run in order to push it to climb the local optimum [Liu 2005]. With the hybrid
method, PSOs are used to perform global exploration around particles except the gBest to
maintain population diversity, while the local optimizer is used to perform local
exploitation to the best particle. Since the properties of PSOs and conventional local
optimizers are complementary, HPSOs are often better than either method operating alone
from the computation exprements shown in Section 5.

 Advances in Evolutionary Algorithms

122

The proposed LS is very simple and similar to the famous local improvement method the
pairwise exchange procedure. In LS, the ith dimension of both the current best particle of all
population (i.e., gBest) are replaced by the current best particle of the jth particle (i.e., pBest).
If the fitness function value is improved, the the current gBest is updated accordingly.
Otherwise, there is no need to change the current gBest. The above procedure in the
proposed HPSO is repeated until all dimensions in the gBest are performed.
To minimize the number of duplicated computations of the same fitness function in LS, only
one non-gBest is randomly selected to each dimension of gBest in the local search. The
complete procedure of the local search part of the proposed HPSO can be summarized as in
the following:
STEP 0. Let d=1.
STEP 1. Let n=1.
STEP 2. If Gd=Pt,n or gt,d=pt,n,d, go to STEP 4. Otherwise, let F*=F(Gd), Gd=Pt,n, and gt,d=pt,n,d.
STEP 3. If F(Gd) is better than F*, then let F*=F(Gd). Otherwise, let gt,d=g.
STEP 4. If n<N, let n=n+1 and go to STEP 2.
STEP 5. If d<D, let d=d+1 and go to STEP 1.

5. Numerical examples
To evaluate the performance of the proposed algorithms, four famous benchmark
optimization problems [Jiang et. al. 2007] are used, which are described as follows.

Function Formula Range Optima Solution

Rosenbrock () ()21 22
1 11
() 100 1n

i i ii
f x x x x−

+=
⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑ [-30,30]n 0 (1,…,1)

Rastrigrin ()2
2 1
() 10cos 2 10n

i ii
f x x x

=
⎡ ⎤= − π +⎣ ⎦∑ [-5.12,5.12]n 0 (0,…,0)

Griewark 2
3 1 1

1() cos() 1
4000

nn i
ii i

xf x x
i= =

= − +∑ ∏ [-600,600]n 0 (0,…,0)

Table 1. Benchmark functions.
Features of the above three functions are the following: Rosenbrock is an unimodal function
and its variables are strongly dependent and gradient information often misleads
algorithms; Rastrigin is ultimodal function with many local optima; Griewank is strongly
multi-modal with significant interactions between its variables (caused by the product term)
and the number of local minima increases with dimensionality [Jiang et. al. 2007].
These problems are implemented using the proposed HPSO, SPSO, and the best-known
PSO (IPSO) proposed in by Jiang et. al. (2007) with regard to these three benchmark
problems and the results of the experiments were compared. The proposed HPSO, SPSO
and IPSO were implemented in C programming language on an Intel Pentium 2.6 GHz PC
with 2G memory. To facilitate fair comparison, the number of iterations, the number of runs,
and the populations for the proposed HPSO, SPSO and IPSO are taken directly from Jiang
et. al. (2007). All these methods use a linearly varying inertia weight over the generations,
varying from 0.9 at the beginning of the search to 0.4 at the end. In addition, cg=cp=2,
Xmax=Vmax=UB and Xmin=Vmin=LB are used.
As in Jiang et. al. (2007), the proposed HPSO, SPSO and IPSO were tested on four group
problems (population sizes of 20, 40, 80, and 160). The population sizes of each group are
equal and each group problem contains 3 data sets. Each data set was first run with 3 sets of
dimensions: 10, 20, and 30 and the corresponding maximum number of generations are set

A Simple Hybrid Particle Swarm Optimization

123

as 1000, 1500 and 2000, respectively. Hence, there are 12 different test sets to each
benchmark problem as follows:

Set A1: N=20, D=10, T=1000;
Set A2: N=20, D=20, T=1500;
Set A3: N=20, D=30, T=2000;
Set B1: N=40, D=10, T=1000;
Set B2: N=40, D=20, T=1500;
Set B3: N=40, D=30, T=2000;
Set C1: N=80, D=10, T=1000;
Set C2: N=80, D=20, T=1500;
Set C3: N=80, D=30, T=2000;

Set D1: N=160, D=10, T=1000;
Set D2: N=160, D=20, T=1500;
Set D3: N=160, D=30, T=2000;

Each algorithm with each set of parameter is executed in 50 independent runs. The average
tness values of the best particle found for the 50 runs for the three functions are listed in
Table 2. The shaded number shows the best result with respect to the corresponding
function and the set. From the Table 2, it can be seen that IPSO outperforms the HPSO in
Rosenbrock functions for POP=20 and 80. However, the remaining cases of Rosenbrock
functions and for the Griewark function, the proposed HPSO has almost achieved better
results than SPSO and IPSO. Furthermore HPSO is superior to SPSO and IPSO at all
instances of the Rastrigrin function.

Rosenbrock Rastrigrin Griewark SET
PSO IPSO HPSO PSO IPSO HPSO PSO IPSO HPSO

A1 42.6162 10.5172 3.3025 5.2062 3.2928 0 0.0920 0.0784 0.0071
A2 87.2870 75.7246 124.3305 22.7724 16.4137 0.4975 0.0317 0.0236 0.0168
A3 132.5973 99.8039 122.7829 49.2942 35.0189 1.0760 0.0482 0.0165 0.0190
B1 24.3512 1.2446 0 3.5697 2.6162 0 0.0762 0.0648 0.0002
B2 47.7243 8.7328 0.0797 17.2975 14.8894 0 0.0227 0.0182 0.0026
B3 66.6341 14.7301 120.7434 38.9142 27.7637 0 0.0153 0.0151 0.0012
C1 15.3883 0.1922 0.0797 2.3835 1.7054 0 0.0658 0.0594 0
C2 40.6403 1.5824 60.3717 12.9020 7.6689 0 0.0222 0.0091 0
C3 63.4453 1.5364 4.7461 30.0375 13.8827 0 0.0121 0.0004 0
D1 11.6283 0.0598 0 1.4418 0.8001 0 0.0577 0.0507 0
D2 28.9142 0.4771 0 10.0438 4.2799 0 0.0215 0.0048 0
D3 56.6689 0.4491 0 24.5105 11.9521 0 0.0121 0.0010 0

Average 39.48832 3.22272 20.66896 15.67783 9.50649 0 0.03396 0.02483 0.00044

Table 2. Mean Fitness function values 50 independent runs.
The final statistical result including the Success Rate, the fitness function values, CPU times
and convergence iterations of all 50 runs related to Rosenbrock function, Rastrigrin function,
and Griewark function are listed in Tables 3-5. The Success Rate is defined to be the
percentage of the number of nal searching solution that is equal to the global optimal value
in 50 independent runs. Convergence iterations denote the number of iterations required for
convergence. These data are divided into three categories: maximum, minimum, average,
and standard deviations (denoted by max, min, mean, and std., respectively).

 Advances in Evolutionary Algorithms

122

The proposed LS is very simple and similar to the famous local improvement method the
pairwise exchange procedure. In LS, the ith dimension of both the current best particle of all
population (i.e., gBest) are replaced by the current best particle of the jth particle (i.e., pBest).
If the fitness function value is improved, the the current gBest is updated accordingly.
Otherwise, there is no need to change the current gBest. The above procedure in the
proposed HPSO is repeated until all dimensions in the gBest are performed.
To minimize the number of duplicated computations of the same fitness function in LS, only
one non-gBest is randomly selected to each dimension of gBest in the local search. The
complete procedure of the local search part of the proposed HPSO can be summarized as in
the following:
STEP 0. Let d=1.
STEP 1. Let n=1.
STEP 2. If Gd=Pt,n or gt,d=pt,n,d, go to STEP 4. Otherwise, let F*=F(Gd), Gd=Pt,n, and gt,d=pt,n,d.
STEP 3. If F(Gd) is better than F*, then let F*=F(Gd). Otherwise, let gt,d=g.
STEP 4. If n<N, let n=n+1 and go to STEP 2.
STEP 5. If d<D, let d=d+1 and go to STEP 1.

5. Numerical examples
To evaluate the performance of the proposed algorithms, four famous benchmark
optimization problems [Jiang et. al. 2007] are used, which are described as follows.

Function Formula Range Optima Solution

Rosenbrock () ()21 22
1 11
() 100 1n

i i ii
f x x x x−

+=
⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑ [-30,30]n 0 (1,…,1)

Rastrigrin ()2
2 1
() 10cos 2 10n

i ii
f x x x

=
⎡ ⎤= − π +⎣ ⎦∑ [-5.12,5.12]n 0 (0,…,0)

Griewark 2
3 1 1

1() cos() 1
4000

nn i
ii i

xf x x
i= =

= − +∑ ∏ [-600,600]n 0 (0,…,0)

Table 1. Benchmark functions.
Features of the above three functions are the following: Rosenbrock is an unimodal function
and its variables are strongly dependent and gradient information often misleads
algorithms; Rastrigin is ultimodal function with many local optima; Griewank is strongly
multi-modal with significant interactions between its variables (caused by the product term)
and the number of local minima increases with dimensionality [Jiang et. al. 2007].
These problems are implemented using the proposed HPSO, SPSO, and the best-known
PSO (IPSO) proposed in by Jiang et. al. (2007) with regard to these three benchmark
problems and the results of the experiments were compared. The proposed HPSO, SPSO
and IPSO were implemented in C programming language on an Intel Pentium 2.6 GHz PC
with 2G memory. To facilitate fair comparison, the number of iterations, the number of runs,
and the populations for the proposed HPSO, SPSO and IPSO are taken directly from Jiang
et. al. (2007). All these methods use a linearly varying inertia weight over the generations,
varying from 0.9 at the beginning of the search to 0.4 at the end. In addition, cg=cp=2,
Xmax=Vmax=UB and Xmin=Vmin=LB are used.
As in Jiang et. al. (2007), the proposed HPSO, SPSO and IPSO were tested on four group
problems (population sizes of 20, 40, 80, and 160). The population sizes of each group are
equal and each group problem contains 3 data sets. Each data set was first run with 3 sets of
dimensions: 10, 20, and 30 and the corresponding maximum number of generations are set

A Simple Hybrid Particle Swarm Optimization

123

as 1000, 1500 and 2000, respectively. Hence, there are 12 different test sets to each
benchmark problem as follows:

Set A1: N=20, D=10, T=1000;
Set A2: N=20, D=20, T=1500;
Set A3: N=20, D=30, T=2000;
Set B1: N=40, D=10, T=1000;
Set B2: N=40, D=20, T=1500;
Set B3: N=40, D=30, T=2000;
Set C1: N=80, D=10, T=1000;
Set C2: N=80, D=20, T=1500;
Set C3: N=80, D=30, T=2000;

Set D1: N=160, D=10, T=1000;
Set D2: N=160, D=20, T=1500;
Set D3: N=160, D=30, T=2000;

Each algorithm with each set of parameter is executed in 50 independent runs. The average
tness values of the best particle found for the 50 runs for the three functions are listed in
Table 2. The shaded number shows the best result with respect to the corresponding
function and the set. From the Table 2, it can be seen that IPSO outperforms the HPSO in
Rosenbrock functions for POP=20 and 80. However, the remaining cases of Rosenbrock
functions and for the Griewark function, the proposed HPSO has almost achieved better
results than SPSO and IPSO. Furthermore HPSO is superior to SPSO and IPSO at all
instances of the Rastrigrin function.

Rosenbrock Rastrigrin Griewark SET
PSO IPSO HPSO PSO IPSO HPSO PSO IPSO HPSO

A1 42.6162 10.5172 3.3025 5.2062 3.2928 0 0.0920 0.0784 0.0071
A2 87.2870 75.7246 124.3305 22.7724 16.4137 0.4975 0.0317 0.0236 0.0168
A3 132.5973 99.8039 122.7829 49.2942 35.0189 1.0760 0.0482 0.0165 0.0190
B1 24.3512 1.2446 0 3.5697 2.6162 0 0.0762 0.0648 0.0002
B2 47.7243 8.7328 0.0797 17.2975 14.8894 0 0.0227 0.0182 0.0026
B3 66.6341 14.7301 120.7434 38.9142 27.7637 0 0.0153 0.0151 0.0012
C1 15.3883 0.1922 0.0797 2.3835 1.7054 0 0.0658 0.0594 0
C2 40.6403 1.5824 60.3717 12.9020 7.6689 0 0.0222 0.0091 0
C3 63.4453 1.5364 4.7461 30.0375 13.8827 0 0.0121 0.0004 0
D1 11.6283 0.0598 0 1.4418 0.8001 0 0.0577 0.0507 0
D2 28.9142 0.4771 0 10.0438 4.2799 0 0.0215 0.0048 0
D3 56.6689 0.4491 0 24.5105 11.9521 0 0.0121 0.0010 0

Average 39.48832 3.22272 20.66896 15.67783 9.50649 0 0.03396 0.02483 0.00044

Table 2. Mean Fitness function values 50 independent runs.
The final statistical result including the Success Rate, the fitness function values, CPU times
and convergence iterations of all 50 runs related to Rosenbrock function, Rastrigrin function,
and Griewark function are listed in Tables 3-5. The Success Rate is defined to be the
percentage of the number of nal searching solution that is equal to the global optimal value
in 50 independent runs. Convergence iterations denote the number of iterations required for
convergence. These data are divided into three categories: maximum, minimum, average,
and standard deviations (denoted by max, min, mean, and std., respectively).

 Advances in Evolutionary Algorithms

124

 Success Fitness Function Value Running Time (sec.) Convergence Iterations
SET Rate max min mean std max min Mean std max min mean std
A1 92% 153.17 0 3.3025 21.65 0.03 0.02 0.02 0.00 962 520 720.3 73.77
A2 90% 3018.59 0 124.3305 597.18 0.12 0.05 0.06 0.01 1264 520 1130.3 141.50
A3 82% 3018.59 0 122.7829 597.14 0.29 0.09 0.11 0.04 1987 914 1603.5 268.45
B1 100% 0 0 0 0 0.05 0.04 0.05 0.00 787 607 660.1 39.34
B2 98% 3.99 0 0.0797 0.56 0.25 0.09 0.14 0.03 1129 813 1024.7 64.66
B3 96% 3018.59 0 120.7434 597.52 0.47 0.19 0.23 0.07 1635 1176 1477.9 114.45
C1 98% 3.99 0 0.0797 0.56 0.13 0.07 0.11 0.01 782 556 602.7 37.37
C2 98% 3018.59 0 60.3717 426.89 0.46 0.24 0.37 0.04 1089 649 946.9 60.43
C3 98% 237.31 0 4.7461 33.56 0.91 0.44 0.66 0.10 1457 1217 1346.7 56.36
D1 100% 0 0 0 0 0.27 0.21 0.25 0.02 681 533 567.4 28.35
D2 100% 0 0 0 0 1.00 0.78 0.89 0.05 1048 818 887.3 47.31
D3 100% 0 0 0 0 2.41 1.52 1.78 0.17 1452 1073 1232.0 73.77

Table 3. Experimental results on Rosenbrock function of 50 independent runs.

 Success Fitness Function Value Running Time (sec.) Convergence Iterations
SET Rate max min mean std max min mean std max min mean std
A1 100% 0 0 0 0 0.05 0.04 0.05 0.00 112 5 30.3 20.52
A2 98% 24.87 0 0.4975 3.52 0.16 0.15 0.16 0.00 329 11 56.1 49.95
A3 96% 28.92 0 1.0760 5.34 0.37 0.33 0.34 0.01 357 19 86.4 74.91
B1 100% 0 0 0 0 0.09 0.08 0.08 0.00 58 7 25.4 12.34
B2 100% 0 0 0 0 0.27 0.25 0.25 0.00 104 11 36.4 20.96
B3 100% 0 0 0 0 0.58 0.53 0.55 0.01 196 20 47.7 28.55
C1 100% 0 0 0 0 0.17 0.15 0.16 0.00 56 5 19.3 11.02
C2 100% 0 0 0 0 0.49 0.45 0.47 0.01 106 9 32.9 17.43
C3 100% 0 0 0 0 1.01 0.92 0.96 0.02 127 18 45.2 25.74
D1 100% 0 0 0 0 0.32 0.30 0.31 0.00 38 5 15.6 7.43
D2 100% 0 0 0 0 0.92 0.86 0.89 0.01 63 9 26.4 10.87
D3 100% 0 0 0 0 1.91 1.74 1.79 0.03 97 9 34.7 15.96

Table 4. Experimental results on Rastrigrin function of 50 independent runs.

 Success Fitness Function Value Running Time (sec.) Convergence Iterations
SET Rate max min mean std max min mean std max min mean std
A1 86% 0.10 0 0.0071 0.02 0.08 0.08 0.08 0.00 711 6 110.7 169.22
A2 74% 0.13 0 0.0186 0.04 0.30 0.27 0.28 0.01 1401 18 262.1 303.67
A3 76% 0.21 0 0.0190 0.04 0.72 0.64 0.67 0.03 812 15 275.0 272.40
B1 98% 0.01 0 0.0002 0.00 0.14 0.13 0.14 0.00 518 4 53.1 74.79
B2 96% 0.07 0 0.0026 0.01 0.49 0.44 0.45 0.01 823 10 90.7 151.76
B3 96% 0.03 0 0.0012 0.01 1.06 0.99 1.00 0.01 738 10 95.7 140.38
C1 100% 0 0 0 0 0.26 0.25 0.26 0.00 124 2 20.5 23.07
C2 100% 0 0 0 0 0.81 0.78 0.80 0.01 120 10 40.8 26.87
C3 100% 0 0 0 0 1.74 1.67 1.70 0.02 131 8 48.1 28.07
D1 100% 0 0 0 0 0.51 0.49 0.50 0.00 30 6 14.8 6.09
D2 100% 0 0 0 0 1.53 1.46 1.49 0.01 104 9 29.0 16.99
D3 100% 0 0 0 0 3.18 3.04 3.10 0.03 77 9 32.9 14.44

Table 5. Experimental results on Griewark function of 50 independent runs.

A Simple Hybrid Particle Swarm Optimization

125

As the dimension increases, the solution space get more complex, and PSO algorithm is
more likely to be trapped into local optima. Experimental data shown in Table 2 does not
clearly indicate that the HPSO outperforms the other PSOs in the measures of average
fitness function values. However, the Success Rates are all over 74%. Therefore, the
proposed HPSO can nd global optima with very high probability, and it is concluded that
HPSO has the strongest exploration ability and it is not easy to be trapped into local optima.
Table 3 shows that the proposed HPSO uses only 3.18 seconds in worst case and 0.6 seconds
in average. Thus, HPSO is very effective, efficient, robust, and reliable for complex
numerical optimization.

6. Conclusions
A successful evolutionary algorithm is one with a proper balance between exploration
(searching for good solutions), and exploitation (refining the solutions by combining
information gathered during the exploration phase). In this study, a new hybrid version of
PSO called HPSO is proposed. The HPSO constitutes a vector based PSO method with the
linearly varying inertia weight, along with a local search.
A novel, simpler, and efficient mechanism is employed to move the gBest to its next position
in the proposed HPSO. The HPSO combines the population-based evolutionary searching
ability of PSO and local searching behavior to effciently balance the exploration and
exploitation abilities. The result obtained by HPSO has been compared with those obtained
from traditional simple PSO (SPSO) and improved PSO (IPSO) proposed recently.
Computational results show that the proposed HPSO shows an enhancement in searching
efficiency and improve the searching quality. In summary, the results presented in this work
are encouraging and promising for the application of the proposed HPSO to other complex
problems.
Further analysis is necessary to see how other soft computing method (e.g., the genetic
algorithm, the taboo search, etc.) react to local searches for future researchers who may want
to develop their own heuristics and to make further improvements. Our research is still very
active and under progress, and it opens the avenues for future efforts in this directions such
as: how to adjust parameters, increase success rates, reduce running times, using other local
search, and the aggregation of different and new concepts to PSO.

7. References
B. Liu, L. Wang, Y.-H. Jin, F. Tang, D.-X. Huang (2005), “Improved particle swarm

optimization combined with chaos”, Chaos Solitons & Fractals, Vol. 25, 2005, pp.
1261–1271.

I.C. Trelea (2003), The particle swarm optimization algorithm: convergence analysis and
parameter selection, Information Processing Letters, Vol. 85, 2003, pp. 317–325.

J. Kennedy and R.C. Eberhard (1995), “Particle swarm optimization”, Proceedings of IEEE
International Conference on Neural Networks, Piscataway, NJ, USA, 1995, pp. 1942-1948.

J. Kennedy and R.C. Eberhard and Y. Shi, “Swarm intelligence”, San Francisco, CA: Morgan
Kaufmann; 2001.

J. Kennedy and R.C. Eberhart (1997), “A discrete binary version of the particle swarm
algorithm”, Systems, Man, and Cybernetics, Computational Cybernetics and
Simulation, IEEE International Conference, Vol. 5, No. 12-15, 1997/10, pp. 4104-4108.

 Advances in Evolutionary Algorithms

124

 Success Fitness Function Value Running Time (sec.) Convergence Iterations
SET Rate max min mean std max min Mean std max min mean std
A1 92% 153.17 0 3.3025 21.65 0.03 0.02 0.02 0.00 962 520 720.3 73.77
A2 90% 3018.59 0 124.3305 597.18 0.12 0.05 0.06 0.01 1264 520 1130.3 141.50
A3 82% 3018.59 0 122.7829 597.14 0.29 0.09 0.11 0.04 1987 914 1603.5 268.45
B1 100% 0 0 0 0 0.05 0.04 0.05 0.00 787 607 660.1 39.34
B2 98% 3.99 0 0.0797 0.56 0.25 0.09 0.14 0.03 1129 813 1024.7 64.66
B3 96% 3018.59 0 120.7434 597.52 0.47 0.19 0.23 0.07 1635 1176 1477.9 114.45
C1 98% 3.99 0 0.0797 0.56 0.13 0.07 0.11 0.01 782 556 602.7 37.37
C2 98% 3018.59 0 60.3717 426.89 0.46 0.24 0.37 0.04 1089 649 946.9 60.43
C3 98% 237.31 0 4.7461 33.56 0.91 0.44 0.66 0.10 1457 1217 1346.7 56.36
D1 100% 0 0 0 0 0.27 0.21 0.25 0.02 681 533 567.4 28.35
D2 100% 0 0 0 0 1.00 0.78 0.89 0.05 1048 818 887.3 47.31
D3 100% 0 0 0 0 2.41 1.52 1.78 0.17 1452 1073 1232.0 73.77

Table 3. Experimental results on Rosenbrock function of 50 independent runs.

 Success Fitness Function Value Running Time (sec.) Convergence Iterations
SET Rate max min mean std max min mean std max min mean std
A1 100% 0 0 0 0 0.05 0.04 0.05 0.00 112 5 30.3 20.52
A2 98% 24.87 0 0.4975 3.52 0.16 0.15 0.16 0.00 329 11 56.1 49.95
A3 96% 28.92 0 1.0760 5.34 0.37 0.33 0.34 0.01 357 19 86.4 74.91
B1 100% 0 0 0 0 0.09 0.08 0.08 0.00 58 7 25.4 12.34
B2 100% 0 0 0 0 0.27 0.25 0.25 0.00 104 11 36.4 20.96
B3 100% 0 0 0 0 0.58 0.53 0.55 0.01 196 20 47.7 28.55
C1 100% 0 0 0 0 0.17 0.15 0.16 0.00 56 5 19.3 11.02
C2 100% 0 0 0 0 0.49 0.45 0.47 0.01 106 9 32.9 17.43
C3 100% 0 0 0 0 1.01 0.92 0.96 0.02 127 18 45.2 25.74
D1 100% 0 0 0 0 0.32 0.30 0.31 0.00 38 5 15.6 7.43
D2 100% 0 0 0 0 0.92 0.86 0.89 0.01 63 9 26.4 10.87
D3 100% 0 0 0 0 1.91 1.74 1.79 0.03 97 9 34.7 15.96

Table 4. Experimental results on Rastrigrin function of 50 independent runs.

 Success Fitness Function Value Running Time (sec.) Convergence Iterations
SET Rate max min mean std max min mean std max min mean std
A1 86% 0.10 0 0.0071 0.02 0.08 0.08 0.08 0.00 711 6 110.7 169.22
A2 74% 0.13 0 0.0186 0.04 0.30 0.27 0.28 0.01 1401 18 262.1 303.67
A3 76% 0.21 0 0.0190 0.04 0.72 0.64 0.67 0.03 812 15 275.0 272.40
B1 98% 0.01 0 0.0002 0.00 0.14 0.13 0.14 0.00 518 4 53.1 74.79
B2 96% 0.07 0 0.0026 0.01 0.49 0.44 0.45 0.01 823 10 90.7 151.76
B3 96% 0.03 0 0.0012 0.01 1.06 0.99 1.00 0.01 738 10 95.7 140.38
C1 100% 0 0 0 0 0.26 0.25 0.26 0.00 124 2 20.5 23.07
C2 100% 0 0 0 0 0.81 0.78 0.80 0.01 120 10 40.8 26.87
C3 100% 0 0 0 0 1.74 1.67 1.70 0.02 131 8 48.1 28.07
D1 100% 0 0 0 0 0.51 0.49 0.50 0.00 30 6 14.8 6.09
D2 100% 0 0 0 0 1.53 1.46 1.49 0.01 104 9 29.0 16.99
D3 100% 0 0 0 0 3.18 3.04 3.10 0.03 77 9 32.9 14.44

Table 5. Experimental results on Griewark function of 50 independent runs.

A Simple Hybrid Particle Swarm Optimization

125

As the dimension increases, the solution space get more complex, and PSO algorithm is
more likely to be trapped into local optima. Experimental data shown in Table 2 does not
clearly indicate that the HPSO outperforms the other PSOs in the measures of average
fitness function values. However, the Success Rates are all over 74%. Therefore, the
proposed HPSO can nd global optima with very high probability, and it is concluded that
HPSO has the strongest exploration ability and it is not easy to be trapped into local optima.
Table 3 shows that the proposed HPSO uses only 3.18 seconds in worst case and 0.6 seconds
in average. Thus, HPSO is very effective, efficient, robust, and reliable for complex
numerical optimization.

6. Conclusions
A successful evolutionary algorithm is one with a proper balance between exploration
(searching for good solutions), and exploitation (refining the solutions by combining
information gathered during the exploration phase). In this study, a new hybrid version of
PSO called HPSO is proposed. The HPSO constitutes a vector based PSO method with the
linearly varying inertia weight, along with a local search.
A novel, simpler, and efficient mechanism is employed to move the gBest to its next position
in the proposed HPSO. The HPSO combines the population-based evolutionary searching
ability of PSO and local searching behavior to effciently balance the exploration and
exploitation abilities. The result obtained by HPSO has been compared with those obtained
from traditional simple PSO (SPSO) and improved PSO (IPSO) proposed recently.
Computational results show that the proposed HPSO shows an enhancement in searching
efficiency and improve the searching quality. In summary, the results presented in this work
are encouraging and promising for the application of the proposed HPSO to other complex
problems.
Further analysis is necessary to see how other soft computing method (e.g., the genetic
algorithm, the taboo search, etc.) react to local searches for future researchers who may want
to develop their own heuristics and to make further improvements. Our research is still very
active and under progress, and it opens the avenues for future efforts in this directions such
as: how to adjust parameters, increase success rates, reduce running times, using other local
search, and the aggregation of different and new concepts to PSO.

7. References
B. Liu, L. Wang, Y.-H. Jin, F. Tang, D.-X. Huang (2005), “Improved particle swarm

optimization combined with chaos”, Chaos Solitons & Fractals, Vol. 25, 2005, pp.
1261–1271.

I.C. Trelea (2003), The particle swarm optimization algorithm: convergence analysis and
parameter selection, Information Processing Letters, Vol. 85, 2003, pp. 317–325.

J. Kennedy and R.C. Eberhard (1995), “Particle swarm optimization”, Proceedings of IEEE
International Conference on Neural Networks, Piscataway, NJ, USA, 1995, pp. 1942-1948.

J. Kennedy and R.C. Eberhard and Y. Shi, “Swarm intelligence”, San Francisco, CA: Morgan
Kaufmann; 2001.

J. Kennedy and R.C. Eberhart (1997), “A discrete binary version of the particle swarm
algorithm”, Systems, Man, and Cybernetics, Computational Cybernetics and
Simulation, IEEE International Conference, Vol. 5, No. 12-15, 1997/10, pp. 4104-4108.

 Advances in Evolutionary Algorithms

126

J. Moore and R. Chapman (1999), “Application of particle swarm to multiobjective
optimization”, Department of Computer Science and Software Engineering, Auburn
University.

K.E. Parsopoulos, V.P. Plagianakos, G.D. Magoulas, M.N. Vrahatis (2001), Improving
particle swarm optimizer by function stretching, Advances in Convex Analysis and
Global Optimization, 2001, 445–457.

R.C. Eberhart and Y. Shi (2001), “Particle Swarm Optimization: Developments, Application
and Resources”, Proceedings of the 2001 Congress on Evolutionary Computation,
Seoul, South Korea, Vol. 1, pp. 81-86.

Y. Jiang, T. Hu, C. Huang, and X. Wu (2007), “An improved particle swarm optimization
algorithm”, Applied Mathematics and Computation, Vol. 193, pp. 231–239.

7

Recent Advances in Harmony Search
Zong Woo Geem1, M. Fesanghary2, Jeong-Yoon Choi3, M. P. Saka4,

Justin C. Williams1, M. Tamer Ayvaz5, Liang Li6, Sam Ryu7 and A. Vasebi8

1Johns Hopkins University, 2Amirkabir University of Technology, 3Montgomery College,
4Middle East Technical University, 5Pamukkale University,

 6Da Lian University of Technology, 7SOFEC, 8K.N.Toosi University of Technology
1,3,7USA, 2,8Iran, 4,5Turkey, 6China

1. Introduction
The harmony search (HS) is a music-inspired evolutionary algorithm, mimicking the
improvisation process of music players (Geem et al., 2001). The HS is simple in concept, few
in parameters, and easy in implementation, with theoretical background of stochastic
derivative (Geem, 2007a). The algorithm was originally developed for discrete optimization
and later expanded for continuous optimization (Lee & Geem, 2005).
The following pseudo code describes how the HS algorithm works:

procedure HS

 // initialize
 initiate parameters
 initialize the harmony memory

 //main loop
 while (not_termination)
 for I = 1 to number of decision variables (N) do
 R1 = uniform random number between 0 and 1
 if (R1 < P

HMCR
) (memory consideration)

 X[I] will be randomly chosen from harmony memory
 R2 = uniform random number
 if (R2 < P

PAR
) (pitch adjustment)

 X[I] = X[I] ± ∆
 end if
 else (random selection)
 X[I] = X ∈ Φ (Φ = Value Set)
 end if
 end do

 // evaluate the fitness of each vector
 fitness_X = evaluate_fitness(X)

 // update harmony memory
 update_memory(X, fitness_X) % if applicable

 end while

end procedure

 Advances in Evolutionary Algorithms

126

J. Moore and R. Chapman (1999), “Application of particle swarm to multiobjective
optimization”, Department of Computer Science and Software Engineering, Auburn
University.

K.E. Parsopoulos, V.P. Plagianakos, G.D. Magoulas, M.N. Vrahatis (2001), Improving
particle swarm optimizer by function stretching, Advances in Convex Analysis and
Global Optimization, 2001, 445–457.

R.C. Eberhart and Y. Shi (2001), “Particle Swarm Optimization: Developments, Application
and Resources”, Proceedings of the 2001 Congress on Evolutionary Computation,
Seoul, South Korea, Vol. 1, pp. 81-86.

Y. Jiang, T. Hu, C. Huang, and X. Wu (2007), “An improved particle swarm optimization
algorithm”, Applied Mathematics and Computation, Vol. 193, pp. 231–239.

7

Recent Advances in Harmony Search
Zong Woo Geem1, M. Fesanghary2, Jeong-Yoon Choi3, M. P. Saka4,

Justin C. Williams1, M. Tamer Ayvaz5, Liang Li6, Sam Ryu7 and A. Vasebi8

1Johns Hopkins University, 2Amirkabir University of Technology, 3Montgomery College,
4Middle East Technical University, 5Pamukkale University,

 6Da Lian University of Technology, 7SOFEC, 8K.N.Toosi University of Technology
1,3,7USA, 2,8Iran, 4,5Turkey, 6China

1. Introduction
The harmony search (HS) is a music-inspired evolutionary algorithm, mimicking the
improvisation process of music players (Geem et al., 2001). The HS is simple in concept, few
in parameters, and easy in implementation, with theoretical background of stochastic
derivative (Geem, 2007a). The algorithm was originally developed for discrete optimization
and later expanded for continuous optimization (Lee & Geem, 2005).
The following pseudo code describes how the HS algorithm works:

procedure HS

 // initialize
 initiate parameters
 initialize the harmony memory

 //main loop
 while (not_termination)
 for I = 1 to number of decision variables (N) do
 R1 = uniform random number between 0 and 1
 if (R1 < P

HMCR
) (memory consideration)

 X[I] will be randomly chosen from harmony memory
 R2 = uniform random number
 if (R2 < P

PAR
) (pitch adjustment)

 X[I] = X[I] ± ∆
 end if
 else (random selection)
 X[I] = X ∈ Φ (Φ = Value Set)
 end if
 end do

 // evaluate the fitness of each vector
 fitness_X = evaluate_fitness(X)

 // update harmony memory
 update_memory(X, fitness_X) % if applicable

 end while

end procedure

 Advances in Evolutionary Algorithms

128

Ensemble harmony search (EHS) is another variant of the HS where ensemble consideration
is added to the original algorithm structure (Geem, 2006a). The new operation considers the
relationship among decision variables. The EHS could overcome the drawback of genetic
algorithm's building block theory which does not work well if less-correlated variables
locate closely in a chromosome.
Mahdavi et al. (2007) proposed an improved harmony search (IHS), in which dynamic
parameter adjusting is used in improvisation step. As the search progresses, PPAR is
increased linearly while adjusting amount is decreased exponentially. This modification
improves the local exploitation capability of the HS algorithm.
Recently, Omran & Mahdavi (2007) proposed a new variant of harmony search, called the
global-best harmony search (GHS), in which the concepts from swarm intelligence are
borrowed to enhance the performance of HS such that the new harmony can mimic the best
harmony in the harmony memory (HM).
The HS algorithm has been successfully applied to various artificial intelligence and
engineering problems including music composition (Geem & Choi, 2007), Sudoku puzzle
solving (Geem, 2007b), structural design (Lee & Geem, 2004; Saka, 2007), ecological
conservation (Geem & Williams, 2008), aquifer parameter identification (Ayvaz, 2007), soil
slip determination (Cheng et al., 2008), offshore structure mooring (Ryu et al., 2007), power
economic dispatch (Vasebi et al., 2007), pipeline network design (Geem, 2006b), and dam
operation (Geem, 2007c).
The goal of this chapter is to review various recent applications of the HS algorithm, helping
other researchers to draw a big picture of the HS ability and to apply it to their own
problems.

2. Recent applications
2.1 Music composition
The HS algorithm composed music pieces (Geem & Choi, 2007). When HS was applied to
the organum (an early form of polyphonic music) composition, it was able to successfully
compose harmony lines based on original Gregorian chant lines.
Gregorian chant is a monophonic religious song in the middle ages, and organum is an early
form of harmonized music which accompanies the Gregorian chant melody. HS generates
the harmony line (vox organalis) to accompany the original Gregorian chant (vox
principalis).
The organum has the following composing rules: the harmony line progresses in parallel;
for the parallel motion, the interval of perfect fourth is preferred; and, in order to distinguish
the vox principalis from vox organalis, the former should always be located above the latter.
The above-mentioned rules were formulated as a optimization problem. Then, HS solved
the problem, obtaining aesthetically pleasing organum as shown in Figure 1.
Figure 1 shows a Gregorian chant “Rex caeli Domine” and its organum composed by HS.
The upper line in the figure is the Gregorian chant melody and the lower line is the
organum line.

Recent Advances in Harmony Search

129

Fig. 1. Organum Composed by HS algorithm

2.2 Sudoku puzzle solving
HS was applied to a Sudoku puzzle (Geem, 2007b), which is formulated as an optimization
problem with number-uniqueness penalties.
Sudoku means “singular number" in Japanese, and consists of 9 × 9 grid and 3 × 3 blocks for
all the 81 cells. Each puzzle starts with some cells that already have numbers as shown in
Figure 2 (the numbers in white cells are originally given). The goal of the puzzle is to find
numbers for the remaining cells with three rules: (1) Each horizontal row should contain the
numbers 1 - 9, without repeating any; (2) Each vertical column should contain the numbers 1
- 9, without repeating any; and (3) Each 3 × 3 block should contain the numbers 1 - 9,
without repeating any.

Fig. 2. Sudoku Puzzle Solved by HS algorithm

The HS model found the optimal solution without any violation of three rules after 285
function evaluations as shown in Figure 2.

2.3 Structural design
Structural design involves in decision making about cross sectional dimensions of the
members that constitute the structure and sometimes the geometry and topology of the
structure itself. In the design of a steel frame, the decision making process necessitates
selecting W or any other type of steel sections from practically available set of steel section

 Advances in Evolutionary Algorithms

128

Ensemble harmony search (EHS) is another variant of the HS where ensemble consideration
is added to the original algorithm structure (Geem, 2006a). The new operation considers the
relationship among decision variables. The EHS could overcome the drawback of genetic
algorithm's building block theory which does not work well if less-correlated variables
locate closely in a chromosome.
Mahdavi et al. (2007) proposed an improved harmony search (IHS), in which dynamic
parameter adjusting is used in improvisation step. As the search progresses, PPAR is
increased linearly while adjusting amount is decreased exponentially. This modification
improves the local exploitation capability of the HS algorithm.
Recently, Omran & Mahdavi (2007) proposed a new variant of harmony search, called the
global-best harmony search (GHS), in which the concepts from swarm intelligence are
borrowed to enhance the performance of HS such that the new harmony can mimic the best
harmony in the harmony memory (HM).
The HS algorithm has been successfully applied to various artificial intelligence and
engineering problems including music composition (Geem & Choi, 2007), Sudoku puzzle
solving (Geem, 2007b), structural design (Lee & Geem, 2004; Saka, 2007), ecological
conservation (Geem & Williams, 2008), aquifer parameter identification (Ayvaz, 2007), soil
slip determination (Cheng et al., 2008), offshore structure mooring (Ryu et al., 2007), power
economic dispatch (Vasebi et al., 2007), pipeline network design (Geem, 2006b), and dam
operation (Geem, 2007c).
The goal of this chapter is to review various recent applications of the HS algorithm, helping
other researchers to draw a big picture of the HS ability and to apply it to their own
problems.

2. Recent applications
2.1 Music composition
The HS algorithm composed music pieces (Geem & Choi, 2007). When HS was applied to
the organum (an early form of polyphonic music) composition, it was able to successfully
compose harmony lines based on original Gregorian chant lines.
Gregorian chant is a monophonic religious song in the middle ages, and organum is an early
form of harmonized music which accompanies the Gregorian chant melody. HS generates
the harmony line (vox organalis) to accompany the original Gregorian chant (vox
principalis).
The organum has the following composing rules: the harmony line progresses in parallel;
for the parallel motion, the interval of perfect fourth is preferred; and, in order to distinguish
the vox principalis from vox organalis, the former should always be located above the latter.
The above-mentioned rules were formulated as a optimization problem. Then, HS solved
the problem, obtaining aesthetically pleasing organum as shown in Figure 1.
Figure 1 shows a Gregorian chant “Rex caeli Domine” and its organum composed by HS.
The upper line in the figure is the Gregorian chant melody and the lower line is the
organum line.

Recent Advances in Harmony Search

129

Fig. 1. Organum Composed by HS algorithm

2.2 Sudoku puzzle solving
HS was applied to a Sudoku puzzle (Geem, 2007b), which is formulated as an optimization
problem with number-uniqueness penalties.
Sudoku means “singular number" in Japanese, and consists of 9 × 9 grid and 3 × 3 blocks for
all the 81 cells. Each puzzle starts with some cells that already have numbers as shown in
Figure 2 (the numbers in white cells are originally given). The goal of the puzzle is to find
numbers for the remaining cells with three rules: (1) Each horizontal row should contain the
numbers 1 - 9, without repeating any; (2) Each vertical column should contain the numbers 1
- 9, without repeating any; and (3) Each 3 × 3 block should contain the numbers 1 - 9,
without repeating any.

Fig. 2. Sudoku Puzzle Solved by HS algorithm

The HS model found the optimal solution without any violation of three rules after 285
function evaluations as shown in Figure 2.

2.3 Structural design
Structural design involves in decision making about cross sectional dimensions of the
members that constitute the structure and sometimes the geometry and topology of the
structure itself. In the design of a steel frame, the decision making process necessitates
selecting W or any other type of steel sections from practically available set of steel section

 Advances in Evolutionary Algorithms

130

tables for the members of the frame such that the response of the frame to external loads is
within the limitations described in the steel design codes. It is not very difficult to imagine
that one can come up with large number of different combinations selected from the
available steel section set which may satisfy these requirements. However, the designer is
interested in finding the combination which not only satisfies design code limitations but
also minimizes the material weight or the overall cost. This is the optimal design. HS
method is quite effective in finding the optimum solution of such combinatorial
optimization problems. In this section the HS algorithm is applied to determine the solution
of optimum design of grillage system, optimum geometry design of a steel dome and the
optimum design of reinforced concrete continuous beam.

3

3

3

3

3 4

4

4

4

4

200kN200kN200kN200kN

11111

111

22222

22

2m

2m

200kN 200kN 200kN 200kN

200kN 200kN 200kN 200kN
3

3

2 2
14

15

2 6 10

3 7 11

4 8 12 16

13951

200kN 200kN 200kN 200kN

2m2m 2m 2m 2m

2m

2m

1 1

3

3

2

34

4

4

4

4

Fig. 3. 40-Member Grillage System

Optimum Design of 40-Member Grillage System: The grillage system shown in Figure 3
has 40 members which are collected in four groups such that the outer and inner
longitudinal beams are considered to belong to groups 1 and 2 while the outer and inner
transverse beams are taken as groups 3 and 4 respectively. This system is originally
designed using HS (Erdal, 2007). The displacement and stress constraints are considered in
the formulation of this design problem. The external loading that the grillage system is
subjected to also shown in the figure. Under this loading it is required that the vertical
displacements of joints 6, 7, 10 and 11 should not exceed 25mm. Furthermore it is the
condition of the design criteria that nowhere in the longitudinal and transverse beams the
bending stress should exceed the allowable bending stress of 250MPa. The 272 W-sections
starting from W100X19.3 to W1100X499 are selected from LRFD-AISC (Manual of Steel
Construction) as an available discrete design set for the optimum design procedure to select
from. The task of the optimum design algorithm is to decide the appropriate W sections
from this list for longitudinal and transverse beams of the grillage system such that the
displacement and stress constraints described above are satisfied while the weight of the

Recent Advances in Harmony Search

131

grillage system is the minimum. The solution of this problem is obtained by using HS as
well as genetic algorithm (GA). The GA algorithm utilized in the solution of this design
problem is a simple genetic algorithm where the initial population size is taken as 50 and
two-point crossover is used to swap the genetic information between mating parents. While
GA obtained the optimum solution after 40,000 structural analyses (function evaluations),
HS required only 10,000 structural analyses to reach the optimum result. The optimum
design (minimum weight = 7,075.84 kg) obtained by the HS method is 14% lighter than the
one (8,087.91kg) determined by the GA in this particular design problem.

Fig. 4. Geodesic dome

Optimum Geometry Design of Geodesic Domes: Domes are economical structures in
terms of materials that are used to cover large areas such as exhibition halls and stadiums
where they provide a completely unobstructed inner space. Domes are given different
names depending upon the way their surface is formed. Geodesic dome shown in Figure 4
is a typical example of a braced dome which is widely used in the construction of exhibition
halls all over the world. A geodesic dome is comprised of a complex network of triangles
that form a roughly spherical surface. Generally the area that is to be covered by the dome is
provided by a client and the structural designer is required to come up with dimensions of

 Advances in Evolutionary Algorithms

130

tables for the members of the frame such that the response of the frame to external loads is
within the limitations described in the steel design codes. It is not very difficult to imagine
that one can come up with large number of different combinations selected from the
available steel section set which may satisfy these requirements. However, the designer is
interested in finding the combination which not only satisfies design code limitations but
also minimizes the material weight or the overall cost. This is the optimal design. HS
method is quite effective in finding the optimum solution of such combinatorial
optimization problems. In this section the HS algorithm is applied to determine the solution
of optimum design of grillage system, optimum geometry design of a steel dome and the
optimum design of reinforced concrete continuous beam.

3

3

3

3

3 4

4

4

4

4

200kN200kN200kN200kN

11111

111

22222

22

2m

2m

200kN 200kN 200kN 200kN

200kN 200kN 200kN 200kN
3

3

2 2
14

15

2 6 10

3 7 11

4 8 12 16

13951

200kN 200kN 200kN 200kN

2m2m 2m 2m 2m

2m

2m

1 1

3

3

2

34

4

4

4

4

Fig. 3. 40-Member Grillage System

Optimum Design of 40-Member Grillage System: The grillage system shown in Figure 3
has 40 members which are collected in four groups such that the outer and inner
longitudinal beams are considered to belong to groups 1 and 2 while the outer and inner
transverse beams are taken as groups 3 and 4 respectively. This system is originally
designed using HS (Erdal, 2007). The displacement and stress constraints are considered in
the formulation of this design problem. The external loading that the grillage system is
subjected to also shown in the figure. Under this loading it is required that the vertical
displacements of joints 6, 7, 10 and 11 should not exceed 25mm. Furthermore it is the
condition of the design criteria that nowhere in the longitudinal and transverse beams the
bending stress should exceed the allowable bending stress of 250MPa. The 272 W-sections
starting from W100X19.3 to W1100X499 are selected from LRFD-AISC (Manual of Steel
Construction) as an available discrete design set for the optimum design procedure to select
from. The task of the optimum design algorithm is to decide the appropriate W sections
from this list for longitudinal and transverse beams of the grillage system such that the
displacement and stress constraints described above are satisfied while the weight of the

Recent Advances in Harmony Search

131

grillage system is the minimum. The solution of this problem is obtained by using HS as
well as genetic algorithm (GA). The GA algorithm utilized in the solution of this design
problem is a simple genetic algorithm where the initial population size is taken as 50 and
two-point crossover is used to swap the genetic information between mating parents. While
GA obtained the optimum solution after 40,000 structural analyses (function evaluations),
HS required only 10,000 structural analyses to reach the optimum result. The optimum
design (minimum weight = 7,075.84 kg) obtained by the HS method is 14% lighter than the
one (8,087.91kg) determined by the GA in this particular design problem.

Fig. 4. Geodesic dome

Optimum Geometry Design of Geodesic Domes: Domes are economical structures in
terms of materials that are used to cover large areas such as exhibition halls and stadiums
where they provide a completely unobstructed inner space. Domes are given different
names depending upon the way their surface is formed. Geodesic dome shown in Figure 4
is a typical example of a braced dome which is widely used in the construction of exhibition
halls all over the world. A geodesic dome is comprised of a complex network of triangles
that form a roughly spherical surface. Generally the area that is to be covered by the dome is
provided by a client and the structural designer is required to come up with dimensions of

 Advances in Evolutionary Algorithms

132

pipe sections that are usually adopted for the dome members and also specify the height of
the crown.
The design problem considered here is to determine the optimum height and circular steel
hollow section designations for the geodesic dome that is suppose to cover the circular area
of 20m as shown in Figure 4. The modulus of elasticity of the material is taken as
205kN/mm2. The grade of steel adopted is grade 43. The dome is considered to be subjected
to equipment loading of 1000kN at its crown. The formulation of the design problem and
the construction of these constraints are explained in detail by Saka (2007). The solution of
the design problem is obtained by HS. There are altogether 32 values for the HS algorithm to
choose from.
It is apparent from Figure 4 that there are 3 rings in the dome. This number can also be
treated as design variable. However for the simplicity here it is not taken as design variable.
Two design problems are considered. In the first one all the members are decided to be
made out of the same pipe section which means all the members are belong to the same
group. In this case HS obtains the optimum height of the dome as 1.75m and PIP886 is
adopted for the dome members. The minimum weight for this dome is 3750.6kg. It is
noticed that while the displacements of the restricted joints are much smaller than their
upper limits the strength ratios of some members are at their upper bound. This indicates
that in the optimum design problem the strength constraints were dominant. Later, it is
decided that those members between each ring are to be made one group and the members
on each ring are another group. For example, if grouping is carried out such a way that the
diagonal members between the crown and the first ring are group 1, the members on the
first ring are group 2, the members between ring 1 and 2 are group3 and the group number
of members on the ring 2 is 4 and so forth, then the total number of groups in the dome
becomes twice the number of rings in the dome. In this case HS method determines the
optimum height of the crown as 2m while the sectional designations for six groups of the
dome members were PIP1143, PIP603.6, PIP483.2, PIP423.2 and PIP213.2. The minimum
weight of the dome was 1244.42kg. Once more it is noticed that the strength constraints
were dominant in the design problem
Optimum Design of Reinforced Concrete Continuous Beams: In the formulation of the
optimum design problem of reinforced concrete continuous beams, design variables are
selected as the width and height of beams and the reinforcement areas of longitudinal bars.
These longitudinal bars are tensile reinforcements at each mid-span and supports and the
shear reinforcement bar diameters for each beam. The general description of the design
variables for four span continuous beams is given in Figure 5. The objective function is the
total cost of the continuous beams which consists of cost of concrete, formwork and
reinforcement steel. The design constraints consist of the ultimate strength requirements in
bending and shear and minimum and maximum percentage of tensile and shear
reinforcements. The details of these constraints are given by Akin (2007). The optimum
design determined by the HS algorithm has the minimum cost of $11,406 while GA obtained
$11,836.
Three different structural design problems are considered to demonstrate the robustness
and effectiveness of the HS algorithm. The first problem is a size optimization problem
where the HS method has selected optimum W sectional designations for longitudinal and
transverse beams of grillage systems out of 272 discrete set of W steel sections. The solution
obtained by HS is better than the one determined by simple genetic algorithm. The second

Recent Advances in Harmony Search

133

design example is optimum geometry design of a geodesic dome where the HS algorithm
has also effectively determined the optimum height of the crown as well as the optimum
pipe designations for the dome members. Finally in the third design example, it is shown
that HS can be successfully employed to determine the optimum cross sectional dimensions
for beams as well as required reinforcement diameters and their total number in the design
of reinforced concrete continuous beams.

Fig. 5. Design Variables for Four Span Symmetrical Reinforced Concrete Continuous Beam

2.4 Ecological conservation
In today’s industrialized life, to conserve ecosystem and its species becomes very important.
In order to achieve the goal, quantitative techniques have been so far developed and utilized
for the problem. HS was also applied to a natural reserve selection problem for preserving
species and their habitats (Geem & Williams, 2008). The problem was formulated as an
optimization problem (maximal covering species problem) to maximize the number of
species protected within the reserve system given a specified number of sites that can be
selected (ReVelle et al., 2002). The HS model developed for this problem was tested with
real-world problem in the state of Oregon, USA, which consists of 426 species and 441
candidate sites as shown in Figure 6.
Harmony Search was applied to 24 cases, each involving a different limit on number of
parcels that could be selected. HS found 15 global optimum solutions and 9 near-optimal
solutions. When compared with simulated annealing (SA), the HS algorithm found better
solutions than those of SA in 14 cases while the former found worse solution only once
(Csuti et al., 1997).

 Advances in Evolutionary Algorithms

132

pipe sections that are usually adopted for the dome members and also specify the height of
the crown.
The design problem considered here is to determine the optimum height and circular steel
hollow section designations for the geodesic dome that is suppose to cover the circular area
of 20m as shown in Figure 4. The modulus of elasticity of the material is taken as
205kN/mm2. The grade of steel adopted is grade 43. The dome is considered to be subjected
to equipment loading of 1000kN at its crown. The formulation of the design problem and
the construction of these constraints are explained in detail by Saka (2007). The solution of
the design problem is obtained by HS. There are altogether 32 values for the HS algorithm to
choose from.
It is apparent from Figure 4 that there are 3 rings in the dome. This number can also be
treated as design variable. However for the simplicity here it is not taken as design variable.
Two design problems are considered. In the first one all the members are decided to be
made out of the same pipe section which means all the members are belong to the same
group. In this case HS obtains the optimum height of the dome as 1.75m and PIP886 is
adopted for the dome members. The minimum weight for this dome is 3750.6kg. It is
noticed that while the displacements of the restricted joints are much smaller than their
upper limits the strength ratios of some members are at their upper bound. This indicates
that in the optimum design problem the strength constraints were dominant. Later, it is
decided that those members between each ring are to be made one group and the members
on each ring are another group. For example, if grouping is carried out such a way that the
diagonal members between the crown and the first ring are group 1, the members on the
first ring are group 2, the members between ring 1 and 2 are group3 and the group number
of members on the ring 2 is 4 and so forth, then the total number of groups in the dome
becomes twice the number of rings in the dome. In this case HS method determines the
optimum height of the crown as 2m while the sectional designations for six groups of the
dome members were PIP1143, PIP603.6, PIP483.2, PIP423.2 and PIP213.2. The minimum
weight of the dome was 1244.42kg. Once more it is noticed that the strength constraints
were dominant in the design problem
Optimum Design of Reinforced Concrete Continuous Beams: In the formulation of the
optimum design problem of reinforced concrete continuous beams, design variables are
selected as the width and height of beams and the reinforcement areas of longitudinal bars.
These longitudinal bars are tensile reinforcements at each mid-span and supports and the
shear reinforcement bar diameters for each beam. The general description of the design
variables for four span continuous beams is given in Figure 5. The objective function is the
total cost of the continuous beams which consists of cost of concrete, formwork and
reinforcement steel. The design constraints consist of the ultimate strength requirements in
bending and shear and minimum and maximum percentage of tensile and shear
reinforcements. The details of these constraints are given by Akin (2007). The optimum
design determined by the HS algorithm has the minimum cost of $11,406 while GA obtained
$11,836.
Three different structural design problems are considered to demonstrate the robustness
and effectiveness of the HS algorithm. The first problem is a size optimization problem
where the HS method has selected optimum W sectional designations for longitudinal and
transverse beams of grillage systems out of 272 discrete set of W steel sections. The solution
obtained by HS is better than the one determined by simple genetic algorithm. The second

Recent Advances in Harmony Search

133

design example is optimum geometry design of a geodesic dome where the HS algorithm
has also effectively determined the optimum height of the crown as well as the optimum
pipe designations for the dome members. Finally in the third design example, it is shown
that HS can be successfully employed to determine the optimum cross sectional dimensions
for beams as well as required reinforcement diameters and their total number in the design
of reinforced concrete continuous beams.

Fig. 5. Design Variables for Four Span Symmetrical Reinforced Concrete Continuous Beam

2.4 Ecological conservation
In today’s industrialized life, to conserve ecosystem and its species becomes very important.
In order to achieve the goal, quantitative techniques have been so far developed and utilized
for the problem. HS was also applied to a natural reserve selection problem for preserving
species and their habitats (Geem & Williams, 2008). The problem was formulated as an
optimization problem (maximal covering species problem) to maximize the number of
species protected within the reserve system given a specified number of sites that can be
selected (ReVelle et al., 2002). The HS model developed for this problem was tested with
real-world problem in the state of Oregon, USA, which consists of 426 species and 441
candidate sites as shown in Figure 6.
Harmony Search was applied to 24 cases, each involving a different limit on number of
parcels that could be selected. HS found 15 global optimum solutions and 9 near-optimal
solutions. When compared with simulated annealing (SA), the HS algorithm found better
solutions than those of SA in 14 cases while the former found worse solution only once
(Csuti et al., 1997).

 Advances in Evolutionary Algorithms

134

Fig. 6. Hex Map of Oregon

Another advantage of the HS algorithm is that it gives many alternative solutions because it
handles multiple solutions as a time. For example, the HS found 25 alternative solutions for
the case of 24 selected sites.

2.5 Aquifer parameter identification
Mathematical simulation models are widely used in the management of aquifer systems.
These models require the spatial distributions of some hydrologic and hydro-geologic
parameters for the solution process. However, aquifers are heterogeneous geological
structures and usually distribution of their parameters is unknown. Thus, the determination
of both aquifer parameters and their corresponding parameter structures based on field
observations becomes an important step. The main goal of this study is to propose an S/O
approach for simultaneously identification of transmissivity values and associated zone
structures of a heterogeneous aquifer system. In the simulation model, the governing
equation of groundwater flow is numerically solved using a block-centered finite difference
solution scheme. The zone structure identification problem is solved through fuzzy c-means
clustering (FCM) algorithm, and the HS algorithm is used as an optimization model to
determine the optimum locations of cluster centroids and the associated transmissivity
values within each zone (Ayvaz , 2007).
The main reason for applying FCM and HS to the groundwater inverse problem is to
determine the zone structure and associated transmissivity values within each zone. The
parameter zone structure of the aquifer is initiated using random cluster centroids and
random transmissivity values are assigned to each cluster. Cluster centroids and
transmissivity values are then optimized using HS by minimizing the residual error (RE)
between the simulated and observed hydraulic heads at several observation wells.

Recent Advances in Harmony Search

135

The performance of the proposed S/O approach is tested on a hypothetical example. Figure
7 (Left) shows the plain view of two-dimensional confined aquifer.

A

B

C

D

Fig. 7. (Left) Plain View of Confined Aquifer and (Right) True Transmissivity Field

As can be seen in Figure 7 (Left), the boundary conditions of the aquifer are 100 m constant
head in the BD side and the no-flow in the other sides. The storage coefficient of the aquifer
is the 0.0002. There are five pumping wells having the pumping rates of 4,000 cmd for Wells
1 to 4 and 2,000 cmd for Well 5. All the pumping wells are continuously operated for 10
days. There are seven observation wells and head observations are collected at the end of
each day. The Gaussian noise of zero mean and 0.1 m standard deviation is added to the
head observations. The true transmissivity field of the aquifer is shown in Figure 7 (Right).
The main goal is to determine the best zonation pattern to satisfy the true transmissivity
field. For the optimization process, five cases with different algorithm parameters are taken
into account. Maximum number of improvisations (iteration) is set as 50,000 and the search
process ends when the RE value remains unchanged through 1,000 improvisations. Note
that, for comparison, the number of zones is fixed as 4 and the bounds of transmissivity
values are set as 20 ~ 600 smd.
HS obtained the minimum RE (2.33) after 29,370 of function evaluations. Note that, GA (Tsai
et al., 2003) solved the same problem, obtaining RE of 2.62 after 40,000 function evaluations.
Although there are some differences, the identified transmissivity structures well capture
the true transmissivity field.

2.6 Soil slip determination
Soil slopes are general in civil engineering and their stability assessment is of great
importance to engineers. Up to now, limit equilibrium method is widely used by engineers
and researchers for slope stability analysis. By using limit equilibrium method, a value Fs,
also named the factor of safety can be estimated without the knowledge of the initial stress
conditions and a problem can be defined and solved within a relatively short time. Limit
equilibrium method is a statically indeterminate problem and different assumptions on the

 Advances in Evolutionary Algorithms

134

Fig. 6. Hex Map of Oregon

Another advantage of the HS algorithm is that it gives many alternative solutions because it
handles multiple solutions as a time. For example, the HS found 25 alternative solutions for
the case of 24 selected sites.

2.5 Aquifer parameter identification
Mathematical simulation models are widely used in the management of aquifer systems.
These models require the spatial distributions of some hydrologic and hydro-geologic
parameters for the solution process. However, aquifers are heterogeneous geological
structures and usually distribution of their parameters is unknown. Thus, the determination
of both aquifer parameters and their corresponding parameter structures based on field
observations becomes an important step. The main goal of this study is to propose an S/O
approach for simultaneously identification of transmissivity values and associated zone
structures of a heterogeneous aquifer system. In the simulation model, the governing
equation of groundwater flow is numerically solved using a block-centered finite difference
solution scheme. The zone structure identification problem is solved through fuzzy c-means
clustering (FCM) algorithm, and the HS algorithm is used as an optimization model to
determine the optimum locations of cluster centroids and the associated transmissivity
values within each zone (Ayvaz , 2007).
The main reason for applying FCM and HS to the groundwater inverse problem is to
determine the zone structure and associated transmissivity values within each zone. The
parameter zone structure of the aquifer is initiated using random cluster centroids and
random transmissivity values are assigned to each cluster. Cluster centroids and
transmissivity values are then optimized using HS by minimizing the residual error (RE)
between the simulated and observed hydraulic heads at several observation wells.

Recent Advances in Harmony Search

135

The performance of the proposed S/O approach is tested on a hypothetical example. Figure
7 (Left) shows the plain view of two-dimensional confined aquifer.

A

B

C

D

Fig. 7. (Left) Plain View of Confined Aquifer and (Right) True Transmissivity Field

As can be seen in Figure 7 (Left), the boundary conditions of the aquifer are 100 m constant
head in the BD side and the no-flow in the other sides. The storage coefficient of the aquifer
is the 0.0002. There are five pumping wells having the pumping rates of 4,000 cmd for Wells
1 to 4 and 2,000 cmd for Well 5. All the pumping wells are continuously operated for 10
days. There are seven observation wells and head observations are collected at the end of
each day. The Gaussian noise of zero mean and 0.1 m standard deviation is added to the
head observations. The true transmissivity field of the aquifer is shown in Figure 7 (Right).
The main goal is to determine the best zonation pattern to satisfy the true transmissivity
field. For the optimization process, five cases with different algorithm parameters are taken
into account. Maximum number of improvisations (iteration) is set as 50,000 and the search
process ends when the RE value remains unchanged through 1,000 improvisations. Note
that, for comparison, the number of zones is fixed as 4 and the bounds of transmissivity
values are set as 20 ~ 600 smd.
HS obtained the minimum RE (2.33) after 29,370 of function evaluations. Note that, GA (Tsai
et al., 2003) solved the same problem, obtaining RE of 2.62 after 40,000 function evaluations.
Although there are some differences, the identified transmissivity structures well capture
the true transmissivity field.

2.6 Soil slip determination
Soil slopes are general in civil engineering and their stability assessment is of great
importance to engineers. Up to now, limit equilibrium method is widely used by engineers
and researchers for slope stability analysis. By using limit equilibrium method, a value Fs,
also named the factor of safety can be estimated without the knowledge of the initial stress
conditions and a problem can be defined and solved within a relatively short time. Limit
equilibrium method is a statically indeterminate problem and different assumptions on the

 Advances in Evolutionary Algorithms

136

internal forces distributions are adopted for different methods of analyses. At present, the
famous method proposed by Morgenstern and Price (1965) is used to give the factor of
safety for specified slip surface.
The minimum factor of safety of a slope and the corresponding critical failure surface are
critical for the proper design of slope stabilization measures. The HS algorithm is employed
to locate the critical failure surface in slope stability analysis. The generation of slip surfaces
is as follows.
Consider the Cartesian system of reference Oxy as shown in Figure 8.

Fig. 8. Slip Surface and the Cross Section of a Slope

Function ()xyy 1= describes the ground profile while the water table is represented by

()xwy = . The bed rock surface is represented by the function ()xRy = and function

()xly i= can be introduced to represent boundary between different soils. The trial failure

surface is described by using the function ()xsy = .

To obtain the values of sF requires the failure soil mass to be divided into n vertical slices
and the slip surface is represented by n+1 vertices. Each slice can be identified by two
adjacent vertices. Generally speaking, the potential slip surfaces are concave upward
(kinematically acceptable requirement) with only few exceptions. The concave upward
requirement can be formulated as follows:

 nααα ≤≤≤ ...21 (1)

where iα is the base inclination of slice i as shown in Figure 8. Every slip surface can be

mathematically identified by the control variable vector X as follows:

 []Tnnnn yxyxyxyx 112211 ,,,,...,,,, ++=X (2)

The vector X is analogous to the harmony in music, and the HS algorithm can be
performed to determine the critical slip surface with the minimum factor of safety.

Recent Advances in Harmony Search

137

The example is the one proposed by Zolfaghari (2005), where a slope in layered soil is
analyzed using the GA and the Morgenstern and Price method. The number of slices n used
in this study is assumed to be 20, 25, and 30. While GA (Zolfaghari, 2005) found minimum
safety factor of 1.24, HS found 1.20 with 30 slices.

2.7 Mooring design of offshore floating structures
The mooring design of offshore platforms requires relatively significant amount of design
cycles since a desired solution must satisfy the complex design constraints and be
economically competitive. The complexity of these mooring design constraints may result
from coupling between platform motion and mooring/riser system, maximum offset
constraint of the riser system, multiple numbers of design parameters defining anchor leg
system components, and uniqueness of site-dependent environmental conditions including
water depth, wave/current/wind condition, seabed condition, etc. When the optimal cost is
sought for this complex mooring design, the design process becomes even more complex.
Mooring design is to find an appropriate stiffness which is stiff enough and soft enough at
the same time since the mooring system needs to satisfy mainly two design constraints: (1)
required maximum horizontal offset and (2) reduction of extreme forces acting on the
platform caused by interactions between environmental forces and platform responses. To
reduce the trial and error effort in mooring design, Fylling (1997) addresses an application
of mooring optimization of deepwater mooring systems. A nonlinear optimization program
with frequency-domain analysis of mooring systems was presented, and the results showed
that the suggested optimization could be a powerful tool for concept development and
finding a feasible solution (Fylling, 1997). Fylling and Kleiven (2000) presented the
simultaneous optimization of mooring lines and risers.
A single point mooring of a Floating, Production, Storage, and Offloading (FPSO) system
was adopted for a case study. Deepwater and ultra-deepwater application of FPSOs
becomes more attractive since they have advantages in early production and relatively big
storage capacity compared to other types of offshore platforms. As we target for deeper
water oil/gas fields, more technical challenges are confronted. For instance, prediction of
deepwater oil offloading buoy motion becomes more difficult (Duggal and Ryu, 2005; Ryu,
et al., 2006). Technical challenges due to deepwater and ultra-deepwater oil fields and
project execution challenges due to the fast track schedule become a trend in FPSO projects.
This deeper water and fast track trend naturally suggests a way of fast finding of a site and
requirement specific feasible mooring design.
This section addresses a HS-based mooring optimization determining the length and
diameter of each mooring component. In this design, only three design constraints were
applied: (1) maximum platform offset, (2) factor of safety (FS) for intact case top tension, and
(3) no uplift of the bottom chain. The objective function is the total cost of mooring system.
A total of 2,000 iterations were performed to find optimal mooring designs. Figure 9
presents the search history of optimal mooring cost as a function of iteration, and Figure 10
shows one final solution the HS algorithm found.
A mooring optimization design tool using the HS algorithm and a frequency domain global
analysis tool was proposed to minimize the cost of the mooring system. This proposed cost-
optimal mooring design tool successfully finds feasible mooring systems. A case study on a
permanent turret mooring system for an FPSO in deepwater was conducted. The results
show that the objective function (i.e. mooring system cost) converges well and HS provides

 Advances in Evolutionary Algorithms

136

internal forces distributions are adopted for different methods of analyses. At present, the
famous method proposed by Morgenstern and Price (1965) is used to give the factor of
safety for specified slip surface.
The minimum factor of safety of a slope and the corresponding critical failure surface are
critical for the proper design of slope stabilization measures. The HS algorithm is employed
to locate the critical failure surface in slope stability analysis. The generation of slip surfaces
is as follows.
Consider the Cartesian system of reference Oxy as shown in Figure 8.

Fig. 8. Slip Surface and the Cross Section of a Slope

Function ()xyy 1= describes the ground profile while the water table is represented by

()xwy = . The bed rock surface is represented by the function ()xRy = and function

()xly i= can be introduced to represent boundary between different soils. The trial failure

surface is described by using the function ()xsy = .

To obtain the values of sF requires the failure soil mass to be divided into n vertical slices
and the slip surface is represented by n+1 vertices. Each slice can be identified by two
adjacent vertices. Generally speaking, the potential slip surfaces are concave upward
(kinematically acceptable requirement) with only few exceptions. The concave upward
requirement can be formulated as follows:

 nααα ≤≤≤ ...21 (1)

where iα is the base inclination of slice i as shown in Figure 8. Every slip surface can be

mathematically identified by the control variable vector X as follows:

 []Tnnnn yxyxyxyx 112211 ,,,,...,,,, ++=X (2)

The vector X is analogous to the harmony in music, and the HS algorithm can be
performed to determine the critical slip surface with the minimum factor of safety.

Recent Advances in Harmony Search

137

The example is the one proposed by Zolfaghari (2005), where a slope in layered soil is
analyzed using the GA and the Morgenstern and Price method. The number of slices n used
in this study is assumed to be 20, 25, and 30. While GA (Zolfaghari, 2005) found minimum
safety factor of 1.24, HS found 1.20 with 30 slices.

2.7 Mooring design of offshore floating structures
The mooring design of offshore platforms requires relatively significant amount of design
cycles since a desired solution must satisfy the complex design constraints and be
economically competitive. The complexity of these mooring design constraints may result
from coupling between platform motion and mooring/riser system, maximum offset
constraint of the riser system, multiple numbers of design parameters defining anchor leg
system components, and uniqueness of site-dependent environmental conditions including
water depth, wave/current/wind condition, seabed condition, etc. When the optimal cost is
sought for this complex mooring design, the design process becomes even more complex.
Mooring design is to find an appropriate stiffness which is stiff enough and soft enough at
the same time since the mooring system needs to satisfy mainly two design constraints: (1)
required maximum horizontal offset and (2) reduction of extreme forces acting on the
platform caused by interactions between environmental forces and platform responses. To
reduce the trial and error effort in mooring design, Fylling (1997) addresses an application
of mooring optimization of deepwater mooring systems. A nonlinear optimization program
with frequency-domain analysis of mooring systems was presented, and the results showed
that the suggested optimization could be a powerful tool for concept development and
finding a feasible solution (Fylling, 1997). Fylling and Kleiven (2000) presented the
simultaneous optimization of mooring lines and risers.
A single point mooring of a Floating, Production, Storage, and Offloading (FPSO) system
was adopted for a case study. Deepwater and ultra-deepwater application of FPSOs
becomes more attractive since they have advantages in early production and relatively big
storage capacity compared to other types of offshore platforms. As we target for deeper
water oil/gas fields, more technical challenges are confronted. For instance, prediction of
deepwater oil offloading buoy motion becomes more difficult (Duggal and Ryu, 2005; Ryu,
et al., 2006). Technical challenges due to deepwater and ultra-deepwater oil fields and
project execution challenges due to the fast track schedule become a trend in FPSO projects.
This deeper water and fast track trend naturally suggests a way of fast finding of a site and
requirement specific feasible mooring design.
This section addresses a HS-based mooring optimization determining the length and
diameter of each mooring component. In this design, only three design constraints were
applied: (1) maximum platform offset, (2) factor of safety (FS) for intact case top tension, and
(3) no uplift of the bottom chain. The objective function is the total cost of mooring system.
A total of 2,000 iterations were performed to find optimal mooring designs. Figure 9
presents the search history of optimal mooring cost as a function of iteration, and Figure 10
shows one final solution the HS algorithm found.
A mooring optimization design tool using the HS algorithm and a frequency domain global
analysis tool was proposed to minimize the cost of the mooring system. This proposed cost-
optimal mooring design tool successfully finds feasible mooring systems. A case study on a
permanent turret mooring system for an FPSO in deepwater was conducted. The results
show that the objective function (i.e. mooring system cost) converges well and HS provides

 Advances in Evolutionary Algorithms

138

several feasible mooring systems. In conclusion, a new HS-based mooring optimization tool,
has a potential for fast finding the cost-optimal mooring system.

$0

$2

$4

$6

$8

$10

$12

$14

$16

$18

$20

0 500 1000 1500 2000

Millions

Iteration

M
oo

rin
g

To
ta

l C
os

t (
in

 U
SD

)
Maximum Cost in HM

Minimum Cost in HM

Average Cost in HM

Fig. 9. Max, Min, and Mean Costs in Harmony Memory

Fig. 10. Mooring Configurations

2.8 Heat & power generation
The conversion of primary fossil fuels, such as coal and gas, to electricity is a relatively
inefficient process. Even the most modern combined cycle plants can only achieve
efficiencies of between 50–60%. Most of the energy that is wasted in this conversion process
is released to the environment as waste heat. The principle of combined heat and power
(CHP), also known as cogeneration, is to recover and make beneficial use of this heat,
significantly raising the overall efficiency of the conversion process. The best CHP schemes
can achieve fuel conversion efficiencies of the order of 90%. In order to obtain the optimal
utilization of CHP units, economic dispatch must be applied. The primary objective of

Recent Advances in Harmony Search

139

economic dispatch is to minimize the total cost of generation while honoring the operational
constraints of the available generation resources. Complication arises if one or more units
produce both electricity and heat. In this case, both of heat and power demands must be met
concurrently. This section will show the application of the HS algorithm to solve the CHPED
problem.
Figure 11 shows the heat-power Feasible Operation Region (FOR) of a combined cycle
cogeneration unit. The feasible operation region is enclosed by the boundary curve
ABCDEF.

Fig. 11. Feasible Operation Region for a Cogeneration Unit

An example which is taken from the literature is used to show the validity and effectiveness
of the HS algorithm. This example has been previously solved using a variety of other
techniques (both evolutionary and traditional mathematical programming methods) after
originally proposed by Guo et al. (1996). The problem consists of a conventional power unit,
two cogeneration units and a heat-only unit. The objective is to find the minimum overall
cost of units subject to constraints on heat and power production and demands.
After 25,000 function evaluations, the best solution is obtained with corresponding function
value equal to $9257.07 (Vasebi et al., 2007). No constraints are active for this solution. The
best solution of this problem obtained using the HS algorithm is compared with solutions
reported by other researchers, showing that the result of HS is the same as the best known
solution in the literature: $9257.07 by Lagrangian Relaxation (Guo et al., 1996); $9267.20 by
GA (Song & Xuan, 1998); $9452.20 by ant colony search algorithm (Song et al., 1999);
$9257.07 by improved GA (Su & Chiang, 2004).
Comparison between the results obtained by the HS method and those generated with other
(evolutionary and mathematical programming) techniques reported in the literature clearly
demonstrate that the HS method is practical and valid for CHPED applications.

3. Conclusions
This study reviews recent applications of the music-inspired HS algorithm, such as music
composition, Sudoku puzzle solving, structural design, ecological conservation, aquifer

 Advances in Evolutionary Algorithms

138

several feasible mooring systems. In conclusion, a new HS-based mooring optimization tool,
has a potential for fast finding the cost-optimal mooring system.

$0

$2

$4

$6

$8

$10

$12

$14

$16

$18

$20

0 500 1000 1500 2000

Millions

Iteration

M
oo

rin
g

To
ta

l C
os

t (
in

 U
SD

)

Maximum Cost in HM

Minimum Cost in HM

Average Cost in HM

Fig. 9. Max, Min, and Mean Costs in Harmony Memory

Fig. 10. Mooring Configurations

2.8 Heat & power generation
The conversion of primary fossil fuels, such as coal and gas, to electricity is a relatively
inefficient process. Even the most modern combined cycle plants can only achieve
efficiencies of between 50–60%. Most of the energy that is wasted in this conversion process
is released to the environment as waste heat. The principle of combined heat and power
(CHP), also known as cogeneration, is to recover and make beneficial use of this heat,
significantly raising the overall efficiency of the conversion process. The best CHP schemes
can achieve fuel conversion efficiencies of the order of 90%. In order to obtain the optimal
utilization of CHP units, economic dispatch must be applied. The primary objective of

Recent Advances in Harmony Search

139

economic dispatch is to minimize the total cost of generation while honoring the operational
constraints of the available generation resources. Complication arises if one or more units
produce both electricity and heat. In this case, both of heat and power demands must be met
concurrently. This section will show the application of the HS algorithm to solve the CHPED
problem.
Figure 11 shows the heat-power Feasible Operation Region (FOR) of a combined cycle
cogeneration unit. The feasible operation region is enclosed by the boundary curve
ABCDEF.

Fig. 11. Feasible Operation Region for a Cogeneration Unit

An example which is taken from the literature is used to show the validity and effectiveness
of the HS algorithm. This example has been previously solved using a variety of other
techniques (both evolutionary and traditional mathematical programming methods) after
originally proposed by Guo et al. (1996). The problem consists of a conventional power unit,
two cogeneration units and a heat-only unit. The objective is to find the minimum overall
cost of units subject to constraints on heat and power production and demands.
After 25,000 function evaluations, the best solution is obtained with corresponding function
value equal to $9257.07 (Vasebi et al., 2007). No constraints are active for this solution. The
best solution of this problem obtained using the HS algorithm is compared with solutions
reported by other researchers, showing that the result of HS is the same as the best known
solution in the literature: $9257.07 by Lagrangian Relaxation (Guo et al., 1996); $9267.20 by
GA (Song & Xuan, 1998); $9452.20 by ant colony search algorithm (Song et al., 1999);
$9257.07 by improved GA (Su & Chiang, 2004).
Comparison between the results obtained by the HS method and those generated with other
(evolutionary and mathematical programming) techniques reported in the literature clearly
demonstrate that the HS method is practical and valid for CHPED applications.

3. Conclusions
This study reviews recent applications of the music-inspired HS algorithm, such as music
composition, Sudoku puzzle solving, structural design, ecological conservation, aquifer

 Advances in Evolutionary Algorithms

140

parameter identification, soil slip determination, offshore structure mooring, and power
economic dispatch.
As observed in most applications, the HS algorithm possesses a potential for obtaining good
solutions in various optimization problems. Thus, the authors expect to see more successful
applications in other scientific and engineering fields in near future. Also, theoretical
progress in finding better solutions is expected.

4. Acknowledgements
The first author would like to thank many people who have helped in development of the
HS algorithm, including Joel Donahue, Jack Galuardi, Teresa Giral, Kang Seok Lee, Audrey
Leslie, Chung-Li Tseng, and Ronald Wiles.

5. References
Akin, A. (2007). Optimum Design of Reinforced Concrete Continuous Beams using Harmony

Search Algorithm, PhD Progress Report, Engineering Sciences Department, Middle
East Technical University, Ankara, Turkey

Ayvaz, M. T. (2007). Simultaneous Determination of Aquifer Parameters and Zone
Structures with Fuzzy C-Means Clustering and Meta-Heuristic Harmony Search
Algorithm. Advances in Water Resources, Vol. 30, No. 11, 2326-2338

Cheng, Y. M.; Li, L.; Lansivaara, T.; Chi, S. C. & Sun, Y. J. (2008). An Improved Harmony
Search Minimization Algorithm Using Different Slip Surface Generation Methods
for Slope Stability Analysis. Engineering Optimization, Vol. 40, No. 2, 95-115

Csuti, B.; Polasky, S.; Williams, P. H.; Pressey, R. L.; Camm, J. D.; Kershaw, M.; Kiester, A.
R.; Downs, B.; Hamilton, R.; Huso, M. & Sahr, K. (1997). A Comparison of Reserve
Selection Algorithms Using Data on Terrestrial Vertebrates in Oregon," Biological
Conservation, Vol. 80, 83-97

Duggal, A. & Ryu, S. (2005). The Dynamics of Deepwater Offloading Buoys, In: Fluid
Structure Interactions and Moving Boundary Problems, WIT Press, pp. 269-278

Erdal, F. (2007). Optimum Design of Grillage Systems using Harmony Search Algorithm, MSc
Thesis, Engineering Sciences Department, Middle East Technical University,
Ankara, Turkey

Fylling, I. (1997). Optimization of Deepwater Mooring Systems, Proceedings of the Offshore
Mediterranean Conference, March 19-21, Ravenna, Italy

Fylling, I. & Kleiven, G. (2000). Integrated Optimized Design of Riser and Mooring System
for Floating Production Vessels, Proceedings of OMAE 2000 Conference, February 14-
16, New Orleans, USA.

Geem, Z. W. (2006a). Improved Harmony Search from Ensemble of Music Players. Lecture
Notes in Artificial Intelligence, Vol. 4251, 86-93

Geem, Z. W. (2006b). Optimal Cost Design of Water Distribution Networks using Harmony
Search. Engineering Optimization, Vol. 38, No. 3, 259-280

Geem, Z. W. (2007a). Novel Derivative of Harmony Search Algorithm for Discrete Design
Variables. Applied Mathematics and Computation, doi:10.1016/j.amc.2007.09.049

Geem, Z. W. (2007b). Harmony Search Algorithm for Solving Sudoku. Lecture Notes in
Artificial Intelligence, Vol. 4692, 371-378

Recent Advances in Harmony Search

141

Geem, Z. W. (2007c). Optimal Scheduling of Multiple Dam System Using Harmony Search
Algorithm. Lecture Notes in Computer Science, Vol. 4507, 316-323

Geem, Z. W. & Choi, J. Y. (2007). Music Composition Using Harmony Search Algorithm.
Lecture Notes in Computer Science, Vol. 4448, 593-600

Geem, Z. W.; Kim, J. H. & Loganathan, G. V. (2001). A New Heuristic Optimization
Algorithm: Harmony Search. Simulation, Vol. 76, No. 2, 60-68

Geem, Z. W. & Williams, J. C. (2008). Ecological Optimization Using Harmony Search,
Proceedings of American Conference on Applied Mathematics (MATH ’08), Harvard
University, March 24-26, Cambridge, MA, USA

Guo, T.; Henwood, M.I. & Ooijen, M. van (1996). An Algorithm for Combined Heat and
Power Economic Dispatch, IEEE Transactions on Power System, Vol. 11, No. 4, 1778–
1784

Lee, K. S. & Geem, Z. W. (2004). A New Structural Optimization Method Based on the
Harmony Search Algorithm. Computers & Structures, Vol. 82, No. 9-10, 781-798

Lee, K. S. & Geem, Z. W. (2005). A New Meta-Heuristic Algorithm for Continuous
Engineering Optimization: Harmony Search Theory and Practice. Computer Methods
in Applied Mechanics and Engineering, Vol. 194, No. 36-38, 3902-3933

Mahdavi, M. ; Fesanghary, M. & Damangir, E. (2007). An Improved Harmony Search
Algorithm for Solving Optimization Problems. Applied Mathematics and
Computation, Vol. 188, No. 2, 1567-1579

Morgenstern, N. R. & Price, V. E. (1965). The Analysis of the Stability of General Slip
Surfaces, Geotechnique, Vol. 15, 79-93

Omran, M. G. H. & Mahdavi, M. (2007). Global-Best Harmony Search. Applied Mathematics
and Computation, doi:10.1016/j.amc.2007.09.004

ReVelle, C. S.; Williams, J. C. & Boland, J. J. (2002), Counterpart Models in Facility Location
Science and Reserve Selection Science," Environmental Modelling and Assessment,
Vol. 7, 71-80

Ryu, S. ; Duggal, A. S. ; Heyl, C. N. & Geem, Z. W. (2007). Mooring Cost Optimization via
Harmony Search, Proceedings of the 26th ASME International Conference on Offshore
Mechanics and Arctic Engineering (OMAE 2007), June 2007, San Diego, CA, USA

Ryu, S.; Duggal, A. S.; Heyl, C. N. & Liu, Y. (2006). Prediction of Deepwater Oil Offloading
Buoy Response and Experimental Validation, International Journal of Offshore and
Polar Engineering, Vol. 16, No. 4, 290-296

Saka, M. P. (2007). Optimum Geometry Design of Geodesic Domes Using Harmony Search
Algorithm. Advances in Structural Engineering, Vol. 10, No. 6, 595-606

Song, Y. H.; Chou, C. S. & Stonham, T. J. (1999). Combined Heat and Power Economic
Dispatch by Improved Ant Colony Search Algorithm, Electric Power Systems
Research, Vol. 52, 115–121

Song, Y. H. & Xuan, Q. Y. (1998). Combined Heat and Power Economic Dispatch using
Genetic Algorithm Based Penalty Function Method, Electric Machines and Power
Systems, Vol. 26, 363–372

Su, C. T. & Chiang, C. L. (2004). An Incorporated Algorithm for Combined Heat and Power
Economic Dispatch, Electric Power Systems Research, Vol. 69, 187–195

Tsai, F. T. –C. ; Sun, N. Z. & Yeh, W. W. G. (2003). A Combinatorial Optimization Scheme for
Parameter Structure Identification in Ground-Water Modeling. Groundwater, Vol.
41, No. 2, 156-169

 Advances in Evolutionary Algorithms

140

parameter identification, soil slip determination, offshore structure mooring, and power
economic dispatch.
As observed in most applications, the HS algorithm possesses a potential for obtaining good
solutions in various optimization problems. Thus, the authors expect to see more successful
applications in other scientific and engineering fields in near future. Also, theoretical
progress in finding better solutions is expected.

4. Acknowledgements
The first author would like to thank many people who have helped in development of the
HS algorithm, including Joel Donahue, Jack Galuardi, Teresa Giral, Kang Seok Lee, Audrey
Leslie, Chung-Li Tseng, and Ronald Wiles.

5. References
Akin, A. (2007). Optimum Design of Reinforced Concrete Continuous Beams using Harmony

Search Algorithm, PhD Progress Report, Engineering Sciences Department, Middle
East Technical University, Ankara, Turkey

Ayvaz, M. T. (2007). Simultaneous Determination of Aquifer Parameters and Zone
Structures with Fuzzy C-Means Clustering and Meta-Heuristic Harmony Search
Algorithm. Advances in Water Resources, Vol. 30, No. 11, 2326-2338

Cheng, Y. M.; Li, L.; Lansivaara, T.; Chi, S. C. & Sun, Y. J. (2008). An Improved Harmony
Search Minimization Algorithm Using Different Slip Surface Generation Methods
for Slope Stability Analysis. Engineering Optimization, Vol. 40, No. 2, 95-115

Csuti, B.; Polasky, S.; Williams, P. H.; Pressey, R. L.; Camm, J. D.; Kershaw, M.; Kiester, A.
R.; Downs, B.; Hamilton, R.; Huso, M. & Sahr, K. (1997). A Comparison of Reserve
Selection Algorithms Using Data on Terrestrial Vertebrates in Oregon," Biological
Conservation, Vol. 80, 83-97

Duggal, A. & Ryu, S. (2005). The Dynamics of Deepwater Offloading Buoys, In: Fluid
Structure Interactions and Moving Boundary Problems, WIT Press, pp. 269-278

Erdal, F. (2007). Optimum Design of Grillage Systems using Harmony Search Algorithm, MSc
Thesis, Engineering Sciences Department, Middle East Technical University,
Ankara, Turkey

Fylling, I. (1997). Optimization of Deepwater Mooring Systems, Proceedings of the Offshore
Mediterranean Conference, March 19-21, Ravenna, Italy

Fylling, I. & Kleiven, G. (2000). Integrated Optimized Design of Riser and Mooring System
for Floating Production Vessels, Proceedings of OMAE 2000 Conference, February 14-
16, New Orleans, USA.

Geem, Z. W. (2006a). Improved Harmony Search from Ensemble of Music Players. Lecture
Notes in Artificial Intelligence, Vol. 4251, 86-93

Geem, Z. W. (2006b). Optimal Cost Design of Water Distribution Networks using Harmony
Search. Engineering Optimization, Vol. 38, No. 3, 259-280

Geem, Z. W. (2007a). Novel Derivative of Harmony Search Algorithm for Discrete Design
Variables. Applied Mathematics and Computation, doi:10.1016/j.amc.2007.09.049

Geem, Z. W. (2007b). Harmony Search Algorithm for Solving Sudoku. Lecture Notes in
Artificial Intelligence, Vol. 4692, 371-378

Recent Advances in Harmony Search

141

Geem, Z. W. (2007c). Optimal Scheduling of Multiple Dam System Using Harmony Search
Algorithm. Lecture Notes in Computer Science, Vol. 4507, 316-323

Geem, Z. W. & Choi, J. Y. (2007). Music Composition Using Harmony Search Algorithm.
Lecture Notes in Computer Science, Vol. 4448, 593-600

Geem, Z. W.; Kim, J. H. & Loganathan, G. V. (2001). A New Heuristic Optimization
Algorithm: Harmony Search. Simulation, Vol. 76, No. 2, 60-68

Geem, Z. W. & Williams, J. C. (2008). Ecological Optimization Using Harmony Search,
Proceedings of American Conference on Applied Mathematics (MATH ’08), Harvard
University, March 24-26, Cambridge, MA, USA

Guo, T.; Henwood, M.I. & Ooijen, M. van (1996). An Algorithm for Combined Heat and
Power Economic Dispatch, IEEE Transactions on Power System, Vol. 11, No. 4, 1778–
1784

Lee, K. S. & Geem, Z. W. (2004). A New Structural Optimization Method Based on the
Harmony Search Algorithm. Computers & Structures, Vol. 82, No. 9-10, 781-798

Lee, K. S. & Geem, Z. W. (2005). A New Meta-Heuristic Algorithm for Continuous
Engineering Optimization: Harmony Search Theory and Practice. Computer Methods
in Applied Mechanics and Engineering, Vol. 194, No. 36-38, 3902-3933

Mahdavi, M. ; Fesanghary, M. & Damangir, E. (2007). An Improved Harmony Search
Algorithm for Solving Optimization Problems. Applied Mathematics and
Computation, Vol. 188, No. 2, 1567-1579

Morgenstern, N. R. & Price, V. E. (1965). The Analysis of the Stability of General Slip
Surfaces, Geotechnique, Vol. 15, 79-93

Omran, M. G. H. & Mahdavi, M. (2007). Global-Best Harmony Search. Applied Mathematics
and Computation, doi:10.1016/j.amc.2007.09.004

ReVelle, C. S.; Williams, J. C. & Boland, J. J. (2002), Counterpart Models in Facility Location
Science and Reserve Selection Science," Environmental Modelling and Assessment,
Vol. 7, 71-80

Ryu, S. ; Duggal, A. S. ; Heyl, C. N. & Geem, Z. W. (2007). Mooring Cost Optimization via
Harmony Search, Proceedings of the 26th ASME International Conference on Offshore
Mechanics and Arctic Engineering (OMAE 2007), June 2007, San Diego, CA, USA

Ryu, S.; Duggal, A. S.; Heyl, C. N. & Liu, Y. (2006). Prediction of Deepwater Oil Offloading
Buoy Response and Experimental Validation, International Journal of Offshore and
Polar Engineering, Vol. 16, No. 4, 290-296

Saka, M. P. (2007). Optimum Geometry Design of Geodesic Domes Using Harmony Search
Algorithm. Advances in Structural Engineering, Vol. 10, No. 6, 595-606

Song, Y. H.; Chou, C. S. & Stonham, T. J. (1999). Combined Heat and Power Economic
Dispatch by Improved Ant Colony Search Algorithm, Electric Power Systems
Research, Vol. 52, 115–121

Song, Y. H. & Xuan, Q. Y. (1998). Combined Heat and Power Economic Dispatch using
Genetic Algorithm Based Penalty Function Method, Electric Machines and Power
Systems, Vol. 26, 363–372

Su, C. T. & Chiang, C. L. (2004). An Incorporated Algorithm for Combined Heat and Power
Economic Dispatch, Electric Power Systems Research, Vol. 69, 187–195

Tsai, F. T. –C. ; Sun, N. Z. & Yeh, W. W. G. (2003). A Combinatorial Optimization Scheme for
Parameter Structure Identification in Ground-Water Modeling. Groundwater, Vol.
41, No. 2, 156-169

 Advances in Evolutionary Algorithms

142

Vasebi, A. ; Fesanghary, M. & Bathaeea, S. M. T. (2007). Combined Heat and Power
Economic Dispatch by Harmony Search Algorithm. International Journal of Electrical
Power & Energy Systems, Vol. 29, No. 10, 713-719

Zolfaghari, A. R.; Heath, A. C. & McCombie, P. F. (2005). Simple Genetic Algorithm Search
for Critical Non-Circular Failure Surface in Slope Stability Analysis. Computers and
Geotechnics, Vol. 32, 139-152

8

A Hybrid Evolutionary Algorithm and its
Application to Parameter Identification of

Rolling Elements Bearings
Eric Yonghan Kim1, Bo-Suk Yang2 and Andy Chit Chow Tan1

1 Queensland University of Technology, 2 Pukyong National University
1 Australia, 2 South Korea

1. Introduction
Genetic algorithms (GAs) are powerful stochastic search techniques and are the most widely
known types of evolutionary algorithms (EAs). This method performs a search by evolving
a population of candidate solutions through the use of non-deterministic operators and by
improving incrementally the individuals forming the population by mechanisms inspired
from those of genetics (e.g. crossover and mutation). They are known to offer significant
advantages over traditional methods by using simultaneously several search principles and
heuristics, of which the most important ones are: population-wide search, continuous
balance between exploitation (convergence) and exploration (maintained diversity) and the
principle of building-block combination. However, GA can suffer from excessively slow
convergence before providing an accurate solution. This is because of its fundamental
requirement of using minimal prior knowledge without exploiting local information. Since
the introduction of global search algorithms in engineering applications, many modified
versions of GA have been reported to reduce the searching time and to raise the global
search capability. Many researchers have proposed improved versions of GA which GA
operator works adaptively (Wu et al., 1999; He et al., 2001; Fung et al., 2002). A local search
or meta-heuristic algorithm has been incorporated into GA to improve the algorithm
(Renders & Flasse, 1996; Berger et al., 1999; Lee et al., 2001; Hsiao et al., 2001; Hagenman et
al., 2003; Jiang et al., 2003). The combined GA-SA algorithm has been introduced to improve
the efficiency of the global search (Roach & Nagi, 1996; Yu et al., 2000; Ong et al., 2002; Liu et
al., 2002; Ponnambalam et al., 2003).
In the first half of this chapter, a new hybrid evolutionary algorithm known as clustering-
based hybrid evolutionary algorithm (CHEA) is introduced (Kim et al., 2006). This
algorithm utilizes the GA’s grouping property which involves gathering a number of
individuals around the global candidate according to the generation. Clustering of
individuals using artificial neural network (ANN) is incorporated into the GA to evaluate
the stage of maturity of genetic evolution and to deal with statistical data of each cluster.
After clustering, a local search is carried out for each cluster to accelerate the convergence
process and to judge the convexity of each cluster. Finally, an efficient random search is
adapted for searching the potential global candidate which may be missed in GA and local
search. The efficiency of the proposed algorithm is then verified by applying it to three well-

 Advances in Evolutionary Algorithms

142

Vasebi, A. ; Fesanghary, M. & Bathaeea, S. M. T. (2007). Combined Heat and Power
Economic Dispatch by Harmony Search Algorithm. International Journal of Electrical
Power & Energy Systems, Vol. 29, No. 10, 713-719

Zolfaghari, A. R.; Heath, A. C. & McCombie, P. F. (2005). Simple Genetic Algorithm Search
for Critical Non-Circular Failure Surface in Slope Stability Analysis. Computers and
Geotechnics, Vol. 32, 139-152

8

A Hybrid Evolutionary Algorithm and its
Application to Parameter Identification of

Rolling Elements Bearings
Eric Yonghan Kim1, Bo-Suk Yang2 and Andy Chit Chow Tan1

1 Queensland University of Technology, 2 Pukyong National University
1 Australia, 2 South Korea

1. Introduction
Genetic algorithms (GAs) are powerful stochastic search techniques and are the most widely
known types of evolutionary algorithms (EAs). This method performs a search by evolving
a population of candidate solutions through the use of non-deterministic operators and by
improving incrementally the individuals forming the population by mechanisms inspired
from those of genetics (e.g. crossover and mutation). They are known to offer significant
advantages over traditional methods by using simultaneously several search principles and
heuristics, of which the most important ones are: population-wide search, continuous
balance between exploitation (convergence) and exploration (maintained diversity) and the
principle of building-block combination. However, GA can suffer from excessively slow
convergence before providing an accurate solution. This is because of its fundamental
requirement of using minimal prior knowledge without exploiting local information. Since
the introduction of global search algorithms in engineering applications, many modified
versions of GA have been reported to reduce the searching time and to raise the global
search capability. Many researchers have proposed improved versions of GA which GA
operator works adaptively (Wu et al., 1999; He et al., 2001; Fung et al., 2002). A local search
or meta-heuristic algorithm has been incorporated into GA to improve the algorithm
(Renders & Flasse, 1996; Berger et al., 1999; Lee et al., 2001; Hsiao et al., 2001; Hagenman et
al., 2003; Jiang et al., 2003). The combined GA-SA algorithm has been introduced to improve
the efficiency of the global search (Roach & Nagi, 1996; Yu et al., 2000; Ong et al., 2002; Liu et
al., 2002; Ponnambalam et al., 2003).
In the first half of this chapter, a new hybrid evolutionary algorithm known as clustering-
based hybrid evolutionary algorithm (CHEA) is introduced (Kim et al., 2006). This
algorithm utilizes the GA’s grouping property which involves gathering a number of
individuals around the global candidate according to the generation. Clustering of
individuals using artificial neural network (ANN) is incorporated into the GA to evaluate
the stage of maturity of genetic evolution and to deal with statistical data of each cluster.
After clustering, a local search is carried out for each cluster to accelerate the convergence
process and to judge the convexity of each cluster. Finally, an efficient random search is
adapted for searching the potential global candidate which may be missed in GA and local
search. The efficiency of the proposed algorithm is then verified by applying it to three well-

 Advances in Evolutionary Algorithms

144

known benchmark functions namely banana function, multi-modal function and Rastrigin
function.
The dynamic behavior of a rotating shaft is significantly influenced by the stiffness and
damping characteristics of the bearings. The precise values of stiffness and damping
coefficients are difficult to predict. In the past decade, many works have dealt with
identification of bearing coefficients using impulse or synchronous/non-synchronous
excitation techniques (Burrows & Stanway, 1977; Kraus et al., 1987), and using mathematical
formulations using an out-of-unbalance response (Lee & Hong, 1988; Chen & Lee, 1995,
1997). Other researches used the least square method as an optimizer to minimize the error
between the measured unbalance response and the estimated one after they have
formulated the minimization problem (Edwards et al., 2000; Reddy et al., 2002 and Tiwari et
al., 2002). Least square method with sensitivity-based approach is a very effective algorithm
that can be used for parameter identification of machinery characteristics. However, the
application of least square optimizer cannot guarantee a global minimum, which means the
identified parameters may not be the optimum ones for the real rotor-bearing systems
which are often influenced by noises or non-linear effects.
Recently, global optimization schemes such as GA and simulated annealing (SA) (Kirpatrick
et al., 1983) have been used in the area of parameter identification. These schemes do not
involve gradient information and mathematical formulation but require only forward
analysis procedure. Unfortunately identification approach based on global optimization
algorithms is a highly time consuming task because it is based on the iterative strategy
which updates unknown parameters systematically using an analytical output. Therefore, a
fast and more efficient search algorithm is required for parameter identification in line with
the rapid progress of computer technology.
In the latter half of this chapter, we introduce a method of using a hybrid evolutionary
algorithm for parameter identification of ball bearings (Kim et al., 2007). The identification
method utilises the hybrid evolutionary algorithm. The capability of the technique is
verified using a numerical example and a series of experimentation on a tests. The results
reveal that the proposed method can identify not only unknown bearing parameters but
also unbalance information of disks. In contrast to other traditional identification
techniques, the method can be applied with simple formulation of an optimisation problem
using the existing dynamic analysis procedure without any complex mathematical
approach.

2. Clustering-based hybrid evolutionary algorithm (CHEA)
The CHEA is a hybrid GA which is combined with neural-network, local search and
random search. The flowchart of CHEA process is shown in Fig. 1. The first task is GA-
clustering, in which GA is combined with the clustering process by using neural network. In
this task, all individuals after each generation of GA are classified into several clusters until
all individuals are well classified. After GA-clustering, the local search (LS) is carried out for
each cluster with their best individuals. If all final points of the local search converged close
to one point, this point implies a global candidate. This means that, graphically, the
objective function is a kind of convex, which has only one global/local minimum in the
search space. If all final points do not converged to one point, the objective function is
considered to be a multi-modal function, which has many local minima. In this case,

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

145

additional local searches are carried out which starts at several random points within each
group to determine whether each cluster has only one local minimum or not. Similarly,
considering one cluster, if the final points by the local search are nearly the same point, this
cluster has one local minimum, which implies the objective function is a convex for the
region of this cluster. Otherwise the clusters have many local minima in their regions. In this
case, GA is run again with reduced bounds as those of each cluster. The classification and
the local search procedure are executed until each cluster has only one local minimum.
Finally, an efficient random search is adopted for extra-searching to find the potential global
candidate which may be missed in GA and local search.
Adaptive resonance theory-Kohonen neural network (ART-KNN) developed by (Yang et al.,
2004) is incorporated for clustering of individuals after each generation in GA. Sequential
quadratic programming (SQP) is adopted for the task of local search in this algorithm.

Fig. 1. Flowchart of CHEA

2.1 GA-clustering task
GA improves the genes of individuals based on evolutionary operation. Geometrically, the
evolution of GA is that increasing individuals are gathered together around the global or
local minimum with respect to the increase of generation as shown in Fig. 2. Generally GA is
not efficient for improving the precision of best individuals to global minimum after
gathering around the global minimum. However, the ability to gather individuals to a
global or local minimum in the first several generations is excellent. Therefore, the proposed
hybrid algorithm intends to use the merit of GA and to prevent inefficient calculations after
the individuals have gathered around the global or local minimum.
If the objective function is a multi-modal function which has more than two local
minimums, clustering or classification of individuals are necessary to divide them into
several clusters as shown in Fig. 2(b) and requires a stop criterion for GA.. The clustering
evaluation function (CEF) is introduced to evaluate the stage of maturity of individuals in
each generation. CEF is defined by eq (1) using statistical data of each classified cluster:

 Advances in Evolutionary Algorithms

144

known benchmark functions namely banana function, multi-modal function and Rastrigin
function.
The dynamic behavior of a rotating shaft is significantly influenced by the stiffness and
damping characteristics of the bearings. The precise values of stiffness and damping
coefficients are difficult to predict. In the past decade, many works have dealt with
identification of bearing coefficients using impulse or synchronous/non-synchronous
excitation techniques (Burrows & Stanway, 1977; Kraus et al., 1987), and using mathematical
formulations using an out-of-unbalance response (Lee & Hong, 1988; Chen & Lee, 1995,
1997). Other researches used the least square method as an optimizer to minimize the error
between the measured unbalance response and the estimated one after they have
formulated the minimization problem (Edwards et al., 2000; Reddy et al., 2002 and Tiwari et
al., 2002). Least square method with sensitivity-based approach is a very effective algorithm
that can be used for parameter identification of machinery characteristics. However, the
application of least square optimizer cannot guarantee a global minimum, which means the
identified parameters may not be the optimum ones for the real rotor-bearing systems
which are often influenced by noises or non-linear effects.
Recently, global optimization schemes such as GA and simulated annealing (SA) (Kirpatrick
et al., 1983) have been used in the area of parameter identification. These schemes do not
involve gradient information and mathematical formulation but require only forward
analysis procedure. Unfortunately identification approach based on global optimization
algorithms is a highly time consuming task because it is based on the iterative strategy
which updates unknown parameters systematically using an analytical output. Therefore, a
fast and more efficient search algorithm is required for parameter identification in line with
the rapid progress of computer technology.
In the latter half of this chapter, we introduce a method of using a hybrid evolutionary
algorithm for parameter identification of ball bearings (Kim et al., 2007). The identification
method utilises the hybrid evolutionary algorithm. The capability of the technique is
verified using a numerical example and a series of experimentation on a tests. The results
reveal that the proposed method can identify not only unknown bearing parameters but
also unbalance information of disks. In contrast to other traditional identification
techniques, the method can be applied with simple formulation of an optimisation problem
using the existing dynamic analysis procedure without any complex mathematical
approach.

2. Clustering-based hybrid evolutionary algorithm (CHEA)
The CHEA is a hybrid GA which is combined with neural-network, local search and
random search. The flowchart of CHEA process is shown in Fig. 1. The first task is GA-
clustering, in which GA is combined with the clustering process by using neural network. In
this task, all individuals after each generation of GA are classified into several clusters until
all individuals are well classified. After GA-clustering, the local search (LS) is carried out for
each cluster with their best individuals. If all final points of the local search converged close
to one point, this point implies a global candidate. This means that, graphically, the
objective function is a kind of convex, which has only one global/local minimum in the
search space. If all final points do not converged to one point, the objective function is
considered to be a multi-modal function, which has many local minima. In this case,

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

145

additional local searches are carried out which starts at several random points within each
group to determine whether each cluster has only one local minimum or not. Similarly,
considering one cluster, if the final points by the local search are nearly the same point, this
cluster has one local minimum, which implies the objective function is a convex for the
region of this cluster. Otherwise the clusters have many local minima in their regions. In this
case, GA is run again with reduced bounds as those of each cluster. The classification and
the local search procedure are executed until each cluster has only one local minimum.
Finally, an efficient random search is adopted for extra-searching to find the potential global
candidate which may be missed in GA and local search.
Adaptive resonance theory-Kohonen neural network (ART-KNN) developed by (Yang et al.,
2004) is incorporated for clustering of individuals after each generation in GA. Sequential
quadratic programming (SQP) is adopted for the task of local search in this algorithm.

Fig. 1. Flowchart of CHEA

2.1 GA-clustering task
GA improves the genes of individuals based on evolutionary operation. Geometrically, the
evolution of GA is that increasing individuals are gathered together around the global or
local minimum with respect to the increase of generation as shown in Fig. 2. Generally GA is
not efficient for improving the precision of best individuals to global minimum after
gathering around the global minimum. However, the ability to gather individuals to a
global or local minimum in the first several generations is excellent. Therefore, the proposed
hybrid algorithm intends to use the merit of GA and to prevent inefficient calculations after
the individuals have gathered around the global or local minimum.
If the objective function is a multi-modal function which has more than two local
minimums, clustering or classification of individuals are necessary to divide them into
several clusters as shown in Fig. 2(b) and requires a stop criterion for GA.. The clustering
evaluation function (CEF) is introduced to evaluate the stage of maturity of individuals in
each generation. CEF is defined by eq (1) using statistical data of each classified cluster:

 Advances in Evolutionary Algorithms

146

 1

M
j j

j j j

CEF
M

γ
α β=

=∑
δ

 (1)

2

0
1

jN

j ij j
i=

= −∑δ v v
,

gw

j
j

j

N
N

α
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠∑ , ()0 0 min

mw

j j allβ = −v v
, ()1 rw

jγ ρ= −
where, vij denotes the ith vector for the jth cluster and v0j is the center of the jth cluster. wg,
wm, wr are weight factors for cluster, distance of each group and similarity by ART-KNN,
respectively. denotes Euclidian distance between two vectors. M denotes the number of
cluster and Nj is the number of individual for the jth cluster.
In this study, well matured is defined when the average distance from the mid point of each
cluster approaches a small value and the average distance among mid points approaches a
large value. CEF value for stop criterion is very important because it is directly related to the
efficiency of the search algorithm. GA stopped with a too high CEF implies that the GA
evolution is not matured yet and individuals may be classified into too many clusters. On
the contrast, with a too small CEF, most individuals will migrate to only one cluster which
contains the best individual. This may lead to lose of useful information about local
minimum. Furthermore, if the number of individuals is not sufficient to find all the local
minima, most individuals will move to a local minimum. In our study with trying many
kind of test functions, the best stop criterion is selected as 0.2.
As shown in the flowchart of GA-clustering task in Fig. 1, ART-KNN algorithm was adapted
as the traditional GA procedure to classify individuals into several clusters after the
evaluation of fitness. After clustering, it is judged whether all individuals are well matured
by using the CEF. If the CEF is smaller than the stop criterion, subroutine GA-clustering is
terminated and returns to the final individuals and provides cluster information to the main
program. Otherwise, the general procedure of GA, such as selection, crossover and
mutation, is preceded again.

Individuals

Global minima

Individuals

Global minima ClustersClusters

(a) 2nd generation (b) 4th generation

Fig. 2. Distribution of individuals according to generations

2.2 ART-KNN algorithm
The adaptive resonance theory (ART) network (Carpenter & Grossberg, 1988) is a neural
network that self-organizes stable recognition codes in real time in response to arbitrary

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

147

sequences of input patterns. It is also a vector classifier based on mathematical model for the
description of fundamental behavioral functions of the biological brain such as the learning,
parallel and distributed information storage, short and long-term memory and pattern
recognition. The Kohonen neural network (KNN) (Kohonen, 1995) is also called self-
organizing feature map network (SOFM). It defines a feed forward two-layer neural
network that implements a characteristic non-linear projection from the high dimensional
space of sensory or other input signals onto a low-dimensional array of neurons.
Recently, Yang et al. proposed a new algorithm using the adaptive resonance theory-
Kohonen neural network (ART-KNN) (Yang et al., 2004), which does not affect the initial
training and can adapt with additional training data. The structure of ART-KNN is shown
in Fig. 3. It is similar to ART’s but excluding the adaptive filter. ART-KNN is formed by two
major subsystems: the attentional subsystem and the orienting subsystem. There are two
interconnected layers, discernment layer and comparison layer, which are fully connected
with both bottom-up and top-down processes and comprise of the attentional subsystem.
The application of a single input vector leads to several patterns of neural activity in both
layers. The activity in discernment nodes reinforces the activity in comparison nodes due to
top-down connections. The interchange of bottom-up and top-down information leads to a
resonance in neural activity. As a result, critical features comparison is reinforced with those
having the greatest activity. The orienting subsystem is responsible for generating a reset
signal to discernment when the bottom-up input pattern and top-down template pattern do
not match during comparison process according to a similarity law. In other words, once it
has detected that the input pattern is novel, the orienting subsystem must prevent the
previously organized category neurons in discernment from learning this pattern (via a
reset signal). Otherwise, the category will become increasingly non-specific. When a
mismatch is detected, the network adapts its structure by immediately storing the novelty
with additional weights. The similarity criterion is set by the value of the similarity
parameter. A high value of the similarity parameter means than only a slight mismatch will
be tolerated before a reset signal is emitted. On the other hand, a small value means that
large mismatches will be tolerated. After the resonance check, if a pattern match is detected
according to the similarity parameter, the network changes the weights of the winning node.

Fig. 3. Structure of ART-KNN

 Advances in Evolutionary Algorithms

146

 1

M
j j

j j j

CEF
M

γ
α β=

=∑
δ

 (1)

2

0
1

jN

j ij j
i=

= −∑δ v v
,

gw

j
j

j

N
N

α
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠∑ , ()0 0 min

mw

j j allβ = −v v
, ()1 rw

jγ ρ= −
where, vij denotes the ith vector for the jth cluster and v0j is the center of the jth cluster. wg,
wm, wr are weight factors for cluster, distance of each group and similarity by ART-KNN,
respectively. denotes Euclidian distance between two vectors. M denotes the number of
cluster and Nj is the number of individual for the jth cluster.
In this study, well matured is defined when the average distance from the mid point of each
cluster approaches a small value and the average distance among mid points approaches a
large value. CEF value for stop criterion is very important because it is directly related to the
efficiency of the search algorithm. GA stopped with a too high CEF implies that the GA
evolution is not matured yet and individuals may be classified into too many clusters. On
the contrast, with a too small CEF, most individuals will migrate to only one cluster which
contains the best individual. This may lead to lose of useful information about local
minimum. Furthermore, if the number of individuals is not sufficient to find all the local
minima, most individuals will move to a local minimum. In our study with trying many
kind of test functions, the best stop criterion is selected as 0.2.
As shown in the flowchart of GA-clustering task in Fig. 1, ART-KNN algorithm was adapted
as the traditional GA procedure to classify individuals into several clusters after the
evaluation of fitness. After clustering, it is judged whether all individuals are well matured
by using the CEF. If the CEF is smaller than the stop criterion, subroutine GA-clustering is
terminated and returns to the final individuals and provides cluster information to the main
program. Otherwise, the general procedure of GA, such as selection, crossover and
mutation, is preceded again.

Individuals

Global minima

Individuals

Global minima ClustersClusters

(a) 2nd generation (b) 4th generation

Fig. 2. Distribution of individuals according to generations

2.2 ART-KNN algorithm
The adaptive resonance theory (ART) network (Carpenter & Grossberg, 1988) is a neural
network that self-organizes stable recognition codes in real time in response to arbitrary

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

147

sequences of input patterns. It is also a vector classifier based on mathematical model for the
description of fundamental behavioral functions of the biological brain such as the learning,
parallel and distributed information storage, short and long-term memory and pattern
recognition. The Kohonen neural network (KNN) (Kohonen, 1995) is also called self-
organizing feature map network (SOFM). It defines a feed forward two-layer neural
network that implements a characteristic non-linear projection from the high dimensional
space of sensory or other input signals onto a low-dimensional array of neurons.
Recently, Yang et al. proposed a new algorithm using the adaptive resonance theory-
Kohonen neural network (ART-KNN) (Yang et al., 2004), which does not affect the initial
training and can adapt with additional training data. The structure of ART-KNN is shown
in Fig. 3. It is similar to ART’s but excluding the adaptive filter. ART-KNN is formed by two
major subsystems: the attentional subsystem and the orienting subsystem. There are two
interconnected layers, discernment layer and comparison layer, which are fully connected
with both bottom-up and top-down processes and comprise of the attentional subsystem.
The application of a single input vector leads to several patterns of neural activity in both
layers. The activity in discernment nodes reinforces the activity in comparison nodes due to
top-down connections. The interchange of bottom-up and top-down information leads to a
resonance in neural activity. As a result, critical features comparison is reinforced with those
having the greatest activity. The orienting subsystem is responsible for generating a reset
signal to discernment when the bottom-up input pattern and top-down template pattern do
not match during comparison process according to a similarity law. In other words, once it
has detected that the input pattern is novel, the orienting subsystem must prevent the
previously organized category neurons in discernment from learning this pattern (via a
reset signal). Otherwise, the category will become increasingly non-specific. When a
mismatch is detected, the network adapts its structure by immediately storing the novelty
with additional weights. The similarity criterion is set by the value of the similarity
parameter. A high value of the similarity parameter means than only a slight mismatch will
be tolerated before a reset signal is emitted. On the other hand, a small value means that
large mismatches will be tolerated. After the resonance check, if a pattern match is detected
according to the similarity parameter, the network changes the weights of the winning node.

Fig. 3. Structure of ART-KNN

 Advances in Evolutionary Algorithms

148

2.3 Clustering by ART-KNN
In the ART-KNN, the determination of a limiting value of similarity (ρ) is important in the
optimization problem because the classification result is dependent on ρ. CEF detailed in the
previous section is used to evaluate the superiority of the classified results based on average
distance from mid point of each cluster and the variance of each cluster.
ART-KNN is modified and incorporated into GA procedure for the clustering process
according to following sequence:

Step 1: Normalize every individuals of GA from 0 ~ 1.0.
Step 2: Change similarity ρ from 0.4~1.0.

 • Classify into clusters using ART-KNN for each ρ.
 • Calculate the CEF for each ρ.

Step 3: Choose clustering results which correspond to minimum CEF.

2.4 Sequential quadratic programming (SQP)
SQP method represents the state of the art in nonlinear programming methods.
Schittkowski (Schittkowski, 1985) has implemented and tested a version that outperforms
every other tested methods in terms of efficiency, accuracy and percentage of successful
solutions over a large number of test problems. Based on the work of Powell (Powell, 1978),
the method allows it to closely mimic Newton's method for constrained optimization similar
to an unconstrained optimization. At each major iteration, an approximation is made of the
Hessian of the Lagrangian function using a quasi-Newton updating method. This is then
used to generate a QP sub-problem whose solution is used to form a search direction for a
line search procedure. An overview of SQP can be seen in Fletcher (Fletcher, 1980). The
general method is not listed here, but MATLAB program provides a full implementation
together with the SQP algorithm.

2.5 Efficient random search
The last procedure of CHEA is a complementary random search to find a global minimum
candidate, which may be missed in GA and LS procedure. Considering the valley of global
minimum is highly narrow and deep as shown in Fig. 4, general stochastic global search
algorithms, such as GA and SA, often fail to find the global minimum. This is because not
only we use limited number of trials to find the global minimum but heuristics reduce the
searching area toward the global candidate which has a relatively wide valley. The mutation
operator in GA gives a part of this random search by changing the genes randomly, but it
doesn't use previous search history at all. Therefore, this paper proposes an efficient random
search method, which uses all previous search points. It works by generating a new search
point as far as possible from all previous search points. In the stochastic viewpoint, this
random search increases the probability of finding the global minimum.
The steps of the proposed efficient random search are as follows:

Step 1: Generate 5 search points randomly.
Step 2: Calculate Euclidean distance of the nearest point among previous search points.
Step 3: Select one point which has the largest Euclidean distance.
Step 4: Calculate fitness from the objective function.

 If the calculated fitness is smaller than the best local minimums from GA-LS,
Step 5: Apply local search using the SQP.

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

149

Step 6: Else, go to step 1, repeat the above procedure until the maximum number of
 iterations is reached.

Fig. 4. An objective function which has narrow and deep global minimum

3. Application to test functions
The new optimization algorithm was tested by using several benchmark functions to
evaluate its capability and to compare it with other algorithms. Many types of test functions
have been used to this subject, however in this study, the three well-known test functions
were used to evaluate the algorithm.

• Test function 1: Banana function which has one global minimum and converges
 slowly to the global minimum.
• Test function 2: Multi-modal function which has several global minima and several
 local minima
• Test function 3: Rastrigin function which contains one global minimum and many
 local minima

2 2

1 1 2 1 2 1 1 2(,) 100() (1) , (2.0 , 2.0)f x x x x x x x= − + − − ≤ ≤ (2)

2 1 2 1 1 2 2

1 2

(,) (cos 2 cos 2.5 2.1) (2.1 cos3 cos3.5)
(1.0 , 1.0)

f x x x x x x
x x

π π π π= + − × − −
− ≤ ≤ (3)

2
2

3 1 2
1

(,) 2 10 { 10cos(2)}i
i

f x x x iπ
=

= × + −∑
 1 2(5.0 , 5.0)x x− ≤ ≤ (4)

Test function 1, known as a Banana function, has the shape shown in Fig. 5 (a). In general,
the convergence speed of an evolution program for this function is very slow and the
accuracy of the searched solution is low as well. The objective of this example is to find the
variable x, which minimizes the objective function. This function has only one optimum
solution (x1 = 1.0, x2 = 1.0) at f(x) = 0. It is difficult to find the optimum solution because of a
valley phenomenon. In general, an objective function which has several global minima

Local minimum

Global minimum

f(x)

 Advances in Evolutionary Algorithms

148

2.3 Clustering by ART-KNN
In the ART-KNN, the determination of a limiting value of similarity (ρ) is important in the
optimization problem because the classification result is dependent on ρ. CEF detailed in the
previous section is used to evaluate the superiority of the classified results based on average
distance from mid point of each cluster and the variance of each cluster.
ART-KNN is modified and incorporated into GA procedure for the clustering process
according to following sequence:

Step 1: Normalize every individuals of GA from 0 ~ 1.0.
Step 2: Change similarity ρ from 0.4~1.0.

 • Classify into clusters using ART-KNN for each ρ.
 • Calculate the CEF for each ρ.

Step 3: Choose clustering results which correspond to minimum CEF.

2.4 Sequential quadratic programming (SQP)
SQP method represents the state of the art in nonlinear programming methods.
Schittkowski (Schittkowski, 1985) has implemented and tested a version that outperforms
every other tested methods in terms of efficiency, accuracy and percentage of successful
solutions over a large number of test problems. Based on the work of Powell (Powell, 1978),
the method allows it to closely mimic Newton's method for constrained optimization similar
to an unconstrained optimization. At each major iteration, an approximation is made of the
Hessian of the Lagrangian function using a quasi-Newton updating method. This is then
used to generate a QP sub-problem whose solution is used to form a search direction for a
line search procedure. An overview of SQP can be seen in Fletcher (Fletcher, 1980). The
general method is not listed here, but MATLAB program provides a full implementation
together with the SQP algorithm.

2.5 Efficient random search
The last procedure of CHEA is a complementary random search to find a global minimum
candidate, which may be missed in GA and LS procedure. Considering the valley of global
minimum is highly narrow and deep as shown in Fig. 4, general stochastic global search
algorithms, such as GA and SA, often fail to find the global minimum. This is because not
only we use limited number of trials to find the global minimum but heuristics reduce the
searching area toward the global candidate which has a relatively wide valley. The mutation
operator in GA gives a part of this random search by changing the genes randomly, but it
doesn't use previous search history at all. Therefore, this paper proposes an efficient random
search method, which uses all previous search points. It works by generating a new search
point as far as possible from all previous search points. In the stochastic viewpoint, this
random search increases the probability of finding the global minimum.
The steps of the proposed efficient random search are as follows:

Step 1: Generate 5 search points randomly.
Step 2: Calculate Euclidean distance of the nearest point among previous search points.
Step 3: Select one point which has the largest Euclidean distance.
Step 4: Calculate fitness from the objective function.

 If the calculated fitness is smaller than the best local minimums from GA-LS,
Step 5: Apply local search using the SQP.

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

149

Step 6: Else, go to step 1, repeat the above procedure until the maximum number of
 iterations is reached.

Fig. 4. An objective function which has narrow and deep global minimum

3. Application to test functions
The new optimization algorithm was tested by using several benchmark functions to
evaluate its capability and to compare it with other algorithms. Many types of test functions
have been used to this subject, however in this study, the three well-known test functions
were used to evaluate the algorithm.

• Test function 1: Banana function which has one global minimum and converges
 slowly to the global minimum.
• Test function 2: Multi-modal function which has several global minima and several
 local minima
• Test function 3: Rastrigin function which contains one global minimum and many
 local minima

2 2

1 1 2 1 2 1 1 2(,) 100() (1) , (2.0 , 2.0)f x x x x x x x= − + − − ≤ ≤ (2)

2 1 2 1 1 2 2

1 2

(,) (cos 2 cos 2.5 2.1) (2.1 cos3 cos3.5)
(1.0 , 1.0)

f x x x x x x
x x

π π π π= + − × − −
− ≤ ≤ (3)

2
2

3 1 2
1

(,) 2 10 { 10cos(2)}i
i

f x x x iπ
=

= × + −∑
 1 2(5.0 , 5.0)x x− ≤ ≤ (4)

Test function 1, known as a Banana function, has the shape shown in Fig. 5 (a). In general,
the convergence speed of an evolution program for this function is very slow and the
accuracy of the searched solution is low as well. The objective of this example is to find the
variable x, which minimizes the objective function. This function has only one optimum
solution (x1 = 1.0, x2 = 1.0) at f(x) = 0. It is difficult to find the optimum solution because of a
valley phenomenon. In general, an objective function which has several global minima

Local minimum

Global minimum

f(x)

 Advances in Evolutionary Algorithms

150

and/or local optimum points is called the multi-modal function as shown in Fig. 5 (b). The
objective of this test function is to maximize the objective function. This function has four
local minima of f(x)=14.333087 and four global minima of f(x)=16.09172. The Rastrigin
function defined in eq. (4) is often used to evaluate the global search capability because there
are many local minima around the global minimum as shown in Fig. 5 (c). It is very difficult
to find a global minimum within the limited function in this test function. The objective of
this test function is to minimize a function. This function has 220 local minima and one
global minimum f(x)=0 at (0,0).

(a) Banana function (b) Multi-modal function (c) Rastrigin function

Fig. 5. Benchmark test functions

The convergence speed of the optimization algorithm is evaluated by using test function 1.
The ability of searching several global minima simultaneously is evaluated by using test
function 2. The global search capability among many local minima is finally evaluated by
using test function 3. Table 1 shows the parameters of CHEA used in this paper.

Length of chromosome 12
Number of population 200
Crossover probability 40%

GA

Mutation probability 0.8exp(/ 2)Gi− , iG : ith generation
CEF 0.2
wg 0.9
wm 1.5

Clustering

wr 0.9
Random search Max iteration 400

 Table 1. Parameters for CHEA

To observe the searching procedure of CHEA, the gradual process of CHEA for Rastrigin
function is shown in Fig. 6. GA was terminated in one cluster after six generations as shown
in Fig. 6 (a). After GA-clustering process, local search was carried out with four randomly
selected individuals from each cluster. Since the results of the local search did not converge
to a point, CHEA considered this cluster to have many local minima as shown in Fig. 6 (b).
Therefore, GA-clustering task was repeated with reduced search bounds. After five
generations, all individuals were well clustered as shown in Fig. 6(c) where the GA was
terminated. After a local search for each cluster, CHEA produced a global minimum and
three local minima as shown in Fig. 6(d). No better global candidate was found during
random search.

f (
x 1

,x
2)

x1 x2

f (
x 1

,x
2)

x1 x2

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

151

 (a) Distribution of individuals after 4th generation of GA
 (b) Local search by SQP with individuals randomly selected

(c) Distribution of individuals after 5th generation of re-GA with reduced search area
(d) Final results by CHEA

Fig. 6. Optimization procedure by CHEA for test function 3

4. Comparison of performance of CHEA
Optimization results by CHEA are compared with EGA (Kim, 2003) and ASA (Ingber &
Rosen, 1992) which are known as the advanced version of GA and SA. Table 2 shows the
comparison for test function 1. The second column indicates the total number of function
call which also represents computation time. Third to fifth columns show the mean
optimum values of the design variables and the final value of the objective function,
respectively. The result using ASA did not converge well to an optimum value though it
spent more computation times than those of CHEA. EGA gave the exact optimum value but
took 3183 number of function calls as compared to CHEA which took 1120 functional calls.
The results for test function 2 are shown in Table 3. All algorithms showed the results
having similar resolution, but ASA produced only one global minimum as compared with
the others which found four global minima. EGA was slower than ASA but found all the
global minima. The table shows that CHEA found all global minima and with the smallest
number of function call.

-5 0 5
-5

0

5

2.6539e-012
0.99496

0.99496

0.99496

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

This group has several local minimum

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3
-3

2.5

-2

1.5

-1

0.5

0

0.5

1

1.5

2

 Advances in Evolutionary Algorithms

150

and/or local optimum points is called the multi-modal function as shown in Fig. 5 (b). The
objective of this test function is to maximize the objective function. This function has four
local minima of f(x)=14.333087 and four global minima of f(x)=16.09172. The Rastrigin
function defined in eq. (4) is often used to evaluate the global search capability because there
are many local minima around the global minimum as shown in Fig. 5 (c). It is very difficult
to find a global minimum within the limited function in this test function. The objective of
this test function is to minimize a function. This function has 220 local minima and one
global minimum f(x)=0 at (0,0).

(a) Banana function (b) Multi-modal function (c) Rastrigin function

Fig. 5. Benchmark test functions

The convergence speed of the optimization algorithm is evaluated by using test function 1.
The ability of searching several global minima simultaneously is evaluated by using test
function 2. The global search capability among many local minima is finally evaluated by
using test function 3. Table 1 shows the parameters of CHEA used in this paper.

Length of chromosome 12
Number of population 200
Crossover probability 40%

GA

Mutation probability 0.8exp(/ 2)Gi− , iG : ith generation
CEF 0.2
wg 0.9
wm 1.5

Clustering

wr 0.9
Random search Max iteration 400

 Table 1. Parameters for CHEA

To observe the searching procedure of CHEA, the gradual process of CHEA for Rastrigin
function is shown in Fig. 6. GA was terminated in one cluster after six generations as shown
in Fig. 6 (a). After GA-clustering process, local search was carried out with four randomly
selected individuals from each cluster. Since the results of the local search did not converge
to a point, CHEA considered this cluster to have many local minima as shown in Fig. 6 (b).
Therefore, GA-clustering task was repeated with reduced search bounds. After five
generations, all individuals were well clustered as shown in Fig. 6(c) where the GA was
terminated. After a local search for each cluster, CHEA produced a global minimum and
three local minima as shown in Fig. 6(d). No better global candidate was found during
random search.

f (
x 1

,x
2)

x1 x2

f (
x 1

,x
2)

x1 x2

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

151

 (a) Distribution of individuals after 4th generation of GA
 (b) Local search by SQP with individuals randomly selected

(c) Distribution of individuals after 5th generation of re-GA with reduced search area
(d) Final results by CHEA

Fig. 6. Optimization procedure by CHEA for test function 3

4. Comparison of performance of CHEA
Optimization results by CHEA are compared with EGA (Kim, 2003) and ASA (Ingber &
Rosen, 1992) which are known as the advanced version of GA and SA. Table 2 shows the
comparison for test function 1. The second column indicates the total number of function
call which also represents computation time. Third to fifth columns show the mean
optimum values of the design variables and the final value of the objective function,
respectively. The result using ASA did not converge well to an optimum value though it
spent more computation times than those of CHEA. EGA gave the exact optimum value but
took 3183 number of function calls as compared to CHEA which took 1120 functional calls.
The results for test function 2 are shown in Table 3. All algorithms showed the results
having similar resolution, but ASA produced only one global minimum as compared with
the others which found four global minima. EGA was slower than ASA but found all the
global minima. The table shows that CHEA found all global minima and with the smallest
number of function call.

-5 0 5
-5

0

5

2.6539e-012
0.99496

0.99496

0.99496

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

This group has several local minimum

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3
-3

2.5

-2

1.5

-1

0.5

0

0.5

1

1.5

2

 Advances in Evolutionary Algorithms

152

Finally, the test results for test function 3 are summarized in Table 4. All algorithms found
the local minima, but they often failed to find the global minimum. The last column shows
the percentage of success in finding the global minimum. EGA produced the worst results in
terms of computation time and success ratio. CHEA although is slower than ASA but the
success ratio to global minimum is more superior. Considering the convergence speed,
accuracy of results and global search capability, CHEA is found to be the most efficient
algorithm among the considered algorithms which are known to be efficient and fast.

 No. of function call x1 x2 f(x)

ASA 1414 0.6995 0.4878 0.0905
EGA 3183 0.9999 1.0000 6.06e-19
CHEA 1120 1.0000 1.0000 9.94e-13

Table 2. Comparison of the results for the test function 1

 No. of function call x1 x2 f(x)
ASA 1391 0.43881 −0.30585 16.09172
EGA 3014 −0.43880

−0.43880
−0.43880
 0.43880

−0.30585
−0.30585
−0.30585
 0.30585

16.09172
16.09172
16.09172
16.09172

CHEA 1131 −0.43880
−0.43880
−0.43881
 0.43881

−0.30585
−0.30585
−0.30585
 0.30585

16.09172
16.09172
16.09172
16.09172

Table 3. Comparison of the results for the test function 2

 No. of function call x1 x2 f(x) Success to
global (%)

ASA 1336 1.82e-5 −2.55e-6 −2.55e-7 83

EGA 3131 1.00e-20 1.00e-20 3.16e-13 85
CHEA 2100 −5.72e-9

 0.994
−0.994
 8.69e-7

−2.81e-7
 4.63e-8
 9.23e-9
 0.994

1.57e-11
0.994
0.994
0.994

99

Table 4. Comparison of the results for the test function 3

5. Unbalance response analysis of rotating shaft
In this study, the vibrations are calculated using general finite element procedures. Since the
finite element discretization procedure is well documented in many literatures (Nelson,
1980; Pilkey, 1994; Choi & Yang, 2000), the details are omitted here and only the equations of
motions are presented below.

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

153

5.1 Disk element
The rigid disk is modeled as a four degrees of freedom rigid body with the generalized
coordinates defined as two translations V, W of the mass center in the X and Y directions
and two rotations B and Γ of the plane of the disk about the X and Y axes. The rigid disk
needs to be located at a finite element station. If the spin speed Ω is assumed to be constant
then the coordinates qd are governed by the following equation.

()d d d d d d
T R Ω+ − =M M q G q F

 (5)

where ,d d
T RM M are the translational and rotational mass matrices respectively, Gd is the

gyroscopic matrix and Fd is the force vector acting on the disk.

5.2 Shaft element
The shaft element is considered to be initially straight and modeled as an eight degrees of
freedom element: two translations and two rotations at each station of the element. The
cross-section of the element is taken to be circular and uniform. Continuous shaft mass with
a constant density is taken as equivalent lumped mass. The inertia of each element is
divided into two parts and applied at both ends of an element.
The equation of motion, in fixed frame and for a shaft element rotating with a constant
speed Ω are given by,

()e e e e e e e e
T R Ω+ − + =M M q G q K q F

 (6)

Here qe is a (8×1) displacement vector, corresponding to the translational and rotational
displacements (V, W, B, Γ) at both ends of the element. e

TM ,
e
RM are the translational and

rotational mass matrices respectively, Ge is the gyroscopic matrix, Ke is the stiffness matrix
and Fe is the force vector acting on the shaft element.

5.3 Bearing elements
The nonlinear characteristics of the bearings can be linearized at the static equilibrium
position using the assumption of a small vibration. The dynamic characteristics of the
bearings are represented by eight stiffness and damping coefficients. The force acting on the
shaft can be expressed as

b b b b b+ =C q K q F (7)

where Cb and Kb are the damping and stiffness matrices of the bearing elements,
respectively.

5.4 Assembly and system equation
Once equations (5) - (7) are established for a typical element, these equations are repeatedly
used to generate other equations recursively for other elements. Then they are assembled to
find the global equation, which describes the behavior of the entire system. The assembled
damped system equation of motion in the fixed frame is of the form

 Advances in Evolutionary Algorithms

152

Finally, the test results for test function 3 are summarized in Table 4. All algorithms found
the local minima, but they often failed to find the global minimum. The last column shows
the percentage of success in finding the global minimum. EGA produced the worst results in
terms of computation time and success ratio. CHEA although is slower than ASA but the
success ratio to global minimum is more superior. Considering the convergence speed,
accuracy of results and global search capability, CHEA is found to be the most efficient
algorithm among the considered algorithms which are known to be efficient and fast.

 No. of function call x1 x2 f(x)

ASA 1414 0.6995 0.4878 0.0905
EGA 3183 0.9999 1.0000 6.06e-19
CHEA 1120 1.0000 1.0000 9.94e-13

Table 2. Comparison of the results for the test function 1

 No. of function call x1 x2 f(x)
ASA 1391 0.43881 −0.30585 16.09172
EGA 3014 −0.43880

−0.43880
−0.43880
 0.43880

−0.30585
−0.30585
−0.30585
 0.30585

16.09172
16.09172
16.09172
16.09172

CHEA 1131 −0.43880
−0.43880
−0.43881
 0.43881

−0.30585
−0.30585
−0.30585
 0.30585

16.09172
16.09172
16.09172
16.09172

Table 3. Comparison of the results for the test function 2

 No. of function call x1 x2 f(x) Success to
global (%)

ASA 1336 1.82e-5 −2.55e-6 −2.55e-7 83

EGA 3131 1.00e-20 1.00e-20 3.16e-13 85
CHEA 2100 −5.72e-9

 0.994
−0.994
 8.69e-7

−2.81e-7
 4.63e-8
 9.23e-9
 0.994

1.57e-11
0.994
0.994
0.994

99

Table 4. Comparison of the results for the test function 3

5. Unbalance response analysis of rotating shaft
In this study, the vibrations are calculated using general finite element procedures. Since the
finite element discretization procedure is well documented in many literatures (Nelson,
1980; Pilkey, 1994; Choi & Yang, 2000), the details are omitted here and only the equations of
motions are presented below.

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

153

5.1 Disk element
The rigid disk is modeled as a four degrees of freedom rigid body with the generalized
coordinates defined as two translations V, W of the mass center in the X and Y directions
and two rotations B and Γ of the plane of the disk about the X and Y axes. The rigid disk
needs to be located at a finite element station. If the spin speed Ω is assumed to be constant
then the coordinates qd are governed by the following equation.

()d d d d d d
T R Ω+ − =M M q G q F

 (5)

where ,d d
T RM M are the translational and rotational mass matrices respectively, Gd is the

gyroscopic matrix and Fd is the force vector acting on the disk.

5.2 Shaft element
The shaft element is considered to be initially straight and modeled as an eight degrees of
freedom element: two translations and two rotations at each station of the element. The
cross-section of the element is taken to be circular and uniform. Continuous shaft mass with
a constant density is taken as equivalent lumped mass. The inertia of each element is
divided into two parts and applied at both ends of an element.
The equation of motion, in fixed frame and for a shaft element rotating with a constant
speed Ω are given by,

()e e e e e e e e
T R Ω+ − + =M M q G q K q F

 (6)

Here qe is a (8×1) displacement vector, corresponding to the translational and rotational
displacements (V, W, B, Γ) at both ends of the element. e

TM ,
e
RM are the translational and

rotational mass matrices respectively, Ge is the gyroscopic matrix, Ke is the stiffness matrix
and Fe is the force vector acting on the shaft element.

5.3 Bearing elements
The nonlinear characteristics of the bearings can be linearized at the static equilibrium
position using the assumption of a small vibration. The dynamic characteristics of the
bearings are represented by eight stiffness and damping coefficients. The force acting on the
shaft can be expressed as

b b b b b+ =C q K q F (7)

where Cb and Kb are the damping and stiffness matrices of the bearing elements,
respectively.

5.4 Assembly and system equation
Once equations (5) - (7) are established for a typical element, these equations are repeatedly
used to generate other equations recursively for other elements. Then they are assembled to
find the global equation, which describes the behavior of the entire system. The assembled
damped system equation of motion in the fixed frame is of the form

 Advances in Evolutionary Algorithms

154

+ + =Mq Cq Kq F (8)

where, M = Md + Me, K = Ke + Kb, C = Cb − ΩGe − ΩGd. M, C and K are total mass matrix,
damping matrix and stiffness matrix, respectively. F is the external force vector acting on the
entire system.

5.5 Steady-state unbalance response
In fixed frame coordinates, the unbalance force in eqn. (8) is of the form

cos sinC St tΩ Ω= +F F F (9)

The steady state solution is given by,

cos sinC St tΩ Ω= +q q q (10)

Substituted eqns. (9) and (10) into (8) yields

12

2
C C

S S

Ω Ω
Ω Ω

−
⎡ ⎤− −⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

q FK M C
q FC K M

(11)

The solution of eqn. (11) and substituting back into eqn. (10) provides the system unbalance
response.

6. Optimization formulation for identification
6.1 General identification procedure
Fig. 6 shows the general identification procedure for determining the unknown system
parameters, such as bearing parameters, position, magnitude and phase of unbalance of
rotor-bearing system. It consists of different tasks as shown in Fig. 6. At first, a linear
analytical model which is generally described by a differential equation is formulated by
including unknown parameters. And then, steady-state unbalance response can be
calculated by using the equations described in previous section. Such a response can also be
obtained from the measurements of output signals in rotor-bearing system. Finally, in the
comparison task, the analytical response is compared with the measured response at the
same nodes. If their correlation is poor, the system unknown parameters are renewed and
sent to the analytical model. This iterative procedure for improving the system unknown
parameters is set if the correlation of model and measurement is good enough. The key
issue of this procedure is how much variations of parameters have to be given to the new
analytical model. It is very time consuming to do this manually. Thus many optimization
techniques have been developed to solve this kind of problem which can be formulated as
minimization problem.

6.2 Formulation of optimization problem
The classical nonlinear constrained optimization problem can be written mathematically as:

 Minimize f(x) (12)

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

155

 Subject to gl(x) ≤ 0 (l=1, m), hk(x) = 0 (k = 1, n), xil ≤ xi ≤ xiu (i = 1, p) (13)

In general, the objective function f(x) as well as the constraint functions gl(x) and hk(x) are
nonlinear implicit functions with respect to the design variables. Classical optimization
algorithms require these functions to be unimodal and continuous, and their first
derivatives have to be available. Otherwise, various numerical difficulties and convergence
problems may arise. The global optimization algorithms, such as GA and SA, have been
developed in order to overcome the above restrictions and difficulties.

Analytical Model

Analytical output
Ex) unbalance response

()Mq Cq Kq F t+ + =

ω

Measurement Model

Measurement output
Ex) Response

ω
()iF t

()E
jq t

Criterion : Is correlation of analysis and
measurement Good ?

YESNO

Results : Identified
ParametersOptimization

Technique

Kxx, Kxy, Kyx, Kyy,
Cxx, Cxy, Cyx, Cyy,

Unbalance

Unknown parameters

Kxx, Kxy, Kyx, Kyy,
Cxx, Cxy, Cyx, Cyy,

Unbalance

Set new parameters

Analytical Model

Analytical output
Ex) unbalance response

()Mq Cq Kq F t+ + =

ω

()Mq Cq Kq F t+ + = ()Mq Cq Kq F t+ + =

ω

Measurement Model

Measurement output
Ex) Response

ω
()iF t

()E
jq t

Criterion : Is correlation of analysis and
measurement Good ?

YESNO

Results : Identified
ParametersOptimization

Technique

Kxx, Kxy, Kyx, Kyy,
Cxx, Cxy, Cyx, Cyy,

Unbalance

Unknown parameters

Kxx, Kxy, Kyx, Kyy,
Cxx, Cxy, Cyx, Cyy,

Unbalance

Set new parameters
Kxx, Kxy, Kyx, Kyy,
Cxx, Cxy, Cyx, Cyy,

Unbalance

Set new parameters

Fig. 6. General identification procedure using optimization technique
It is important to choose the form of the objective function, f(x), in engineering application of
optimization algorithms. Three different types of objective functions are considered as
shown in equations (14) to (16). The sum-squared difference between the magnitude of the
experimental and analytical unbalance responses, as shown in equation (14), is a common
choice, but this function performs rather badly in certain practical applications, especially in
low damping system. The reasons for this failure are due to the function being dominated
by the contributions made at the critical speed and resonant peaks. Another possible
approach is to consider the difference of the natural logarithm of the unbalance responses to
reduce the weighting of the natural frequencies defined in equation (15). A simple difference
function, shown in equation (16), can also be used as an objective function.

()2

1() (,) (,)X A
j j

j
f U UΩ Ω

Ω

= −∑∑x x x

(14)

2 10 10() log (,) log (,)X A
j j

j
f U UΩ Ω

Ω

= −∑∑x x x

(15)

3() (,) (,)X A
j j

j
f U UΩ Ω

Ω

= −∑∑x x x

(16)

 Advances in Evolutionary Algorithms

154

+ + =Mq Cq Kq F (8)

where, M = Md + Me, K = Ke + Kb, C = Cb − ΩGe − ΩGd. M, C and K are total mass matrix,
damping matrix and stiffness matrix, respectively. F is the external force vector acting on the
entire system.

5.5 Steady-state unbalance response
In fixed frame coordinates, the unbalance force in eqn. (8) is of the form

cos sinC St tΩ Ω= +F F F (9)

The steady state solution is given by,

cos sinC St tΩ Ω= +q q q (10)

Substituted eqns. (9) and (10) into (8) yields

12

2
C C

S S

Ω Ω
Ω Ω

−
⎡ ⎤− −⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

q FK M C
q FC K M

(11)

The solution of eqn. (11) and substituting back into eqn. (10) provides the system unbalance
response.

6. Optimization formulation for identification
6.1 General identification procedure
Fig. 6 shows the general identification procedure for determining the unknown system
parameters, such as bearing parameters, position, magnitude and phase of unbalance of
rotor-bearing system. It consists of different tasks as shown in Fig. 6. At first, a linear
analytical model which is generally described by a differential equation is formulated by
including unknown parameters. And then, steady-state unbalance response can be
calculated by using the equations described in previous section. Such a response can also be
obtained from the measurements of output signals in rotor-bearing system. Finally, in the
comparison task, the analytical response is compared with the measured response at the
same nodes. If their correlation is poor, the system unknown parameters are renewed and
sent to the analytical model. This iterative procedure for improving the system unknown
parameters is set if the correlation of model and measurement is good enough. The key
issue of this procedure is how much variations of parameters have to be given to the new
analytical model. It is very time consuming to do this manually. Thus many optimization
techniques have been developed to solve this kind of problem which can be formulated as
minimization problem.

6.2 Formulation of optimization problem
The classical nonlinear constrained optimization problem can be written mathematically as:

 Minimize f(x) (12)

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

155

 Subject to gl(x) ≤ 0 (l=1, m), hk(x) = 0 (k = 1, n), xil ≤ xi ≤ xiu (i = 1, p) (13)

In general, the objective function f(x) as well as the constraint functions gl(x) and hk(x) are
nonlinear implicit functions with respect to the design variables. Classical optimization
algorithms require these functions to be unimodal and continuous, and their first
derivatives have to be available. Otherwise, various numerical difficulties and convergence
problems may arise. The global optimization algorithms, such as GA and SA, have been
developed in order to overcome the above restrictions and difficulties.

Analytical Model

Analytical output
Ex) unbalance response

()Mq Cq Kq F t+ + =

ω

Measurement Model

Measurement output
Ex) Response

ω
()iF t

()E
jq t

Criterion : Is correlation of analysis and
measurement Good ?

YESNO

Results : Identified
ParametersOptimization

Technique

Kxx, Kxy, Kyx, Kyy,
Cxx, Cxy, Cyx, Cyy,

Unbalance

Unknown parameters

Kxx, Kxy, Kyx, Kyy,
Cxx, Cxy, Cyx, Cyy,

Unbalance

Set new parameters

Analytical Model

Analytical output
Ex) unbalance response

()Mq Cq Kq F t+ + =

ω

()Mq Cq Kq F t+ + = ()Mq Cq Kq F t+ + =

ω

Measurement Model

Measurement output
Ex) Response

ω
()iF t

()E
jq t

Criterion : Is correlation of analysis and
measurement Good ?

YESNO

Results : Identified
ParametersOptimization

Technique

Kxx, Kxy, Kyx, Kyy,
Cxx, Cxy, Cyx, Cyy,

Unbalance

Unknown parameters

Kxx, Kxy, Kyx, Kyy,
Cxx, Cxy, Cyx, Cyy,

Unbalance

Set new parameters
Kxx, Kxy, Kyx, Kyy,
Cxx, Cxy, Cyx, Cyy,

Unbalance

Set new parameters

Fig. 6. General identification procedure using optimization technique
It is important to choose the form of the objective function, f(x), in engineering application of
optimization algorithms. Three different types of objective functions are considered as
shown in equations (14) to (16). The sum-squared difference between the magnitude of the
experimental and analytical unbalance responses, as shown in equation (14), is a common
choice, but this function performs rather badly in certain practical applications, especially in
low damping system. The reasons for this failure are due to the function being dominated
by the contributions made at the critical speed and resonant peaks. Another possible
approach is to consider the difference of the natural logarithm of the unbalance responses to
reduce the weighting of the natural frequencies defined in equation (15). A simple difference
function, shown in equation (16), can also be used as an objective function.

()2

1() (,) (,)X A
j j

j
f U UΩ Ω

Ω

= −∑∑x x x

(14)

2 10 10() log (,) log (,)X A
j j

j
f U UΩ Ω

Ω

= −∑∑x x x

(15)

3() (,) (,)X A
j j

j
f U UΩ Ω

Ω

= −∑∑x x x

(16)

 Advances in Evolutionary Algorithms

156

where, U denotes the unbalance response and superscripts X and A represent measured and
analytical responses, respectively. Ω is the rotating speed of the shaft, j is the measuring
node and x is the identifying parameter vector.
The optimization problem for parameters identification of rotor-bearing system is
formulated as follows:

Minimize f(x)

 subject to: l u
i i ix x x≤ ≤ , xi∈x, xi= 1, 2, …, 5 (17)

and the design variables: x = (kxx, kxy, kyx, kyy, cxx, cxy, cyx, cyy, u)

where, xi is the design variable and superscripts l and u represent the lower and upper
bounds of the design variables, respectively. kij, cij (i, j = x, y) are the stiffness coefficients and
damping coefficients of bearing respectively. Subscript x and y denote horizontal and
vertical direction, respectively. u denotes the residual unbalance of the disk.
In this study, only the diagonal terms of the stiffness and damping coefficients (kxx, kyy, cxx,
cyy) are considered and does not consider inequality or equality constraints. When a journal
bearing is used in the rotor-bearing system, cross-coupled terms of stiffness and damping
coefficients (kxy, kyx, cxy, cyx) need to be selected as design variables.

7. Numerical application
The proposed methodology is first verified by a simulation study. A simple rotor-bearing
model is shown in Fig. 7 and detail specifications of the rotor bearing model are shown in
Table 5. The rotor system consists of a shaft of 1.3m in length and 0.1m in diameter, and has
three disks. Two bearings support the shaft at the each ends. The dynamic coefficients of the
two bearings are of the same values, and hence only the diagonal terms are considered. An
unbalance mass was added on disk 2 (6th node) with a magnitude of 200 g⋅mm and an angle
of 0o. The unbalance responses at the 2nd and the 12th nodes were selected as simulated
measured responses. To consider the uncertainty of the analytical model and to examine the
robustness of identification, 10% of Gaussian noise was applied to the simulated responses.
The stiffness and damping coefficients of the bearing and the magnitude of unbalance mass
on disk were chosen as identifying parameters. The formulation of optimization is described
in the following section.

1.3 m

Disk 1
Disk 2

Disk 3

Bearing 1 Bearing 2

1.3 m

Disk 1
Disk 2

Disk 3

Bearing 1 Bearing 2

Fig. 7. Rotor bearing model (Lalanne and Ferraris, 1998)

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

157

Shaft length (m) 1.3
Shaft diameter (m) 0.1

Young’s modulus (GPa) 200
Density (kg/m3) 7,800

Shaft

Poisson ratio 0.3
kxx, kyy (MN/m) 50, 70
cxx, cyy (kN⋅s/m) 0.5, 0.7 Bearing
kxy, kyx, cxy, cyx 0

Table 5. Model parameters in Lalanne’s rotor model

7.1 Formulation of optimization
Objective function

()2

1
,

() (,) (,)X A
j j

j v h
f U UΩ Ω

= Ω

= −∑ ∑x x x

 Minimize

2 10 10
,

() log (,) log (,)X A
j j

j v h
f U UΩ Ω

= Ω

= −∑ ∑x x x (18)

3

,
() (,) (,)X A

j j
j v h

f U UΩ Ω
= Ω

= −∑ ∑x x x

where, Uj is vertical and horizontal responses at 2nd and 12th nodes, respectively and Ω is
rotating speed ranging from 200 to 15000 rpm with a step of 200 rpm.

Design variables (Identifying parameters)

 (, , , ,)xx yy xx yyk k c c u=x (19)
where, kxx and kyy are the horizontal and vertical stiffness coefficients, cxx and cyy are the
horizontal and vertical damping coefficients, respectively. u is the magnitude of mass
unbalance of disk.

Side constraints

 102 ≤ kxx, kyy ≤ 109 (N/m), 100 ≤ cxx , cyy ≤ 107 (N⋅s/m), 10-7 ≤ u ≤ 10-2 (kg⋅m) (20)

The control parameters for this algorithm are listed in Table 6. These parameters are
determined by considering the global search capability and the computation time.

Length of chromosome 12
Number of population 200
Crossover probability 40% GA

Mutation probability 0.8exp(/ 2)Gi− , iG : ith generation
CEF 0.2
wg 0.9
wm 1.5

Clustering

wr 0.9
Random search Max iteration 500

Table 6. Control parameters for optimization algorithm (CHEA)

 Advances in Evolutionary Algorithms

156

where, U denotes the unbalance response and superscripts X and A represent measured and
analytical responses, respectively. Ω is the rotating speed of the shaft, j is the measuring
node and x is the identifying parameter vector.
The optimization problem for parameters identification of rotor-bearing system is
formulated as follows:

Minimize f(x)

 subject to: l u
i i ix x x≤ ≤ , xi∈x, xi= 1, 2, …, 5 (17)

and the design variables: x = (kxx, kxy, kyx, kyy, cxx, cxy, cyx, cyy, u)

where, xi is the design variable and superscripts l and u represent the lower and upper
bounds of the design variables, respectively. kij, cij (i, j = x, y) are the stiffness coefficients and
damping coefficients of bearing respectively. Subscript x and y denote horizontal and
vertical direction, respectively. u denotes the residual unbalance of the disk.
In this study, only the diagonal terms of the stiffness and damping coefficients (kxx, kyy, cxx,
cyy) are considered and does not consider inequality or equality constraints. When a journal
bearing is used in the rotor-bearing system, cross-coupled terms of stiffness and damping
coefficients (kxy, kyx, cxy, cyx) need to be selected as design variables.

7. Numerical application
The proposed methodology is first verified by a simulation study. A simple rotor-bearing
model is shown in Fig. 7 and detail specifications of the rotor bearing model are shown in
Table 5. The rotor system consists of a shaft of 1.3m in length and 0.1m in diameter, and has
three disks. Two bearings support the shaft at the each ends. The dynamic coefficients of the
two bearings are of the same values, and hence only the diagonal terms are considered. An
unbalance mass was added on disk 2 (6th node) with a magnitude of 200 g⋅mm and an angle
of 0o. The unbalance responses at the 2nd and the 12th nodes were selected as simulated
measured responses. To consider the uncertainty of the analytical model and to examine the
robustness of identification, 10% of Gaussian noise was applied to the simulated responses.
The stiffness and damping coefficients of the bearing and the magnitude of unbalance mass
on disk were chosen as identifying parameters. The formulation of optimization is described
in the following section.

1.3 m

Disk 1
Disk 2

Disk 3

Bearing 1 Bearing 2

1.3 m

Disk 1
Disk 2

Disk 3

Bearing 1 Bearing 2

Fig. 7. Rotor bearing model (Lalanne and Ferraris, 1998)

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

157

Shaft length (m) 1.3
Shaft diameter (m) 0.1

Young’s modulus (GPa) 200
Density (kg/m3) 7,800

Shaft

Poisson ratio 0.3
kxx, kyy (MN/m) 50, 70
cxx, cyy (kN⋅s/m) 0.5, 0.7 Bearing
kxy, kyx, cxy, cyx 0

Table 5. Model parameters in Lalanne’s rotor model

7.1 Formulation of optimization
Objective function

()2

1
,

() (,) (,)X A
j j

j v h
f U UΩ Ω

= Ω

= −∑ ∑x x x

 Minimize

2 10 10
,

() log (,) log (,)X A
j j

j v h
f U UΩ Ω

= Ω

= −∑ ∑x x x (18)

3

,
() (,) (,)X A

j j
j v h

f U UΩ Ω
= Ω

= −∑ ∑x x x

where, Uj is vertical and horizontal responses at 2nd and 12th nodes, respectively and Ω is
rotating speed ranging from 200 to 15000 rpm with a step of 200 rpm.

Design variables (Identifying parameters)

 (, , , ,)xx yy xx yyk k c c u=x (19)
where, kxx and kyy are the horizontal and vertical stiffness coefficients, cxx and cyy are the
horizontal and vertical damping coefficients, respectively. u is the magnitude of mass
unbalance of disk.

Side constraints

 102 ≤ kxx, kyy ≤ 109 (N/m), 100 ≤ cxx , cyy ≤ 107 (N⋅s/m), 10-7 ≤ u ≤ 10-2 (kg⋅m) (20)

The control parameters for this algorithm are listed in Table 6. These parameters are
determined by considering the global search capability and the computation time.

Length of chromosome 12
Number of population 200
Crossover probability 40% GA

Mutation probability 0.8exp(/ 2)Gi− , iG : ith generation
CEF 0.2
wg 0.9
wm 1.5

Clustering

wr 0.9
Random search Max iteration 500

Table 6. Control parameters for optimization algorithm (CHEA)

 Advances in Evolutionary Algorithms

158

7.2 Identification results
Table 7 shows the identification results using the simulated unbalance response without
noise. With the objective functions of all cases, all identified parameters have exactly the
same reference values and the total call number of the objective function is about 3000. Fig. 8
shows the history of the objective function values. It can be seen that, after 6th generation,
GA-clustering task was terminated and yielding the classification to one cluster. In a local
search, three points converged to one point and consumed 1300 times of function
evaluations. With a total of 500 trials of random searches the algorithms were unable to
locate the lower local minimum candidate and the program had to be terminated. The result
clearly shows that the shape of objective function needs to be a wide concave type.

Identified values Design
variables

Reference
values f1(x) f2(x) f3(x)

kxx (MN/m) 50 50 50 50
kyy (MN/m) 70 70 70 70
cxx (kN⋅s/m) 0.5 0.5 0.5 0.5
cyy (kN⋅s/m) 0.7 0.7 0.7 0.7

u (g⋅mm) 200 200 200 200
No. of function call 2,993 2,768 3,150

Table 7. Identification results using the unbalance response without noise

0 500 1000 1500 2000 2500 3000
10

-6

10
-4

10
-2

10
0

10
2

10
4

10
6

No. of function call

O
bj

ec
tiv

e
fu

nc
tio

n,
 f

2 (x
)

GA-clustering Local search
Random
search

Fig. 8. History of objective function values

The identification results using a simulated response with 10% Gaussian noise added are
summarized in Table 8, taking into consideration the three kinds of objective functions. In
the case of function f1(x), the errors of stiffness coefficients varied from 2.4% to 8.1% and are
less than 10%. However, the errors due to damping coefficients fluctuate significantly. The

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

159

results by using function f3(x) are not acceptable due to the high errors encountered in
stiffness coefficients, ranging from 14.8% to 160%. In the case of function f2(x), which is
considered to be the best choice, the stiffness coefficients and magnitude of mass unbalance
(u) are well identified with error less than 1% with respect to the reference values. This is
obtained by excluding the relative higher errors of damping coefficients. The reasons for the
poor results with respect to the damping coefficients are
• The damping coefficients of the bearing strongly affect the magnitude of the unbalance

response near the resonant peaks in a low damping system.
• The peak value of the response fluctuates to the higher values than other responses due

to the Gaussian noise.

Objective function (% error) Design
variables

Reference
value f1(x) f2(x) f3(x)

kxx (MN/m) 50 45.94 (8.1) 50.16 (0.3) 112.1 (124)
kyy (MN/m) 70 71.67 (2.4) 69.94 (0.1) 80.38 (14.8)
cxx (kN⋅s/m) 0.5 2.570 (414) 0.434 (13.8) 0.852 (160)
cyy (kN⋅s/m) 0.7 0.0015 (99) 0.684 (4.1) 0.834 (19)

u (g⋅mm) 200 210.4 (5.2) 200.8 (0.3) 115.8 (42)

Table 8. Comparison of identification results for different objective functions in the case 10%
Gaussian noise added to unbalance response
From these results, the objective function needs to be selected carefully by considering the
shape of the measured response function. Fig. 9 shows the simulated unbalance responses
with 10% Gaussian noise added and the calculated unbalance responses using the identified
parameters for the case function f2(x). The identified response is in good agreement with the
simulated measured ones.

0 5000 10000 15000

10-2

10-1

100

10
1

10
2

Rotating speed (rpm)

U
nb

al
an

ce
 re

sp
on

se
 (
μm

)

Original
Identified

Fig. 9. Original and identified unbalance response

 Advances in Evolutionary Algorithms

158

7.2 Identification results
Table 7 shows the identification results using the simulated unbalance response without
noise. With the objective functions of all cases, all identified parameters have exactly the
same reference values and the total call number of the objective function is about 3000. Fig. 8
shows the history of the objective function values. It can be seen that, after 6th generation,
GA-clustering task was terminated and yielding the classification to one cluster. In a local
search, three points converged to one point and consumed 1300 times of function
evaluations. With a total of 500 trials of random searches the algorithms were unable to
locate the lower local minimum candidate and the program had to be terminated. The result
clearly shows that the shape of objective function needs to be a wide concave type.

Identified values Design
variables

Reference
values f1(x) f2(x) f3(x)

kxx (MN/m) 50 50 50 50
kyy (MN/m) 70 70 70 70
cxx (kN⋅s/m) 0.5 0.5 0.5 0.5
cyy (kN⋅s/m) 0.7 0.7 0.7 0.7

u (g⋅mm) 200 200 200 200
No. of function call 2,993 2,768 3,150

Table 7. Identification results using the unbalance response without noise

0 500 1000 1500 2000 2500 3000
10

-6

10
-4

10
-2

10
0

10
2

10
4

10
6

No. of function call

O
bj

ec
tiv

e
fu

nc
tio

n,
 f

2 (x
)

GA-clustering Local search
Random
search

Fig. 8. History of objective function values

The identification results using a simulated response with 10% Gaussian noise added are
summarized in Table 8, taking into consideration the three kinds of objective functions. In
the case of function f1(x), the errors of stiffness coefficients varied from 2.4% to 8.1% and are
less than 10%. However, the errors due to damping coefficients fluctuate significantly. The

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

159

results by using function f3(x) are not acceptable due to the high errors encountered in
stiffness coefficients, ranging from 14.8% to 160%. In the case of function f2(x), which is
considered to be the best choice, the stiffness coefficients and magnitude of mass unbalance
(u) are well identified with error less than 1% with respect to the reference values. This is
obtained by excluding the relative higher errors of damping coefficients. The reasons for the
poor results with respect to the damping coefficients are
• The damping coefficients of the bearing strongly affect the magnitude of the unbalance

response near the resonant peaks in a low damping system.
• The peak value of the response fluctuates to the higher values than other responses due

to the Gaussian noise.

Objective function (% error) Design
variables

Reference
value f1(x) f2(x) f3(x)

kxx (MN/m) 50 45.94 (8.1) 50.16 (0.3) 112.1 (124)
kyy (MN/m) 70 71.67 (2.4) 69.94 (0.1) 80.38 (14.8)
cxx (kN⋅s/m) 0.5 2.570 (414) 0.434 (13.8) 0.852 (160)
cyy (kN⋅s/m) 0.7 0.0015 (99) 0.684 (4.1) 0.834 (19)

u (g⋅mm) 200 210.4 (5.2) 200.8 (0.3) 115.8 (42)

Table 8. Comparison of identification results for different objective functions in the case 10%
Gaussian noise added to unbalance response
From these results, the objective function needs to be selected carefully by considering the
shape of the measured response function. Fig. 9 shows the simulated unbalance responses
with 10% Gaussian noise added and the calculated unbalance responses using the identified
parameters for the case function f2(x). The identified response is in good agreement with the
simulated measured ones.

0 5000 10000 15000

10-2

10-1

100

10
1

10
2

Rotating speed (rpm)

U
nb

al
an

ce
 re

sp
on

se
 (
μm

)

Original
Identified

Fig. 9. Original and identified unbalance response

 Advances in Evolutionary Algorithms

160

8. Experimental validation
The experimental validation was performed to verify the effectiveness of proposed
identification approach. By using a Rotor-Kit system, the stiffness coefficients and unbalance
mass of disk are identified simultaneously. The identified results are compared with those
obtained by measurement.

8.1 Test rig and measured response
The test rig for experimental validation is shown in Fig. 10. The rotor-system is the RK4
model manufactured by Bently-Nevada. A flexible coupling connects a controllable DC
motor to the shaft. Spring-bearing, which has four springs for driving a ball bearing in all
directions as shown in Fig. 10, was used to identify the stiffness and damping coefficients.
The adjoined two ball bearings in the coupling side are used to prevent slight angular
movements which usually occurred in single ball bearing setup. Two proximity probes are
incorporated to measure the shaft vibration in the vertical and horizontal directions.

Fig. 10. Experimental test rig

Fig. 11 shows the schematic of the test setup with the spring-bearing. The measured signal
was processed by using the DAI-108 and ADRE software. The stiffness of the two adjoined
ball bearings in the left side was considered to be rigid because it was significantly greater
than the identifying stiffness of the spring-bearing at the right side. The parameters of the
shaft, disk and spring-bearing are listed in Table 9. To identify the unknown parameters in a
real system, all the other parameters need to be defined. Therefore, Young’s modulus and
density of shaft listed in Table 5 were updated by using the model updating technique.

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

161

DC motor

Flexible coupling

Ball bearing
Shaft

Disk

Proximeter

Spring-bearing

DAI 108

ADRE for Windows

DC motor

Flexible coupling

Ball bearing
Shaft

Disk

Proximeter

Spring-bearing

DAI 108

ADRE for Windows
Fig. 11. Schematic of an experimental setup with a spring-bearing

Length (mm) 560
Diameter (mm) 10
Density (kg/m3) 7,801
Young’s modulus (MPa) 208.11

Shaft

Poisson ratio 0.3
Mass (kg) 0.809
Polar moment of inertia (kg·m2) 568.46×10-6
Trans. moment of inertia (kg·m2) 327.60×10-6

Disk

Magnitude of unbalance (g·mm) 15
Bearing span (mm) 401
Horizontal stiffness (kN/m) 33.9

Bearing

Vertical stiffness (kN/m) 33.6

Table 9. Parameters of test setup

Fig. 12 shows a 1X filtered measured response of horizontal vibration according to speed-up
and speed-down of the motor. Slow roll vector at 500 rpm was used to compensate the
original signal. The response below the critical speed was used in the identification process
because they increased sharply near the critical speed. In actual fact, many rotating systems
operate below the first critical speed. The reason why the measured signal is not smooth
enough is because this system has no damping mechanism except internal material
damping or friction. Fig. 13 shows, for example, an instantaneous measured signal in the
vertical direction at a shaft speed of 1350 rpm. The first peak in the spectrum plot indicates
the rotating speed and the second peak is the first natural frequency of the system. This
appearance is frequently shown in low damping systems supported by ball bearings.
Furthermore, traditional deterministic identification approaches (Lee & Hong, 1988; Chen &
Lee, 1995, 1997; Tiwari et al., 2002) often failed to identify the exact parameters.

 Advances in Evolutionary Algorithms

160

8. Experimental validation
The experimental validation was performed to verify the effectiveness of proposed
identification approach. By using a Rotor-Kit system, the stiffness coefficients and unbalance
mass of disk are identified simultaneously. The identified results are compared with those
obtained by measurement.

8.1 Test rig and measured response
The test rig for experimental validation is shown in Fig. 10. The rotor-system is the RK4
model manufactured by Bently-Nevada. A flexible coupling connects a controllable DC
motor to the shaft. Spring-bearing, which has four springs for driving a ball bearing in all
directions as shown in Fig. 10, was used to identify the stiffness and damping coefficients.
The adjoined two ball bearings in the coupling side are used to prevent slight angular
movements which usually occurred in single ball bearing setup. Two proximity probes are
incorporated to measure the shaft vibration in the vertical and horizontal directions.

Fig. 10. Experimental test rig

Fig. 11 shows the schematic of the test setup with the spring-bearing. The measured signal
was processed by using the DAI-108 and ADRE software. The stiffness of the two adjoined
ball bearings in the left side was considered to be rigid because it was significantly greater
than the identifying stiffness of the spring-bearing at the right side. The parameters of the
shaft, disk and spring-bearing are listed in Table 9. To identify the unknown parameters in a
real system, all the other parameters need to be defined. Therefore, Young’s modulus and
density of shaft listed in Table 5 were updated by using the model updating technique.

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

161

DC motor

Flexible coupling

Ball bearing
Shaft

Disk

Proximeter

Spring-bearing

DAI 108

ADRE for Windows

DC motor

Flexible coupling

Ball bearing
Shaft

Disk

Proximeter

Spring-bearing

DAI 108

ADRE for Windows
Fig. 11. Schematic of an experimental setup with a spring-bearing

Length (mm) 560
Diameter (mm) 10
Density (kg/m3) 7,801
Young’s modulus (MPa) 208.11

Shaft

Poisson ratio 0.3
Mass (kg) 0.809
Polar moment of inertia (kg·m2) 568.46×10-6
Trans. moment of inertia (kg·m2) 327.60×10-6

Disk

Magnitude of unbalance (g·mm) 15
Bearing span (mm) 401
Horizontal stiffness (kN/m) 33.9

Bearing

Vertical stiffness (kN/m) 33.6

Table 9. Parameters of test setup

Fig. 12 shows a 1X filtered measured response of horizontal vibration according to speed-up
and speed-down of the motor. Slow roll vector at 500 rpm was used to compensate the
original signal. The response below the critical speed was used in the identification process
because they increased sharply near the critical speed. In actual fact, many rotating systems
operate below the first critical speed. The reason why the measured signal is not smooth
enough is because this system has no damping mechanism except internal material
damping or friction. Fig. 13 shows, for example, an instantaneous measured signal in the
vertical direction at a shaft speed of 1350 rpm. The first peak in the spectrum plot indicates
the rotating speed and the second peak is the first natural frequency of the system. This
appearance is frequently shown in low damping systems supported by ball bearings.
Furthermore, traditional deterministic identification approaches (Lee & Hong, 1988; Chen &
Lee, 1995, 1997; Tiwari et al., 2002) often failed to identify the exact parameters.

 Advances in Evolutionary Algorithms

162

Fig. 12. 1X filtered measured horizontal response

0 0.2 0.4 0.6 0.8 1
-150

-100

-50

0

50

100

150

Time (sec)

D
is

pl
ac

em
en

t (
μ

m
)

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Frequency (Hz)

S
pe

ct
ra

l a
m

pl
itu

de
Operating speed (22.5 Hz)

1st natural frequency (37.5 Hz)

(a) Time base signal (b) Spectrum

Fig. 13 Instantaneous vibration signal and its spectrum at 1350 rpm

8.2 Optimization formulation and results
The same control parameters for optimization algorithm listed in Table 2 are used this case.
By using the above measured responses in the vertical and horizontal directions,
optimization for identifying the bearing parameters and unbalance is formulated as follows:

Objective function:

()2

1() (,) (,)X A
j j

j
f U UΩ Ω

Ω

= −∑∑x x x

 Minimize

2 10 10() | log (,) log (,) |X A
j j

j
f U UΩ Ω

Ω

= −∑∑x x x

 (20)

3() (,) (,)X A

j j
j

f U UΩ Ω
Ω

= −∑∑x x x

where, Uj is response at the position of sensors and Ω is the rotating speed from 480 to 2140
rpm with a step of 20 rpm.

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

163

Design variables (Identifying parameters):

 (, , , ,)xx yy xx yyk k c c u=x (21)
where, kxx and kyy are the horizontal and vertical stiffness coefficients, cxx and cyy are the
horizontal and vertical damping coefficients, respectively. u is the magnitude of mass
unbalance of disk.

Side constraints:

102 ≤ kxx, kyy ≤ 106 (N/m), 100 ≤ cxx, cyy ≤ 103 (N⋅s/m), 10-7 ≤ u ≤ 10-3 (kg⋅m)
The identification results for the spring-bearing system are summarized in Table 10. The
results show an average function call number of 4327 which corresponds to a computation
CPU time of 3519 second on the P-IV 3.0 GHz PC. The reference values for the stiffness
coefficients were obtained from static deflection tests. The percent error of identified
parameters to reference values is given in terms of percentage error (% error).

Identified values (% error) Design
variables

Experimental
value f1(x) f2(x) f3(x)

kxx`(kN/m) 33.900 30.884 (8.9) 30.796 (9.1) 33.491 (1.2)
kyy`(kN/m) 34.600 34.203 (1.1) 34.001 (1.7) 36.390 (5.2)
cxx (N⋅s/m) − 13.42 11.96 15.44
cyy (N⋅s/m) − 16.06 14.11 3.16
u (g·mm) 15 13.82 (7.8) 12.86 (14.3) 16.13 (7.5)
No. of total function call 4,334 4,360 4,288

Table 10. Identification results for the spring-bearing system

500 1000 1500 2000
10

0

10
1

10
2

10
3

Rotating speed (rpm)
R

es
po

ns
e

(μ
m

)

Measured
Identified

Fig. 14. Measured and Identified horizontal unbalance response for f3(x)

 Advances in Evolutionary Algorithms

162

Fig. 12. 1X filtered measured horizontal response

0 0.2 0.4 0.6 0.8 1
-150

-100

-50

0

50

100

150

Time (sec)

D
is

pl
ac

em
en

t (
μ

m
)

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Frequency (Hz)

S
pe

ct
ra

l a
m

pl
itu

de

Operating speed (22.5 Hz)

1st natural frequency (37.5 Hz)

(a) Time base signal (b) Spectrum

Fig. 13 Instantaneous vibration signal and its spectrum at 1350 rpm

8.2 Optimization formulation and results
The same control parameters for optimization algorithm listed in Table 2 are used this case.
By using the above measured responses in the vertical and horizontal directions,
optimization for identifying the bearing parameters and unbalance is formulated as follows:

Objective function:

()2

1() (,) (,)X A
j j

j
f U UΩ Ω

Ω

= −∑∑x x x

 Minimize

2 10 10() | log (,) log (,) |X A
j j

j
f U UΩ Ω

Ω

= −∑∑x x x

 (20)

3() (,) (,)X A

j j
j

f U UΩ Ω
Ω

= −∑∑x x x

where, Uj is response at the position of sensors and Ω is the rotating speed from 480 to 2140
rpm with a step of 20 rpm.

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

163

Design variables (Identifying parameters):

 (, , , ,)xx yy xx yyk k c c u=x (21)
where, kxx and kyy are the horizontal and vertical stiffness coefficients, cxx and cyy are the
horizontal and vertical damping coefficients, respectively. u is the magnitude of mass
unbalance of disk.

Side constraints:

102 ≤ kxx, kyy ≤ 106 (N/m), 100 ≤ cxx, cyy ≤ 103 (N⋅s/m), 10-7 ≤ u ≤ 10-3 (kg⋅m)
The identification results for the spring-bearing system are summarized in Table 10. The
results show an average function call number of 4327 which corresponds to a computation
CPU time of 3519 second on the P-IV 3.0 GHz PC. The reference values for the stiffness
coefficients were obtained from static deflection tests. The percent error of identified
parameters to reference values is given in terms of percentage error (% error).

Identified values (% error) Design
variables

Experimental
value f1(x) f2(x) f3(x)

kxx`(kN/m) 33.900 30.884 (8.9) 30.796 (9.1) 33.491 (1.2)
kyy`(kN/m) 34.600 34.203 (1.1) 34.001 (1.7) 36.390 (5.2)
cxx (N⋅s/m) − 13.42 11.96 15.44
cyy (N⋅s/m) − 16.06 14.11 3.16
u (g·mm) 15 13.82 (7.8) 12.86 (14.3) 16.13 (7.5)
No. of total function call 4,334 4,360 4,288

Table 10. Identification results for the spring-bearing system

500 1000 1500 2000
10

0

10
1

10
2

10
3

Rotating speed (rpm)

R
es

po
ns

e
(μ

m
)

Measured
Identified

Fig. 14. Measured and Identified horizontal unbalance response for f3(x)

 Advances in Evolutionary Algorithms

164

Although the 1X amplitude of the measured signal had significant fluctuation, all the
identified parameters fitted well with the reference values. Considering the percentage error
to reference values, as shown in the Table 10, the best choice of the objective function is f3(x),
which is the sum of differences between measured and analytical responses. Fig. 14 shows
the identified horizontal unbalance response and 1X filtered measured response at the
sensor positions. From this result, it is verified that the proposed methodology could be
effectively used to identify bearing coefficients with the magnitude of unbalance using the
measured unbalance responses.

9. Conclusions
A new hybrid evolutionary algorithm using clustering-based hybrid evolutionary algorithm
(CHEA), is proposed in this chapter. The main feature of CHEA is the clustering of
individuals introduced for evaluating the degree of maturity of genetic evolution. After the
clustering-based genetic algorithm, local search is carried for each cluster in this algorithm.
CHEA attempts to find each local minimum from each cluster or continues with GA
focusing on the regions of each cluster until all significant local minima are found. Therefore
CHEA can lead to local minima as well as global minimum. ART-Kohonen neural network
(ART-KNN) is used in the clustering of individuals in GA. Sequential quadratic
programming (SQP) is adopted as local search. An efficient random search is introduced for
improving the probability of finding the global minimum which may be missed by GA or
local search task. The effectiveness of the proposed algorithm was evaluated using three
well-known benchmark functions. The results showed that the CHEA reached the global
minimum faster than EGA and ASA. It has the ability to find the global minimum as well as
the local minima and having higher global search capability than other algorithms.
When using CHEA for parameter identification of bearings, it optimizes the formulation
process to achieve an optimum solution. It minimizes the differences between analytical
unbalance responses and measured ones by considering the unknown bearing parameters
as design variables. Three types of feasible objective functions were applied in evaluation
process, namely, sum-squared differences, logarithmic differences and simple differences to
find the most competent formulation of the objective function. The magnitude of mass
unbalance was also chosen as identifying parameters. Numerical and experimental
applications were presented to confirm the effectiveness of this methodology. In the
numerical application, 10% of Gaussian noise was added to simulate measured response
and to examine the robustness of the methodology. The results showed that the unknown
parameters were correctly identified and the logarithmic differences function was concluded
as the best objective function in the numerical simulation. When applied to an experimental
rotor-bearing system the measured synchronous response fluctuates according to the
rotating speeds but the identified parameters fitted well with the reference values. This new
algorithm has the potential for use in real life applications. However, further investigations
using industrial data are required to test the robustness of the technique before applying the
method to industrial rotating machinery.

10. Acknowledgement
The work is partially supported by the CRC for Integrated Engineering Asset Management
(CIEAM), Australia.

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

165

11. References
Berger, J., Sassi, M. and Salois, M. (1999) A hybrid genetic algorithm for the vehicle routing

problem with time windows and itinerary constraints, in Proceedings of the
Genetic and Evolutionary Computation Conference, Orlando, USA, pp. 44—51

Burrows, C. R. & Stanway, R. (1977) Identification of journal bearing characteristics. ASME J
Dynamic System Measurement and Control, Vol. 99, pp. 167-175

Carpenter GA, Grossberg S (1988) The art of adaptive pattern recognition by a self-
organizing neural network. IEEE Trans on Computer, Vol 21, No. 3, pp. 77-88

Chen, J. H. & Lee, A. C. (1995) Estimation of linearized dynamic characteristics of bearings
using synchronous response. International Journal of Mechanical Science, Vol. 37,
No.2, pp. 197-219

Chen, J. H. & Lee, A. C. (1997) Identification of linearised dynamic coefficients of rolling
element bearings. ASME Journal of Vibration and Acoustics, Vol. 119, pp. 60-69

Choi, B. G. & Yang, B. S. (2000) Optimum shape design of shaft using genetic algorithm. J of
Vib and Control 6(1): 207- 220

Edwards, S.; Lees, A. W. & Friswell, M. I. (2000) Experimental identification of excitation
and support parameters of a flexible rotor- bearings-foundation system from a
single run-down. Journal of Sound and Vibration, Vol. 232, No. 5, pp. 963-992

Fletcher, R. (1980) Practical methods of optimization, Constrained Optimization. John Wiley
and Sons

Fung, R. Y. K., Tang, J. and Wang, D. (2002) Extension of a hybrid genetic algorithm for
nonlinear programming problems with equality and inequality constrains,
Computers & Operations Research, Vol. 29, No. 3, pp. 261—274

Hageman, J. A., Wehrens, R., Sprang, H. A. and Buydens, L. M. C. (2003) Hybrid genetic
algorithm-tabu search approach for optimizing multilayer optical coatings,
Analytica Chimica Acta, Vol. 490, pp. 211—222

He, D., Li, Y. and Wang, F. (2001) Hybrid genetic algorithm based on the operator of pattern
search, Information and Control, Vol. 30, No. 3, pp. 276—278

Hsiao, C. T., Chahine, G. and Gumerov, N. (2001) Application of a hybrid genetic
algorithm/Powell algorithm and a boundary element method to electrical
impedance topography, Journal of Computational Physics, 173, 433-454

Ingber, L. and Rosen, B. (1992) Genetic algorithms and very fast simulated re-annealing: a
comparison, Mathematic Computational Modeling, Vol. 16, pp. 87—100

Jiang, Z., Liu, B., Dai, L. and Wu, T. (2003) A hybrid genetic algorithm integrated with
sequential linear programming, in Proceedings of the Second International
Conference on Machine Learning and Cybernetics, Xian, pp. 1030—1033

Kim, Y. C. (2003) Development of Enhanced Genetic Algorithm and Its Applications to
Optimum Design of Rotating Machinery, Ph.D. Dissertation, Pukyong National
University, South Korea

Kim, Y. H., Yang, B. S. and Tan, A. C. C. (2006) Clustering-based Hybrid Evolutionary
Algorithm for Optimization, Advances in vibration engineering, Vol. 5, No. 2, pp.
163-173

Kim, Y. H., Yang, B. S. and Tan, A. C. C. (2007) Bearing Parameter Identification of Rotor-
Bearing System Using Clustering-based Hybrid Evolutionary Algorithm, Structural
and Multidisciplinary Optimization, Vol. 33, No. 6, pp. 493-506

Kirpatrick, S. C. D. & Gelatt, M. P. (1983) Optimization by simulated annealing. Science Vol.
220, No. 4598, pp. 671–680

 Advances in Evolutionary Algorithms

164

Although the 1X amplitude of the measured signal had significant fluctuation, all the
identified parameters fitted well with the reference values. Considering the percentage error
to reference values, as shown in the Table 10, the best choice of the objective function is f3(x),
which is the sum of differences between measured and analytical responses. Fig. 14 shows
the identified horizontal unbalance response and 1X filtered measured response at the
sensor positions. From this result, it is verified that the proposed methodology could be
effectively used to identify bearing coefficients with the magnitude of unbalance using the
measured unbalance responses.

9. Conclusions
A new hybrid evolutionary algorithm using clustering-based hybrid evolutionary algorithm
(CHEA), is proposed in this chapter. The main feature of CHEA is the clustering of
individuals introduced for evaluating the degree of maturity of genetic evolution. After the
clustering-based genetic algorithm, local search is carried for each cluster in this algorithm.
CHEA attempts to find each local minimum from each cluster or continues with GA
focusing on the regions of each cluster until all significant local minima are found. Therefore
CHEA can lead to local minima as well as global minimum. ART-Kohonen neural network
(ART-KNN) is used in the clustering of individuals in GA. Sequential quadratic
programming (SQP) is adopted as local search. An efficient random search is introduced for
improving the probability of finding the global minimum which may be missed by GA or
local search task. The effectiveness of the proposed algorithm was evaluated using three
well-known benchmark functions. The results showed that the CHEA reached the global
minimum faster than EGA and ASA. It has the ability to find the global minimum as well as
the local minima and having higher global search capability than other algorithms.
When using CHEA for parameter identification of bearings, it optimizes the formulation
process to achieve an optimum solution. It minimizes the differences between analytical
unbalance responses and measured ones by considering the unknown bearing parameters
as design variables. Three types of feasible objective functions were applied in evaluation
process, namely, sum-squared differences, logarithmic differences and simple differences to
find the most competent formulation of the objective function. The magnitude of mass
unbalance was also chosen as identifying parameters. Numerical and experimental
applications were presented to confirm the effectiveness of this methodology. In the
numerical application, 10% of Gaussian noise was added to simulate measured response
and to examine the robustness of the methodology. The results showed that the unknown
parameters were correctly identified and the logarithmic differences function was concluded
as the best objective function in the numerical simulation. When applied to an experimental
rotor-bearing system the measured synchronous response fluctuates according to the
rotating speeds but the identified parameters fitted well with the reference values. This new
algorithm has the potential for use in real life applications. However, further investigations
using industrial data are required to test the robustness of the technique before applying the
method to industrial rotating machinery.

10. Acknowledgement
The work is partially supported by the CRC for Integrated Engineering Asset Management
(CIEAM), Australia.

A Hybrid Evolutionary Algorithm and its Application to Parameter Identification
of Rolling Elements Bearings

165

11. References
Berger, J., Sassi, M. and Salois, M. (1999) A hybrid genetic algorithm for the vehicle routing

problem with time windows and itinerary constraints, in Proceedings of the
Genetic and Evolutionary Computation Conference, Orlando, USA, pp. 44—51

Burrows, C. R. & Stanway, R. (1977) Identification of journal bearing characteristics. ASME J
Dynamic System Measurement and Control, Vol. 99, pp. 167-175

Carpenter GA, Grossberg S (1988) The art of adaptive pattern recognition by a self-
organizing neural network. IEEE Trans on Computer, Vol 21, No. 3, pp. 77-88

Chen, J. H. & Lee, A. C. (1995) Estimation of linearized dynamic characteristics of bearings
using synchronous response. International Journal of Mechanical Science, Vol. 37,
No.2, pp. 197-219

Chen, J. H. & Lee, A. C. (1997) Identification of linearised dynamic coefficients of rolling
element bearings. ASME Journal of Vibration and Acoustics, Vol. 119, pp. 60-69

Choi, B. G. & Yang, B. S. (2000) Optimum shape design of shaft using genetic algorithm. J of
Vib and Control 6(1): 207- 220

Edwards, S.; Lees, A. W. & Friswell, M. I. (2000) Experimental identification of excitation
and support parameters of a flexible rotor- bearings-foundation system from a
single run-down. Journal of Sound and Vibration, Vol. 232, No. 5, pp. 963-992

Fletcher, R. (1980) Practical methods of optimization, Constrained Optimization. John Wiley
and Sons

Fung, R. Y. K., Tang, J. and Wang, D. (2002) Extension of a hybrid genetic algorithm for
nonlinear programming problems with equality and inequality constrains,
Computers & Operations Research, Vol. 29, No. 3, pp. 261—274

Hageman, J. A., Wehrens, R., Sprang, H. A. and Buydens, L. M. C. (2003) Hybrid genetic
algorithm-tabu search approach for optimizing multilayer optical coatings,
Analytica Chimica Acta, Vol. 490, pp. 211—222

He, D., Li, Y. and Wang, F. (2001) Hybrid genetic algorithm based on the operator of pattern
search, Information and Control, Vol. 30, No. 3, pp. 276—278

Hsiao, C. T., Chahine, G. and Gumerov, N. (2001) Application of a hybrid genetic
algorithm/Powell algorithm and a boundary element method to electrical
impedance topography, Journal of Computational Physics, 173, 433-454

Ingber, L. and Rosen, B. (1992) Genetic algorithms and very fast simulated re-annealing: a
comparison, Mathematic Computational Modeling, Vol. 16, pp. 87—100

Jiang, Z., Liu, B., Dai, L. and Wu, T. (2003) A hybrid genetic algorithm integrated with
sequential linear programming, in Proceedings of the Second International
Conference on Machine Learning and Cybernetics, Xian, pp. 1030—1033

Kim, Y. C. (2003) Development of Enhanced Genetic Algorithm and Its Applications to
Optimum Design of Rotating Machinery, Ph.D. Dissertation, Pukyong National
University, South Korea

Kim, Y. H., Yang, B. S. and Tan, A. C. C. (2006) Clustering-based Hybrid Evolutionary
Algorithm for Optimization, Advances in vibration engineering, Vol. 5, No. 2, pp.
163-173

Kim, Y. H., Yang, B. S. and Tan, A. C. C. (2007) Bearing Parameter Identification of Rotor-
Bearing System Using Clustering-based Hybrid Evolutionary Algorithm, Structural
and Multidisciplinary Optimization, Vol. 33, No. 6, pp. 493-506

Kirpatrick, S. C. D. & Gelatt, M. P. (1983) Optimization by simulated annealing. Science Vol.
220, No. 4598, pp. 671–680

 Advances in Evolutionary Algorithms

166

Kohonen, T. (1995) Self-Organizing Maps, New York: Springer-Verlag
Kraus, J.; Blech, J. J. & Braun, S. G. (1987) In situ determination of rolling bearing stiffness

and damping by modal analysis. ASME J Vibration, Acoustics, Stress, and
Reliability in Design, Vol. 109, pp. 235-240

Lee, C. W. & Hong, S. W. (1988) Identification of bearing dynamic coefficients by unbalance
response measurements. Proceedings of Institution of Mechanical Engineers Vol.
203C, pp. 93-101

Lee, C. Y., Gen, M. and Kuo, W. (2001) Reliability optimization design using hybridized
genetic algorithm with a neural network technique, IEICE Trans. on Fundamental,
Vol. E84-A, No. 2, pp. 627—637

Liu, Y., Ma, L. and Zhang, J. (2002) Reactive power optimization by GA/SA/TS combined
algorithms, Electrical Power and Energy Systems, Vol. 24, pp. 765—769, 2002

Nelson, H. D. (1980) A finite rotating shaft element using Timoshenko beam theory. ASME, J
Mechanical Design 102: 793-803

Ong, S. K., Ding, J. and Nee, A. Y. C. (2002) Hybrid GA and SA dynamic set-up planning
optimization, International Journal of Production Research, Vol. 40, No. 18, pp.
4697—4719

Pilkey, W. D. (1994) Formulus for stress, strain, and structural matrices. John Wiley, New
York, USA

Ponnambalam, S. G. and. Reddy, M. M. (2003) A GA-SA multiobjective hybrid search
algorithm for integrating lot sizing and sequencing in flow-line scheduling,
International Journal of Advanced Manufacturing Technology, Vol. 21, pp. 126—
137

Powell, M. J. D. (1978) A fast algorithm for nonlinearly constrained optimization
calculations. Numerical Analysis, G.A.Watson ed., Lecture Notes in Mathematics,
Springer Verlag, 630

Reddy, V. B.; Tiwari, R. & Kakoty, S. K. (2002) Identification of bearing dynamic parameters
from impulse response of rotor bearing systems. Proceedings of VETOMAC-2

Renders, J. M. and Flasse, S. P. (1996) Hybrid methods using genetic algorithms for global
optimization, IEEE Transactions on Systems, Man, and Cybernetics Part B, Vol. 26,
No. 2, pp. 243—258

Roach, A. and Nagi, R. (1996) A hybrid GA-SA algorithm for just-in-time scheduling of
multi-level assemblies, Computers Industrial Engineering, Vol. 30, No. 4, pp.
1047—1060

Schittkowski, K. (1985) NLQPL: A FORTRAN-subroutine solving constrained nonlinear
programming problems. Annals of Operations Research 5: 485-500

Tiwari, R.; Lees, A. W. & Friswell, M. I. (2002) Identification of speed-dependent bearing
parameters. Journal of Sound and Vibration, Vol. 254, No. 5, pp. 967-986

Wu, Z., Shao, H. and Wu, X. (1999) A new adaptive genetic algorithm & its application in
multimodal function optimization, Control Theory and Applications, Vol. 16, No. 1,
pp. 127—129

Yang, B. S.; Han, T. & An, J. L. (2004) ART-Kohenen neural network for fault diagnosis of
rotating machinery. Mechanical System and Signal Processing, Vol. 18, pp. 645-657

Yu, H., Fang, H., Yao, P. and Yuan, Y. (2000) A combined genetic algorithm/simulated
annealing algorithm for large scale system energy integration, Computers and
Chemical Engineering, Vol. 24, pp. 2023—2035

9

Domain Decomposition Evolutionary Algorithm
for Multi-Modal Function Optimization

Guangming Lin1, Lishan Kang2, Yongsheng Liang1 and Yuping Chen2

1Shenzhen Institute of Information Technology, Shenzhen 518029,
2School of Computer, China University of Geosciences, Wuhan,

PRC.

1. Introduction
The Simple Genetic Algorithm (SGA) is applied more and more extensively since it was
proposed by J. H. Holland [1] in 1970’s. SGA is an optimization method based on
population by emulating the evolvement disciplinarian of the nature. It has showed the
great advantage of quick search for optimal solutions while applied in the optimization of
single-modal functions. But as we all know many problems in reality belong to the
optimization of multi-modal function, and if SGA is applied to solve this kind of problems,
it has the confliction between the search space and convergence speed: the expansion of
search space will slow down the convergence speed and the acceleration of convergence
speed will reduce the search space, lead to early convergence and as a result stop research at
some local optimal solutions.
Evolutionary algorithms have been used regularly to solve multi-modal function
optimization problems, due to their population-based approach and their inherent
parallelism, e.g. a crowding factor model proposed by De Jong[2], a shared-function model
proposed by Goldberg and Richardson[3], an artificial immune system method, a split ring
parallel evolutionary algorithm, etc., all of which have attempted to maintain the diversity
of the population during the process of evolution. In this chapter, we introduce a new
‘Domain Decomposition Evolutionary algorithm (called DDEA) which can solve not only
simple nonlinear programming problems effectively and efficiently, but can also find the
multiple solutions of multi-modal problems in a single run. The DDEA employs dual
strategy approach that searches at two levels of detail (namely global then local). In the first
(global) step, a Self-adaptive Mutations with Multi-parent Crossover Evolutionary
Algorithm (SMMCEA)[4] is employed to perform a global search to divide the
(chromosome) population into several subpopulations or niches in subdomains, which is
domain decomposition. In the second (local) step, an evolutionary strategy-like algorithm is
employed to perform a local search on each isolated niche independently. Then the best
solutions of the multi-modal problem are exploited.
The remainder of the chapter is organized as follows. Section 2 introduces a Self-adaptive
Mutations with Multi-parent Crossover Evolutionary Algorithm (SMMCEA); Section 3
introduces Domain Decomposition evolutionary algorithm (DDEA); Section 4 presents the
successful results of applying DDEA to several challenging numerical multi-modal
optimization problems; Section 5 concludes.

 Advances in Evolutionary Algorithms

166

Kohonen, T. (1995) Self-Organizing Maps, New York: Springer-Verlag
Kraus, J.; Blech, J. J. & Braun, S. G. (1987) In situ determination of rolling bearing stiffness

and damping by modal analysis. ASME J Vibration, Acoustics, Stress, and
Reliability in Design, Vol. 109, pp. 235-240

Lee, C. W. & Hong, S. W. (1988) Identification of bearing dynamic coefficients by unbalance
response measurements. Proceedings of Institution of Mechanical Engineers Vol.
203C, pp. 93-101

Lee, C. Y., Gen, M. and Kuo, W. (2001) Reliability optimization design using hybridized
genetic algorithm with a neural network technique, IEICE Trans. on Fundamental,
Vol. E84-A, No. 2, pp. 627—637

Liu, Y., Ma, L. and Zhang, J. (2002) Reactive power optimization by GA/SA/TS combined
algorithms, Electrical Power and Energy Systems, Vol. 24, pp. 765—769, 2002

Nelson, H. D. (1980) A finite rotating shaft element using Timoshenko beam theory. ASME, J
Mechanical Design 102: 793-803

Ong, S. K., Ding, J. and Nee, A. Y. C. (2002) Hybrid GA and SA dynamic set-up planning
optimization, International Journal of Production Research, Vol. 40, No. 18, pp.
4697—4719

Pilkey, W. D. (1994) Formulus for stress, strain, and structural matrices. John Wiley, New
York, USA

Ponnambalam, S. G. and. Reddy, M. M. (2003) A GA-SA multiobjective hybrid search
algorithm for integrating lot sizing and sequencing in flow-line scheduling,
International Journal of Advanced Manufacturing Technology, Vol. 21, pp. 126—
137

Powell, M. J. D. (1978) A fast algorithm for nonlinearly constrained optimization
calculations. Numerical Analysis, G.A.Watson ed., Lecture Notes in Mathematics,
Springer Verlag, 630

Reddy, V. B.; Tiwari, R. & Kakoty, S. K. (2002) Identification of bearing dynamic parameters
from impulse response of rotor bearing systems. Proceedings of VETOMAC-2

Renders, J. M. and Flasse, S. P. (1996) Hybrid methods using genetic algorithms for global
optimization, IEEE Transactions on Systems, Man, and Cybernetics Part B, Vol. 26,
No. 2, pp. 243—258

Roach, A. and Nagi, R. (1996) A hybrid GA-SA algorithm for just-in-time scheduling of
multi-level assemblies, Computers Industrial Engineering, Vol. 30, No. 4, pp.
1047—1060

Schittkowski, K. (1985) NLQPL: A FORTRAN-subroutine solving constrained nonlinear
programming problems. Annals of Operations Research 5: 485-500

Tiwari, R.; Lees, A. W. & Friswell, M. I. (2002) Identification of speed-dependent bearing
parameters. Journal of Sound and Vibration, Vol. 254, No. 5, pp. 967-986

Wu, Z., Shao, H. and Wu, X. (1999) A new adaptive genetic algorithm & its application in
multimodal function optimization, Control Theory and Applications, Vol. 16, No. 1,
pp. 127—129

Yang, B. S.; Han, T. & An, J. L. (2004) ART-Kohenen neural network for fault diagnosis of
rotating machinery. Mechanical System and Signal Processing, Vol. 18, pp. 645-657

Yu, H., Fang, H., Yao, P. and Yuan, Y. (2000) A combined genetic algorithm/simulated
annealing algorithm for large scale system energy integration, Computers and
Chemical Engineering, Vol. 24, pp. 2023—2035

9

Domain Decomposition Evolutionary Algorithm
for Multi-Modal Function Optimization

Guangming Lin1, Lishan Kang2, Yongsheng Liang1 and Yuping Chen2

1Shenzhen Institute of Information Technology, Shenzhen 518029,
2School of Computer, China University of Geosciences, Wuhan,

PRC.

1. Introduction
The Simple Genetic Algorithm (SGA) is applied more and more extensively since it was
proposed by J. H. Holland [1] in 1970’s. SGA is an optimization method based on
population by emulating the evolvement disciplinarian of the nature. It has showed the
great advantage of quick search for optimal solutions while applied in the optimization of
single-modal functions. But as we all know many problems in reality belong to the
optimization of multi-modal function, and if SGA is applied to solve this kind of problems,
it has the confliction between the search space and convergence speed: the expansion of
search space will slow down the convergence speed and the acceleration of convergence
speed will reduce the search space, lead to early convergence and as a result stop research at
some local optimal solutions.
Evolutionary algorithms have been used regularly to solve multi-modal function
optimization problems, due to their population-based approach and their inherent
parallelism, e.g. a crowding factor model proposed by De Jong[2], a shared-function model
proposed by Goldberg and Richardson[3], an artificial immune system method, a split ring
parallel evolutionary algorithm, etc., all of which have attempted to maintain the diversity
of the population during the process of evolution. In this chapter, we introduce a new
‘Domain Decomposition Evolutionary algorithm (called DDEA) which can solve not only
simple nonlinear programming problems effectively and efficiently, but can also find the
multiple solutions of multi-modal problems in a single run. The DDEA employs dual
strategy approach that searches at two levels of detail (namely global then local). In the first
(global) step, a Self-adaptive Mutations with Multi-parent Crossover Evolutionary
Algorithm (SMMCEA)[4] is employed to perform a global search to divide the
(chromosome) population into several subpopulations or niches in subdomains, which is
domain decomposition. In the second (local) step, an evolutionary strategy-like algorithm is
employed to perform a local search on each isolated niche independently. Then the best
solutions of the multi-modal problem are exploited.
The remainder of the chapter is organized as follows. Section 2 introduces a Self-adaptive
Mutations with Multi-parent Crossover Evolutionary Algorithm (SMMCEA); Section 3
introduces Domain Decomposition evolutionary algorithm (DDEA); Section 4 presents the
successful results of applying DDEA to several challenging numerical multi-modal
optimization problems; Section 5 concludes.

 Advances in Evolutionary Algorithms

168

2. Introduction of SMMCEA
2.1 The Problem to Solve
The general non-linear programming (NLP) problem can be expressed in the following
form:

Minimize f(X,Y)
s.t. hi(X,Y)= 0 i = 1,2,...,k1 ， gj(X,Y) ≤0 j=k1+1, k1+2,...,k

Xlower ≤ X ≤ Xupper ， Ylower ≤ Y ≤ Yupper
(1)

where X∈Rp, Y∈Nq, and the objective function f (X,Y), the equality constraints hi(X,Y) and
the inequality constraints gj(X ,Y) are usually nonlinear functions which include both real
variable vector X and integer variable vector Y.
Denoting the domain D = {(X,Y) | Xlower ≤ X ≤ Xupper，Ylower ≤ Y ≤ Yupper }, we introduce the
concept of a subspace V of the domain D. m points (Xj,Yj), j＝1,2,…,m in D are used to
construct the subspace V, defined as :

V ＝{(Xv,Yv)∈D|(Xv,Yv)= ∑ =

m
i iii YXa1),(}

where ai is subject to ∑ =

m
i ia1 = 1, -0.5≤ ai ≤1.5.

Because we deal mainly with optimization problems which have real variables and
INequality constraints, we assume k1 = 0 and q = 0 in the expression (1).

Denoting wi (X)＝
⎪⎩

⎪
⎨
⎧ ≤

 otherwise),(

0)(0,

Xgi

Xgi and W(X)＝)(
1

XW
k

i
i∑

=

Then problem (1) can be expressed as follows:

 Minimize f(X) X∈D (2)

Subject to

W(X)=0 X∈D
We define a Boolean function “better” as:

better (X1, X2) ＝

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>∧=

≤∧=

>

<

FALSE2121

TRUE121

FALSE21

TRUE21

))()(())W()(W(

))()(())W()(W(

) W()W(

)()(

2

XfXfXX

XfXfXX

XX

XWXW

If better (X1, X2) is TRUE，this means that the individual X1 is “better” than the individual
X2.

2.2 Related Work

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

169

In 1999, Guo Tao proposed a multi-parent combinatorial search algorithm (GTA) for solving
non-linear optimization problems in his PhD thesis [5]. Later it was developed as a kind of
subspace stochastic search algorithm [6], that can be described as follows:
Guo Tao’s Algorithm (GTA)
Begin
 initialize popln P ＝ {X1, X2,…, XN }; Xi ∈D since (q = 0 implies no integer variables)
 generation count t := 0;
 X best ＝arg)(

1
XfMin i

Ni≤≤
;

 X worst ＝ arg) (
1

XMax i
Ni

f
≤≤

;

 while abs(f (X best)-f (X worst)) >ε do
 select randomly m points X 1′, X 2′,…, X m′ from P to form the subspace V;
 select randomly one point X′ from V;
 If better (X′, X worst) then Xworst: = X′;
 t := t + 1;
 Xbest = arg)(

1
XfMin i

Ni≤≤
;

 Xworst ＝ arg)(
1

XfMax i
Ni≤≤

 end do
 output t , P ;
End
where N is the size of population P, (m –1) is the dimension of the subspace V (if the m
points (vectors) that construct the subspace V are linearly independent)，t is the number of
generations, ε is the accuracy of solution. Xbest = arg)(

1
XfMin i

Ni≤≤
 means that Xbest is the

variable (individual) in Xi (i=1, 2,…, N) that makes the function f (X) have the smallest value.
The sub-population in GTA is families which reproduce sexually through the number of m
individuals randomly selected from P. The best individual in the sub-population takes part
in competition to replace the worst individual in P, therefore the pressure of elimination
through selection is minimum. There is no mutation operator, only using multi-parents
crossover in GTA.

2.3 A self-adaptive evolutionary algorithm
Since Guo’s algorithm deals mainly with continuous NLP problems with Inequality
constraints, to make it a truly universal and robust algorithm for solving general NLP
problems, we extend Guo’s algorithm by adding to it the following improvements:
(1) Guo selected randomly only one candidate solution from the current subspace V.
Although he used the concept of a subspace to describe his algorithm, he did not really use a
subspace search, but rather a multi-parent crossover. Because he selected randomly only one
individual in the subspace, this action would tend to ignore better solutions in the subspace,
and hence influence negatively the quality of the result and the efficiency of the search. If
however, we select randomly several individuals from the subspace, and substitute the best
one for the worst one in the current population, the search should be better. So we replace
the instruction line in Guo’s algorithm:

 Advances in Evolutionary Algorithms

168

2. Introduction of SMMCEA
2.1 The Problem to Solve
The general non-linear programming (NLP) problem can be expressed in the following
form:

Minimize f(X,Y)
s.t. hi(X,Y)= 0 i = 1,2,...,k1 ， gj(X,Y) ≤0 j=k1+1, k1+2,...,k

Xlower ≤ X ≤ Xupper ， Ylower ≤ Y ≤ Yupper
(1)

where X∈Rp, Y∈Nq, and the objective function f (X,Y), the equality constraints hi(X,Y) and
the inequality constraints gj(X ,Y) are usually nonlinear functions which include both real
variable vector X and integer variable vector Y.
Denoting the domain D = {(X,Y) | Xlower ≤ X ≤ Xupper，Ylower ≤ Y ≤ Yupper }, we introduce the
concept of a subspace V of the domain D. m points (Xj,Yj), j＝1,2,…,m in D are used to
construct the subspace V, defined as :

V ＝{(Xv,Yv)∈D|(Xv,Yv)= ∑ =

m
i iii YXa1),(}

where ai is subject to ∑ =

m
i ia1 = 1, -0.5≤ ai ≤1.5.

Because we deal mainly with optimization problems which have real variables and
INequality constraints, we assume k1 = 0 and q = 0 in the expression (1).

Denoting wi (X)＝
⎪⎩

⎪
⎨
⎧ ≤

 otherwise),(

0)(0,

Xgi

Xgi and W(X)＝)(
1

XW
k

i
i∑

=

Then problem (1) can be expressed as follows:

 Minimize f(X) X∈D (2)

Subject to

W(X)=0 X∈D
We define a Boolean function “better” as:

better (X1, X2) ＝

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>∧=

≤∧=

>

<

FALSE2121

TRUE121

FALSE21

TRUE21

))()(())W()(W(

))()(())W()(W(

) W()W(

)()(

2

XfXfXX

XfXfXX

XX

XWXW

If better (X1, X2) is TRUE，this means that the individual X1 is “better” than the individual
X2.

2.2 Related Work

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

169

In 1999, Guo Tao proposed a multi-parent combinatorial search algorithm (GTA) for solving
non-linear optimization problems in his PhD thesis [5]. Later it was developed as a kind of
subspace stochastic search algorithm [6], that can be described as follows:
Guo Tao’s Algorithm (GTA)
Begin
 initialize popln P ＝ {X1, X2,…, XN }; Xi ∈D since (q = 0 implies no integer variables)
 generation count t := 0;
 X best ＝arg)(

1
XfMin i

Ni≤≤
;

 X worst ＝ arg) (
1

XMax i
Ni

f
≤≤

;

 while abs(f (X best)-f (X worst)) >ε do
 select randomly m points X 1′, X 2′,…, X m′ from P to form the subspace V;
 select randomly one point X′ from V;
 If better (X′, X worst) then Xworst: = X′;
 t := t + 1;
 Xbest = arg)(

1
XfMin i

Ni≤≤
;

 Xworst ＝ arg)(
1

XfMax i
Ni≤≤

 end do
 output t , P ;
End
where N is the size of population P, (m –1) is the dimension of the subspace V (if the m
points (vectors) that construct the subspace V are linearly independent)，t is the number of
generations, ε is the accuracy of solution. Xbest = arg)(

1
XfMin i

Ni≤≤
 means that Xbest is the

variable (individual) in Xi (i=1, 2,…, N) that makes the function f (X) have the smallest value.
The sub-population in GTA is families which reproduce sexually through the number of m
individuals randomly selected from P. The best individual in the sub-population takes part
in competition to replace the worst individual in P, therefore the pressure of elimination
through selection is minimum. There is no mutation operator, only using multi-parents
crossover in GTA.

2.3 A self-adaptive evolutionary algorithm
Since Guo’s algorithm deals mainly with continuous NLP problems with Inequality
constraints, to make it a truly universal and robust algorithm for solving general NLP
problems, we extend Guo’s algorithm by adding to it the following improvements:
(1) Guo selected randomly only one candidate solution from the current subspace V.
Although he used the concept of a subspace to describe his algorithm, he did not really use a
subspace search, but rather a multi-parent crossover. Because he selected randomly only one
individual in the subspace, this action would tend to ignore better solutions in the subspace,
and hence influence negatively the quality of the result and the efficiency of the search. If
however, we select randomly several individuals from the subspace, and substitute the best
one for the worst one in the current population, the search should be better. So we replace
the instruction line in Guo’s algorithm:

 Advances in Evolutionary Algorithms

170

“select randomly one point X′from V; ”

with the two instruction lines:

 “ select randomly s points *
1X ， *

2X ，…， *
sX from V;

 X′= arg ()
1

if XMin
i s

∗

≤ ≤
;”

(2)The dimension m of the subspace in Guo’s algorithm is fixed (i.e. m parents reproduce).
The algorithm always selects a substitute solution in subspaces which have the same
dimension, regardless of the characteristics of the solutions in the current population. Thus,
when the population is close to the optimal value, the searching range is still large. This
would apparently result in unnecessary computation, and affect the efficiency of the search.
We can in fact reduce the search range, that is to say, the dimension of the subspaces. We
therefore use subspaces with variable dimensions in the new algorithm, by adding the
following instruction line to Guo’s algorithm:

if abs (f (Xbest) – f (Xworst)) ≤ η .and. m ≥3 then m := m – 1;

where η depends on the computation accuracy ε, and η > ε. For example, if the computation
accuracy ε = 10-14, then we can set η = 10-2 or 10-3.

(3) We know in principle that Guo’s algorithm can deal with problems containing EQuality
constraints. For example, we can use the device of setting two INequality constraints
0≤hi(X ,Y) and hi(X ,Y)≤0 to replace the equality constraint hi(X ,Y) = 0, but the experimental
results when employing this device are not ideal. However, equality constraints are likely to
exist in real-world problems, so we should find methods to deal with them. One such
method is to define a new function W(X, Y)

Where W(X, Y) = ∑
=

k

i
YXiW

1
),(

⎪⎩

⎪
⎨
⎧

++=

=
=

.,,21,11)},,(,max{

,,2,1 ,),(
),(

kkkiYXigo
ikiYXih

YXW i

(4) The penalty factor r is usually fixed. However, some people use it as a variable, such as
Cello[7], who employed a self-adaptive penalty function, but his procedure was rather
complex (using two populations). We also make r a variable namely r = r (t), where t is the
iteration count. It can self-adjust according to the reflection information, so we label it a
“self-adaptive penalty operator”. Since the constraints have been normalized, r is relative
only to the range of the objective function, which ensures a balance between the errors of the
fitness function and the objective function, in order of magnitude.
(5) Guo’s algorithm can deal only with continuous optimization problems. It cannot deal
directly with integer or mixed integer NLP problems. In our algorithm, when we are
confronted with such problems, we need only replace the integer variables derived from the

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

171

range of the float of the fitness function with “integer function” int(Y*), where int(Y*) is
defined as the integer part of Y*. No other changes to the algorithm are needed.
 (6) The only genetic operator used in Guo’s algorithm was crossover. However, we can add
self –adaptive mutations in it, we introduce a better of Gaussian and Cauchy mutation
operator into the subspace search. For Gaussian density function fG with expectation 0; and
variance σ 2 is

Gf =
2

2

2

2
1 σ

πσ

x

e
−

 , －∞ < x < +∞

For Cauchy density function fC with scale parameter t>0 is,

Cf = 22
11

xt +π
 , －∞ < x < +∞

2.4 A Self-adaptive mutations with multi-parent crossover evolutionary algorithm
Considering the above points, we introduce a new algorithm as follows:
Denoting Z = (X, Y*), where Z∈D*, and
D* = {(X, Y*)|Xlower≤X≤Xupper, Ylower≤Y*≤Yu, X ∈Rp, Y*∈Rq}, we define integer vector
Y=int(Y*), where Yu = Yupper+0.999…9I
Denoting W(Z)＝W(X, int(Y*)),
we define the Boolean function “better” as follows:

 better(Z1 ,Z2) ＝

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>∧=

≤∧=

>

<

FALSE2121

TRUE121

FALSE21

TRUE21

))()(())W()(W(

))()(())W()(W(

) W()W(

)()(

2

XfXfXX

XfXfXX

XX

XWXW

The general NLP problem (1) can be expressed as follows:

 Minimize f(X,int(Y*)) in D* S.t. (3)

W(Z)=0 , Z∈D*

The new algorithm can now be described as follows:
SMMCEA :
 Begin

 initialize P ＝ {Z1,Z2,…,ZN }; Zi∈ *D ;
 t := 0;
 Zbest ＝)(arg

1 iZfMin
Ni≤≤

;

 Advances in Evolutionary Algorithms

170

“select randomly one point X′from V; ”

with the two instruction lines:

 “ select randomly s points *
1X ， *

2X ，…， *
sX from V;

 X′= arg ()
1

if XMin
i s

∗

≤ ≤
;”

(2)The dimension m of the subspace in Guo’s algorithm is fixed (i.e. m parents reproduce).
The algorithm always selects a substitute solution in subspaces which have the same
dimension, regardless of the characteristics of the solutions in the current population. Thus,
when the population is close to the optimal value, the searching range is still large. This
would apparently result in unnecessary computation, and affect the efficiency of the search.
We can in fact reduce the search range, that is to say, the dimension of the subspaces. We
therefore use subspaces with variable dimensions in the new algorithm, by adding the
following instruction line to Guo’s algorithm:

if abs (f (Xbest) – f (Xworst)) ≤ η .and. m ≥3 then m := m – 1;

where η depends on the computation accuracy ε, and η > ε. For example, if the computation
accuracy ε = 10-14, then we can set η = 10-2 or 10-3.

(3) We know in principle that Guo’s algorithm can deal with problems containing EQuality
constraints. For example, we can use the device of setting two INequality constraints
0≤hi(X ,Y) and hi(X ,Y)≤0 to replace the equality constraint hi(X ,Y) = 0, but the experimental
results when employing this device are not ideal. However, equality constraints are likely to
exist in real-world problems, so we should find methods to deal with them. One such
method is to define a new function W(X, Y)

Where W(X, Y) = ∑
=

k

i
YXiW

1
),(

⎪⎩

⎪
⎨
⎧

++=

=
=

.,,21,11)},,(,max{

,,2,1 ,),(
),(

kkkiYXigo
ikiYXih

YXW i

(4) The penalty factor r is usually fixed. However, some people use it as a variable, such as
Cello[7], who employed a self-adaptive penalty function, but his procedure was rather
complex (using two populations). We also make r a variable namely r = r (t), where t is the
iteration count. It can self-adjust according to the reflection information, so we label it a
“self-adaptive penalty operator”. Since the constraints have been normalized, r is relative
only to the range of the objective function, which ensures a balance between the errors of the
fitness function and the objective function, in order of magnitude.
(5) Guo’s algorithm can deal only with continuous optimization problems. It cannot deal
directly with integer or mixed integer NLP problems. In our algorithm, when we are
confronted with such problems, we need only replace the integer variables derived from the

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

171

range of the float of the fitness function with “integer function” int(Y*), where int(Y*) is
defined as the integer part of Y*. No other changes to the algorithm are needed.
 (6) The only genetic operator used in Guo’s algorithm was crossover. However, we can add
self –adaptive mutations in it, we introduce a better of Gaussian and Cauchy mutation
operator into the subspace search. For Gaussian density function fG with expectation 0; and
variance σ 2 is

Gf =
2

2

2

2
1 σ

πσ

x

e
−

 , －∞ < x < +∞

For Cauchy density function fC with scale parameter t>0 is,

Cf = 22
11

xt +π
 , －∞ < x < +∞

2.4 A Self-adaptive mutations with multi-parent crossover evolutionary algorithm
Considering the above points, we introduce a new algorithm as follows:
Denoting Z = (X, Y*), where Z∈D*, and
D* = {(X, Y*)|Xlower≤X≤Xupper, Ylower≤Y*≤Yu, X ∈Rp, Y*∈Rq}, we define integer vector
Y=int(Y*), where Yu = Yupper+0.999…9I
Denoting W(Z)＝W(X, int(Y*)),
we define the Boolean function “better” as follows:

 better(Z1 ,Z2) ＝

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>∧=

≤∧=

>

<

FALSE2121

TRUE121

FALSE21

TRUE21

))()(())W()(W(

))()(())W()(W(

) W()W(

)()(

2

XfXfXX

XfXfXX

XX

XWXW

The general NLP problem (1) can be expressed as follows:

 Minimize f(X,int(Y*)) in D* S.t. (3)

W(Z)=0 , Z∈D*

The new algorithm can now be described as follows:
SMMCEA :
 Begin

 initialize P ＝ {Z1,Z2,…,ZN }; Zi∈ *D ;
 t := 0;
 Zbest ＝)(arg

1 iZfMin
Ni≤≤

;

 Advances in Evolutionary Algorithms

172

 Zworst ＝)(arg
1 iZfMax

Ni≤≤
;

 while not abs (F (Zbest) – F (Zworst)) ≤ε do
 select randomly M points Z1′, Z2′,…, ZM′from P to form the subspace V;

 select s points randomly *
1Z , *

2Z … *
sZ from V;

 for i=1,…s do
 for j=1,…p+q do

 *
GiZ (j) := *

iZ (j)+ iσ (j)N j (0, 1)

 *
CiZ (j) := *

iZ (j)+ iσ (j)C j (1)

 iσ (j) := iσ (j)exp())1,0(')1,0(jNN ττ +

 endfor

 if better(*
GiZ , *

CiZ) then : else : *'**'*
CiiGii ZZZZ == ;

 endfor
 Z′=)(arg

1 iZfMin
Ni≤≤

;

 if better (Z′, Z worst) then Zworst := Z′;
 t := t + 1;
 Zbest ＝)(arg

1 iZfMin
Ni≤≤

;

 Zworst ＝)(arg
1 iZfMax

Ni≤≤
;

 if abs (f (Zbest)- f (Zworst)) ≤η .and. M ≥3 then
 M := M -1;
 endwhile
 output t , Zbest , f(Zbest) ;
end

Where *
GiZ (j), *

CiZ (j) and iσ (j) denote the j-th component of the vectors *
GiZ , *

CiZ and iσ ,
respectively. N(0,1) denotes a normally distributed one-dimensional random number with
mean zero and standard deviation one. N j (0, 1) indicates that the Gaussian random

number is generated anew for each value of j. C j (1) denotes a Cauchy distributed one-

dimensional random number with t=1.

The factors τ and 'τ have commonly set to
1

)(2
−

⎟
⎠
⎞⎜

⎝
⎛ + qp and () 1

)(2
−

+ qp .

The new algorithm has the two important features:
1. This algorithm is an ergodicity search. During the random search of the subspace, we

employ a “non-convex combination” approach, that is, the coefficients ai of Z’=∑
=

m

i
ii Za

1

' are

random numbers in the interval [-0.5，1.5] This ensures a non-zero probability that any
point in the solution space is searched. This ergodicity of the algorithm ensures that the
optimum is not ignored.

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

173

2. The monotonic fitness decrease of the population (when the minimum is required). Each
iteration (t→t+1) of the algorithm discards only the individual having the worst fitness in
the population. This ensures a monotonically decreasing trend of the values of objective
function of the population, which ensures that each individual of the population will reach
the optimum.
When we consider the population P(0), P(1), P(2),…, P(t),… as a Markov chain, we can prove
the convergence of our new algorithm. See [12].

3. Introduction of DDEA
Experiments indicate that if SMMCEA is directly applied to the optimization of multi-
modal function, it is easy to encounter the following two conditions:
1. If keep searching with relatively large population size and crossover size, the

individuals of the population will spread around near different modals, but it’s difficult
for population to get any more improvement and to reach all the modals exactly.

2. If keep searching with relatively small population size and crossover size, the
individuals of the population will converge rapidly and reach a few modals, but lose
many other modals.

To adopt it to the optimization of multi-modal functions, we combine the above two
conditions together and forms two-phase evolutionary algorithm. we divide the
optimization procedure into two phases: the first phase is called global optimization, which
keeps searching with relatively large population size and crossover size in order to
determine the neighborhood of all modals; the second phase is called local optimization,
which begins search from each of the neighborhoods which is determined by the global
optimization and then keep searching with relatively small subpopulation size and
crossover size in order to converge rapidly and reach the modals respectively.
In addition, we introduce the following strategies to make the algorithm suitable to the
different tasks of the two phases:
1. During the phase of global optimization, in order to avoid the loss of some obtained

modals we introduce the strategy of good individuals isolation: before each evolvement
all the individuals in the current population are sorted by their fitness value and then
some of the good individuals are limited not to be parents in the next multi-parent
crossover.

2. During the phase of local optimization, in order to make all the subpopulations
converge to their modals respectively more quickly, we introduce the strategy of best
individual exemplar: the best individual of the current population will be compelled to
be one of the parents in the next multi-parent crossover.

3. During the phase of local optimization, in order to begin search based on the result of
the global optimization and to keep the search around the neighborhood of all the
modals, to each modal we will construct a local feasible area η, which is to be modified
during the evolvement.

The detailed procedures of the optimization DDEA are as the following:
Phase 1: Global optimization (using SMMCEA)

 Advances in Evolutionary Algorithms

172

 Zworst ＝)(arg
1 iZfMax

Ni≤≤
;

 while not abs (F (Zbest) – F (Zworst)) ≤ε do
 select randomly M points Z1′, Z2′,…, ZM′from P to form the subspace V;

 select s points randomly *
1Z , *

2Z … *
sZ from V;

 for i=1,…s do
 for j=1,…p+q do

 *
GiZ (j) := *

iZ (j)+ iσ (j)N j (0, 1)

 *
CiZ (j) := *

iZ (j)+ iσ (j)C j (1)

 iσ (j) := iσ (j)exp())1,0(')1,0(jNN ττ +

 endfor

 if better(*
GiZ , *

CiZ) then : else : *'**'*
CiiGii ZZZZ == ;

 endfor
 Z′=)(arg

1 iZfMin
Ni≤≤

;

 if better (Z′, Z worst) then Zworst := Z′;
 t := t + 1;
 Zbest ＝)(arg

1 iZfMin
Ni≤≤

;

 Zworst ＝)(arg
1 iZfMax

Ni≤≤
;

 if abs (f (Zbest)- f (Zworst)) ≤η .and. M ≥3 then
 M := M -1;
 endwhile
 output t , Zbest , f(Zbest) ;
end

Where *
GiZ (j), *

CiZ (j) and iσ (j) denote the j-th component of the vectors *
GiZ , *

CiZ and iσ ,
respectively. N(0,1) denotes a normally distributed one-dimensional random number with
mean zero and standard deviation one. N j (0, 1) indicates that the Gaussian random

number is generated anew for each value of j. C j (1) denotes a Cauchy distributed one-

dimensional random number with t=1.

The factors τ and 'τ have commonly set to
1

)(2
−

⎟
⎠
⎞⎜

⎝
⎛ + qp and () 1

)(2
−

+ qp .

The new algorithm has the two important features:
1. This algorithm is an ergodicity search. During the random search of the subspace, we

employ a “non-convex combination” approach, that is, the coefficients ai of Z’=∑
=

m

i
ii Za

1

' are

random numbers in the interval [-0.5，1.5] This ensures a non-zero probability that any
point in the solution space is searched. This ergodicity of the algorithm ensures that the
optimum is not ignored.

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

173

2. The monotonic fitness decrease of the population (when the minimum is required). Each
iteration (t→t+1) of the algorithm discards only the individual having the worst fitness in
the population. This ensures a monotonically decreasing trend of the values of objective
function of the population, which ensures that each individual of the population will reach
the optimum.
When we consider the population P(0), P(1), P(2),…, P(t),… as a Markov chain, we can prove
the convergence of our new algorithm. See [12].

3. Introduction of DDEA
Experiments indicate that if SMMCEA is directly applied to the optimization of multi-
modal function, it is easy to encounter the following two conditions:
1. If keep searching with relatively large population size and crossover size, the

individuals of the population will spread around near different modals, but it’s difficult
for population to get any more improvement and to reach all the modals exactly.

2. If keep searching with relatively small population size and crossover size, the
individuals of the population will converge rapidly and reach a few modals, but lose
many other modals.

To adopt it to the optimization of multi-modal functions, we combine the above two
conditions together and forms two-phase evolutionary algorithm. we divide the
optimization procedure into two phases: the first phase is called global optimization, which
keeps searching with relatively large population size and crossover size in order to
determine the neighborhood of all modals; the second phase is called local optimization,
which begins search from each of the neighborhoods which is determined by the global
optimization and then keep searching with relatively small subpopulation size and
crossover size in order to converge rapidly and reach the modals respectively.
In addition, we introduce the following strategies to make the algorithm suitable to the
different tasks of the two phases:
1. During the phase of global optimization, in order to avoid the loss of some obtained

modals we introduce the strategy of good individuals isolation: before each evolvement
all the individuals in the current population are sorted by their fitness value and then
some of the good individuals are limited not to be parents in the next multi-parent
crossover.

2. During the phase of local optimization, in order to make all the subpopulations
converge to their modals respectively more quickly, we introduce the strategy of best
individual exemplar: the best individual of the current population will be compelled to
be one of the parents in the next multi-parent crossover.

3. During the phase of local optimization, in order to begin search based on the result of
the global optimization and to keep the search around the neighborhood of all the
modals, to each modal we will construct a local feasible area η, which is to be modified
during the evolvement.

The detailed procedures of the optimization DDEA are as the following:
Phase 1: Global optimization (using SMMCEA)

 Advances in Evolutionary Algorithms

174

Phase 2: Local optimization

The new algorithm employs a zoomed (global to local) dual strategy (two steps) approach.
The first (global) step employs a global search, i.e. it divides the (chromosome) population
into L (L ≤ k) niches, each of which includes at least one of the k optimal solutions (if the
objective function is continuous in D*). This step uses a SMMCEA [4]. If the number of
parents M in the multi-parent recombination operator is large enough, for example, M ≥ 8,

Randomly initialize population P(0)= {P1,P2,…, PN1},Evaluate P(0),t1=0
while t1< MAXT1 do
randomly select m1 parents from P(t1) with the strategy of good individuals isolation
produce a child by multi-parent crossover and self-adaptive Gaussian and Cauchy

 mutation
 if the child is better than the worst individual of P(t1) then
 replace the worst individual of P(t1) with the child
 end if
 t1= t1+1
end while

for k= 1 to N1 do

initialize local feasible area η, which is the rectangle area around Pk with the
 radium r

Randomly initialize subpopulation SUBP(0) within the area of η

SUBP(0)={ SUBP 1, SUBP 2,…, SUBP N2 }

t2=0

while (t2< MAXT2 and individuals of SUBP(t2) are different)do

 randomly select m2 parents from SUBP(t2) with the strategy of the best
individual exemplar

 produce a child by multi-parent crossover
if the child∈η and it is better than the worst individual of SUBP(t2)
then replace the worst individual of SUBP(t2) with the child

 end if
 evaluate the best individual of SUBP(t2), which is named as
 SUBPbest

 modify local feasible area η, make it as the rectangle area around
 SUBPbest

with the radium r
 t2= t2+1

end while
output the best individual of SUBP(t2)

end for

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

175

then after sufficient large generations the population is decomposed into subpopulations
(each of which approaches to an optimal solution), else it will converge to only one solution
[11].
The second (local) step employs an evolution strategy [13] to search for the local optima in
the chosen L subspaces determined by the subpopulations. Since the L optimal solutions are
located in separate subspaces, the local strategy consists of two sub-steps:
a). Rank the individuals of the population obtained from the first (global) step according to
their fitness values. Then choose the best L individuals from the population, ensuring that
they are not close to each other like hedgehogs.
b). Generate L subspaces with the chosen individual at the center of each. Search these
niches locally until each subspace converges to an optimal solution. If one does not know
how many optimal solutions a given problem has, one can predict the number k, for
example, by using the number of individuals whose fitness values are larger than the
average fitness value.
The algorithm has different limiting behaviors for different problems, namely:
a). When the problem has only k = 1 solution, i.e. the only globally optimal solution.
Following the nature of population descent, all of the individuals will descend together to
the bottom of the valley.
b). When the problem has k > 1 solutions, i.e. if k ≤ N, where N is the size of the population, k
solutions may be generated in the population. The algorithm will then find multi-solutions
in a single run.

4. Numerical experiments and analysis
Example 1 Humpback function (the function has six local optimal solutions, two of which
are global optimal solutions)

2
2

2
221

2
1

4
1

2
121)44()3/1.24(),(min xxxxxxxxxf +−+++−=

where]2,2[],3,3[21 −∈−∈ xx
Example 2 Typical function with many global optimal solutions(the function has increasing
number of global optimal solutions while j is increased)

2
2

2
121))(sin())(sin(3),(min jxjxxxf −−= ,

where ,2,1],6,0[, 21 =∈ jxx
Example 3 Absolute value function(the function has a plenty of local optimal solutions, 16 of
which are global optimal solutions)

∏∏
==

−+−=
4

1
2

4

1
121 |4||3|),(min

ji

jxixxxf ,

where]17,0[],13,0[21 ∈∈ xx
Example 4 N-dimension Shubert function[8](when n=2，the function has 720 local optimal
solutions, 18 of which are global optimal solutions)

 Advances in Evolutionary Algorithms

174

Phase 2: Local optimization

The new algorithm employs a zoomed (global to local) dual strategy (two steps) approach.
The first (global) step employs a global search, i.e. it divides the (chromosome) population
into L (L ≤ k) niches, each of which includes at least one of the k optimal solutions (if the
objective function is continuous in D*). This step uses a SMMCEA [4]. If the number of
parents M in the multi-parent recombination operator is large enough, for example, M ≥ 8,

Randomly initialize population P(0)= {P1,P2,…, PN1},Evaluate P(0),t1=0
while t1< MAXT1 do
randomly select m1 parents from P(t1) with the strategy of good individuals isolation
produce a child by multi-parent crossover and self-adaptive Gaussian and Cauchy

 mutation
 if the child is better than the worst individual of P(t1) then
 replace the worst individual of P(t1) with the child
 end if
 t1= t1+1
end while

for k= 1 to N1 do

initialize local feasible area η, which is the rectangle area around Pk with the
 radium r

Randomly initialize subpopulation SUBP(0) within the area of η

SUBP(0)={ SUBP 1, SUBP 2,…, SUBP N2 }

t2=0

while (t2< MAXT2 and individuals of SUBP(t2) are different)do

 randomly select m2 parents from SUBP(t2) with the strategy of the best
individual exemplar

 produce a child by multi-parent crossover
if the child∈η and it is better than the worst individual of SUBP(t2)
then replace the worst individual of SUBP(t2) with the child

 end if
 evaluate the best individual of SUBP(t2), which is named as
 SUBPbest

 modify local feasible area η, make it as the rectangle area around
 SUBPbest

with the radium r
 t2= t2+1

end while
output the best individual of SUBP(t2)

end for

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

175

then after sufficient large generations the population is decomposed into subpopulations
(each of which approaches to an optimal solution), else it will converge to only one solution
[11].
The second (local) step employs an evolution strategy [13] to search for the local optima in
the chosen L subspaces determined by the subpopulations. Since the L optimal solutions are
located in separate subspaces, the local strategy consists of two sub-steps:
a). Rank the individuals of the population obtained from the first (global) step according to
their fitness values. Then choose the best L individuals from the population, ensuring that
they are not close to each other like hedgehogs.
b). Generate L subspaces with the chosen individual at the center of each. Search these
niches locally until each subspace converges to an optimal solution. If one does not know
how many optimal solutions a given problem has, one can predict the number k, for
example, by using the number of individuals whose fitness values are larger than the
average fitness value.
The algorithm has different limiting behaviors for different problems, namely:
a). When the problem has only k = 1 solution, i.e. the only globally optimal solution.
Following the nature of population descent, all of the individuals will descend together to
the bottom of the valley.
b). When the problem has k > 1 solutions, i.e. if k ≤ N, where N is the size of the population, k
solutions may be generated in the population. The algorithm will then find multi-solutions
in a single run.

4. Numerical experiments and analysis
Example 1 Humpback function (the function has six local optimal solutions, two of which
are global optimal solutions)

2
2

2
221

2
1

4
1

2
121)44()3/1.24(),(min xxxxxxxxxf +−+++−=

where]2,2[],3,3[21 −∈−∈ xx
Example 2 Typical function with many global optimal solutions(the function has increasing
number of global optimal solutions while j is increased)

2
2

2
121))(sin())(sin(3),(min jxjxxxf −−= ,

where ,2,1],6,0[, 21 =∈ jxx
Example 3 Absolute value function(the function has a plenty of local optimal solutions, 16 of
which are global optimal solutions)

∏∏
==

−+−=
4

1
2

4

1
121 |4||3|),(min

ji

jxixxxf ,

where]17,0[],13,0[21 ∈∈ xx
Example 4 N-dimension Shubert function[8](when n=2，the function has 720 local optimal
solutions, 18 of which are global optimal solutions)

 Advances in Evolutionary Algorithms

176

∏∑
= =

++=
n

i j
in jxjjxxxf

1

5

1
21))1cos((),,,(min

where [10,10], 1, 2, ,ix i n∈ − =

Fig. 1. Shubert function
All the examples mentioned above are representatives of different kinds of functions.
Example 1, Example 2 and Example 4 are cited from [9]. Example 1 is the representative of
glossy function with only a few modals, Example 2 is the representative of glossy function
with many modals, Example 3 is the representative of non-glossy function, and example 4 is
the representative of high-dimension function. Generally we can get satisfying optimal
solutions when we set the parameters according to the following principle:
The phase of global optimization: N1≈ 10*the number of actual optimal solutions

2000 < MAXT1< 100*N1

6 ≤ m1 ≤ 10

The phase of local optimization: 10 < N2 < 20, r = 2.0

2000 < MAXT2 < 5000

3 ≤ m2 ≤ 5
The following figures show population distribution in different phases for each example,
which indicate the optimization procedures of different examples. Each figure has three
parts: (a) is the distribution of population after randomly initialization; (b) is the distribution
of population after global optimization; (c) is the distribution of the found modals after local
optimization. The horizontal coordinate is the value of x1 and the vertical coordinate is the
value of x2.

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

177

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) after randomly initialization (b) after global optimization (c) after local optimization
Fig. 2. Population distribution for example 1

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(a) after randomly initialization (b) after global optimization (c) after local optimization
Fig. 3. Population distribution for example 2 when j=5

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14
2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14
2

4

6

8

10

12

14

16

18

(a) after randomly initialization (b) after global optimization (c) after local optimization
Fig. 4. Population distribution for example 3

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

(a) after randomly initialization (b) after global optimization (c) after local optimization
Fig. 5. Population distribution for example 4 when n=2

Additionally, the following tables list parameters and results for different experiments:

Parameters results
Example No. N1 MAXT1 Actual modals Found modals fitness of

 Advances in Evolutionary Algorithms

176

∏∑
= =

++=
n

i j
in jxjjxxxf

1

5

1
21))1cos((),,,(min

where [10,10], 1, 2, ,ix i n∈ − =

Fig. 1. Shubert function
All the examples mentioned above are representatives of different kinds of functions.
Example 1, Example 2 and Example 4 are cited from [9]. Example 1 is the representative of
glossy function with only a few modals, Example 2 is the representative of glossy function
with many modals, Example 3 is the representative of non-glossy function, and example 4 is
the representative of high-dimension function. Generally we can get satisfying optimal
solutions when we set the parameters according to the following principle:
The phase of global optimization: N1≈ 10*the number of actual optimal solutions

2000 < MAXT1< 100*N1

6 ≤ m1 ≤ 10

The phase of local optimization: 10 < N2 < 20, r = 2.0

2000 < MAXT2 < 5000

3 ≤ m2 ≤ 5
The following figures show population distribution in different phases for each example,
which indicate the optimization procedures of different examples. Each figure has three
parts: (a) is the distribution of population after randomly initialization; (b) is the distribution
of population after global optimization; (c) is the distribution of the found modals after local
optimization. The horizontal coordinate is the value of x1 and the vertical coordinate is the
value of x2.

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

177

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) after randomly initialization (b) after global optimization (c) after local optimization
Fig. 2. Population distribution for example 1

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(a) after randomly initialization (b) after global optimization (c) after local optimization
Fig. 3. Population distribution for example 2 when j=5

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14
2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14
2

4

6

8

10

12

14

16

18

(a) after randomly initialization (b) after global optimization (c) after local optimization
Fig. 4. Population distribution for example 3

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

(a) after randomly initialization (b) after global optimization (c) after local optimization
Fig. 5. Population distribution for example 4 when n=2

Additionally, the following tables list parameters and results for different experiments:

Parameters results
Example No. N1 MAXT1 Actual modals Found modals fitness of

 Advances in Evolutionary Algorithms

178

 all modals
Example 1 20 2000 2[9] 2 -1.031628
Example 2（j=5） 600 60000 100[9] 100 1.000000
Example 3 200 20000 16 16 0.000000
Example 4（n=2） 100 10000 18[9] 18 -186.730909

Table 1. Experiment parameters and results for each example (other parameters are:
m1=7,m2=5,N2=10,MAXT2=2000)

The value of j 2 3 4 5 6 7 8 9 10
Actual modals 16 36 64 100 121 169 225 289 361
Found modals 16 36 64 100 121 169 225 289 361

Table 2. Experiment results for example 2 with different value of j (The fitness of all modals
is 1.000000)

Parameters Results
Example No. N1 MAXT1

Found
modals

fitness of
all modals

Example 4（n=3） 800 500000~1000000 81 -2709.09350

Table 3. Parameters and experiment results for example 4 when n=3 (other parameters are:
m1=7,m2=5,N2=10,MAXT2=10000).

From population distribution of the optimization procedures showed in Fig2, Fig3, Fig4 and
Fig5, as well as the experiment results showed in Tables 1 and Table 2, we can see that
DDEA is very efficient for the optimization of low- dimension multi-modal function, usually
we can reach all the modals exactly. But Table 3 indicates that when the dimension of the
function is increased to higher than two, the efficiency is decreased because of the search
space is expanded sharply.

5. Conclusion
We here proposed some self-adaptive methods to choose the results of Gaussian and
Cauchy mutation, and the dimension of subspace. We used the better of Gaussian and
Cauchy mutation to do local search in subspace, and used multi-parents crossover to
exchange their information to do global search, and used the worst individual eliminated
selection strategy to keep population more diversity.
Judging by the results obtained from the above numerical experiments, we conclude that
our new algorithm is both universal and robust. It can be used to solve function
optimization problems with complex constraints, such as NLP problems with inequality and
(or) equality constraints, or without constraints. It can solve 0-1 NLP problems, integer NLP
problems and mixed integer NLP problems. When confronted with different types of
problems, we don’t need to change our algorithm. All that is needed is to input the fitness
function, the constraint expressions, and the upper and lower limits of the variables of the
problem. Our algorithm usually finds the global optimal value.
In the paper we analyze the character of the multi-parent genetic algorithm, when applied to
solve the optimization of multi-modal function, MPGA works in different forms during
different phases and then forms two-phase genetic algorithm. The experiments indicate that
DDEA is effective to solve the optimization of multi-modal function whose dimension is no

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

179

higher than two, but to high-dimension function, the efficiency is not eminent and it needs
to be improved much more.

6. Acknowledgements
This work was supported by the National Natural Science Foundation of China
(No.60772163) and the Natural Science Foundation of Hubei Province (No. 2005ABA234).
Thanks especially give to the anonymous reviewers for their valuable comments.

7. References
Holland J H. Adaptation in Natural and Artificial System. Ann Arbor: The University of

Michigan Press, 1975.
De Jong, K. A. An analysis of the behavior of a class of genetic adaptive systems. Ph.D.

Thesis, Ann Arbor, MI:University of Michigan. Dissertation Abstracts International,
Vol. 36(10), 5410B (University Microfilms No.76-9381).

Goldberg, D. E. and Richardson, J. Genetic algorithms with sharing for multimodal function
optimization. In Proceedings of the First International Conference on Genetic Algorithms
and Their Applications. 41–49.

Guangming Lin, Lishan Kang, Yuping Chen, Bob McKay and Ruhul Sarker, A self-adaptive
Mutations with Multi-paretn Crossover Evolutionary Algorithm for Solving Function
Optimization Parbolems Lecture Notes in Computer Science 4683, pp.157-168, Springer-
Verlag Berlin Heidelberg.

Tao Guo, Evolutionary Computation and Optimization. PhD thesis, Wuhan University,
Wuhan,1999.

Tao Guo, Kang Lishan. A New Evolutionary Algorithm for Function Optimization. Wuhan
University Journal of Natural Sciences, 1999, 4(4): 404-419.

Carlos A. Coello: Self-adaptive penalties for GA-based optimization, in Proceedings of the
Congress on Evolutionary Computation, Washington, D.C USA, IEEE Press,
1999,537~580

Toyoo Fukuda, Kazuyuki Mori and Makoto Tsukiyama. (1999). Parallel search for multi-
modal function optimization with diversity and learning of immune algorithm. In:
D. Dasgupta (Ed.) Artificial Immune Systems and Their Applications. Springer-Verlag,
Berlin, Heidelberg, 210–220.

Zhai Hai-feng. Zhao Ming-wang. A Cell Excluse Genetic Algorithm for Finding All
Globally Optimal Solutions of Multimodal Function. Control and Decision.
1998,13(2):131-135.

Yan Li, Lishan Kang, Hugo de Garis, Zhuo Kang and Pu Liu. (2002).A robust algorithm for
solving the nonlinear programming problems. International Journal of Computer
Mathematics, 79(5), 523–536.

Lishan Kang,Yan Li, Zhuo Kang, Pu Liu andYuping Chen. (2000).Asynchronous parallel
evolutionary algorithm for function optimization. 16th world computer congress.
Proceedings of Conference on Software: Theory and Practice. Electronic Technology
Press, Aug., Beijing, 737–742.

Jun He, Lishan Kang. On the convergence rates of genetic algorithms. Theoretical Computer
Science, 229 (1999) 23~29

 Advances in Evolutionary Algorithms

178

 all modals
Example 1 20 2000 2[9] 2 -1.031628
Example 2（j=5） 600 60000 100[9] 100 1.000000
Example 3 200 20000 16 16 0.000000
Example 4（n=2） 100 10000 18[9] 18 -186.730909

Table 1. Experiment parameters and results for each example (other parameters are:
m1=7,m2=5,N2=10,MAXT2=2000)

The value of j 2 3 4 5 6 7 8 9 10
Actual modals 16 36 64 100 121 169 225 289 361
Found modals 16 36 64 100 121 169 225 289 361

Table 2. Experiment results for example 2 with different value of j (The fitness of all modals
is 1.000000)

Parameters Results
Example No. N1 MAXT1

Found
modals

fitness of
all modals

Example 4（n=3） 800 500000~1000000 81 -2709.09350

Table 3. Parameters and experiment results for example 4 when n=3 (other parameters are:
m1=7,m2=5,N2=10,MAXT2=10000).

From population distribution of the optimization procedures showed in Fig2, Fig3, Fig4 and
Fig5, as well as the experiment results showed in Tables 1 and Table 2, we can see that
DDEA is very efficient for the optimization of low- dimension multi-modal function, usually
we can reach all the modals exactly. But Table 3 indicates that when the dimension of the
function is increased to higher than two, the efficiency is decreased because of the search
space is expanded sharply.

5. Conclusion
We here proposed some self-adaptive methods to choose the results of Gaussian and
Cauchy mutation, and the dimension of subspace. We used the better of Gaussian and
Cauchy mutation to do local search in subspace, and used multi-parents crossover to
exchange their information to do global search, and used the worst individual eliminated
selection strategy to keep population more diversity.
Judging by the results obtained from the above numerical experiments, we conclude that
our new algorithm is both universal and robust. It can be used to solve function
optimization problems with complex constraints, such as NLP problems with inequality and
(or) equality constraints, or without constraints. It can solve 0-1 NLP problems, integer NLP
problems and mixed integer NLP problems. When confronted with different types of
problems, we don’t need to change our algorithm. All that is needed is to input the fitness
function, the constraint expressions, and the upper and lower limits of the variables of the
problem. Our algorithm usually finds the global optimal value.
In the paper we analyze the character of the multi-parent genetic algorithm, when applied to
solve the optimization of multi-modal function, MPGA works in different forms during
different phases and then forms two-phase genetic algorithm. The experiments indicate that
DDEA is effective to solve the optimization of multi-modal function whose dimension is no

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization

179

higher than two, but to high-dimension function, the efficiency is not eminent and it needs
to be improved much more.

6. Acknowledgements
This work was supported by the National Natural Science Foundation of China
(No.60772163) and the Natural Science Foundation of Hubei Province (No. 2005ABA234).
Thanks especially give to the anonymous reviewers for their valuable comments.

7. References
Holland J H. Adaptation in Natural and Artificial System. Ann Arbor: The University of

Michigan Press, 1975.
De Jong, K. A. An analysis of the behavior of a class of genetic adaptive systems. Ph.D.

Thesis, Ann Arbor, MI:University of Michigan. Dissertation Abstracts International,
Vol. 36(10), 5410B (University Microfilms No.76-9381).

Goldberg, D. E. and Richardson, J. Genetic algorithms with sharing for multimodal function
optimization. In Proceedings of the First International Conference on Genetic Algorithms
and Their Applications. 41–49.

Guangming Lin, Lishan Kang, Yuping Chen, Bob McKay and Ruhul Sarker, A self-adaptive
Mutations with Multi-paretn Crossover Evolutionary Algorithm for Solving Function
Optimization Parbolems Lecture Notes in Computer Science 4683, pp.157-168, Springer-
Verlag Berlin Heidelberg.

Tao Guo, Evolutionary Computation and Optimization. PhD thesis, Wuhan University,
Wuhan,1999.

Tao Guo, Kang Lishan. A New Evolutionary Algorithm for Function Optimization. Wuhan
University Journal of Natural Sciences, 1999, 4(4): 404-419.

Carlos A. Coello: Self-adaptive penalties for GA-based optimization, in Proceedings of the
Congress on Evolutionary Computation, Washington, D.C USA, IEEE Press,
1999,537~580

Toyoo Fukuda, Kazuyuki Mori and Makoto Tsukiyama. (1999). Parallel search for multi-
modal function optimization with diversity and learning of immune algorithm. In:
D. Dasgupta (Ed.) Artificial Immune Systems and Their Applications. Springer-Verlag,
Berlin, Heidelberg, 210–220.

Zhai Hai-feng. Zhao Ming-wang. A Cell Excluse Genetic Algorithm for Finding All
Globally Optimal Solutions of Multimodal Function. Control and Decision.
1998,13(2):131-135.

Yan Li, Lishan Kang, Hugo de Garis, Zhuo Kang and Pu Liu. (2002).A robust algorithm for
solving the nonlinear programming problems. International Journal of Computer
Mathematics, 79(5), 523–536.

Lishan Kang,Yan Li, Zhuo Kang, Pu Liu andYuping Chen. (2000).Asynchronous parallel
evolutionary algorithm for function optimization. 16th world computer congress.
Proceedings of Conference on Software: Theory and Practice. Electronic Technology
Press, Aug., Beijing, 737–742.

Jun He, Lishan Kang. On the convergence rates of genetic algorithms. Theoretical Computer
Science, 229 (1999) 23~29

 Advances in Evolutionary Algorithms

180

Yan Liexiang and Ma Dexian. (1999). The sequence competition algorithm for global
optimization of continuous variables function. Journal of Hubei Technology College,
14(1–2).

Part III:

Dynamic Environment
and

Multi-Objective Optimization

 Advances in Evolutionary Algorithms

180

Yan Liexiang and Ma Dexian. (1999). The sequence competition algorithm for global
optimization of continuous variables function. Journal of Hubei Technology College,
14(1–2).

Part III:

Dynamic Environment
and

Multi-Objective Optimization

10

Evolutionary Algorithms with Dissortative
Mating on Static and Dynamic Environments

Carlos M. Fernandes1,2 and Agostinho C. Rosa1

1Laseeb – Instituto de Sistemas e Robótica − Instituto Superior Técnico
2Depart. de Arquitectura y Tecnología de Computadores − University of Granada

1Portugal
2Spain

1. Introduction
Evolutionary Algorithms (EAs) (Bäck, 1996) mimic the process of natural selection by
recombining the most promising solutions to a problem from a population of individuals,
each one representing a possible solution. There are several methods to select the
individuals, but all of them follow the same general rule: good (or partially good) solutions
must be chosen more often for recombination events than poorer solutions. In traditional
Genetic Algorithms (GAs), for instance, the chromosomes are recombined via a crossover
operator over a certain number of generations until a stop criterion is reached. The parents
are selected according to their fitness values, that is, better solutions have larger probability
to be chosen to generate offspring. By considering merely the quality of solutions
represented in the chromosomes when selecting individuals for mating purposes, the
traditional GAs emulate what, in nature, is called random mating (Roughgarden, 1979;
Russel, 1998), that is, mating chance is independent of genotypic or phenotypic distance
between individuals.
However, random mating is not the sole mechanism of sexual reproduction observed in
nature. Non-random mating, which encloses different kinds of strategies based on parenthood
or likeness of the agents involved in the reproduction game, is frequently found in natural
species, and it is believed to be predominant among vertebrates. Humans, for instance, mate
preferentially outside their family tree: this non-random mating scheme is called outbreeding
and has its opposite in inbreeding, a selection strategy where individuals mate preferentially
with their relatives (Roughgarden, 1979; Russel, 1998). It is often stated that inbreeding
decreases the genetic diversity in a population while outbreeding increases that same
diversity (Russel, 1998). In addition, inbreeding will increase the normal rate of a harmful
allele present in the family. If inbreeding is extensive and intensive, homozygosity will
increase in frequency and the family experiences a growth in the genetic load (measure of all
of the harmful recessive alleles in a population or family line) of the harmful allele.
Assortative mating is another non-random mating mechanism, in which individuals choose
their mates according to phenotypic similarities (Roughgarden, 1979; Russel, 1998). When
similar individuals mate more often than expected by chance, we are in presence of positive
assortative mating (or assortative mating in the strict sense). When dissimilar individuals

10

Evolutionary Algorithms with Dissortative
Mating on Static and Dynamic Environments

Carlos M. Fernandes1,2 and Agostinho C. Rosa1

1Laseeb – Instituto de Sistemas e Robótica − Instituto Superior Técnico
2Depart. de Arquitectura y Tecnología de Computadores − University of Granada

1Portugal
2Spain

1. Introduction
Evolutionary Algorithms (EAs) (Bäck, 1996) mimic the process of natural selection by
recombining the most promising solutions to a problem from a population of individuals,
each one representing a possible solution. There are several methods to select the
individuals, but all of them follow the same general rule: good (or partially good) solutions
must be chosen more often for recombination events than poorer solutions. In traditional
Genetic Algorithms (GAs), for instance, the chromosomes are recombined via a crossover
operator over a certain number of generations until a stop criterion is reached. The parents
are selected according to their fitness values, that is, better solutions have larger probability
to be chosen to generate offspring. By considering merely the quality of solutions
represented in the chromosomes when selecting individuals for mating purposes, the
traditional GAs emulate what, in nature, is called random mating (Roughgarden, 1979;
Russel, 1998), that is, mating chance is independent of genotypic or phenotypic distance
between individuals.
However, random mating is not the sole mechanism of sexual reproduction observed in
nature. Non-random mating, which encloses different kinds of strategies based on parenthood
or likeness of the agents involved in the reproduction game, is frequently found in natural
species, and it is believed to be predominant among vertebrates. Humans, for instance, mate
preferentially outside their family tree: this non-random mating scheme is called outbreeding
and has its opposite in inbreeding, a selection strategy where individuals mate preferentially
with their relatives (Roughgarden, 1979; Russel, 1998). It is often stated that inbreeding
decreases the genetic diversity in a population while outbreeding increases that same
diversity (Russel, 1998). In addition, inbreeding will increase the normal rate of a harmful
allele present in the family. If inbreeding is extensive and intensive, homozygosity will
increase in frequency and the family experiences a growth in the genetic load (measure of all
of the harmful recessive alleles in a population or family line) of the harmful allele.
Assortative mating is another non-random mating mechanism, in which individuals choose
their mates according to phenotypic similarities (Roughgarden, 1979; Russel, 1998). When
similar individuals mate more often than expected by chance, we are in presence of positive
assortative mating (or assortative mating in the strict sense). When dissimilar individuals

 Advances in Evolutionary Algorithms

182

mate more often, the scheme is called negative assortative mating (or dissortative mating). In
humans, assortative mating is well exemplified by the correlation between heights or
intelligence in partners. On the other hand, humans do not mate assortatively with respect
to blood groups. This kind of behavior, which selects assortatively for some traits and not
others, makes it difficult to unmask the effects of assortative mating in the population. In
fact, human assortative mating is not completely positive except for some small and isolated
communities (the Old Order Amish, for instance).
Positive assortative mating results in an average increase in homozygosity and in an
increase in population variance. However, this does not mean that genetic diversity is
increasing. In fact, this type of mating may result in highly distinct cluster of similar
genotypes, thus playing a crucial role when speciation without geographic barriers occurs
(sympatric speciation) (Todd & Miller, 1991). Dissortative mating, on the other hand, has the
primary consequence of a progressive increase in the frequency of heterozygous genotypes;
the increase in the diversity of the population is a direct consequence of these changes in the
genotype frequencies. Evidences show that mating is very unlikely to be random in nature
and may have the potential to act as an evolutionary agent, although its effects are very
complex and hard to model and analyze (Jaffe, 1999). Even so, artificial life models
presented by Jaffe (1999) and Ochoa et al. (1999) shed some light into the subject, and gave
empirical support to the hypothesis that mating is not likely to be random in nature and that
assortative and dissortative mating may produce higher survival rates among individuals
evolving in, static and dynamic environment, respectively. While in dynamic landscapes
genetic variability is fundamental to a quick and effective response to changes, in static
environments diversity is not so important. In fact, natural organisms move towards an
optimal degree of genetic variability that depends on the environment, via some mating
scheme. Environment itself appears to guide the evolution of mating strategies.
In Evolutionary Computation (Bäck, 1996), selective pressure and genetic diversity are two
major topics, probably those of primary importance (Whitley, 1988). Pressure and diversity
are closely related to the delicate equilibrium between exploration and exploitation needed
in order to have “safe” search in EAs. Therefore, non-random mating naturally came out in
EAs research field in order to deal with the problem of genetic diversity and premature
convergence: some efficient algorithms appeared, especially when applied to problems
where the genetic diversity is needed in order to maintain exploration high and avoid local
optima traps. In addition, diverse search stages usually call for different balance between
exploration and exploitation mechanisms. To an initial strong explorative stage, the
algorithm gradually must enter a more exploitive phase, where the neighborhood of good
solutions found so far is inspected in order to reach the global optimum. When the
problem’s environment change over time, that is, when dealing with dynamic optimization,
genetic diversity becomes even more important, since full convergence must be avoided: the
algorithm must maintain sufficient diversity to readapt itself to a change in the fitness
function, even if it has converged to the current optimum. In dynamic environments, it is
often more important to track the best solution than to converge, that is, it may be sufficient
to keep the population near the optimum, even if returning only near-optimal solution, thus
avoiding the risk of a full convergence in a specific period of the search, which would
reduce the possibilities of readaptation after a change.
Very often recombination is associated with exploitation while mutation is said to play a
determinant role in exploration by preventing alleles becoming extinct. While this appears

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

183

to be true, it may have misled some researches towards assortative mating instead of
dissortative, because of the higher exploitation performed by the first strategy. If similar
individuals tend to mate, it is more likely that their neighboring space is closely inspected.
On the other hand, several studies on dissortative mating showed empirical evidence that
this scheme is more adapted to a wide range of problems, both static and dynamic
(Craighurst & Martin, 1995; Eschelman, 1991; Eschelman & Schaffer, 1991; Fernandes et al.,
2000, 2001; Fernandes & Rosa 2001; Fernandes, 2002; García-Martínez et al., 2007; Matsui,
1999; Ochoa et al., 2005) − see next section for a state-of-the-art review.
This chapter proposes a review and an empirical study on EAs with dissortative mating
strategies and their application to static and dynamic problems. Dissortative mating will be
discussed within a biological framework and some Artificial Life models will be analyzed; a
detailed description of several methods found in EAs literature will be also given. The
empirical study will be centered on the Variable Dissortative Mating GA (VDMGA), which
was recently presented in (Fernandes & Rosa, 2008) by the authors of this chapter. VDMGA
holds a mechanism that varies GA’s mating restrictions during the run, by means of a
simple rule based on the number of chromosomes created in each generation and indirectly
influenced by the genetic diversity of the population. The empirical study presented in
(Fernandes & Rosa, 2008) shows that VDMGA performs well when applied to a wide range
of problems: it consistently outperforms traditional GAs and assortative mating GAs, and it
is faster and more robust than some previously proposed dissortative mating GAs. Results
suggest that VDMGA’s ability to escape local optima and converge more often to the global
solution may come from maintaining the genetic diversity at a higher level when compared
with traditional GAs. VDMGA’s genetic diversity naturally leads the research towards the
application of the algorithm on Dynamic Optimization Problems (DOPs). Due to their
specific characteristics, DOPs require additional tools, many of them different from those
widely studied by EAs researchers on static problems. Memory schemes and niching
(Branke & Schmeck, 2002) are some of the techniques used to tackle DOPs. Strategies for
maintaining genetic diversity and/or introducing novelty in the EAs populations are also
very efficient strategies when solving dynamic problems (Branke & Schmeck, 2002). In this
chapter, the original VDMGA is subject to minor modifications, and then applied to DOPs
benchmarks and compared to other GAs. The results confirm the predictions and show that
VDMGA may improve other GAs’ performance on changing environments. As already been
observed when tackling static fitness functions (Fernandes & Rosa, 2008), dissortative
mating, via a simple and easily tunable algorithm with diversity preservation, reveals
interesting skills when evolving in dynamic environments.

2. Non-random mating evolutionary algorithms
This section describes some EAs with outbreeding, assortative and dissortative mating
strategies found in the literature. A special emphasis is given to the ones that, to the extent
of the authors of this chapter knowledge, were seminal in their line of work, and to those
that preceded (or are, at some level, related to) VDMGA.
In the GA with outbreeding described in (Craighurst, 1995), individuals with a certain
degree of parenthood are not allowed to recombine and generate offspring. An incest
prevention degree is defined in the beginning of the run and remains unchanged until the
convergence criterion is fulfilled. This degree defines how far back in the family tree of an
individual the GA must inspect in order to prevent the recombination events. This policy

 Advances in Evolutionary Algorithms

182

mate more often, the scheme is called negative assortative mating (or dissortative mating). In
humans, assortative mating is well exemplified by the correlation between heights or
intelligence in partners. On the other hand, humans do not mate assortatively with respect
to blood groups. This kind of behavior, which selects assortatively for some traits and not
others, makes it difficult to unmask the effects of assortative mating in the population. In
fact, human assortative mating is not completely positive except for some small and isolated
communities (the Old Order Amish, for instance).
Positive assortative mating results in an average increase in homozygosity and in an
increase in population variance. However, this does not mean that genetic diversity is
increasing. In fact, this type of mating may result in highly distinct cluster of similar
genotypes, thus playing a crucial role when speciation without geographic barriers occurs
(sympatric speciation) (Todd & Miller, 1991). Dissortative mating, on the other hand, has the
primary consequence of a progressive increase in the frequency of heterozygous genotypes;
the increase in the diversity of the population is a direct consequence of these changes in the
genotype frequencies. Evidences show that mating is very unlikely to be random in nature
and may have the potential to act as an evolutionary agent, although its effects are very
complex and hard to model and analyze (Jaffe, 1999). Even so, artificial life models
presented by Jaffe (1999) and Ochoa et al. (1999) shed some light into the subject, and gave
empirical support to the hypothesis that mating is not likely to be random in nature and that
assortative and dissortative mating may produce higher survival rates among individuals
evolving in, static and dynamic environment, respectively. While in dynamic landscapes
genetic variability is fundamental to a quick and effective response to changes, in static
environments diversity is not so important. In fact, natural organisms move towards an
optimal degree of genetic variability that depends on the environment, via some mating
scheme. Environment itself appears to guide the evolution of mating strategies.
In Evolutionary Computation (Bäck, 1996), selective pressure and genetic diversity are two
major topics, probably those of primary importance (Whitley, 1988). Pressure and diversity
are closely related to the delicate equilibrium between exploration and exploitation needed
in order to have “safe” search in EAs. Therefore, non-random mating naturally came out in
EAs research field in order to deal with the problem of genetic diversity and premature
convergence: some efficient algorithms appeared, especially when applied to problems
where the genetic diversity is needed in order to maintain exploration high and avoid local
optima traps. In addition, diverse search stages usually call for different balance between
exploration and exploitation mechanisms. To an initial strong explorative stage, the
algorithm gradually must enter a more exploitive phase, where the neighborhood of good
solutions found so far is inspected in order to reach the global optimum. When the
problem’s environment change over time, that is, when dealing with dynamic optimization,
genetic diversity becomes even more important, since full convergence must be avoided: the
algorithm must maintain sufficient diversity to readapt itself to a change in the fitness
function, even if it has converged to the current optimum. In dynamic environments, it is
often more important to track the best solution than to converge, that is, it may be sufficient
to keep the population near the optimum, even if returning only near-optimal solution, thus
avoiding the risk of a full convergence in a specific period of the search, which would
reduce the possibilities of readaptation after a change.
Very often recombination is associated with exploitation while mutation is said to play a
determinant role in exploration by preventing alleles becoming extinct. While this appears

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

183

to be true, it may have misled some researches towards assortative mating instead of
dissortative, because of the higher exploitation performed by the first strategy. If similar
individuals tend to mate, it is more likely that their neighboring space is closely inspected.
On the other hand, several studies on dissortative mating showed empirical evidence that
this scheme is more adapted to a wide range of problems, both static and dynamic
(Craighurst & Martin, 1995; Eschelman, 1991; Eschelman & Schaffer, 1991; Fernandes et al.,
2000, 2001; Fernandes & Rosa 2001; Fernandes, 2002; García-Martínez et al., 2007; Matsui,
1999; Ochoa et al., 2005) − see next section for a state-of-the-art review.
This chapter proposes a review and an empirical study on EAs with dissortative mating
strategies and their application to static and dynamic problems. Dissortative mating will be
discussed within a biological framework and some Artificial Life models will be analyzed; a
detailed description of several methods found in EAs literature will be also given. The
empirical study will be centered on the Variable Dissortative Mating GA (VDMGA), which
was recently presented in (Fernandes & Rosa, 2008) by the authors of this chapter. VDMGA
holds a mechanism that varies GA’s mating restrictions during the run, by means of a
simple rule based on the number of chromosomes created in each generation and indirectly
influenced by the genetic diversity of the population. The empirical study presented in
(Fernandes & Rosa, 2008) shows that VDMGA performs well when applied to a wide range
of problems: it consistently outperforms traditional GAs and assortative mating GAs, and it
is faster and more robust than some previously proposed dissortative mating GAs. Results
suggest that VDMGA’s ability to escape local optima and converge more often to the global
solution may come from maintaining the genetic diversity at a higher level when compared
with traditional GAs. VDMGA’s genetic diversity naturally leads the research towards the
application of the algorithm on Dynamic Optimization Problems (DOPs). Due to their
specific characteristics, DOPs require additional tools, many of them different from those
widely studied by EAs researchers on static problems. Memory schemes and niching
(Branke & Schmeck, 2002) are some of the techniques used to tackle DOPs. Strategies for
maintaining genetic diversity and/or introducing novelty in the EAs populations are also
very efficient strategies when solving dynamic problems (Branke & Schmeck, 2002). In this
chapter, the original VDMGA is subject to minor modifications, and then applied to DOPs
benchmarks and compared to other GAs. The results confirm the predictions and show that
VDMGA may improve other GAs’ performance on changing environments. As already been
observed when tackling static fitness functions (Fernandes & Rosa, 2008), dissortative
mating, via a simple and easily tunable algorithm with diversity preservation, reveals
interesting skills when evolving in dynamic environments.

2. Non-random mating evolutionary algorithms
This section describes some EAs with outbreeding, assortative and dissortative mating
strategies found in the literature. A special emphasis is given to the ones that, to the extent
of the authors of this chapter knowledge, were seminal in their line of work, and to those
that preceded (or are, at some level, related to) VDMGA.
In the GA with outbreeding described in (Craighurst, 1995), individuals with a certain
degree of parenthood are not allowed to recombine and generate offspring. An incest
prevention degree is defined in the beginning of the run and remains unchanged until the
convergence criterion is fulfilled. This degree defines how far back in the family tree of an
individual the GA must inspect in order to prevent the recombination events. This policy

 Advances in Evolutionary Algorithms

184

does not completely restrict mating between similar individuals, but it sure decreases its
frequency since related individuals tend to share a large amount of common alleles. Tests
(Craighurst, 1995) compare the outbreeding GA with a standard GA when applied to the
Traveling Salesman Problem. The non-random mating algorithm outperformed the
standard GA but the differences in the algorithms’ performances were noticed mainly with
low mutation rates. This is not surprising since incest prohibition is supposed to maintain
the genetic diversity of the population at a higher level for longer periods, thus reducing the
need for mutation to introduce genetic novelty into converging populations. Fernandes et al.
(2000) combined the outbreeding strategy proposed in (Craighurst, 1995) with a varying
population size GA (Arabas, 1994) to create the non-incest Genetic Algorithm with Varying
Population Size (niGAVaPS). The results showed that the two mechanisms worked together
well in order to find the optimum of Four Peaks and Royal Road R4 functions. Tests made
with the algorithm ranging through different degrees of incest prohibition showed
improvements in the capability of escaping local optima when the individuals are not
allowed to mate with their parents and siblings.
There are several studies indicating that dissortative mating may improve EAs performance
by maintaining the genetic diversity of the population at a higher level during the search
process. For instance, CHC (Eschelman, 1991; Eschelman & Schaffer, 1991) which stands for
Cross generational elitist selection, Heterogeneous Recombination and Cataclysmic Mutation, is a
variation of the standard GA that holds a simple mechanism of dissortative mating which
has given proofs of being rather effective in a wide range of problems. Although the title in
(Eschelman & Schaffer, 1991) may suggest that CHC is an outbreeding GA, a closer look
reveal that the algorithm uses a dissortative mating strategy in order to prevent premature
convergence. CHC uses no mutation in the classical sense of the concept, but instead it goes
through a process of macro-mutation (or hyper-mutation) when the best fitness of the
population does not change after a certain number of generations. The genetic diversity is
assured by a highly disruptive crossover operator, the Half Uniform Crossover (HUX)
(Eschelman & Schaffer, 1991), and a reproduction restriction that assures that selected pairs
of chromosomes will not generate offspring unless their Hamming Distance is above a
certain threshold. CHC search process goes as follows. In each generation, p/2 pairs of
chromosomes are randomly selected from the population with size p. All pairs are
submitted to the reproduction process. First, their Hamming distance is computed. If the
value is found to be above the threshold then the chromosomes generate two children with
the HUX operator. When the process is concluded, the newly generated population of p’
offspring replaces the worst chromosomes in the main population, therefore maintaining the
size of the population. The threshold is usually set in the beginning of the runs to ¼ of the
chromosome length, and decremented when no offspring is generated. When the algorithm
is stuck in local optima, a cataclysmic mutation is applied by replacing the entire
population, except the best chromosome, with mutated copies of that individual.
The Assortative Mating GA (AMGA) was introduced in (Fernandes et al., 2001). The only
difference between AMGA and a standard GA is the way parents are selected for
recombination. In each recombination event one parent (first parent) is select by any
traditional method. Then, a set of n individuals is selected by the same method. After
computing the similarity between the first parent and all the n individuals in the set, the
second parent is chosen according to the type of assortative mating in progress. If the
algorithm is the positive Assortative Mating GA (pAMGA) the individual more similar to the

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

185

first parent is chosen. With the negative Assortative Mating GA (nAMGA) the individual less
similar is chosen as the second parent (please remember that negative assortative is the
same as dissortative). The intensity of the non-random mating scheme may be controlled by
the size of the set of candidates to the second parent position. Increasing n increases the
frequency of mating between dissimilar (if negative assortative) or similar (if positive)
individuals. Experiments with the algorithm solving a vector quantization problem showed
pAMGA and standard GA performed similarly, while nAMGA outperformed both
(Fernandes et al., 2001). Increasing the size of the candidates set resulted in higher success
rates (number of runs in which the global optima was found) of nAMGA. In (Fernandes &
Rosa, 2001), the algorithm was combined with a varying population size mechanism, tested
with a Royal Road (R4) function (Mitchell, 1994) and compared with a standard GA and the
niGAVaPS (Fernandes et al., 2000). The negative assortative mating (or dissortative mating)
strategy has proven to be more able in escaping Royal Road’s local optima traps. pAMGA
was also tested under the same conditions but its performance was clearly inferior to
standard GA.
A similar idea was tested by Ochoa et al. (2005) on dynamic environments. The authors
tested haploid and diploid GAs with assortative mating (where parents are selected as in
AMGA) on a knapsack problem with moving extrema, and nAMGA was more able to track
dynamic optima. Standard GA often failed to track the optima but the worst performance
was attained by pAMGA. In general, the haploid algorithms produced better results than
the diploid ones. The authors also discuss the optimal mutation rate for different strategies.
By means of exhaustive tests, they concluded that the optimal mutation rate increases when
the mating strategy goes from negative (dissortative) to positive assortative. These results
were predictable: dissortative mating is supposed to maintain the population diversity at a
higher level, reducing the amount of mutation needed in order to prevent the premature
convergence of the population. In this line of work, the same authors proposed a study on
the error threshold of replication in GAs with different mating strategies (Ochoa, 2006;
Ochoa & Jaffe, 2006). The error threshold is a critical mutation rate beyond which structures
obtained by an evolutionary process are destroyed more frequently than selection can
reproduce them. By evolving a GA on four different fitness landscapes, the authors first
conclude that recombination shifts the error threshold toward lower values. Then, the tests
show that assortative mating overcomes this effect by increasing the error threshold, while
the dissortative strategy pushes the error into lower values. The authors argue that this
study may have effects on both natural and artificial systems since it supports the
hypothesis that assortative mating overcomes some of the disadvantages inherent to sex.
They also intend to shed some light into the relation between mutation rates and mating
strategies in EAs. This last issue is directly related with the idea that assortative mating
increases the optimal mutation rate of an EA, while dissortative strategies decreases it. This
behavior has already been observed in (Fernandes, 2002) and (Ochoa et al., 2005).
Fernandes & Rosa (2006) proposed the Self-Regulated Evolutionary Algorithm (SRPEA).
SRPEA is an algorithm with a dynamic on-the-fly variation of the population size. Selected
individuals are recombined to generate offspring only if their Hamming distance is above a
threshold value. That value changes over time, depending on the number of newborn
individuals and deaths in each generation. Individuals die (that is, are removed from the
population) only when their lifetime (which is set to specific value in the beginning of the
search depending on the individual’s fitness) reaches zero, which means that parents and

 Advances in Evolutionary Algorithms

184

does not completely restrict mating between similar individuals, but it sure decreases its
frequency since related individuals tend to share a large amount of common alleles. Tests
(Craighurst, 1995) compare the outbreeding GA with a standard GA when applied to the
Traveling Salesman Problem. The non-random mating algorithm outperformed the
standard GA but the differences in the algorithms’ performances were noticed mainly with
low mutation rates. This is not surprising since incest prohibition is supposed to maintain
the genetic diversity of the population at a higher level for longer periods, thus reducing the
need for mutation to introduce genetic novelty into converging populations. Fernandes et al.
(2000) combined the outbreeding strategy proposed in (Craighurst, 1995) with a varying
population size GA (Arabas, 1994) to create the non-incest Genetic Algorithm with Varying
Population Size (niGAVaPS). The results showed that the two mechanisms worked together
well in order to find the optimum of Four Peaks and Royal Road R4 functions. Tests made
with the algorithm ranging through different degrees of incest prohibition showed
improvements in the capability of escaping local optima when the individuals are not
allowed to mate with their parents and siblings.
There are several studies indicating that dissortative mating may improve EAs performance
by maintaining the genetic diversity of the population at a higher level during the search
process. For instance, CHC (Eschelman, 1991; Eschelman & Schaffer, 1991) which stands for
Cross generational elitist selection, Heterogeneous Recombination and Cataclysmic Mutation, is a
variation of the standard GA that holds a simple mechanism of dissortative mating which
has given proofs of being rather effective in a wide range of problems. Although the title in
(Eschelman & Schaffer, 1991) may suggest that CHC is an outbreeding GA, a closer look
reveal that the algorithm uses a dissortative mating strategy in order to prevent premature
convergence. CHC uses no mutation in the classical sense of the concept, but instead it goes
through a process of macro-mutation (or hyper-mutation) when the best fitness of the
population does not change after a certain number of generations. The genetic diversity is
assured by a highly disruptive crossover operator, the Half Uniform Crossover (HUX)
(Eschelman & Schaffer, 1991), and a reproduction restriction that assures that selected pairs
of chromosomes will not generate offspring unless their Hamming Distance is above a
certain threshold. CHC search process goes as follows. In each generation, p/2 pairs of
chromosomes are randomly selected from the population with size p. All pairs are
submitted to the reproduction process. First, their Hamming distance is computed. If the
value is found to be above the threshold then the chromosomes generate two children with
the HUX operator. When the process is concluded, the newly generated population of p’
offspring replaces the worst chromosomes in the main population, therefore maintaining the
size of the population. The threshold is usually set in the beginning of the runs to ¼ of the
chromosome length, and decremented when no offspring is generated. When the algorithm
is stuck in local optima, a cataclysmic mutation is applied by replacing the entire
population, except the best chromosome, with mutated copies of that individual.
The Assortative Mating GA (AMGA) was introduced in (Fernandes et al., 2001). The only
difference between AMGA and a standard GA is the way parents are selected for
recombination. In each recombination event one parent (first parent) is select by any
traditional method. Then, a set of n individuals is selected by the same method. After
computing the similarity between the first parent and all the n individuals in the set, the
second parent is chosen according to the type of assortative mating in progress. If the
algorithm is the positive Assortative Mating GA (pAMGA) the individual more similar to the

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

185

first parent is chosen. With the negative Assortative Mating GA (nAMGA) the individual less
similar is chosen as the second parent (please remember that negative assortative is the
same as dissortative). The intensity of the non-random mating scheme may be controlled by
the size of the set of candidates to the second parent position. Increasing n increases the
frequency of mating between dissimilar (if negative assortative) or similar (if positive)
individuals. Experiments with the algorithm solving a vector quantization problem showed
pAMGA and standard GA performed similarly, while nAMGA outperformed both
(Fernandes et al., 2001). Increasing the size of the candidates set resulted in higher success
rates (number of runs in which the global optima was found) of nAMGA. In (Fernandes &
Rosa, 2001), the algorithm was combined with a varying population size mechanism, tested
with a Royal Road (R4) function (Mitchell, 1994) and compared with a standard GA and the
niGAVaPS (Fernandes et al., 2000). The negative assortative mating (or dissortative mating)
strategy has proven to be more able in escaping Royal Road’s local optima traps. pAMGA
was also tested under the same conditions but its performance was clearly inferior to
standard GA.
A similar idea was tested by Ochoa et al. (2005) on dynamic environments. The authors
tested haploid and diploid GAs with assortative mating (where parents are selected as in
AMGA) on a knapsack problem with moving extrema, and nAMGA was more able to track
dynamic optima. Standard GA often failed to track the optima but the worst performance
was attained by pAMGA. In general, the haploid algorithms produced better results than
the diploid ones. The authors also discuss the optimal mutation rate for different strategies.
By means of exhaustive tests, they concluded that the optimal mutation rate increases when
the mating strategy goes from negative (dissortative) to positive assortative. These results
were predictable: dissortative mating is supposed to maintain the population diversity at a
higher level, reducing the amount of mutation needed in order to prevent the premature
convergence of the population. In this line of work, the same authors proposed a study on
the error threshold of replication in GAs with different mating strategies (Ochoa, 2006;
Ochoa & Jaffe, 2006). The error threshold is a critical mutation rate beyond which structures
obtained by an evolutionary process are destroyed more frequently than selection can
reproduce them. By evolving a GA on four different fitness landscapes, the authors first
conclude that recombination shifts the error threshold toward lower values. Then, the tests
show that assortative mating overcomes this effect by increasing the error threshold, while
the dissortative strategy pushes the error into lower values. The authors argue that this
study may have effects on both natural and artificial systems since it supports the
hypothesis that assortative mating overcomes some of the disadvantages inherent to sex.
They also intend to shed some light into the relation between mutation rates and mating
strategies in EAs. This last issue is directly related with the idea that assortative mating
increases the optimal mutation rate of an EA, while dissortative strategies decreases it. This
behavior has already been observed in (Fernandes, 2002) and (Ochoa et al., 2005).
Fernandes & Rosa (2006) proposed the Self-Regulated Evolutionary Algorithm (SRPEA).
SRPEA is an algorithm with a dynamic on-the-fly variation of the population size. Selected
individuals are recombined to generate offspring only if their Hamming distance is above a
threshold value. That value changes over time, depending on the number of newborn
individuals and deaths in each generation. Individuals die (that is, are removed from the
population) only when their lifetime (which is set to specific value in the beginning of the
search depending on the individual’s fitness) reaches zero, which means that parents and

 Advances in Evolutionary Algorithms

186

children may belong to the same population. An empirical study demonstrated that the
algorithm self-regulates its population size: there are neither uncontrolled demographic
explosions nor quasi-extinction long stages, as it is observed in the dynamics of other
varying population EAs (Arabas, 1994). VDMGA, the main algorithm in this chapter’s
study, is directly related to SRPEA.
In (García-Martinez et al., 2006), an assortative mating strategy is used to implement a local
search genetic algorithm. The approach is consistent with the fact that crossover is the main
mechanism of a GA generating local search, and assortative mating, by its own
characteristics, tends to increase the strength of exploitation, thus leading to a more
intensive local search. On the other hand, Gárcia-Martinez et al. (2007) introduced a real-
coded genetic algorithm with dissortative mating. The authors show that the inclusion of
that mating strategy increases the performance of the GA on a set of proposed problems. In
addition, empirical analysis indicates that the merits of dissortative mating are clearer with
lower values of α parameter of the PBX-α crossover (Lozano et al., 2004). This observation is
closely related with the optimal mutation rate issue described above, since α determines the
spread of the probability distribution used to create offspring with PBX-α. This way,
parameter α acts as genetic diversity controller, with higher values leading to GAs with
higher exploratory capabilities, as it happens with mutation rate values. Therefore, if
dissortative mating is expected to decrease optimal mutation rates, optimal values of α may
also be dependent on the mating strategy chosen for the GA, being lower when dissimilar
individuals have more chance to generate offspring.
A large number of other GAs with non-random mating may be found in Evolutionary
Computation literature. A few are briefly described in the following paragraph.
Mauldin (1984) proposed a method to avoid similar individuals in the population based on
a Hamming distance restriction. CHC is in some way a descendent of Mauldin’s method,
and, as a result, so is VDMGA. Hillis (1992) described a co-evolutionary computation
paradigm with assortative mating applied to a sorting network problem. The author does
not provide results comparing the proposed strategy and random mating but it states that
the choice on assortative mating was inspired by some problem characteristics rather than
genetic diversity concerns. Ronald (1995) introduced the concept of seduction in GAs, which
consists in selecting the second parent according to the preferences of the first parent. After
the first chromosome involved in a recombination event is selected, all other individuals in
the population are provided with a secondary fitness according to certain rules that reflects
the preferences of the first parent. Then, the second parent is chosen according to the
secondary fitness. Petrowski proposes (1997) speciation in order to restrict mating. De et al.
(1998) proposed genotypic and phenotypic assortative mating. The new approaches are
compared with standard GA and CHC on some well-known test functions and on the
problem of selecting the optimal set of weights in a multilayer perceptron. Phenotypic
assortative mating revealed to be the best strategy, outperforming standard GA and CHC on
the range of proposed problems. Matsui (1999) incorporated dissortative mating within the
tournament selection strategy. After the first parent is selected, the second parent is chosen
according to a function that depends on the individual fitness and the Hamming distance to
the first parent (all individuals in the population are inspected in order to determine the
distance to the first parent). In addition, the author incorporates a family-based selection
mechanism that, by applying selection and replacement at family level (two parents and two
offspring), maintains the genetic diversity of the population. Ting et al. (2003) introduced

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

187

the Tabu Genetic Algorithm (TGA). TGA combines the characteristics of GAs and Tabu
Search (Glover, 1986), by incorporating a taboo list in a traditional GA that prevents
inbreeding and maintains genetic diversity. An aspiration criterion is also used by TGA in
order to allow some crossovers even if they violate the taboo. Since incest prevention
efficiency is sensitive to mutation rate, the authors include a self-adaptive mutation in TGA.
The process is somehow similar to the cataclysmic mutation that occurs in CHC, since
mutation in TGA occurs in presence of a deadlock situation, that is, when the genetic
diversity of the population as decreased down to a level were allowed recombination is
almost or even impossible to occur. Finally, Wagner & Affenzeller (2005) introduced the
SexualGA, which simulates sexual selection within the frame of a GA and uses two different
selection schemes in the same population.

3. Dynamic optimization problems
A problem is said to be a Dynamic Optimization Problem (DOP) when there is a change in
the fitness function, problem instance or restrictions, thus making the optimum change as
well. When changes occur, solutions already found may be no longer valuable and the
process must engage in a new search effort. Traditional EAs, for instance, may encounter
some difficulties while solving dynamic problems: if the first convergence stage reduces
population diversity, then the algorithm may not be able to react to sudden changes. The
crucial and delicate equilibrium needed between exploration and exploitation in static
environments becomes even more important and complex when dealing with DOPs. In
addition, if the change is detectable (which not always possible), it is hard to decide if it is
better to continue the search with same population, after a shift in the environment, or if a
restart is more efficient. The extent of the change is of crucial importance in that decision.
This problem was stated by Branke & Schmek (2002), which suggested a classification of
DOPs and a classification of the most widespread EAs that deal with changing
environments. One standard approach to deal with DOPs is to regard each change as the
arrival of a new optimization problem that has to be solved from scratch. However, this
simple approach is often impractical since solving a problem from scratch without reusing
information from the past might be time consuming, a change might not be identifiable
directly, or the solution to the new problem should not differ too much from the solution of
the old problem. Thus, as in the on-line tracking process suggested in (Angeline, 1997), it
has been recommended in (Branke, 1999; Branke, 2002; Branke & Schmeck 2002) to have an
optimization algorithm that is capable of continuously adapting the solution to a changing
environment, reusing the information gained in the past. Since natural adaptation is a
continuous and continuing process and EAs have much in common with natural evolution,
they seem to be a suitable candidate for this task. However, evolutionary approaches
typically converge to an optimum and thereby lose the diversity necessary for efficiently
exploring the search space and consequently also the ability to adapt to a change in the
environment (Branke, 2002; Branke & Schmeck 2002). The problem here can be stated as
seeking an appropriate balance between two contradictory characters of the search
procedure, those between the exploring (ideal for gathering new solutions) and exploiting
(making the best use of past solutions) nature of the algorithm. Over the past few years, a
number of authors have addressed the problem of convergence and subsequent loss of
adaptability in many different ways. According to (Branke e Schmeck 2002), most of these
approaches could be grouped into one of the following three categories established by them:

 Advances in Evolutionary Algorithms

186

children may belong to the same population. An empirical study demonstrated that the
algorithm self-regulates its population size: there are neither uncontrolled demographic
explosions nor quasi-extinction long stages, as it is observed in the dynamics of other
varying population EAs (Arabas, 1994). VDMGA, the main algorithm in this chapter’s
study, is directly related to SRPEA.
In (García-Martinez et al., 2006), an assortative mating strategy is used to implement a local
search genetic algorithm. The approach is consistent with the fact that crossover is the main
mechanism of a GA generating local search, and assortative mating, by its own
characteristics, tends to increase the strength of exploitation, thus leading to a more
intensive local search. On the other hand, Gárcia-Martinez et al. (2007) introduced a real-
coded genetic algorithm with dissortative mating. The authors show that the inclusion of
that mating strategy increases the performance of the GA on a set of proposed problems. In
addition, empirical analysis indicates that the merits of dissortative mating are clearer with
lower values of α parameter of the PBX-α crossover (Lozano et al., 2004). This observation is
closely related with the optimal mutation rate issue described above, since α determines the
spread of the probability distribution used to create offspring with PBX-α. This way,
parameter α acts as genetic diversity controller, with higher values leading to GAs with
higher exploratory capabilities, as it happens with mutation rate values. Therefore, if
dissortative mating is expected to decrease optimal mutation rates, optimal values of α may
also be dependent on the mating strategy chosen for the GA, being lower when dissimilar
individuals have more chance to generate offspring.
A large number of other GAs with non-random mating may be found in Evolutionary
Computation literature. A few are briefly described in the following paragraph.
Mauldin (1984) proposed a method to avoid similar individuals in the population based on
a Hamming distance restriction. CHC is in some way a descendent of Mauldin’s method,
and, as a result, so is VDMGA. Hillis (1992) described a co-evolutionary computation
paradigm with assortative mating applied to a sorting network problem. The author does
not provide results comparing the proposed strategy and random mating but it states that
the choice on assortative mating was inspired by some problem characteristics rather than
genetic diversity concerns. Ronald (1995) introduced the concept of seduction in GAs, which
consists in selecting the second parent according to the preferences of the first parent. After
the first chromosome involved in a recombination event is selected, all other individuals in
the population are provided with a secondary fitness according to certain rules that reflects
the preferences of the first parent. Then, the second parent is chosen according to the
secondary fitness. Petrowski proposes (1997) speciation in order to restrict mating. De et al.
(1998) proposed genotypic and phenotypic assortative mating. The new approaches are
compared with standard GA and CHC on some well-known test functions and on the
problem of selecting the optimal set of weights in a multilayer perceptron. Phenotypic
assortative mating revealed to be the best strategy, outperforming standard GA and CHC on
the range of proposed problems. Matsui (1999) incorporated dissortative mating within the
tournament selection strategy. After the first parent is selected, the second parent is chosen
according to a function that depends on the individual fitness and the Hamming distance to
the first parent (all individuals in the population are inspected in order to determine the
distance to the first parent). In addition, the author incorporates a family-based selection
mechanism that, by applying selection and replacement at family level (two parents and two
offspring), maintains the genetic diversity of the population. Ting et al. (2003) introduced

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

187

the Tabu Genetic Algorithm (TGA). TGA combines the characteristics of GAs and Tabu
Search (Glover, 1986), by incorporating a taboo list in a traditional GA that prevents
inbreeding and maintains genetic diversity. An aspiration criterion is also used by TGA in
order to allow some crossovers even if they violate the taboo. Since incest prevention
efficiency is sensitive to mutation rate, the authors include a self-adaptive mutation in TGA.
The process is somehow similar to the cataclysmic mutation that occurs in CHC, since
mutation in TGA occurs in presence of a deadlock situation, that is, when the genetic
diversity of the population as decreased down to a level were allowed recombination is
almost or even impossible to occur. Finally, Wagner & Affenzeller (2005) introduced the
SexualGA, which simulates sexual selection within the frame of a GA and uses two different
selection schemes in the same population.

3. Dynamic optimization problems
A problem is said to be a Dynamic Optimization Problem (DOP) when there is a change in
the fitness function, problem instance or restrictions, thus making the optimum change as
well. When changes occur, solutions already found may be no longer valuable and the
process must engage in a new search effort. Traditional EAs, for instance, may encounter
some difficulties while solving dynamic problems: if the first convergence stage reduces
population diversity, then the algorithm may not be able to react to sudden changes. The
crucial and delicate equilibrium needed between exploration and exploitation in static
environments becomes even more important and complex when dealing with DOPs. In
addition, if the change is detectable (which not always possible), it is hard to decide if it is
better to continue the search with same population, after a shift in the environment, or if a
restart is more efficient. The extent of the change is of crucial importance in that decision.
This problem was stated by Branke & Schmek (2002), which suggested a classification of
DOPs and a classification of the most widespread EAs that deal with changing
environments. One standard approach to deal with DOPs is to regard each change as the
arrival of a new optimization problem that has to be solved from scratch. However, this
simple approach is often impractical since solving a problem from scratch without reusing
information from the past might be time consuming, a change might not be identifiable
directly, or the solution to the new problem should not differ too much from the solution of
the old problem. Thus, as in the on-line tracking process suggested in (Angeline, 1997), it
has been recommended in (Branke, 1999; Branke, 2002; Branke & Schmeck 2002) to have an
optimization algorithm that is capable of continuously adapting the solution to a changing
environment, reusing the information gained in the past. Since natural adaptation is a
continuous and continuing process and EAs have much in common with natural evolution,
they seem to be a suitable candidate for this task. However, evolutionary approaches
typically converge to an optimum and thereby lose the diversity necessary for efficiently
exploring the search space and consequently also the ability to adapt to a change in the
environment (Branke, 2002; Branke & Schmeck 2002). The problem here can be stated as
seeking an appropriate balance between two contradictory characters of the search
procedure, those between the exploring (ideal for gathering new solutions) and exploiting
(making the best use of past solutions) nature of the algorithm. Over the past few years, a
number of authors have addressed the problem of convergence and subsequent loss of
adaptability in many different ways. According to (Branke e Schmeck 2002), most of these
approaches could be grouped into one of the following three categories established by them:

 Advances in Evolutionary Algorithms

188

1. React on Changes: The EA is run in standard fashion, but as soon as a change in the
environment is detected, explicit actions are taken to increase diversity and thus
facilitating the shift to the new optimum.

2. Maintaining Diversity throughout the run: Convergence is avoided all the time and it is
hoped that a spread-out population can adapt to changes more easily.

3. Memory-based Approaches: The EA is supplied with a memory to recall useful
information from past generations, which seems especially useful when the optimum
repeatedly returns to previous locations.

Techniques such as Hypermutation (Cobb, 1990) pursue the first category, keeping the whole
population after a change but increasing population diversity by drastically increasing the
mutation rate for some number of generations. Please note that reacting to changes assumes
that changes are detectable, a condition, as already stated, that is not always fulfilled
(Branke, 2002).
The Random Immigrants Genetic Algorithm (RIGA) (Grefenstette, 1992) is an example of a
strategy that falls in the second category. In RIGA the population is partly replaced by rr
randomly generated individuals in every generation. This guarantees the introduction of
new genetic material in every time step and avoids the convergence of the whole population
to a narrow region of the search space. The performance is affected by the parameter rr.
RIGA is used in the following sections to evaluate VDMGA’s performance on DOPs;
therefore, its pseudo-code is presented here:

Algorithm 1: Random Immigrants Genetic Algorithm

initialize Population(P)
evaluate Population(P)
while (not termination condition) do
 P ← Replace Fraction of Population (P, rr)
 create P.new by selection, crossover and mutation of P
 P ← P.new
end while

The following algorithms may also be classified in category 2. As described in the previous
section, the negative Assortative Mating Genetic Algorithm (nAMGA) (Fernandes & Rosa 2001)
is used in (Ochoa et al., 2005) to solve a knapsack DOP. Negative assortative mating (or
dissortative mating), by preventing the recombination of similar individuals, slows down
the expected diversity loss of traditional GAs thus having the proper characteristics to be
classified whitin category 2. The co-evolutionary agent based model of genotype editing (ABMGE)
(Huang et al., 2007) use several genetic editing characteristics that are gleaned from the
RNA editing system as observed in several organisms. Their results outperformed
traditional EAs via obtaining greater phenotypic plasticity. In (Tinós & Yang, 2007), a RIGA
associated with the Bak-Sneppen model is presented and tested on DOPs: the Self-Organized
Random Immigrants Genetic Algorithm (SORIGA). Bak-Sneppen (Bak & Sneppen, 1993) is
known as a Self-Organized Critically model, a phenomenon that was detected in 1987 by
Bak, Tang and Wiesenfield (Bak et al., 1987), and which characterized by displaying scale
invariant behavior. When associated with EAs it may periodically insert large amounts of
new material in the population or completely reorganize a solution to a problem. For those
reasons, it soon was adopted by EA researchers in order to provide new means to control
parameter values or maintain population diversity, thus avoiding premature convergence to

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

189

local optima. DOPs research field was a logical following step. Besides SORIGA, another
approach has been recently proposed by Fernandes et al. (2008a), in which the Sandpile
model (Bak et al., 1987) is attached to a GA is order to solve DOPs.
Another kind of approach is to supply the algorithm with some sort of memory, storing
good partial solutions in order to reuse them later (category 3). This can be advantageous in
cases where the environment is changing periodically, and repeated situations occur.
However, they also could be counterproductive if the environment changes dramatically
with open-ended novelty. Memory may be provided in two general ways: implicitly by
using redundant representations, or explicitly by introducing an extra memory and
formulating strategies to deposit and retrieve solutions later. Generally, the most prominent
approach to implicit memory and redundant representation is multiploidy (Goldberg &
Smith, 1987). On the other hand, while redundant representations allow the EA to implicitly
store some useful information during the run, it is not clear that the algorithm actually uses
this memory in an efficient way. As an alternative, some approaches use an explicit memory
in which specific information is stored and reintroduced into the population at later
generations, as in (Louis & Xu, 1996). Branke (1999) compared a number of replacement
strategies for inserting new individuals into a memory stressing the importance of diversity
for memory-based approaches.
Estimation of Distribution Algorithms (EDAs) (Pelikan, Goldberg & Lobo, 1999; Lorrañga &
Lozano, 2002) is a class of EAs where a probability model replaces an explicit representation
of the population. In the last decade, research on EDAs has experienced a continuous and
consistent growth. However, only recently the DOP issue has started to raise a strong
interest on EDAs’ researchers. For instance, the Population Based Incremental Learning
(PBIL) (Baluja, 1994) - one of the first EDAs - is used in (Yang & Xao, 2005) to solve DOPs
created by a problem generator proposed by the same authors. The authors compare several
versions of PBIL with GAs and RIGAs. In (Yang, 2005), the author proposes the Univariate
Marginal Distribution Algorithm (UMDA) with enhanced memory and the results of the
experiments show that the memory is efficient in dynamic environments. In addition, a
combination of memory and random immigrants for the UMDA is studied. Lima et al.
(2008) investigates the incorporation of restricted tournament replacement (RTR) in the
extended compact genetic algorithm (ECGA) (Harik et al., 1999) for solving problems with
non-stationary optima. (RTR is a simple yet efficient niching method used to maintain
diversity in a population of individuals.) Finally, Fernandes et al. (2008) proposed a new
update strategy for UMDA based on Swarm Intelligence.
Some recent proposals have been made using a Swarm Intelligence (Bonabeau, Dorigo &
Threraulaz, 1999) approach to attempt to solve dynamic problems. Swarm Intelligence is the
property of a system whereby the collective behaviors of simple entities interacting locally
with their environment cause global patterns to emerge. In (Guntsch & Middendorf, 2002)
the authors applied population based ACO algorithms for tracking extrema in dynamic
environments. Others, like (Ramos et al., 2005) developed distributed pheromone layering
over the dynamic environment itself, in order to track different peaks. Finally, Fernandes et
al. (2007) developed the Binary Ant Algorithm (BAA), based on the ACO framework, to take
advantage of ACO’s ability to solve combinatorial DOPs and generalize it to binary DOPs.
However, BAA may also be regarded as a kind of EDA, since, like this class of algorithms,
BAA creates the possible solutions to a problem via a transition probability model. Actually,

 Advances in Evolutionary Algorithms

188

1. React on Changes: The EA is run in standard fashion, but as soon as a change in the
environment is detected, explicit actions are taken to increase diversity and thus
facilitating the shift to the new optimum.

2. Maintaining Diversity throughout the run: Convergence is avoided all the time and it is
hoped that a spread-out population can adapt to changes more easily.

3. Memory-based Approaches: The EA is supplied with a memory to recall useful
information from past generations, which seems especially useful when the optimum
repeatedly returns to previous locations.

Techniques such as Hypermutation (Cobb, 1990) pursue the first category, keeping the whole
population after a change but increasing population diversity by drastically increasing the
mutation rate for some number of generations. Please note that reacting to changes assumes
that changes are detectable, a condition, as already stated, that is not always fulfilled
(Branke, 2002).
The Random Immigrants Genetic Algorithm (RIGA) (Grefenstette, 1992) is an example of a
strategy that falls in the second category. In RIGA the population is partly replaced by rr
randomly generated individuals in every generation. This guarantees the introduction of
new genetic material in every time step and avoids the convergence of the whole population
to a narrow region of the search space. The performance is affected by the parameter rr.
RIGA is used in the following sections to evaluate VDMGA’s performance on DOPs;
therefore, its pseudo-code is presented here:

Algorithm 1: Random Immigrants Genetic Algorithm

initialize Population(P)
evaluate Population(P)
while (not termination condition) do
 P ← Replace Fraction of Population (P, rr)
 create P.new by selection, crossover and mutation of P
 P ← P.new
end while

The following algorithms may also be classified in category 2. As described in the previous
section, the negative Assortative Mating Genetic Algorithm (nAMGA) (Fernandes & Rosa 2001)
is used in (Ochoa et al., 2005) to solve a knapsack DOP. Negative assortative mating (or
dissortative mating), by preventing the recombination of similar individuals, slows down
the expected diversity loss of traditional GAs thus having the proper characteristics to be
classified whitin category 2. The co-evolutionary agent based model of genotype editing (ABMGE)
(Huang et al., 2007) use several genetic editing characteristics that are gleaned from the
RNA editing system as observed in several organisms. Their results outperformed
traditional EAs via obtaining greater phenotypic plasticity. In (Tinós & Yang, 2007), a RIGA
associated with the Bak-Sneppen model is presented and tested on DOPs: the Self-Organized
Random Immigrants Genetic Algorithm (SORIGA). Bak-Sneppen (Bak & Sneppen, 1993) is
known as a Self-Organized Critically model, a phenomenon that was detected in 1987 by
Bak, Tang and Wiesenfield (Bak et al., 1987), and which characterized by displaying scale
invariant behavior. When associated with EAs it may periodically insert large amounts of
new material in the population or completely reorganize a solution to a problem. For those
reasons, it soon was adopted by EA researchers in order to provide new means to control
parameter values or maintain population diversity, thus avoiding premature convergence to

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

189

local optima. DOPs research field was a logical following step. Besides SORIGA, another
approach has been recently proposed by Fernandes et al. (2008a), in which the Sandpile
model (Bak et al., 1987) is attached to a GA is order to solve DOPs.
Another kind of approach is to supply the algorithm with some sort of memory, storing
good partial solutions in order to reuse them later (category 3). This can be advantageous in
cases where the environment is changing periodically, and repeated situations occur.
However, they also could be counterproductive if the environment changes dramatically
with open-ended novelty. Memory may be provided in two general ways: implicitly by
using redundant representations, or explicitly by introducing an extra memory and
formulating strategies to deposit and retrieve solutions later. Generally, the most prominent
approach to implicit memory and redundant representation is multiploidy (Goldberg &
Smith, 1987). On the other hand, while redundant representations allow the EA to implicitly
store some useful information during the run, it is not clear that the algorithm actually uses
this memory in an efficient way. As an alternative, some approaches use an explicit memory
in which specific information is stored and reintroduced into the population at later
generations, as in (Louis & Xu, 1996). Branke (1999) compared a number of replacement
strategies for inserting new individuals into a memory stressing the importance of diversity
for memory-based approaches.
Estimation of Distribution Algorithms (EDAs) (Pelikan, Goldberg & Lobo, 1999; Lorrañga &
Lozano, 2002) is a class of EAs where a probability model replaces an explicit representation
of the population. In the last decade, research on EDAs has experienced a continuous and
consistent growth. However, only recently the DOP issue has started to raise a strong
interest on EDAs’ researchers. For instance, the Population Based Incremental Learning
(PBIL) (Baluja, 1994) - one of the first EDAs - is used in (Yang & Xao, 2005) to solve DOPs
created by a problem generator proposed by the same authors. The authors compare several
versions of PBIL with GAs and RIGAs. In (Yang, 2005), the author proposes the Univariate
Marginal Distribution Algorithm (UMDA) with enhanced memory and the results of the
experiments show that the memory is efficient in dynamic environments. In addition, a
combination of memory and random immigrants for the UMDA is studied. Lima et al.
(2008) investigates the incorporation of restricted tournament replacement (RTR) in the
extended compact genetic algorithm (ECGA) (Harik et al., 1999) for solving problems with
non-stationary optima. (RTR is a simple yet efficient niching method used to maintain
diversity in a population of individuals.) Finally, Fernandes et al. (2008) proposed a new
update strategy for UMDA based on Swarm Intelligence.
Some recent proposals have been made using a Swarm Intelligence (Bonabeau, Dorigo &
Threraulaz, 1999) approach to attempt to solve dynamic problems. Swarm Intelligence is the
property of a system whereby the collective behaviors of simple entities interacting locally
with their environment cause global patterns to emerge. In (Guntsch & Middendorf, 2002)
the authors applied population based ACO algorithms for tracking extrema in dynamic
environments. Others, like (Ramos et al., 2005) developed distributed pheromone layering
over the dynamic environment itself, in order to track different peaks. Finally, Fernandes et
al. (2007) developed the Binary Ant Algorithm (BAA), based on the ACO framework, to take
advantage of ACO’s ability to solve combinatorial DOPs and generalize it to binary DOPs.
However, BAA may also be regarded as a kind of EDA, since, like this class of algorithms,
BAA creates the possible solutions to a problem via a transition probability model. Actually,

 Advances in Evolutionary Algorithms

190

there have been recent attempts to unify ACO and EDAs into the same framework (Zlochin,
et al., 2004).

4. The variable dissortative mating genetic algorithm
To model dissortative mating in EAs, some kind of relaxation policy may be needed in order
to avoid a freezing population, since evolution eventually leads the search process into a
stage of low diversity, where all the individuals are almost identical. In addition, the
population usually searches for an optimal degree of genetic variability according to the
landscape were it evolves. It is possible that the population movement towards the optimal
regions of the landscape also requires different levels of genetic diversity along the way, in
order to maintain a robust search. Therefore, the degree of assortative or dissortative mating
should vary along the run in order to deal with the inevitable decrease in diversity and to
follow the search path of the population. Some methods try to maintain the diversity in a
permanent high level, but that may be incompatible with the desirable convergence of the
algorithm. For instance, a constant macro-mutation certainly maintains the diversity of the
population, but the expected success of an EA based on such premises is not high. Diversity
by itself is not a guarantee of a successful search through the landscape.
The Variable Dissortative Mating Genetic Algorithm (VDMGA) (Fernandes & Rosa, 2008) is a
non-random mating GA, which incorporates an adaptive Hamming distance mating
restriction that tends to relax as the search process advances, but may be occasionally
reinforced. The algorithm works in the following way. When the first population is
randomly created, a threshold value is set to an initial level equal to L-1, where L is the
chromosome length. Then, offspring may be created by selecting pairs of parents (by any
method), followed by recombination and mutation. However, recombination only occurs if
the genetic distance (Hamming distance in implementation made for this chapter) between
the two parents is found to be above the threshold. If not, the recombination event is
considered as “failed” and another pair of chromosomes is selected until N/2 pairs have
tried to recombine (where N is the size of the population). When this process ends, the
amount of successful and failed recombination events is compared, and the threshold is
incremented if successful mating exceeds failed mating. Otherwise, threshold is
decremented (the process repeats if no mating succeeded). This way, the threshold is
indirectly controlled by the diversity of the population. After the reproduction cycle is
completed, a new population is created by selecting the N best members from the parents’
population and newly generated offspring (if a parent and a child have the same fitness then
the child is chosen). Parents and children compete together for survival, conducing to a
highly selective algorithm (VDMGA belongs to the class of steady-state GAs). The process
repeats until a stop criterion is reached.
VDMGA’s threshold value evolves in conformity with the genetic diversity of the
population. When diversity decreases, threshold tends to be decremented since the
frequency of unsuccessful mating will necessarily increase. However, the mutation operator
introduces some variability in the population which may result in occasional increments of
the threshold that moves it away from zero (if threshold reaches zero, all individuals are
allowed to crossover, like in random mating GAs). Tests performed on several functions
confirmed this predicted behavior (Fernandes & Rosa, 2008).
Two changes must be made on the original VDMGA presented in (Fernandes & Rosa, 2008)
in order to solve DOPs with an enhanced performance.

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

191

Algorithm 2: Variable Dissortative Mating Genetic Algorithm

initialize Population(P) with size(P) = N
evaluate Population(P)
set initial threshold(iT) /* iT ← L-1 for static problems; iT ← L/4 for DOPs*/
threshold(T) ← iT
 while (not termination condition)
 create new individuals P.new
 evaluate new individuals P.new
 if (static problem)
 P ← P+P.new
 remove worst individuals from population(P) until size(P) reaches initial size N
 end if
 if (DOP)
 replace size(P.new) worst individuals from population(P) by P.new
 end if
 end while

Procedure: create new individuals

 matingEvents ← N/2 /* N is the population size */
 successfulMatings ← 0
 failedMatings ← 0
 while (successfulMatings < 1) do
 for (i ← 1 to matingEvents) do
 select two chromosomes (c1, c2) /* Any method may be used here */
 compute Hamming distance H(c1, c2)
 if (H(c1, c2) >= T)
 crossover and mutate
 successfulMatings ← successfulMatings+1
 end if
 if (H(c1, c2) < T)
 failedMatings ← failedMatings +1
 end if
 end for
 if (failedMatings > successfulMatings) T ← T-1
 else T ← T+1
 end while

(1) In each time step, VDMGA builds an auxiliary pool of chromosomes, with parents and
offspring, and then creates the new population by selecting the best chromosomes from the
pool. This means that all newly created (and evaluated) individuals may be excluded from
the population (considering the “worst” case scenario). Since the study on DOPs performed
for this chapter assumes that changes not are detectable − and this is the most general
assumption, since changes are not always detectable (Branke, 2002) −, all individuals in the
population must be (re)evaluated in each generation, even if they have been created in a
previous generation. Individuals with fitness values corresponding to previous shapes of
the search space will mislead the search and modify performance metrics in a wrong

 Advances in Evolutionary Algorithms

190

there have been recent attempts to unify ACO and EDAs into the same framework (Zlochin,
et al., 2004).

4. The variable dissortative mating genetic algorithm
To model dissortative mating in EAs, some kind of relaxation policy may be needed in order
to avoid a freezing population, since evolution eventually leads the search process into a
stage of low diversity, where all the individuals are almost identical. In addition, the
population usually searches for an optimal degree of genetic variability according to the
landscape were it evolves. It is possible that the population movement towards the optimal
regions of the landscape also requires different levels of genetic diversity along the way, in
order to maintain a robust search. Therefore, the degree of assortative or dissortative mating
should vary along the run in order to deal with the inevitable decrease in diversity and to
follow the search path of the population. Some methods try to maintain the diversity in a
permanent high level, but that may be incompatible with the desirable convergence of the
algorithm. For instance, a constant macro-mutation certainly maintains the diversity of the
population, but the expected success of an EA based on such premises is not high. Diversity
by itself is not a guarantee of a successful search through the landscape.
The Variable Dissortative Mating Genetic Algorithm (VDMGA) (Fernandes & Rosa, 2008) is a
non-random mating GA, which incorporates an adaptive Hamming distance mating
restriction that tends to relax as the search process advances, but may be occasionally
reinforced. The algorithm works in the following way. When the first population is
randomly created, a threshold value is set to an initial level equal to L-1, where L is the
chromosome length. Then, offspring may be created by selecting pairs of parents (by any
method), followed by recombination and mutation. However, recombination only occurs if
the genetic distance (Hamming distance in implementation made for this chapter) between
the two parents is found to be above the threshold. If not, the recombination event is
considered as “failed” and another pair of chromosomes is selected until N/2 pairs have
tried to recombine (where N is the size of the population). When this process ends, the
amount of successful and failed recombination events is compared, and the threshold is
incremented if successful mating exceeds failed mating. Otherwise, threshold is
decremented (the process repeats if no mating succeeded). This way, the threshold is
indirectly controlled by the diversity of the population. After the reproduction cycle is
completed, a new population is created by selecting the N best members from the parents’
population and newly generated offspring (if a parent and a child have the same fitness then
the child is chosen). Parents and children compete together for survival, conducing to a
highly selective algorithm (VDMGA belongs to the class of steady-state GAs). The process
repeats until a stop criterion is reached.
VDMGA’s threshold value evolves in conformity with the genetic diversity of the
population. When diversity decreases, threshold tends to be decremented since the
frequency of unsuccessful mating will necessarily increase. However, the mutation operator
introduces some variability in the population which may result in occasional increments of
the threshold that moves it away from zero (if threshold reaches zero, all individuals are
allowed to crossover, like in random mating GAs). Tests performed on several functions
confirmed this predicted behavior (Fernandes & Rosa, 2008).
Two changes must be made on the original VDMGA presented in (Fernandes & Rosa, 2008)
in order to solve DOPs with an enhanced performance.

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

191

Algorithm 2: Variable Dissortative Mating Genetic Algorithm

initialize Population(P) with size(P) = N
evaluate Population(P)
set initial threshold(iT) /* iT ← L-1 for static problems; iT ← L/4 for DOPs*/
threshold(T) ← iT
 while (not termination condition)
 create new individuals P.new
 evaluate new individuals P.new
 if (static problem)
 P ← P+P.new
 remove worst individuals from population(P) until size(P) reaches initial size N
 end if
 if (DOP)
 replace size(P.new) worst individuals from population(P) by P.new
 end if
 end while

Procedure: create new individuals

 matingEvents ← N/2 /* N is the population size */
 successfulMatings ← 0
 failedMatings ← 0
 while (successfulMatings < 1) do
 for (i ← 1 to matingEvents) do
 select two chromosomes (c1, c2) /* Any method may be used here */
 compute Hamming distance H(c1, c2)
 if (H(c1, c2) >= T)
 crossover and mutate
 successfulMatings ← successfulMatings+1
 end if
 if (H(c1, c2) < T)
 failedMatings ← failedMatings +1
 end if
 end for
 if (failedMatings > successfulMatings) T ← T-1
 else T ← T+1
 end while

(1) In each time step, VDMGA builds an auxiliary pool of chromosomes, with parents and
offspring, and then creates the new population by selecting the best chromosomes from the
pool. This means that all newly created (and evaluated) individuals may be excluded from
the population (considering the “worst” case scenario). Since the study on DOPs performed
for this chapter assumes that changes not are detectable − and this is the most general
assumption, since changes are not always detectable (Branke, 2002) −, all individuals in the
population must be (re)evaluated in each generation, even if they have been created in a
previous generation. Individuals with fitness values corresponding to previous shapes of
the search space will mislead the search and modify performance metrics in a wrong

 Advances in Evolutionary Algorithms

192

manner. (If changes were detectable, reevaluations would only be necessary when detecting
a change.) Therefore, when dealing with DOPs, it is better to introduce a larger number of
new individuals in VDMGA’s population, not only to diminish reevaluations, but also to
bring a larger amount of genetic material into the population. For that purpose, original
VDMGA replacement strategy is substituted by the following process: all new individuals
N’ are introduced in the new population, replacing the worst N’ old chromosomes − see
pseudo-code for details.
(2) The original initial threshold value was set to L-1, such that a strong exploratory
behavior is guaranteed to take place in the beginning of the search. Starting with L-1, results
showed that VDMGA self-regulates the threshold in the first generation according to the
conditions of the problem. The adaptive characteristic of the threshold and the robustness of
VDMGA to its initial value suggested that it might be convenient to treat threshold’s initial
value as a constant and let the algorithm self-tune the parameter, thus reducing the
complexity of the parameter’s space. Since the expected ratio of dissimilar alleles in two
random binary chromosomes is equal to 0.5 (considering infinite strings) it is likely that
during the first generation (t = 1) the threshold decreases to values around 0.5×L. On the
other hand, experimental results showed that the threshold value in the following
generations depends on population size (N) and length of the chromosome (L): tests
performed in (Fernandes & Rosa, 2008) show that the threshold value at the end of the first
generation varies from 49.4% and 67.5% of the chromosome length L depending on N and L.
As stated before, VDMGA needs to (re)evaluate all the old chromosomes in the population
in order to deal with DOPs. If the algorithm passes through an initial stage, during which
few new chromosomes are created, until it reaches a more stable threshold value, then a
prohibitive number of reevaluations are performed, delaying the algorithm and
compromising the first stage of optimization, especially when the changes occur fast. For
that reason, initial threshold value is set to a lower value when the problem is dynamic. A
value bellow 0.5×L is sufficient. In the tests performed for this study and described in the
following sections, initial threshold was set to 0.25×L.

5. Performance and scalability on static environments
In (Fernandes & Rosa, 2008), VDMGA was subject to a wide range of experiments on some
optimization functions frequently found in EAs literature. The test suite included unimodal
and multimodal functions (with and without regular arrangement of local optima), a step
function without local gradient information, scalable functions, high dimensional functions
and complex combinatorial functions. VDMGA was compared with traditional GAs, CHC
(Eschelman, 1991) and nAMGA (Fernandes et al., 2000). pAMGA (Fernandes et al., 2000)
was also included in the tests in order to compare analogous dissortative and assortative
mating strategies and demonstrate that the former are more efficient in solving the proposed
optimization problems. Overall results displayed VDMGA’s superior performance when
compared to other GAs (while statistically equivalent to nAMGA in some functions,
VDMGA proved to be more efficient when facing the harder problems). Please refer to
(Fernandes & Rosa, 2008) for a detailed description of the test set and results.
A simple scalability test is also provided in (Fernandes & Rosa, 2008). Using the 4-bit fully
deceptive function (Whitley, 1991), results confirm the assumption that VDMGA’s optimal
population sizes are smaller than standard GA’s. Consequently, the slope of the scalability
log-log curve is reduced in VDMGA when compared with a generational GA and a steady-

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

193

state GA, even if only by a small amount. For this chapter, VDMGA’s scalability is
investigated in l-trap function. The main interest is to perceive how VDMGA reacts to
increasing the number of l-traps that are juxtaposed and summed together.

5.1 Trap functions and VDMGA’s scalability
To investigate how VDMGA’s scales on landscapes with different characteristics,
experiments were conducted with trap functions, which were used as subproblems to
construct larger problems. A trap function is a piecewise-linear function defined on
unitation (the number of ones in a binary string). There are two distinct regions in search
space, one leading to a global optimum and the other leading to the local optimum (see
figure 2). In general, a trap function is defined as in equation 1.

()()trap u x =
⎧
⎪
⎨
⎪⎩

()() ()

()()

,

,

a z u x if u x z
z
b u x z otherwise

l z

− ≤

−
−

 (1)

where ()u x is the unitation function, defined as:

() ()1 1 1
0

, ... , ...
L

L i
i

u x u x x x x x
=

= = + = ∑ (2)

and a is the local optimum, b is the global optimum, l is the problem size (l-bit trap function)
and z is slope-change location separating the attraction basin of the two optima as depicted
in figure 1.

Fig. 1. Generalized l-trap function.

Depending on the parameter setting, trap functions may be deceptive or not. Deceptive
problems are functions where low-order building-blocks do not combine to form higher
order building-blocks. Instead, low-order building-blocks may mislead the search towards
local optima, thus challenging GA’s search mechanisms. For a trap function to be deceptive,
the ratio r between the local (a) and global (b) optimum must be so that:

12

12

L zr

z

−
−≥

−
 (3)

In the experiments, 2-bit, 3-bit and 4-bit trap functions were defined with the following
parameters: a = l-1; b = l; z = l-1. This way, equation 1 may be simplified:

 Advances in Evolutionary Algorithms

192

manner. (If changes were detectable, reevaluations would only be necessary when detecting
a change.) Therefore, when dealing with DOPs, it is better to introduce a larger number of
new individuals in VDMGA’s population, not only to diminish reevaluations, but also to
bring a larger amount of genetic material into the population. For that purpose, original
VDMGA replacement strategy is substituted by the following process: all new individuals
N’ are introduced in the new population, replacing the worst N’ old chromosomes − see
pseudo-code for details.
(2) The original initial threshold value was set to L-1, such that a strong exploratory
behavior is guaranteed to take place in the beginning of the search. Starting with L-1, results
showed that VDMGA self-regulates the threshold in the first generation according to the
conditions of the problem. The adaptive characteristic of the threshold and the robustness of
VDMGA to its initial value suggested that it might be convenient to treat threshold’s initial
value as a constant and let the algorithm self-tune the parameter, thus reducing the
complexity of the parameter’s space. Since the expected ratio of dissimilar alleles in two
random binary chromosomes is equal to 0.5 (considering infinite strings) it is likely that
during the first generation (t = 1) the threshold decreases to values around 0.5×L. On the
other hand, experimental results showed that the threshold value in the following
generations depends on population size (N) and length of the chromosome (L): tests
performed in (Fernandes & Rosa, 2008) show that the threshold value at the end of the first
generation varies from 49.4% and 67.5% of the chromosome length L depending on N and L.
As stated before, VDMGA needs to (re)evaluate all the old chromosomes in the population
in order to deal with DOPs. If the algorithm passes through an initial stage, during which
few new chromosomes are created, until it reaches a more stable threshold value, then a
prohibitive number of reevaluations are performed, delaying the algorithm and
compromising the first stage of optimization, especially when the changes occur fast. For
that reason, initial threshold value is set to a lower value when the problem is dynamic. A
value bellow 0.5×L is sufficient. In the tests performed for this study and described in the
following sections, initial threshold was set to 0.25×L.

5. Performance and scalability on static environments
In (Fernandes & Rosa, 2008), VDMGA was subject to a wide range of experiments on some
optimization functions frequently found in EAs literature. The test suite included unimodal
and multimodal functions (with and without regular arrangement of local optima), a step
function without local gradient information, scalable functions, high dimensional functions
and complex combinatorial functions. VDMGA was compared with traditional GAs, CHC
(Eschelman, 1991) and nAMGA (Fernandes et al., 2000). pAMGA (Fernandes et al., 2000)
was also included in the tests in order to compare analogous dissortative and assortative
mating strategies and demonstrate that the former are more efficient in solving the proposed
optimization problems. Overall results displayed VDMGA’s superior performance when
compared to other GAs (while statistically equivalent to nAMGA in some functions,
VDMGA proved to be more efficient when facing the harder problems). Please refer to
(Fernandes & Rosa, 2008) for a detailed description of the test set and results.
A simple scalability test is also provided in (Fernandes & Rosa, 2008). Using the 4-bit fully
deceptive function (Whitley, 1991), results confirm the assumption that VDMGA’s optimal
population sizes are smaller than standard GA’s. Consequently, the slope of the scalability
log-log curve is reduced in VDMGA when compared with a generational GA and a steady-

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

193

state GA, even if only by a small amount. For this chapter, VDMGA’s scalability is
investigated in l-trap function. The main interest is to perceive how VDMGA reacts to
increasing the number of l-traps that are juxtaposed and summed together.

5.1 Trap functions and VDMGA’s scalability
To investigate how VDMGA’s scales on landscapes with different characteristics,
experiments were conducted with trap functions, which were used as subproblems to
construct larger problems. A trap function is a piecewise-linear function defined on
unitation (the number of ones in a binary string). There are two distinct regions in search
space, one leading to a global optimum and the other leading to the local optimum (see
figure 2). In general, a trap function is defined as in equation 1.

()()trap u x =
⎧
⎪
⎨
⎪⎩

()() ()

()()

,

,

a z u x if u x z
z
b u x z otherwise

l z

− ≤

−
−

 (1)

where ()u x is the unitation function, defined as:

() ()1 1 1
0

, ... , ...
L

L i
i

u x u x x x x x
=

= = + = ∑ (2)

and a is the local optimum, b is the global optimum, l is the problem size (l-bit trap function)
and z is slope-change location separating the attraction basin of the two optima as depicted
in figure 1.

Fig. 1. Generalized l-trap function.

Depending on the parameter setting, trap functions may be deceptive or not. Deceptive
problems are functions where low-order building-blocks do not combine to form higher
order building-blocks. Instead, low-order building-blocks may mislead the search towards
local optima, thus challenging GA’s search mechanisms. For a trap function to be deceptive,
the ratio r between the local (a) and global (b) optimum must be so that:

12

12

L zr

z

−
−≥

−
 (3)

In the experiments, 2-bit, 3-bit and 4-bit trap functions were defined with the following
parameters: a = l-1; b = l; z = l-1. This way, equation 1 may be simplified:

 Advances in Evolutionary Algorithms

194

(4)

Please note that with these settings, the ratio r of the 2-trap function is bellow the deception
threshold, while 4-trap is fully deceptive since the condition of equation 3 is satisfied. The
ratio of the 3-trap function is equal to the threshold, which means that the function lies in
the region between deceptive and non-deceptive. Under these conditions, it is possible to
investigate not only how standard GAs and VDMGA scale on l-trap functions, but also to
observe how that scaling varies when moving from non-deceptive to fully deceptive search
spaces. For that purpose, L-bit decomposable functions were constructed by juxtaposing m
trap functions and summing the fitness of each sub-function to obtain the total fitness:

(5)

For each trap and each size m, a standard generational GA (GGA) and VDMGA were run
with several values of population size N. Starting from N = 4, optimal population size was
determined by the bisection method (Sastry, 2001). The success rate (percentage of runs in
which the global optimum was attained) and the average evaluations needed to find the
solution (Average Evaluations to a Solution - AES) were measured. Each configuration was
executed for 50 times and the results are averaged over those runs. The best configuration
was defined as the one with 98% success rate and lower AES. Then, AES optimal population
size values corresponding to the best run were plotted and the resulting log-log graphics are
depicted in figure 2. The algorithms were tested with uniform crossover and no mutation.
Crossover probability, pc, was set to 1.0. Selection method is binary tournament (kts = 1.0).
(Please note that without mutation it is simply required that one bit is set to 0 or 1 in the
entire population for the run to be declared not successful.)

2-trap 3-trap 4-trap

Fig. 2. Scalability with trap functions. Optimal population size and AES values for different
problem size L = l×m.

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

195

When solving 2-trap functions the algorithms behave similarly, but when the trap
dimension increases to 3 and 4, the differences in the scalability is much more noticeable.
The difficulty that deceptive trap functions pose to GAs is rather clear when noticing that
GGA optimal population size values are close to search space size, that is, 2L, when solving
4-trap functions. VDMGA significantly reduces the slope of the scalability curve, revealing a
good ability to maintain diversity and recombine information in order to achieve the higher
order building-blocks. Since VDMGA maintains genetic diversity at a higher level, smaller
populations are sufficient to find the global optimum, and thus fewer evaluations are
required to converge to that same optimal solution.
VDMGA is a steady-state algorithm, and due to its structure, most of the generations keep
the best solutions in the population. When compared to a GGA, which holds no elitism and
the offspring completely replaces the parents’ population, it is expected that it scales better.
To avoid any misinterpretation of the results provided by VDMGA, another scalability test
was performed to compare the algorithm with a GGA with 2-elitism (2-e), and a steady-state
GA (SSGA) in which half of the population is replaced by the offspring (the worst
chromosomes in the current population are replaced by N/2 newly generated
chromosomes). Results, presented in figure 3, show that both SSGA and GGA 2-e maintain a
better scalability than GGA when raising the size of the trap from 2 to 4. In addition, SSGA
keeps its performance very close to VDMGA when solving not only 2-traps, but also 3-traps.

2-trap 3-trap 4-trap

Fig. 3. Scalability with trap functions. Comparing VDMGA with an elitist generational GA
(GGA 2-e) and a steady-state GA (SSGA).

However, when reaching 4-trap functions, it is clear that VDMGA scales better than elitist
GGA and SSGA. It may be assumed now that this improved scalability is to a great extent
due to the fact that VDMGA maintains a higher diversity during the run (Fernandes & Rosa,
2008), and not to its steady-state nature. Scalability tests are very important and useful
because when tackling real-world problems, the algorithm may be requested to codify
solutions in extremely large binary strings. If the GA does not scale well, optimization
becomes practically impossible above a certain problem size. Scalability issues have been
increasingly raising the interest of EAs research community, especially amongst EDAs
(Pelikan, Goldberg & Lobo, 1999; Lorrañga & Lozano, 2002) researchers.

6. VDMGA on dynamic optimization problems
The test environment proposed in (Yang & Xao, 2005) was used to create an experimental

setup for VDMGA on DOPs. Given a stationary problem () }{()0,1
L

f x x∈ where L is the

chromosome length, the dynamic environments may be constructed by applying a binary

mask }{M 0,1
L

∈ to each solution before its evaluation in the following manner:

 Advances in Evolutionary Algorithms

194

(4)

Please note that with these settings, the ratio r of the 2-trap function is bellow the deception
threshold, while 4-trap is fully deceptive since the condition of equation 3 is satisfied. The
ratio of the 3-trap function is equal to the threshold, which means that the function lies in
the region between deceptive and non-deceptive. Under these conditions, it is possible to
investigate not only how standard GAs and VDMGA scale on l-trap functions, but also to
observe how that scaling varies when moving from non-deceptive to fully deceptive search
spaces. For that purpose, L-bit decomposable functions were constructed by juxtaposing m
trap functions and summing the fitness of each sub-function to obtain the total fitness:

(5)

For each trap and each size m, a standard generational GA (GGA) and VDMGA were run
with several values of population size N. Starting from N = 4, optimal population size was
determined by the bisection method (Sastry, 2001). The success rate (percentage of runs in
which the global optimum was attained) and the average evaluations needed to find the
solution (Average Evaluations to a Solution - AES) were measured. Each configuration was
executed for 50 times and the results are averaged over those runs. The best configuration
was defined as the one with 98% success rate and lower AES. Then, AES optimal population
size values corresponding to the best run were plotted and the resulting log-log graphics are
depicted in figure 2. The algorithms were tested with uniform crossover and no mutation.
Crossover probability, pc, was set to 1.0. Selection method is binary tournament (kts = 1.0).
(Please note that without mutation it is simply required that one bit is set to 0 or 1 in the
entire population for the run to be declared not successful.)

2-trap 3-trap 4-trap

Fig. 2. Scalability with trap functions. Optimal population size and AES values for different
problem size L = l×m.

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

195

When solving 2-trap functions the algorithms behave similarly, but when the trap
dimension increases to 3 and 4, the differences in the scalability is much more noticeable.
The difficulty that deceptive trap functions pose to GAs is rather clear when noticing that
GGA optimal population size values are close to search space size, that is, 2L, when solving
4-trap functions. VDMGA significantly reduces the slope of the scalability curve, revealing a
good ability to maintain diversity and recombine information in order to achieve the higher
order building-blocks. Since VDMGA maintains genetic diversity at a higher level, smaller
populations are sufficient to find the global optimum, and thus fewer evaluations are
required to converge to that same optimal solution.
VDMGA is a steady-state algorithm, and due to its structure, most of the generations keep
the best solutions in the population. When compared to a GGA, which holds no elitism and
the offspring completely replaces the parents’ population, it is expected that it scales better.
To avoid any misinterpretation of the results provided by VDMGA, another scalability test
was performed to compare the algorithm with a GGA with 2-elitism (2-e), and a steady-state
GA (SSGA) in which half of the population is replaced by the offspring (the worst
chromosomes in the current population are replaced by N/2 newly generated
chromosomes). Results, presented in figure 3, show that both SSGA and GGA 2-e maintain a
better scalability than GGA when raising the size of the trap from 2 to 4. In addition, SSGA
keeps its performance very close to VDMGA when solving not only 2-traps, but also 3-traps.

2-trap 3-trap 4-trap

Fig. 3. Scalability with trap functions. Comparing VDMGA with an elitist generational GA
(GGA 2-e) and a steady-state GA (SSGA).

However, when reaching 4-trap functions, it is clear that VDMGA scales better than elitist
GGA and SSGA. It may be assumed now that this improved scalability is to a great extent
due to the fact that VDMGA maintains a higher diversity during the run (Fernandes & Rosa,
2008), and not to its steady-state nature. Scalability tests are very important and useful
because when tackling real-world problems, the algorithm may be requested to codify
solutions in extremely large binary strings. If the GA does not scale well, optimization
becomes practically impossible above a certain problem size. Scalability issues have been
increasingly raising the interest of EAs research community, especially amongst EDAs
(Pelikan, Goldberg & Lobo, 1999; Lorrañga & Lozano, 2002) researchers.

6. VDMGA on dynamic optimization problems
The test environment proposed in (Yang & Xao, 2005) was used to create an experimental

setup for VDMGA on DOPs. Given a stationary problem () }{()0,1
L

f x x∈ where L is the

chromosome length, the dynamic environments may be constructed by applying a binary

mask }{M 0,1
L

∈ to each solution before its evaluation in the following manner:

 Advances in Evolutionary Algorithms

196

() ()(), XOR Mf x t f x k= (6)

Where t is the generation index,
tk
τ

= is the period index and f(x,t) is the fitness of solution

x. M(k) can be incremently generated as follows:

M(k)= M(k-1) XOR T(k) (7)

where T(k) is an intermediate binary mask for every period k. This mask T(k) has ρ× L ones,
where ρ is a value between 0 and 1.0 which controls the intensity or severity of change.
Notice that ρ = 0 corresponds to a stationary problem since T vectors will carry only 0’s and
no change will occur in the environment. On the other hand, ρ = 1 will guarantee the highest
degree of change, that is, for instance, if a solution to a problem is a vector of 1’s, then the
dynamic solution will oscillate between a vector of 1’s and a vector of 0’s. Therefore, by
changing ρ and τ in the previous set of equations it is possible to control two of the most
important features when testing algorithms on DOPs: severity (ρ) and speed (τ) of change
(Angeline, 1997).
The generator was applied to trap functions. GGA 2-e and SSGA were tested in order to
compare them with VDMGA. It is not the aim of this study to compare VDMGA with the
best GAs in solving DOPs, even because there is hardly any evidence of a GA that
consistently outperforms any other in a wide range of problems and dynamics. Instead, the
study of the effects of VDMGA’s diversity maintenance on its behavior on dynamic
environments is the main aim of this section: the way dissortative mating may be used in
order to improve GAs performance and on which kind of DOPs that improvement is more
noticeable. Nevertheless, a commonly used algorithm on dynamic optimization studies was
added to the test bench: RIGA (see section 3). Two variations were tested. In RIGA 1, the
immigrants replace randomly selected individuals from the population, while in RIGA 2 the
rr immigrants replace the worst rr individuals in the population. (Both RIGA were
implemented with 2-elitism. Non-elitist GAs were tested but the performance on trap DOPs
was very poor. VDMGA outperformed non-elitist GAs on every problem and (ρ, τ)
configuration, but such a test is clearly unfair to standard and Random Immigrants GAs.
All the algorithms were tested with N = 240, pc = 1.0, uniform crossover and binary
tournament (kts = 1). Performance was measured by comparing the mean best_of_generation:

(8)

where T is the number of generations and R is the number of runs (30 in all the
experiments). Several tests were conducted by varying severity (ρ) and speed (τ) of change:
ρ was set to 0.05, 0.6 and 0.95; speed of change τ was set to 10, 100 and 200 generations. This
means that 9 kinds of environmental changes were tested for each function and algorithm.
Every environment was tested with 10 periods of change, thus making
T = 100 for τ = 10, T = 1000 for τ = 100 and T = 2000 for τ = 200. Since it is expected that the

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

197

optimal mutation rate is not equal for every GA in the test bench, it is of extreme importance
to test the algorithms with different pm. Values ranged from 0.5/L to 5/L and the results
displayed on tables 1-3 correspond to best configurations (best configurations were
determined by averaging the nine performance values). In order to properly compare the
algorithms it is imperative that each GA performs the same number of function evaluations
in each generation. Otherwise, during each period between changes, different GAs may be
requiring different computation effort. For that reason, RIGAs population size must be set to
N-rr, because RIGA performs extra rr evaluation in each time step. For RIGA’s tests in this
section, rr was set to 24, therefore, N is equal to 216. In addition, since this study assumes
that changes in the environment are not detectable, all chromosomes must be evaluated in
each generation, even those that have already been evaluated in a previous generation, as in
VDMGA (please remember that VDMGA is a steady-state algorithm, that is, parents and
children may belong to the same population). For the same reason, SSGA also reevaluates
the fraction (half) of the population that has not been replaced by children. (GGA, due to its
2-elitism, must also reevaluate, in each generation, the two best chromosomes in the
population.) This way, VDMGA always performs N fitness calculations in each generation
but only a fraction of those evaluations are performed on new individuals. This feature is
expected to penalize VDMGA’s performance on DOPs with very fast changes (low τ), since
it may happen that for some periods of time only a small amount of new genetic material
(new individuals) are inserted in the population in each generation. Actually, this outcome
is confirmed on the first test, performed on 3-trap functions.
Table 1 shows the results obtained by the various GAs on a function constructed by
juxtaposing ten 3-trap subfunctions (L = 30). A statistical comparison was carried out by t-
tests with 58 degrees of freedom at a 0.05 level of significance. The (+) signs means that the
corresponding algorithm is significantly better than VDMGA on that particular
configuration of ρ and τ. A (~) sign means that the performance is statistically equivalent
and (−) sign means that the GA performs worst than VDMGA. A general observation of
table 1 shows that only when τ = 10 the GAs consistently outperform VDMGA. With lower
speed, VDMGA has always a better performance than the other algorithms in the test bench
when ρ = 0.6 and ρ = 0.95, being statistically equivalent when ρ = 0.05. This was an expected
outcome, due to what was stated above about VDMGA’s ration between function
evaluations in each time step and new chromosomes inserted in the population.
Table 2 shows the results with 4-trap functions (L = 12). Values appear to be more balanced
in this case: all the algorithms perform similarly, but when increasing the size of the
problem to L = 24 – see table 3 −, VDMGA improves its performance when compared to
other GAs when τ = 100 and τ = 200 (please remember that VDMGA is expected to face
some difficulties when facing fast changing environments. However, the algorithm
performs well in 12-bit and 24-bit 4-trap function when ρ = 0.05 and τ = 10.)
An unexpected result occurs when speed of change is slow and ρ = 0.95. For instance, when
τ = 200, RIGAs outperforms VDMGA. But when looking at the dynamic behavior of the
algorithms, in figure 4, a possible explanation arises for this particular result. Figure 4 shows
the dynamics of VDMGA, SSGA and RIGA 2 when tracking the extrema of 4-trap functions
(L = 24) by plotting the best_of_generation values over all generations. When ρ = 0.6 and τ =
200 the graphs shows that VDMGA becomes closer to the optimum (and results on table 3
confirm that VDMGA outperforms other algorithms). However, when increasing ρ to 0.95,

 Advances in Evolutionary Algorithms

196

() ()(), XOR Mf x t f x k= (6)

Where t is the generation index,
tk
τ

= is the period index and f(x,t) is the fitness of solution

x. M(k) can be incremently generated as follows:

M(k)= M(k-1) XOR T(k) (7)

where T(k) is an intermediate binary mask for every period k. This mask T(k) has ρ× L ones,
where ρ is a value between 0 and 1.0 which controls the intensity or severity of change.
Notice that ρ = 0 corresponds to a stationary problem since T vectors will carry only 0’s and
no change will occur in the environment. On the other hand, ρ = 1 will guarantee the highest
degree of change, that is, for instance, if a solution to a problem is a vector of 1’s, then the
dynamic solution will oscillate between a vector of 1’s and a vector of 0’s. Therefore, by
changing ρ and τ in the previous set of equations it is possible to control two of the most
important features when testing algorithms on DOPs: severity (ρ) and speed (τ) of change
(Angeline, 1997).
The generator was applied to trap functions. GGA 2-e and SSGA were tested in order to
compare them with VDMGA. It is not the aim of this study to compare VDMGA with the
best GAs in solving DOPs, even because there is hardly any evidence of a GA that
consistently outperforms any other in a wide range of problems and dynamics. Instead, the
study of the effects of VDMGA’s diversity maintenance on its behavior on dynamic
environments is the main aim of this section: the way dissortative mating may be used in
order to improve GAs performance and on which kind of DOPs that improvement is more
noticeable. Nevertheless, a commonly used algorithm on dynamic optimization studies was
added to the test bench: RIGA (see section 3). Two variations were tested. In RIGA 1, the
immigrants replace randomly selected individuals from the population, while in RIGA 2 the
rr immigrants replace the worst rr individuals in the population. (Both RIGA were
implemented with 2-elitism. Non-elitist GAs were tested but the performance on trap DOPs
was very poor. VDMGA outperformed non-elitist GAs on every problem and (ρ, τ)
configuration, but such a test is clearly unfair to standard and Random Immigrants GAs.
All the algorithms were tested with N = 240, pc = 1.0, uniform crossover and binary
tournament (kts = 1). Performance was measured by comparing the mean best_of_generation:

(8)

where T is the number of generations and R is the number of runs (30 in all the
experiments). Several tests were conducted by varying severity (ρ) and speed (τ) of change:
ρ was set to 0.05, 0.6 and 0.95; speed of change τ was set to 10, 100 and 200 generations. This
means that 9 kinds of environmental changes were tested for each function and algorithm.
Every environment was tested with 10 periods of change, thus making
T = 100 for τ = 10, T = 1000 for τ = 100 and T = 2000 for τ = 200. Since it is expected that the

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

197

optimal mutation rate is not equal for every GA in the test bench, it is of extreme importance
to test the algorithms with different pm. Values ranged from 0.5/L to 5/L and the results
displayed on tables 1-3 correspond to best configurations (best configurations were
determined by averaging the nine performance values). In order to properly compare the
algorithms it is imperative that each GA performs the same number of function evaluations
in each generation. Otherwise, during each period between changes, different GAs may be
requiring different computation effort. For that reason, RIGAs population size must be set to
N-rr, because RIGA performs extra rr evaluation in each time step. For RIGA’s tests in this
section, rr was set to 24, therefore, N is equal to 216. In addition, since this study assumes
that changes in the environment are not detectable, all chromosomes must be evaluated in
each generation, even those that have already been evaluated in a previous generation, as in
VDMGA (please remember that VDMGA is a steady-state algorithm, that is, parents and
children may belong to the same population). For the same reason, SSGA also reevaluates
the fraction (half) of the population that has not been replaced by children. (GGA, due to its
2-elitism, must also reevaluate, in each generation, the two best chromosomes in the
population.) This way, VDMGA always performs N fitness calculations in each generation
but only a fraction of those evaluations are performed on new individuals. This feature is
expected to penalize VDMGA’s performance on DOPs with very fast changes (low τ), since
it may happen that for some periods of time only a small amount of new genetic material
(new individuals) are inserted in the population in each generation. Actually, this outcome
is confirmed on the first test, performed on 3-trap functions.
Table 1 shows the results obtained by the various GAs on a function constructed by
juxtaposing ten 3-trap subfunctions (L = 30). A statistical comparison was carried out by t-
tests with 58 degrees of freedom at a 0.05 level of significance. The (+) signs means that the
corresponding algorithm is significantly better than VDMGA on that particular
configuration of ρ and τ. A (~) sign means that the performance is statistically equivalent
and (−) sign means that the GA performs worst than VDMGA. A general observation of
table 1 shows that only when τ = 10 the GAs consistently outperform VDMGA. With lower
speed, VDMGA has always a better performance than the other algorithms in the test bench
when ρ = 0.6 and ρ = 0.95, being statistically equivalent when ρ = 0.05. This was an expected
outcome, due to what was stated above about VDMGA’s ration between function
evaluations in each time step and new chromosomes inserted in the population.
Table 2 shows the results with 4-trap functions (L = 12). Values appear to be more balanced
in this case: all the algorithms perform similarly, but when increasing the size of the
problem to L = 24 – see table 3 −, VDMGA improves its performance when compared to
other GAs when τ = 100 and τ = 200 (please remember that VDMGA is expected to face
some difficulties when facing fast changing environments. However, the algorithm
performs well in 12-bit and 24-bit 4-trap function when ρ = 0.05 and τ = 10.)
An unexpected result occurs when speed of change is slow and ρ = 0.95. For instance, when
τ = 200, RIGAs outperforms VDMGA. But when looking at the dynamic behavior of the
algorithms, in figure 4, a possible explanation arises for this particular result. Figure 4 shows
the dynamics of VDMGA, SSGA and RIGA 2 when tracking the extrema of 4-trap functions
(L = 24) by plotting the best_of_generation values over all generations. When ρ = 0.6 and τ =
200 the graphs shows that VDMGA becomes closer to the optimum (and results on table 3
confirm that VDMGA outperforms other algorithms). However, when increasing ρ to 0.95,

 Advances in Evolutionary Algorithms

198

3-trap (L = 30) τ
ρ GGA

(pm = 1/L)
SSGA

(pm = 1/2L)
RIGA 1

(pm = 1/L)
RIGA 2

(pm = 1/L)
VDMGA
(pm = 1/L)

10
0.05

26.06
±0.978 (+)

26.020
±0.506 (+)

25.938
±0.661 (+)

26.144
±0.819 (+)

25.319
±0.556

10
0.60

22.078
±0.266 (+)

21.467
±0.289 (+)

21.934
±0.305 (+)

21.952
±0.362 (+)

21.227
±0.280

10
0.95

23.937
±0.278 (+)

23.638
±0.326 (+)

23.832
±0.221 (+)

23.978
±0.237 (+)

22.877
±0.404

100
0.05

29.712
±0.090 (~)

29.656
±0.082 (~)

29.674
±0.145 (~)

29.664
±0.175 (~)

29.622
±0.103

100
0.60

26.293
±0.186 (−)

26.095
±0.257 (−)

26.322
±0.292 (−)

26.258
±0.300 (−)

26.444
±0.250

100
0.95

25.605
±0.137 (−)

25.730
±0.098 (−)

25.628
±0.163 (−)

25.597
±0.121 (−)

25.999
±0.242

200
0.05

29.851
±0.051 (~)

29.822
±0.075 (~)

29.849
±0.526 (~)

29.852
±0.056 (~)

29.821
±0.050

200
0.60

27.120
±0.200 (−)

26.972
±0.261 (−)

27.350
±0.225 (−)

27.314
±0.272 (−)

27.826
±0.170

200
0.95

25.838
±0.129 (−)

25.978
±0.096 (−)

25.802
±0.122 (−)

25.818
±0.180 (−)

26.211
±0.185

Table 1. Results on 3-traps (L = 30). Mean best_of_generation and corresponding standard
deviation values (results averaged over 30 runs).

4-trap (L = 12) τ
ρ GGA

(pm = 3/L)
SSGA

(pm = 3/L)
RIGA 1

(pm = 4/L)
RIGA 2

(pm = 4/L)
VDMGA
(pm = 2/L)

10
0.05

10.712
±0.215 (−)

11.307
±0.271 (~)

10.800
±0.171 (−)

10.782
±0.162 (−)

11.283
±0.254

10
0.60

10.800
±0.177 (+)

10.484
±0.176 (~)

10.783
±0.178 (+)

10.833
±0.179 (+)

10.585
±0.175

10
0.95

10.914
±0.213 (−)

11.360
±0.193 (~)

10.798
±0.174 (+)

10.825
±0.191 (+)

11.436
±0.204

100
0.05

11.653
±0.109 (−)

11.948
±0.031 (~)

11.700
±0.010 (−)

11.705
±0.088 (−)

11.957
±0.020

100
0.60

11.687
±0.089 (~)

11.661
±0.074 (~)

11.713
±0.020 (~)

11.725
±0.075 (~)

11.672
±0.060

100
0.95

11.710
±0.080 (~)

11.622
±0.076 (−)

11.735
±0.016 (~)

11.688
±0.068 (~)

11.696
±0.062

200
0.05

11.823
±0.066 (−)

11.981
±0.010 (~)

11.842
±0.012 (−)

11.843
±0.034 (−)

11.981
±0.012

200
0.60

11.842
±0.051 (~)

11.823
±0.027 (~)

11.847
±0.017 (~)

11.873
±0.035 (+)

11.831
±0.036

200
0.95

11.852
±0.049 (+)

11.691
±0.055 (−)

11.863
±0.014 (+)

11.864
±0.037 (+)

11.742
±0.028

Table 2. Results on 4-traps (L = 12). Mean best_of_generation and standard deviation values,
averaged over 30 runs.

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

199

4-trap (L = 24) τ
ρ SGA

(pm = 1/L)
SSGA

(pm = 2/L)
RIGA 1

(pm = 1/L)
RIGA 2

(pm = 1/L)
VDMGA
(pm = 3/L)

10
0.05

18.394
±0.355 (−)

19.710
±0.648 (~)

18.301
±0.340 (−)

18.417
±0.391 (−)

19.544
±0.345

10
0.60

18.270
±0.185 (+)

17.777
±0.311 (~)

18.142
±0.282 (+)

18.066
±0.282 (+)

17.703
±0.289

10
0.95

20.807
±0.200 (+)

20.489
±0.347 (+)

20.682
±0.230 (+)

20.747
±0.161 (+)

19.724
±0.284

100
0.05

19.136
±0.408 (−)

22.370
±0.629 (−)

19.091
±0.434 (−)

19.125
±0.583 (−)

23.421
±0.141

100
0.60

20.570
±0.242 (~)

20.630
±0.293 (~)

20.474
±0.233 (~)

20.593
±0.274 (~)

20.518
±0.323

100
0.95

21.465
±0.099 (~)

21.308
±0.103 (−)

21.418
±0.116 (~)

21.452
±0.076 (~)

21.472
±0.176

200
0.05

19.065
±0.140 (−)

23.385
±0.347 (−)

19.220
±0.760 (−)

19.430
±0.895 (−)

23.746
±0.0726

200
0.60

20.947
±0.267 (−)

21.058
±0.228 (−)

20.851
±0.294 (−)

20.800
±0.231 (−)

21.670
±0.175

200
0.95

21.509
±0.065 (+)

21.332
±0.136 (~)

21.503
±0.087 (+)

21.495
±0.082 (+)

21.354
±0.166

Table 3. Results on 4-traps. Mean best_of_generation and standard deviation values, averaged
over 30 runs.

the curves become much different. The shape of RIGA’s curve may be easily explained by
the characteristics of the trap functions used in this study: the global optimum of the
functions is the string with all 1’s and the local optimum is the string with all 0’s. RIGA is
stuck in a region of the search space and, when the environment changes dramatically (ρ =
0.95), what were once chromosomes near the global optimum local then become (nearly)
local optimum solutions. With 4-trap functions and L = 24, global optimum is 24 and local
optimum value is 18. Please note how RIGA oscillates between values near 24 and 18. The
algorithm is not able to track the optimum; it just “waits”, for the global optimum to pass by
every other period of change. Exclusively looking at mean best_of_generation values may
conduce to a misinterpretation of GAs abilities to solve DOPs.
Another aspect is worth notice. It is clear that RIGA 2 is not able to track the optima when
changes are small (ρ = 0.05), at least not as able as VDMGA and SSGA. Random material
inserted in the population is not an appropriate strategy to deal with an environment that
shifts only by a small amount. For ρ = 0.05 and low speed of change (τ = 100 and τ = 200)
VDMGA tracks the optima with much more ability than SSGA, even if it is slower in the
first stage of search: only three periods of τ generations are needed for VDMGA to track the
optima and remain close to it in the following periods. RIGA 2 appeared to perform well on
24-bit 4-trap when compared to other algorithms (table 3). However, a closer inspection, by
plotting the evolution of the tracking process, reveals that the algorithm fails when changes
are both small (ρ = 0.05) and severe (ρ = 0.95). VDMGA, on the other hand, maintains a
more stable performance trough all the different combinations of speed and severity of
change, being particular able to track the optimum when ρ = 0.05.

 Advances in Evolutionary Algorithms

198

3-trap (L = 30) τ
ρ GGA

(pm = 1/L)
SSGA

(pm = 1/2L)
RIGA 1

(pm = 1/L)
RIGA 2

(pm = 1/L)
VDMGA
(pm = 1/L)

10
0.05

26.06
±0.978 (+)

26.020
±0.506 (+)

25.938
±0.661 (+)

26.144
±0.819 (+)

25.319
±0.556

10
0.60

22.078
±0.266 (+)

21.467
±0.289 (+)

21.934
±0.305 (+)

21.952
±0.362 (+)

21.227
±0.280

10
0.95

23.937
±0.278 (+)

23.638
±0.326 (+)

23.832
±0.221 (+)

23.978
±0.237 (+)

22.877
±0.404

100
0.05

29.712
±0.090 (~)

29.656
±0.082 (~)

29.674
±0.145 (~)

29.664
±0.175 (~)

29.622
±0.103

100
0.60

26.293
±0.186 (−)

26.095
±0.257 (−)

26.322
±0.292 (−)

26.258
±0.300 (−)

26.444
±0.250

100
0.95

25.605
±0.137 (−)

25.730
±0.098 (−)

25.628
±0.163 (−)

25.597
±0.121 (−)

25.999
±0.242

200
0.05

29.851
±0.051 (~)

29.822
±0.075 (~)

29.849
±0.526 (~)

29.852
±0.056 (~)

29.821
±0.050

200
0.60

27.120
±0.200 (−)

26.972
±0.261 (−)

27.350
±0.225 (−)

27.314
±0.272 (−)

27.826
±0.170

200
0.95

25.838
±0.129 (−)

25.978
±0.096 (−)

25.802
±0.122 (−)

25.818
±0.180 (−)

26.211
±0.185

Table 1. Results on 3-traps (L = 30). Mean best_of_generation and corresponding standard
deviation values (results averaged over 30 runs).

4-trap (L = 12) τ
ρ GGA

(pm = 3/L)
SSGA

(pm = 3/L)
RIGA 1

(pm = 4/L)
RIGA 2

(pm = 4/L)
VDMGA
(pm = 2/L)

10
0.05

10.712
±0.215 (−)

11.307
±0.271 (~)

10.800
±0.171 (−)

10.782
±0.162 (−)

11.283
±0.254

10
0.60

10.800
±0.177 (+)

10.484
±0.176 (~)

10.783
±0.178 (+)

10.833
±0.179 (+)

10.585
±0.175

10
0.95

10.914
±0.213 (−)

11.360
±0.193 (~)

10.798
±0.174 (+)

10.825
±0.191 (+)

11.436
±0.204

100
0.05

11.653
±0.109 (−)

11.948
±0.031 (~)

11.700
±0.010 (−)

11.705
±0.088 (−)

11.957
±0.020

100
0.60

11.687
±0.089 (~)

11.661
±0.074 (~)

11.713
±0.020 (~)

11.725
±0.075 (~)

11.672
±0.060

100
0.95

11.710
±0.080 (~)

11.622
±0.076 (−)

11.735
±0.016 (~)

11.688
±0.068 (~)

11.696
±0.062

200
0.05

11.823
±0.066 (−)

11.981
±0.010 (~)

11.842
±0.012 (−)

11.843
±0.034 (−)

11.981
±0.012

200
0.60

11.842
±0.051 (~)

11.823
±0.027 (~)

11.847
±0.017 (~)

11.873
±0.035 (+)

11.831
±0.036

200
0.95

11.852
±0.049 (+)

11.691
±0.055 (−)

11.863
±0.014 (+)

11.864
±0.037 (+)

11.742
±0.028

Table 2. Results on 4-traps (L = 12). Mean best_of_generation and standard deviation values,
averaged over 30 runs.

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

199

4-trap (L = 24) τ
ρ SGA

(pm = 1/L)
SSGA

(pm = 2/L)
RIGA 1

(pm = 1/L)
RIGA 2

(pm = 1/L)
VDMGA
(pm = 3/L)

10
0.05

18.394
±0.355 (−)

19.710
±0.648 (~)

18.301
±0.340 (−)

18.417
±0.391 (−)

19.544
±0.345

10
0.60

18.270
±0.185 (+)

17.777
±0.311 (~)

18.142
±0.282 (+)

18.066
±0.282 (+)

17.703
±0.289

10
0.95

20.807
±0.200 (+)

20.489
±0.347 (+)

20.682
±0.230 (+)

20.747
±0.161 (+)

19.724
±0.284

100
0.05

19.136
±0.408 (−)

22.370
±0.629 (−)

19.091
±0.434 (−)

19.125
±0.583 (−)

23.421
±0.141

100
0.60

20.570
±0.242 (~)

20.630
±0.293 (~)

20.474
±0.233 (~)

20.593
±0.274 (~)

20.518
±0.323

100
0.95

21.465
±0.099 (~)

21.308
±0.103 (−)

21.418
±0.116 (~)

21.452
±0.076 (~)

21.472
±0.176

200
0.05

19.065
±0.140 (−)

23.385
±0.347 (−)

19.220
±0.760 (−)

19.430
±0.895 (−)

23.746
±0.0726

200
0.60

20.947
±0.267 (−)

21.058
±0.228 (−)

20.851
±0.294 (−)

20.800
±0.231 (−)

21.670
±0.175

200
0.95

21.509
±0.065 (+)

21.332
±0.136 (~)

21.503
±0.087 (+)

21.495
±0.082 (+)

21.354
±0.166

Table 3. Results on 4-traps. Mean best_of_generation and standard deviation values, averaged
over 30 runs.

the curves become much different. The shape of RIGA’s curve may be easily explained by
the characteristics of the trap functions used in this study: the global optimum of the
functions is the string with all 1’s and the local optimum is the string with all 0’s. RIGA is
stuck in a region of the search space and, when the environment changes dramatically (ρ =
0.95), what were once chromosomes near the global optimum local then become (nearly)
local optimum solutions. With 4-trap functions and L = 24, global optimum is 24 and local
optimum value is 18. Please note how RIGA oscillates between values near 24 and 18. The
algorithm is not able to track the optimum; it just “waits”, for the global optimum to pass by
every other period of change. Exclusively looking at mean best_of_generation values may
conduce to a misinterpretation of GAs abilities to solve DOPs.
Another aspect is worth notice. It is clear that RIGA 2 is not able to track the optima when
changes are small (ρ = 0.05), at least not as able as VDMGA and SSGA. Random material
inserted in the population is not an appropriate strategy to deal with an environment that
shifts only by a small amount. For ρ = 0.05 and low speed of change (τ = 100 and τ = 200)
VDMGA tracks the optima with much more ability than SSGA, even if it is slower in the
first stage of search: only three periods of τ generations are needed for VDMGA to track the
optima and remain close to it in the following periods. RIGA 2 appeared to perform well on
24-bit 4-trap when compared to other algorithms (table 3). However, a closer inspection, by
plotting the evolution of the tracking process, reveals that the algorithm fails when changes
are both small (ρ = 0.05) and severe (ρ = 0.95). VDMGA, on the other hand, maintains a
more stable performance trough all the different combinations of speed and severity of
change, being particular able to track the optimum when ρ = 0.05.

 Advances in Evolutionary Algorithms

200

7. Genetic diversity and threshold dynamics
As described above, assortative and dissortative mating have effects on the frequency of
heterozygous and homozygous genotypes. Consequently, population diversity may also be
affected: dissortative tends to increase genetic diversity while assortative decreases it. This
may also be true when dealing with artificial systems such as GAs. Previous reports

 ρ = 0.05 ρ = 0.6 ρ = 0.95

τ= 10

τ=100

τ=200

Fig. 4. Dynamics when tracking 4-trap functions (L = 24). Best_of_generation curves.

(Fernandes & Rosa, 2001; Fernandes, 2002) show that the variation of diversity in GAs
populations is influenced by the chosen mating strategy. In (Fernandes & Rosa, 2008), a
study on genetic diversity also confirmed this assumption. To measure diversity, the
following equation was used:

d P
F F

L

i i
i

L

()

m in (,)

/
=

−
=
∑ 1

2
1

(9)

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

201

where ∑
=

=
N

j
ii jPF

1

)(and ()
⎪⎩

⎪
⎨
⎧

=
0,0

1,1

allelehasiechromossomofgenejif

allelehasiechromossomofgenejif
jP th

th

i

Diversity was inspected on VDMGA, SSGA and RIGA 2. For that purpose, a problem with
ten 4-trap subfunctions was used (L = l×m = 4×10 = 40). Population size was set to 100, pc
was set to 1.0 (binary tournament selection and uniform crossover) and different mutation
rates pm were tested. The algorithms were run for 100 generations. Each run was repeated
for 30 times and the results are the average over those runs.

Fig. 5. Genetic diversity.

Graphics in figure 5 show similar results as in previous reports: VDMGA maintains a higher
diversity than SSGA, even when comparing different mutation rates. RIGA gets closer to
VDMGA’s diversity but, as depicted in figure 6, performance is much lower. By observing
the growth of the best fitness in the population, it is clear that RIGA 2 is outperformed by
SSGA, converging to a lower local optimum. On the other hand, VDMGA, although being
slower in a first stage of search, attains higher fitness values, which are still growing when t
= 100. These results illustrate how important are the genetic diversity maintenance schemes,
and not diversity maintenance itself. RIGA, although maintaining the diversity for a longer
period, is outperformed by SSGA on this particular test.

Fig. 6. Best fitness on 4-traps (L = 24).

A final test was conducted with the aim of investigating diversity when the environment
changes. For that purpose, a 4-trap DOP with L = 4 was used. GAs parameters were set as in
previous experiment. VDMGA’s diversity is compared with SSGA in figure 7 (only five
periods of change are shown in the graphs), for two configurations of (ρ, τ). As expected,

 Advances in Evolutionary Algorithms

200

7. Genetic diversity and threshold dynamics
As described above, assortative and dissortative mating have effects on the frequency of
heterozygous and homozygous genotypes. Consequently, population diversity may also be
affected: dissortative tends to increase genetic diversity while assortative decreases it. This
may also be true when dealing with artificial systems such as GAs. Previous reports

 ρ = 0.05 ρ = 0.6 ρ = 0.95

τ= 10

τ=100

τ=200

Fig. 4. Dynamics when tracking 4-trap functions (L = 24). Best_of_generation curves.

(Fernandes & Rosa, 2001; Fernandes, 2002) show that the variation of diversity in GAs
populations is influenced by the chosen mating strategy. In (Fernandes & Rosa, 2008), a
study on genetic diversity also confirmed this assumption. To measure diversity, the
following equation was used:

d P
F F

L

i i
i

L

()

m in (,)

/
=

−
=
∑ 1

2
1

(9)

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

201

where ∑
=

=
N

j
ii jPF

1

)(and ()
⎪⎩

⎪
⎨
⎧

=
0,0

1,1

allelehasiechromossomofgenejif

allelehasiechromossomofgenejif
jP th

th

i

Diversity was inspected on VDMGA, SSGA and RIGA 2. For that purpose, a problem with
ten 4-trap subfunctions was used (L = l×m = 4×10 = 40). Population size was set to 100, pc
was set to 1.0 (binary tournament selection and uniform crossover) and different mutation
rates pm were tested. The algorithms were run for 100 generations. Each run was repeated
for 30 times and the results are the average over those runs.

Fig. 5. Genetic diversity.

Graphics in figure 5 show similar results as in previous reports: VDMGA maintains a higher
diversity than SSGA, even when comparing different mutation rates. RIGA gets closer to
VDMGA’s diversity but, as depicted in figure 6, performance is much lower. By observing
the growth of the best fitness in the population, it is clear that RIGA 2 is outperformed by
SSGA, converging to a lower local optimum. On the other hand, VDMGA, although being
slower in a first stage of search, attains higher fitness values, which are still growing when t
= 100. These results illustrate how important are the genetic diversity maintenance schemes,
and not diversity maintenance itself. RIGA, although maintaining the diversity for a longer
period, is outperformed by SSGA on this particular test.

Fig. 6. Best fitness on 4-traps (L = 24).

A final test was conducted with the aim of investigating diversity when the environment
changes. For that purpose, a 4-trap DOP with L = 4 was used. GAs parameters were set as in
previous experiment. VDMGA’s diversity is compared with SSGA in figure 7 (only five
periods of change are shown in the graphs), for two configurations of (ρ, τ). As expected,

 Advances in Evolutionary Algorithms

202

VDMGA maintains a higher diversity throughout the successive search periods, even with
lower mutation rates.
VDMGA’s threshold values during a run of each one of the previous experiments (ρ = 0.05
and τ = 100; ρ = 0.6 and τ = 200) may be seen in figure 8 (with pm = 1/L). The graphics
indicate that the threshold reacts to the changes in the environment when it is close to 0:
when the environment shifts, the threshold tends to increase. The explanation for this
outcome is simple and resides in the fact that after a change occurs, new genetic material
enters in a previously converged population, allowing the threshold to increase because
successful matings have also increase. An amplified threshold will then prevent mating
between similar individuals and continue to guarantee higher genetic diversity.

 VDMGA SSGA

ρ=0.05
τ = 100

ρ = 0.6
τ = 200

Fig. 7. SSGA and VDMGA’s diversity on dynamic 4-trap functions.

ρ = 0.05, τ = 100 ρ = 0.6, τ = 200

 Fig. 8. VDMGA’s threshold value. Mutation rate, pm = 1/L

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

203

8. Conclusions
This chapter presented a study on Genetic Algorithms (GA) with dissortative mating. A
survey on non-random mating was given, in which the most prominent techniques in
Evolutionary Computation literature were presented and described. In addition, a survey on
Bio-inspired Computation applied to Dynamic Optimization Problems (DOPs) was also
given, since DOPs was one of the main aims of the experimental study performed for this
chapter. The experiments were performed with the aim of checking the ability of Variable
Dissortative Mating GA (VDMGA) on tracking the extrema in dynamic problems. VDMGA,
presented in a recent work (Fernandes & Rosa, 2008), inhibits crossover when the Hamming
distance between the chromosomes is below a threshold value. The threshold is updated
(incremented or decremented) by a simple rule which is indirectly influenced by the genetic
diversity of the population: it tends to decrease when the amount of successful crossovers is
superior to the number of failed attempts in a generation; when the ratio of successful
recombination events rises, the threshold will have a tendency to increase. VDMGA holds
this mechanism without the need for further parameters than traditional GAs. In fact, the
parameters that need to be tuned are reduced to population size and mutation rate. In
addition, no replacement strategy has to be chosen: VDMGA is a steady-state GA in which
the number of new chromosomes entering the population in each generation is controlled
by the threshold value, genetic diversity and population’s stage of convergence.
Scalability tests were performed in order to investigate how VDMGA reacts to growing
problem size. Deceptive and non-deceptive trap functions were used for that purpose. The
algorithm was tested and compared with traditional GAs. Results showed that VDMGA
scales clearly better than other traditional GAs when the trap function is deceptive.
DOPs experiments demonstrated that in most of the cases, VDMGA is able to perform
equally or better than other GAs, except when the speed of change is high. In particular,
VDMGA outperformed, in general, the Random Immigrants GA, which a typical algorithm
used in DOPs studies to compare other methods performance. Statistical t-tests were
performed, giving stronger reliability to the conclusions.
A study on the genetic diversity was also performed. As expected, VDMGA maintains a
higher diversity throughout the run. The speed of the algorithm may be reduced in a first
stage of search (and that is one of the reasons VDMGA is not so able to solve fast DOPs), but
the diversity of its population gives it the ability to converge more often to the global
optimum.
VDMGA is a simple yet effective algorithm to deal with static and dynamic environments. It
holds no more parameters than a standard GA. When regarding DOPs, VDMGA may be
classified in the category of methods that preserve diversity in order to tackle DOPs (see
section 3). Thus, it avoids the complexity of methods that hold memory schemes (which in
general need rules and parameters to determine how to deal with memory), and the lower
range of problems in which algorithms that react to changes may be applied. Changes in
DOPs are not always detectable and a reaction to changes assumes that it is possible to
detect when the environment shifts.

9. Acknowledgments
First author wishes to thank FCT, Ministério da Ciência e Tecnologia, his Research Fellowship
SFRH/BD/18868/2004, partially supported by Fundação para a Ciência e a Tecnologia (ISR/IST
plurianual funding) through POS_Conhecimento Program that includes FEDER funds.

 Advances in Evolutionary Algorithms

202

VDMGA maintains a higher diversity throughout the successive search periods, even with
lower mutation rates.
VDMGA’s threshold values during a run of each one of the previous experiments (ρ = 0.05
and τ = 100; ρ = 0.6 and τ = 200) may be seen in figure 8 (with pm = 1/L). The graphics
indicate that the threshold reacts to the changes in the environment when it is close to 0:
when the environment shifts, the threshold tends to increase. The explanation for this
outcome is simple and resides in the fact that after a change occurs, new genetic material
enters in a previously converged population, allowing the threshold to increase because
successful matings have also increase. An amplified threshold will then prevent mating
between similar individuals and continue to guarantee higher genetic diversity.

 VDMGA SSGA

ρ=0.05
τ = 100

ρ = 0.6
τ = 200

Fig. 7. SSGA and VDMGA’s diversity on dynamic 4-trap functions.

ρ = 0.05, τ = 100 ρ = 0.6, τ = 200

 Fig. 8. VDMGA’s threshold value. Mutation rate, pm = 1/L

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

203

8. Conclusions
This chapter presented a study on Genetic Algorithms (GA) with dissortative mating. A
survey on non-random mating was given, in which the most prominent techniques in
Evolutionary Computation literature were presented and described. In addition, a survey on
Bio-inspired Computation applied to Dynamic Optimization Problems (DOPs) was also
given, since DOPs was one of the main aims of the experimental study performed for this
chapter. The experiments were performed with the aim of checking the ability of Variable
Dissortative Mating GA (VDMGA) on tracking the extrema in dynamic problems. VDMGA,
presented in a recent work (Fernandes & Rosa, 2008), inhibits crossover when the Hamming
distance between the chromosomes is below a threshold value. The threshold is updated
(incremented or decremented) by a simple rule which is indirectly influenced by the genetic
diversity of the population: it tends to decrease when the amount of successful crossovers is
superior to the number of failed attempts in a generation; when the ratio of successful
recombination events rises, the threshold will have a tendency to increase. VDMGA holds
this mechanism without the need for further parameters than traditional GAs. In fact, the
parameters that need to be tuned are reduced to population size and mutation rate. In
addition, no replacement strategy has to be chosen: VDMGA is a steady-state GA in which
the number of new chromosomes entering the population in each generation is controlled
by the threshold value, genetic diversity and population’s stage of convergence.
Scalability tests were performed in order to investigate how VDMGA reacts to growing
problem size. Deceptive and non-deceptive trap functions were used for that purpose. The
algorithm was tested and compared with traditional GAs. Results showed that VDMGA
scales clearly better than other traditional GAs when the trap function is deceptive.
DOPs experiments demonstrated that in most of the cases, VDMGA is able to perform
equally or better than other GAs, except when the speed of change is high. In particular,
VDMGA outperformed, in general, the Random Immigrants GA, which a typical algorithm
used in DOPs studies to compare other methods performance. Statistical t-tests were
performed, giving stronger reliability to the conclusions.
A study on the genetic diversity was also performed. As expected, VDMGA maintains a
higher diversity throughout the run. The speed of the algorithm may be reduced in a first
stage of search (and that is one of the reasons VDMGA is not so able to solve fast DOPs), but
the diversity of its population gives it the ability to converge more often to the global
optimum.
VDMGA is a simple yet effective algorithm to deal with static and dynamic environments. It
holds no more parameters than a standard GA. When regarding DOPs, VDMGA may be
classified in the category of methods that preserve diversity in order to tackle DOPs (see
section 3). Thus, it avoids the complexity of methods that hold memory schemes (which in
general need rules and parameters to determine how to deal with memory), and the lower
range of problems in which algorithms that react to changes may be applied. Changes in
DOPs are not always detectable and a reaction to changes assumes that it is possible to
detect when the environment shifts.

9. Acknowledgments
First author wishes to thank FCT, Ministério da Ciência e Tecnologia, his Research Fellowship
SFRH/BD/18868/2004, partially supported by Fundação para a Ciência e a Tecnologia (ISR/IST
plurianual funding) through POS_Conhecimento Program that includes FEDER funds.

 Advances in Evolutionary Algorithms

204

10. References
Angeline, P. (1997). Tracking Extrema in Dynamic Environments. Proceedings of the 6th

International Conference on Evolutionary Programming, Springer, pp. 335-345.
Arabas, J.; Michalewicz, Z.; Mulawka, J. (1994). GAVaPS – A genetic algorithm with varying

population size, Proceedings of the 1st IEEE Conference on Evolutionary Computation,
IEEE, Vol. 1: pp. 73-78.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice, Oxford University, New York.
Bak; P.; Tang, C.; K. Wiesenfeld, K. (1987). Self-organized criticality: an explanation of 1/f

noise. Physical Review of Letters, vol. 59, pp. 381-384.
Bak, P.; K. Sneppen (1993). Punctuated equilibrium and criticality in a simple model of

evolution. Physical Review of Letters, vol. 71, pp. 4083-4086.
Baluja, S. (1994). Population-Based Incremental Learning: A Method for Integrating Genetic

Search Based Function Optimization and Competitive Learning, Technical Report
CMU-CS-94-163, Carnegie Mellon University, USA.

Branke, J. (1999). Memory enhanced evolutionary algorithms for changing optimization
problems. Proceedings of the 1999 Congress on Evolutionary Computation, IEEE, pp.
1875-1882.

Branke, J. (2002), Evolutionary optimization in dynamic environments. Kluwer Academic
Publishers.

Branke, J.; Schmeck, H. (2002), Designing evolutionary algorithms for dynamic optimization
problems. Theory and Application of Evolutionary Computation: Recent Trends, A.
Ghosh and S. Tsutsui (editors), pp. 239-262.

Cobb, H.G. (1990). An investigation into the use of hypermutation as an adaptive operator
in genetic algorithms having continuous, time-dependent nonstationary
environments, Technical Report AIC-90-001, Naval Research Laboratory,
Washington, USA.

Craighurst R, Martin W (1995) Enhancing GA performance through crossover prohibitions
based on ancestry, Proceedings of the Sixth International Conference on Genetic
Algorithms, Morgan Kauffman, pp. 130-135.

De, S.; Pal, S.K.; Ghosh, A. (1998). Genotypic and phenotypic assortative mating in genetic
algorithm. Information Science 105: pp. 209-225.

Eschelman, L.J. (1991). The CHC algorithm: How to have safe search when engaging in non-
traditional genetic recombination, Proceedings of Foundations of Genetic Algorithms,
Academic Press, 1: pp. 70-79.

Eschelman, L.J.; Schaffer, J.D. (1991). Preventing premature convergence in genetic
algorithms by preventing incest. Proceedings of the fourth International Conference on
Genetic Algorithms, Morgan Kauffman, pp. 115-122.

Fernandes, C.M.; Tavares, R.; Rosa, A.C. (2000). NiGAVaPS – Outbreeding in genetic
algorithms, Proceedings of 2000 Symposium on Applied Computing, ACM, pp. 477-482.

Fernandes, C.M.; Tavares, T.; Munteanu, C.; Rosa, A.C. (2001). Using Assortative Mating in
Genetic Algorithms for Vector Quantization Problems, Proceedings of 2001
Symposium on Applied Computing, ACM, pp. 361-365.

Fernandes, C.M.; Rosa, A.C. (2001). A Study on Non-Random Mating in Evolutionary
Algorithms Using a Royal Road Function. Proceedings of the 2001 Congress on
Evolutionary Computation, IEEE, pp. 60-66.

Fernandes, C.M. (2002) Algoritmos Genéticos e Acasalamento não-aleatório, Msc dissertation
thesis, IST, Universidade Técnica de Lisboa, in Portuguese.

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

205

Fernandes, C.M., Rosa, A.C. (2006). Self-Regulated Population Size in Evolutionary
Algorithms, Proceedings of 9th International Conference on Parallel Problem Solving from
Nature, LNCS 4193, 920-929.

Fernandes, C.M.; Rosa, A.C.; Ramos, V. (2007). Binary ant algorithm. Proceedings of the 2007
Genetic and Evolutionary Computation Conference, ACM, pp. 41-48.

Fernandes, C.; Rosa, A.C. (2008). Self-adjusting the intensity of dissortative mating of genetic
algorithms, Journal of Soft Computing, in press.

Fernandes. C.; Merelo J.J.; Ramos, V.; Rosa, A.C. (2008a). A self-organized criticality
mutation operator for dynamic optimization problems. to appear in Proceedings of
the 2008 Genetic and Evolutionary Computation Conference, ACM.

Fernandes C, Lima C, Rosa AC (2008b), UMDAs for Dynamic Optimization. to appear in
Proceedings of the 2008 Genetic and Evolutionary Computation Conference, ACM Press.

García-Martínez, C.; Lozano, M.; Molina, D. (2006). A Local Genetic Algorithm for Binary-
Coded problems, In T. Runarsson et al. (eds.), Proceedings of 9th International
Conference on Parallel Problem Solving from Nature, LNCS 4193, 192-201.

García-Martínez C, Lozano M, Herrera F, Molina D, Sánchez AM (2008). Global and local
real-coded genetic algorithms based on parent-centric crossover operators,
European Journal of Operational Research, 185(3): pp. 1088-1113.

Glover, F. (1986). Future paths for Integer Programming and Links to Artificial Intelligence,
Computers and Operations Research, 5: pp. 533-549.

Grefenstette, J.J. (1992). Genetic algorithms for changing environments, Proceedings of Parallel
Problem Solving from Nature II, North-Holland, pp. 137-144.

Goldberg, D.E.; Smith, R.E. (1987). Nonstationary function optimization using genetic
algorithms with dominance and diploidy, Proceedings of the 2nd International
Conference on Genetic Algorithms, ACM, pp. 59-68.

Guntsch, M.; Middendorf, M. (2002). Applying population based ACO to dynamic
optimization problems. Proceedings of 3rd International Workshop ANTS 2002,
Springer, pp. 111-122.

Harik, G. R. (1999). Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report
No. 99010, Illinois Genetic Algorithms Laboratory.

Hillis, W. (1992). Co-evolving parasites improve simulated evolution as an optimization
procedure, Artificial Life II, Addison-Wesley, pp. 313-324.

Huang, C.; J. Kaur, A.; Maguitman, L.; Rocha, L. (2007). Agent-based model of genotype
editing, Evolutionary Computation, MIT Press, pp. 253-289.

Jaffe, K. (1999). On the adaptive value of some mate selection techniques, Acta Biotheoretica,
47: pp. 29-40.

Lorrañga, P.; Lozano, J.A. (2002). Estimation of distribution algorithms: A new tool for
evolutionary computation. Boston: Kluwer Academic Publishers, Boston.

Louis, S.J.; Xu, Z. (1996). Genetic Algorithms for open shop scheduling and rescheduling.
Proceedings ofg the 11th International Conference on Computers and their Applications,
pp. 99-102.

Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D. (2004). Real coded memetic algorithms
with crossover hill-climbing. Evolutionary Computation Journal, 12(3): pp. 273-302.

Matsui K (1999) New selection method to improve the population diversity in genetic
algorithms, In: Proceedings of the 1999 IEEE International Conference on Systems, Man,
and Cybernetics.

Mauldin, M. (1984). Maintaining genetic diversity in genetic search, National Conference on
Artificial Intelligence, AAAI, pp. 247-250.

 Advances in Evolutionary Algorithms

204

10. References
Angeline, P. (1997). Tracking Extrema in Dynamic Environments. Proceedings of the 6th

International Conference on Evolutionary Programming, Springer, pp. 335-345.
Arabas, J.; Michalewicz, Z.; Mulawka, J. (1994). GAVaPS – A genetic algorithm with varying

population size, Proceedings of the 1st IEEE Conference on Evolutionary Computation,
IEEE, Vol. 1: pp. 73-78.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice, Oxford University, New York.
Bak; P.; Tang, C.; K. Wiesenfeld, K. (1987). Self-organized criticality: an explanation of 1/f

noise. Physical Review of Letters, vol. 59, pp. 381-384.
Bak, P.; K. Sneppen (1993). Punctuated equilibrium and criticality in a simple model of

evolution. Physical Review of Letters, vol. 71, pp. 4083-4086.
Baluja, S. (1994). Population-Based Incremental Learning: A Method for Integrating Genetic

Search Based Function Optimization and Competitive Learning, Technical Report
CMU-CS-94-163, Carnegie Mellon University, USA.

Branke, J. (1999). Memory enhanced evolutionary algorithms for changing optimization
problems. Proceedings of the 1999 Congress on Evolutionary Computation, IEEE, pp.
1875-1882.

Branke, J. (2002), Evolutionary optimization in dynamic environments. Kluwer Academic
Publishers.

Branke, J.; Schmeck, H. (2002), Designing evolutionary algorithms for dynamic optimization
problems. Theory and Application of Evolutionary Computation: Recent Trends, A.
Ghosh and S. Tsutsui (editors), pp. 239-262.

Cobb, H.G. (1990). An investigation into the use of hypermutation as an adaptive operator
in genetic algorithms having continuous, time-dependent nonstationary
environments, Technical Report AIC-90-001, Naval Research Laboratory,
Washington, USA.

Craighurst R, Martin W (1995) Enhancing GA performance through crossover prohibitions
based on ancestry, Proceedings of the Sixth International Conference on Genetic
Algorithms, Morgan Kauffman, pp. 130-135.

De, S.; Pal, S.K.; Ghosh, A. (1998). Genotypic and phenotypic assortative mating in genetic
algorithm. Information Science 105: pp. 209-225.

Eschelman, L.J. (1991). The CHC algorithm: How to have safe search when engaging in non-
traditional genetic recombination, Proceedings of Foundations of Genetic Algorithms,
Academic Press, 1: pp. 70-79.

Eschelman, L.J.; Schaffer, J.D. (1991). Preventing premature convergence in genetic
algorithms by preventing incest. Proceedings of the fourth International Conference on
Genetic Algorithms, Morgan Kauffman, pp. 115-122.

Fernandes, C.M.; Tavares, R.; Rosa, A.C. (2000). NiGAVaPS – Outbreeding in genetic
algorithms, Proceedings of 2000 Symposium on Applied Computing, ACM, pp. 477-482.

Fernandes, C.M.; Tavares, T.; Munteanu, C.; Rosa, A.C. (2001). Using Assortative Mating in
Genetic Algorithms for Vector Quantization Problems, Proceedings of 2001
Symposium on Applied Computing, ACM, pp. 361-365.

Fernandes, C.M.; Rosa, A.C. (2001). A Study on Non-Random Mating in Evolutionary
Algorithms Using a Royal Road Function. Proceedings of the 2001 Congress on
Evolutionary Computation, IEEE, pp. 60-66.

Fernandes, C.M. (2002) Algoritmos Genéticos e Acasalamento não-aleatório, Msc dissertation
thesis, IST, Universidade Técnica de Lisboa, in Portuguese.

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

205

Fernandes, C.M., Rosa, A.C. (2006). Self-Regulated Population Size in Evolutionary
Algorithms, Proceedings of 9th International Conference on Parallel Problem Solving from
Nature, LNCS 4193, 920-929.

Fernandes, C.M.; Rosa, A.C.; Ramos, V. (2007). Binary ant algorithm. Proceedings of the 2007
Genetic and Evolutionary Computation Conference, ACM, pp. 41-48.

Fernandes, C.; Rosa, A.C. (2008). Self-adjusting the intensity of dissortative mating of genetic
algorithms, Journal of Soft Computing, in press.

Fernandes. C.; Merelo J.J.; Ramos, V.; Rosa, A.C. (2008a). A self-organized criticality
mutation operator for dynamic optimization problems. to appear in Proceedings of
the 2008 Genetic and Evolutionary Computation Conference, ACM.

Fernandes C, Lima C, Rosa AC (2008b), UMDAs for Dynamic Optimization. to appear in
Proceedings of the 2008 Genetic and Evolutionary Computation Conference, ACM Press.

García-Martínez, C.; Lozano, M.; Molina, D. (2006). A Local Genetic Algorithm for Binary-
Coded problems, In T. Runarsson et al. (eds.), Proceedings of 9th International
Conference on Parallel Problem Solving from Nature, LNCS 4193, 192-201.

García-Martínez C, Lozano M, Herrera F, Molina D, Sánchez AM (2008). Global and local
real-coded genetic algorithms based on parent-centric crossover operators,
European Journal of Operational Research, 185(3): pp. 1088-1113.

Glover, F. (1986). Future paths for Integer Programming and Links to Artificial Intelligence,
Computers and Operations Research, 5: pp. 533-549.

Grefenstette, J.J. (1992). Genetic algorithms for changing environments, Proceedings of Parallel
Problem Solving from Nature II, North-Holland, pp. 137-144.

Goldberg, D.E.; Smith, R.E. (1987). Nonstationary function optimization using genetic
algorithms with dominance and diploidy, Proceedings of the 2nd International
Conference on Genetic Algorithms, ACM, pp. 59-68.

Guntsch, M.; Middendorf, M. (2002). Applying population based ACO to dynamic
optimization problems. Proceedings of 3rd International Workshop ANTS 2002,
Springer, pp. 111-122.

Harik, G. R. (1999). Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report
No. 99010, Illinois Genetic Algorithms Laboratory.

Hillis, W. (1992). Co-evolving parasites improve simulated evolution as an optimization
procedure, Artificial Life II, Addison-Wesley, pp. 313-324.

Huang, C.; J. Kaur, A.; Maguitman, L.; Rocha, L. (2007). Agent-based model of genotype
editing, Evolutionary Computation, MIT Press, pp. 253-289.

Jaffe, K. (1999). On the adaptive value of some mate selection techniques, Acta Biotheoretica,
47: pp. 29-40.

Lorrañga, P.; Lozano, J.A. (2002). Estimation of distribution algorithms: A new tool for
evolutionary computation. Boston: Kluwer Academic Publishers, Boston.

Louis, S.J.; Xu, Z. (1996). Genetic Algorithms for open shop scheduling and rescheduling.
Proceedings ofg the 11th International Conference on Computers and their Applications,
pp. 99-102.

Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D. (2004). Real coded memetic algorithms
with crossover hill-climbing. Evolutionary Computation Journal, 12(3): pp. 273-302.

Matsui K (1999) New selection method to improve the population diversity in genetic
algorithms, In: Proceedings of the 1999 IEEE International Conference on Systems, Man,
and Cybernetics.

Mauldin, M. (1984). Maintaining genetic diversity in genetic search, National Conference on
Artificial Intelligence, AAAI, pp. 247-250.

 Advances in Evolutionary Algorithms

206

Mitchell, M. (1994). When will a GA outperform hillclimbing? Advances in Neural Information
Processing Systems, 6: pp. 51-58.

Ochoa, G.; Madler-Kron, C.; Rodriguez, R.; Jaffe, K. (1999). On sex, selection and the Red
Queen. Journal of Theoretical Biology 199: pp. 1-9.

Ochoa, G.; Madler-Kron, C.; Rodriguez, R.; Jaffe, K. (2005). Assortative mating in genetic
algorithms for dynamic problems. Proceedings of the 2005 EvoWorkshops, LNCS 3449,
pp. 617-622.

Ochoa, G. (2006). Error Thresholds in Genetic Algorithms. Evolutionary Computation, 14(2):
pp. 157-182.

Ochoa, G.; Jaffe, K. (2006). Assortative Mating Drastically Alters the Magnitude of Error
Thresholds. Proceedings of 9th International Conference on Parallel Problem Solving from
Nature, LNCS 4193, pp. 890-899.

Pelikan, M.; Goldberg D.; Lobo, F. (1999). A Survey of Optimization by Building and Using
Probabilistic Models. Technial Report 99018, University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory (IlliGAL), IL, USA.

Sastry, K. (2001). Evaluation-relaxation schemes for genetic and evolutionary algorithms. Master's
thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Petrowski, A. (1997). A new selection operator dedicated to speciation, Proceedings of the 7th
International Conference on Genetic Algorithms, Morgan Kauffman, pp. 144-151.

Ramos, V.; Fernandes, C.; Rosa, A.C. (2005). On self-regulated swarms, societal memory,
speed and dynamics. Proceedings of ALifeX, MIT Press, pp. 393-399.

Ronald, E. (1995). When selection meets seduction. Proceedings of the 6th International
Conference on Genetic Algorithms, Morgan Kauffman, pp. 167-173.

Roughgarden, J. (1979). Theory of population genetics and evolutionary ecology, Prentice-Hall.
Russel, P.J. (1998). Genetics. Benjamin/Cummings.
Ting, C; Sheng-Tu, L.; Chungnan, L. (2003). On the harmounious mating strategy through

tabu search. Journal of Information Sciences, 156(3-4): pp. 189-214.
Tinós, R; Yang, S. (2007). A self-organizing random immigrants genetic algorithm for

dynamic optimization problems. Genetic Programming and Evolvable Machines, 8: pp.
255-286.

Todd, P.M.; Miller, G.F. (1991). On the sympatric origin of species: Mercurian mating in the
quicksilver model. Proceedings of the IV International Conference on Genetic Algorithms,
Morgan Kaufmann, pp. 547-554.

Wagner, S.; Affenzeller, M. (2005). SexualGA: Gender-specific selection for genetic
algorithms. Proceedings of the 9th World Multiconference on Systemics, Cybernetics and
Informatics, vol.4, pp. 76-81.

Whitley, D. (1988). GENITOR: a different genetic algorithm. Proceedings of the Rocky
Mountain Conference on Artificial Intelligence, pp. 118-130.

Whitley, D. (1991). Fundamental principles of deception in genetic search. Foundations of
Genetic Algorithms, 1: pp. 221-241.

Yang, S.; Yao, X. (2005). Experimental Study on population-based incremental learning
algorithms for dynamic optimization problems. Journal of Soft Computing, 9(11): pp.
815-834.

Yang, S. (2005). Memory-enhanced univariate marginal distribution algorithms. Proceedings
of the 2005 Congress on Evolutionary Computation, ACM, pp. 2560-2567.

Zlochin, M.; Birattari, M.; Meuleau, N.; Dorigo, M. (2004). Modelbased search for
combinatorial optimization: A critical survey. Annals of Operations Research, 131: pp.
373-395.

11

Adapting Genetic Algorithms for
Combinatorial Optimization Problems in

Dynamic Environments
Abdunnaser Younes, Shawki Areibi*, Paul Calamai and Otman Basir

University of Waterloo, *University of Guelph
Canada

1. Introduction
Combinatorial optimization problems (COPs) have a wide range of applications in
engineering, operation research, and social sciences. Moreover, as real-time information and
communication systems become increasingly available and the processing of real-time data
becomes increasingly affordable, new versions of highly dynamic real-world applications
are created. In such applications, information on the problem is not completely known a
priori, but instead is revealed to the decision maker progressively with time. Consequently,
solutions to different instances of a typical dynamic problem have to be found as time
proceeds, concurrently with the incoming information.
Given that the overwhelming majority of COPs are NP-hard, the presence of time and the
associated uncertainty in their dynamic versions increases their complexity, making their
dynamic versions even harder to solve than its static counterpart. However, environmental
changes in real life typically do not alter the problem completely but affect only some part of
the problem at a time. For example, not all vehicles break down at once, not all pre-made
assignments are cancelled, weather changes affect only parts of roads, any other events like
sickness of employees and machine breakdown do not happen concurrently. Thus, after an
environmental change, there remains some information from the past that can be used for
the future. Such problems call for a methodology to track their optimal solutions through
time. The required algorithm should not only be capable of tackling combinatorial problems
but should also be adaptive to changes in the environment.
Evolutionary Algorithms (EAs) have been successfully applied to most COPs. Moreover, the
ability of EAs to sample the search space, their ability to simultaneously manipulate a group
of solutions, and their potential for adaptability increase their potential for dynamic
problems. However, their tendency to converge prematurely in static problems and their
lack of diversity in tracking optima that shift in dynamic environments are deficiencies that
need to be addressed.
Although many real world problems can be viewed as dynamic we are interested only in
those problems where the decision maker does not have prior knowledge of the complete
problem, and hence the problem can not be solved in advance. This article presents
strategies to improve the ability of an algorithm to adapt to environmental changes, and
more importantly to improve its efficiency at finding quality solutions. The first constructed

 Advances in Evolutionary Algorithms

206

Mitchell, M. (1994). When will a GA outperform hillclimbing? Advances in Neural Information
Processing Systems, 6: pp. 51-58.

Ochoa, G.; Madler-Kron, C.; Rodriguez, R.; Jaffe, K. (1999). On sex, selection and the Red
Queen. Journal of Theoretical Biology 199: pp. 1-9.

Ochoa, G.; Madler-Kron, C.; Rodriguez, R.; Jaffe, K. (2005). Assortative mating in genetic
algorithms for dynamic problems. Proceedings of the 2005 EvoWorkshops, LNCS 3449,
pp. 617-622.

Ochoa, G. (2006). Error Thresholds in Genetic Algorithms. Evolutionary Computation, 14(2):
pp. 157-182.

Ochoa, G.; Jaffe, K. (2006). Assortative Mating Drastically Alters the Magnitude of Error
Thresholds. Proceedings of 9th International Conference on Parallel Problem Solving from
Nature, LNCS 4193, pp. 890-899.

Pelikan, M.; Goldberg D.; Lobo, F. (1999). A Survey of Optimization by Building and Using
Probabilistic Models. Technial Report 99018, University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory (IlliGAL), IL, USA.

Sastry, K. (2001). Evaluation-relaxation schemes for genetic and evolutionary algorithms. Master's
thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Petrowski, A. (1997). A new selection operator dedicated to speciation, Proceedings of the 7th
International Conference on Genetic Algorithms, Morgan Kauffman, pp. 144-151.

Ramos, V.; Fernandes, C.; Rosa, A.C. (2005). On self-regulated swarms, societal memory,
speed and dynamics. Proceedings of ALifeX, MIT Press, pp. 393-399.

Ronald, E. (1995). When selection meets seduction. Proceedings of the 6th International
Conference on Genetic Algorithms, Morgan Kauffman, pp. 167-173.

Roughgarden, J. (1979). Theory of population genetics and evolutionary ecology, Prentice-Hall.
Russel, P.J. (1998). Genetics. Benjamin/Cummings.
Ting, C; Sheng-Tu, L.; Chungnan, L. (2003). On the harmounious mating strategy through

tabu search. Journal of Information Sciences, 156(3-4): pp. 189-214.
Tinós, R; Yang, S. (2007). A self-organizing random immigrants genetic algorithm for

dynamic optimization problems. Genetic Programming and Evolvable Machines, 8: pp.
255-286.

Todd, P.M.; Miller, G.F. (1991). On the sympatric origin of species: Mercurian mating in the
quicksilver model. Proceedings of the IV International Conference on Genetic Algorithms,
Morgan Kaufmann, pp. 547-554.

Wagner, S.; Affenzeller, M. (2005). SexualGA: Gender-specific selection for genetic
algorithms. Proceedings of the 9th World Multiconference on Systemics, Cybernetics and
Informatics, vol.4, pp. 76-81.

Whitley, D. (1988). GENITOR: a different genetic algorithm. Proceedings of the Rocky
Mountain Conference on Artificial Intelligence, pp. 118-130.

Whitley, D. (1991). Fundamental principles of deception in genetic search. Foundations of
Genetic Algorithms, 1: pp. 221-241.

Yang, S.; Yao, X. (2005). Experimental Study on population-based incremental learning
algorithms for dynamic optimization problems. Journal of Soft Computing, 9(11): pp.
815-834.

Yang, S. (2005). Memory-enhanced univariate marginal distribution algorithms. Proceedings
of the 2005 Congress on Evolutionary Computation, ACM, pp. 2560-2567.

Zlochin, M.; Birattari, M.; Meuleau, N.; Dorigo, M. (2004). Modelbased search for
combinatorial optimization: A critical survey. Annals of Operations Research, 131: pp.
373-395.

11

Adapting Genetic Algorithms for
Combinatorial Optimization Problems in

Dynamic Environments
Abdunnaser Younes, Shawki Areibi*, Paul Calamai and Otman Basir

University of Waterloo, *University of Guelph
Canada

1. Introduction
Combinatorial optimization problems (COPs) have a wide range of applications in
engineering, operation research, and social sciences. Moreover, as real-time information and
communication systems become increasingly available and the processing of real-time data
becomes increasingly affordable, new versions of highly dynamic real-world applications
are created. In such applications, information on the problem is not completely known a
priori, but instead is revealed to the decision maker progressively with time. Consequently,
solutions to different instances of a typical dynamic problem have to be found as time
proceeds, concurrently with the incoming information.
Given that the overwhelming majority of COPs are NP-hard, the presence of time and the
associated uncertainty in their dynamic versions increases their complexity, making their
dynamic versions even harder to solve than its static counterpart. However, environmental
changes in real life typically do not alter the problem completely but affect only some part of
the problem at a time. For example, not all vehicles break down at once, not all pre-made
assignments are cancelled, weather changes affect only parts of roads, any other events like
sickness of employees and machine breakdown do not happen concurrently. Thus, after an
environmental change, there remains some information from the past that can be used for
the future. Such problems call for a methodology to track their optimal solutions through
time. The required algorithm should not only be capable of tackling combinatorial problems
but should also be adaptive to changes in the environment.
Evolutionary Algorithms (EAs) have been successfully applied to most COPs. Moreover, the
ability of EAs to sample the search space, their ability to simultaneously manipulate a group
of solutions, and their potential for adaptability increase their potential for dynamic
problems. However, their tendency to converge prematurely in static problems and their
lack of diversity in tracking optima that shift in dynamic environments are deficiencies that
need to be addressed.
Although many real world problems can be viewed as dynamic we are interested only in
those problems where the decision maker does not have prior knowledge of the complete
problem, and hence the problem can not be solved in advance. This article presents
strategies to improve the ability of an algorithm to adapt to environmental changes, and
more importantly to improve its efficiency at finding quality solutions. The first constructed

 Advances in Evolutionary Algorithms

208

model controls genetic parameters during static and dynamic phases of the environment;
and a second model uses multiple populations to improve the performance of the first
model and increases its potential for parallel implementation. Experimental results on
dynamic versions of flexible manufacturing systems (FMS) and the travelling salesman problem
(TSP) are presented to demonstrate the effectiveness of these models in improving solution
quality with limited increase in computation time.
The remainder of this article is organized as follows: Section 2 defines the dynamic problems
of interest, and gives the mathematical formulation of the TSP and FMS problems. Section 3
contains a survey of how dynamic environments are tackled by EAs. Section 4 presents
adaptive dynamic solvers that include a diversity controlling EA model and an island-based
model. The main goal of Section 5 is to demonstrate that the adaptive models presented in
this article can be applied to realistic problems by comparing the developed dynamic
solvers on the TSP and FMS benchmarks respectively.

2. Background
Dynamism in real-world problems can be attributed to several factors: Some are natural like
wear and weather conditions; some can be related to human behaviour like variation in
aptitude of different individuals, inefficiency, absence and sickness; and others are business
related, such as the addition of new orders and the cancellation of old ones.
However, the mere existence of a time dimension in a problem does not mean that the
problem is dynamic. Problems that can be solved in advance are not dynamic and not
considered in this article even though they might be time dependent.
If future demands are either known in advance or predictable with sufficient accuracy, then
the whole problem can be solved in advance.
According to Psaraftis (1995), Bianchi (1990), and Branke (2001), the following features can
be found in most real-world dynamic problems:
• Time dependency: the problem can change with time in such a way that future

instances are not completely known, yet the problem is completely known up to the
current moment without any ambiguity about past information.

• A solution that is optimal or near optimal at a certain instance may lose its quality in the
next instance, or may even become infeasible.

• The goal of the optimization algorithm is to track the shifting optima through time as
closely as possible.

• Solutions cannot be determined in advance but should be computed to the incoming
information.

• Solving the problem entails setting up a strategy that specifies how the algorithm
should react to environmental changes, e.g. to resolve the problem from scratch at every
change or to adapt some parameters of the algorithm to the changes.

• The problem is often associated with advances in information systems and
communication technologies which enable the processing of information as soon as
received. In fact, many dynamic problems have come to exist as a direct result of
advances in communication and real-time systems.

Techniques that work for static problems may therefore not be effective for dynamic
problems which require algorithms that make use of old information to find new optima
quickly.

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

209

2.1 Representative dynamic combinatorial problems
Combinatorial problems typically assume distinct structures (for example vehicle routing
versus job shop scheduling). Consequently, benchmark problems for COPs tend to be very
specific to the application at hand. The test problems used for dynamic scheduling and
sequencing with evolutionary algorithms are typical examples (Bierwirth & Kopfer 1994;
Bierwirth et al. 1995; Bierwirth & Mattfeld 1999; Lin et al. 1997; Reeves & Karatza 1993).
However, the travelling salesman problem has often been considered representative of various
combinatorial problems. In this article, we use the dynamic TSP and a dynamic FMS to
compare the performance of several dynamic solvers.

2.2 Travelling salesman problem
Although the TSP problem finds applications in science and engineering, its real importance
stems from the fact that it is typical of many COPs. Furthermore, it has often been the case
that progress on the TSP has led to progress on other COPs. The TSP is modelled to answer
the following question: if a travelling salesman wishes to visit exactly once each of a list of
cities and then return to the city from which he started his tour, what is the shortest route
the travelling salesman should take?
As an easy to describe but a hard to solve problem, the TSP has fascinated many researchers,
and some have developed time-dependent variants as dynamic benchmarks. For example,
Guntsch et al. (2001) introduced a dynamic TSP where environmental change takes place by
exchanging a number of cities from the actual problem with the same number from a spare
pool of cities. They use this problem to test an adaptive ant colony algorithm. Eyckelhof and
Snoek (2002) tested a new ants system approach on another version of the dynamic problem.
In their benchmark, they vary edge length by a constant increment/decrement to imitate the
appearance and the removal of traffic jams on roads. Younes et al. (2005) introduced a
scheme to generate a dynamic TSP in a more comprehensive way. In their benchmarks,
environmental changes take place in the form of variations in the edge length, number of
cities, and city-swap changes.

2.2.1 Mathematical formulation
There are many different formulations for the travelling salesman problem. One common
formulation is the integer programming formulation, which is given in (Rardin 1998) as
follows:

(1)

where xij= 1 if link (i; j) is part of the solution, and dij

is the distance from point i to point j.

The first set of constraints ensures that each city is visited once, and the second set of
constraints ensures that no sub-tours are formed.

 Advances in Evolutionary Algorithms

208

model controls genetic parameters during static and dynamic phases of the environment;
and a second model uses multiple populations to improve the performance of the first
model and increases its potential for parallel implementation. Experimental results on
dynamic versions of flexible manufacturing systems (FMS) and the travelling salesman problem
(TSP) are presented to demonstrate the effectiveness of these models in improving solution
quality with limited increase in computation time.
The remainder of this article is organized as follows: Section 2 defines the dynamic problems
of interest, and gives the mathematical formulation of the TSP and FMS problems. Section 3
contains a survey of how dynamic environments are tackled by EAs. Section 4 presents
adaptive dynamic solvers that include a diversity controlling EA model and an island-based
model. The main goal of Section 5 is to demonstrate that the adaptive models presented in
this article can be applied to realistic problems by comparing the developed dynamic
solvers on the TSP and FMS benchmarks respectively.

2. Background
Dynamism in real-world problems can be attributed to several factors: Some are natural like
wear and weather conditions; some can be related to human behaviour like variation in
aptitude of different individuals, inefficiency, absence and sickness; and others are business
related, such as the addition of new orders and the cancellation of old ones.
However, the mere existence of a time dimension in a problem does not mean that the
problem is dynamic. Problems that can be solved in advance are not dynamic and not
considered in this article even though they might be time dependent.
If future demands are either known in advance or predictable with sufficient accuracy, then
the whole problem can be solved in advance.
According to Psaraftis (1995), Bianchi (1990), and Branke (2001), the following features can
be found in most real-world dynamic problems:
• Time dependency: the problem can change with time in such a way that future

instances are not completely known, yet the problem is completely known up to the
current moment without any ambiguity about past information.

• A solution that is optimal or near optimal at a certain instance may lose its quality in the
next instance, or may even become infeasible.

• The goal of the optimization algorithm is to track the shifting optima through time as
closely as possible.

• Solutions cannot be determined in advance but should be computed to the incoming
information.

• Solving the problem entails setting up a strategy that specifies how the algorithm
should react to environmental changes, e.g. to resolve the problem from scratch at every
change or to adapt some parameters of the algorithm to the changes.

• The problem is often associated with advances in information systems and
communication technologies which enable the processing of information as soon as
received. In fact, many dynamic problems have come to exist as a direct result of
advances in communication and real-time systems.

Techniques that work for static problems may therefore not be effective for dynamic
problems which require algorithms that make use of old information to find new optima
quickly.

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

209

2.1 Representative dynamic combinatorial problems
Combinatorial problems typically assume distinct structures (for example vehicle routing
versus job shop scheduling). Consequently, benchmark problems for COPs tend to be very
specific to the application at hand. The test problems used for dynamic scheduling and
sequencing with evolutionary algorithms are typical examples (Bierwirth & Kopfer 1994;
Bierwirth et al. 1995; Bierwirth & Mattfeld 1999; Lin et al. 1997; Reeves & Karatza 1993).
However, the travelling salesman problem has often been considered representative of various
combinatorial problems. In this article, we use the dynamic TSP and a dynamic FMS to
compare the performance of several dynamic solvers.

2.2 Travelling salesman problem
Although the TSP problem finds applications in science and engineering, its real importance
stems from the fact that it is typical of many COPs. Furthermore, it has often been the case
that progress on the TSP has led to progress on other COPs. The TSP is modelled to answer
the following question: if a travelling salesman wishes to visit exactly once each of a list of
cities and then return to the city from which he started his tour, what is the shortest route
the travelling salesman should take?
As an easy to describe but a hard to solve problem, the TSP has fascinated many researchers,
and some have developed time-dependent variants as dynamic benchmarks. For example,
Guntsch et al. (2001) introduced a dynamic TSP where environmental change takes place by
exchanging a number of cities from the actual problem with the same number from a spare
pool of cities. They use this problem to test an adaptive ant colony algorithm. Eyckelhof and
Snoek (2002) tested a new ants system approach on another version of the dynamic problem.
In their benchmark, they vary edge length by a constant increment/decrement to imitate the
appearance and the removal of traffic jams on roads. Younes et al. (2005) introduced a
scheme to generate a dynamic TSP in a more comprehensive way. In their benchmarks,
environmental changes take place in the form of variations in the edge length, number of
cities, and city-swap changes.

2.2.1 Mathematical formulation
There are many different formulations for the travelling salesman problem. One common
formulation is the integer programming formulation, which is given in (Rardin 1998) as
follows:

(1)

where xij= 1 if link (i; j) is part of the solution, and dij

is the distance from point i to point j.

The first set of constraints ensures that each city is visited once, and the second set of
constraints ensures that no sub-tours are formed.

 Advances in Evolutionary Algorithms

210

2.2.2 Solution representation
In this article a possible TSP solution is represented in a straight forward manner by a
chromosome; where values of the genes are the city numbers, and the relative position of
the genes represent city order in the tour. An example of a chromosome that represents a 10
city tour is shown in Figure 1. With this simple representation, however, individuals cannot
undergo standard mutation and crossover operators.

(a) (b)

Fig. 1. Chromosome representation (a) of a 10 city tour (b) that starts and ends at city 5.

2.3 Flexible manufacturing systems
The large number of combinatorial problems associated with manufacturing optimization
(Dimopoulos & Zalzala 2000) is behind the growth in the use of intelligent techniques, such
as flexible manufacturing systems (FMS), in the manufacturing field during the last decade.
An FMS produces a variety of part types that are flexibly routed through machines instead
of the conventional straight assembly-line routing (Chen & Ho 2002). The flexibility
associated with this system enables it to cope with unforeseen events such as machine
failures, erratic demands, and changes in product mix.
A typical FMS is a production system that consists of a heterogeneous group of numerically
controlled machines (machines, robots, and computers) connected through an automated
guided vehicle system. Each machine can perform a specific set of operations that may
intersect with operation sets of the other machines. Production planning and scheduling is
more complicated in an FMS than it is in traditional manufacturing (Wang et al. 2005). One
source of additional complexity is associated with machine-operation versatility, since each
machine can perform different operations and an operation can be performed on different
alternative machines. Another source of complexity is associated with unexpected events,
such as machine breakdown, change of demand, or introduction of new products. A
fundamental goal that is gaining importance is the ability to handle such unforeseen events.
To illustrate the kind of FMS we are focusing on, we give the following example.

2.3.1 Example
A simple flexible manufacturing system consists of three machines, M1, M2 and M3. The
three respective sets of operations for these machines are {O1, O6}, {O1, O2, O5}, and {O4,O6},
where Oi denotes operation i. This system is to be used to process three part types P1, P2, and
P3, each of which requires a set of operations, respectively, given as {O1, O4, O6}, {O1, O2, O5,
O6}, and {O4, O6}. There are several processing choices for this setting; here are two of them:
Choice (a) For part P1: (O1 →M2; O4 →M3; O6 →M3); i.e, assign machine M2 to perform
operation O1, and assign M3 to process O4 and O6. For part P2: (O1 →M1; O2 →M2; O5 →M2; O6

→M1). For part P3: (O4 →M3; O6 →M3).
Choice (b) For part P1: (O1 →M2; O4 →M3; O6 →M1). For part P2: (O1 →M1; O2 →M2; O5 →M2;
O6 →M3). For part P3: (O4 →M3; O6 →M1).

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

211

By comparing both choices, one notices that the first solution tends to minimize the transfer
of parts between machines. On the other hand the second solution is biased towards
balancing the operations on the machines. However, we need to consider both objectives at
the same time, which may not be easy since the objectives are conflicting.

2.3.2 Mathematical formulation
The assignment problem considered in this section is given in Younes et al. (2002) using the
following notations:
i,l are machine indices (i,l = 1,2,3,...,nm);
j is part index (j = 1,2,3,...,np);
k̂ j is processing choice for part j (j = 1,2,3,....,np);
kj is the number of processing choices of Pj ;
n i j ˆ

jk is the number of necessary operations required by Pj on Mi in processing choice k̂ j,

1 ≤ k̂ j ≤ kj
t i j ˆ

jk is the work-load of machine Mi to process part Pj in processing choice k̂ j;

Using this notation, the three objective functions of the problem (f1, f2, and f3) are given as
follows:
1. Minimization of part transfer (by minimizing the number of machines required to

process each part):

(2)

2. Load Balancing by minimizing the cardinality distance (measured in number of
operations) between the workload of any pair of machines:

(3)

3. Minimization of the number of necessary operations required from each machine over
the possible processing choices:

(4)

An overall multi-objective mathematical model of FMS can then be formulated as follows:

Optimize(f1, f2, f3)

 Advances in Evolutionary Algorithms

210

2.2.2 Solution representation
In this article a possible TSP solution is represented in a straight forward manner by a
chromosome; where values of the genes are the city numbers, and the relative position of
the genes represent city order in the tour. An example of a chromosome that represents a 10
city tour is shown in Figure 1. With this simple representation, however, individuals cannot
undergo standard mutation and crossover operators.

(a) (b)

Fig. 1. Chromosome representation (a) of a 10 city tour (b) that starts and ends at city 5.

2.3 Flexible manufacturing systems
The large number of combinatorial problems associated with manufacturing optimization
(Dimopoulos & Zalzala 2000) is behind the growth in the use of intelligent techniques, such
as flexible manufacturing systems (FMS), in the manufacturing field during the last decade.
An FMS produces a variety of part types that are flexibly routed through machines instead
of the conventional straight assembly-line routing (Chen & Ho 2002). The flexibility
associated with this system enables it to cope with unforeseen events such as machine
failures, erratic demands, and changes in product mix.
A typical FMS is a production system that consists of a heterogeneous group of numerically
controlled machines (machines, robots, and computers) connected through an automated
guided vehicle system. Each machine can perform a specific set of operations that may
intersect with operation sets of the other machines. Production planning and scheduling is
more complicated in an FMS than it is in traditional manufacturing (Wang et al. 2005). One
source of additional complexity is associated with machine-operation versatility, since each
machine can perform different operations and an operation can be performed on different
alternative machines. Another source of complexity is associated with unexpected events,
such as machine breakdown, change of demand, or introduction of new products. A
fundamental goal that is gaining importance is the ability to handle such unforeseen events.
To illustrate the kind of FMS we are focusing on, we give the following example.

2.3.1 Example
A simple flexible manufacturing system consists of three machines, M1, M2 and M3. The
three respective sets of operations for these machines are {O1, O6}, {O1, O2, O5}, and {O4,O6},
where Oi denotes operation i. This system is to be used to process three part types P1, P2, and
P3, each of which requires a set of operations, respectively, given as {O1, O4, O6}, {O1, O2, O5,
O6}, and {O4, O6}. There are several processing choices for this setting; here are two of them:
Choice (a) For part P1: (O1 →M2; O4 →M3; O6 →M3); i.e, assign machine M2 to perform
operation O1, and assign M3 to process O4 and O6. For part P2: (O1 →M1; O2 →M2; O5 →M2; O6

→M1). For part P3: (O4 →M3; O6 →M3).
Choice (b) For part P1: (O1 →M2; O4 →M3; O6 →M1). For part P2: (O1 →M1; O2 →M2; O5 →M2;
O6 →M3). For part P3: (O4 →M3; O6 →M1).

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

211

By comparing both choices, one notices that the first solution tends to minimize the transfer
of parts between machines. On the other hand the second solution is biased towards
balancing the operations on the machines. However, we need to consider both objectives at
the same time, which may not be easy since the objectives are conflicting.

2.3.2 Mathematical formulation
The assignment problem considered in this section is given in Younes et al. (2002) using the
following notations:
i,l are machine indices (i,l = 1,2,3,...,nm);
j is part index (j = 1,2,3,...,np);
k̂ j is processing choice for part j (j = 1,2,3,....,np);
kj is the number of processing choices of Pj ;
n i j ˆ

jk is the number of necessary operations required by Pj on Mi in processing choice k̂ j,

1 ≤ k̂ j ≤ kj
t i j ˆ

jk is the work-load of machine Mi to process part Pj in processing choice k̂ j;

Using this notation, the three objective functions of the problem (f1, f2, and f3) are given as
follows:
1. Minimization of part transfer (by minimizing the number of machines required to

process each part):

(2)

2. Load Balancing by minimizing the cardinality distance (measured in number of
operations) between the workload of any pair of machines:

(3)

3. Minimization of the number of necessary operations required from each machine over
the possible processing choices:

(4)

An overall multi-objective mathematical model of FMS can then be formulated as follows:

Optimize(f1, f2, f3)

 Advances in Evolutionary Algorithms

212

s.t.

The first set of constraints ensures that only one processing choice can be selected for each
part. The complexity and the specifics of the problem require revising several components
of the conventional evolutionary algorithm to obtain an effective implementation on the
FMS problem. In particular, we need to devise problem-oriented methods for encoding
solutions, crossover, fitness assignment, and constraint handling.

2.3.3 Solution representation
An individual solution is represented by a series of operations for all parts involved. Each
gene in the chromosome represents a machine type that can possibly process a specific
operation. Figure 2 illustrates a chromosome representation of a possible solution to the
example given in Section 2.3.1. The advantages of this representation scheme are the
simplicity and the capability of undergoing standard operators without producing infeasible
solutions (as long as parent solutions are feasible).

(a) (b)

Fig. 2. Chromosome representation. A schematic diagram of the possible choice of part
routing in (a) is represented by the chromosome in (b)

3. Techniques for dynamic environments
The limitation on computation time imposed on dynamic problems calls for algorithms that
adapt quickly to environmental changes. We discuss some of the techniques that have been
used to enhance the performance of the standard genetic algorithm (GA) in dynamic
environments in the following paragraphs (we direct the interested reader to Jin and Branke
(2005) for an extensive survey).

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

213

3.1 Restart
The most straightforward approach to increase diversity of a GA search is to restart the
algorithm completely by reinitializing the population after each environmental change.
However, any information gained in the past search will be discarded with the old
population after every environmental change. Thus, if changes in the problem are frequent,
this time consuming method will likely produce results of low quality. Furthermore,
successive instances in the typical dynamic problem do not differ completely from each
other. Hence, some researchers use partial restart: Rather than reinitializing the entire
population randomly, a fraction of the new population is seeded with old solutions (Louis
and Xu 1996; Louis and Johnson 1997). It should be noted here that for environmental
changes that affect the problem constraints, old solutions may become infeasible and hence
not be directly reusable. However, repairing infeasible solutions can be an effective
approach that leads to suboptimal solutions.

3.2 Adapting genetic parameters
Many researchers have explored the use of adaptive genetic operators in stationary
environments (see Eiben et al. (1999) for an extensive survey of parameter control in
evolutionary algorithms). In fact, the general view today is that there is no fixed set of
parameters that remain optimal throughout the search process even for a static problem.
With variable parameters (self adapting or otherwise) finding some success on static
problems, it would be natural to investigate them on dynamic problems.
Cobb (1990) proposed hyper-mutation to track optima in continuously-changing
environments, by increasing the mutation rate drastically when the quality of the best
individuals deteriorates. Grefenstette (1992) proposed random immigrants to increase the
population diversity by replacing a fraction of the population at every generation.
Grefenstette (1999) compared genetically-controlled mutation with fixed mutation and hyper-
mutation, and reported that genetically controlled mutation performed slightly worse than
the hypermutation whereas fixed mutation produced the worst results.

3.3 Memory
When the problem exhibits periodic behaviour, old solutions might be used to bias the
search in their vicinity and reduce computational time. Ng & Wong (1995) and Lewis et al.
(1998) are among the first who used memory-based approaches in dynamic problems.
However, if used at all, memory should be used with care as it may have the negative effect
of misleading the GA and preventing it from exploring new promising regions (Branke
1999). This should be expected in dynamic environments where information stored in
memory becomes more and more obsolete as time proceeds.

3.4 Multiple population genetic algorithms
The inherent parallel structure of GAs makes them ideal candidates for parallelization. Since
the GA modules work on the individuals of the population independently, it is
straightforward to parallelize several aspects of a GA including the creation of initial
populations, individual evaluation, crossover, and mutation. Communication between the
processors will be needed only in the selection module since individuals are selected
according to global information distributed among all the processors.
Island genetic algorithms (IGA) (Tanese 1989; Whitley & Starkweather 1990) alleviate the
communication load, and lead to better solution quality at the expense of slightly slower

 Advances in Evolutionary Algorithms

212

s.t.

The first set of constraints ensures that only one processing choice can be selected for each
part. The complexity and the specifics of the problem require revising several components
of the conventional evolutionary algorithm to obtain an effective implementation on the
FMS problem. In particular, we need to devise problem-oriented methods for encoding
solutions, crossover, fitness assignment, and constraint handling.

2.3.3 Solution representation
An individual solution is represented by a series of operations for all parts involved. Each
gene in the chromosome represents a machine type that can possibly process a specific
operation. Figure 2 illustrates a chromosome representation of a possible solution to the
example given in Section 2.3.1. The advantages of this representation scheme are the
simplicity and the capability of undergoing standard operators without producing infeasible
solutions (as long as parent solutions are feasible).

(a) (b)

Fig. 2. Chromosome representation. A schematic diagram of the possible choice of part
routing in (a) is represented by the chromosome in (b)

3. Techniques for dynamic environments
The limitation on computation time imposed on dynamic problems calls for algorithms that
adapt quickly to environmental changes. We discuss some of the techniques that have been
used to enhance the performance of the standard genetic algorithm (GA) in dynamic
environments in the following paragraphs (we direct the interested reader to Jin and Branke
(2005) for an extensive survey).

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

213

3.1 Restart
The most straightforward approach to increase diversity of a GA search is to restart the
algorithm completely by reinitializing the population after each environmental change.
However, any information gained in the past search will be discarded with the old
population after every environmental change. Thus, if changes in the problem are frequent,
this time consuming method will likely produce results of low quality. Furthermore,
successive instances in the typical dynamic problem do not differ completely from each
other. Hence, some researchers use partial restart: Rather than reinitializing the entire
population randomly, a fraction of the new population is seeded with old solutions (Louis
and Xu 1996; Louis and Johnson 1997). It should be noted here that for environmental
changes that affect the problem constraints, old solutions may become infeasible and hence
not be directly reusable. However, repairing infeasible solutions can be an effective
approach that leads to suboptimal solutions.

3.2 Adapting genetic parameters
Many researchers have explored the use of adaptive genetic operators in stationary
environments (see Eiben et al. (1999) for an extensive survey of parameter control in
evolutionary algorithms). In fact, the general view today is that there is no fixed set of
parameters that remain optimal throughout the search process even for a static problem.
With variable parameters (self adapting or otherwise) finding some success on static
problems, it would be natural to investigate them on dynamic problems.
Cobb (1990) proposed hyper-mutation to track optima in continuously-changing
environments, by increasing the mutation rate drastically when the quality of the best
individuals deteriorates. Grefenstette (1992) proposed random immigrants to increase the
population diversity by replacing a fraction of the population at every generation.
Grefenstette (1999) compared genetically-controlled mutation with fixed mutation and hyper-
mutation, and reported that genetically controlled mutation performed slightly worse than
the hypermutation whereas fixed mutation produced the worst results.

3.3 Memory
When the problem exhibits periodic behaviour, old solutions might be used to bias the
search in their vicinity and reduce computational time. Ng & Wong (1995) and Lewis et al.
(1998) are among the first who used memory-based approaches in dynamic problems.
However, if used at all, memory should be used with care as it may have the negative effect
of misleading the GA and preventing it from exploring new promising regions (Branke
1999). This should be expected in dynamic environments where information stored in
memory becomes more and more obsolete as time proceeds.

3.4 Multiple population genetic algorithms
The inherent parallel structure of GAs makes them ideal candidates for parallelization. Since
the GA modules work on the individuals of the population independently, it is
straightforward to parallelize several aspects of a GA including the creation of initial
populations, individual evaluation, crossover, and mutation. Communication between the
processors will be needed only in the selection module since individuals are selected
according to global information distributed among all the processors.
Island genetic algorithms (IGA) (Tanese 1989; Whitley & Starkweather 1990) alleviate the
communication load, and lead to better solution quality at the expense of slightly slower

 Advances in Evolutionary Algorithms

214

convergence. They have showed a speedup in computation time. Even when an IGA was
implemented in a serial manner (i.e., using a single processor), it was faster than the
standard GA in reaching the same solutions.
Several multi-population implementations were specifically developed for dynamic
environments, for example the shifting balance genetic algorithm (SBGA) by Wineberg and
Oppacher (2000); the multinational genetic algorithm (MGA) by Ursem (2000); and the self-
organizing scouts (SOS) by Branke et al. (2000).
In SBGA there is a single large core population that contains the best found individual, and
several small colony populations that keep searching for new optima. The main function of
the core population is to track the shifting optimal solution. The colonies update the core
population by sending immigrants from time to time.
The SOS approach adopts an opposite approach to SBGA by allocating the task of searching
for new optima to the base (main) population and the tracking to the scout (satellite)
populations. The idea in SOS is that once a peak is discovered there is no need to have many
individuals around it; a fraction of the base population is sufficient to perform the task of
tracking that particular peak over time. By keeping one large base population, SOS behaves
more like a standard GA—rather than an IGA—since the main search is allocated to one
population. This suggests that the method will be more effective when the environment is
dynamic (many different optima arise through time) and hence the use of scouts will be
warranted. SOS is more adaptive than SBGA, which basically maintains only one good
solution in its base.
MGA uses several populations of comparable sizes, each containing one good individual
(the peak of the neighbourhood). MGA is also self-organizing since it structures the
population into subpopulations using an interesting procedure called hill-valley detection,
which causes the immigration of an individual that is not located on the same peak with the
rest of its population and the merging of two populations that represent the same peak. The
main disadvantage of MGA is the frequent evaluations done for valley detection.

3.5 Adapting search to population diversity
There is a growing trend of using population diversity to guide evolutionary algorithms.
Zhu (2003) presents a diversity-controlling adaptive genetic algorithm (DCAGA) for the vehicle
routing problem. In this model, the population diversity is maintained at pre-defined levels
by adapting rates of GA operators to the problem dynamics. However, it may be difficult to
set a single value as a target as there is no agreed upon accurate measure for diversity
(Burke et al. 2004). Moreover, the contemporary notion that the best set of genetic
parameters changes during the run can be used to reason that the value of the best (target)
diversity also changes during the run.
Ursem (2002) proposes diversity-guided evolutionary algorithms (DGEA) which measures
population diversity as the sum of distances to an average point and uses it to alter the
search between an exploration phase and an exploitation phase. Riget & Vesterstroem (2002)
use a similar approach but with particle swarm optimization. However, the limitation on
runtime in dynamic problems may not permit alternate phases.

4. Efficient solvers for dynamic COPs
From the foregoing discussion, techniques based on parameter adaptation and multiple
populations seem to be the most promising for tackling dynamic optimization problems.

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

215

These techniques, however, were designed for either static problems or dynamic continuous
optimization problems, thus none can be used without modification for dynamic COPs. This
section introduces two models that are specifically designed for dynamic COPs: the first
model uses measured population diversity to control the search process, and the second
model extends the first model using multiple populations.

4.1 Adaptive diversity model
The adaptive diversity model (ADM) is comparable in many ways to other diversity controlled
models. ADM, like DCAGA, controls the genetic parameters. However, unlike DCAGA
ADM controls the parameter during environmental changes, and without specifying a
single target for diversity. ADM, like DGEA, uses two diversity limits to control the search
process, however, it does not reduce the search to the distinct pure exploitation and pure
exploration phases, and it does not rely on the continuity of chromosome representation.
In deciding on the best measure for population diversity, it is important to keep in mind that
the purpose of measuring diversity is to assess the explorative state of the search process to
update the algorithm parameters, rather than precisely determining variety in the
population as a goal in itself. For this goal, diversity measures that are based on genotopic
distances are convenient since genetic operators act directly on genotype.
Costs of computing diversity of a population of size n can be reduced by a factor of n by
using an average point to represent the whole population. However, arithmetic averages
can be used only with real-valued representations. Moreover, an arithmetic average does
not reflect the convergence point of a population, since evolutionary algorithms are
designed to converge around the population-best. Hence, it is more appropriate to measure
the population diversity in terms of distances from the population-best rather than distances
from an average point. By reserving individual vn for the population-best, the aggregated
genotypic measure (d) of the population can be expressed as

(5)

Considering the mutation operator for a start, ADM can be described as follows. When an
environmental change is detected (at t = tm), the mutation rate is set to an upper limit μ .
While the environment is static (tm ≤ t < tm+1), population diversity d(t) is continually
measured and compared to two reference values, an upper limit dh and a lower limit dl, and
the mutation rate μ (t) is adjusted using the following scheme:

(6)

The formula for adaptive crossover rate Â(t) is similar to that of mutation. However, since
high selection pressures reduce population diversity the selection probability s(t) is adapted
in an opposite manner to that used for mutation in Equation 6, as follows:

 Advances in Evolutionary Algorithms

214

convergence. They have showed a speedup in computation time. Even when an IGA was
implemented in a serial manner (i.e., using a single processor), it was faster than the
standard GA in reaching the same solutions.
Several multi-population implementations were specifically developed for dynamic
environments, for example the shifting balance genetic algorithm (SBGA) by Wineberg and
Oppacher (2000); the multinational genetic algorithm (MGA) by Ursem (2000); and the self-
organizing scouts (SOS) by Branke et al. (2000).
In SBGA there is a single large core population that contains the best found individual, and
several small colony populations that keep searching for new optima. The main function of
the core population is to track the shifting optimal solution. The colonies update the core
population by sending immigrants from time to time.
The SOS approach adopts an opposite approach to SBGA by allocating the task of searching
for new optima to the base (main) population and the tracking to the scout (satellite)
populations. The idea in SOS is that once a peak is discovered there is no need to have many
individuals around it; a fraction of the base population is sufficient to perform the task of
tracking that particular peak over time. By keeping one large base population, SOS behaves
more like a standard GA—rather than an IGA—since the main search is allocated to one
population. This suggests that the method will be more effective when the environment is
dynamic (many different optima arise through time) and hence the use of scouts will be
warranted. SOS is more adaptive than SBGA, which basically maintains only one good
solution in its base.
MGA uses several populations of comparable sizes, each containing one good individual
(the peak of the neighbourhood). MGA is also self-organizing since it structures the
population into subpopulations using an interesting procedure called hill-valley detection,
which causes the immigration of an individual that is not located on the same peak with the
rest of its population and the merging of two populations that represent the same peak. The
main disadvantage of MGA is the frequent evaluations done for valley detection.

3.5 Adapting search to population diversity
There is a growing trend of using population diversity to guide evolutionary algorithms.
Zhu (2003) presents a diversity-controlling adaptive genetic algorithm (DCAGA) for the vehicle
routing problem. In this model, the population diversity is maintained at pre-defined levels
by adapting rates of GA operators to the problem dynamics. However, it may be difficult to
set a single value as a target as there is no agreed upon accurate measure for diversity
(Burke et al. 2004). Moreover, the contemporary notion that the best set of genetic
parameters changes during the run can be used to reason that the value of the best (target)
diversity also changes during the run.
Ursem (2002) proposes diversity-guided evolutionary algorithms (DGEA) which measures
population diversity as the sum of distances to an average point and uses it to alter the
search between an exploration phase and an exploitation phase. Riget & Vesterstroem (2002)
use a similar approach but with particle swarm optimization. However, the limitation on
runtime in dynamic problems may not permit alternate phases.

4. Efficient solvers for dynamic COPs
From the foregoing discussion, techniques based on parameter adaptation and multiple
populations seem to be the most promising for tackling dynamic optimization problems.

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

215

These techniques, however, were designed for either static problems or dynamic continuous
optimization problems, thus none can be used without modification for dynamic COPs. This
section introduces two models that are specifically designed for dynamic COPs: the first
model uses measured population diversity to control the search process, and the second
model extends the first model using multiple populations.

4.1 Adaptive diversity model
The adaptive diversity model (ADM) is comparable in many ways to other diversity controlled
models. ADM, like DCAGA, controls the genetic parameters. However, unlike DCAGA
ADM controls the parameter during environmental changes, and without specifying a
single target for diversity. ADM, like DGEA, uses two diversity limits to control the search
process, however, it does not reduce the search to the distinct pure exploitation and pure
exploration phases, and it does not rely on the continuity of chromosome representation.
In deciding on the best measure for population diversity, it is important to keep in mind that
the purpose of measuring diversity is to assess the explorative state of the search process to
update the algorithm parameters, rather than precisely determining variety in the
population as a goal in itself. For this goal, diversity measures that are based on genotopic
distances are convenient since genetic operators act directly on genotype.
Costs of computing diversity of a population of size n can be reduced by a factor of n by
using an average point to represent the whole population. However, arithmetic averages
can be used only with real-valued representations. Moreover, an arithmetic average does
not reflect the convergence point of a population, since evolutionary algorithms are
designed to converge around the population-best. Hence, it is more appropriate to measure
the population diversity in terms of distances from the population-best rather than distances
from an average point. By reserving individual vn for the population-best, the aggregated
genotypic measure (d) of the population can be expressed as

(5)

Considering the mutation operator for a start, ADM can be described as follows. When an
environmental change is detected (at t = tm), the mutation rate is set to an upper limit μ .
While the environment is static (tm ≤ t < tm+1), population diversity d(t) is continually
measured and compared to two reference values, an upper limit dh and a lower limit dl, and
the mutation rate μ (t) is adjusted using the following scheme:

(6)

The formula for adaptive crossover rate Â(t) is similar to that of mutation. However, since
high selection pressures reduce population diversity the selection probability s(t) is adapted
in an opposite manner to that used for mutation in Equation 6, as follows:

 Advances in Evolutionary Algorithms

216

(7)

where s and s are the lower and the upper limits of selection probability respectively; and
Zl, and Zh are as given earlier in the mutation formula 6.
Figure 3 illustrates the general principle of the ADM, and how it drives genetic parameters
toward exploration or exploiting in response to measured diversity. In this figure, P can be
the value of any of the controlled genetic parameters μ, χ or s. Pr corresponds to maximum

exploration values; i.e., μ , χ or s, whereas Pt corresponds to maximum exploitation values
(μ , χ , or s).
The pseudo code for a dynamic solver using ADM can be obtained from Figure 5, by setting
the number of islands to one and cancelling the call to PerformMigration().

Fig. 3. Diversity range is divided into five regions.
Low diversity maps the genetic parameter into a more explorative value (e.g., P1) and high
diversity maps it into a less explorative value (e.g., P2). Diversity values between dl and dh do
not change the current values of the genetic parameters (the parameter is mapped into its
original value P0). The farther the diversity is from the unbiased range, the more change to
the genetic parameter. Diversity in the asymptotic regions maps the parameter into one of
its extreme values (Pmax.exploration or Pmax.exploitation) .

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

217

4.2 Adaptive island model
The adaptive island model (AIM) shares many features with other multiple population
evolutionary algorithms that have been mentioned previously. However, unlike SBGA and
SOS, AIM uses a fixed number of equal-size islands. In addition, no specific island is given
the role of base or core island in AIM: the island that contains population-best is considered
the current base island. AIM maintains several good solutions at any time, each of which is
the center of an island. Accordingly, all islands participate in exploring the search space and
at the same time exploit good individuals. AIM is more like MGA, but still does not rely on
the continuity nature of the variables to guide the search process. As well, AIM uses
diversity-controlled genetic operators, in a way similar to that of ADM.
AIM extends the function of ADM to control a number of islands. Thus, two measures of
diversity are used to guide the search: an island diversity measure and a population
diversity measure. Island diversity is measured as the sum of distances from individuals in
the island to the island-best, and population diversity is measured as the sum of the
distances from each island best to the best individual in all islands.
Each island is basically a small population of individuals close to each other. It evolves
under the control of its own diversity independently from other islands. The best individual
in the island is used as an aggregate point for measuring island diversity and as a
representative of the island in measuring inter-island diversity (or simply population
diversity).
With the islands charged with maintaining population diversity, the algorithm becomes less
reliant on the usual (destructive) high rates of mutation. Furthermore, mutation now is
required to maintain diversity within individual islands (not within entire population), thus
lower rates of mutation are needed. Therefore, mutation rate in AIM, though still diversity
dependent, has a lower upper limit.
In order to avoid premature convergence due to islands being isolated from each other,
individuals are forced to migrate from one island to another at pre-defined intervals in a
ring-like scheme, as illustrated in Figure 4. This scheme helps impart new genetic material to
destination islands and increase survival probability of high fitness individuals.

Fig. 4. Ring migration scheme, with the best individuals migrating among islands

On the global level, AIM is required to keep islands in different parts of the search space.
This requirement is achieved by measuring inter-island diversity before migration and by
mutating duplicate islands. If two islands are found very close to each other, one of them is

 Advances in Evolutionary Algorithms

216

(7)

where s and s are the lower and the upper limits of selection probability respectively; and
Zl, and Zh are as given earlier in the mutation formula 6.
Figure 3 illustrates the general principle of the ADM, and how it drives genetic parameters
toward exploration or exploiting in response to measured diversity. In this figure, P can be
the value of any of the controlled genetic parameters μ, χ or s. Pr corresponds to maximum

exploration values; i.e., μ , χ or s, whereas Pt corresponds to maximum exploitation values
(μ , χ , or s).
The pseudo code for a dynamic solver using ADM can be obtained from Figure 5, by setting
the number of islands to one and cancelling the call to PerformMigration().

Fig. 3. Diversity range is divided into five regions.
Low diversity maps the genetic parameter into a more explorative value (e.g., P1) and high
diversity maps it into a less explorative value (e.g., P2). Diversity values between dl and dh do
not change the current values of the genetic parameters (the parameter is mapped into its
original value P0). The farther the diversity is from the unbiased range, the more change to
the genetic parameter. Diversity in the asymptotic regions maps the parameter into one of
its extreme values (Pmax.exploration or Pmax.exploitation) .

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

217

4.2 Adaptive island model
The adaptive island model (AIM) shares many features with other multiple population
evolutionary algorithms that have been mentioned previously. However, unlike SBGA and
SOS, AIM uses a fixed number of equal-size islands. In addition, no specific island is given
the role of base or core island in AIM: the island that contains population-best is considered
the current base island. AIM maintains several good solutions at any time, each of which is
the center of an island. Accordingly, all islands participate in exploring the search space and
at the same time exploit good individuals. AIM is more like MGA, but still does not rely on
the continuity nature of the variables to guide the search process. As well, AIM uses
diversity-controlled genetic operators, in a way similar to that of ADM.
AIM extends the function of ADM to control a number of islands. Thus, two measures of
diversity are used to guide the search: an island diversity measure and a population
diversity measure. Island diversity is measured as the sum of distances from individuals in
the island to the island-best, and population diversity is measured as the sum of the
distances from each island best to the best individual in all islands.
Each island is basically a small population of individuals close to each other. It evolves
under the control of its own diversity independently from other islands. The best individual
in the island is used as an aggregate point for measuring island diversity and as a
representative of the island in measuring inter-island diversity (or simply population
diversity).
With the islands charged with maintaining population diversity, the algorithm becomes less
reliant on the usual (destructive) high rates of mutation. Furthermore, mutation now is
required to maintain diversity within individual islands (not within entire population), thus
lower rates of mutation are needed. Therefore, mutation rate in AIM, though still diversity
dependent, has a lower upper limit.
In order to avoid premature convergence due to islands being isolated from each other,
individuals are forced to migrate from one island to another at pre-defined intervals in a
ring-like scheme, as illustrated in Figure 4. This scheme helps impart new genetic material to
destination islands and increase survival probability of high fitness individuals.

Fig. 4. Ring migration scheme, with the best individuals migrating among islands

On the global level, AIM is required to keep islands in different parts of the search space.
This requirement is achieved by measuring inter-island diversity before migration and by
mutating duplicate islands. If two islands are found very close to each other, one of them is

 Advances in Evolutionary Algorithms

218

considered a duplicate, and consequently its individuals are mutated to cover a different
region of the search space. Elite solutions consisting of the best individual from each island
are retained throughout the isolation period. During migration, elite solutions are not lost
since best individuals are forced to migrate to new islands.
At environmental changes, each island is re-evaluated and its genetic parameters are reset to
their respective maximum exploration limits. During quiescent phases of the environment,
genetic parameters are changed in response to individual island diversity measures. A
pseudo code for AIM is given in Figure 5.

Fig. 5. Pseudo code for AIM. The model can be reduced to ADM by setting the number of
islands to one, and cancelling the call to PerformMigration().

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

219

5. Empirical study and analysis
The main purpose of this section is to demonstrate the applicability of the adaptive models
to realistic problems. First, this section describes the performance measure and the strategies
under comparison. Benchmarks and modes of dynamics are then given for each problem
together with the results of comparison. Statistical analysis of the significance of the
comparisons is given in an appendix at the end of this article.

5.1 Standard strategies and measures of performance
The dynamic test problems are used to compare the proposed techniques against three
standard models: a fixed model (FM) that uses a GA with fixed operator rates and does not
apply any specific measures to tackle dynamism in the problem, a restart model (RM) that
randomly re-generates the population at each environmental change, and a random
immigrants model (RIM) that replaces a fraction (10%) of the population with random
immigrants (randomly generated individuals) at each environmental change.
Since the problems considered in this article are minimization of cost functions, the related
performance measures are directly based on the solution cost rather than on the fitness.
First, a mean best of generation (MBG) is defined after G generations of the rth run as:

(8)

where e θ
r is the cost associated with the individual evaluated at time step θ and run r, tg is

the time step at which generation g started, and ˆgc is the optimal cost (or the best known
cost) to the problem instance at generation g. The algorithm’s performance on the
benchmark over R runs can then be abstracted as

(9)

With these definitions, smaller values of the performance measure indicate improved
performance. Moreover, since MBG is measured relative to the value of the best solutions
found during benchmark construction, it will in general exceed unity. Less than unity
values, if encountered, indicate superior performance of the corresponding model in that the
dynamic solver with limited (time per instance) budget outperforms a static solver with
virtually unlimited budget.

5.2 Algorithm parameter settings
In all tested models, the underlying GA is generational with tournament selection in which
selection pressure can be altered by changing a selection probability parameter. A
population of fifty individuals is used throughout. The population is divided into five
islands in the AIM model (i.e., ten individuals per island).
The FM, RM and RIM models use a crossover rate of 0.9 and a selection probability of 1.0.
The mutation rate is set to the inverse of the chromosome length (Reeves & Rowe 2002). For
the ADM and AIM models, the previous values represent the exploitation limits of their

 Advances in Evolutionary Algorithms

218

considered a duplicate, and consequently its individuals are mutated to cover a different
region of the search space. Elite solutions consisting of the best individual from each island
are retained throughout the isolation period. During migration, elite solutions are not lost
since best individuals are forced to migrate to new islands.
At environmental changes, each island is re-evaluated and its genetic parameters are reset to
their respective maximum exploration limits. During quiescent phases of the environment,
genetic parameters are changed in response to individual island diversity measures. A
pseudo code for AIM is given in Figure 5.

Fig. 5. Pseudo code for AIM. The model can be reduced to ADM by setting the number of
islands to one, and cancelling the call to PerformMigration().

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

219

5. Empirical study and analysis
The main purpose of this section is to demonstrate the applicability of the adaptive models
to realistic problems. First, this section describes the performance measure and the strategies
under comparison. Benchmarks and modes of dynamics are then given for each problem
together with the results of comparison. Statistical analysis of the significance of the
comparisons is given in an appendix at the end of this article.

5.1 Standard strategies and measures of performance
The dynamic test problems are used to compare the proposed techniques against three
standard models: a fixed model (FM) that uses a GA with fixed operator rates and does not
apply any specific measures to tackle dynamism in the problem, a restart model (RM) that
randomly re-generates the population at each environmental change, and a random
immigrants model (RIM) that replaces a fraction (10%) of the population with random
immigrants (randomly generated individuals) at each environmental change.
Since the problems considered in this article are minimization of cost functions, the related
performance measures are directly based on the solution cost rather than on the fitness.
First, a mean best of generation (MBG) is defined after G generations of the rth run as:

(8)

where e θ
r is the cost associated with the individual evaluated at time step θ and run r, tg is

the time step at which generation g started, and ˆgc is the optimal cost (or the best known
cost) to the problem instance at generation g. The algorithm’s performance on the
benchmark over R runs can then be abstracted as

(9)

With these definitions, smaller values of the performance measure indicate improved
performance. Moreover, since MBG is measured relative to the value of the best solutions
found during benchmark construction, it will in general exceed unity. Less than unity
values, if encountered, indicate superior performance of the corresponding model in that the
dynamic solver with limited (time per instance) budget outperforms a static solver with
virtually unlimited budget.

5.2 Algorithm parameter settings
In all tested models, the underlying GA is generational with tournament selection in which
selection pressure can be altered by changing a selection probability parameter. A
population of fifty individuals is used throughout. The population is divided into five
islands in the AIM model (i.e., ten individuals per island).
The FM, RM and RIM models use a crossover rate of 0.9 and a selection probability of 1.0.
The mutation rate is set to the inverse of the chromosome length (Reeves & Rowe 2002). For
the ADM and AIM models, the previous values represent the exploitation limits of their

 Advances in Evolutionary Algorithms

220

corresponding operators, with the exploration limits being 1.0 for crossover, 0.9 for
selection, and twice the exploitation limit for mutation.
For TSP, edge crossover (Whitley et al. 1991) and pair-wise node swap mutation are used
throughout. The mutation operator sweeps down the list of bits in the chromosome,
swapping each with a randomly selected bit if a probability test is passed.
For FMS, a simple single-point crossover operator and a standard mutation operator are
used throughout (Younes et al. 2002).

5.3 TSP experimentation
5.3.1 TSP benchmark problems
Static problems of sizes comparable to those reported in the literature (Guntsch et al. 2001;
Eyckelhof & Snoek 2002) are used in the comparative experiments of this section. These
problems are given in the TSP library (Reinelt 1991) as berlin52, kroA100, and pcb442. In this
article they are referred to as be52, k100, and p442 respectively. Dynamic versions are
constructed from these problems in three ways (modes): an edge change mode (ECM), an
insert/delete mode (IDM) and a vertex swap mode (VSM).
Edge change mode The ECM mode reflects one of the real-world scenarios, a traffic jam.

Here, the distance between the cities is viewed as a time period or cost that may
change over time, hence the introduction and the removal of a traffic jam,
respectively, can be simulated by the increase or decrease in the distance between
cities. The change step of the traffic jam is the increase in the cost of a single edge.
The strategy is as follows: If the edge cost is to be increased then that edge should
be selected from the best tour. However, if the cost were to be reduced then the
selected edge should not be part of the best tour.
The BG starts from one known instance and solves it to find the best or the near
best tour. An edge is then selected randomly from the best tour, and its cost is
increased by a user defined factor creating a new instance which will likely have a
different best tour.

Insert/delete mode The IDM mode reflects the addition and deletion of new assignments
(cities). This mode works in a manner similar to the ECM mode. The step of the
change in this mode is the addition or the deletion of a single city. This mode
generates the most difficult problems to solve dynamically since they require
variable chromosome length to reflect the increase or decrease in the number of
cities from one instance to the next.

Vertex swap mode The VSM mode is another way to create a dynamic TSP by
interchanging city locations. This mode offers a simple, quick and easy way to test
and analyze the dynamic algorithm. The locations of two randomly selected cities
are interchanged; this does not change the length of the optimal tour but does
change the solution (this is analogous to shifting the independent variable(s) of a
continuous function by a predetermined amount). The change step (the smallest
possible change) in this mode is an interchange of costs between a pair of cities; this
can be very large in comparison with the change steps of the previous two modes.

In the experiments conducted, each benchmark problem is created from an initial sequence
of 1000 static problems inter-separated by single elementary steps. Depending on the
specified severity, a number of intermediate static problems will be skipped to construct one
test problem.

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

221

Each sequence of static problems is translated into 21 dynamic test problems by combining
seven degrees of severity (1, 5, 10, 15, 20, 25 steps per shift, and random) and three periods
of change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50, and 100
generations per shift based on a population of 50 individuals).

5.3.2 TSP results
Experimental results on the dynamic k100 problem in the VSM mode under three different
periods of change are given in Figure 6, where the mean best of generation (averaged over
ten runs) is plotted against severity of change. The ADM and AIM models outperform the
other models in almost all cases. The other three models give comparable results to each
other in general, with differences in solution quality tending to decrease as the severity of
change increases. Only when the change severity is 10 steps per shift or more, may the other
models give slightly better performance than ADM and AIM. Keep in mind that in this 100
vertex problem, a severity of 10 in the VSM mode amounts to changing (4 × 10) edges; that
is, about 40% of the edges in an individual are replaced, which constitutes a substantial
amount of change. As we are interested in small environmental changes (which are the
norm in practice), we can safely conclude that the experiments attest to the superiority of the
ADM and AIM over the other three models in the range of change of interest.

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 6. Comparison of evolutionary models (k100 VSM)

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 7. Comparison of evolutionary models (k100 ECM)

Running the benchmark generator in either the ECM mode or the IDM mode gives similar
results as illustrated in Figure 7 and Figure 8 respectively. It can be seen that ADM and AIM
outperform the other models in most considered dynamics.
The RM model produces the worst results in all conducted experiments (even though this
model has been modified to retain the best solution in the hope of obtaining better results
than those obtainable using a conventional restart).

 Advances in Evolutionary Algorithms

220

corresponding operators, with the exploration limits being 1.0 for crossover, 0.9 for
selection, and twice the exploitation limit for mutation.
For TSP, edge crossover (Whitley et al. 1991) and pair-wise node swap mutation are used
throughout. The mutation operator sweeps down the list of bits in the chromosome,
swapping each with a randomly selected bit if a probability test is passed.
For FMS, a simple single-point crossover operator and a standard mutation operator are
used throughout (Younes et al. 2002).

5.3 TSP experimentation
5.3.1 TSP benchmark problems
Static problems of sizes comparable to those reported in the literature (Guntsch et al. 2001;
Eyckelhof & Snoek 2002) are used in the comparative experiments of this section. These
problems are given in the TSP library (Reinelt 1991) as berlin52, kroA100, and pcb442. In this
article they are referred to as be52, k100, and p442 respectively. Dynamic versions are
constructed from these problems in three ways (modes): an edge change mode (ECM), an
insert/delete mode (IDM) and a vertex swap mode (VSM).
Edge change mode The ECM mode reflects one of the real-world scenarios, a traffic jam.

Here, the distance between the cities is viewed as a time period or cost that may
change over time, hence the introduction and the removal of a traffic jam,
respectively, can be simulated by the increase or decrease in the distance between
cities. The change step of the traffic jam is the increase in the cost of a single edge.
The strategy is as follows: If the edge cost is to be increased then that edge should
be selected from the best tour. However, if the cost were to be reduced then the
selected edge should not be part of the best tour.
The BG starts from one known instance and solves it to find the best or the near
best tour. An edge is then selected randomly from the best tour, and its cost is
increased by a user defined factor creating a new instance which will likely have a
different best tour.

Insert/delete mode The IDM mode reflects the addition and deletion of new assignments
(cities). This mode works in a manner similar to the ECM mode. The step of the
change in this mode is the addition or the deletion of a single city. This mode
generates the most difficult problems to solve dynamically since they require
variable chromosome length to reflect the increase or decrease in the number of
cities from one instance to the next.

Vertex swap mode The VSM mode is another way to create a dynamic TSP by
interchanging city locations. This mode offers a simple, quick and easy way to test
and analyze the dynamic algorithm. The locations of two randomly selected cities
are interchanged; this does not change the length of the optimal tour but does
change the solution (this is analogous to shifting the independent variable(s) of a
continuous function by a predetermined amount). The change step (the smallest
possible change) in this mode is an interchange of costs between a pair of cities; this
can be very large in comparison with the change steps of the previous two modes.

In the experiments conducted, each benchmark problem is created from an initial sequence
of 1000 static problems inter-separated by single elementary steps. Depending on the
specified severity, a number of intermediate static problems will be skipped to construct one
test problem.

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

221

Each sequence of static problems is translated into 21 dynamic test problems by combining
seven degrees of severity (1, 5, 10, 15, 20, 25 steps per shift, and random) and three periods
of change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50, and 100
generations per shift based on a population of 50 individuals).

5.3.2 TSP results
Experimental results on the dynamic k100 problem in the VSM mode under three different
periods of change are given in Figure 6, where the mean best of generation (averaged over
ten runs) is plotted against severity of change. The ADM and AIM models outperform the
other models in almost all cases. The other three models give comparable results to each
other in general, with differences in solution quality tending to decrease as the severity of
change increases. Only when the change severity is 10 steps per shift or more, may the other
models give slightly better performance than ADM and AIM. Keep in mind that in this 100
vertex problem, a severity of 10 in the VSM mode amounts to changing (4 × 10) edges; that
is, about 40% of the edges in an individual are replaced, which constitutes a substantial
amount of change. As we are interested in small environmental changes (which are the
norm in practice), we can safely conclude that the experiments attest to the superiority of the
ADM and AIM over the other three models in the range of change of interest.

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 6. Comparison of evolutionary models (k100 VSM)

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 7. Comparison of evolutionary models (k100 ECM)

Running the benchmark generator in either the ECM mode or the IDM mode gives similar
results as illustrated in Figure 7 and Figure 8 respectively. It can be seen that ADM and AIM
outperform the other models in most considered dynamics.
The RM model produces the worst results in all conducted experiments (even though this
model has been modified to retain the best solution in the hope of obtaining better results
than those obtainable using a conventional restart).

 Advances in Evolutionary Algorithms

222

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 8. Comparison of evolutionary models (k100 IDM)

It is not easy to conclude from previous results the superiority of either model (ADM or
AIM), since both give very comparable results in almost all cases. However, when more
than one processor can be used, AIM is the best of the two models since it can be easily
parallelized by allocating different islands to different processors and consequently reduce
computation time drastically.

5.4 FMS experimentation
5.4.1 FMS benchmark problems
Four instances of sizes comparable to those used in the literature (Younes et al. 2002) are
used in the comparative experiments of this section.
Three of these instances (20 agents, 200 jobs), (20 agents, 100 jobs) and (10 agents, 100 jobs)
were used in Chu and Beasley (1997). The data describing these problems can be found in
the gapd file in the OR-library (Beasley 1990). In this article they are referred to as gap1, gap2,
and gap3 respectively. As described in Chen & Ho (2002), agents are considered as
machines, jobs are considered as operations, and each part is assumed to consist of five
operations. In these instances, a machine is assumed capable of performing all the required
operations. However, in general machines may have limited capabilities; that is, each
machine can perform a specific set of operations that may or may not overlap with those of
the other machines. To enable this feature, a machine-operation incidence matrix is
generated for each instance as follows: If the cost of allocating a job to an agent is below a
certain level, the corresponding entry in the new incidence matrix is equal to one to indicate
that the machine is capable of performing the corresponding operation. Alternatively, if the
cost is above this level, the corresponding entry in the incidence matrix is zero to indicate
that the job is not applicable to the machine. The final lists that associate parts with
operations and machines with operations are used to construct the dynamic problems.
The fourth problem instance is randomly generated. It was specifically designed and used to
test FMS systems with overlapping capabilities in Younes et al. (2002). This instance consists
of 11 machines, 20 parts, and 9 operations. In this article, it is referred to as rnd1.
In terms of the number of part operations (chromosome length) and the number of machines
(alleles), the dimensions of these problems are 200×20, 100×20, 100×10,and 62×11 for gap1,
gap2, gap3, and rnd1 respectively.
Dynamic problems are constructed from these instances in three ways (modes): a machine
delete mode (MDM), a part add mode (PAM), and a machine swap mode (MSM).
Machine delete mode The MDM mode reflects the real-world scenarios in which a machine

suddenly breaks down. The change step of this mode is the deletion of a single
machine.

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

223

Part add mode The PAM mode reflects the addition and deletion of new assignments
(parts). The step of change in this mode is the addition or the deletion of a single
part. This mode requires variable representation to reflect the increase or decrease
in the number of operations associated with the changing parts.

Machine swap mode The MSM mode is a direct application of the mapping-based

benchmark generation scheme (Younes et al. 2005). By interchanging machine
labels, a dynamic FMS can be generated easily and quickly. The change step in this
mode is an interchange of a single pair of machines. As a mapping change scheme,
this mode does not require computing a new solution after each change. We only
need to swap the machines of the current optimal solution to determine the
optimum of the next instance.

In the current experimentation, each benchmark problem is created from an initial sequence
of 100 static problems inter-separated by single elementary steps. Depending on the
specified severity, a number of intermediate static problems will be skipped to construct one
test problem.
Each sequence of static problems is translated into 18 dynamic test problems by combining
seven degrees of severity (1, 2, 3, 5, 10 steps per shift, and random) and three periods of
change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50, and 100
generations per shift based on a population of 50 individuals).

5.4.2 FMS results
Experiments were conducted on the rnd1, gap1, gap2, and gap3 problems in the three
modes of environmental change. In this section, we focus on the gap1 problem, the largest
and presumably the hardest, and on the rnd1 problem, the most distinct. Results of
comparisons in the MSM mode are shown in Figure 9, where the average MBG (over ten
runs) is plotted against different values of severity. First, we notice that results of the RM
model are inferior to those of the other models when the change severity is small. As
severity increases, RM results become comparatively better, and at extreme severities RM
outperforms the other models. This trend is consistent over different periods of
environmental change confirming our notion that restart strategies are best used when the
problem changes completely; i.e., when no benefits are expected from re-using old
information.

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 9. Comparison of evolutionary models (rnd1 MSM)

Starting with the ten generation period, we notice that models that reuse old information (all
models except for RM) give comparable performance. However, as the period of change

 Advances in Evolutionary Algorithms

222

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 8. Comparison of evolutionary models (k100 IDM)

It is not easy to conclude from previous results the superiority of either model (ADM or
AIM), since both give very comparable results in almost all cases. However, when more
than one processor can be used, AIM is the best of the two models since it can be easily
parallelized by allocating different islands to different processors and consequently reduce
computation time drastically.

5.4 FMS experimentation
5.4.1 FMS benchmark problems
Four instances of sizes comparable to those used in the literature (Younes et al. 2002) are
used in the comparative experiments of this section.
Three of these instances (20 agents, 200 jobs), (20 agents, 100 jobs) and (10 agents, 100 jobs)
were used in Chu and Beasley (1997). The data describing these problems can be found in
the gapd file in the OR-library (Beasley 1990). In this article they are referred to as gap1, gap2,
and gap3 respectively. As described in Chen & Ho (2002), agents are considered as
machines, jobs are considered as operations, and each part is assumed to consist of five
operations. In these instances, a machine is assumed capable of performing all the required
operations. However, in general machines may have limited capabilities; that is, each
machine can perform a specific set of operations that may or may not overlap with those of
the other machines. To enable this feature, a machine-operation incidence matrix is
generated for each instance as follows: If the cost of allocating a job to an agent is below a
certain level, the corresponding entry in the new incidence matrix is equal to one to indicate
that the machine is capable of performing the corresponding operation. Alternatively, if the
cost is above this level, the corresponding entry in the incidence matrix is zero to indicate
that the job is not applicable to the machine. The final lists that associate parts with
operations and machines with operations are used to construct the dynamic problems.
The fourth problem instance is randomly generated. It was specifically designed and used to
test FMS systems with overlapping capabilities in Younes et al. (2002). This instance consists
of 11 machines, 20 parts, and 9 operations. In this article, it is referred to as rnd1.
In terms of the number of part operations (chromosome length) and the number of machines
(alleles), the dimensions of these problems are 200×20, 100×20, 100×10,and 62×11 for gap1,
gap2, gap3, and rnd1 respectively.
Dynamic problems are constructed from these instances in three ways (modes): a machine
delete mode (MDM), a part add mode (PAM), and a machine swap mode (MSM).
Machine delete mode The MDM mode reflects the real-world scenarios in which a machine

suddenly breaks down. The change step of this mode is the deletion of a single
machine.

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

223

Part add mode The PAM mode reflects the addition and deletion of new assignments
(parts). The step of change in this mode is the addition or the deletion of a single
part. This mode requires variable representation to reflect the increase or decrease
in the number of operations associated with the changing parts.

Machine swap mode The MSM mode is a direct application of the mapping-based

benchmark generation scheme (Younes et al. 2005). By interchanging machine
labels, a dynamic FMS can be generated easily and quickly. The change step in this
mode is an interchange of a single pair of machines. As a mapping change scheme,
this mode does not require computing a new solution after each change. We only
need to swap the machines of the current optimal solution to determine the
optimum of the next instance.

In the current experimentation, each benchmark problem is created from an initial sequence
of 100 static problems inter-separated by single elementary steps. Depending on the
specified severity, a number of intermediate static problems will be skipped to construct one
test problem.
Each sequence of static problems is translated into 18 dynamic test problems by combining
seven degrees of severity (1, 2, 3, 5, 10 steps per shift, and random) and three periods of
change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50, and 100
generations per shift based on a population of 50 individuals).

5.4.2 FMS results
Experiments were conducted on the rnd1, gap1, gap2, and gap3 problems in the three
modes of environmental change. In this section, we focus on the gap1 problem, the largest
and presumably the hardest, and on the rnd1 problem, the most distinct. Results of
comparisons in the MSM mode are shown in Figure 9, where the average MBG (over ten
runs) is plotted against different values of severity. First, we notice that results of the RM
model are inferior to those of the other models when the change severity is small. As
severity increases, RM results become comparatively better, and at extreme severities RM
outperforms the other models. This trend is consistent over different periods of
environmental change confirming our notion that restart strategies are best used when the
problem changes completely; i.e., when no benefits are expected from re-using old
information.

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 9. Comparison of evolutionary models (rnd1 MSM)

Starting with the ten generation period, we notice that models that reuse old information (all
models except for RM) give comparable performance. However, as the period of change

 Advances in Evolutionary Algorithms

224

increases, differences between their performance become more apparent. This trend can be
explained as follows: when the environmental change is fast, the models do not have
sufficient time to converge, and hence they give nearly the same results. When allowed
more time, the models start to converge, and those using the best approach to persevere
after obsolete convergence produce the best results. The AIM model clearly stands out as the
best model.
Comparing the five models on the PAM and MDM modes confirms the results obtained on
the MSM mode. The inferiority of the RM model and the superiority of the AIM model
persist, as can be seen in Figure 10 and Figure 11.

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 10. Comparison of evolutionary models (rnd1 PAM)

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 11. Comparison of evolutionary models (rnd1 MDM)

The inferior performance of the RM model is more apparent in the other, large, test
problems: the performance of the RM model is consistently poor across the problem
dynamics whereas the performance of the other models deteriorates as the severity of
environmental change increases. Figure 12 shows the case of gap1 in the MSM mode (other
modes show similar behaviour). Comparing the gap1 results to those of rnd1, the apparent
deterioration of RM (relative to the other models) in the case of gap1 can be explained by
examining change severity. Although values of severity are numerically the same in both
cases, relative to problem size they are different, since gap1 is larger than rnd1. In other
words, the severity range used in the experiments on gap1 is virtually less than that used on
rnd1.
In summary, we can conclude that AIM is the best of the five models, as illustrated clearly in
the rnd1 experiments. For other problems in which AIM seems to produce comparable
results to those of the other models, we can still opt for the AIM model as it offers the
additional advantage of being easy to parallelize, as mentioned in the TSP results section.

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

225

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 12. Comparison of evolutionary models (gap1 MSM)

6. Conclusions and future work
The island based model proves to be effective under different dynamics. Although statistical
analysis suggest that these benefits are not significant under some problem dynamics, this
model can be more rewarding if several processors are employed. With each island
allocated to a different processor, the per processor computational costs are reduced
significantly.
The problem of parameter tuning is aggravated with dynamic environments, as a result of
the increased problem complexity and the increased number of algorithm parameters;
however, by using diversity to control the EA parameters, the models developed in this
article had significantly reduced tuning efforts.
There are several ways in which the developed models can be applied and improved:
• The effectiveness of the developed methods on the TSP and FMS problems encourages

their application to other problems, such as intelligent transportation systems, engine
parameter control, scheduling of airline maintenance, and dynamic network routing.

• Diversity controlled models can use operator-specific diversity measures so that each
operator is controlled by its respective diversity measure, i.e., based on algorithmic
distance. Future work that is worth exploring involves using adaptive limits of
diversity for the models presented in this article.

7. Appendix. Statistical analysis
Statistical t-tests that are used to compare the means of two samples can be used to compare
the performance of two algorithms. The typical t-test is performed to build a confidence
interval that is used to either accept or reject a null hypothesis that both sample means are
equal. In applying this test to compare the performance of two algorithms, the measures of
performance are treated as sample means, the required replicates of each sample mean are
obtained by performing several independent runs of each algorithm, and the null
hypothesis is that there is no significant difference in the performance of both algorithms.
However, when more than two samples are compared, the probability of multiple t-tests
incorrectly finding a significant difference between a pair of samples increases with the
number of comparisons. Analysis of variance (ANOVA) overcomes this problem by testing
the samples as a whole for significant differences. Therefore, in this article, ANOVA is
performed to test the hypothesis that measures of performance of all the models under
considerations are equal. Then, a multiple post ANOVA comparison test, known as Tukey’s

 Advances in Evolutionary Algorithms

224

increases, differences between their performance become more apparent. This trend can be
explained as follows: when the environmental change is fast, the models do not have
sufficient time to converge, and hence they give nearly the same results. When allowed
more time, the models start to converge, and those using the best approach to persevere
after obsolete convergence produce the best results. The AIM model clearly stands out as the
best model.
Comparing the five models on the PAM and MDM modes confirms the results obtained on
the MSM mode. The inferiority of the RM model and the superiority of the AIM model
persist, as can be seen in Figure 10 and Figure 11.

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 10. Comparison of evolutionary models (rnd1 PAM)

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 11. Comparison of evolutionary models (rnd1 MDM)

The inferior performance of the RM model is more apparent in the other, large, test
problems: the performance of the RM model is consistently poor across the problem
dynamics whereas the performance of the other models deteriorates as the severity of
environmental change increases. Figure 12 shows the case of gap1 in the MSM mode (other
modes show similar behaviour). Comparing the gap1 results to those of rnd1, the apparent
deterioration of RM (relative to the other models) in the case of gap1 can be explained by
examining change severity. Although values of severity are numerically the same in both
cases, relative to problem size they are different, since gap1 is larger than rnd1. In other
words, the severity range used in the experiments on gap1 is virtually less than that used on
rnd1.
In summary, we can conclude that AIM is the best of the five models, as illustrated clearly in
the rnd1 experiments. For other problems in which AIM seems to produce comparable
results to those of the other models, we can still opt for the AIM model as it offers the
additional advantage of being easy to parallelize, as mentioned in the TSP results section.

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

225

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 12. Comparison of evolutionary models (gap1 MSM)

6. Conclusions and future work
The island based model proves to be effective under different dynamics. Although statistical
analysis suggest that these benefits are not significant under some problem dynamics, this
model can be more rewarding if several processors are employed. With each island
allocated to a different processor, the per processor computational costs are reduced
significantly.
The problem of parameter tuning is aggravated with dynamic environments, as a result of
the increased problem complexity and the increased number of algorithm parameters;
however, by using diversity to control the EA parameters, the models developed in this
article had significantly reduced tuning efforts.
There are several ways in which the developed models can be applied and improved:
• The effectiveness of the developed methods on the TSP and FMS problems encourages

their application to other problems, such as intelligent transportation systems, engine
parameter control, scheduling of airline maintenance, and dynamic network routing.

• Diversity controlled models can use operator-specific diversity measures so that each
operator is controlled by its respective diversity measure, i.e., based on algorithmic
distance. Future work that is worth exploring involves using adaptive limits of
diversity for the models presented in this article.

7. Appendix. Statistical analysis
Statistical t-tests that are used to compare the means of two samples can be used to compare
the performance of two algorithms. The typical t-test is performed to build a confidence
interval that is used to either accept or reject a null hypothesis that both sample means are
equal. In applying this test to compare the performance of two algorithms, the measures of
performance are treated as sample means, the required replicates of each sample mean are
obtained by performing several independent runs of each algorithm, and the null
hypothesis is that there is no significant difference in the performance of both algorithms.
However, when more than two samples are compared, the probability of multiple t-tests
incorrectly finding a significant difference between a pair of samples increases with the
number of comparisons. Analysis of variance (ANOVA) overcomes this problem by testing
the samples as a whole for significant differences. Therefore, in this article, ANOVA is
performed to test the hypothesis that measures of performance of all the models under
considerations are equal. Then, a multiple post ANOVA comparison test, known as Tukey’s

 Advances in Evolutionary Algorithms

226

test, is carried out to produce 95% confidence intervals for the difference in the mean best of
generation of each pair of models.
Statistical results reported here are obtained using a significance level of 5% to construct
95% confidence intervals on the difference in the mean best of generation. Tables in this
section summarize the statistical computations of the results reported in Section 5: Table 1,
Table 2, and Table 3 are for TSP K100 problem in the three modes of change (respectively,
ECM, IDM, and VSM); Table 4 and Table 5 are for the FMS rnd1 and gap1 problems in the
MSM mode.

Table 1. Multiple comparison test of evolutionary models (k100-VSM)

Table 2. Multiple comparison test of evolutionary models (k100-ECM)

Table 3. Multiple comparison test of evolutionary models (k100-IDM)

Each table covers the combinations of problem dynamics (periods of change and levels of
severity of change) described earlier, and an additional column for a random severity) The
entries in these tables are interpreted as follows. An entry of 1 signifies that the confidence
interval for the difference in performance measures of the corresponding pair consists
entirely of positive values, which indicates that the first model is inferior to the second

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

227

model. Conversely, an entry of -1 signifies that the confidence interval for the corresponding
pair consists entirely of negative values, which indicates that the first model is superior to
the second one. An entry of 0 indicates that there is no significant difference between the
two models.

Table 4. Multiple comparison test of evolutionary models (rnd1-MSM)

Statistical analysis confirms the arguments made on the graphical comparisons in the
previous section. As can be seen in Table 1, 2, and 3, there are significant differences
between the performance of the adaptive models (ADM and AIM) and the other three
models (FM, RM, and RIM), while there is no significant difference between ADM and AIM.
Collectively, the statistical tables confirm the graphical comparisons presented in the
previous section. As can be seen in Table 4, and 5, there are significant differences between
the performance of the RM model and all others.

Table 5. Multiple comparison test of evolutionary models (gap1-MSM)

8. References
Beasley, J. E. 1990. Or-library: distributing test problems by electronic mail. Journal of the

Operational Research Society 41(11), 1069–1072.
Bianchi, L. 1990. Notes on dynamic vehicle routing - the state of the art. Tech. Rep. idsia 05-

01, Italy.
Bierwirth, C. and Kopfer, H. 1994. Dynamic task scheduling with genetic algorithms in

manufacturing systems. Tech. rep., Department of Economics, University of
Bremen, Germany.

Bierwirth, C., Kopfer, H., Mattfeld, D. C., and Rixen, I. 1995. Genetic algorithm based
scheduling in a dynamic manufacturing environment. In Proc. of IEEE Conference on
Evolutionary Computation. IEEE Press.

 Advances in Evolutionary Algorithms

226

test, is carried out to produce 95% confidence intervals for the difference in the mean best of
generation of each pair of models.
Statistical results reported here are obtained using a significance level of 5% to construct
95% confidence intervals on the difference in the mean best of generation. Tables in this
section summarize the statistical computations of the results reported in Section 5: Table 1,
Table 2, and Table 3 are for TSP K100 problem in the three modes of change (respectively,
ECM, IDM, and VSM); Table 4 and Table 5 are for the FMS rnd1 and gap1 problems in the
MSM mode.

Table 1. Multiple comparison test of evolutionary models (k100-VSM)

Table 2. Multiple comparison test of evolutionary models (k100-ECM)

Table 3. Multiple comparison test of evolutionary models (k100-IDM)

Each table covers the combinations of problem dynamics (periods of change and levels of
severity of change) described earlier, and an additional column for a random severity) The
entries in these tables are interpreted as follows. An entry of 1 signifies that the confidence
interval for the difference in performance measures of the corresponding pair consists
entirely of positive values, which indicates that the first model is inferior to the second

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

227

model. Conversely, an entry of -1 signifies that the confidence interval for the corresponding
pair consists entirely of negative values, which indicates that the first model is superior to
the second one. An entry of 0 indicates that there is no significant difference between the
two models.

Table 4. Multiple comparison test of evolutionary models (rnd1-MSM)

Statistical analysis confirms the arguments made on the graphical comparisons in the
previous section. As can be seen in Table 1, 2, and 3, there are significant differences
between the performance of the adaptive models (ADM and AIM) and the other three
models (FM, RM, and RIM), while there is no significant difference between ADM and AIM.
Collectively, the statistical tables confirm the graphical comparisons presented in the
previous section. As can be seen in Table 4, and 5, there are significant differences between
the performance of the RM model and all others.

Table 5. Multiple comparison test of evolutionary models (gap1-MSM)

8. References
Beasley, J. E. 1990. Or-library: distributing test problems by electronic mail. Journal of the

Operational Research Society 41(11), 1069–1072.
Bianchi, L. 1990. Notes on dynamic vehicle routing - the state of the art. Tech. Rep. idsia 05-

01, Italy.
Bierwirth, C. and Kopfer, H. 1994. Dynamic task scheduling with genetic algorithms in

manufacturing systems. Tech. rep., Department of Economics, University of
Bremen, Germany.

Bierwirth, C., Kopfer, H., Mattfeld, D. C., and Rixen, I. 1995. Genetic algorithm based
scheduling in a dynamic manufacturing environment. In Proc. of IEEE Conference on
Evolutionary Computation. IEEE Press.

 Advances in Evolutionary Algorithms

228

Bierwirth, C. and Mattfeld, D. C. 1999. Production scheduling and rescheduling with genetic
algorithms. Evolutionary Computation 7, 1, 1–18.

Branke, J. 1999. Memory enhanced evolutionary algorithms for changing optimization
problems. In 1999 Congress on Evolutionary Computation. IEEE Service Center,
Piscataway, NJ, 1875–1882.

Branke, J. 2001. Evolutionary Optimization in Dynamic Environments. Environments. Kluwer
Academic Publishers.

Branke, J., Kaussler, T., Schmidt, C., and Schmeck, H. 2000. A multi-population approach to
dynamic optimization problaqw2 nh ems. In Adaptive Computing in Design and
Manufacturing 2000. Springer.

Burke, E. K., Gustafson, S., and Kendall, G. 2004. Diversity in genetic programming: An
analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary
Computation 8, 1, 47–62.

Chen, J.-H. and Ho, S.-Y. 2002. Multi-objective evolutionary optimization of flexible
manufacturing systems. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO2002). Morgan Koffman, New York, New York, 1260–1267.

Chu, P. C. and Beasley, J. E. 1997. A genetic algorithm for the generalised assignment
problem. Computers and Operations Research 24, 17–23.

Cobb, H. G. 1990. An investigation into the use of hypermutation as an adaptive operator in
genetic algorithms having continuous, time-dependent nonstationary
environments. Tech. Rep. 6760 (NLR Memorandum), Navy Center for Applied
Research in Artificial Intelligence,Washington, D.C.

Dimopoulos, C. and Zalzala, A. 2000. Recent developments in evolutionary computation for
manufacturing optimization: Problems, solutions, and comparisons. IEE
Transactions on Evolutionary Computation 4, 2, 93–113.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. 1999. Parameter control in evolutionary
algorithms. IEEE Trans. on Evolutionary Computation 3, 2, 124–141.

Eyckelhof, C. J. and Snoek, M. 2002. Ant systems for a dynamic tsp. In ANTS ’02: Proceedings
of the Third InternationalWorkshop on Ant Algorithms. Springer Verlag, London, UK,
88–99.

Grefenstette, J. J. 1992. Genetic algorithms for changing environments. In Parallel Problem
Solving from Nature 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature,
Brussels 1992), R. M¨anner and B. Manderick, Eds. Elsevier, Amsterdam, 137–144.

Grefenstette, J. J. 1999. Evolvability in dynamic fitness landscapes: a genetic algorithm
approach. In 1999 Congress on Evolutionary Computation. IEEE Service Center,
Piscataway, NJ, 2031–2038.

Guntsch, M., Middendorf, M., and Schmeck, H. 2001. An ant colony optimization approach
to dynamic tsp. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), L. Spector, E. D. Goodman, A.Wu,W. Langdon, H.-M. Voigt, M.
Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds. Morgan
Kaufmann, San Francisco, California, USA, 860–867.

Jin, Y. and Branke, J. 2005. Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evolutionary Computation 9, 3, 303–317.

Lewis, J., Hart, E., and Ritchie, G. 1998. A comparison of dominance mechanisms and simple
mutation on non-stationary problems. In Parallel Problem Solving from Nature –

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

229

PPSN V, A. E. Eiben, T. B¨ack, M. Schoenauer, and H.-P. Schwefel, Eds. Springer,
Berlin, 139–148. Lecture Notes in Computer Science 1498.

Lin, S.-C., Goodman, E. D., and Punch, W. F. 1997. A genetic algorithm approach to dynamic
job shop scheduling problems. In Seventh International Conference on Genetic
Algorithms, T. B¨ack, Ed. Morgan Kaufmann, 481–488.

Louis, S. J. and Johnson, J. 1997. Solving similar problems using genetic algorithms and case-
based memory. In Proc. of The Seventh Int. Conf. on Genetic Algorithms. Morgan
Kaufmann, San Mateo, CA, 283–290.

Louis, S. J. and Xu, Z. 1996. Genetic algorithms for open shop scheduling and rescheduling.
In ISCA 11th Int. Conf. on Computers and their Applications, M. E. Cohen and D. L.
Hudson, Eds. 99–102.

Ng, K. P. and Wong, K. C. 1995. A new diploid scheme and dominance change mechanism
for non-stationary function optimization. In Sixth International Conference on Genetic
Algorithms. Morgan Kaufmann, 159–166.

Psaraftis, H. 1995. Dynamic vehicle routing: Status and prospects. Annals Operations Research
61, 143–164.

Rardin, R. 1998. Optimization In Operation Research. Prentice-Hall, Inc.
Reeves, C. and Karatza, H. 1993. Dynamic sequencing of a multi-processor system: a genetic

algorithm approach. In Artificial Neural Nets and Genetic Algorithms, R. F. Albrecht,
C. R. Reeves, and N. C. Steele, Eds. Springer, 491–495.

Reeves, C. R. and Rowe, J. E. 2002. Genetic Algorithms: Principles and Perspectives: A Guide to
GA Theory. Kluwer Academic Publishers, Norwell, MA, USA.

Reinelt, G. 1991. TSPLIB — a traveling salesman problem library. ORSA Journal on
Computing 3, 376 – 384.

Riget, J. and Vesterstroem, J. 2002. A diversity-guided particle swarm optimizer – the arpso.
Tanese, R. 1989. Distributed genetic algorithm. In Proc. of the Third Int. Conf. on Genetic

Algorithms, J. D. Schaffer, Ed. Morgan Kaufmann, San Mateo, CA, 434–439.
Ursem, R. K. 2000. Multinational GAs: Multimodal optimization techniques in dynamic

environments. In Proc. of the Genetic and Evolutionary Computation Conf. (GECCO-00),
D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer, Eds.
Morga Kaufmann, San Francisco, CA, 19–26.

Ursem, R. K. 2002. Diversity-guided evolutionary algorithms. In Proceedings of Paralle
Problem Solving from Nature VII (PPSN-2002). Springer Verlag, 462–471.

Wang, C., Ghenniwa, H., and Shen, W. 2005. Heuristic scheduling algorithm for flexibl
manufacturing systems with partially overlapping machine capabilities. In Proc. Of
2005 IEEE International Conference on Mechatronics and Automation, IEEE Press,
Niagara Falls, Canada, 1139 1144.

Whitley, D. and Starkweather, T. 1990. Genitor ii.: a distributed geneti algorithm. J. Exp.
Theor. Artif. Intell. 2, 3, 189–214.

Whitley, D., Starkweather, T., and Shaner, D. 1991. The traveling salesman and sequence
scheduling: Quality solutions using genetic edge recombination. In Handbook o
Genetic Algorithms, L. Davis, Ed. Van Nostrand Reinhold, New York, 350–372.

Wineberg, M. and Oppacher, F. 2000. Enhancing the ga’s ability to cope with dynamic
environments. In GECCO. 3–10.

 Advances in Evolutionary Algorithms

228

Bierwirth, C. and Mattfeld, D. C. 1999. Production scheduling and rescheduling with genetic
algorithms. Evolutionary Computation 7, 1, 1–18.

Branke, J. 1999. Memory enhanced evolutionary algorithms for changing optimization
problems. In 1999 Congress on Evolutionary Computation. IEEE Service Center,
Piscataway, NJ, 1875–1882.

Branke, J. 2001. Evolutionary Optimization in Dynamic Environments. Environments. Kluwer
Academic Publishers.

Branke, J., Kaussler, T., Schmidt, C., and Schmeck, H. 2000. A multi-population approach to
dynamic optimization problaqw2 nh ems. In Adaptive Computing in Design and
Manufacturing 2000. Springer.

Burke, E. K., Gustafson, S., and Kendall, G. 2004. Diversity in genetic programming: An
analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary
Computation 8, 1, 47–62.

Chen, J.-H. and Ho, S.-Y. 2002. Multi-objective evolutionary optimization of flexible
manufacturing systems. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO2002). Morgan Koffman, New York, New York, 1260–1267.

Chu, P. C. and Beasley, J. E. 1997. A genetic algorithm for the generalised assignment
problem. Computers and Operations Research 24, 17–23.

Cobb, H. G. 1990. An investigation into the use of hypermutation as an adaptive operator in
genetic algorithms having continuous, time-dependent nonstationary
environments. Tech. Rep. 6760 (NLR Memorandum), Navy Center for Applied
Research in Artificial Intelligence,Washington, D.C.

Dimopoulos, C. and Zalzala, A. 2000. Recent developments in evolutionary computation for
manufacturing optimization: Problems, solutions, and comparisons. IEE
Transactions on Evolutionary Computation 4, 2, 93–113.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. 1999. Parameter control in evolutionary
algorithms. IEEE Trans. on Evolutionary Computation 3, 2, 124–141.

Eyckelhof, C. J. and Snoek, M. 2002. Ant systems for a dynamic tsp. In ANTS ’02: Proceedings
of the Third InternationalWorkshop on Ant Algorithms. Springer Verlag, London, UK,
88–99.

Grefenstette, J. J. 1992. Genetic algorithms for changing environments. In Parallel Problem
Solving from Nature 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature,
Brussels 1992), R. M¨anner and B. Manderick, Eds. Elsevier, Amsterdam, 137–144.

Grefenstette, J. J. 1999. Evolvability in dynamic fitness landscapes: a genetic algorithm
approach. In 1999 Congress on Evolutionary Computation. IEEE Service Center,
Piscataway, NJ, 2031–2038.

Guntsch, M., Middendorf, M., and Schmeck, H. 2001. An ant colony optimization approach
to dynamic tsp. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), L. Spector, E. D. Goodman, A.Wu,W. Langdon, H.-M. Voigt, M.
Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds. Morgan
Kaufmann, San Francisco, California, USA, 860–867.

Jin, Y. and Branke, J. 2005. Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evolutionary Computation 9, 3, 303–317.

Lewis, J., Hart, E., and Ritchie, G. 1998. A comparison of dominance mechanisms and simple
mutation on non-stationary problems. In Parallel Problem Solving from Nature –

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

229

PPSN V, A. E. Eiben, T. B¨ack, M. Schoenauer, and H.-P. Schwefel, Eds. Springer,
Berlin, 139–148. Lecture Notes in Computer Science 1498.

Lin, S.-C., Goodman, E. D., and Punch, W. F. 1997. A genetic algorithm approach to dynamic
job shop scheduling problems. In Seventh International Conference on Genetic
Algorithms, T. B¨ack, Ed. Morgan Kaufmann, 481–488.

Louis, S. J. and Johnson, J. 1997. Solving similar problems using genetic algorithms and case-
based memory. In Proc. of The Seventh Int. Conf. on Genetic Algorithms. Morgan
Kaufmann, San Mateo, CA, 283–290.

Louis, S. J. and Xu, Z. 1996. Genetic algorithms for open shop scheduling and rescheduling.
In ISCA 11th Int. Conf. on Computers and their Applications, M. E. Cohen and D. L.
Hudson, Eds. 99–102.

Ng, K. P. and Wong, K. C. 1995. A new diploid scheme and dominance change mechanism
for non-stationary function optimization. In Sixth International Conference on Genetic
Algorithms. Morgan Kaufmann, 159–166.

Psaraftis, H. 1995. Dynamic vehicle routing: Status and prospects. Annals Operations Research
61, 143–164.

Rardin, R. 1998. Optimization In Operation Research. Prentice-Hall, Inc.
Reeves, C. and Karatza, H. 1993. Dynamic sequencing of a multi-processor system: a genetic

algorithm approach. In Artificial Neural Nets and Genetic Algorithms, R. F. Albrecht,
C. R. Reeves, and N. C. Steele, Eds. Springer, 491–495.

Reeves, C. R. and Rowe, J. E. 2002. Genetic Algorithms: Principles and Perspectives: A Guide to
GA Theory. Kluwer Academic Publishers, Norwell, MA, USA.

Reinelt, G. 1991. TSPLIB — a traveling salesman problem library. ORSA Journal on
Computing 3, 376 – 384.

Riget, J. and Vesterstroem, J. 2002. A diversity-guided particle swarm optimizer – the arpso.
Tanese, R. 1989. Distributed genetic algorithm. In Proc. of the Third Int. Conf. on Genetic

Algorithms, J. D. Schaffer, Ed. Morgan Kaufmann, San Mateo, CA, 434–439.
Ursem, R. K. 2000. Multinational GAs: Multimodal optimization techniques in dynamic

environments. In Proc. of the Genetic and Evolutionary Computation Conf. (GECCO-00),
D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer, Eds.
Morga Kaufmann, San Francisco, CA, 19–26.

Ursem, R. K. 2002. Diversity-guided evolutionary algorithms. In Proceedings of Paralle
Problem Solving from Nature VII (PPSN-2002). Springer Verlag, 462–471.

Wang, C., Ghenniwa, H., and Shen, W. 2005. Heuristic scheduling algorithm for flexibl
manufacturing systems with partially overlapping machine capabilities. In Proc. Of
2005 IEEE International Conference on Mechatronics and Automation, IEEE Press,
Niagara Falls, Canada, 1139 1144.

Whitley, D. and Starkweather, T. 1990. Genitor ii.: a distributed geneti algorithm. J. Exp.
Theor. Artif. Intell. 2, 3, 189–214.

Whitley, D., Starkweather, T., and Shaner, D. 1991. The traveling salesman and sequence
scheduling: Quality solutions using genetic edge recombination. In Handbook o
Genetic Algorithms, L. Davis, Ed. Van Nostrand Reinhold, New York, 350–372.

Wineberg, M. and Oppacher, F. 2000. Enhancing the ga’s ability to cope with dynamic
environments. In GECCO. 3–10.

 Advances in Evolutionary Algorithms

230

Younes, A., Calamai, P., and Basir, O. 2005. Generalized benchmark generation for dynamic
combinatorial problems. In Genetic and Evolutionary Computation Conference
(GECCO2005) workshop program. ACM Press,Washington, D.C., USA, 25–31.

Younes, A., Ghenniwa, H., and Areibi, S. 2002. An adaptive genetic algorithm for multi
objective flexible manufacturing systems. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO2002). Morgan Koffman, New York,
New York, 1241–1249.

Zhu, K. Q. 2003. A diversity-controlling adaptive genetic algorithm for the vehicle routing
problem with time windows. In ICTAI. 176–183.

12

Agent-Based Co-Evolutionary Techniques for
Solving Multi-Objective Optimization Problems

Rafał Dreżewski and Leszek Siwik
AGH University of Science and Technology

Poland

1. Introduction
Evolutionary algorithms (EAs) are optimization and search techniques inspired by the
Darwinian model of biological evolutionary processes (Bäck et al., 1997). EAs are robust and
efficient techniques, which find approximate solutions to many problems which are difficult
or even impossible to solve with the use of “classical” techniques. There are many different
types of evolutionary algorithms developed during over 40 years of research.
One of the branches of EAs are co-evolutionary algorithms (CEAs) (Paredis, 1998). The main
difference between EAs and CEAs is the way in which the fitness of an individual is
evaluated in each approach. In the case of evolutionary algorithms each individual has the
solution of the given problem encoded within its genotype and its fitness depends only on
how “good” is that solution. In the case of co-evolutionary algorithms of course there is also
obviously solution to the given problem encoded within the individual’s genotype but the
fitness is estimated on the basis of interactions of the given individual with other
individuals present in the population. Thus co-evolutionary algorithms are applicable in the
case of problems for which it is difficult or even impossible to formulate explicit fitness
function—in such cases we can just encode the solutions within the individuals’ genotypes
and individuals compete—or co-operate—with each other, and such process of interactions
leads to the fitness estimation. Co-evolutionary interactions between individuals have also
other positive effects. One of them is maintaining the population diversity, another one are
“arms races”—continuous “progress” toward better and better solutions to the given
problem via competition between species.
Co-evolutionary algorithms are classified into two general categories: competitive and
cooperative (Paredis, 1998). The main difference between these two types of co-evolutionary
algorithms is the way in which the individuals interact during the fitness estimation. In the
case of competitive co-evolutionary algorithms the value of fitness is estimated as a result of
the series of tournaments, in which the individual for which the fitness is estimated and
some other individuals from the population are engaged. The way of choosing the
competitors for tournaments may vary in different versions of algorithms—for example it
may be the competition with the best individual from the other species or competition with
several randomly chosen individuals, etc.
On the other hand, co-operative co-evolutionary algorithms (CCEAs) are CEAs in which
there exist several sub-populations (species) (Potter & De Jong, 2000). Each of them solves

 Advances in Evolutionary Algorithms

230

Younes, A., Calamai, P., and Basir, O. 2005. Generalized benchmark generation for dynamic
combinatorial problems. In Genetic and Evolutionary Computation Conference
(GECCO2005) workshop program. ACM Press,Washington, D.C., USA, 25–31.

Younes, A., Ghenniwa, H., and Areibi, S. 2002. An adaptive genetic algorithm for multi
objective flexible manufacturing systems. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO2002). Morgan Koffman, New York,
New York, 1241–1249.

Zhu, K. Q. 2003. A diversity-controlling adaptive genetic algorithm for the vehicle routing
problem with time windows. In ICTAI. 176–183.

12

Agent-Based Co-Evolutionary Techniques for
Solving Multi-Objective Optimization Problems

Rafał Dreżewski and Leszek Siwik
AGH University of Science and Technology

Poland

1. Introduction
Evolutionary algorithms (EAs) are optimization and search techniques inspired by the
Darwinian model of biological evolutionary processes (Bäck et al., 1997). EAs are robust and
efficient techniques, which find approximate solutions to many problems which are difficult
or even impossible to solve with the use of “classical” techniques. There are many different
types of evolutionary algorithms developed during over 40 years of research.
One of the branches of EAs are co-evolutionary algorithms (CEAs) (Paredis, 1998). The main
difference between EAs and CEAs is the way in which the fitness of an individual is
evaluated in each approach. In the case of evolutionary algorithms each individual has the
solution of the given problem encoded within its genotype and its fitness depends only on
how “good” is that solution. In the case of co-evolutionary algorithms of course there is also
obviously solution to the given problem encoded within the individual’s genotype but the
fitness is estimated on the basis of interactions of the given individual with other
individuals present in the population. Thus co-evolutionary algorithms are applicable in the
case of problems for which it is difficult or even impossible to formulate explicit fitness
function—in such cases we can just encode the solutions within the individuals’ genotypes
and individuals compete—or co-operate—with each other, and such process of interactions
leads to the fitness estimation. Co-evolutionary interactions between individuals have also
other positive effects. One of them is maintaining the population diversity, another one are
“arms races”—continuous “progress” toward better and better solutions to the given
problem via competition between species.
Co-evolutionary algorithms are classified into two general categories: competitive and
cooperative (Paredis, 1998). The main difference between these two types of co-evolutionary
algorithms is the way in which the individuals interact during the fitness estimation. In the
case of competitive co-evolutionary algorithms the value of fitness is estimated as a result of
the series of tournaments, in which the individual for which the fitness is estimated and
some other individuals from the population are engaged. The way of choosing the
competitors for tournaments may vary in different versions of algorithms—for example it
may be the competition with the best individual from the other species or competition with
several randomly chosen individuals, etc.
On the other hand, co-operative co-evolutionary algorithms (CCEAs) are CEAs in which
there exist several sub-populations (species) (Potter & De Jong, 2000). Each of them solves

 Advances in Evolutionary Algorithms

232

only one sub- problem of the given problem. In such a case the whole solution is the group
of individuals composed of the representants of all sub-populations. Individuals interact
only during the fitness estimation process. In order to evaluate the given individual,
representants from the other sub-populations are chosen (different ways of choosing such
representants may be found in (Potter & De Jong, 2000)). Within the group the given
individual is evaluated in such a way that the fitness value of the whole solution (group)
becomes the fitness value of the given individual. Individuals coming from the same species
are evaluated within the group composed of the same representants of other species.
Sexual selection is another mechanism used for maintaining population diversity in EAs.
Sexual selection results from the co-evolution of female mate choice and male displayed trait
(Gavrilets & Waxman, 2002). Sexual selection is considered to be one of the ecological
mechanisms responsible for biodiversity and sympatric speciation (Gavrilets &Waxman,
2002; Todd & Miller, 1997). The research on sexual selection mechanism generally
concentrated on two aspects. The first one was modeling and simulation of sexual selection
as speciation mechanism and population diversity mechanism (for example see (Gavrilets
&Waxman, 2002; Todd & Miller, 1997)). The second one was the application of sexual
selection in evolutionary algorithms as a mechanism for maintaining population diversity.
The applications of sexual selection include multi-objective optimization (Allenson, 1992; Lis
& Eiben, 1996) and multimodal optimization (Ratford et al., 1997).
In the case of evolutionary multi-objective optimization (Deb, 1999), high quality
approximation of Pareto frontier (basic ideas of multi-objective optimization are introduced
in Section 2) should fulfill at least three distinguishing features. First of all, the population
should be “located” as close to the ideal Pareto frontier as possible. Secondly it should
include as many alternatives (individuals) as possible and, last but not least, all proposed
non-dominated alternatives should be evenly distributed over the whole true Pareto set. In
the case of multi-objective optimization maintaining of population diversity plays the
crucial role. Premature loss of population diversity can result not only in lack of drifting to
the true Pareto frontier but also in obtaining approximation of Pareto set that is focused
around its selected area(s), what is very undesirable. In the case of multi-objective problems
with many local Pareto frontiers (so called “multi-modal multi-objective problems” defined
by Deb in (Deb, 1999)) the loss of population diversity may result in locating only a local
Pareto frontier instead of a global one.
Co-evolutionary multi-agent systems (CoEMAS) are the result of research on decentralized
models of co-evolutionary computations. CoEMAS model is the extension of “basic” model
of evolution in multi-agent system—evolutionary multi-agent systems (EMAS) (Cetnarowicz et
al., 1996). The basic idea of such an approach is the realization of evolutionary processes in
multi-agent system—the population of agents evolves, agents live within the environment,
they can reproduce, die, compete for resources, observe the environment, communicate with
other agents, and make autonomously all their decisions concerning reproduction, choosing
partner for reproduction, and so on. Co-evolutionary multi-agent systems additionally
allow us to define many species and sexes of agents and to introduce interactions between
them (Dreżewski, 2003).
All these features lead to completely decentralized evolutionary processes and to the class of
systems that have very interesting features. It seems that the most important of them are the
following:

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

233

• synchronization constraints of the computations are relaxed because the evolutionary
processes are decentralized—individuals are agents, which act independently and do
not need synchronization,

• there exists the possibility of constructing hybrid systems using many different
computational intelligence techniques within one single, coherent multi-agent
architecture,

• there are possibilities of introducing new evolutionary and social mechanisms, which
were hard or even impossible to introduce in the case of classical evolutionary
algorithms.

The possible areas of application of CoEMAS include multi-modal optimization (for
example see (Dreżewski, 2006)), multi-objective optimization (the review of selected results
is presented in this chapter), and modeling and simulation of social and economical
phenomena.
This chapter starts with the overview of multi-objective optimization problems. Next,
introduction to the basic ideas of CoEMAS systems—the general model of co-evolution in
multi-agent system—is presented. In the following parts of the chapter the agent-based co-
evolutionary systems for multi-objective optimization are presented. Each system is
described with the use of notions and formalisms introduced in the general model of
coevolution in multi-agent system. Each of the presented systems uses different
coevolutionary interactions and mechanisms: sexual selection mechanism, and host-parasite
co-evolution. For all the systems results of experiments with commonly used multi-objective
test problems are presented. The results obtained during the experiments are the basis for
comparisons of agent-based co-evolutionary techniques with “classical” evolutionary
approaches.

2. An introduction to multi-objective optimization
During most real-life decision processes many different (often contradictory) factors have to
be considered, and the decision maker has to deal with an ambiguous situation: the
solutions which optimize one criterion may prove insufficiently good considering the
others. From the mathematical point of view such multi-objective (or multi-criteria) problem
can be formulated as follows (Coello Coello et al., 2007; Abraham et al., 2005; Zitzler, 1999;
Van Veldhuizen, 1999).
Let the problem variables be represented by a real-valued vector:

 (1)

where m is the number of variables. Then a subset of Rm of all possible (feasible) decision

alternatives (options) can be defined by a system of:
• inequalities (constraints): gk(x) ≥ 0 and k = 1, 2, . . . , K
• equalities (bounds): hl(x) = 0, l = 1, 2, . . . , L
and denoted by D. The alternatives are evaluated by a system of n functions (objectives)
denoted here by vector F = [f1, f2, . . . , fn]T :

 (2)

 Advances in Evolutionary Algorithms

232

only one sub- problem of the given problem. In such a case the whole solution is the group
of individuals composed of the representants of all sub-populations. Individuals interact
only during the fitness estimation process. In order to evaluate the given individual,
representants from the other sub-populations are chosen (different ways of choosing such
representants may be found in (Potter & De Jong, 2000)). Within the group the given
individual is evaluated in such a way that the fitness value of the whole solution (group)
becomes the fitness value of the given individual. Individuals coming from the same species
are evaluated within the group composed of the same representants of other species.
Sexual selection is another mechanism used for maintaining population diversity in EAs.
Sexual selection results from the co-evolution of female mate choice and male displayed trait
(Gavrilets & Waxman, 2002). Sexual selection is considered to be one of the ecological
mechanisms responsible for biodiversity and sympatric speciation (Gavrilets &Waxman,
2002; Todd & Miller, 1997). The research on sexual selection mechanism generally
concentrated on two aspects. The first one was modeling and simulation of sexual selection
as speciation mechanism and population diversity mechanism (for example see (Gavrilets
&Waxman, 2002; Todd & Miller, 1997)). The second one was the application of sexual
selection in evolutionary algorithms as a mechanism for maintaining population diversity.
The applications of sexual selection include multi-objective optimization (Allenson, 1992; Lis
& Eiben, 1996) and multimodal optimization (Ratford et al., 1997).
In the case of evolutionary multi-objective optimization (Deb, 1999), high quality
approximation of Pareto frontier (basic ideas of multi-objective optimization are introduced
in Section 2) should fulfill at least three distinguishing features. First of all, the population
should be “located” as close to the ideal Pareto frontier as possible. Secondly it should
include as many alternatives (individuals) as possible and, last but not least, all proposed
non-dominated alternatives should be evenly distributed over the whole true Pareto set. In
the case of multi-objective optimization maintaining of population diversity plays the
crucial role. Premature loss of population diversity can result not only in lack of drifting to
the true Pareto frontier but also in obtaining approximation of Pareto set that is focused
around its selected area(s), what is very undesirable. In the case of multi-objective problems
with many local Pareto frontiers (so called “multi-modal multi-objective problems” defined
by Deb in (Deb, 1999)) the loss of population diversity may result in locating only a local
Pareto frontier instead of a global one.
Co-evolutionary multi-agent systems (CoEMAS) are the result of research on decentralized
models of co-evolutionary computations. CoEMAS model is the extension of “basic” model
of evolution in multi-agent system—evolutionary multi-agent systems (EMAS) (Cetnarowicz et
al., 1996). The basic idea of such an approach is the realization of evolutionary processes in
multi-agent system—the population of agents evolves, agents live within the environment,
they can reproduce, die, compete for resources, observe the environment, communicate with
other agents, and make autonomously all their decisions concerning reproduction, choosing
partner for reproduction, and so on. Co-evolutionary multi-agent systems additionally
allow us to define many species and sexes of agents and to introduce interactions between
them (Dreżewski, 2003).
All these features lead to completely decentralized evolutionary processes and to the class of
systems that have very interesting features. It seems that the most important of them are the
following:

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

233

• synchronization constraints of the computations are relaxed because the evolutionary
processes are decentralized—individuals are agents, which act independently and do
not need synchronization,

• there exists the possibility of constructing hybrid systems using many different
computational intelligence techniques within one single, coherent multi-agent
architecture,

• there are possibilities of introducing new evolutionary and social mechanisms, which
were hard or even impossible to introduce in the case of classical evolutionary
algorithms.

The possible areas of application of CoEMAS include multi-modal optimization (for
example see (Dreżewski, 2006)), multi-objective optimization (the review of selected results
is presented in this chapter), and modeling and simulation of social and economical
phenomena.
This chapter starts with the overview of multi-objective optimization problems. Next,
introduction to the basic ideas of CoEMAS systems—the general model of co-evolution in
multi-agent system—is presented. In the following parts of the chapter the agent-based co-
evolutionary systems for multi-objective optimization are presented. Each system is
described with the use of notions and formalisms introduced in the general model of
coevolution in multi-agent system. Each of the presented systems uses different
coevolutionary interactions and mechanisms: sexual selection mechanism, and host-parasite
co-evolution. For all the systems results of experiments with commonly used multi-objective
test problems are presented. The results obtained during the experiments are the basis for
comparisons of agent-based co-evolutionary techniques with “classical” evolutionary
approaches.

2. An introduction to multi-objective optimization
During most real-life decision processes many different (often contradictory) factors have to
be considered, and the decision maker has to deal with an ambiguous situation: the
solutions which optimize one criterion may prove insufficiently good considering the
others. From the mathematical point of view such multi-objective (or multi-criteria) problem
can be formulated as follows (Coello Coello et al., 2007; Abraham et al., 2005; Zitzler, 1999;
Van Veldhuizen, 1999).
Let the problem variables be represented by a real-valued vector:

 (1)

where m is the number of variables. Then a subset of Rm of all possible (feasible) decision

alternatives (options) can be defined by a system of:
• inequalities (constraints): gk(x) ≥ 0 and k = 1, 2, . . . , K
• equalities (bounds): hl(x) = 0, l = 1, 2, . . . , L
and denoted by D. The alternatives are evaluated by a system of n functions (objectives)
denoted here by vector F = [f1, f2, . . . , fn]T :

 (2)

 Advances in Evolutionary Algorithms

234

Because there are many criteria–to indicate which solution is better than the other–
specialized ordering relation has to be introduced. To avoid problems with converting
minimization to maximization problems (and vice versa of course) additional operator �
can be defined. Then, notation 1x � 2x indicates that solution 1x is simply better than
solution 2x for particular objective. Now, the crucial concept of Pareto optimality (what is
the subject of our research) i.e. so called dominance relation can be defined. It is said that
solution Ax dominates solution Bx (Ax ≺ Bx) if and only if:

A solution in the Pareto sense of the multi-objective optimization problem means
determination of all non-dominated alternatives from the set D. The Pareto-optimal set
consists of globally optimal solutions and is defined as follows. The set P ⊆ D is global
Pareto-optimal set if (Zitzler, 1999):

 (3)

There may also exist locally optimal solutions, which constitute locally non-dominated set
(local Pareto-optimal set) (Deb, 2001). The set Plocal ⊆ D is local Pareto-optimal set if (Zitzler,
1999):

where �·� is a distance metric and ε > 0, δ > 0.
These locally or globally non-dominated solutions define in the criteria space so-called local
(PFlocal) or global (PF) Pareto frontiers that can be defined as follows:

 (4a)

 (4b)

Multi-objective problems with one global and many local Pareto frontiers are called
multimodal multi-objective problems (Deb, 2001).

3. General model of co-evolution in multi-agent system
As it was said, co-evolutionary multi-agent systems are the result of research on
decentralized models of evolutionary computations which resulted in the realization of
evolutionary processes in multi-agent system and the formulation of model of co-evolution
in such system. The basic elements of CoEMAS are environment with some topography,
agents (which are located and can migrate within the environment, which are able to
reproduce, die, compete for limited resources, and communicate with each other), the
selection mechanism based on competition for limited resources, and some agent-agent and
agent-environment relations defined (see Fig. 1).
The selection mechanism in such systems is based on the resources defined in the system.
Agents collect such resources, which are given to them by the environment in such a way

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

235

that “better” agents (i.e. which have “better” solutions encoded within their genotypes) are
given more resources and “worse” agents are given less resources. Agents then use such
resources for every activity (like reproduction and migration) and base all their decisions on
the possessed amount of resources.

Fig. 1. The idea of co-evolutionary multi-agent system
In this section the general model of co-evolution in multi-agent system (CoEMAS) is
presented. We will formally describe the basic elements of such systems and present the
algorithm of agent’s basic activities.

3.1 The co-evolutionary multi-agent system
The CoEMAS is described as 4-tuple:

 (5)

where E is the environment of the CoEMAS , S is the set of species (s ∈ S) that co-evolve in
CoEMAS, Γ is the set of resource types that exist in the system, the amount of type γ resource
will be denoted by rγ, Ω is the set of information types that exist in the system, the
information of type ω will be denoted by iω.

3.2 The environment
The environment of CoEMAS may be described as 3-tuple:

 (6)

where TE is the topography of environment E, ΓE is the set of resource types that exist in the
environment, ΩE is the set of information types that exist in the environment. The
topography of the environment is given by:

 Advances in Evolutionary Algorithms

234

Because there are many criteria–to indicate which solution is better than the other–
specialized ordering relation has to be introduced. To avoid problems with converting
minimization to maximization problems (and vice versa of course) additional operator �
can be defined. Then, notation 1x � 2x indicates that solution 1x is simply better than
solution 2x for particular objective. Now, the crucial concept of Pareto optimality (what is
the subject of our research) i.e. so called dominance relation can be defined. It is said that
solution Ax dominates solution Bx (Ax ≺ Bx) if and only if:

A solution in the Pareto sense of the multi-objective optimization problem means
determination of all non-dominated alternatives from the set D. The Pareto-optimal set
consists of globally optimal solutions and is defined as follows. The set P ⊆ D is global
Pareto-optimal set if (Zitzler, 1999):

 (3)

There may also exist locally optimal solutions, which constitute locally non-dominated set
(local Pareto-optimal set) (Deb, 2001). The set Plocal ⊆ D is local Pareto-optimal set if (Zitzler,
1999):

where �·� is a distance metric and ε > 0, δ > 0.
These locally or globally non-dominated solutions define in the criteria space so-called local
(PFlocal) or global (PF) Pareto frontiers that can be defined as follows:

 (4a)

 (4b)

Multi-objective problems with one global and many local Pareto frontiers are called
multimodal multi-objective problems (Deb, 2001).

3. General model of co-evolution in multi-agent system
As it was said, co-evolutionary multi-agent systems are the result of research on
decentralized models of evolutionary computations which resulted in the realization of
evolutionary processes in multi-agent system and the formulation of model of co-evolution
in such system. The basic elements of CoEMAS are environment with some topography,
agents (which are located and can migrate within the environment, which are able to
reproduce, die, compete for limited resources, and communicate with each other), the
selection mechanism based on competition for limited resources, and some agent-agent and
agent-environment relations defined (see Fig. 1).
The selection mechanism in such systems is based on the resources defined in the system.
Agents collect such resources, which are given to them by the environment in such a way

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

235

that “better” agents (i.e. which have “better” solutions encoded within their genotypes) are
given more resources and “worse” agents are given less resources. Agents then use such
resources for every activity (like reproduction and migration) and base all their decisions on
the possessed amount of resources.

Fig. 1. The idea of co-evolutionary multi-agent system
In this section the general model of co-evolution in multi-agent system (CoEMAS) is
presented. We will formally describe the basic elements of such systems and present the
algorithm of agent’s basic activities.

3.1 The co-evolutionary multi-agent system
The CoEMAS is described as 4-tuple:

 (5)

where E is the environment of the CoEMAS , S is the set of species (s ∈ S) that co-evolve in
CoEMAS, Γ is the set of resource types that exist in the system, the amount of type γ resource
will be denoted by rγ, Ω is the set of information types that exist in the system, the
information of type ω will be denoted by iω.

3.2 The environment
The environment of CoEMAS may be described as 3-tuple:

 (6)

where TE is the topography of environment E, ΓE is the set of resource types that exist in the
environment, ΩE is the set of information types that exist in the environment. The
topography of the environment is given by:

 Advances in Evolutionary Algorithms

236

 (7)

where H is directed graph with the cost function c defined: H = 〈V, B, c〉, V is the set of
vertices, B is the set of arches. The distance between two nodes is defined as the length of
the shortest path between them in graph H.
The l function makes it possible to locate particular agent in the environment space:

 (8)

where A is the set of agents, that exist in CoEMAS .
Vertice v is given by:

 (9)

Av is the set of agents that are located in the vertice v, Γv is the set of resource types that exist
within the v (Γv ⊆ ΓE), Ωv is the set of information types that exist within the v (Ωv ⊆ ΩE), φ is
the fitness function.

3.3 The species
Species s ∈ S is defined as follows:

 (10)

where:
• As is the set of agents of species s (by as we will denote the agent, which is of species s, as ∈As);
• SXs is the set of sexes within the s;
• Zs is the set of actions, which can be performed by the agents of species s (Zs =

Za,

where Za is the set of actions, which can be performed by the agent a);
• Cs is the set of relations with other species that exist within CoEMAS.
The set of relations of si with other species (C is) is the sum of the following sets of relations:

 (11)

where and are relations between species, based on some actions z ∈ Z is , which can
be performed by the agents of species si:

(12)

(13)

If si si then we are dealing with the intra-species competition, for example the
competition for limited resources, and if si si then there is some form of co-operation
within the species si.

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

237

With the use of the above relations we can define many different co-evolutionary
interactions e.g.: predator-prey, host-parasite, mutualism, etc. For example, host-parasite
interactions between two species, si (parasites) and sj (hosts) (i ≠ j) take place if and only if

i is s
k lz Z z Z∃ ∈ ∧ ∃ ∈ , such that si sj and sj si, and parasite can only live in tight co-

existence with the host.

3.4 The sex
The sex sx∈SXs which is within the species s is defined as follows:

 (14)

where Asx is the set of agents of sex sx and species s (Asx ⊆As):

 (15)

With asx we will denote the agent of sex sx (asx∈ Asx). Zsx is the set of actions which can be
performed by the agents of sex sx,

SX

asx

a A

Z Z
∈

= ∪ , where Za is the set of actions which can be

performed by the agent a. And finally Csx is the set of relations between the sx and other
sexes of the species s.
Analogically as in the case of species, we can define the relations between the sexes of the
same species. The set of all relations of the sex sxi ∈S Xs with other sexes of species s (C isx) is
the sum of the following sets of relations:

(16)

where and are the relations between sexes, in which some actions z∈Z isx are
used:

(17)

(18)

If performing the action zk ∈ Z isx (which permanently or temporally increases the fitness of
the agent a jsx of sex sxj ∈SXs) by the agent a isx of sex sxi∈SXs

 results in performing the action
zl ∈Z isx by the agent a isx and performing the action zm∈Z jsx by the agent a jsx , what results in
decreasing of the fitness of agents a isx and a jsx then such relation will be defined in the

following way:

 Advances in Evolutionary Algorithms

236

 (7)

where H is directed graph with the cost function c defined: H = 〈V, B, c〉, V is the set of
vertices, B is the set of arches. The distance between two nodes is defined as the length of
the shortest path between them in graph H.
The l function makes it possible to locate particular agent in the environment space:

 (8)

where A is the set of agents, that exist in CoEMAS .
Vertice v is given by:

 (9)

Av is the set of agents that are located in the vertice v, Γv is the set of resource types that exist
within the v (Γv ⊆ ΓE), Ωv is the set of information types that exist within the v (Ωv ⊆ ΩE), φ is
the fitness function.

3.3 The species
Species s ∈ S is defined as follows:

 (10)

where:
• As is the set of agents of species s (by as we will denote the agent, which is of species s, as ∈As);
• SXs is the set of sexes within the s;
• Zs is the set of actions, which can be performed by the agents of species s (Zs =

Za,

where Za is the set of actions, which can be performed by the agent a);
• Cs is the set of relations with other species that exist within CoEMAS.
The set of relations of si with other species (C is) is the sum of the following sets of relations:

 (11)

where and are relations between species, based on some actions z ∈ Z is , which can
be performed by the agents of species si:

(12)

(13)

If si si then we are dealing with the intra-species competition, for example the
competition for limited resources, and if si si then there is some form of co-operation
within the species si.

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

237

With the use of the above relations we can define many different co-evolutionary
interactions e.g.: predator-prey, host-parasite, mutualism, etc. For example, host-parasite
interactions between two species, si (parasites) and sj (hosts) (i ≠ j) take place if and only if

i is s
k lz Z z Z∃ ∈ ∧ ∃ ∈ , such that si sj and sj si, and parasite can only live in tight co-

existence with the host.

3.4 The sex
The sex sx∈SXs which is within the species s is defined as follows:

 (14)

where Asx is the set of agents of sex sx and species s (Asx ⊆As):

 (15)

With asx we will denote the agent of sex sx (asx∈ Asx). Zsx is the set of actions which can be
performed by the agents of sex sx,

SX

asx

a A

Z Z
∈

= ∪ , where Za is the set of actions which can be

performed by the agent a. And finally Csx is the set of relations between the sx and other
sexes of the species s.
Analogically as in the case of species, we can define the relations between the sexes of the
same species. The set of all relations of the sex sxi ∈S Xs with other sexes of species s (C isx) is
the sum of the following sets of relations:

(16)

where and are the relations between sexes, in which some actions z∈Z isx are
used:

(17)

(18)

If performing the action zk ∈ Z isx (which permanently or temporally increases the fitness of
the agent a jsx of sex sxj ∈SXs) by the agent a isx of sex sxi∈SXs

 results in performing the action
zl ∈Z isx by the agent a isx and performing the action zm∈Z jsx by the agent a jsx , what results in
decreasing of the fitness of agents a isx and a jsx then such relation will be defined in the

following way:

 Advances in Evolutionary Algorithms

238

(19)

Such relation represents the sexual selection mechanism, where the action zk∈Z isx is the
action of choosing the partner for reproduction, the action zl∈Z isx is the action of
reproduction performed by the agent of sex sxi (with high costs associated with it) and the
zm∈Z jsx is the action of reproduction performed by the agent of sex sxj (with lower costs than
in the case of zi action).

3.5 Agent
Agent a (see Fig. 2) of sex sx and species s (in order to simplify the notation we assume that
a ≡ asx,s) is defined as follows:

 (20)

where:
• gna is the genotype of agent a, which may be composed of any number of chromosomes

(for example: gna = 〈(x1, x2, . . . , xk)〉, where xi ∈ R , gna ∈ Rk

• Za is the set of actions, which agent a can perform;
• Γa is the set of resource types, which are used by agent a (Γa ⊆ Γ);
• Ωa is the set of informations, which agent a can possess and use (Ωa ⊆ Ω);
• PRa is partially ordered set of profiles of agent a (PRa ≡ 〈PRa, 〉) with defined partial

order relation .

Fig. 2. Agent in the CoEMAS
Relation is defined in the following way:

(21)

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

239

The active goal (which is denoted as gl*) is the goal gl, which should be realized in the given
time. The relation is reflexive, transitive and antisymmetric and partially orders the set
PRa:

 (22a)

 (22b)

 (22c)

The set of profiles PRa is defined in the following way:

 (23a)

 (23b)

Profile pr1 is the basic profile—it means that the realization of its goals has the highest
priority and they will be realized before the goals of other profiles.
Profile pr of agent a (pr ∈PRa) can be the profile in which only resources are used:

 (25)

in which only informations are used:

 (26)

or resources and informations are used:

 (27)

where:
• Γpr is the set of resource types, which are used within the profile pr (Γpr ⊆ Γa);
• Ωpr is the set of information types, which are used within the profile pr (Ωpr ⊆ Ωa);
• Mpr is the set of informations, which represent the agent’s knowledge about the

environment and other agents (it is the model of the environment of agent a);
• STpr is the partially ordered set of strategies (STpr ≡ 〈STpr, 〉),which can be used by agent

within the profile pr in order to realize an active goal of this profile;
• RSTpr is the set of strategies that are realized within the profile pr—generally, not all of

the strategies from the set STpr have to be realized within the profile pr, some of them
may be realized within other profiles;

• GLpr is partially ordered set of goals (GLpr ≡ 〈GLpr, 〉), which agent has to realize within
the profile pr.

The relation is defined in the following way:

 (27)

 Advances in Evolutionary Algorithms

238

(19)

Such relation represents the sexual selection mechanism, where the action zk∈Z isx is the
action of choosing the partner for reproduction, the action zl∈Z isx is the action of
reproduction performed by the agent of sex sxi (with high costs associated with it) and the
zm∈Z jsx is the action of reproduction performed by the agent of sex sxj (with lower costs than
in the case of zi action).

3.5 Agent
Agent a (see Fig. 2) of sex sx and species s (in order to simplify the notation we assume that
a ≡ asx,s) is defined as follows:

 (20)

where:
• gna is the genotype of agent a, which may be composed of any number of chromosomes

(for example: gna = 〈(x1, x2, . . . , xk)〉, where xi ∈ R , gna ∈ Rk

• Za is the set of actions, which agent a can perform;
• Γa is the set of resource types, which are used by agent a (Γa ⊆ Γ);
• Ωa is the set of informations, which agent a can possess and use (Ωa ⊆ Ω);
• PRa is partially ordered set of profiles of agent a (PRa ≡ 〈PRa, 〉) with defined partial

order relation .

Fig. 2. Agent in the CoEMAS
Relation is defined in the following way:

(21)

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

239

The active goal (which is denoted as gl*) is the goal gl, which should be realized in the given
time. The relation is reflexive, transitive and antisymmetric and partially orders the set
PRa:

 (22a)

 (22b)

 (22c)

The set of profiles PRa is defined in the following way:

 (23a)

 (23b)

Profile pr1 is the basic profile—it means that the realization of its goals has the highest
priority and they will be realized before the goals of other profiles.
Profile pr of agent a (pr ∈PRa) can be the profile in which only resources are used:

 (25)

in which only informations are used:

 (26)

or resources and informations are used:

 (27)

where:
• Γpr is the set of resource types, which are used within the profile pr (Γpr ⊆ Γa);
• Ωpr is the set of information types, which are used within the profile pr (Ωpr ⊆ Ωa);
• Mpr is the set of informations, which represent the agent’s knowledge about the

environment and other agents (it is the model of the environment of agent a);
• STpr is the partially ordered set of strategies (STpr ≡ 〈STpr, 〉),which can be used by agent

within the profile pr in order to realize an active goal of this profile;
• RSTpr is the set of strategies that are realized within the profile pr—generally, not all of

the strategies from the set STpr have to be realized within the profile pr, some of them
may be realized within other profiles;

• GLpr is partially ordered set of goals (GLpr ≡ 〈GLpr, 〉), which agent has to realize within
the profile pr.

The relation is defined in the following way:

 (27)

 Advances in Evolutionary Algorithms

240

This relation is reflexive, transitive and antisymmetric and partially orders the set STpr.
Every single strategy st ∈STpr is consisted of actions, which ordered performance leads to the
realization of some active goal of the profile pr:

 (28)

The relation is defined in the following way:

 (29)

This relation is reflexive, transitive and antisymmetric and partially orders the set GLpr.
The partially ordered sets of profiles PRa, goals GLpr and strategies STpr are used by the agent
in order to make decisions about the realized goal and to choose the appropriate strategy in
order to realize that goal. The basic activities of the agent a are shown in Algorithm 1.

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

241

In CoEMAS systems the set of profiles is usually composed of resource profile (pr1),
reproduction profile (pr2), and migration profile (pr3):

 (30a)

 (30b)

The highest priority has the resource profile, then there is reproduction profile, and finally
migration profile.

4. Co-evolutionary multi-agent systems for multi-objective optimization
In this section we will describe two co-evolutionary multi-agent systems used in the
experiments. Each of these systems uses different co-evolutionary mechanism: sexual
selection, and host-parasite interactions. All of the systems are based on general model of
co-evolution in multi-agent system described in Section 3—in this section only such
elements of the systems will be described that are specific for these instantiations of the
general model. In all the systems presented below, real-valued vectors are used as agents’
genotypes. Mutation with self-adaptation and intermediate recombination are used as
evolutionary operators (Bäck et al., 1997).

4.1 Co-evolutionary multi-agent system with sexual selection mechanism (SCoEMAS)
The co-evolutionary multi-agent system with sexual selection mechanism is described as 4-
tuple (see Eq. (5)):

 (31)

The informations of type ω1 represent all nodes connected with the given node. The
informations of type ω2 represent all agents located within the given node.

4.1.1 Species
The set of species S = {s}. The only species s is defined as follows:

 (32)

where SXs is the set of sexes which exist within the s species, Zs is the set of actions that
agents of species s can perform, and Cs is the set of relations of s species with other species
that exist in the SCoEMAS.
Actions The set of actions Zs is defined as follows:

(33)

where:
• die is the action of death (agent dies when it is out of resources);
• searchDominated finds the agents that are dominated by the given agent;
• get is used to get the resources from a dominated agent;

 Advances in Evolutionary Algorithms

240

This relation is reflexive, transitive and antisymmetric and partially orders the set STpr.
Every single strategy st ∈STpr is consisted of actions, which ordered performance leads to the
realization of some active goal of the profile pr:

 (28)

The relation is defined in the following way:

 (29)

This relation is reflexive, transitive and antisymmetric and partially orders the set GLpr.
The partially ordered sets of profiles PRa, goals GLpr and strategies STpr are used by the agent
in order to make decisions about the realized goal and to choose the appropriate strategy in
order to realize that goal. The basic activities of the agent a are shown in Algorithm 1.

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

241

In CoEMAS systems the set of profiles is usually composed of resource profile (pr1),
reproduction profile (pr2), and migration profile (pr3):

 (30a)

 (30b)

The highest priority has the resource profile, then there is reproduction profile, and finally
migration profile.

4. Co-evolutionary multi-agent systems for multi-objective optimization
In this section we will describe two co-evolutionary multi-agent systems used in the
experiments. Each of these systems uses different co-evolutionary mechanism: sexual
selection, and host-parasite interactions. All of the systems are based on general model of
co-evolution in multi-agent system described in Section 3—in this section only such
elements of the systems will be described that are specific for these instantiations of the
general model. In all the systems presented below, real-valued vectors are used as agents’
genotypes. Mutation with self-adaptation and intermediate recombination are used as
evolutionary operators (Bäck et al., 1997).

4.1 Co-evolutionary multi-agent system with sexual selection mechanism (SCoEMAS)
The co-evolutionary multi-agent system with sexual selection mechanism is described as 4-
tuple (see Eq. (5)):

 (31)

The informations of type ω1 represent all nodes connected with the given node. The
informations of type ω2 represent all agents located within the given node.

4.1.1 Species
The set of species S = {s}. The only species s is defined as follows:

 (32)

where SXs is the set of sexes which exist within the s species, Zs is the set of actions that
agents of species s can perform, and Cs is the set of relations of s species with other species
that exist in the SCoEMAS.
Actions The set of actions Zs is defined as follows:

(33)

where:
• die is the action of death (agent dies when it is out of resources);
• searchDominated finds the agents that are dominated by the given agent;
• get is used to get the resources from a dominated agent;

 Advances in Evolutionary Algorithms

242

• giveDominating gives some resources to the dominating agent;
• searchPartner is used to find candidates for reproduction partners;
• choose realizes the mechanism of sexual selection—the partner is chosen on the basis of

individual preferences;
• clone is used to make the new agent—offspring;
• rec realizes the recombination (intermediate recombination is used (Bäck et al., 1997));
• mut realizes the mutation (mutation with self-adaptation is used (Bäck et al., 1997));
• give is used to give the offspring some amount of the parent’s resources;
• accept action accepts the agent performing choose action as the partner for reproduction;
• selNode chooses the node (from the nodes connected with the current node) to which the

agent will migrate;
• migr allows the agent to migrate from the given node to another node of the

environment. The migration causes the lose of some amount of the agent’s resources.
Relations The set of relations is defined as follows:

(34)

The relation models intra species competition for limited resources (“-” denotes that as a
result of performing get action the fitness of another agent of species s is decreased):

 (35)

4.1.2 The sexes
The number of sexes within the s species corresponds with the number of criteria (n) of the
multi-objective problem being solved:

 (36)

Actions The set of actions of sex sx is defined in the following way: Zsx = Zs.
Relations The set of relations of sex sxi is defined as follows:

(37)

The relation

realizes the sexual selection mechanism (see Eq. (19)). Each agent has

its own preferences, which are composed of the vector of weights (each weight for one of the
criteria of the problem being solved). These individual preferences are used during the
selection of partner for reproduction (choose action).

4.1.3 The agent
Agent a of sex sx and species s (in order to simplify the notation we assume that a ≡ asx,s) is
defined as follows:

 (38)

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

243

In the case of SCoEMAS system the genotype of each agent is composed of three vectors
(chromosomes): x of real-coded decision parameters’ values, σ of standard deviations’
values, which are used during mutation with self-adaptation, and w of weights used during
selecting partner for reproduction (gna = 〈 x , σ , w 〉). Basic activities of agent a with the use
of profiles are presented in Alg. 2.

Profiles The set of profiles PRa = {pr1, pr2, pr3}, where pr1 is the resource profile, pr2 is the
reproduction profile, and pr3 is the migration profile. The resource profile is defined in the
following way:

 (39)

The set of strategies includes two strategies:

 (40)

The goal of the profile is to keep the amount of resource above the minimal level.

 Advances in Evolutionary Algorithms

242

• giveDominating gives some resources to the dominating agent;
• searchPartner is used to find candidates for reproduction partners;
• choose realizes the mechanism of sexual selection—the partner is chosen on the basis of

individual preferences;
• clone is used to make the new agent—offspring;
• rec realizes the recombination (intermediate recombination is used (Bäck et al., 1997));
• mut realizes the mutation (mutation with self-adaptation is used (Bäck et al., 1997));
• give is used to give the offspring some amount of the parent’s resources;
• accept action accepts the agent performing choose action as the partner for reproduction;
• selNode chooses the node (from the nodes connected with the current node) to which the

agent will migrate;
• migr allows the agent to migrate from the given node to another node of the

environment. The migration causes the lose of some amount of the agent’s resources.
Relations The set of relations is defined as follows:

(34)

The relation models intra species competition for limited resources (“-” denotes that as a
result of performing get action the fitness of another agent of species s is decreased):

 (35)

4.1.2 The sexes
The number of sexes within the s species corresponds with the number of criteria (n) of the
multi-objective problem being solved:

 (36)

Actions The set of actions of sex sx is defined in the following way: Zsx = Zs.
Relations The set of relations of sex sxi is defined as follows:

(37)

The relation

realizes the sexual selection mechanism (see Eq. (19)). Each agent has

its own preferences, which are composed of the vector of weights (each weight for one of the
criteria of the problem being solved). These individual preferences are used during the
selection of partner for reproduction (choose action).

4.1.3 The agent
Agent a of sex sx and species s (in order to simplify the notation we assume that a ≡ asx,s) is
defined as follows:

 (38)

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

243

In the case of SCoEMAS system the genotype of each agent is composed of three vectors
(chromosomes): x of real-coded decision parameters’ values, σ of standard deviations’
values, which are used during mutation with self-adaptation, and w of weights used during
selecting partner for reproduction (gna = 〈 x , σ , w 〉). Basic activities of agent a with the use
of profiles are presented in Alg. 2.

Profiles The set of profiles PRa = {pr1, pr2, pr3}, where pr1 is the resource profile, pr2 is the
reproduction profile, and pr3 is the migration profile. The resource profile is defined in the
following way:

 (39)

The set of strategies includes two strategies:

 (40)

The goal of the profile is to keep the amount of resource above the minimal level.

 Advances in Evolutionary Algorithms

244

The reproduction profile is defined as follows:

 (41)

The set of strategies includes two strategies:

 (42)

The goal of the profile is to reproduce when the amount of resource is above the minimal
level needed for reproduction.
The migration profile is defined as follows:

The goal of the profile is to migrate to another node when the amount of resource is above
the minimal level needed for migration.

4.2 Co-evolutionary multi-agent system with host-parasite interactions (HPCoEMAS)
The co-evolutionary multi-agent system with host-parasite interactions is defined as follows
(see Eq. (5)):

 (44)

The set of species includes two species, hosts and parasites: S = {host, par}. One resource type
exists within the system (Γ = {γ}). Three information types (Ω ={ω1, ω2, ω3}) are used.
Information of type ω1 denotes nodes to which each agent can migrate when it is located
within particular node. Information of type ω2 denotes such host-agents that are located
within the particular node in time t. Information of type ω3 denotes the host of the given
parasite.

4.2.1 Host species
The host species is defined as follows:

 (45)

where SXhost is the set of sexes which exist within the host species, Zhost is the set of actions
that agents of species host can perform, and Chost is the set of relations of host species with
other species that exist in the HPCoEMAS.
Actions The set of actions Zhost is defined as follows:

 (46)

where:
• die is the action of death (host dies when it is out of resources);
• get action gets some resource from the environment;
• give action gives some resource to the parasite;
• accept action accepts other agent as a reproduction partner;
• seek action seeks for another host agent that is able to reproduce;

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

245

• clone is the action of producing offspring (parents give some of their resources to the
offspring during this action);

• rec is the recombination operator (intermediate recombination is used (Bäck et al.,
1997));

• mut is the mutation operator (mutation with self-adaptation is used (Bäck et al., 1997));
• giveChild action gives some resource to the offspring;
• migr is the action of migrating from one node to another. During this action agent loses

some of its resource.
Relations The set of relations of host species with other species that exist within the system
is defined as follows:

 (47)

The first relation models intra species competition for limited resources given by the
environment:

 (48)

The second one models host-parasite interactions:

 (49)

4.2.2 Parasite species
The parasite species is defined as follows:

 (50)

Actions The set of actions Zpar is defined as follows:

 (51)

where:
• die is the action of death;
• seekHost is the action used in order to find the host. Test that is being performed by

parasite-agent on host-agent before infection consists in comparing—in the sense of
Pareto domination relation—solutions represented by assaulting parasite-agent and
host-agents that is being assaulted. The more solution represented by host-agent is
dominated by parasite-agent the higher is the probability of infection.

• get action gets some resource from the host;
• clone is the action of producing two offspring;
• mut is the mutation operator (mutation with self-adaptation is used (Bäck et al., 1997));
• giveChild action gives all the resources to the offspring—after the reproduction parasite

agent dies;
• migr is the action of migrating from one node to another. During this action agent loses

some of its resource.

 Advances in Evolutionary Algorithms

244

The reproduction profile is defined as follows:

 (41)

The set of strategies includes two strategies:

 (42)

The goal of the profile is to reproduce when the amount of resource is above the minimal
level needed for reproduction.
The migration profile is defined as follows:

The goal of the profile is to migrate to another node when the amount of resource is above
the minimal level needed for migration.

4.2 Co-evolutionary multi-agent system with host-parasite interactions (HPCoEMAS)
The co-evolutionary multi-agent system with host-parasite interactions is defined as follows
(see Eq. (5)):

 (44)

The set of species includes two species, hosts and parasites: S = {host, par}. One resource type
exists within the system (Γ = {γ}). Three information types (Ω ={ω1, ω2, ω3}) are used.
Information of type ω1 denotes nodes to which each agent can migrate when it is located
within particular node. Information of type ω2 denotes such host-agents that are located
within the particular node in time t. Information of type ω3 denotes the host of the given
parasite.

4.2.1 Host species
The host species is defined as follows:

 (45)

where SXhost is the set of sexes which exist within the host species, Zhost is the set of actions
that agents of species host can perform, and Chost is the set of relations of host species with
other species that exist in the HPCoEMAS.
Actions The set of actions Zhost is defined as follows:

 (46)

where:
• die is the action of death (host dies when it is out of resources);
• get action gets some resource from the environment;
• give action gives some resource to the parasite;
• accept action accepts other agent as a reproduction partner;
• seek action seeks for another host agent that is able to reproduce;

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

245

• clone is the action of producing offspring (parents give some of their resources to the
offspring during this action);

• rec is the recombination operator (intermediate recombination is used (Bäck et al.,
1997));

• mut is the mutation operator (mutation with self-adaptation is used (Bäck et al., 1997));
• giveChild action gives some resource to the offspring;
• migr is the action of migrating from one node to another. During this action agent loses

some of its resource.
Relations The set of relations of host species with other species that exist within the system
is defined as follows:

 (47)

The first relation models intra species competition for limited resources given by the
environment:

 (48)

The second one models host-parasite interactions:

 (49)

4.2.2 Parasite species
The parasite species is defined as follows:

 (50)

Actions The set of actions Zpar is defined as follows:

 (51)

where:
• die is the action of death;
• seekHost is the action used in order to find the host. Test that is being performed by

parasite-agent on host-agent before infection consists in comparing—in the sense of
Pareto domination relation—solutions represented by assaulting parasite-agent and
host-agents that is being assaulted. The more solution represented by host-agent is
dominated by parasite-agent the higher is the probability of infection.

• get action gets some resource from the host;
• clone is the action of producing two offspring;
• mut is the mutation operator (mutation with self-adaptation is used (Bäck et al., 1997));
• giveChild action gives all the resources to the offspring—after the reproduction parasite

agent dies;
• migr is the action of migrating from one node to another. During this action agent loses

some of its resource.

 Advances in Evolutionary Algorithms

246

Relations The set of relations of par species with other species that exist within the system
are defined as follows:

 (52)

This relation models host-parasite interactions:

 (53)

As a result of performing get action some amount of the resources is taken from the host.

4.2.3 Host agent
Agent a of species host (a ≡ ahost) is defined as follows:

 (54)

Genotype of agent a is consisted of two vectors (chromosomes): x of real-coded decision
parameters’ values and σ of standard deviations’ values, which are used during mutation
with self-adaptation. Za = Zhost (see Eq. (46)) is the set of actions which agent a can perform. Γa
is the set of resource types used by the agent, and Ωa is the set of information types. Basic
activities of the agent a are presented in Alg. 3.
Profiles The partially ordered set of profiles includes resource profile (pr1), reproduction
profile (pr2), interaction profile (pr3), and migration profile (pr4):

 (55a)

 (55b)

The resource profile is defined in the following way:

 (56)

The set of strategies includes two strategies:

 (57)

The goal of the pr1 profile is to keep the amount of resources above the minimal level or to
die when the amount of resources falls to zero.
The reproduction profile is defined as follows:

 (58)

The set of strategies includes two strategies:

 (59)

The only goal of the pr2 profile is to reproduce. In order to realize this goal agent can use
strategy of reproduction 〈seek, clone, rec, mut, giveChild〉 or can accept other agent as a
reproduction partner 〈accept, giveChild〉.

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

247

The interaction profile is defined as follows:

 (60)

The goal of the pr3 profile is to interact with parasites with the use of strategy 〈give〉, which
gives some of the host’s resources to the parasite.
The migration profile is defined as follows:

 (61)

The goal of the pr4 profile is to migrate within the environment. In order to realize such a
goal the migration strategy is used, which firstly chooses the node and then realizes the
migration. Agent loses some of its resources in order to migrate.

4.2.4 Parasite agent
Agent a of species par (a ≡ apar) is defined as follows:

 Advances in Evolutionary Algorithms

246

Relations The set of relations of par species with other species that exist within the system
are defined as follows:

 (52)

This relation models host-parasite interactions:

 (53)

As a result of performing get action some amount of the resources is taken from the host.

4.2.3 Host agent
Agent a of species host (a ≡ ahost) is defined as follows:

 (54)

Genotype of agent a is consisted of two vectors (chromosomes): x of real-coded decision
parameters’ values and σ of standard deviations’ values, which are used during mutation
with self-adaptation. Za = Zhost (see Eq. (46)) is the set of actions which agent a can perform. Γa
is the set of resource types used by the agent, and Ωa is the set of information types. Basic
activities of the agent a are presented in Alg. 3.
Profiles The partially ordered set of profiles includes resource profile (pr1), reproduction
profile (pr2), interaction profile (pr3), and migration profile (pr4):

 (55a)

 (55b)

The resource profile is defined in the following way:

 (56)

The set of strategies includes two strategies:

 (57)

The goal of the pr1 profile is to keep the amount of resources above the minimal level or to
die when the amount of resources falls to zero.
The reproduction profile is defined as follows:

 (58)

The set of strategies includes two strategies:

 (59)

The only goal of the pr2 profile is to reproduce. In order to realize this goal agent can use
strategy of reproduction 〈seek, clone, rec, mut, giveChild〉 or can accept other agent as a
reproduction partner 〈accept, giveChild〉.

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

247

The interaction profile is defined as follows:

 (60)

The goal of the pr3 profile is to interact with parasites with the use of strategy 〈give〉, which
gives some of the host’s resources to the parasite.
The migration profile is defined as follows:

 (61)

The goal of the pr4 profile is to migrate within the environment. In order to realize such a
goal the migration strategy is used, which firstly chooses the node and then realizes the
migration. Agent loses some of its resources in order to migrate.

4.2.4 Parasite agent
Agent a of species par (a ≡ apar) is defined as follows:

 Advances in Evolutionary Algorithms

248

 (62)

Genotype of agent a is consisted of two vectors (chromosomes): x of real-coded decision
parameters’ values and σ of standard deviations’ values. Za = Zpar (see eq. (51)) is the set of
actions which agent a can perform. Γa is the set of resource types used by the agent, and Ωa is
the set of information types. Basic activities of the agent a are presented in Alg. 4.

Profiles The partially ordered set of profiles includes resource profile (pr1), reproduction
profile (pr2), and migration profile (pr3):

 (63a)

 (63b)

The resource profile is defined in the following way:

 (64)

The set of strategies includes three strategies:

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

249

 (65)

The goal of the pr1 profile is to keep the amount of resources above the minimal level or to
die when the amount of resources falls to zero. When the parasite has not infected any host
(information i 3ω is used), it uses strategy 〈seekHost, get〉 in order to find and infect some host
and get its resources. If the parasite has already infected a host it can use 〈get〉 strategy in
order to take some resources.
The reproduction profile is defined as follows:

 (66)

The set of strategies includes one strategy:

 (67)

The only goal of the pr2 profile is to reproduce. In order to realize this goal agent can use
strategy of reproduction: 〈clone,mut, giveChild〉. Two offsprings are produced and the parent
gives them all its resources and then dies.
The migration profile is defined as follows:

 (68)

The goal of the pr3 profile is to migrate within the environment. In order to realize such a
goal the migration strategy is used, which firstly chooses the node and then realizes the
migration. During this some amount of the resource is given back to the environment.

5. Experimental results
Presented formally in section 4 agent-based co-evolutionary approaches for multi-objective
optimization have been tentatively assessed. Obtained during experiments preliminary
results were presented in some of our previous papers and in this section they are shortly
summarized.

5.1 Performance metrics
Using only one single measure during assessing the effectiveness of (evolutionary)
algorithms for multi-objective optimization is not enough (Zitzler et al., 2003) however it is
impossible to present all obtained results (metrics as well as obtained Pareto frontiers and
Pareto sets) discussing simultaneously (a lot of) ideas and issues related to the proposed
new approach for evolutionary multi-objective optimization in one single article especially
that the main goal of this chapter is to present coherent formal models of innovative agent-
based co-evolutionary systems dedicated for multi-objective optimization rather than
indepth results’ analysis. Since hypervolume (HV) or hypervolume ratio (HVR) metrics
allow to estimate both: the convergence to the true Pareto frontier as well as distribution of
solutions over the whole approximation of the Pareto frontier, despite of its shortcomings it
is one of the most commonly and most frequently used measure as the main metric for
comparing the quality of obtained result sets—that is why results and comparisons
presented in this paper are based mainly on this very measure.

 Advances in Evolutionary Algorithms

248

 (62)

Genotype of agent a is consisted of two vectors (chromosomes): x of real-coded decision
parameters’ values and σ of standard deviations’ values. Za = Zpar (see eq. (51)) is the set of
actions which agent a can perform. Γa is the set of resource types used by the agent, and Ωa is
the set of information types. Basic activities of the agent a are presented in Alg. 4.

Profiles The partially ordered set of profiles includes resource profile (pr1), reproduction
profile (pr2), and migration profile (pr3):

 (63a)

 (63b)

The resource profile is defined in the following way:

 (64)

The set of strategies includes three strategies:

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

249

 (65)

The goal of the pr1 profile is to keep the amount of resources above the minimal level or to
die when the amount of resources falls to zero. When the parasite has not infected any host
(information i 3ω is used), it uses strategy 〈seekHost, get〉 in order to find and infect some host
and get its resources. If the parasite has already infected a host it can use 〈get〉 strategy in
order to take some resources.
The reproduction profile is defined as follows:

 (66)

The set of strategies includes one strategy:

 (67)

The only goal of the pr2 profile is to reproduce. In order to realize this goal agent can use
strategy of reproduction: 〈clone,mut, giveChild〉. Two offsprings are produced and the parent
gives them all its resources and then dies.
The migration profile is defined as follows:

 (68)

The goal of the pr3 profile is to migrate within the environment. In order to realize such a
goal the migration strategy is used, which firstly chooses the node and then realizes the
migration. During this some amount of the resource is given back to the environment.

5. Experimental results
Presented formally in section 4 agent-based co-evolutionary approaches for multi-objective
optimization have been tentatively assessed. Obtained during experiments preliminary
results were presented in some of our previous papers and in this section they are shortly
summarized.

5.1 Performance metrics
Using only one single measure during assessing the effectiveness of (evolutionary)
algorithms for multi-objective optimization is not enough (Zitzler et al., 2003) however it is
impossible to present all obtained results (metrics as well as obtained Pareto frontiers and
Pareto sets) discussing simultaneously (a lot of) ideas and issues related to the proposed
new approach for evolutionary multi-objective optimization in one single article especially
that the main goal of this chapter is to present coherent formal models of innovative agent-
based co-evolutionary systems dedicated for multi-objective optimization rather than
indepth results’ analysis. Since hypervolume (HV) or hypervolume ratio (HVR) metrics
allow to estimate both: the convergence to the true Pareto frontier as well as distribution of
solutions over the whole approximation of the Pareto frontier, despite of its shortcomings it
is one of the most commonly and most frequently used measure as the main metric for
comparing the quality of obtained result sets—that is why results and comparisons
presented in this paper are based mainly on this very measure.

 Advances in Evolutionary Algorithms

250

Hypervolume or hypervolume ratio (Zitzler & Thiele, 1998) describes the area covered by
solutions of obtained approximation of the Pareto frontier (PF). For each found
nondominated solution, hypercube is evaluated with respect to the fixed reference point. In
order to evaluate hypervolume ratio, value of hypervolume for obtained set is normalized
with hypervolume value computed for true Pareto frontier. HV and HVR are defined as
follows:

(69a)

(69b)

where vi is hypercube computed for i−th found non-dominated solution, PF* represents
obtained approximation of the Pareto frontier and PF is the true Pareto frontier.
Assuming the following meaning of used below symbols: P—Pareto set, A, B ⊆ D—two sets

of decision vectors, ≥ 0—appropriately chosen neighborhood parameter and · —the
given distance metric, then the following (used also in some of our experiments) measures
can be defined (Zitzler, 1999):
• (A, B)—the coverage of two sets maps the ordered pair (A, B) to the interval [0, 1] in

the following way:

(70)

• ξ(A, B)—the coverage difference of two sets (℘ denotes value of the size of dominated
space measure):

 (71)

• M1—the average distance to the Pareto optimal set P:

(72)

• M2—the distribution in combination with the number of non-dominated solutions
found:

(73)

• M3—the spread of non-dominated solutions over the set A:

(74)

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

251

5.2 Test problems
Firstly, Binh (Binh & Korn, 1996; Binh & Korn, 1997) as well as Schaffer (Schaffer, 1985)
problems were used. Binh problem is defined as follows:

(75)

whereas used modified Schaffer problem is defined as follows:

(76)

Obviously during our experiments also well known and commonly used test suites were
used. Inter alia such problems as ZDT test suite was used but because of its importance it is
discussed wider in section 5.2.1.

5.2.1 ZDT (Zitzler-Deb-Thiele) test suite
One of test suites used during experiments presented and shortly discussed in the course of
this section is Zitzler-Deb-Thiele test suite which in the literature it is known and identified
as the set of test problems ZDT1-ZDT6 ((Zitzler, 1999, p. 57–63), (Zitzler et al., 2000), (Deb,
2001, p. 356–362), (Coello Coello et al., 2007, p. 194–199)). K. Deb in his work (Deb, 1998)
tried to identify and systematize factors that can heighten difficulties in identifying by
optimizing algorithm the true (model) Pareto frontier of multi-objective optimization
problem that is being solved. The two main issues regarding the quality of obtained
approximation of the Pareto frontier are: closeness to the true Pareto frontier as well as even
dispersion of found non-dominated solution over the whole (approximation) of the Pareto
frontier. Drifting to the Pareto frontier can be disturbed by such features of the problem as
its multi-modality or isolated optima, what is known and can be observed also in the case of
single-objective optimization. The other features that can (negatively) influence the ability of
optimization algorithm for obtaining the high-quality Pareto frontier approximation are
convex or concave character of the frontier or its discontinuity as well. Taking such
observations into consideration the set of six test functions (ZDT1-ZDT6) was proposed.
Each of them addresses and makes it possible to assess if algorithm that is being tested is
able to overcome difficulties caused by each of mentioned feature. The whole ZDT test suite
is constructed according to the following schema:

(77)

where: x = (x1, . . . , xn). Well, as one may see, ZDT1-ZDT6 problems are constructed on the
basis of functions f1, g and h as well, where f1 is a function of one single (first) decision
variable (x1), function g is a function of the rest n − 1 decision variables, and finally, function
h is a function depending on values of functions f1 and g. Particular problems ZDT1-ZDT6
assume different definitions of f1, g and h functions as well as the number of decision
variables n and the range of values of decision variables.
ZDT1 problem is the simplest (with continuous and convex true Pareto frontier) multi-
objective optimization problem within the ZDT test-suite. The visualization of the true

 Advances in Evolutionary Algorithms

250

Hypervolume or hypervolume ratio (Zitzler & Thiele, 1998) describes the area covered by
solutions of obtained approximation of the Pareto frontier (PF). For each found
nondominated solution, hypercube is evaluated with respect to the fixed reference point. In
order to evaluate hypervolume ratio, value of hypervolume for obtained set is normalized
with hypervolume value computed for true Pareto frontier. HV and HVR are defined as
follows:

(69a)

(69b)

where vi is hypercube computed for i−th found non-dominated solution, PF* represents
obtained approximation of the Pareto frontier and PF is the true Pareto frontier.
Assuming the following meaning of used below symbols: P—Pareto set, A, B ⊆ D—two sets

of decision vectors, ≥ 0—appropriately chosen neighborhood parameter and · —the
given distance metric, then the following (used also in some of our experiments) measures
can be defined (Zitzler, 1999):
• (A, B)—the coverage of two sets maps the ordered pair (A, B) to the interval [0, 1] in

the following way:

(70)

• ξ(A, B)—the coverage difference of two sets (℘ denotes value of the size of dominated
space measure):

 (71)

• M1—the average distance to the Pareto optimal set P:

(72)

• M2—the distribution in combination with the number of non-dominated solutions
found:

(73)

• M3—the spread of non-dominated solutions over the set A:

(74)

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

251

5.2 Test problems
Firstly, Binh (Binh & Korn, 1996; Binh & Korn, 1997) as well as Schaffer (Schaffer, 1985)
problems were used. Binh problem is defined as follows:

(75)

whereas used modified Schaffer problem is defined as follows:

(76)

Obviously during our experiments also well known and commonly used test suites were
used. Inter alia such problems as ZDT test suite was used but because of its importance it is
discussed wider in section 5.2.1.

5.2.1 ZDT (Zitzler-Deb-Thiele) test suite
One of test suites used during experiments presented and shortly discussed in the course of
this section is Zitzler-Deb-Thiele test suite which in the literature it is known and identified
as the set of test problems ZDT1-ZDT6 ((Zitzler, 1999, p. 57–63), (Zitzler et al., 2000), (Deb,
2001, p. 356–362), (Coello Coello et al., 2007, p. 194–199)). K. Deb in his work (Deb, 1998)
tried to identify and systematize factors that can heighten difficulties in identifying by
optimizing algorithm the true (model) Pareto frontier of multi-objective optimization
problem that is being solved. The two main issues regarding the quality of obtained
approximation of the Pareto frontier are: closeness to the true Pareto frontier as well as even
dispersion of found non-dominated solution over the whole (approximation) of the Pareto
frontier. Drifting to the Pareto frontier can be disturbed by such features of the problem as
its multi-modality or isolated optima, what is known and can be observed also in the case of
single-objective optimization. The other features that can (negatively) influence the ability of
optimization algorithm for obtaining the high-quality Pareto frontier approximation are
convex or concave character of the frontier or its discontinuity as well. Taking such
observations into consideration the set of six test functions (ZDT1-ZDT6) was proposed.
Each of them addresses and makes it possible to assess if algorithm that is being tested is
able to overcome difficulties caused by each of mentioned feature. The whole ZDT test suite
is constructed according to the following schema:

(77)

where: x = (x1, . . . , xn). Well, as one may see, ZDT1-ZDT6 problems are constructed on the
basis of functions f1, g and h as well, where f1 is a function of one single (first) decision
variable (x1), function g is a function of the rest n − 1 decision variables, and finally, function
h is a function depending on values of functions f1 and g. Particular problems ZDT1-ZDT6
assume different definitions of f1, g and h functions as well as the number of decision
variables n and the range of values of decision variables.
ZDT1 problem is the simplest (with continuous and convex true Pareto frontier) multi-
objective optimization problem within the ZDT test-suite. The visualization of the true

 Advances in Evolutionary Algorithms

252

Pareto frontier for ZDT1 problem (with g(x) = 1) is presented in Fig. 3a. Definitions of f1, g
and h functions in the case of ZDT1 problem are as follows:

(78)

 (a) (b) (c)

Fig. 3. Visualization of objective space and the true Pareto frontiers for problems ZDT1 (a)
ZDT2 (b) and ZDT3 (c)
ZDT2 problem introduces the first potential difficulty for optimizing algorithm i.e. it is a
problem with continuous but concave true Pareto frontier. The visualization of the true
Pareto frontier for ZDT2 problem (with g(x) = 1) is presented in Fig. 3b. Definitions of f1, g
and h in this case are as follows:

(79)

ZDT3 problem introduces the next difficulty for optimization algorithm, this time it is
discontinuity of the Pareto frontier. In the case of ZDT3 problem (defined obviously
according to the (77) schema) the formulation of functions f1, g and h are as follows:

(80)

Using sinus function in the case of ZDT3 problem in the definition of function h causes
discontinuity in the Pareto frontier and simultaneously it does not cause discontinuity in the
space of decision variables. The visualization of the true Pareto frontier for ZDT3 problem is
presented in Fig. 3c.
ZDT4 problem makes it possible to assess the optimization algorithm in the case of solving
multi-objective but simultaneously multi-modal optimization problem. The visualization of
the true Pareto frontier for ZDT4 problem obtained with g(x) = 1) is presented in Fig. 4a.

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

253

ZDT4 problem introduces 219 local Pareto frontiers and the formulations of f1, g and h in this
case are as follows:

(81)

 (a) (b)

Fig. 4. Visualization of objective space and the true Pareto frontiers for problems ZDT4 (a)
and ZDT6 (b)
ZDT6 problem is a multi-objective optimization problem introducing several potential
difficulties for optimization algorithm. It is a problem with non-convex Pareto frontier.
Additionally, non-dominated solutions are dispersed not evenly. Next, in the space of
decision variables, the “density” of solutions is less and less in the vicinity of the true Pareto
frontier.
The visualization of the true Pareto frontier for ZDT6 problem is presented in Fig. 4b.
Functions f1, g and h defined obviously according to the schema (77) in the case of ZDT6
problem are formulated as follows:

(82)

5.3 A glance at assessing sexual-selection based approach (SCoEMAS)
Sexual-selection co-evolutionary multi-agent system (SCoEMAS) presented in section 4.1
was preliminary assessed using inter alia presented in section 5.2.1 ZDT test suite. Also this
time, SCoEMAS approach was compared among others with the state-of-the-art
evolutionary algorithms for multi-objective optimization i.e. NSGA-II (Deb et al., 2002; Deb
et al., 2000) and SPEA2 (Zitzler et al., 2001; Zitzler et al., 2002).
The size of population of SCoEMAS is 100, and the size of population of benchmarking
algorithms are as follows: NSGA-II—300 and SPEA2—100. Selected parameters and their
values assumed during presented experiments are as follows: r init

γ = 50 (it represents the

 Advances in Evolutionary Algorithms

252

Pareto frontier for ZDT1 problem (with g(x) = 1) is presented in Fig. 3a. Definitions of f1, g
and h functions in the case of ZDT1 problem are as follows:

(78)

 (a) (b) (c)

Fig. 3. Visualization of objective space and the true Pareto frontiers for problems ZDT1 (a)
ZDT2 (b) and ZDT3 (c)
ZDT2 problem introduces the first potential difficulty for optimizing algorithm i.e. it is a
problem with continuous but concave true Pareto frontier. The visualization of the true
Pareto frontier for ZDT2 problem (with g(x) = 1) is presented in Fig. 3b. Definitions of f1, g
and h in this case are as follows:

(79)

ZDT3 problem introduces the next difficulty for optimization algorithm, this time it is
discontinuity of the Pareto frontier. In the case of ZDT3 problem (defined obviously
according to the (77) schema) the formulation of functions f1, g and h are as follows:

(80)

Using sinus function in the case of ZDT3 problem in the definition of function h causes
discontinuity in the Pareto frontier and simultaneously it does not cause discontinuity in the
space of decision variables. The visualization of the true Pareto frontier for ZDT3 problem is
presented in Fig. 3c.
ZDT4 problem makes it possible to assess the optimization algorithm in the case of solving
multi-objective but simultaneously multi-modal optimization problem. The visualization of
the true Pareto frontier for ZDT4 problem obtained with g(x) = 1) is presented in Fig. 4a.

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

253

ZDT4 problem introduces 219 local Pareto frontiers and the formulations of f1, g and h in this
case are as follows:

(81)

 (a) (b)

Fig. 4. Visualization of objective space and the true Pareto frontiers for problems ZDT4 (a)
and ZDT6 (b)
ZDT6 problem is a multi-objective optimization problem introducing several potential
difficulties for optimization algorithm. It is a problem with non-convex Pareto frontier.
Additionally, non-dominated solutions are dispersed not evenly. Next, in the space of
decision variables, the “density” of solutions is less and less in the vicinity of the true Pareto
frontier.
The visualization of the true Pareto frontier for ZDT6 problem is presented in Fig. 4b.
Functions f1, g and h defined obviously according to the schema (77) in the case of ZDT6
problem are formulated as follows:

(82)

5.3 A glance at assessing sexual-selection based approach (SCoEMAS)
Sexual-selection co-evolutionary multi-agent system (SCoEMAS) presented in section 4.1
was preliminary assessed using inter alia presented in section 5.2.1 ZDT test suite. Also this
time, SCoEMAS approach was compared among others with the state-of-the-art
evolutionary algorithms for multi-objective optimization i.e. NSGA-II (Deb et al., 2002; Deb
et al., 2000) and SPEA2 (Zitzler et al., 2001; Zitzler et al., 2002).
The size of population of SCoEMAS is 100, and the size of population of benchmarking
algorithms are as follows: NSGA-II—300 and SPEA2—100. Selected parameters and their
values assumed during presented experiments are as follows: r init

γ = 50 (it represents the

 Advances in Evolutionary Algorithms

254

level of resources possessed initially by individual just after its creation), r get
γ = 30 (it

represents resources transferred in the case of domination), r ,
min
rep γ = 30 (it represents the level

of resources required for reproduction), pmut = 0.5 (mutation probability).
In Figure 5, Figure 6 and Figure 7 there are presented values of HVR measure obtained with
time by SCoEMAS for ZDT1 (Figure 5a), ZDT2 (Figure 5b), ZDT3 (Figure 6a), ZDT4 (Figure
6b) and ZDT6 (Figure 7) problems. For comparison there are presented also results obtained
by NSGA-II and SPEA2 algorithms.

 (a) (b)

Fig. 5. HVR values obtained by SCoEMAS, NSGA-II and SPEA2 run against Zitzler’s
problems ZDT1 (a), and ZDT2 (b) (Siwik & Dreżewski, 2008)

 (a) (b)

Fig. 6. HVR values obtained by SCoEMAS, NSGA-II and SPEA2 run against Zitzler’s
problems ZDT3 (a), and ZDT4 (b) (Siwik & Dreżewski, 2008)

On the basis of presented characteristics it can be said that initially co-evolutionary multi-
agent system with sexual selection is faster than two other algorithms, it allows for
obtaining better solutions—what can be observed as higher values of HVR(t) metrics but
finally, the best results are obtained by NSGA-II algorithm. A little bit worse alternative
than NSGA-II is SCoEMAS and finally SPEA2 is the third alternative—but obviously it
depends on the problem that is being solved and differences between analyzed algorithms
are not very distinctive.
Deeper analysis of obtained results can be found in (Dreżewski & Siwik, 2007; Dreżewski &
Siwik, 2006a; Siwik & Dreżewski, 2008).

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

255

Fig. 7. HVR values obtained by SCoEMAS, NSGA-II and SPEA2 run against Zitzler’s ZDT6
problem (Siwik & Dreżewski, 2008)

5.4 A glance at assessing host-parasite based approach (HPCoEMAS)
Discussed in section 4.2 co-evolutionary multi-agent system with host-parasite mechanism
was tested using, inter alia, Binh and slightly modified Schaffer test functions that are defined
as in equations (75) and (76).

Table 1. Comparison of proposed HPCoEMAS approach with selected classical EMOAs
according to the Coverage of two sets metrics (Dreżewski & Siwik, 2006b)

Table 2. Comparison of proposed HPCoEMAS approach with selected classical EMOAs
according to the Coverage difference of two sets metrics (Dreżewski & Siwik, 2006b)

Table 3. Comparison of proposed HPCoEMAS approach with selected classical EMOAs
according to other four metrics (Dreżewski & Siwik, 2006b)

 Advances in Evolutionary Algorithms

254

level of resources possessed initially by individual just after its creation), r get
γ = 30 (it

represents resources transferred in the case of domination), r ,
min
rep γ = 30 (it represents the level

of resources required for reproduction), pmut = 0.5 (mutation probability).
In Figure 5, Figure 6 and Figure 7 there are presented values of HVR measure obtained with
time by SCoEMAS for ZDT1 (Figure 5a), ZDT2 (Figure 5b), ZDT3 (Figure 6a), ZDT4 (Figure
6b) and ZDT6 (Figure 7) problems. For comparison there are presented also results obtained
by NSGA-II and SPEA2 algorithms.

 (a) (b)

Fig. 5. HVR values obtained by SCoEMAS, NSGA-II and SPEA2 run against Zitzler’s
problems ZDT1 (a), and ZDT2 (b) (Siwik & Dreżewski, 2008)

 (a) (b)

Fig. 6. HVR values obtained by SCoEMAS, NSGA-II and SPEA2 run against Zitzler’s
problems ZDT3 (a), and ZDT4 (b) (Siwik & Dreżewski, 2008)

On the basis of presented characteristics it can be said that initially co-evolutionary multi-
agent system with sexual selection is faster than two other algorithms, it allows for
obtaining better solutions—what can be observed as higher values of HVR(t) metrics but
finally, the best results are obtained by NSGA-II algorithm. A little bit worse alternative
than NSGA-II is SCoEMAS and finally SPEA2 is the third alternative—but obviously it
depends on the problem that is being solved and differences between analyzed algorithms
are not very distinctive.
Deeper analysis of obtained results can be found in (Dreżewski & Siwik, 2007; Dreżewski &
Siwik, 2006a; Siwik & Dreżewski, 2008).

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

255

Fig. 7. HVR values obtained by SCoEMAS, NSGA-II and SPEA2 run against Zitzler’s ZDT6
problem (Siwik & Dreżewski, 2008)

5.4 A glance at assessing host-parasite based approach (HPCoEMAS)
Discussed in section 4.2 co-evolutionary multi-agent system with host-parasite mechanism
was tested using, inter alia, Binh and slightly modified Schaffer test functions that are defined
as in equations (75) and (76).

Table 1. Comparison of proposed HPCoEMAS approach with selected classical EMOAs
according to the Coverage of two sets metrics (Dreżewski & Siwik, 2006b)

Table 2. Comparison of proposed HPCoEMAS approach with selected classical EMOAs
according to the Coverage difference of two sets metrics (Dreżewski & Siwik, 2006b)

Table 3. Comparison of proposed HPCoEMAS approach with selected classical EMOAs
according to other four metrics (Dreżewski & Siwik, 2006b)

 Advances in Evolutionary Algorithms

256

This time, the following benchmarking algorithms were used: vector evaluated genetic
algorithm (VEGA) (Schaffer, 1984; Schaffer, 1985), niched-pareto genetic algorithm (NPGA)
(Horn et al., 1994) and strength Pareto evolutionary algorithm (SPEA) (Zitzler, 1999).
To compare proposed approach with implemented classical algorithms metrics defined in
equations (70), (71), (72), (73) and (74) have been used. Obtained values of these metrics are
presented in Table 1, Table 2 and Table 3.
Basing on defined above test functions and measures, some comparative studies of
proposed co-evolutionary agent-based system with host-parasite interactions and well
known and commonly used algorithms (i.e. VEGA, NPGA and SPEA) could be performed
and the most important conclusion from such experiments can be formulated as follows:
proposed HPCoEMAS system has turned out to be comparable to the classical algorithms
according almost all considered metrics except for Average distance to the model Pareto set (see.
Table 3). More conclusions and deeper analysis can be found in (Dreżewski & Siwik, 2006b).

6. Summary and conclusions
During last 25 years multi-objective optimization has been in the limelight of researchers.
Because of practical importance and applications of multi-objective optimization as the most
natural way of decision making and real-life optimizing method—growing interests of
researchers in this very field of science was a natural consequence and extension of previous
research on single-objective optimization techniques. Unfortunately, when searching for the
approximation of the Pareto frontier, classical computational methods often prove
ineffective for many (real) decision problems. The corresponding models are too complex or
the formulas applied too complicated, or it can even occur that some formulations must be
rejected in the face of numerical instability of available solvers. Also, because of such a
specificity of multi-objective optimization (especially when—as in our case—we are
considering multi-objective optimization in the Pareto sense) that we are looking for the
whole set of nondominated solutions rather than one single solution—the special attention
has been paid on population-based optimization techniques and if so, the most important
techniques turned out here to be evolutionary-based methods. Research on applying
evolutionary-based methods for solving multi-objective optimization tasks resulted in
developing a completely new (and now commonly and very well known) science field:
evolutionary multi-objective optimization (EMOO). To confirm above sentences, it is
enough to mention statistics regarding at least the number of conference and journal articles,
PhD thesis, conferences, books etc. devoted to EMOO and available at
http://delta.cs.cinvestav.mx/~coello/EMOO.
After the first stage of research on EMOO when plenty of algorithms were proposed1,
simultaneously with introducing in early 2000s two the most important EMOO algorithms

1 It is enough to mention such algorithms as: Rudolph’s algorithm (Rudolph, 2001), distance-
based Pareto GA (Osyczka & Kundu, 1995), strength Pareto EA (Zitzler & Thiele, 1998),
multi-objective micro GA (Coello Coello & Toscano, 2005), Pareto-archived evolution
strategy (Knowles & Corne, 2000), multi-objective messy GA (Van Veldhuizen, 1999),
vector-optimized evolution strategy (Kursawe, 1991), random weighted GA (Murata &
Ishibuchi, 1995), weight-based GA (Hajela et al., 1993), niched-pareto GA (Horn et al., 1994),
non-dominated sorting GA (Srinivas & Deb, 1994), multiple objective GA (Fonseca &
Fleming, 1993), distributed sharing GA (Hiroyasu et al., 1999)

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

257

i.e. NSGA-II and SPEA2 it seemed that no further research regarding new optimization
techniques is needed. Unfortunately, in the case of really challenging problems (for instance
in the case of multi-objective optimization in noisy environments, in the case of solving
constrained problems, in the case of modeling market-related interactions etc.) mentioned
algorithm turned out to be not efficient enough.
In this context, techniques with a kind of “soft selection” such as evolutionary multi-agent
systems (EMAS), where in the population there can exist even not very strong individuals—
seem to be very attractive alternatives. It turns out that “basic” EMAS model applied for
multi-objective optimization can be improved significantly with the use of additional
mechanisms and interactions among agents that can be introduced into such a system. In
particular, as it is presented in the course of this chapter, some co-evolutionary interactions,
mechanisms and techniques can be there successfully introduced. In section 5 there are
presented results obtained with the use of two different co-evolutionary multi-agent
systems. As one may see, presented results are not always significantly better than results
obtained by “referenced” algorithms (in particular by state-of-the-art algorithms) but both,
this chapter as well as presented results should be perceived as a kind of summary of the
first stage of research on possibilities of developing co-evolutionary multi-agent systems for
multi-objective optimization.
The most important conclusion of this very first stage of our research is as follows: on the
basis of CoEMAS approach it is possible to model a wide range of co-evolutionary
interactions. It is possible to develop such models as a distributed, decentralized and
autonomous agent system. All proposed approaches can be modeled in a coherent way and
can be derived from a basic CoEMAS model in a smooth and elegant way. So, in spite of not
so high-quality results presented in previous section—after mentioned first stage of our
research we know that both formal modeling as well as implementation of co-evolutionary
multi-agent systems is possible in general. Because of their potential possibilities for
modeling of (extremely) complex environments, problems, interactions, markets—further
research on CoEMASes should result in plenty of their successful applications for solving
real-life multi-objective optimization problems.

7. References
Abraham, A., Jain, L. C. & Goldberg, R. (2005). Evolutionary Multiobjective Optimization

Theoretical Advances and Applications, Springer
Allenson, R. (1992). Genetic algorithms with gender for multi-function optimisation,

Technical Report EPCC-SS92-01, Edinburgh Parallel Computing Centre,
Edinburgh, Scotland

Bäck, T., Fogel, D. & Michalewicz, Z., (Ed.) (1997). Handbook of Evolutionary Computation, IOP
Publishing and Oxford University Press

Binh, T. T. & Korn, U. (1996). An evolution strategy for the multiobjective optimization, In:
Proceedings of the Second International Conference on Genetic Algorithms Mendel96,
Brno, Czech Republic, pp. 176–182

Binh, T. T. & Korn, U. (1997). Multicriteria control system design using an intelligent
evolution strategy, In: Proceedings of Conference for Control of Industrial Systems
(CIS97), Vol. 2, Belfort, France, pp. 242–247

Cetnarowicz, K., Kisiel-Dorohinicki,M. & Nawarecki, E. (1996). The application of evolution
process in multi-agent world to the prediction system, In: M. Tokoro, (Ed.),

 Advances in Evolutionary Algorithms

256

This time, the following benchmarking algorithms were used: vector evaluated genetic
algorithm (VEGA) (Schaffer, 1984; Schaffer, 1985), niched-pareto genetic algorithm (NPGA)
(Horn et al., 1994) and strength Pareto evolutionary algorithm (SPEA) (Zitzler, 1999).
To compare proposed approach with implemented classical algorithms metrics defined in
equations (70), (71), (72), (73) and (74) have been used. Obtained values of these metrics are
presented in Table 1, Table 2 and Table 3.
Basing on defined above test functions and measures, some comparative studies of
proposed co-evolutionary agent-based system with host-parasite interactions and well
known and commonly used algorithms (i.e. VEGA, NPGA and SPEA) could be performed
and the most important conclusion from such experiments can be formulated as follows:
proposed HPCoEMAS system has turned out to be comparable to the classical algorithms
according almost all considered metrics except for Average distance to the model Pareto set (see.
Table 3). More conclusions and deeper analysis can be found in (Dreżewski & Siwik, 2006b).

6. Summary and conclusions
During last 25 years multi-objective optimization has been in the limelight of researchers.
Because of practical importance and applications of multi-objective optimization as the most
natural way of decision making and real-life optimizing method—growing interests of
researchers in this very field of science was a natural consequence and extension of previous
research on single-objective optimization techniques. Unfortunately, when searching for the
approximation of the Pareto frontier, classical computational methods often prove
ineffective for many (real) decision problems. The corresponding models are too complex or
the formulas applied too complicated, or it can even occur that some formulations must be
rejected in the face of numerical instability of available solvers. Also, because of such a
specificity of multi-objective optimization (especially when—as in our case—we are
considering multi-objective optimization in the Pareto sense) that we are looking for the
whole set of nondominated solutions rather than one single solution—the special attention
has been paid on population-based optimization techniques and if so, the most important
techniques turned out here to be evolutionary-based methods. Research on applying
evolutionary-based methods for solving multi-objective optimization tasks resulted in
developing a completely new (and now commonly and very well known) science field:
evolutionary multi-objective optimization (EMOO). To confirm above sentences, it is
enough to mention statistics regarding at least the number of conference and journal articles,
PhD thesis, conferences, books etc. devoted to EMOO and available at
http://delta.cs.cinvestav.mx/~coello/EMOO.
After the first stage of research on EMOO when plenty of algorithms were proposed1,
simultaneously with introducing in early 2000s two the most important EMOO algorithms

1 It is enough to mention such algorithms as: Rudolph’s algorithm (Rudolph, 2001), distance-
based Pareto GA (Osyczka & Kundu, 1995), strength Pareto EA (Zitzler & Thiele, 1998),
multi-objective micro GA (Coello Coello & Toscano, 2005), Pareto-archived evolution
strategy (Knowles & Corne, 2000), multi-objective messy GA (Van Veldhuizen, 1999),
vector-optimized evolution strategy (Kursawe, 1991), random weighted GA (Murata &
Ishibuchi, 1995), weight-based GA (Hajela et al., 1993), niched-pareto GA (Horn et al., 1994),
non-dominated sorting GA (Srinivas & Deb, 1994), multiple objective GA (Fonseca &
Fleming, 1993), distributed sharing GA (Hiroyasu et al., 1999)

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

257

i.e. NSGA-II and SPEA2 it seemed that no further research regarding new optimization
techniques is needed. Unfortunately, in the case of really challenging problems (for instance
in the case of multi-objective optimization in noisy environments, in the case of solving
constrained problems, in the case of modeling market-related interactions etc.) mentioned
algorithm turned out to be not efficient enough.
In this context, techniques with a kind of “soft selection” such as evolutionary multi-agent
systems (EMAS), where in the population there can exist even not very strong individuals—
seem to be very attractive alternatives. It turns out that “basic” EMAS model applied for
multi-objective optimization can be improved significantly with the use of additional
mechanisms and interactions among agents that can be introduced into such a system. In
particular, as it is presented in the course of this chapter, some co-evolutionary interactions,
mechanisms and techniques can be there successfully introduced. In section 5 there are
presented results obtained with the use of two different co-evolutionary multi-agent
systems. As one may see, presented results are not always significantly better than results
obtained by “referenced” algorithms (in particular by state-of-the-art algorithms) but both,
this chapter as well as presented results should be perceived as a kind of summary of the
first stage of research on possibilities of developing co-evolutionary multi-agent systems for
multi-objective optimization.
The most important conclusion of this very first stage of our research is as follows: on the
basis of CoEMAS approach it is possible to model a wide range of co-evolutionary
interactions. It is possible to develop such models as a distributed, decentralized and
autonomous agent system. All proposed approaches can be modeled in a coherent way and
can be derived from a basic CoEMAS model in a smooth and elegant way. So, in spite of not
so high-quality results presented in previous section—after mentioned first stage of our
research we know that both formal modeling as well as implementation of co-evolutionary
multi-agent systems is possible in general. Because of their potential possibilities for
modeling of (extremely) complex environments, problems, interactions, markets—further
research on CoEMASes should result in plenty of their successful applications for solving
real-life multi-objective optimization problems.

7. References
Abraham, A., Jain, L. C. & Goldberg, R. (2005). Evolutionary Multiobjective Optimization

Theoretical Advances and Applications, Springer
Allenson, R. (1992). Genetic algorithms with gender for multi-function optimisation,

Technical Report EPCC-SS92-01, Edinburgh Parallel Computing Centre,
Edinburgh, Scotland

Bäck, T., Fogel, D. & Michalewicz, Z., (Ed.) (1997). Handbook of Evolutionary Computation, IOP
Publishing and Oxford University Press

Binh, T. T. & Korn, U. (1996). An evolution strategy for the multiobjective optimization, In:
Proceedings of the Second International Conference on Genetic Algorithms Mendel96,
Brno, Czech Republic, pp. 176–182

Binh, T. T. & Korn, U. (1997). Multicriteria control system design using an intelligent
evolution strategy, In: Proceedings of Conference for Control of Industrial Systems
(CIS97), Vol. 2, Belfort, France, pp. 242–247

Cetnarowicz, K., Kisiel-Dorohinicki,M. & Nawarecki, E. (1996). The application of evolution
process in multi-agent world to the prediction system, In: M. Tokoro, (Ed.),

 Advances in Evolutionary Algorithms

258

Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS 1996),
AAAI Press, Menlo Park, CA

Coello Coello, C. A. & Toscano, G. (2005). Multiobjective structural optimization using a
micro-genetic algorithm, Structural and Multidisciplinary Optimization 30(5), 388– 403

Coello Coello, C. A., Van Veldhuizen, D. A. & Lamont, G. B. (2007). Evolutionary algorithms
for solving multi-objective problems, Genetic and evolutionary computation, second
edn, Springer Verlag

Deb, K. (1998). Multi-objective genetic algorithms: Problem difficulties and construction of
test functions, Technical Report CI-49/98, Department of Computer Science,
University of Dortmund

Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and construction of
test problems, Evolutionary Computation 7(3), 205–230

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms, JohnWiley &
Sons

Deb, K., Agrawal, S., Pratap, A. & Meyarivan, T. (2000). A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, In: M.
Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J.Merelo & H.-P. Schwefel,
(Ed.), Proceed ings of the Parallel Problem Solving from Nature VI Conference, Springer.
Lecture Notes in Computer Science No. 1917, Paris, France, pp. 849–858

Deb, K., Pratap, A., Agrawal, S. & Meyarivan, T. (2002). A fast and elitist multi-objective
genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6(2),
181– 197

Dreżewski, R. (2003). A model of co-evolution in multi-agent system, In: V. Mařík, J. Müller
&M. Pĕchouček, (Ed.), Multi-Agent Systems and Applications III, Vol. 2691 of LNCS,
Springer-Verlag, Berlin, Heidelberg, pp. 314–323

Dreżewski, R. (2006). Co-evolutionary multi-agent system with speciation and resource
sharing mechanisms, Computing and Informatics 25(4), 305–331

Dreżewski, R. & Siwik, L. (2006a). Co-evolutionary multi-agent system with sexual selection
mechanism for multi-objective optimization, In: Proceedings of the IEEE World
Congress on Computational Intelligence (WCCI 2006), IEEE

Dreżewski, R. & Siwik, L. (2006b). Multi-objective optimization using co-evolutionary
multiagent system with host-parasite mechanism, In: V. N. Alexandrov, G. D. van
Albada, P. M. A. Sloot & J. Dongarra, (Ed.), Computational Science — ICCS 2006, Vol.
3993 of LNCS, Springer-Verlag, Berlin, Heidelberg, pp. 871–878

Dreżewski, R. & Siwik, L. (2007). Techniques for maintaining population diversity in
classical and agent-based multi-objective evolutionary algorithms, In: Y. Shi, G. D.
van Albada, J. Dongarra & P. M. A. Sloot, (Ed.), Computational Science – ICCS 2007,
Vol. 4488 of LNCS, Springer-Verlag, Berlin, Heidelberg, pp. 904–911

Fonseca, C. M. & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization, In: Genetic Algorithms: Proceedings of the
Fifth International Conference,Morgan Kaufmann, pp. 416–423

Gavrilets, S. & Waxman, D. (2002). Sympatric speciation by sexual conflict, Proceedings of the
National Academy of Sciences of the USA 99, 10533–10538

Hajela, P., Lee, E. & Lin, C. Y. (1993). Genetic algorithms in structural topology optimization,
In: Proceedings of the NATO Advanced Research Workshop on Topology Design of
Structures, Vol. 1, pp. 117–133

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

259

Hiroyasu, T., Miki,M. & Watanabe, S. (1999). Distributed genetic algorithms with a new
sharing approach, In: Proceedings of the Conference on Evolutionary Computation, Vol.
1, IEEE Service Center

Horn, J., Nafpliotis, N. & Goldberg, D. E. (1994). A niched pareto genetic algorithm for
multiobjective optimization, In: Proceedings of the First IEEE Conference on
Evolutionary Computation, IEEEWorld Congress on Computational Intelligence, Vol. 1,
IEEE Service Center, Piscataway, New Jersey, pp. 82–87

Knowles, J. D. & Corne, D. (2000). Approximating the nondominated front using the pareto
archived evolution strategy, Evolutionary Computation 8(2), 149–172

Kursawe, F. (1991). A variant of evolution strategies for vector optimization, In: H. Schwefel
& R. Manner, (Ed.), Parallel Problem Solving from Nature. 1st Workshop, PPSN I, Vol.
496, Springer-Verlag, Berlin, Germany, pp. 193–197

Lis, J. & Eiben, A. E. (1996). A multi-sexual genetic algorithm for multiobjective
optimization, In: T. Fukuda & T. Furuhashi, (Ed.), Proceedings of the Third IEEE
Conference on Evolutionary Computation, IEEE Press, Piscataway NJ, pp. 59–64

Murata, T. & Ishibuchi, H. (1995). Moga: multi-objective genetic algorithms, In: Proceedings of
the IEEE International Conference on Evolutionary Computation, Vol. 1, IEEE, IEEE
Service Center, pp. 289–294

Osyczka, A. & Kundu, S. (1995). A new method to solve generalized multicriteria
optimization problems using the simple genetic algorithm, Structural and
Multidisciplinary Optimization 10(2), 94–99

Paredis, J. (1998). Coevolutionary algorithms, In: T. Bäck, D. Fogel & Z. Michalewicz, (Ed.),
Handbook of Evolutionary Computation, 1st supplement, IOP Publishing and Oxford
University Press

Potter, M. A. & De Jong, K. A. (2000). Cooperative coevolution: An architecture for evolving
coadapted subcomponents, Evolutionary Computation 8(1), 1–29

Ratford, M., Tuson, A. L. & Thompson, H. (1997). An investigation of sexual selection as a
mechanism for obtaining multiple distinct solutions, Technical Report 879,
Department of Artificial Intelligence, University of Edinburgh

Rudolph, G. (2001). Evolutionary search under partially ordered finite sets, In: M. F. Sebaaly,
(Ed.), Proceedings of the International NAISO Congress on Information Science
Innovations (ISI 2001), ICSC Academic Press, Dubai, U. A. E., pp. 818–822

Schaffer, J. D. (1984). Some experiments in machine learning using vector evaluated genetic
algorithms, PhD thesis, Vanderbilt University

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic
algorithms, In: J. Grefenstette, (Ed.), Proceedings of the First International Conference
on Genetic Algorithms, Lawrence Erlbaum Associates Publishers, Hillsdale, New
Jersey, pp. 93–100

Siwik, L. & Dreżewski, R. (2008). Agent-based multi-objective evolutionary algorithm with
sexual selection, In: Proceedings of the IEEE World Congress on Computational
Intelligence (WCCI 2008), IEEE.

Srinivas, N. & Deb, K. (1994). Multiobjective optimization using nondominated sorting in
genetic algorithms, Evolutionary Computation 2(3), 221–248

Todd, P. M. & Miller, G. F. (1997). Biodiversity through sexual selection, In: C. G. Langton &
T. Shimohara, (Ed.), Artificial Life V: Proceedings of the Fifth

 Advances in Evolutionary Algorithms

258

Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS 1996),
AAAI Press, Menlo Park, CA

Coello Coello, C. A. & Toscano, G. (2005). Multiobjective structural optimization using a
micro-genetic algorithm, Structural and Multidisciplinary Optimization 30(5), 388– 403

Coello Coello, C. A., Van Veldhuizen, D. A. & Lamont, G. B. (2007). Evolutionary algorithms
for solving multi-objective problems, Genetic and evolutionary computation, second
edn, Springer Verlag

Deb, K. (1998). Multi-objective genetic algorithms: Problem difficulties and construction of
test functions, Technical Report CI-49/98, Department of Computer Science,
University of Dortmund

Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and construction of
test problems, Evolutionary Computation 7(3), 205–230

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms, JohnWiley &
Sons

Deb, K., Agrawal, S., Pratap, A. & Meyarivan, T. (2000). A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, In: M.
Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J.Merelo & H.-P. Schwefel,
(Ed.), Proceed ings of the Parallel Problem Solving from Nature VI Conference, Springer.
Lecture Notes in Computer Science No. 1917, Paris, France, pp. 849–858

Deb, K., Pratap, A., Agrawal, S. & Meyarivan, T. (2002). A fast and elitist multi-objective
genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6(2),
181– 197

Dreżewski, R. (2003). A model of co-evolution in multi-agent system, In: V. Mařík, J. Müller
&M. Pĕchouček, (Ed.), Multi-Agent Systems and Applications III, Vol. 2691 of LNCS,
Springer-Verlag, Berlin, Heidelberg, pp. 314–323

Dreżewski, R. (2006). Co-evolutionary multi-agent system with speciation and resource
sharing mechanisms, Computing and Informatics 25(4), 305–331

Dreżewski, R. & Siwik, L. (2006a). Co-evolutionary multi-agent system with sexual selection
mechanism for multi-objective optimization, In: Proceedings of the IEEE World
Congress on Computational Intelligence (WCCI 2006), IEEE

Dreżewski, R. & Siwik, L. (2006b). Multi-objective optimization using co-evolutionary
multiagent system with host-parasite mechanism, In: V. N. Alexandrov, G. D. van
Albada, P. M. A. Sloot & J. Dongarra, (Ed.), Computational Science — ICCS 2006, Vol.
3993 of LNCS, Springer-Verlag, Berlin, Heidelberg, pp. 871–878

Dreżewski, R. & Siwik, L. (2007). Techniques for maintaining population diversity in
classical and agent-based multi-objective evolutionary algorithms, In: Y. Shi, G. D.
van Albada, J. Dongarra & P. M. A. Sloot, (Ed.), Computational Science – ICCS 2007,
Vol. 4488 of LNCS, Springer-Verlag, Berlin, Heidelberg, pp. 904–911

Fonseca, C. M. & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization, In: Genetic Algorithms: Proceedings of the
Fifth International Conference,Morgan Kaufmann, pp. 416–423

Gavrilets, S. & Waxman, D. (2002). Sympatric speciation by sexual conflict, Proceedings of the
National Academy of Sciences of the USA 99, 10533–10538

Hajela, P., Lee, E. & Lin, C. Y. (1993). Genetic algorithms in structural topology optimization,
In: Proceedings of the NATO Advanced Research Workshop on Topology Design of
Structures, Vol. 1, pp. 117–133

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems

259

Hiroyasu, T., Miki,M. & Watanabe, S. (1999). Distributed genetic algorithms with a new
sharing approach, In: Proceedings of the Conference on Evolutionary Computation, Vol.
1, IEEE Service Center

Horn, J., Nafpliotis, N. & Goldberg, D. E. (1994). A niched pareto genetic algorithm for
multiobjective optimization, In: Proceedings of the First IEEE Conference on
Evolutionary Computation, IEEEWorld Congress on Computational Intelligence, Vol. 1,
IEEE Service Center, Piscataway, New Jersey, pp. 82–87

Knowles, J. D. & Corne, D. (2000). Approximating the nondominated front using the pareto
archived evolution strategy, Evolutionary Computation 8(2), 149–172

Kursawe, F. (1991). A variant of evolution strategies for vector optimization, In: H. Schwefel
& R. Manner, (Ed.), Parallel Problem Solving from Nature. 1st Workshop, PPSN I, Vol.
496, Springer-Verlag, Berlin, Germany, pp. 193–197

Lis, J. & Eiben, A. E. (1996). A multi-sexual genetic algorithm for multiobjective
optimization, In: T. Fukuda & T. Furuhashi, (Ed.), Proceedings of the Third IEEE
Conference on Evolutionary Computation, IEEE Press, Piscataway NJ, pp. 59–64

Murata, T. & Ishibuchi, H. (1995). Moga: multi-objective genetic algorithms, In: Proceedings of
the IEEE International Conference on Evolutionary Computation, Vol. 1, IEEE, IEEE
Service Center, pp. 289–294

Osyczka, A. & Kundu, S. (1995). A new method to solve generalized multicriteria
optimization problems using the simple genetic algorithm, Structural and
Multidisciplinary Optimization 10(2), 94–99

Paredis, J. (1998). Coevolutionary algorithms, In: T. Bäck, D. Fogel & Z. Michalewicz, (Ed.),
Handbook of Evolutionary Computation, 1st supplement, IOP Publishing and Oxford
University Press

Potter, M. A. & De Jong, K. A. (2000). Cooperative coevolution: An architecture for evolving
coadapted subcomponents, Evolutionary Computation 8(1), 1–29

Ratford, M., Tuson, A. L. & Thompson, H. (1997). An investigation of sexual selection as a
mechanism for obtaining multiple distinct solutions, Technical Report 879,
Department of Artificial Intelligence, University of Edinburgh

Rudolph, G. (2001). Evolutionary search under partially ordered finite sets, In: M. F. Sebaaly,
(Ed.), Proceedings of the International NAISO Congress on Information Science
Innovations (ISI 2001), ICSC Academic Press, Dubai, U. A. E., pp. 818–822

Schaffer, J. D. (1984). Some experiments in machine learning using vector evaluated genetic
algorithms, PhD thesis, Vanderbilt University

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic
algorithms, In: J. Grefenstette, (Ed.), Proceedings of the First International Conference
on Genetic Algorithms, Lawrence Erlbaum Associates Publishers, Hillsdale, New
Jersey, pp. 93–100

Siwik, L. & Dreżewski, R. (2008). Agent-based multi-objective evolutionary algorithm with
sexual selection, In: Proceedings of the IEEE World Congress on Computational
Intelligence (WCCI 2008), IEEE.

Srinivas, N. & Deb, K. (1994). Multiobjective optimization using nondominated sorting in
genetic algorithms, Evolutionary Computation 2(3), 221–248

Todd, P. M. & Miller, G. F. (1997). Biodiversity through sexual selection, In: C. G. Langton &
T. Shimohara, (Ed.), Artificial Life V: Proceedings of the Fifth

 Advances in Evolutionary Algorithms

260

InternationalWorkshop on the Synthesis and Simulation of Living Systems
(Complex Adaptive Systems), Bradford Books, pp. 289–299

Van Veldhuizen, D. A. (1999). Multiobjective Evolutionary Algorithms: Classifications,
Analyses and New Innovations, PhD thesis, Graduate School of Engineering of the
Air Force Institute of Technology Air University

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications, PhD thesis, ETH Zurich, Switzerland

Zitzler, E., Deb, K.& Thiele, L. (2000). Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results, Evolutionary Computation 8(2), 173–195

Zitzler, E., Laumanns, M. & Thiele, L. (2001). SPEA2: Improving the strength pareto
evolutionary algorithm, Technical Report TIK-Report 103, Computer Engineering
and Networks Laboratory (TIK), Department of Electrical Engineering, Swiss
Federal Institute of Technology (ETH) Zurich, ETH Zentrum, Gloriastrasse 35, CH-
8092 Zurich, Switzerland

Zitzler, E., Laumanns, M. & Thiele, L. (2002). SPEA2: Improving the strength pareto
evolutionary algorithm for multiobjective optimization, In: K. Giannakoglou et al.,
(Ed.), Evolutionary Methods for Design, Optimisation and Control with Application to
Industrial Problems (EUROGEN 2001), International Center for Numerical Methods
in Engineering (CIMNE), pp. 95–100

Zitzler, E. & Thiele, L. (1998). An evolutionary algorithm formultiobjective optimization:
The strength pareto approach, Technical Report 43, Swiss Federal Institute of
Technology, Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. & da Fonseca, V. G. (2003). Performance
assessment of multiobjective optimizers: An analysis and review, IEEE Transactions
on Evolutionary Computation 7(2), 117–132

13

Evolutionary Multi-Objective
Robust Optimization

J. Ferreira*, C. M. Fonseca**, J. A. Covas* and
 A. Gaspar-Cunha*

* I3N, University of Minho, Guimarães,
** Centre for Intelligent Systems, University of Algarve, Faro,

 Portugal

1. Introduction
Most practical engineering optimization problems are multi-objective, i.e., their solution
must consider simultaneously various performance criteria, which are often conflicting.
Multi-Objective Evolutionary Algorithms (MOEAs) are particularly adequate for solving
these problems, as they work with a population (of vectors or solutions) rather than with a
single point (Schaffer, 1984; Fonseca & Fleming, 1993; Srinivas & Deb, 1995; Horn et al., 1994;
Deb et al., 2002; Zitzler et al., 2001; Knowles & Corne, 2000; Gaspar-Cunha et al. 2004). This
feature enables the creation of Pareto frontiers representing the trade-off between the
criteria, simultaneously providing a link with the decision variables (Deb, 2001, Coello et al.,
2002). Moreover, since in real applications small changes of the design variables or of
environmental parameters may frequently occur, the performance of the optimal solution
(or solutions) should be only slightly affected by these, i.e., the solutions should also be
robust (Ray, 2002; Jin & Branke, 2005). The optimization problems involving unmanageable
stochastic factors can be typified as (Jin & Branke, 2005): i) those where the performance is
affected by noise originated by sources such as sensor measurements and/or environmental
parameters (Wiesmann et al., 1998; Das, 1997); ii) those where the design variables change
after the optimal solution has been found (Ray, 2002; Tsutsui & Ghosh, 1997; Chen et al.,
1999); iii) problems where the process performance is estimated by an approximation to the
real value; iv) and those where the performance changes with time, which implies that the
optimization algorithm must be updated continuously. This text focuses exclusively
problems of the second category.
Given the above, optimization algorithms should determine the solutions that
simultaneously maximize performance and guarantee satisfactory robustness, but the latter
is rarely included in traditional algorithms. As robustness and performance can be
conflicting, it is important to know their interdependency for each optimization problem. A
robustness analysis should be performed as the search proceeds and not after, by
introducing a robustness measure during the optimization. Robustness can be studied either
by replacing the original objective function by an expression measuring both the
performance and the expectation of each criterion in the vicinity of a specific solution, or by
inserting an additional optimization criterion assessing robustness in addition to the original

 Advances in Evolutionary Algorithms

260

InternationalWorkshop on the Synthesis and Simulation of Living Systems
(Complex Adaptive Systems), Bradford Books, pp. 289–299

Van Veldhuizen, D. A. (1999). Multiobjective Evolutionary Algorithms: Classifications,
Analyses and New Innovations, PhD thesis, Graduate School of Engineering of the
Air Force Institute of Technology Air University

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications, PhD thesis, ETH Zurich, Switzerland

Zitzler, E., Deb, K.& Thiele, L. (2000). Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results, Evolutionary Computation 8(2), 173–195

Zitzler, E., Laumanns, M. & Thiele, L. (2001). SPEA2: Improving the strength pareto
evolutionary algorithm, Technical Report TIK-Report 103, Computer Engineering
and Networks Laboratory (TIK), Department of Electrical Engineering, Swiss
Federal Institute of Technology (ETH) Zurich, ETH Zentrum, Gloriastrasse 35, CH-
8092 Zurich, Switzerland

Zitzler, E., Laumanns, M. & Thiele, L. (2002). SPEA2: Improving the strength pareto
evolutionary algorithm for multiobjective optimization, In: K. Giannakoglou et al.,
(Ed.), Evolutionary Methods for Design, Optimisation and Control with Application to
Industrial Problems (EUROGEN 2001), International Center for Numerical Methods
in Engineering (CIMNE), pp. 95–100

Zitzler, E. & Thiele, L. (1998). An evolutionary algorithm formultiobjective optimization:
The strength pareto approach, Technical Report 43, Swiss Federal Institute of
Technology, Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. & da Fonseca, V. G. (2003). Performance
assessment of multiobjective optimizers: An analysis and review, IEEE Transactions
on Evolutionary Computation 7(2), 117–132

13

Evolutionary Multi-Objective
Robust Optimization

J. Ferreira*, C. M. Fonseca**, J. A. Covas* and
 A. Gaspar-Cunha*

* I3N, University of Minho, Guimarães,
** Centre for Intelligent Systems, University of Algarve, Faro,

 Portugal

1. Introduction
Most practical engineering optimization problems are multi-objective, i.e., their solution
must consider simultaneously various performance criteria, which are often conflicting.
Multi-Objective Evolutionary Algorithms (MOEAs) are particularly adequate for solving
these problems, as they work with a population (of vectors or solutions) rather than with a
single point (Schaffer, 1984; Fonseca & Fleming, 1993; Srinivas & Deb, 1995; Horn et al., 1994;
Deb et al., 2002; Zitzler et al., 2001; Knowles & Corne, 2000; Gaspar-Cunha et al. 2004). This
feature enables the creation of Pareto frontiers representing the trade-off between the
criteria, simultaneously providing a link with the decision variables (Deb, 2001, Coello et al.,
2002). Moreover, since in real applications small changes of the design variables or of
environmental parameters may frequently occur, the performance of the optimal solution
(or solutions) should be only slightly affected by these, i.e., the solutions should also be
robust (Ray, 2002; Jin & Branke, 2005). The optimization problems involving unmanageable
stochastic factors can be typified as (Jin & Branke, 2005): i) those where the performance is
affected by noise originated by sources such as sensor measurements and/or environmental
parameters (Wiesmann et al., 1998; Das, 1997); ii) those where the design variables change
after the optimal solution has been found (Ray, 2002; Tsutsui & Ghosh, 1997; Chen et al.,
1999); iii) problems where the process performance is estimated by an approximation to the
real value; iv) and those where the performance changes with time, which implies that the
optimization algorithm must be updated continuously. This text focuses exclusively
problems of the second category.
Given the above, optimization algorithms should determine the solutions that
simultaneously maximize performance and guarantee satisfactory robustness, but the latter
is rarely included in traditional algorithms. As robustness and performance can be
conflicting, it is important to know their interdependency for each optimization problem. A
robustness analysis should be performed as the search proceeds and not after, by
introducing a robustness measure during the optimization. Robustness can be studied either
by replacing the original objective function by an expression measuring both the
performance and the expectation of each criterion in the vicinity of a specific solution, or by
inserting an additional optimization criterion assessing robustness in addition to the original

 Advances in Evolutionary Algorithms

262

criteria. As will be demonstrated in the next sections, in the first situation the role of the
optimization algorithm is to find the solution that optimizes the expectation (in the vicinity
of the solutions considered) of the original criterion (or criteria), while in the second case a
trade-off between the original criteria and the robustness measure is obtained (Jin &
Sendhoff, 2003).
In single objective (or criterion) optimization, the best solution is the one that satisfies
simultaneously performance and robustness. Robust single objective optimization has been
applied to various engineering fields and using different optimization methodologies
(Ribeiro & Elsayed, 1995; Tsutsui & Ghosh, 1997; Das, 1997; Wiesmann et al., 1998; Du &
Chen, 1998; Chen et al. 1999; Ray, 2002; Arnold & Beyer, 2003; Sorensen, 2004). However,
only recently robustness analysis has been extended to Multi-Objective Optimization
Problems (MOOP) (Kouvelis & Sayin 2002; Bagchi, 2003; Jin & Sendhoff, 2003; Kazancioglu
et al., 2003; Gaspar-Cunha & Covas, 2005; Ölvander, 2005; Guanawan & Azarm, 2005; Deb &
Gupta, 2006; Paenke et al., 2006; Barrico & Antunes, 2006; Moshaiov & Avigrad, 2006;
Gaspar-Cunha & Covas, 2008). Depending on the type of Pareto frontier, the aim can be: i)
to locate the optimal Pareto front’s most robust section (Deb & Gupta, 2006; Gaspar-Cunha
& Covas, 2008) and/or ii) in the case of a multimodal problem, to find the most robust
Pareto frontier, and not only the most robust region of the optimal Pareto frontier
(Guanawan & Azarm, 2005; Deb & Gupta, 2006).
An important question arising from MOOP is the choice of the (single) solution to be used
on the real problem under study (Ferreira et al., 2008). Generally, to select a solution from
the pool of the available ones, the Decision Maker (DM) characterizes the relative
importance of the criteria and subsequently applies a decision methodology. The use of a
weighted stress function approach (Ferreira et al., 2008) is advantageous, as it enables the
DM to define the extension of the optimal Pareto frontier to be obtained, via the use of a
dispersion parameter. This concept could be adapted by taking into account robustness and
not the relative criteria importance.
Consequently, this work aims to discuss robustness assessment during multi-objective
optimization using a MOEA, namely in terms of the identification of the robust region (or
regions) of the optimal Pareto frontier. The text is organized as follows. In section 2,
robustness concepts will be presented and extended to multi-objective optimization. The
multi-objective evolutionary algorithm used and the corresponding modifications required
to take robustness into account will be described and discussed in section 3. The
performance of the robustness measures will be evaluated in section 4 via their application
to several benchmark multi-objective optimization problems. Finally, the main conclusions
are summarized in section 5.

2. Robustness concepts
2.1 Single objective optimization
A single objective optimization can be formulated as follows:

()
()
()

maxlmin,l

lk

lj

lx

,xlxx
K,,kxh
J,,jxg

L,,lxfmax
l

≤≤
=≥

==

=

10

10tosubject

1

 (1)

Evolutionary Multi-Objective Robust Optimization

263

where xl are the L parameters (or design vectors) x1, x2, …, xL, gj and hk are the J equality (J≥0)
and K inequality (K≥0) constraints, respectively, and xl,min and xl,max are the lower and upper
limits of the parameters.
The most robust solution is that for which the objective function f is less sensitive to
variations of the design parameters xl. Figure 1 shows the evolution of the objective
function f(x1,x2) (to be maximized) against the design parameter x1, when another factor
and/or the design parameter x2 changes slightly from x2’ to x2’’. Solution S2 is less sensitive
than solution S1 to variations of x2, since the changes in the objective function are less
significant (Δf2 and Δf1 for S2 and S1, respectively) and, consequently, it can be considered as
the most robust solution (taking into consideration that here robustness is measured only as
a function of changes occurring in the objective function). On the other hand, since S1 is
more performing than S2, a balance between performance (or fitness) of a solution and its
robustness has to be done. In spite of its lower fitness, solution S2 is the most robust and
would be the selected one by an optimization algorithm (Guanawan & Azarm, 2005;
Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Paenke et al., 2006; Gaspar-Cunha &
Covas, 2008).

Fig. 1. Concept of robustness in the case of a single objective function

Two major approaches have been developed in order to deal with robustness in an
optimization process (Ray, 2002; Jin & Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb &
Gupta, 2006; Gaspar-Cunha & Covas, 2008):
- Expectation measure: the original objective function is replaced by a measure of both its
performance and expectation in the vicinity of the solution considered. Figure 2 illustrates
this method. Figure 2-A shows that in function f(x), having five different peaks, the third is
the most robust, since fitness fluctuations around its maximum are smaller. However, most
probably, an optimization algorithm would select the first peak. An expectation measure

x1

f(x1,x2)

Δf1 Δf2

S1 S2

x2=x2’’

x2=x2’

 Advances in Evolutionary Algorithms

262

criteria. As will be demonstrated in the next sections, in the first situation the role of the
optimization algorithm is to find the solution that optimizes the expectation (in the vicinity
of the solutions considered) of the original criterion (or criteria), while in the second case a
trade-off between the original criteria and the robustness measure is obtained (Jin &
Sendhoff, 2003).
In single objective (or criterion) optimization, the best solution is the one that satisfies
simultaneously performance and robustness. Robust single objective optimization has been
applied to various engineering fields and using different optimization methodologies
(Ribeiro & Elsayed, 1995; Tsutsui & Ghosh, 1997; Das, 1997; Wiesmann et al., 1998; Du &
Chen, 1998; Chen et al. 1999; Ray, 2002; Arnold & Beyer, 2003; Sorensen, 2004). However,
only recently robustness analysis has been extended to Multi-Objective Optimization
Problems (MOOP) (Kouvelis & Sayin 2002; Bagchi, 2003; Jin & Sendhoff, 2003; Kazancioglu
et al., 2003; Gaspar-Cunha & Covas, 2005; Ölvander, 2005; Guanawan & Azarm, 2005; Deb &
Gupta, 2006; Paenke et al., 2006; Barrico & Antunes, 2006; Moshaiov & Avigrad, 2006;
Gaspar-Cunha & Covas, 2008). Depending on the type of Pareto frontier, the aim can be: i)
to locate the optimal Pareto front’s most robust section (Deb & Gupta, 2006; Gaspar-Cunha
& Covas, 2008) and/or ii) in the case of a multimodal problem, to find the most robust
Pareto frontier, and not only the most robust region of the optimal Pareto frontier
(Guanawan & Azarm, 2005; Deb & Gupta, 2006).
An important question arising from MOOP is the choice of the (single) solution to be used
on the real problem under study (Ferreira et al., 2008). Generally, to select a solution from
the pool of the available ones, the Decision Maker (DM) characterizes the relative
importance of the criteria and subsequently applies a decision methodology. The use of a
weighted stress function approach (Ferreira et al., 2008) is advantageous, as it enables the
DM to define the extension of the optimal Pareto frontier to be obtained, via the use of a
dispersion parameter. This concept could be adapted by taking into account robustness and
not the relative criteria importance.
Consequently, this work aims to discuss robustness assessment during multi-objective
optimization using a MOEA, namely in terms of the identification of the robust region (or
regions) of the optimal Pareto frontier. The text is organized as follows. In section 2,
robustness concepts will be presented and extended to multi-objective optimization. The
multi-objective evolutionary algorithm used and the corresponding modifications required
to take robustness into account will be described and discussed in section 3. The
performance of the robustness measures will be evaluated in section 4 via their application
to several benchmark multi-objective optimization problems. Finally, the main conclusions
are summarized in section 5.

2. Robustness concepts
2.1 Single objective optimization
A single objective optimization can be formulated as follows:

()
()
()

maxlmin,l

lk

lj

lx

,xlxx
K,,kxh
J,,jxg

L,,lxfmax
l

≤≤
=≥

==

=

10

10tosubject

1

 (1)

Evolutionary Multi-Objective Robust Optimization

263

where xl are the L parameters (or design vectors) x1, x2, …, xL, gj and hk are the J equality (J≥0)
and K inequality (K≥0) constraints, respectively, and xl,min and xl,max are the lower and upper
limits of the parameters.
The most robust solution is that for which the objective function f is less sensitive to
variations of the design parameters xl. Figure 1 shows the evolution of the objective
function f(x1,x2) (to be maximized) against the design parameter x1, when another factor
and/or the design parameter x2 changes slightly from x2’ to x2’’. Solution S2 is less sensitive
than solution S1 to variations of x2, since the changes in the objective function are less
significant (Δf2 and Δf1 for S2 and S1, respectively) and, consequently, it can be considered as
the most robust solution (taking into consideration that here robustness is measured only as
a function of changes occurring in the objective function). On the other hand, since S1 is
more performing than S2, a balance between performance (or fitness) of a solution and its
robustness has to be done. In spite of its lower fitness, solution S2 is the most robust and
would be the selected one by an optimization algorithm (Guanawan & Azarm, 2005;
Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Paenke et al., 2006; Gaspar-Cunha &
Covas, 2008).

Fig. 1. Concept of robustness in the case of a single objective function

Two major approaches have been developed in order to deal with robustness in an
optimization process (Ray, 2002; Jin & Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb &
Gupta, 2006; Gaspar-Cunha & Covas, 2008):
- Expectation measure: the original objective function is replaced by a measure of both its
performance and expectation in the vicinity of the solution considered. Figure 2 illustrates
this method. Figure 2-A shows that in function f(x), having five different peaks, the third is
the most robust, since fitness fluctuations around its maximum are smaller. However, most
probably, an optimization algorithm would select the first peak. An expectation measure

x1

f(x1,x2)

Δf1 Δf2

S1 S2

x2=x2’’

x2=x2’

 Advances in Evolutionary Algorithms

264

takes this fact into account by replacing the original function by another such as that
illustrated in Figure 2-B. Now, if a conventional optimization is performed using this new
function, the peak selected (peak three) will be the most robust. Various types of expectation
measures have been proposed in the literature (Tsutsui & Ghosh, 1997; Das, 1997; Wiesmann
et al., 1998; Jin & Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Gaspar-
Cunha & Covas, 2008).

0.0

0.5

1.0
F(x)

0 0.2 0.4 0.6 0.8 1
x

0.0

0.5

1.0

0 0.2 0.4 0.6 0.8 1
x

f(x)

A) B)

0.0

0.5

1.0
F(x)

0 0.2 0.4 0.6 0.8 1
x

0.0

0.5

1.0
F(x)

0 0.2 0.4 0.6 0.8 1
x

0 0.2 0.4 0.6 0.8 1
x

0.0

0.5

1.0

0 0.2 0.4 0.6 0.8 1
x

f(x)

0.0

0.5

1.0

0 0.2 0.4 0.6 0.8 1
x

f(x)

A) B)

Fig. 2. Expectation measure for a single objective function

- Variance measure: An additional criterion is appended to the objective function to
measure the deviation of the latter around the vicinity of the design point. Variance
measures take only into account function deviations, ignoring the associated performance.
Thus, in the case of a single objective function, the optimization algorithm must perform a
two-criterion optimization, one concerning performance and the other robustness (Jin &
Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Gaspar-Cunha & Covas,
2008).
Deb & Gupta (2006) denoted the above two approaches as type I and II, respectively. The
performance of selected expectation and variance measures was evaluated in terms of their
capacity to detect robust peaks (Gaspar-Cunha & Covas, 2008), by assessing such features
as: i) easy application to problems where the shape of the objective function is not known a
priori, ii) capacity to define robustness regardless of that shape, iii) independence of the
algorithm parameters, iv) clear definition of the function maxima in the Fitness versus
Robustness Pareto representation, and v) efficiency. The best performance was attained
when the following variance measure was used:

max,

0
,

)(~)(~

´
1 dd

xx
xfxf

N
f ji

N

j ij

ijR
i <

−

−
= ∑

=

 (2)

where the robustness of individual i is defined as the average value of the ratio of the
difference between the normalized fitness of individual i,)(~

ixf , and that of its neighbours

(j), over the distance separating them. In this expression,
minmax

min)(
)(~

ff
fxfxf i

i −
−

= for maximization

Evolutionary Multi-Objective Robust Optimization

265

and
minmax

min)(
1)(~

ff
fxf

xf i
i −

−
−= for minimization of the objective function f(xi), with fmax and fmin

representing the limits of its range of variation, N´ is the number of population individuals
whose Euclidian distance between points i and j (di,j) is lower than dmax (i.e., di,j < dmax):

 ()
2

1
,,, ∑

=

−=
M

m
imjmji xxd (3)

and M is the number of criteria. The smaller fRi, the more robust the solution is.

2.2 Extending robustness to multiple objectives
In a multi-objective optimization various objectives, often conflicting, co-exist:

()
()
()

maxlmin,l

lk

lj

lmx

,xlxx
K,,kxh
J,,jxg

M,,mL,,lxfmax
l

≤≤
=≥

==

==

10
10tosubject

11

 (4)

where fm are the M objective functions of the L parameters (or design vectors) x1, x2, …, xL
and gj and hk are the J equality (J≥0) and K inequality (K≥0) constraints, respectively.
The application of a robustness analysis to MOOPs must consider all the criteria
simultaneously. As for single objective, a multi-objective robust solution must be less
sensitive to variations of the design parameters, as illustrated in Figure 3. The figure shows
that the same local perturbation on the parameters space (x1, x2) causes different behaviours
of solutions I and II. Solution I is more robust, as the same perturbations on the parameters
space causes lower changes on the objective space. Each of the Pareto optimal solutions
must be analysed in what concerns robustness, i.e., its sensitivity to changes on the design
parameters. Since robustness must be assessed for every criterion, the combined effect of
changes in all the objectives must be considered simultaneously and used as a measure of
robustness.

Fig. 3. Concept of robustness for multi-objective functions

x1

x2

f1

f2
Decision Criteria

I
I

I I

 Advances in Evolutionary Algorithms

264

takes this fact into account by replacing the original function by another such as that
illustrated in Figure 2-B. Now, if a conventional optimization is performed using this new
function, the peak selected (peak three) will be the most robust. Various types of expectation
measures have been proposed in the literature (Tsutsui & Ghosh, 1997; Das, 1997; Wiesmann
et al., 1998; Jin & Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Gaspar-
Cunha & Covas, 2008).

0.0

0.5

1.0
F(x)

0 0.2 0.4 0.6 0.8 1
x

0.0

0.5

1.0

0 0.2 0.4 0.6 0.8 1
x

f(x)

A) B)

0.0

0.5

1.0
F(x)

0 0.2 0.4 0.6 0.8 1
x

0.0

0.5

1.0
F(x)

0 0.2 0.4 0.6 0.8 1
x

0 0.2 0.4 0.6 0.8 1
x

0.0

0.5

1.0

0 0.2 0.4 0.6 0.8 1
x

f(x)

0.0

0.5

1.0

0 0.2 0.4 0.6 0.8 1
x

f(x)

A) B)

Fig. 2. Expectation measure for a single objective function

- Variance measure: An additional criterion is appended to the objective function to
measure the deviation of the latter around the vicinity of the design point. Variance
measures take only into account function deviations, ignoring the associated performance.
Thus, in the case of a single objective function, the optimization algorithm must perform a
two-criterion optimization, one concerning performance and the other robustness (Jin &
Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Gaspar-Cunha & Covas,
2008).
Deb & Gupta (2006) denoted the above two approaches as type I and II, respectively. The
performance of selected expectation and variance measures was evaluated in terms of their
capacity to detect robust peaks (Gaspar-Cunha & Covas, 2008), by assessing such features
as: i) easy application to problems where the shape of the objective function is not known a
priori, ii) capacity to define robustness regardless of that shape, iii) independence of the
algorithm parameters, iv) clear definition of the function maxima in the Fitness versus
Robustness Pareto representation, and v) efficiency. The best performance was attained
when the following variance measure was used:

max,

0
,

)(~)(~

´
1 dd

xx
xfxf

N
f ji

N

j ij

ijR
i <

−

−
= ∑

=

 (2)

where the robustness of individual i is defined as the average value of the ratio of the
difference between the normalized fitness of individual i,)(~

ixf , and that of its neighbours

(j), over the distance separating them. In this expression,
minmax

min)(
)(~

ff
fxfxf i

i −
−

= for maximization

Evolutionary Multi-Objective Robust Optimization

265

and
minmax

min)(
1)(~

ff
fxf

xf i
i −

−
−= for minimization of the objective function f(xi), with fmax and fmin

representing the limits of its range of variation, N´ is the number of population individuals
whose Euclidian distance between points i and j (di,j) is lower than dmax (i.e., di,j < dmax):

 ()
2

1
,,, ∑

=

−=
M

m
imjmji xxd (3)

and M is the number of criteria. The smaller fRi, the more robust the solution is.

2.2 Extending robustness to multiple objectives
In a multi-objective optimization various objectives, often conflicting, co-exist:

()
()
()

maxlmin,l

lk

lj

lmx

,xlxx
K,,kxh
J,,jxg

M,,mL,,lxfmax
l

≤≤
=≥

==

==

10
10tosubject

11

 (4)

where fm are the M objective functions of the L parameters (or design vectors) x1, x2, …, xL
and gj and hk are the J equality (J≥0) and K inequality (K≥0) constraints, respectively.
The application of a robustness analysis to MOOPs must consider all the criteria
simultaneously. As for single objective, a multi-objective robust solution must be less
sensitive to variations of the design parameters, as illustrated in Figure 3. The figure shows
that the same local perturbation on the parameters space (x1, x2) causes different behaviours
of solutions I and II. Solution I is more robust, as the same perturbations on the parameters
space causes lower changes on the objective space. Each of the Pareto optimal solutions
must be analysed in what concerns robustness, i.e., its sensitivity to changes on the design
parameters. Since robustness must be assessed for every criterion, the combined effect of
changes in all the objectives must be considered simultaneously and used as a measure of
robustness.

Fig. 3. Concept of robustness for multi-objective functions

x1

x2

f1

f2
Decision Criteria

I
I

I I

 Advances in Evolutionary Algorithms

266

In multi-objective robust optimization the aim is to obtain a set of Pareto solutions that are,
at the same time, multi-objectively robust and Pareto optimal. As shown in Figure 4,
different situations may arise (Guanawan & Azarm, 2005; Deb & Gupta, 2006):
1. All the solutions on the Pareto-optimal frontier are robust (Figure 4-A);
2. Only some of the solutions belonging to the Pareto-optimal frontier are robust (Figure

4-B);
3. The solutions belonging to the Pareto-optimal frontier are not robust, but a robust

Pareto frontier exists (Figure 4-C);
4. Some of the robust solutions belong to the Pareto-optimal frontier, but others do not

(Figure 4-D).

Fig. 4. Optimal Pareto frontier versus robust Pareto frontier

f

f2 Optimal Pareto

f

f Optimal Pareto

Robust Pareto

A B

f

f2 Optimal Pareto

Robust Pareto

f

f2 Optimal Pareto

Robust Pareto

C D

Evolutionary Multi-Objective Robust Optimization

267

All the above situations should be taken into consideration by a resourceful optimization
algorithm. When the DM is only interested in the most robust section of the optimal Pareto
frontier (see Figure 5), this can be done by using, for example, the dispersion parameter
referred above.

Fig. 5. Robust region of the optimal Pareto frontier (Test Problem 1, see below)

3. Multi-objective optimization
3.1 Multi-Objective Evolutionary Algorithms (MOEAs)
Multi-Objective Evolutionary Algorithms (MOEAs) are an efficient tool to deal with the
above type of problems, since they are able to determine in a single run the optimal Pareto
front. For that reason, they have been intensively used in the last decade (Fonseca &
Fleming, 1998; Deb, 2001, Coello et al., 2002; Gaspar-Cunha & Covas, 2004).
A MOEA must provide the homogeneous distribution of the population along the Pareto
frontier, together with improving the solutions along successive generations. Usually, a
fitness assignment operator is applied to guide the population towards the Pareto frontier
using a robust and efficient multi-objective selection method, as well as a density estimation
operator to maintain the solutions dispersed along the Pareto frontier, as it is able to take
into account the proximity of the solutions. Moreover, in order to prevent fitness
deterioration along the successive generations, an archiving process is introduced by
maintaining an external population where the best solutions found sequentially are kept
and periodically incorporated into the main population.
The Reduced Pareto Set Genetic Algorithm with elitism (RPSGAe) will be adopted in this
chapter (Gaspar-Cunha et al., 1997), although some changes in its working mode have to be
implemented in order to take into account the robustness procedure proposed. RPSGAe is
able to distribute the solutions uniformly along the Pareto frontier, its performance having
been assessed using benchmark problems and statistical comparison techniques. The
method starts by sorting the population individuals in a number of pre-defined ranks using
a clustering technique, thus reducing the number of solutions on the efficient frontier while

Optimal Pareto
frontier

Robust section

 Advances in Evolutionary Algorithms

266

In multi-objective robust optimization the aim is to obtain a set of Pareto solutions that are,
at the same time, multi-objectively robust and Pareto optimal. As shown in Figure 4,
different situations may arise (Guanawan & Azarm, 2005; Deb & Gupta, 2006):
1. All the solutions on the Pareto-optimal frontier are robust (Figure 4-A);
2. Only some of the solutions belonging to the Pareto-optimal frontier are robust (Figure

4-B);
3. The solutions belonging to the Pareto-optimal frontier are not robust, but a robust

Pareto frontier exists (Figure 4-C);
4. Some of the robust solutions belong to the Pareto-optimal frontier, but others do not

(Figure 4-D).

Fig. 4. Optimal Pareto frontier versus robust Pareto frontier

f

f2 Optimal Pareto

f

f Optimal Pareto

Robust Pareto

A B

f

f2 Optimal Pareto

Robust Pareto

f

f2 Optimal Pareto

Robust Pareto

C D

Evolutionary Multi-Objective Robust Optimization

267

All the above situations should be taken into consideration by a resourceful optimization
algorithm. When the DM is only interested in the most robust section of the optimal Pareto
frontier (see Figure 5), this can be done by using, for example, the dispersion parameter
referred above.

Fig. 5. Robust region of the optimal Pareto frontier (Test Problem 1, see below)

3. Multi-objective optimization
3.1 Multi-Objective Evolutionary Algorithms (MOEAs)
Multi-Objective Evolutionary Algorithms (MOEAs) are an efficient tool to deal with the
above type of problems, since they are able to determine in a single run the optimal Pareto
front. For that reason, they have been intensively used in the last decade (Fonseca &
Fleming, 1998; Deb, 2001, Coello et al., 2002; Gaspar-Cunha & Covas, 2004).
A MOEA must provide the homogeneous distribution of the population along the Pareto
frontier, together with improving the solutions along successive generations. Usually, a
fitness assignment operator is applied to guide the population towards the Pareto frontier
using a robust and efficient multi-objective selection method, as well as a density estimation
operator to maintain the solutions dispersed along the Pareto frontier, as it is able to take
into account the proximity of the solutions. Moreover, in order to prevent fitness
deterioration along the successive generations, an archiving process is introduced by
maintaining an external population where the best solutions found sequentially are kept
and periodically incorporated into the main population.
The Reduced Pareto Set Genetic Algorithm with elitism (RPSGAe) will be adopted in this
chapter (Gaspar-Cunha et al., 1997), although some changes in its working mode have to be
implemented in order to take into account the robustness procedure proposed. RPSGAe is
able to distribute the solutions uniformly along the Pareto frontier, its performance having
been assessed using benchmark problems and statistical comparison techniques. The
method starts by sorting the population individuals in a number of pre-defined ranks using
a clustering technique, thus reducing the number of solutions on the efficient frontier while

Optimal Pareto
frontier

Robust section

 Advances in Evolutionary Algorithms

268

maintaining intact its characteristics (Gaspar-Cunha & Covas, 2004). Then, the individuals’
fitness is calculated through a ranking function. With the aim of incorporating this
technique, the traditional GA was modified as follows (Gaspar-Cunha & Covas, 2004):

1. Random initial population (internal)
2. Empty external population
3. while not Stop-Condition do
 a- Evaluate internal population
 b- Calculate expectation and/or robustness measures
 c- Calculate niche count (mi)
 d- Calculate the Ranking of the individuals using the RPSGAe
 e- Calculate the global Fitness ()i(F~)
 f- Copy the best individuals to the external population
 g- if the external population becomes full
 Apply the RPSGAe to this population
 Copy the best individuals to the internal population
 end if
 h- Select the individuals for reproduction
 i- Crossover
 j- Mutation
end while

As described above, the calculations start with the random definition of an internal
population of size N and of an empty external population of size Ne. At each generation, a
fixed number of the best individuals (that was obtained by reducing the internal population
with the clustering algorithm), is copied to an external population (Gaspar-Cunha et al.,
1997). The process is repeated until the external population becomes complete. Then, the
RPSGAe is applied to sort the individuals of this population, and a pre-defined number of
the best individuals is incorporated in the internal population, by replacing the lowest
fitness individuals. Detailed information on this algorithm can be found elsewhere (Gaspar-
Cunha & Covas, 2004; Gaspar-Cunha, 2000).

3.2 Introducing robustness in MOEAs
Three additional steps must be added on to the RPSGAe presented above, to comprise
robustness estimation. They consist of a computation of robustness measures (taking into
account the dispersion parameter), a niche count and the determination of the global fitness,
yielding the general flowchart of Figure 7. The dispersion parameter (ε’) quantifies the
extension of the robust section to be obtained (see Figure 5). This parameter can be defined
by the DM and ranges between 0, when a single solution is to be obtained, and 1, when the
entire optimal Pareto frontier is to be obtained. In order to consider the influence of the
dispersion parameter (ε’), the way how the indifference limits (

jL~) and the distances
between the solutions (

k,jD~) are defined in the RPSGAe algorithm was also changed (see
Gaspar-Cunha & Covas, 2004), the following equations being used:

 '
'1

)min(max
21~ ε

ε−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+×=
RR

LL jj
 (5)

Evolutionary Multi-Objective Robust Optimization

269

()

'
'1

1
,, ind

11~ ε
ε−

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×=

k
kjkj R

DD (6)

Here, max R and min R are the maximum and the minimum values of the robustness found
for each generation, respectively, Li are the indifference limits for criterion i, Dj,k is the
difference between the criterion value of solutions j and k, R(indk+1) is the robustness
measure of the individual located in position k+1 after the population was ordered by
criterion j. The robustness measure is calculated by Equation 2, thus when R increases the
robustness of the solution decreases. In these equations, the dispersion parameter (ε’) plays
an important role. If ε’=1, equations 5 and 6 are reduced to Li and Di,j, respectively, and the
algorithm will converge for the entire robust Pareto frontier. Otherwise, when ε´ decreases,
the size of the robust Pareto frontier decreases as well. In a limiting situation, i.e., when ε’ is
approximately nil, a single point is obtained. Figure 8 shows curves of

jj L/L~ and
k,jk,j D/D~

ratios against the dispersion parameter, for different values of R (2.0, 0.5 and 0.1).

Ra

Start

Define:
- NRanks;
- 0< ε =1;
- dmax.

ε’ = ε2

Calculate
R(i) and m(i)

(Eq.s 2 and 7)

i = 1

i = i + 1

i = N

Apply the RPSGAe scheme
to calculate Rank(i)

Calculate ?Fi
(eq. 8)

Stop

i = 1

i = i + 1

i = N

Start

Define:
- NRanks;
- 0< ε =1;
- dmax.

ε’ = ε2

Calculate
R(i) and m(i)

(Eq.s 2 and 7)

i = 1

i = i + 1

i = N

Apply the RPSGAe scheme
to calculate Rank(i)

Calculate ?Fi
(eq. 8)

Stop

i = 1

i = i + 1

i = N

Fig. 7. Flowchart of the robustness routine

Ratio
k,jk,j D/D~ is given by

()
'
'

kR

ε
ε−

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

1

1ind
11 (see equation 6). Thus, at constant R, when ε´

decreases means that influence of the difference between the value of solutions j and k (i.e.,

 Advances in Evolutionary Algorithms

268

maintaining intact its characteristics (Gaspar-Cunha & Covas, 2004). Then, the individuals’
fitness is calculated through a ranking function. With the aim of incorporating this
technique, the traditional GA was modified as follows (Gaspar-Cunha & Covas, 2004):

1. Random initial population (internal)
2. Empty external population
3. while not Stop-Condition do
 a- Evaluate internal population
 b- Calculate expectation and/or robustness measures
 c- Calculate niche count (mi)
 d- Calculate the Ranking of the individuals using the RPSGAe
 e- Calculate the global Fitness ()i(F~)
 f- Copy the best individuals to the external population
 g- if the external population becomes full
 Apply the RPSGAe to this population
 Copy the best individuals to the internal population
 end if
 h- Select the individuals for reproduction
 i- Crossover
 j- Mutation
end while

As described above, the calculations start with the random definition of an internal
population of size N and of an empty external population of size Ne. At each generation, a
fixed number of the best individuals (that was obtained by reducing the internal population
with the clustering algorithm), is copied to an external population (Gaspar-Cunha et al.,
1997). The process is repeated until the external population becomes complete. Then, the
RPSGAe is applied to sort the individuals of this population, and a pre-defined number of
the best individuals is incorporated in the internal population, by replacing the lowest
fitness individuals. Detailed information on this algorithm can be found elsewhere (Gaspar-
Cunha & Covas, 2004; Gaspar-Cunha, 2000).

3.2 Introducing robustness in MOEAs
Three additional steps must be added on to the RPSGAe presented above, to comprise
robustness estimation. They consist of a computation of robustness measures (taking into
account the dispersion parameter), a niche count and the determination of the global fitness,
yielding the general flowchart of Figure 7. The dispersion parameter (ε’) quantifies the
extension of the robust section to be obtained (see Figure 5). This parameter can be defined
by the DM and ranges between 0, when a single solution is to be obtained, and 1, when the
entire optimal Pareto frontier is to be obtained. In order to consider the influence of the
dispersion parameter (ε’), the way how the indifference limits (

jL~) and the distances
between the solutions (

k,jD~) are defined in the RPSGAe algorithm was also changed (see
Gaspar-Cunha & Covas, 2004), the following equations being used:

 '
'1

)min(max
21~ ε

ε−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+×=
RR

LL jj
 (5)

Evolutionary Multi-Objective Robust Optimization

269

()

'
'1

1
,, ind

11~ ε
ε−

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×=

k
kjkj R

DD (6)

Here, max R and min R are the maximum and the minimum values of the robustness found
for each generation, respectively, Li are the indifference limits for criterion i, Dj,k is the
difference between the criterion value of solutions j and k, R(indk+1) is the robustness
measure of the individual located in position k+1 after the population was ordered by
criterion j. The robustness measure is calculated by Equation 2, thus when R increases the
robustness of the solution decreases. In these equations, the dispersion parameter (ε’) plays
an important role. If ε’=1, equations 5 and 6 are reduced to Li and Di,j, respectively, and the
algorithm will converge for the entire robust Pareto frontier. Otherwise, when ε´ decreases,
the size of the robust Pareto frontier decreases as well. In a limiting situation, i.e., when ε’ is
approximately nil, a single point is obtained. Figure 8 shows curves of

jj L/L~ and
k,jk,j D/D~

ratios against the dispersion parameter, for different values of R (2.0, 0.5 and 0.1).

Ra

Start

Define:
- NRanks;
- 0< ε =1;
- dmax.

ε’ = ε2

Calculate
R(i) and m(i)

(Eq.s 2 and 7)

i = 1

i = i + 1

i = N

Apply the RPSGAe scheme
to calculate Rank(i)

Calculate ?Fi
(eq. 8)

Stop

i = 1

i = i + 1

i = N

Start

Define:
- NRanks;
- 0< ε =1;
- dmax.

ε’ = ε2

Calculate
R(i) and m(i)

(Eq.s 2 and 7)

i = 1

i = i + 1

i = N

Apply the RPSGAe scheme
to calculate Rank(i)

Calculate ?Fi
(eq. 8)

Stop

i = 1

i = i + 1

i = N

Fig. 7. Flowchart of the robustness routine

Ratio
k,jk,j D/D~ is given by

()
'
'

kR

ε
ε−

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

1

1ind
11 (see equation 6). Thus, at constant R, when ε´

decreases means that influence of the difference between the value of solutions j and k (i.e.,

 Advances in Evolutionary Algorithms

270

Dj,k) on
k,jD~ diminishes. Therefore, for small values of the dispersion parameter, the

attribution of the fitness by the RPSGAe algorithm is made almost exclusively by the value
of the robustness of the solutions and not by taking into account the distance between them.
This procedure avoids that robust solutions are eliminated during the consecutive
generations in case they are next to each other. An identical analysis can be made for
different robustness values (R in Figure 8). When R increases (i.e., when the robustness
decreases) the value of

k,jk,j D/D~ must decreases in order to produce the same result. The

same reasoning applies to the
jj L/L~ ratio.

Fig. 8. Shape of the curves of
jj L/L~ and

k,jk,j D/D~ rates as a function of the dispersion

parameter for different R values

The niche count was considered using a sharing function (Goldberg & Richardson, 1987):

 () ()∑
=

=
N

j
jidshim

1

 (7)

where sh(dij) is related to individual i and takes into account its distance to all its neighbours
j (dij).
Finally, the global fitness was calculated using the following equation:

 () () () ()
()

()
() 11

1
+

+
+

−+=
im

im'
iR

iR'iRankiF~ εε (8)

In conclusion, the following calculation steps must be carried out (see Figure 7):
1. The robustness routine starts with the definition of the number of ranks (Nranks), the

span of the Pareto frontier to be obtained (ε ∈ [0,1]) and the maximum radial distance to
each solution to be considered in the robustness calculation (dmax);

Evolutionary Multi-Objective Robust Optimization

271

2. To reduce the sensitivity of the algorithm to small values of the objective functions, the
dispersion parameter is changed as ε’ = ε2;

3. For each individual, i, robustness , R(i), and niche count, m(i) , are determined using
equations 2 and 7, respectively;

4. The RPSGAe algorithm is applied, with the modifications introduced by equations 5
and 6, to calculate Rank(i);

5. For each solution, i, the new fitness is calculated using equation 8.

4. Results and discussion
4.1 Test problems
The robustness methodology presented in the previous sections will be tested using the 7
Test Problems (TP) listed below, each of different type and with distinctive Pareto frontier
characteristics. Each TP is presented in terms of its creator, aim, number of decision
parameters, criteria and range of variation of the decision parameter.
TP 1 and 2 are simple one parameter problems, the first having one region with higher
robustness, while the second contains three such regions. TP 3 to TP5 are complex MOOPs
with 30 parameters each, and two criteria. TP3 and TP4 have a single region with higher
robustness and the Pareto frontier is convex and concave, respectively. TP5 has a
discontinuous Pareto frontier with a single region with higher robustness. TP 6 and TP7 are
the three criteria version of TP1 and TP4, respectively.
Three studies will be performed, to determine: i) the effect of the RPSGAe algorithm, i.e.,
Nranks, and dmax; ii) the effect of the value of the dispersion parameter and iii) the performance
of the robustness methodology for different type of problems.
The RPSGAe algorithm parameters utilized are the following: Nranks = 20 (the values of 10
and 30 were also used for the first study), dmax = 0.008 (0.005 and 0.03 were also tried in the
first study), indifference limits equal to 0.1 for all criteria, SBX real crossover operator with
an index of 10 and real polynomial mutation operator with and index of 20.
TP 1: x ∈[-2;6]; Minimize; L=1; M=2.

() 17,2)2cos(56)(

)(
5

2

2
1

+−+=

=
− xxexf

xxf
x

 (9)

TP 2: x ∈ [0;5]; Maximize; L=1; M=2.

)4cos(5)(

)(

2

1

xxxf
xxf

+−=
= (10)

TP 3 (ZDT1): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002.

()

()

()
1

91with,

)(
)(1)(,,

2

11
22

111

−
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=

=

∑ =

L
x

xg

xg
xfxgxxf

xxf

L

l l

L

 (11)

 Advances in Evolutionary Algorithms

270

Dj,k) on
k,jD~ diminishes. Therefore, for small values of the dispersion parameter, the

attribution of the fitness by the RPSGAe algorithm is made almost exclusively by the value
of the robustness of the solutions and not by taking into account the distance between them.
This procedure avoids that robust solutions are eliminated during the consecutive
generations in case they are next to each other. An identical analysis can be made for
different robustness values (R in Figure 8). When R increases (i.e., when the robustness
decreases) the value of

k,jk,j D/D~ must decreases in order to produce the same result. The

same reasoning applies to the
jj L/L~ ratio.

Fig. 8. Shape of the curves of
jj L/L~ and

k,jk,j D/D~ rates as a function of the dispersion

parameter for different R values

The niche count was considered using a sharing function (Goldberg & Richardson, 1987):

 () ()∑
=

=
N

j
jidshim

1

 (7)

where sh(dij) is related to individual i and takes into account its distance to all its neighbours
j (dij).
Finally, the global fitness was calculated using the following equation:

 () () () ()
()

()
() 11

1
+

+
+

−+=
im

im'
iR

iR'iRankiF~ εε (8)

In conclusion, the following calculation steps must be carried out (see Figure 7):
1. The robustness routine starts with the definition of the number of ranks (Nranks), the

span of the Pareto frontier to be obtained (ε ∈ [0,1]) and the maximum radial distance to
each solution to be considered in the robustness calculation (dmax);

Evolutionary Multi-Objective Robust Optimization

271

2. To reduce the sensitivity of the algorithm to small values of the objective functions, the
dispersion parameter is changed as ε’ = ε2;

3. For each individual, i, robustness , R(i), and niche count, m(i) , are determined using
equations 2 and 7, respectively;

4. The RPSGAe algorithm is applied, with the modifications introduced by equations 5
and 6, to calculate Rank(i);

5. For each solution, i, the new fitness is calculated using equation 8.

4. Results and discussion
4.1 Test problems
The robustness methodology presented in the previous sections will be tested using the 7
Test Problems (TP) listed below, each of different type and with distinctive Pareto frontier
characteristics. Each TP is presented in terms of its creator, aim, number of decision
parameters, criteria and range of variation of the decision parameter.
TP 1 and 2 are simple one parameter problems, the first having one region with higher
robustness, while the second contains three such regions. TP 3 to TP5 are complex MOOPs
with 30 parameters each, and two criteria. TP3 and TP4 have a single region with higher
robustness and the Pareto frontier is convex and concave, respectively. TP5 has a
discontinuous Pareto frontier with a single region with higher robustness. TP 6 and TP7 are
the three criteria version of TP1 and TP4, respectively.
Three studies will be performed, to determine: i) the effect of the RPSGAe algorithm, i.e.,
Nranks, and dmax; ii) the effect of the value of the dispersion parameter and iii) the performance
of the robustness methodology for different type of problems.
The RPSGAe algorithm parameters utilized are the following: Nranks = 20 (the values of 10
and 30 were also used for the first study), dmax = 0.008 (0.005 and 0.03 were also tried in the
first study), indifference limits equal to 0.1 for all criteria, SBX real crossover operator with
an index of 10 and real polynomial mutation operator with and index of 20.
TP 1: x ∈[-2;6]; Minimize; L=1; M=2.

() 17,2)2cos(56)(

)(
5

2

2
1

+−+=

=
− xxexf

xxf
x

 (9)

TP 2: x ∈ [0;5]; Maximize; L=1; M=2.

)4cos(5)(

)(

2

1

xxxf
xxf

+−=
= (10)

TP 3 (ZDT1): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002.

()

()

()
1

91with,

)(
)(1)(,,

2

11
22

111

−
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=

=

∑ =

L
x

xg

xg
xfxgxxf

xxf

L

l l

L

 (11)

 Advances in Evolutionary Algorithms

272

TP 4 (ZDT2): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002.

()

()

()
1

91with,

)(
)(1)(,,

2

2
11

22

111

−
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛−×=

=

∑ =

L
x

xg

xg
xfxgxxf

xxf

L

l l

L

 (12)

TP 5 (ZDT3): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002.

()

()

()
1

91with,

)10sin(
)()(1)(,,

2

1
11

22

111

−
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−×=

=

∑ =

L
x

xg

x
xg

x
xg

xxgxxf

xxf

L

l l

L π
 (13)

TP 6: x1 ∈[0;2π]; x2 ∈[0;5]; Minimize; L=2; M=3.

1722
5
6with, 22

5
2

2
23

212

211

22 −−−=

=

=
=

− x,)xsin(e)x(g

x)x(f
)x(g).xcos()x(f
)x(g).xsin()x(f

)x(x

 (14)

TP 7 (DTLZ2): xi ∈[0;1]; Minimize; L=12; M=3; Deb, Thiele et al., 2002.

()

()

()

∑
=

−=

⎟
⎠
⎞

⎜
⎝
⎛+=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+=

L

i
i).x()x(g,

xsin.)x(g)x(f

xsin.xcos.)x(g)x(f

xcos.xcos.)x(g)x(f

3

2

13

212

211

50with

2
1

22
1

22
1

π

ππ

ππ

 (15)

4.2 Effect of the RPSGAe parameters
Figure 9 compares the results obtained with the robustness procedure for TP 1 and TP4,
using different values of the parameter. The line indicates the optimal Pareto frontier and
the dots identify the solutions obtained with the new procedure. As shown, the algorithm is
able to produce good results independently of the value of Nranks (hence, in the remaining of
this study Nranks was set as 20).

Evolutionary Multi-Objective Robust Optimization

273

Similar conclusions were obtained for dmax parameter - Figure 10, so dmax was kept equal to
0.008.

Fig. 9. Influence of Nranks parameter for TP1 and TP4

Fig. 10. Influence of dmax parameter for TP1 and TP4

4.3 Effect of the dispersion parameter
The aim of the dispersion parameter is to provide the Decision Maker with the possibility of
choosing different sizes of the optimal/robustness Pareto frontier. Figure 11 shows the
results obtained for TP1 using different values of that parameter, identical outcomes having
been observed for the remaining test problems. The methodology seems to be sensitive to
the variation on the dispersion parameter, which is a very positive feature.

 Advances in Evolutionary Algorithms

272

TP 4 (ZDT2): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002.

()

()

()
1

91with,

)(
)(1)(,,

2

2
11

22

111

−
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛−×=

=

∑ =

L
x

xg

xg
xfxgxxf

xxf

L

l l

L

 (12)

TP 5 (ZDT3): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002.

()

()

()
1

91with,

)10sin(
)()(1)(,,

2

1
11

22

111

−
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−×=

=

∑ =

L
x

xg

x
xg

x
xg

xxgxxf

xxf

L

l l

L π
 (13)

TP 6: x1 ∈[0;2π]; x2 ∈[0;5]; Minimize; L=2; M=3.

1722
5
6with, 22

5
2

2
23

212

211

22 −−−=

=

=
=

− x,)xsin(e)x(g

x)x(f
)x(g).xcos()x(f
)x(g).xsin()x(f

)x(x

 (14)

TP 7 (DTLZ2): xi ∈[0;1]; Minimize; L=12; M=3; Deb, Thiele et al., 2002.

()

()

()

∑
=

−=

⎟
⎠
⎞

⎜
⎝
⎛+=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+=

L

i
i).x()x(g,

xsin.)x(g)x(f

xsin.xcos.)x(g)x(f

xcos.xcos.)x(g)x(f

3

2

13

212

211

50with

2
1

22
1

22
1

π

ππ

ππ

 (15)

4.2 Effect of the RPSGAe parameters
Figure 9 compares the results obtained with the robustness procedure for TP 1 and TP4,
using different values of the parameter. The line indicates the optimal Pareto frontier and
the dots identify the solutions obtained with the new procedure. As shown, the algorithm is
able to produce good results independently of the value of Nranks (hence, in the remaining of
this study Nranks was set as 20).

Evolutionary Multi-Objective Robust Optimization

273

Similar conclusions were obtained for dmax parameter - Figure 10, so dmax was kept equal to
0.008.

Fig. 9. Influence of Nranks parameter for TP1 and TP4

Fig. 10. Influence of dmax parameter for TP1 and TP4

4.3 Effect of the dispersion parameter
The aim of the dispersion parameter is to provide the Decision Maker with the possibility of
choosing different sizes of the optimal/robustness Pareto frontier. Figure 11 shows the
results obtained for TP1 using different values of that parameter, identical outcomes having
been observed for the remaining test problems. The methodology seems to be sensitive to
the variation on the dispersion parameter, which is a very positive feature.

 Advances in Evolutionary Algorithms

274

4.4 Effect of the type of problem
The results obtained for TP2 to TP7, using ε = 0.1, are presented in Figure 12. The algorithm
is able to deal with the various types of test problems proposed. TP2 is a difficult test
problem due to the need to converge to the three different sections with the same
robustness. TP3 and TP4 show that the algorithm proposed can converge to the most robust
region even for problems with 30 parameters or of discontinuous nature. Finally, TP6 and
TP7 show that the methodology proposed is able to deal with more than two dimensions
with a good convergence, which is not generally the case for current optimization
algorithms available.

5. Conclusions
This work presented and tested an optimization procedure that takes into account
robustness in multi-objective optimization. It was shown that the method is able to deal
with different types of problems and with different degrees of complexity.
The extension of the robust Pareto frontier can be controlled by the Decision Maker by
making use of a dispersion parameter. The effectiveness of this parameter was
demonstrated in a number of test problems.

6. References
Arrold, D.V. & Beyer, H.-G. (2003). A Comparison of Evolution Strategies with Other Direct

Search Methods in the Presence of Noise, Computational Optimization and
Applications, Vol. 24, No. 1 (2003) 135-159

Bagchi, T.P. (2003). Multiobjective Robust Design by Genetic Algorithms, Materials and
Manufacturing Processes, Vol. 18, No. 3 (2003) 341-354

Barrico, C. & Antunes, C.H. (2006). Robustness Analysis in Multi-Objective Optimization
Using a Degree of Robustness Concept, Proceedings of the IEEE Congress on
Evolutionary Computation, pp. 6778-6783, Vancouver, Canada, July 2006, IEEE

Chen, W.; Sahai, A.; Messac, A. & Sundararaj, G. (1999). Physical Programming for Robust
Design, Proceedings of 40th Structures, Structural Dynamics and Materials Conference,
St. Louis, USA, April 1999

Coello, C.; Veldhuizen, D. & Lamont, G. (2002). Evolutionary Algorithms for Solving Multi-
Objective Problems, Kluwer, ISBN 0306467623, Norwell

Das, I. (1997). Nonlinear Multicriteria Optimization and Robust Optimality, Rice University, PhD
Thesis, Houston

Deb K. (2001). Multi-Objective Optimisation Using Evolutionary Algorithms, Wiley, ISBN 0-471-
87339-X, Chichester

Deb, K.; Pratap, A.; Agrawal, S. & Meyarivan, T. (2002). A Fast and Elitist Multi-Objective
Genetic Algorithm: NSGAII, IEE Transactions on Evolutionary Computation, Vol. 6,
No. 2 (April 2002) 182-197, ISBN 1089-778X.

Ded, K.; Thiele, L.,; Laumanns, M. & Zitzler E. (2002). Scalable Multi-Objective Optimization
Test Problems, IEEE Transactions on Evolutionary Computation, Vol. 1, (May 2002)
825-830, ISBN 0-7803-7282-4

Deb, K. & Gupta, H. (2005). Searching for robust Pareto-optimal solutions in multi-objective
optimization, Proceedings of the Third International Conference on Evolutionary Multi-

Evolutionary Multi-Objective Robust Optimization

275

Criterion Optimization, pp. 150-164, ISBN 978-3-540-24983-2, Guanajuato, Mexico,
January 2005, Springer, Berlin

Deb, K. & Gupta, H. (2006). Introducing Robustness in Multi-objective Optimization.
Evolutionary Computation, Vol. 14, No. 4, (December 2006) 463-494, 1063-6560.

Du, X. & Chen, W. (1998). Towards a Better Understanding of Modelling Feasibility
Robustness in Engineering Design, Proceedings of DETC 99, Las Vegas, USA,
September 1999, ASM

Ferreira, J.C.; Fonseca, C.M. & Gaspar-Cunha, A. (2008) Methodology to Select Solutions for
Multi-Objective Optimization Problems: Weight Stress Function Method, Applied
Intelligence, Accepted for publication (2008)

Fonseca, C.; Fleming, P. (1993). Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization, Proceedings of Fifth International
Conference on Genetic Algorithms, pp. 416-423, University of Illinois, July 1993,
Morgan Kauffman, Urbana-Champaign

Fonseca, C. & Fleming, P. (1998). Multiobjective optimization and multiple constraint
handling with evolutionary algorithms, part I: A unified formulation, IEEE
Transactions on Systems, Man and Cybernetics, Vol. 28, No. 1 (1998) 26-37

Gaspar-Cunha, A.; Oliveira, P. & Covas, J. (1997). Use of Genetic Algorithms in Multicriteria
Optimization to Solve Industrial Problems, Proceedings of Seventh Int. Conf. on
Genetic Algorithms, pp. 682-688, Michigan, USA.

Gaspar-Cunha, A. (2000). Modelling and Optimisation of Single Screw Extrusion, University of
Minho, PhD Thesis, Guimarães, Portugal

Gaspar-Cunha, A. & Covas, J. (2004). RPSGAe - A Multiobjective Genetic Algorithm with
Elitism: Application to Polymer Extrusion, In: Metaheuristics for Multiobjective
Optimisation, Lecture Notes in Economics and Mathematical Systems, Gandibleux, X.;
Sevaux, M.; Sörensen, K.; T'kindt, V. (Eds.), 221-249, Springer, ISBN 3-540-20637-X,
Berlin

Gaspar-Cunha, A. & Covas, J. (2005). Robustness using Multi-Objective Evolutionary
Algorithms, Proceedings of 10th Online World Conference in Soft Computing in
Industrial Applications, pp. 189-193, ISBN 3-540-29123-7
(http://www.cranfield.ac.uk/wsc10/), September 2005, Springer, Berlin

Gaspar-Cunha, A. & Covas, J. (2008). Robustness in Multi-Objective Optimization using
Evolutionary Algorithms, Computational Optimization and Applications, Vol. 39, No.
1, (January 2008) 75-96, ISBN 0926-6003

Goldberg, D. & Richardson, J. (1987). Genetic Algorithms with Sharing for Multimodal
Function Optimization, Proceedings of Second Int. Conf. on Genetic Algorithms, pp. 41-
49, 0-8058-0158-8, Cambridge, July 1985, Lawrence Erlbaum Associates, Mahwah

Goldberg, D. (1989). Genetic Algorithms in Search, Optimisation and Machine Learning,
Addison-Wesley, 0201157675, Reading

Guanawan, S. & Azarm, S. (2005). Multi-Objective Robust Optimization using a Sensitivity
Region Concept, Struct. Multidisciplinar Optimization, Vol. 29, No. 1 (2005) 50-60

Horn, J.; Nafpliotis, N. & Goldberg, D. (1994), A Niched Pareto Genetic Algorithm for
Multiobjective Optimization, Proceedings of First IEEE Conference on Evolutionary
Computation, pp. 82-87, Jun 1994.

Jin, Y. & Sendhoff, B. (2003). Trade-Off between Performance and Robustness: An
Evolutionary Multiobjective Approach, Proceedings of Second Int. Conf. on Evol.

 Advances in Evolutionary Algorithms

274

4.4 Effect of the type of problem
The results obtained for TP2 to TP7, using ε = 0.1, are presented in Figure 12. The algorithm
is able to deal with the various types of test problems proposed. TP2 is a difficult test
problem due to the need to converge to the three different sections with the same
robustness. TP3 and TP4 show that the algorithm proposed can converge to the most robust
region even for problems with 30 parameters or of discontinuous nature. Finally, TP6 and
TP7 show that the methodology proposed is able to deal with more than two dimensions
with a good convergence, which is not generally the case for current optimization
algorithms available.

5. Conclusions
This work presented and tested an optimization procedure that takes into account
robustness in multi-objective optimization. It was shown that the method is able to deal
with different types of problems and with different degrees of complexity.
The extension of the robust Pareto frontier can be controlled by the Decision Maker by
making use of a dispersion parameter. The effectiveness of this parameter was
demonstrated in a number of test problems.

6. References
Arrold, D.V. & Beyer, H.-G. (2003). A Comparison of Evolution Strategies with Other Direct

Search Methods in the Presence of Noise, Computational Optimization and
Applications, Vol. 24, No. 1 (2003) 135-159

Bagchi, T.P. (2003). Multiobjective Robust Design by Genetic Algorithms, Materials and
Manufacturing Processes, Vol. 18, No. 3 (2003) 341-354

Barrico, C. & Antunes, C.H. (2006). Robustness Analysis in Multi-Objective Optimization
Using a Degree of Robustness Concept, Proceedings of the IEEE Congress on
Evolutionary Computation, pp. 6778-6783, Vancouver, Canada, July 2006, IEEE

Chen, W.; Sahai, A.; Messac, A. & Sundararaj, G. (1999). Physical Programming for Robust
Design, Proceedings of 40th Structures, Structural Dynamics and Materials Conference,
St. Louis, USA, April 1999

Coello, C.; Veldhuizen, D. & Lamont, G. (2002). Evolutionary Algorithms for Solving Multi-
Objective Problems, Kluwer, ISBN 0306467623, Norwell

Das, I. (1997). Nonlinear Multicriteria Optimization and Robust Optimality, Rice University, PhD
Thesis, Houston

Deb K. (2001). Multi-Objective Optimisation Using Evolutionary Algorithms, Wiley, ISBN 0-471-
87339-X, Chichester

Deb, K.; Pratap, A.; Agrawal, S. & Meyarivan, T. (2002). A Fast and Elitist Multi-Objective
Genetic Algorithm: NSGAII, IEE Transactions on Evolutionary Computation, Vol. 6,
No. 2 (April 2002) 182-197, ISBN 1089-778X.

Ded, K.; Thiele, L.,; Laumanns, M. & Zitzler E. (2002). Scalable Multi-Objective Optimization
Test Problems, IEEE Transactions on Evolutionary Computation, Vol. 1, (May 2002)
825-830, ISBN 0-7803-7282-4

Deb, K. & Gupta, H. (2005). Searching for robust Pareto-optimal solutions in multi-objective
optimization, Proceedings of the Third International Conference on Evolutionary Multi-

Evolutionary Multi-Objective Robust Optimization

275

Criterion Optimization, pp. 150-164, ISBN 978-3-540-24983-2, Guanajuato, Mexico,
January 2005, Springer, Berlin

Deb, K. & Gupta, H. (2006). Introducing Robustness in Multi-objective Optimization.
Evolutionary Computation, Vol. 14, No. 4, (December 2006) 463-494, 1063-6560.

Du, X. & Chen, W. (1998). Towards a Better Understanding of Modelling Feasibility
Robustness in Engineering Design, Proceedings of DETC 99, Las Vegas, USA,
September 1999, ASM

Ferreira, J.C.; Fonseca, C.M. & Gaspar-Cunha, A. (2008) Methodology to Select Solutions for
Multi-Objective Optimization Problems: Weight Stress Function Method, Applied
Intelligence, Accepted for publication (2008)

Fonseca, C.; Fleming, P. (1993). Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization, Proceedings of Fifth International
Conference on Genetic Algorithms, pp. 416-423, University of Illinois, July 1993,
Morgan Kauffman, Urbana-Champaign

Fonseca, C. & Fleming, P. (1998). Multiobjective optimization and multiple constraint
handling with evolutionary algorithms, part I: A unified formulation, IEEE
Transactions on Systems, Man and Cybernetics, Vol. 28, No. 1 (1998) 26-37

Gaspar-Cunha, A.; Oliveira, P. & Covas, J. (1997). Use of Genetic Algorithms in Multicriteria
Optimization to Solve Industrial Problems, Proceedings of Seventh Int. Conf. on
Genetic Algorithms, pp. 682-688, Michigan, USA.

Gaspar-Cunha, A. (2000). Modelling and Optimisation of Single Screw Extrusion, University of
Minho, PhD Thesis, Guimarães, Portugal

Gaspar-Cunha, A. & Covas, J. (2004). RPSGAe - A Multiobjective Genetic Algorithm with
Elitism: Application to Polymer Extrusion, In: Metaheuristics for Multiobjective
Optimisation, Lecture Notes in Economics and Mathematical Systems, Gandibleux, X.;
Sevaux, M.; Sörensen, K.; T'kindt, V. (Eds.), 221-249, Springer, ISBN 3-540-20637-X,
Berlin

Gaspar-Cunha, A. & Covas, J. (2005). Robustness using Multi-Objective Evolutionary
Algorithms, Proceedings of 10th Online World Conference in Soft Computing in
Industrial Applications, pp. 189-193, ISBN 3-540-29123-7
(http://www.cranfield.ac.uk/wsc10/), September 2005, Springer, Berlin

Gaspar-Cunha, A. & Covas, J. (2008). Robustness in Multi-Objective Optimization using
Evolutionary Algorithms, Computational Optimization and Applications, Vol. 39, No.
1, (January 2008) 75-96, ISBN 0926-6003

Goldberg, D. & Richardson, J. (1987). Genetic Algorithms with Sharing for Multimodal
Function Optimization, Proceedings of Second Int. Conf. on Genetic Algorithms, pp. 41-
49, 0-8058-0158-8, Cambridge, July 1985, Lawrence Erlbaum Associates, Mahwah

Goldberg, D. (1989). Genetic Algorithms in Search, Optimisation and Machine Learning,
Addison-Wesley, 0201157675, Reading

Guanawan, S. & Azarm, S. (2005). Multi-Objective Robust Optimization using a Sensitivity
Region Concept, Struct. Multidisciplinar Optimization, Vol. 29, No. 1 (2005) 50-60

Horn, J.; Nafpliotis, N. & Goldberg, D. (1994), A Niched Pareto Genetic Algorithm for
Multiobjective Optimization, Proceedings of First IEEE Conference on Evolutionary
Computation, pp. 82-87, Jun 1994.

Jin, Y. & Sendhoff, B. (2003). Trade-Off between Performance and Robustness: An
Evolutionary Multiobjective Approach, Proceedings of Second Int. Conf. on Evol.

 Advances in Evolutionary Algorithms

276

Multi-Objective Optimization, pp. 237-251, ISBN 3540018697, Faro, Portugal, April
2003, Springer

Jin, Y. & Branke, J. (2005). Evolutionary Optimization in Uncertain Environments – A
Survey, IEEE Transactions on Evolutionary Computation, Vol. 9, No. 3, (June 2005)
303-317, 1089-778X

Kazancioglu, E.; Wu, G.; Ko, J.; Bohac, S.; Filipi, Z.; Hu, S.; Assanis, D. & Saitou, K. (2003).
Robust Optimization of an Automobile Valvetrain using a Multiobjective Genetic
Algorithm, Proceedings of DETC’03, pp. 1-12, Chicago, USA, September 2003, ASME

Knowles, J. & Corne, D. (2000). Approximating the Non-dominated Front using the Pareto
Archived Evolutionary Strategy, Evolutionary Computation, Vol. 8, No. 2, (June 2000)
149-172, 1063-6560

Moshaiov, A. & Avigrad, G. (2006). Concept-Based IEC for Multi-Objective Search with
Robustness to Human Preference Uncertainty, Proceedings of the IEEE Congress on
Evolutionary Computation, pp. 6785-6791, Vancouver, Canada, July 2006, IEEE

Olvander, J. (2005). Robustness Considerations in Multi-Objective Optimal Design, J. of
Engineering Design, Vol. 16, No. 5 (October 2005) 511-523

Paenk I., Branke, J. & Jin, Y. (2006). Efficient Search for Robust Solutions by Means of
Evolutionary Algorithms and Fitness Approximation, IEEE Transations on
Evolutionary Computation, Vol. 10, No. 4 (August 2006) 405-420

Kouvelis, P. & Sayin, S. (2002). Algorithm Robust for the Bicriteria Discrete Optimization
Problem, Annals of Operational Research, Vol. 147, No. 1, (October 2006) 71–85

Ray, T. (2002). Constrained Robust Optimal Design using a Multiobjective Evolutionary
Algorithm, Proceedings of the 2002 Congress on Evolutionary Computation, 2002, pp.
419-424, ISBN 0-7803-7282-4, Honolulu, May 2002, IEEE

Ribeiro, J.L. & Elsayed, E.A. (1995). A case Study on Process Optimization using the
Gradient Loss Funstion, Int. J. Prod. Res., Vol. 33, No. 12, 3233-3248

Roseman, M. & Gero, J. (1985). Reducing the Pareto Optimal Set in Multicriteria
Optimization, Engineering Optimization, Vol. 8, No. 3, 189-206, 0305-215X

Schaffer, J. (1984). Some Experiments in Machine Learning Using Vector Evaluated Genetic
Algorithms, Vanderbilt University, Ph. D. Thesis, Nashville

Sörensen, K. (2004). Finding Robust Solutions Using Local Search, J. of Mathematical
Modelling and Algorithms, Vol. 3, No. 1, 89-103

Srinivas, N. & Deb, K. (1995). Multiobjective Optimization Using Nondominated Sorting in
Genetic Algorithms, Evolutionary Computation, Vol. 2, No.3, 221-248

Tsutsui, S. & Ghosh, A. (1997). Genetic Algorithms with a Robust Solution Scheme, IEEE
Transactions on Evolutionary Computation, Vol. 1, No. 3, (September 1997) 201-208,
1089-778X

Wiesmann, D.; Hammel, U. & Bäck, T. (1998). Robust Design of Multilayer Optical Coatings
by Means of Evolutionary Algorithms, IEEE Transactions on Evolutionary
Computation, Vol. 2, No. 4, (November 1998) 162-167, 4235.738986

Zitzler, E.; Deb K. & Thiele, L. (2000). Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results, Evolutionary Computation, Vol. 8, No. 2, (June 2000)
173-195, 1063-6560.

Zitzler, E.; Laumanns, M. & Thiele, L. (2001). SPEA2: Improving the Strength Pareto
Evolutionary Algorithm, TIK report, No. 103, Swiss Federal Institute of
Technology, Zurich, Switzerland.

Evolutionary Multi-Objective Robust Optimization

277

Fig. 11. Influence of dispersion parameter for TP1

ε=0.1 ε=0.2

ε=0.3 ε=0.4

ε=0.6 ε=1.0

 Advances in Evolutionary Algorithms

276

Multi-Objective Optimization, pp. 237-251, ISBN 3540018697, Faro, Portugal, April
2003, Springer

Jin, Y. & Branke, J. (2005). Evolutionary Optimization in Uncertain Environments – A
Survey, IEEE Transactions on Evolutionary Computation, Vol. 9, No. 3, (June 2005)
303-317, 1089-778X

Kazancioglu, E.; Wu, G.; Ko, J.; Bohac, S.; Filipi, Z.; Hu, S.; Assanis, D. & Saitou, K. (2003).
Robust Optimization of an Automobile Valvetrain using a Multiobjective Genetic
Algorithm, Proceedings of DETC’03, pp. 1-12, Chicago, USA, September 2003, ASME

Knowles, J. & Corne, D. (2000). Approximating the Non-dominated Front using the Pareto
Archived Evolutionary Strategy, Evolutionary Computation, Vol. 8, No. 2, (June 2000)
149-172, 1063-6560

Moshaiov, A. & Avigrad, G. (2006). Concept-Based IEC for Multi-Objective Search with
Robustness to Human Preference Uncertainty, Proceedings of the IEEE Congress on
Evolutionary Computation, pp. 6785-6791, Vancouver, Canada, July 2006, IEEE

Olvander, J. (2005). Robustness Considerations in Multi-Objective Optimal Design, J. of
Engineering Design, Vol. 16, No. 5 (October 2005) 511-523

Paenk I., Branke, J. & Jin, Y. (2006). Efficient Search for Robust Solutions by Means of
Evolutionary Algorithms and Fitness Approximation, IEEE Transations on
Evolutionary Computation, Vol. 10, No. 4 (August 2006) 405-420

Kouvelis, P. & Sayin, S. (2002). Algorithm Robust for the Bicriteria Discrete Optimization
Problem, Annals of Operational Research, Vol. 147, No. 1, (October 2006) 71–85

Ray, T. (2002). Constrained Robust Optimal Design using a Multiobjective Evolutionary
Algorithm, Proceedings of the 2002 Congress on Evolutionary Computation, 2002, pp.
419-424, ISBN 0-7803-7282-4, Honolulu, May 2002, IEEE

Ribeiro, J.L. & Elsayed, E.A. (1995). A case Study on Process Optimization using the
Gradient Loss Funstion, Int. J. Prod. Res., Vol. 33, No. 12, 3233-3248

Roseman, M. & Gero, J. (1985). Reducing the Pareto Optimal Set in Multicriteria
Optimization, Engineering Optimization, Vol. 8, No. 3, 189-206, 0305-215X

Schaffer, J. (1984). Some Experiments in Machine Learning Using Vector Evaluated Genetic
Algorithms, Vanderbilt University, Ph. D. Thesis, Nashville

Sörensen, K. (2004). Finding Robust Solutions Using Local Search, J. of Mathematical
Modelling and Algorithms, Vol. 3, No. 1, 89-103

Srinivas, N. & Deb, K. (1995). Multiobjective Optimization Using Nondominated Sorting in
Genetic Algorithms, Evolutionary Computation, Vol. 2, No.3, 221-248

Tsutsui, S. & Ghosh, A. (1997). Genetic Algorithms with a Robust Solution Scheme, IEEE
Transactions on Evolutionary Computation, Vol. 1, No. 3, (September 1997) 201-208,
1089-778X

Wiesmann, D.; Hammel, U. & Bäck, T. (1998). Robust Design of Multilayer Optical Coatings
by Means of Evolutionary Algorithms, IEEE Transactions on Evolutionary
Computation, Vol. 2, No. 4, (November 1998) 162-167, 4235.738986

Zitzler, E.; Deb K. & Thiele, L. (2000). Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results, Evolutionary Computation, Vol. 8, No. 2, (June 2000)
173-195, 1063-6560.

Zitzler, E.; Laumanns, M. & Thiele, L. (2001). SPEA2: Improving the Strength Pareto
Evolutionary Algorithm, TIK report, No. 103, Swiss Federal Institute of
Technology, Zurich, Switzerland.

Evolutionary Multi-Objective Robust Optimization

277

Fig. 11. Influence of dispersion parameter for TP1

ε=0.1 ε=0.2

ε=0.3 ε=0.4

ε=0.6 ε=1.0

 Advances in Evolutionary Algorithms

278

Fig. 12. Results for TP2 to TP7 (ε=0.1)

TP2 TP3

TP4 TP5

TP6 TP7

14

Improving Interpretability of Fuzzy Models
Using Multi-Objective

Neuro-Evolutionary Algorithms
Gracia Sánchez Carpena, José Francisco Sánchez Ruiz,

 José Manuel Alcaraz Muñoz and Fernando Jiménez
University of Murcia

Spain

1. Introduction
Evolutionary Algorithms (EA) (Goldberg, 1989) have been successfully applied to learn
fuzzy models (Ishibuchi et al., 1999). EAs have been also combined with other techniques
like fuzzy clustering (Gómez-Skarmeta & Jiménez 1999) and neural networks (Russo, 1998).
This has resulted in many complex algorithms and, as recognized in (Valente de Oliveira,
1999) and in (Setnes et al., 1998), often interpretability of the resulting rule base is not
considered to be of importance. In such cases, the fuzzy model becomes a black-box, and
one can question the rationale for applying fuzzy modeling instead of other techniques.
On the other hand, EAs have been recognized as appropriate techniques for multi-objective
optimization because they perform a search for multiple solutions in parallel (Coello et al.,
2002) (Deb, 2001). Current evolutionary approaches for multi-objective optimization consist
of multi-objective EAs based on the Pareto optimality notion, in which all objective are
simultaneously optimized to find multiple non-dominated solutions in a single run of the
EA. The decision maker can then choose the most appropriate solution according to the
current decision environment at the end of the EA run. Moreover, if the decision
environment changes, it is not always necessary to run the EA again. Another solution may
be chosen out of the set of non-dominated solutions that has already been obtained.
The multi-objective evolutionary approach can also be considered from the fuzzy modeling
perspective (Ishibuchi et al., 1997). Current research lines in fuzzy modeling mostly tackle
improving accuracy in descriptive models, and improving interpretability in approximative
models (Casillas et al., 2003). This chapter deals with the second issue approaching the
problem by means of multi-objective optimization in which accuracy and interpretability
criteria are simultaneously considered.
In this chapter, we propose a multi-objective neuro-evolutionary optimization approach to
generate TSK fuzzy models considering accuracy and interpretability criteria. This approach
allows a linguistic approximation of the fuzzy models. The rule-based fuzzy model and
criteria taken into account for fuzzy modeling are explained in the text, where a multi-
objective constrained optimization model is proposed.
Two different multi-objective evolutionary algorithms (MONEA, ENORA-II) are proposed
and compared with the well-known algotithm NSGA-II (Deb et al., 2000) for the

 Advances in Evolutionary Algorithms

278

Fig. 12. Results for TP2 to TP7 (ε=0.1)

TP2 TP3

TP4 TP5

TP6 TP7

14

Improving Interpretability of Fuzzy Models
Using Multi-Objective

Neuro-Evolutionary Algorithms
Gracia Sánchez Carpena, José Francisco Sánchez Ruiz,

 José Manuel Alcaraz Muñoz and Fernando Jiménez
University of Murcia

Spain

1. Introduction
Evolutionary Algorithms (EA) (Goldberg, 1989) have been successfully applied to learn
fuzzy models (Ishibuchi et al., 1999). EAs have been also combined with other techniques
like fuzzy clustering (Gómez-Skarmeta & Jiménez 1999) and neural networks (Russo, 1998).
This has resulted in many complex algorithms and, as recognized in (Valente de Oliveira,
1999) and in (Setnes et al., 1998), often interpretability of the resulting rule base is not
considered to be of importance. In such cases, the fuzzy model becomes a black-box, and
one can question the rationale for applying fuzzy modeling instead of other techniques.
On the other hand, EAs have been recognized as appropriate techniques for multi-objective
optimization because they perform a search for multiple solutions in parallel (Coello et al.,
2002) (Deb, 2001). Current evolutionary approaches for multi-objective optimization consist
of multi-objective EAs based on the Pareto optimality notion, in which all objective are
simultaneously optimized to find multiple non-dominated solutions in a single run of the
EA. The decision maker can then choose the most appropriate solution according to the
current decision environment at the end of the EA run. Moreover, if the decision
environment changes, it is not always necessary to run the EA again. Another solution may
be chosen out of the set of non-dominated solutions that has already been obtained.
The multi-objective evolutionary approach can also be considered from the fuzzy modeling
perspective (Ishibuchi et al., 1997). Current research lines in fuzzy modeling mostly tackle
improving accuracy in descriptive models, and improving interpretability in approximative
models (Casillas et al., 2003). This chapter deals with the second issue approaching the
problem by means of multi-objective optimization in which accuracy and interpretability
criteria are simultaneously considered.
In this chapter, we propose a multi-objective neuro-evolutionary optimization approach to
generate TSK fuzzy models considering accuracy and interpretability criteria. This approach
allows a linguistic approximation of the fuzzy models. The rule-based fuzzy model and
criteria taken into account for fuzzy modeling are explained in the text, where a multi-
objective constrained optimization model is proposed.
Two different multi-objective evolutionary algorithms (MONEA, ENORA-II) are proposed
and compared with the well-known algotithm NSGA-II (Deb et al., 2000) for the

 Advances in Evolutionary Algorithms

280

approximation of a non linear system (studied by Wang & Yen, 1998, 1999). The results of
the experiments performed for this standard test problem show a real ability and
effectiveness of the proposed approach to find accurate and interpretable TSK fuzzy models.

2. Improving interpretability in TSK fuzzy models
2.1 Fuzzy models identification
We consider Takagi-Sugeno-Kang (TSK) type rule-based models (Takagi & Sugeno, 1985)
where rule consequents are taken to be linear functions of the inputs. The rules have,
therefore, the following expression:

()

1 1

1 1 1

:
=

i i n in

i i in n i n

R If x is A and and x is A
then y x xθ θ θ ++ + +

…
…

where:
Mi ,1,= … , M is the number of rules,

()nxx ,,= 1 …x , xj∈[lj uj]⊂ ℜ is the input vector (nj ,1,= …),
θij ∈[l, u] ⊂ ℜ are the consequent parameters (1,1,= +nj …),

iy is the output of the ith rule, and

ijA are fuzzy sets defined in the antecedent space by membership functions []0,1: →jijA Xμ ,

being jX the domain of the input variable jx (nj ,1,= …).

The total output of the model is computed by aggregating the individual contributions of
each rule:

() ()

()x

xx

i

M

i

ii

M

i

f

y

μ

μ

∑

∑

1=

1== (1)

where ()xiμ is the normalized firing strength of the ith rule:

 () ()jijA

n

j
i xμμ ∏

1=

=x (2)

and ()xif is the function defined in the consequent of the ith rule:

 () ()111= ++++ nininii xxf θθθ …x (3)

Each fuzzy set ijA is described by a symmetric gaussian membership function:

 ()
2

1= exp
2

j ij
A jij

ij

x c
xμ

σ

⎡ ⎤⎛ ⎞−
⎢ ⎥− ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (4)

where:

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

281

[]jjij ulc ,∈ is the center,

0>ijσ is the variance,

Mi ,1,= … and
nj ,1,= … .

This fuzzy model can be defined by a radial basis function neural network. The number of
neurons in the hidden layer of an RBF neural network is equal to the number of rules in the
fuzzy model. The firing strength of the ith neuron in the hidden layer matches the firing
strength of the ith rule in the fuzzy model. We apply a symmetric gaussian membership
function defined by two parameters, the center c and the variance σ. Therefore, each neuron
in the hidden layer has these two parameters that define its firing strength value.
The neurons in the output layer perform the computations for the first order linear function
described in the consequents of the fuzzy model, therefore, the ith neuron of the output
layer has the parameters ()1)(1 ,,= +niii θθ …θ that correspond to the linear function defined in

the ith rule of the fuzzy model.

2.2 Criteria for fuzzy modeling
We consider three main criteria: (i) accuracy, (ii) transparency, and (iii) compactness. It is
necessary to define quantitative measures for these criteria by means of appropriate
objective functions which define the complete fuzzy model identification.
Accuracy.
The accuracy of a model can be measured with the mean squared error:

 ()2
1=

1= kk

N

k

ty
N

MSE −∑ (5)

where:
ky is the model output for the kth input vector,

kt is the desired output for the kth input vector, and
N is the number of data samples.
Transparency.
For the second criterion, transparency, there are many possible measures, however we
consider one of the most used, the similarity (Setnes, 1995). The similarity S among distinct
fuzzy sets in each variable can be expressed as follows:

 ()
1,...,
1,...,
1,...,

= ,max ij kji M
j n
k M
A Aij kj

S S A A
=
=
=
≠

 (6)

Similarity between two different fuzzy sets A and B can be measured using different
criteria. In our case we use the following measure:

 ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ∩∩

B
BA

A
BA

BAS ,=, max (7)

 Advances in Evolutionary Algorithms

280

approximation of a non linear system (studied by Wang & Yen, 1998, 1999). The results of
the experiments performed for this standard test problem show a real ability and
effectiveness of the proposed approach to find accurate and interpretable TSK fuzzy models.

2. Improving interpretability in TSK fuzzy models
2.1 Fuzzy models identification
We consider Takagi-Sugeno-Kang (TSK) type rule-based models (Takagi & Sugeno, 1985)
where rule consequents are taken to be linear functions of the inputs. The rules have,
therefore, the following expression:

()

1 1

1 1 1

:
=

i i n in

i i in n i n

R If x is A and and x is A
then y x xθ θ θ ++ + +

…
…

where:
Mi ,1,= … , M is the number of rules,

()nxx ,,= 1 …x , xj∈[lj uj]⊂ ℜ is the input vector (nj ,1,= …),
θij ∈[l, u] ⊂ ℜ are the consequent parameters (1,1,= +nj …),

iy is the output of the ith rule, and

ijA are fuzzy sets defined in the antecedent space by membership functions []0,1: →jijA Xμ ,

being jX the domain of the input variable jx (nj ,1,= …).

The total output of the model is computed by aggregating the individual contributions of
each rule:

() ()

()x

xx

i

M

i

ii

M

i

f

y

μ

μ

∑

∑

1=

1== (1)

where ()xiμ is the normalized firing strength of the ith rule:

 () ()jijA

n

j
i xμμ ∏

1=

=x (2)

and ()xif is the function defined in the consequent of the ith rule:

 () ()111= ++++ nininii xxf θθθ …x (3)

Each fuzzy set ijA is described by a symmetric gaussian membership function:

 ()
2

1= exp
2

j ij
A jij

ij

x c
xμ

σ

⎡ ⎤⎛ ⎞−
⎢ ⎥− ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (4)

where:

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

281

[]jjij ulc ,∈ is the center,

0>ijσ is the variance,

Mi ,1,= … and
nj ,1,= … .

This fuzzy model can be defined by a radial basis function neural network. The number of
neurons in the hidden layer of an RBF neural network is equal to the number of rules in the
fuzzy model. The firing strength of the ith neuron in the hidden layer matches the firing
strength of the ith rule in the fuzzy model. We apply a symmetric gaussian membership
function defined by two parameters, the center c and the variance σ. Therefore, each neuron
in the hidden layer has these two parameters that define its firing strength value.
The neurons in the output layer perform the computations for the first order linear function
described in the consequents of the fuzzy model, therefore, the ith neuron of the output
layer has the parameters ()1)(1 ,,= +niii θθ …θ that correspond to the linear function defined in

the ith rule of the fuzzy model.

2.2 Criteria for fuzzy modeling
We consider three main criteria: (i) accuracy, (ii) transparency, and (iii) compactness. It is
necessary to define quantitative measures for these criteria by means of appropriate
objective functions which define the complete fuzzy model identification.
Accuracy.
The accuracy of a model can be measured with the mean squared error:

 ()2
1=

1= kk

N

k

ty
N

MSE −∑ (5)

where:
ky is the model output for the kth input vector,

kt is the desired output for the kth input vector, and
N is the number of data samples.
Transparency.
For the second criterion, transparency, there are many possible measures, however we
consider one of the most used, the similarity (Setnes, 1995). The similarity S among distinct
fuzzy sets in each variable can be expressed as follows:

 ()
1,...,
1,...,
1,...,

= ,max ij kji M
j n
k M
A Aij kj

S S A A
=
=
=
≠

 (6)

Similarity between two different fuzzy sets A and B can be measured using different
criteria. In our case we use the following measure:

 ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ∩∩

B
BA

A
BA

BAS ,=, max (7)

 Advances in Evolutionary Algorithms

282

The value of S is, therefore, an aggregated similarity measure for the fuzzy rule-based
model with the objective to minimize the maximum similarity between the fuzzy sets in
each input domain.
Compactness.
Finally, measures for the third criterion, the compactness, are the number of rules, (M) and
the number of different fuzzy sets (L) of the fuzzy model. It is assumed that models with a
small number of rules and fuzzy sets are compact.
Table 1 summarizes the three criteria considered for the fuzzy models and the measures
defined for each criterion.

Criteria Measures
Accuracy MSE

Transparency S
Compactness M , L

Table 1. Criteria for the fuzzy models and their measures

2.3 An optimization model for fuzzy modeling
According to the previous remarks, we propose the following multi-objective constrained
optimization model:

1

2

1 : 0s

Minimize f MSE
Minimize f M
Subject to g S g

=
=

− ≤

 (8)

where gs∈[0, 1] is a threshold for similarity defined by the decision maker (we use gs = 0,25).
An “a posteriori” articulation of preferences applied to the non-dominated solutions of the
problem is used to obtain the final compromise solution.

3. Multi-objective neuro-evolutionary algorithms
We propose a hybrid learning system to find multiple Pareto-optimal solutions
simultaneously, considering accuracy, transparency and compactness criteria. We study
different multi-objective evolutionary algorithms to evolve the structure and parameters of
TSK-type rule sets, together with gradient-based learning to train rule consequents.
Additionally, a rule set simplification operator is used to encourage rule base transparency
and compactness. This method may be applied to a wide variety of classification and control
problems.
Considering the multi-objective constrained optimization model (8), we use three Pareto-
based multi-objective evolutionary algorithms: MONEA, ENORA-II and NSGA-II. MONEA
and ENORA-II are algorithms proposed by authors in (Gómez-Skarmeta et al., 2007), and
(Sánchez et al., 2007) respectively, while NSGA-II is the well-known multi-objective EA
proposed by Deb in (Deb, 2001).
The main common characteristics are the following:
• The algorithms are Pareto-based multi-objective EAs for fuzzy modeling; that is, they

have been designed to find, in a single run, multiple non-dominated solutions
according to the Pareto decision strategy. There is no dependence between the objective

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

283

functions and the design of the EAs; thus, any objective function can easily be
incorporated.

• Constraints with respect to the fuzzy model structure are satisfied by incorporating
specific knowledge about the problem. The initialization procedure and variation
operators always generate individuals that satisfy these constraints.

• The EAs have a variable-length, real-coded representation. Each individual of a
population contains a variable number of rules between 1 and max, where max is
defined by a decision maker. Fuzzy numbers in the antecedents and the parameters in
the consequent are coded by floating-point numbers.

• The initial population is generated randomly with a uniform distribution within the
boundaries of the search space, defined by the learning data and model constraints.

• The EAs search among rule sets treated with the technique described in Section 3.6 and
trained as defined in Section 3.3, which is an added ad hoc technique for transparency,
compactness, and accuracy.

Table 2 summarizes common and specific characteristics of the algorithms MONEA, NSGA-
II and ENORA-II.

Common characteristics
Pittsburgh approach, real-coded representation.
Training of the RBF network consequents.
Constraint-handling technique.
Variation operators.
Rule-set simplification technique.
Elitist generational replacement strategy.
Specific characteristics
MONEA: Preselection over 10 children,
 steady-state replacement (n = 2).
ENORA-II: Non-dominated radial slots sorting.
NSGA-II: Non-dominated crowded sorting.

Table 2. Common and specific characteristics of MONEA, ENORA-II and NSGA-II.

3.1 Representation of solutions
The EAs have a variable-length, real-coded representation using a Pittsburgh approach. An
individual I for this problem is a rule set of M (between 1 and max, where max is defined
by a decision maker) rules defined by the weights of the RBF neural network. With n input
variables, we have for each individual the following parameters:
• Parameters of the fuzzy sets ijA :

centers ijc and variances ijσ , Mi ,1,= … , nj ,1,= …

• Coefficients for the linear function of the consequents:

ijθ , Mi ,1,= … , 1,1,= +nj …

 Advances in Evolutionary Algorithms

282

The value of S is, therefore, an aggregated similarity measure for the fuzzy rule-based
model with the objective to minimize the maximum similarity between the fuzzy sets in
each input domain.
Compactness.
Finally, measures for the third criterion, the compactness, are the number of rules, (M) and
the number of different fuzzy sets (L) of the fuzzy model. It is assumed that models with a
small number of rules and fuzzy sets are compact.
Table 1 summarizes the three criteria considered for the fuzzy models and the measures
defined for each criterion.

Criteria Measures
Accuracy MSE

Transparency S
Compactness M , L

Table 1. Criteria for the fuzzy models and their measures

2.3 An optimization model for fuzzy modeling
According to the previous remarks, we propose the following multi-objective constrained
optimization model:

1

2

1 : 0s

Minimize f MSE
Minimize f M
Subject to g S g

=
=

− ≤

 (8)

where gs∈[0, 1] is a threshold for similarity defined by the decision maker (we use gs = 0,25).
An “a posteriori” articulation of preferences applied to the non-dominated solutions of the
problem is used to obtain the final compromise solution.

3. Multi-objective neuro-evolutionary algorithms
We propose a hybrid learning system to find multiple Pareto-optimal solutions
simultaneously, considering accuracy, transparency and compactness criteria. We study
different multi-objective evolutionary algorithms to evolve the structure and parameters of
TSK-type rule sets, together with gradient-based learning to train rule consequents.
Additionally, a rule set simplification operator is used to encourage rule base transparency
and compactness. This method may be applied to a wide variety of classification and control
problems.
Considering the multi-objective constrained optimization model (8), we use three Pareto-
based multi-objective evolutionary algorithms: MONEA, ENORA-II and NSGA-II. MONEA
and ENORA-II are algorithms proposed by authors in (Gómez-Skarmeta et al., 2007), and
(Sánchez et al., 2007) respectively, while NSGA-II is the well-known multi-objective EA
proposed by Deb in (Deb, 2001).
The main common characteristics are the following:
• The algorithms are Pareto-based multi-objective EAs for fuzzy modeling; that is, they

have been designed to find, in a single run, multiple non-dominated solutions
according to the Pareto decision strategy. There is no dependence between the objective

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

283

functions and the design of the EAs; thus, any objective function can easily be
incorporated.

• Constraints with respect to the fuzzy model structure are satisfied by incorporating
specific knowledge about the problem. The initialization procedure and variation
operators always generate individuals that satisfy these constraints.

• The EAs have a variable-length, real-coded representation. Each individual of a
population contains a variable number of rules between 1 and max, where max is
defined by a decision maker. Fuzzy numbers in the antecedents and the parameters in
the consequent are coded by floating-point numbers.

• The initial population is generated randomly with a uniform distribution within the
boundaries of the search space, defined by the learning data and model constraints.

• The EAs search among rule sets treated with the technique described in Section 3.6 and
trained as defined in Section 3.3, which is an added ad hoc technique for transparency,
compactness, and accuracy.

Table 2 summarizes common and specific characteristics of the algorithms MONEA, NSGA-
II and ENORA-II.

Common characteristics
Pittsburgh approach, real-coded representation.
Training of the RBF network consequents.
Constraint-handling technique.
Variation operators.
Rule-set simplification technique.
Elitist generational replacement strategy.
Specific characteristics
MONEA: Preselection over 10 children,
 steady-state replacement (n = 2).
ENORA-II: Non-dominated radial slots sorting.
NSGA-II: Non-dominated crowded sorting.

Table 2. Common and specific characteristics of MONEA, ENORA-II and NSGA-II.

3.1 Representation of solutions
The EAs have a variable-length, real-coded representation using a Pittsburgh approach. An
individual I for this problem is a rule set of M (between 1 and max, where max is defined
by a decision maker) rules defined by the weights of the RBF neural network. With n input
variables, we have for each individual the following parameters:
• Parameters of the fuzzy sets ijA :

centers ijc and variances ijσ , Mi ,1,= … , nj ,1,= …

• Coefficients for the linear function of the consequents:

ijθ , Mi ,1,= … , 1,1,= +nj …

 Advances in Evolutionary Algorithms

284

3.2 Initial population
The population is initialized by generating individuals with different numbers of rules. Each
individual is generated randomly with a uniform distribution within the boundaries of the
search space, defined by the learning data and trained with the gradient technique described
in subsection 3.3.
An individual with M rules is generated with the following procedure:
1. For each fuzzy set ijA (Mi ,1,= … , nj ,1,= …), generate two real values: ijc in the

interval []jj ul , and the parameter of the gaussian fuzzy set , ijσ .

2. Parameters ijθ (Mi ,1,= … , 1,1,= +nj …) are random real values in the interval []ul, .

3. The individual is treated with the technique to improve transparency and compactness
describe in subsection 3.6.

4. The individual is trained using the gradient technique described in subsection 3.3.

3.3 Training of the RBF neural networks
In RBF neural networks, each neuron in the hidden layer can be associated with a fuzzy
rule; therefore RBF neural networks are suitable to describe fuzzy models. The RBF neural
networks associated with the fuzzy models can be trained with a gradient method to obtain
more accuracy. However, in order to maintain the transparency and compactness of the
fuzzy sets, only the consequent parameters are trained. The training algorithm
incrementally updates the parameters based on the currently presented training pattern. The
network parameters are updated by applying the gradient descent method to the MSE error
function. The error function for the ith training pattern is given by the MSE function error
defined in equation (5). The updating rule is the following:

ij

ijijijij
MSE
θ

ηθθηθθ
∂
∂

−Δ+← =

where:
Mi ,1,= … ,

1,1,= +nj … , and
η is the learning rate.
This rule is applied during a number of iterations (epochs). We use a value 0.01=η and a
number of 10 epochs. The negative gradients of MSE with respect to each parameter are
calculated in the following way:

 () ()1= = x , 1,...,ij k k i j
ij

MSE t y x j n
z

θ μ
θ

∂
Δ − − =

∂

 ()
() ()xikk

ni
ni z

ytMSE μ
θ

θ 1==
1

1)(−
∂
∂

−Δ
+

+

where:
Mi ,1,= … ,

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

285

()xiμ is the firing strength for the ith rule defined in equation (2), and

()xi
M

i
z μ∑ 1=

= .

3.4 Constraint-handling
The EAs use the following constraint handling rule proposed in (Jiménez et al., 2002). This
rule considers that an individual I is better than an individual J if any of the following
conditions is true:
• I is feasible and J is not
• I and J are both unfeasible, but SI < SJ
 (SI and SJ are similarity of I and J)
• I and J are feasible and I dominates J

3.5 Variation operators
As already said, an individual is a set of M rules. A rule is a collection of n fuzzy numbers
(antecedent) plus 1+n real parameters (consequent), and a fuzzy number is composed of
two real numbers. In order to achieve an appropriate exploitation and exploration of the
potential solutions in the search space, variation operators working in the different levels of
the individuals are necessary. In this way, we consider three levels of variation operators:
rule set level, rule level and parameter level.
Rule Set Level Variation Operators
Rule Set Crossover
This operator exchanges a random number of rules. Given two parents ()11

11 1
= MRRI … and

()22
12 2

= MRRI … generate two children:

 ()22
1

11
13 = ba RRRRI ……

 ()22
1

11
14 21

= MbMa RRRRI …… ++

with:

 ()1= Mrounda α

 ()()21= Mroundb α−
where α is a random real number in []0,1 . The number of rules of the children is therefore
in []21, MM .
Rule Set Increase Crossover
This operator increases the number of each child rules adding a random number of rules of
the other parent. Given two parents ()11

11 1
= MRRI … and ()22

12 2
= MRRI … generate two

children:

 ()22
1

11
13 1

= aM RRRRI ……

 Advances in Evolutionary Algorithms

284

3.2 Initial population
The population is initialized by generating individuals with different numbers of rules. Each
individual is generated randomly with a uniform distribution within the boundaries of the
search space, defined by the learning data and trained with the gradient technique described
in subsection 3.3.
An individual with M rules is generated with the following procedure:
1. For each fuzzy set ijA (Mi ,1,= … , nj ,1,= …), generate two real values: ijc in the

interval []jj ul , and the parameter of the gaussian fuzzy set , ijσ .

2. Parameters ijθ (Mi ,1,= … , 1,1,= +nj …) are random real values in the interval []ul, .

3. The individual is treated with the technique to improve transparency and compactness
describe in subsection 3.6.

4. The individual is trained using the gradient technique described in subsection 3.3.

3.3 Training of the RBF neural networks
In RBF neural networks, each neuron in the hidden layer can be associated with a fuzzy
rule; therefore RBF neural networks are suitable to describe fuzzy models. The RBF neural
networks associated with the fuzzy models can be trained with a gradient method to obtain
more accuracy. However, in order to maintain the transparency and compactness of the
fuzzy sets, only the consequent parameters are trained. The training algorithm
incrementally updates the parameters based on the currently presented training pattern. The
network parameters are updated by applying the gradient descent method to the MSE error
function. The error function for the ith training pattern is given by the MSE function error
defined in equation (5). The updating rule is the following:

ij

ijijijij
MSE
θ

ηθθηθθ
∂
∂

−Δ+← =

where:
Mi ,1,= … ,

1,1,= +nj … , and
η is the learning rate.
This rule is applied during a number of iterations (epochs). We use a value 0.01=η and a
number of 10 epochs. The negative gradients of MSE with respect to each parameter are
calculated in the following way:

 () ()1= = x , 1,...,ij k k i j
ij

MSE t y x j n
z

θ μ
θ

∂
Δ − − =

∂

 ()
() ()xikk

ni
ni z

ytMSE μ
θ

θ 1==
1

1)(−
∂
∂

−Δ
+

+

where:
Mi ,1,= … ,

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

285

()xiμ is the firing strength for the ith rule defined in equation (2), and

()xi
M

i
z μ∑ 1=

= .

3.4 Constraint-handling
The EAs use the following constraint handling rule proposed in (Jiménez et al., 2002). This
rule considers that an individual I is better than an individual J if any of the following
conditions is true:
• I is feasible and J is not
• I and J are both unfeasible, but SI < SJ
 (SI and SJ are similarity of I and J)
• I and J are feasible and I dominates J

3.5 Variation operators
As already said, an individual is a set of M rules. A rule is a collection of n fuzzy numbers
(antecedent) plus 1+n real parameters (consequent), and a fuzzy number is composed of
two real numbers. In order to achieve an appropriate exploitation and exploration of the
potential solutions in the search space, variation operators working in the different levels of
the individuals are necessary. In this way, we consider three levels of variation operators:
rule set level, rule level and parameter level.
Rule Set Level Variation Operators
Rule Set Crossover
This operator exchanges a random number of rules. Given two parents ()11

11 1
= MRRI … and

()22
12 2

= MRRI … generate two children:

 ()22
1

11
13 = ba RRRRI ……

 ()22
1

11
14 21

= MbMa RRRRI …… ++

with:

 ()1= Mrounda α

 ()()21= Mroundb α−
where α is a random real number in []0,1 . The number of rules of the children is therefore
in []21, MM .
Rule Set Increase Crossover
This operator increases the number of each child rules adding a random number of rules of
the other parent. Given two parents ()11

11 1
= MRRI … and ()22

12 2
= MRRI … generate two

children:

 ()22
1

11
13 1

= aM RRRRI ……

 Advances in Evolutionary Algorithms

286

 ()11
1

22
14 2

= bM RRRRI ……

with:

 { }21,= MMa −maxmin

 { }12 ,= MMb −maxmin

Rule Set Mutation
This operator adds or deletes, with the same probability, a rule. Given an individual

()MRRI …1= generates other individual I ′ :

()
() caseotherinRRRI

ifRRRRI

MM

Maa
,,=

0.5,,=

11

111

+

+−
′

≤′

…
…… α

where:
α is a random real number in []0,1 ,
a a random index in []M1, , and

1+MR a new random rule generated with the initialization procedure.
Rule Level Variation Operators
Rule Arithmetic Crossover
It performs an arithmetic crossover of two random rules. Given two parents ()11

11 1
= MRRI …

and ()22
12 2

= MRRI … generates two children:

 ()131
13 1

= Mi RRRI ……

 ()242
14 2

= Mj RRRI ……

with 3
iR and 4

jR obtained by arithmetic crossover:

() 213 1= jii RRR αα −+

() 124 1= ijj RRR αα −+

where:
α is a random real number in []0,1 ,

ji, are random index in []11, M and []21, M , respectively.
The product iRα is defined as follows:

 1)(11: +niiniinii AAR αθαθαθααα ……
The fuzzy set ijAα is defined as follows:

{ }ijijijijij dcbaA ααααα ,,,=

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

287

Rule Uniform Crossover
It performs a uniform crossover of two random rules. Given two parents ()11

11 1
= MRRI … and

()22
12 2

= MRRI … generates two children:

 ()131
13 1

= Mi RRRI ……

 ()242
14 2

= Mj RRRI ……

where:
3
iR and 4

jR are obtained by uniform crossover,

ji, are random index in []11, M and []21, M .
Parameter Level Variation Operators
The operators considered at this level are arithmetic crossover, uniform crossover, non-
uniform mutation, uniform mutation and small mutation. These operators excluding the last
one have been studied and described by other authors (Goldberg, 1989). The small mutation
produces a small change in the individual and it is suitable for fine tuning of the real
parameters.

3.6 Rule set simplification technique
Automated approaches to fuzzy modeling often introduce redundancy in terms of several
similar fuzzy sets and fuzzy rules that describe almost the same region in the domain of
some variable. According to some similarity measure, two similar fuzzy sets can be merged
or separated. The merging-separation process is repeated until fuzzy sets for each model
variable are not similar. This simplification may results in several identical rules, which
must be removed from the rule set. The proposed algorithm is the following:
1 While there be kji ,, such that () 2>, ηkjij AAS

 If () 1>, ηkjij AAS then

 Calculate C as the merging of ijA and kjA

 Substitute ijA and kjA by C

 in other case
 Split ijA and kjA

2 While there be ki, such that the antecedents of rules iR and kR are the same
 Calculate a new consequent with the average of the parameters of the consequents
 of iR and kR
 Substitute the consequent of iR by the new consequent
 Eliminate kR

Similarity between two fuzzy sets, (), ,S A B is measured using the expression in equation

(7). The values 1η and 2η are the threshold to perform the merging or the separation and
must be 1<<<0 12 ηη . (we use 0.9=1η and 0.6=2η)

 Advances in Evolutionary Algorithms

286

 ()11
1

22
14 2

= bM RRRRI ……

with:

 { }21,= MMa −maxmin

 { }12 ,= MMb −maxmin

Rule Set Mutation
This operator adds or deletes, with the same probability, a rule. Given an individual

()MRRI …1= generates other individual I ′ :

()
() caseotherinRRRI

ifRRRRI

MM

Maa
,,=

0.5,,=

11

111

+

+−
′

≤′

…
…… α

where:
α is a random real number in []0,1 ,
a a random index in []M1, , and

1+MR a new random rule generated with the initialization procedure.
Rule Level Variation Operators
Rule Arithmetic Crossover
It performs an arithmetic crossover of two random rules. Given two parents ()11

11 1
= MRRI …

and ()22
12 2

= MRRI … generates two children:

 ()131
13 1

= Mi RRRI ……

 ()242
14 2

= Mj RRRI ……

with 3
iR and 4

jR obtained by arithmetic crossover:

() 213 1= jii RRR αα −+

() 124 1= ijj RRR αα −+

where:
α is a random real number in []0,1 ,

ji, are random index in []11, M and []21, M , respectively.
The product iRα is defined as follows:

 1)(11: +niiniinii AAR αθαθαθααα ……
The fuzzy set ijAα is defined as follows:

{ }ijijijijij dcbaA ααααα ,,,=

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

287

Rule Uniform Crossover
It performs a uniform crossover of two random rules. Given two parents ()11

11 1
= MRRI … and

()22
12 2

= MRRI … generates two children:

 ()131
13 1

= Mi RRRI ……

 ()242
14 2

= Mj RRRI ……

where:
3
iR and 4

jR are obtained by uniform crossover,

ji, are random index in []11, M and []21, M .
Parameter Level Variation Operators
The operators considered at this level are arithmetic crossover, uniform crossover, non-
uniform mutation, uniform mutation and small mutation. These operators excluding the last
one have been studied and described by other authors (Goldberg, 1989). The small mutation
produces a small change in the individual and it is suitable for fine tuning of the real
parameters.

3.6 Rule set simplification technique
Automated approaches to fuzzy modeling often introduce redundancy in terms of several
similar fuzzy sets and fuzzy rules that describe almost the same region in the domain of
some variable. According to some similarity measure, two similar fuzzy sets can be merged
or separated. The merging-separation process is repeated until fuzzy sets for each model
variable are not similar. This simplification may results in several identical rules, which
must be removed from the rule set. The proposed algorithm is the following:
1 While there be kji ,, such that () 2>, ηkjij AAS

 If () 1>, ηkjij AAS then

 Calculate C as the merging of ijA and kjA

 Substitute ijA and kjA by C

 in other case
 Split ijA and kjA

2 While there be ki, such that the antecedents of rules iR and kR are the same
 Calculate a new consequent with the average of the parameters of the consequents
 of iR and kR
 Substitute the consequent of iR by the new consequent
 Eliminate kR

Similarity between two fuzzy sets, (), ,S A B is measured using the expression in equation

(7). The values 1η and 2η are the threshold to perform the merging or the separation and
must be 1<<<0 12 ηη . (we use 0.9=1η and 0.6=2η)

 Advances in Evolutionary Algorithms

288

If () 1>, ηBAS , fuzzy sets A and B are merged in a new fuzzy set C as follows:

() BAC ccc αα −+ 1=

}},max{},,min{max{ CBBAABBAAC cccccc −++−−−= σσσσσ

where []0,1∈α determines the influence of A and B in the new fuzzy set C :

l
B

r
B

l
A

r
A

l
A

r
A

cccc
cc

−+−
−=α

If () 12 <,< ηη BAS , fuzzy sets A and B are splitted as follows:

()
()βσσ

βσσσσ
−←

−←<

1
1

BB

AABA

caseotherin
thenIf

where []0,1∈β indicates the amount of separation between A and B (we use 0.1=β).

3.7 Algorithm descriptions
In order to describe the algorithms, we consider the following formulation as a general form
of the multi-objective constrained optimization model (8):

 1,..,
0 1,..,

k

i

Minimize f k n
Subject to g i m

=
≤ =

 (9)

Where ik gf , are arbitrary functions.
Multi-objective neuro-evolutionary algorithm (MONEA)
The main characteristic of MONEA is that Chromosome selection and replacement are
achieved by means of a variant of the Preselection scheme. This technique is, implicitly, a
niche formation technique and an elitist strategy. Moreover, an explicit niche formation
technique has been added to maintain diversity with respect to the number of rules of the
individuals.

Algorithm MONEA
1. t 0
2. Initialize P (t)
4. while t < T do
5. parent1,parent2 Random selection from P(t)
6. Generate a new individual best1 parent1
7. Generate a new individual best2 parent2
8. Repeat nChildren times
9. child1,child2 Crossing and Mutation of parent1 and parent2
10. Improve transparency and compactness in child1 and child2
11. Train child1and child2 by the gradient technique
12. For i=1 to 2

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

289

13. If childi is better than besti and
 (the number of rules of childi is equal to the number of rules of parent i) or
 (the niche count of parenti is greater than minNS and the niche count of the
 childi is smaller than maxNS) then
14. besti childi
15. P (t + 1) P(t) – {parent1, parent2} ∪ {best1, best2}
16. t t + 1
17. end while
The preselection scheme is an implicit niche formation technique to maintain diversity in the
population because an offspring replaces an individual similar to itself (one of its parents).
Implicit niche formation techniques are more appropriate for fuzzy modeling than explicit
techniques, such as the sharing function, which can provoke excessive computational time.
However, we need an additional mechanism for diversity with respect to the number of
rules of the individuals in the population. The added explicit niche formation technique
ensures that the number of individuals with M rules, for all M Є [1, max], is greater or equal
to minNS and smaller or equal to maxNS. Moreover, the preselection scheme is also an elitist
strategy because the best individual in the population is replaced only by a better one.
The better function

Given two individuals k and l, k is better than l if:
• k is feasible and l is unfeasible, or
• k and l are unfeasible and { } { }l

j
mj

k
j

mj
gg

...1...1
maxmax
==

≤ , or

• k and l are feasible and k dominates l, or

(10)

ENORA-II: An Elitist Pareto-Based Multi-Objective Evolutionary Algorithm
ENORA-II uses a real-coded representation, uniform and arithmetical cross, and uniform
and non-uniform mutation. Diversity among individuals is maintained by using an ad-hoc
elitist generational replacement technique.
ENORA-II has a population P of N individuals. The following algorithm shows the
pseudocode of ENORA-II.

Algorithm ENORA-II
1. t 0
2. Initialize P (t)
3. Evaluate P (t)
4. while t < T do
5. Q (t) Random Selection, Crossing and Mutation of N individuals from P (t)
6. Improve transparency and compactness in Q(t)
7. Train all individuals in Q(t) by the gradient technique
8. Evaluate Q(t);
9. P (t + 1) Best individuals from P (t) ∪ Q(t);
10. t t + 1;
11. end while;
12. return the non dominated individuals from P(t);
Given a population P of N individuals, N children are generated by random selection,
crossing and mutation. The new population is obtained selecting the N best individuals
from the union of parents and children.

 Advances in Evolutionary Algorithms

288

If () 1>, ηBAS , fuzzy sets A and B are merged in a new fuzzy set C as follows:

() BAC ccc αα −+ 1=

}},max{},,min{max{ CBBAABBAAC cccccc −++−−−= σσσσσ

where []0,1∈α determines the influence of A and B in the new fuzzy set C :

l
B

r
B

l
A

r
A

l
A

r
A

cccc
cc

−+−
−=α

If () 12 <,< ηη BAS , fuzzy sets A and B are splitted as follows:

()
()βσσ

βσσσσ
−←

−←<

1
1

BB

AABA

caseotherin
thenIf

where []0,1∈β indicates the amount of separation between A and B (we use 0.1=β).

3.7 Algorithm descriptions
In order to describe the algorithms, we consider the following formulation as a general form
of the multi-objective constrained optimization model (8):

 1,..,
0 1,..,

k

i

Minimize f k n
Subject to g i m

=
≤ =

 (9)

Where ik gf , are arbitrary functions.
Multi-objective neuro-evolutionary algorithm (MONEA)
The main characteristic of MONEA is that Chromosome selection and replacement are
achieved by means of a variant of the Preselection scheme. This technique is, implicitly, a
niche formation technique and an elitist strategy. Moreover, an explicit niche formation
technique has been added to maintain diversity with respect to the number of rules of the
individuals.

Algorithm MONEA
1. t 0
2. Initialize P (t)
4. while t < T do
5. parent1,parent2 Random selection from P(t)
6. Generate a new individual best1 parent1
7. Generate a new individual best2 parent2
8. Repeat nChildren times
9. child1,child2 Crossing and Mutation of parent1 and parent2
10. Improve transparency and compactness in child1 and child2
11. Train child1and child2 by the gradient technique
12. For i=1 to 2

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

289

13. If childi is better than besti and
 (the number of rules of childi is equal to the number of rules of parent i) or
 (the niche count of parenti is greater than minNS and the niche count of the
 childi is smaller than maxNS) then
14. besti childi
15. P (t + 1) P(t) – {parent1, parent2} ∪ {best1, best2}
16. t t + 1
17. end while
The preselection scheme is an implicit niche formation technique to maintain diversity in the
population because an offspring replaces an individual similar to itself (one of its parents).
Implicit niche formation techniques are more appropriate for fuzzy modeling than explicit
techniques, such as the sharing function, which can provoke excessive computational time.
However, we need an additional mechanism for diversity with respect to the number of
rules of the individuals in the population. The added explicit niche formation technique
ensures that the number of individuals with M rules, for all M Є [1, max], is greater or equal
to minNS and smaller or equal to maxNS. Moreover, the preselection scheme is also an elitist
strategy because the best individual in the population is replaced only by a better one.
The better function

Given two individuals k and l, k is better than l if:
• k is feasible and l is unfeasible, or
• k and l are unfeasible and { } { }l

j
mj

k
j

mj
gg

...1...1
maxmax
==

≤ , or

• k and l are feasible and k dominates l, or

(10)

ENORA-II: An Elitist Pareto-Based Multi-Objective Evolutionary Algorithm
ENORA-II uses a real-coded representation, uniform and arithmetical cross, and uniform
and non-uniform mutation. Diversity among individuals is maintained by using an ad-hoc
elitist generational replacement technique.
ENORA-II has a population P of N individuals. The following algorithm shows the
pseudocode of ENORA-II.

Algorithm ENORA-II
1. t 0
2. Initialize P (t)
3. Evaluate P (t)
4. while t < T do
5. Q (t) Random Selection, Crossing and Mutation of N individuals from P (t)
6. Improve transparency and compactness in Q(t)
7. Train all individuals in Q(t) by the gradient technique
8. Evaluate Q(t);
9. P (t + 1) Best individuals from P (t) ∪ Q(t);
10. t t + 1;
11. end while;
12. return the non dominated individuals from P(t);
Given a population P of N individuals, N children are generated by random selection,
crossing and mutation. The new population is obtained selecting the N best individuals
from the union of parents and children.

 Advances in Evolutionary Algorithms

290

Better individuals
The better individuals are obtained by using the ranking established by the operator best. It
assumes that every individual i has two attributes:
• a ranking in its slot (ri), and
• a crowding distance (di).
Based on these attributes, an individual i is better than an individual j if:
• ri < rj or
• ri = rj and di > dj.
Crowding distance
Quantity di is a measure of the search space around individual i which is not occupied by
any other individual in the population. This quantity di serves as an estimate of the
perimeter of the cuboid formed by using the nearest neighbors as the vertices.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

−

==∞

∑
=

caseotherin
ff

ff

janyforfforffif

d n

j jj

jj

j
i
jj

i
j

i
i
j

i
j

,

,

=

1
minmax

infsup

minmax

 (11)

Where max
jf = { }ij

Ni
f

...1
max
=

, min
jf = { }ij

Ni
f

...1
min
=

,
i
j

jf sup is the value of the jth objective for the

individual higher adjacent in the jth objective to individual i, and
i
j

jf inf is the value of the
jth objective for the individual lower adjacent in the jth objective to individual i.
Ranking of individuals in its slot

Individuals are ordered in ⎣ ⎦() 11 1
−− +

nn N slots. An individual i belongs to slot is such that:

 ⎣ ⎦ ⎣ ⎦() jnn
n

j

n
r
j

r
j

r
j

i
j

i NN
ff

ff
s

−−

=

−∑ ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−

−
= 1

2

1
minmax

min
 (12)

where maxr
jf and minr

jf are the maximum and minimum values for the jth objective if the
objective space is bounded; if it is not, then these are bounding reference points so that

i
j

r
j ff ≥max and i

j
r
j ff ≤min for any individual i.

The ranking inside slots is established as an adjustment of the better function (10): given two
individuals k and l belonging to same slot, ranking of individual k is lower than ranking of
individual l in the slot if:
• k is feasible and l is unfeasible, or
• k and l are unfeasible and { } { }l

j
mj

k
j

mj
gg

...1...1
maxmax
==

≤ , or

• k and l are feasible and k dominates l, or
• k and l are feasible and does not dominated each other and lk dd > .

4. Experiments and results
We consider the second order non-linear plant studied in (Wang & Yen, 1999) and (Yen &
Wang, 1998):

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

291

() () ()() ()

() ()() () () ()()
() ()211

0.5121
=2,1

2,1=

22 −+−+

−−−−
−−

+−−

kyky
kykykykykyg

with
kukykygky

The objective is the approximation of the non-linear component of the plant

() ()()2,1 −− kykyg using a fuzzy model. 200 training values and 200 evaluation values are
obtained starting at the initial state (0,0) with a random input signal u(k) uniformly
distributed in the interval []1.5,1.5− .
MONEA, ENORA-II and NSGA-II are executed 100 times for 10000 evaluations, with a
population of 100 individuals, cross and mutation probabilities of 0.8 and 0.4 respectively.
The different variation operators are applied with equal probability. We can compare our
results with the results obtained by other approaches proposed in (Wang & Yen, 1999), (Yen
& Wang, 1998) and (Roubos & Setnes, 2000) which are shown in Table 3. Table 4 shows the
best non-dominated solutions in the last population over 100 runs. Solutions with 4 rules are
chosen which are shown in Figure 1 and Table 5.

Reference M L Train MSE Eval MSE

Wang & Yen, 1999 40 (initial)
28 (optimized)

40
28

3.3 E-4
3.3 E-4

6.9 E-4
6.0 E-4

Yen & Wang, 1998 36 (initial)
24 (optimized)

12
12

1.9 E-6
2.0 E-6

2.9 E-3
6.4 E-4

Roubos & Setnes, 2000 7 (initial)
5 (optimized)

14
5

1.8 E-3
5.0 E-4

1.0 E-3
4.2 E-4

Table 3. Fuzzy models for the second order non-linear plant reported in literature.

M L Train MSE Eval MSE S
MONEA

1 2 0.041882 0.043821 0.000000
2 3 0.004779 0.005533 0.249887
3 4 0.002262 0.002749 0.232016
4 4 0.000216 0.000248 0.249021

ENORA-II
1 2 0.041882 0.043821 0.000000
2 3 0.004951 0.005722 0.242090
3 4 0.001906 0.002411 0.249391
4 4 0.000161 0.000194 0.249746

NSGA-II
1 2 0.041882 0.043821 0.000000
2 3 0.004870 0.005639 0.249998
3 4 0.001885 0.002343 0.249999
4 4 0.000249 0.000314 0.250000

Table 4. Non-dominated solutions (best results over 100 runs) obtained in this paper for the
second order non-linear plant.

 Advances in Evolutionary Algorithms

290

Better individuals
The better individuals are obtained by using the ranking established by the operator best. It
assumes that every individual i has two attributes:
• a ranking in its slot (ri), and
• a crowding distance (di).
Based on these attributes, an individual i is better than an individual j if:
• ri < rj or
• ri = rj and di > dj.
Crowding distance
Quantity di is a measure of the search space around individual i which is not occupied by
any other individual in the population. This quantity di serves as an estimate of the
perimeter of the cuboid formed by using the nearest neighbors as the vertices.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

−

==∞

∑
=

caseotherin
ff

ff

janyforfforffif

d n

j jj

jj

j
i
jj

i
j

i
i
j

i
j

,

,

=

1
minmax

infsup

minmax

 (11)

Where max
jf = { }ij

Ni
f

...1
max
=

, min
jf = { }ij

Ni
f

...1
min
=

,
i
j

jf sup is the value of the jth objective for the

individual higher adjacent in the jth objective to individual i, and
i
j

jf inf is the value of the
jth objective for the individual lower adjacent in the jth objective to individual i.
Ranking of individuals in its slot

Individuals are ordered in ⎣ ⎦() 11 1
−− +

nn N slots. An individual i belongs to slot is such that:

 ⎣ ⎦ ⎣ ⎦() jnn
n

j

n
r
j

r
j

r
j

i
j

i NN
ff

ff
s

−−

=

−∑ ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−

−
= 1

2

1
minmax

min
 (12)

where maxr
jf and minr

jf are the maximum and minimum values for the jth objective if the
objective space is bounded; if it is not, then these are bounding reference points so that

i
j

r
j ff ≥max and i

j
r
j ff ≤min for any individual i.

The ranking inside slots is established as an adjustment of the better function (10): given two
individuals k and l belonging to same slot, ranking of individual k is lower than ranking of
individual l in the slot if:
• k is feasible and l is unfeasible, or
• k and l are unfeasible and { } { }l

j
mj

k
j

mj
gg

...1...1
maxmax
==

≤ , or

• k and l are feasible and k dominates l, or
• k and l are feasible and does not dominated each other and lk dd > .

4. Experiments and results
We consider the second order non-linear plant studied in (Wang & Yen, 1999) and (Yen &
Wang, 1998):

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

291

() () ()() ()

() ()() () () ()()
() ()211

0.5121
=2,1

2,1=

22 −+−+

−−−−
−−

+−−

kyky
kykykykykyg

with
kukykygky

The objective is the approximation of the non-linear component of the plant

() ()()2,1 −− kykyg using a fuzzy model. 200 training values and 200 evaluation values are
obtained starting at the initial state (0,0) with a random input signal u(k) uniformly
distributed in the interval []1.5,1.5− .
MONEA, ENORA-II and NSGA-II are executed 100 times for 10000 evaluations, with a
population of 100 individuals, cross and mutation probabilities of 0.8 and 0.4 respectively.
The different variation operators are applied with equal probability. We can compare our
results with the results obtained by other approaches proposed in (Wang & Yen, 1999), (Yen
& Wang, 1998) and (Roubos & Setnes, 2000) which are shown in Table 3. Table 4 shows the
best non-dominated solutions in the last population over 100 runs. Solutions with 4 rules are
chosen which are shown in Figure 1 and Table 5.

Reference M L Train MSE Eval MSE

Wang & Yen, 1999 40 (initial)
28 (optimized)

40
28

3.3 E-4
3.3 E-4

6.9 E-4
6.0 E-4

Yen & Wang, 1998 36 (initial)
24 (optimized)

12
12

1.9 E-6
2.0 E-6

2.9 E-3
6.4 E-4

Roubos & Setnes, 2000 7 (initial)
5 (optimized)

14
5

1.8 E-3
5.0 E-4

1.0 E-3
4.2 E-4

Table 3. Fuzzy models for the second order non-linear plant reported in literature.

M L Train MSE Eval MSE S
MONEA

1 2 0.041882 0.043821 0.000000
2 3 0.004779 0.005533 0.249887
3 4 0.002262 0.002749 0.232016
4 4 0.000216 0.000248 0.249021

ENORA-II
1 2 0.041882 0.043821 0.000000
2 3 0.004951 0.005722 0.242090
3 4 0.001906 0.002411 0.249391
4 4 0.000161 0.000194 0.249746

NSGA-II
1 2 0.041882 0.043821 0.000000
2 3 0.004870 0.005639 0.249998
3 4 0.001885 0.002343 0.249999
4 4 0.000249 0.000314 0.250000

Table 4. Non-dominated solutions (best results over 100 runs) obtained in this paper for the
second order non-linear plant.

 Advances in Evolutionary Algorithms

292

R1 If y(k-1) is LOW and y(k-2) is LOW then g = 0.4327y(k-1) + 0.0007(k-2) – 0.2008
R2 If y(k-1) is LOW and y(k-2) is HIGH then g = -0.4545y(k-1) – 0.0131(k-2) + 0.2368
R3 If y(k-1) is HIGH and y(k-2) is LOW then g = -0.3968y(k-1) – 0.0044(k-2)+ 0.1859
R4 If y(k-1) is HIGH and y(k-2) is HIGH then g = 0.43645y(k-1) – 0.0052(k-2)– 0.2110

y(k-1) LOW = (-1.5966, 2.0662) HIGH = (1,7679, 2.6992)
y(k-2) LOW = (-1.7940, 3.1816) HIGH = (1.5271, 2.1492)

Table 5. Fuzzy model with 4 rules for the non-linear dynamic plant obtained by ENORA-II.

Fuzzy Sets for y(k-2)

Figure 1. Solutions with 4 rules obtained in this paper for the second order non-linear plant.

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

293

To compare the algorithms, we use the hypervolume indicator (ν) which calculates the
fraction of the objective space which is non-dominated by any of the solutions obtained by
the algorithm in (Deb, 2001), (Laumans et al., 2001) and (Zitzler et al., 2003). The aim is to
minimize the value of ν. This indicator estimates both the distance of solutions to the real
Pareto front and the spread. Whenever a set of solutions is preferable to other with respect
to weak Pareto dominance, the indicator value for the first set of solution will be at least as
good as the indicator value for the second; it is, therefore, a Pareto compliant quality
indicator. Value ν can be calculated for a population P0 which is composed by the N0 non-
dominated solutions of P.
Algorithms were executed 100 times, so we have obtained a 100 sample for each algorithm.
The statistics showed in Table 6 indicate that MONEA and ENORA-II obtain lower
localization values than NSGA-II while NSGA-II obtains the greatest dispersion values.
Finally, the 90% confidence intervals for the mean obtained with t-test show that ENORA-II
obtains lower values than MONEA and this obtains lower than NSGA-II. That is, the
approximation sets obtained by ENORA-II are preferable to those of MONEA and those of
NSGA-II under hypervolume indicator ν. t-test is robust with no normal samples which are
greater than 30 individuals, so the results are significant and we can conclude that there is
statistical difference between the hypervolume values obtained by the algorithms. The
Boxplots showed in Figure 2 confirm the above conclusions.

 MONEA ENORA-II NSGA-II

Minimum 0.3444 0.3337 0.3318

Maximum 0.4944 0.4591 0.9590

Mean 0.3919 0.3799 0.5333

S.D 0.0378 0.0334 0.1430

C.I. Low 0.3856 0.3743 0.5096

C.I. High 0.3982 0.3854 0.5571

S.D = Standard Deviation of Mean

C.I. = Confidence Interval for the Mean (90%)

Table 6. Statistics for the hypervolume obtained with 100 runs of MONEA, ENORA-II and
NSGA-II for the second order non-linear plant.

Taking all the above, we can conclude that the hypervolume values obtained with ENORA-
II are significantly better than the values obtained with MONEA and NSGA-II. The
statistical analysis shows, therefore, that for the kind of multi-objective problems we are
considering, Pareto search based on the space search partition in linear slots is most efficient
than general search strategies exclusively based on diversity functions, as in NSGA-II.

 Advances in Evolutionary Algorithms

292

R1 If y(k-1) is LOW and y(k-2) is LOW then g = 0.4327y(k-1) + 0.0007(k-2) – 0.2008
R2 If y(k-1) is LOW and y(k-2) is HIGH then g = -0.4545y(k-1) – 0.0131(k-2) + 0.2368
R3 If y(k-1) is HIGH and y(k-2) is LOW then g = -0.3968y(k-1) – 0.0044(k-2)+ 0.1859
R4 If y(k-1) is HIGH and y(k-2) is HIGH then g = 0.43645y(k-1) – 0.0052(k-2)– 0.2110

y(k-1) LOW = (-1.5966, 2.0662) HIGH = (1,7679, 2.6992)
y(k-2) LOW = (-1.7940, 3.1816) HIGH = (1.5271, 2.1492)

Table 5. Fuzzy model with 4 rules for the non-linear dynamic plant obtained by ENORA-II.

Fuzzy Sets for y(k-2)

Figure 1. Solutions with 4 rules obtained in this paper for the second order non-linear plant.

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

293

To compare the algorithms, we use the hypervolume indicator (ν) which calculates the
fraction of the objective space which is non-dominated by any of the solutions obtained by
the algorithm in (Deb, 2001), (Laumans et al., 2001) and (Zitzler et al., 2003). The aim is to
minimize the value of ν. This indicator estimates both the distance of solutions to the real
Pareto front and the spread. Whenever a set of solutions is preferable to other with respect
to weak Pareto dominance, the indicator value for the first set of solution will be at least as
good as the indicator value for the second; it is, therefore, a Pareto compliant quality
indicator. Value ν can be calculated for a population P0 which is composed by the N0 non-
dominated solutions of P.
Algorithms were executed 100 times, so we have obtained a 100 sample for each algorithm.
The statistics showed in Table 6 indicate that MONEA and ENORA-II obtain lower
localization values than NSGA-II while NSGA-II obtains the greatest dispersion values.
Finally, the 90% confidence intervals for the mean obtained with t-test show that ENORA-II
obtains lower values than MONEA and this obtains lower than NSGA-II. That is, the
approximation sets obtained by ENORA-II are preferable to those of MONEA and those of
NSGA-II under hypervolume indicator ν. t-test is robust with no normal samples which are
greater than 30 individuals, so the results are significant and we can conclude that there is
statistical difference between the hypervolume values obtained by the algorithms. The
Boxplots showed in Figure 2 confirm the above conclusions.

 MONEA ENORA-II NSGA-II

Minimum 0.3444 0.3337 0.3318

Maximum 0.4944 0.4591 0.9590

Mean 0.3919 0.3799 0.5333

S.D 0.0378 0.0334 0.1430

C.I. Low 0.3856 0.3743 0.5096

C.I. High 0.3982 0.3854 0.5571

S.D = Standard Deviation of Mean

C.I. = Confidence Interval for the Mean (90%)

Table 6. Statistics for the hypervolume obtained with 100 runs of MONEA, ENORA-II and
NSGA-II for the second order non-linear plant.

Taking all the above, we can conclude that the hypervolume values obtained with ENORA-
II are significantly better than the values obtained with MONEA and NSGA-II. The
statistical analysis shows, therefore, that for the kind of multi-objective problems we are
considering, Pareto search based on the space search partition in linear slots is most efficient
than general search strategies exclusively based on diversity functions, as in NSGA-II.

 Advances in Evolutionary Algorithms

294

Figure 2. Boxplots for the hypervolume obtained with 100 runs of MONEA, ENORA-II and
NSGA-II for the second order non-linear plant.

5. Conclusions
This chapter remarks on some results in the combination of Pareto-based multi-objective
evolutionary algorithms, neural networks and fuzzy modeling. A multi-objective
constrained optimization model is proposed in which criteria such as accuracy,
transparency and compactness have been taken into account. Three multi-objective
evolutionary algorithms (MONEA, ENORA-II and NSGA-II) have been implemented in
combination with neural network based and rule simplification techniques. The results
obtained improve on other more complex techniques reported in literature, with the
advantage that the proposed technique identifies a set of alternative solutions. Statistical
tests have been performed over the hypervolume quality indicator to compare the
algorithms and it has shown that, for the non linear plant problem, ENORA-II obtains better
results than MONEA and NSGA-II algorithms.
Future improvements of the algorithms will be the automatic parameter tuning, and a next
application of these techniques will be on medicine data.

6. Acknowledgements
Research supported in part by MEC and FEDER under project PET2006 0406 and TIN 2006-
15460-C04-01.

7. References
Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (2003) Interpretability improvements to

find the balance interpretability-accuracy in fuzzy modeling: an overview, in J.
Casillas, O. Cordón, F. Herrera, L. Magdalena (Eds.), Interpretability Issues in Fuzzy
Modeling, Studies in Fuzziness and Soft Computing, Springer, pp. 3-22.

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

295

Coello, C.A., Veldhuizen, D.V., Lamont, G.B. (2002). Evolutionary Algorithms for Solving
Multi-Objective Problems. Kluwer Academic/Plenum publishers, New York.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2000). A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the
Parallel Problem Solving from Nature VI (PPSN-VI), pp. 849-858.

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. John Wiley and
Sons, LTD.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley.

Gómez-Skarmeta, A.F., Jiménez, F. (1999). Fuzzy modeling with hibrid systems. Fuzzy Sets
and Systems, 104:199-208.

Gómez-Skarmeta, A.F., Jiménez, F., Sánchez, G. (2007). Improving Interpretability in
Approximative Fuzzy Models via Multiobjective Evolutionary Algorithms.
International Journal of Intelligent Systems, 22:943-969, 2.007

Ishibuchi, H., Murata, T., Trksen, I. (1997). Single-objective and two-objective genetic
algorithms for selecting linguistic rules for pattern classification problems. Fuzzy
Sets and Systems, 89:135-150

Ishibuchi, H., Nakashima, T., Murata, T. (1999). Performance evaluation of fuzzy classifier
systems for multidimensional pattern classification problems. IEEE Transactions on
Systems, Man, and Cubernetics - Part B: Cybernetics, 29(5):601-618.

Jiménez, F., Gómez-Skarmeta, A.F., Sánchez, G., Deb, K. (2002). An evolutionary algorithm
for constrained multi-objective optimization, in: Proceedings IEEE World Congress on
Evolutionary Computation.

Laumanns, M., Zitzler, E., and Thiele, L. (2001). On the Effects of Archiving, Elitism, and
Density Based Selection in Evolutionary Multi-objective Optimization. Proceedings
of the First International Conference on Evolutionary Multi-Criterion Optimization (EMO
2001) E. Zitzler et al. (Eds.), 181-196.

Roubos, J.A., Setnes, M. (2000). Compact fuzzy models through complexity reduction and
evolutionary optimization. In Proceedings of FUZZ-IEEE-2000, 762-767, San Antonio,
Texas, USA.

Russo., M. (1998). FuGeNeSys - a fuzzy genetic neural system for fuzzy modeling. IEEE
Transactions on Fuzzy Systems, 6(3):373-388.

Sánchez, G., Jiménez, J., Vasant, P. (2007). Fuzzy Optimization with Multi-Objective
Evolutionary Algorithms: a Case Study. IEEE Symposium of Computational
Intelligence in Multicriteria Decision Making (MCDM). Honolulu, Hawaii

Setnes, M. (1995). Fuzzy Rule Base Simplification Using Similarity Measures. M.Sc. thesis, Delft
University of Technology, Delft, the Netherlands.

Setnes, M., Babuska, R., Verbruggen, H.B. (1998). Rule-based modeling: Precision and
transparency. IEEE Transactions on Systems, Man and Cybernetics, Part C:
Applications & Reviews, 28:165-169.

Takagi, T., Sugeno, M. (1985). Fuzzy identification of systems and its application to
modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15:116-
132.

 Advances in Evolutionary Algorithms

294

Figure 2. Boxplots for the hypervolume obtained with 100 runs of MONEA, ENORA-II and
NSGA-II for the second order non-linear plant.

5. Conclusions
This chapter remarks on some results in the combination of Pareto-based multi-objective
evolutionary algorithms, neural networks and fuzzy modeling. A multi-objective
constrained optimization model is proposed in which criteria such as accuracy,
transparency and compactness have been taken into account. Three multi-objective
evolutionary algorithms (MONEA, ENORA-II and NSGA-II) have been implemented in
combination with neural network based and rule simplification techniques. The results
obtained improve on other more complex techniques reported in literature, with the
advantage that the proposed technique identifies a set of alternative solutions. Statistical
tests have been performed over the hypervolume quality indicator to compare the
algorithms and it has shown that, for the non linear plant problem, ENORA-II obtains better
results than MONEA and NSGA-II algorithms.
Future improvements of the algorithms will be the automatic parameter tuning, and a next
application of these techniques will be on medicine data.

6. Acknowledgements
Research supported in part by MEC and FEDER under project PET2006 0406 and TIN 2006-
15460-C04-01.

7. References
Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (2003) Interpretability improvements to

find the balance interpretability-accuracy in fuzzy modeling: an overview, in J.
Casillas, O. Cordón, F. Herrera, L. Magdalena (Eds.), Interpretability Issues in Fuzzy
Modeling, Studies in Fuzziness and Soft Computing, Springer, pp. 3-22.

Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms

295

Coello, C.A., Veldhuizen, D.V., Lamont, G.B. (2002). Evolutionary Algorithms for Solving
Multi-Objective Problems. Kluwer Academic/Plenum publishers, New York.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2000). A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the
Parallel Problem Solving from Nature VI (PPSN-VI), pp. 849-858.

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. John Wiley and
Sons, LTD.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley.

Gómez-Skarmeta, A.F., Jiménez, F. (1999). Fuzzy modeling with hibrid systems. Fuzzy Sets
and Systems, 104:199-208.

Gómez-Skarmeta, A.F., Jiménez, F., Sánchez, G. (2007). Improving Interpretability in
Approximative Fuzzy Models via Multiobjective Evolutionary Algorithms.
International Journal of Intelligent Systems, 22:943-969, 2.007

Ishibuchi, H., Murata, T., Trksen, I. (1997). Single-objective and two-objective genetic
algorithms for selecting linguistic rules for pattern classification problems. Fuzzy
Sets and Systems, 89:135-150

Ishibuchi, H., Nakashima, T., Murata, T. (1999). Performance evaluation of fuzzy classifier
systems for multidimensional pattern classification problems. IEEE Transactions on
Systems, Man, and Cubernetics - Part B: Cybernetics, 29(5):601-618.

Jiménez, F., Gómez-Skarmeta, A.F., Sánchez, G., Deb, K. (2002). An evolutionary algorithm
for constrained multi-objective optimization, in: Proceedings IEEE World Congress on
Evolutionary Computation.

Laumanns, M., Zitzler, E., and Thiele, L. (2001). On the Effects of Archiving, Elitism, and
Density Based Selection in Evolutionary Multi-objective Optimization. Proceedings
of the First International Conference on Evolutionary Multi-Criterion Optimization (EMO
2001) E. Zitzler et al. (Eds.), 181-196.

Roubos, J.A., Setnes, M. (2000). Compact fuzzy models through complexity reduction and
evolutionary optimization. In Proceedings of FUZZ-IEEE-2000, 762-767, San Antonio,
Texas, USA.

Russo., M. (1998). FuGeNeSys - a fuzzy genetic neural system for fuzzy modeling. IEEE
Transactions on Fuzzy Systems, 6(3):373-388.

Sánchez, G., Jiménez, J., Vasant, P. (2007). Fuzzy Optimization with Multi-Objective
Evolutionary Algorithms: a Case Study. IEEE Symposium of Computational
Intelligence in Multicriteria Decision Making (MCDM). Honolulu, Hawaii

Setnes, M. (1995). Fuzzy Rule Base Simplification Using Similarity Measures. M.Sc. thesis, Delft
University of Technology, Delft, the Netherlands.

Setnes, M., Babuska, R., Verbruggen, H.B. (1998). Rule-based modeling: Precision and
transparency. IEEE Transactions on Systems, Man and Cybernetics, Part C:
Applications & Reviews, 28:165-169.

Takagi, T., Sugeno, M. (1985). Fuzzy identification of systems and its application to
modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15:116-
132.

 Advances in Evolutionary Algorithms

296

Valente de Oliveira, J. (1999). Semantic constraints for membership function optimization.
IEEE Transactions on Fuzzy Systems, 19(1):128-138.

Wang, L., Yen, J. (1999). Extracting fuzzy rules for system modeling using a hybrid of
genetic algorithms and Kalman filter. Fuzzy Sets and Systems, 101:353-362.

Yen, J., Wang, L. (1998). Application of statistical information criteria for optimal fuzzy
model construction. IEEE Transactions on Fuzzy Systems, 6(3):362-371.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V. (2003)
Performance Assessment of Multiobjective Optimizers: An Analysis and Review.
IEEE Transactions on Evolutionary Computation, 7(2):117-132.

15

Multi-objective Uniform-diversity
Genetic Algorithm (MUGA)

Ali Jamali1, Nader Nariman-zadeh1,2 and Kazem Atashkari1
1Dept. of Mechanical Engineering, Faculty of Engineering, University of Guilan, Rasht

2Intelligent-based Experimental Mechanics Center of Excellence,
School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran

Iran

1. Introduction
Optimization in engineering design has always been of great importance and interest
particularly in solving complex real-world design problems. Basically, the optimization
process is defined as finding a set of values for a vector of design variables so that it leads to
an optimum value of an objective or cost function. In such single-objective optimization
problems, there may or may not exist some constraint functions on the design variables and
they are respectively referred to as constrained or unconstrained optimization problems.
There are many calculus-based methods including gradient approaches to search for mostly
local optimum solutions and these are well documented in (Arora, 1989; Rao, 1996).
However, some basic difficulties in the gradient methods such as their strong dependence
on the initial guess can cause them to find a local optimum rather than a global one. This has
led to other heuristic optimization methods, particularly Genetic Algorithms (GAs) being
used extensively during the last decade. Such nature-inspired evolutionary algorithms
(Goldberg, 1989; Back et al., 1997) differ from other traditional calculus based techniques.
The main difference is that GAs work with a population of candidate solutions, not a single
point in search space. This helps significantly to avoid being trapped in local optima
(Renner & Ekart, 2003) as long as the diversity of the population is well preserved.
In multi-objective optimization problems, there are several objective or cost functions (a
vector of objectives) to be optimized (minimized or maximized) simultaneously. These
objectives often conflict with each other so that as one objective function improves, another
deteriorates. Therefore, there is no single optimal solution that is best with respect to all the
objective functions. Instead, there is a set of optimal solutions, well known as Pareto optimal
solutions (Srinivas & Deb, 1994; Fonseca & Fleming, 1993; Coello Coello & Christiansen,
2000; Coello Coello & Van Veldhuizen, 2002), which distinguishes significantly the inherent
natures between single-objective and multi-objective optimization problems. V. Pareto
(1848-1923) was the French-Italian economist who first developed the concept of multi-
objective optimization in economics (Pareto, 1896). The concept of a Pareto front in the space
of objective functions in multi-objective optimization problems (MOPs) stands for a set of
solutions that are non-dominated to each other but are superior to the rest of solutions in the
search space. Evidently, changing the vector of design variables in such a Pareto optimal

 Advances in Evolutionary Algorithms

296

Valente de Oliveira, J. (1999). Semantic constraints for membership function optimization.
IEEE Transactions on Fuzzy Systems, 19(1):128-138.

Wang, L., Yen, J. (1999). Extracting fuzzy rules for system modeling using a hybrid of
genetic algorithms and Kalman filter. Fuzzy Sets and Systems, 101:353-362.

Yen, J., Wang, L. (1998). Application of statistical information criteria for optimal fuzzy
model construction. IEEE Transactions on Fuzzy Systems, 6(3):362-371.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V. (2003)
Performance Assessment of Multiobjective Optimizers: An Analysis and Review.
IEEE Transactions on Evolutionary Computation, 7(2):117-132.

15

Multi-objective Uniform-diversity
Genetic Algorithm (MUGA)

Ali Jamali1, Nader Nariman-zadeh1,2 and Kazem Atashkari1
1Dept. of Mechanical Engineering, Faculty of Engineering, University of Guilan, Rasht

2Intelligent-based Experimental Mechanics Center of Excellence,
School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran

Iran

1. Introduction
Optimization in engineering design has always been of great importance and interest
particularly in solving complex real-world design problems. Basically, the optimization
process is defined as finding a set of values for a vector of design variables so that it leads to
an optimum value of an objective or cost function. In such single-objective optimization
problems, there may or may not exist some constraint functions on the design variables and
they are respectively referred to as constrained or unconstrained optimization problems.
There are many calculus-based methods including gradient approaches to search for mostly
local optimum solutions and these are well documented in (Arora, 1989; Rao, 1996).
However, some basic difficulties in the gradient methods such as their strong dependence
on the initial guess can cause them to find a local optimum rather than a global one. This has
led to other heuristic optimization methods, particularly Genetic Algorithms (GAs) being
used extensively during the last decade. Such nature-inspired evolutionary algorithms
(Goldberg, 1989; Back et al., 1997) differ from other traditional calculus based techniques.
The main difference is that GAs work with a population of candidate solutions, not a single
point in search space. This helps significantly to avoid being trapped in local optima
(Renner & Ekart, 2003) as long as the diversity of the population is well preserved.
In multi-objective optimization problems, there are several objective or cost functions (a
vector of objectives) to be optimized (minimized or maximized) simultaneously. These
objectives often conflict with each other so that as one objective function improves, another
deteriorates. Therefore, there is no single optimal solution that is best with respect to all the
objective functions. Instead, there is a set of optimal solutions, well known as Pareto optimal
solutions (Srinivas & Deb, 1994; Fonseca & Fleming, 1993; Coello Coello & Christiansen,
2000; Coello Coello & Van Veldhuizen, 2002), which distinguishes significantly the inherent
natures between single-objective and multi-objective optimization problems. V. Pareto
(1848-1923) was the French-Italian economist who first developed the concept of multi-
objective optimization in economics (Pareto, 1896). The concept of a Pareto front in the space
of objective functions in multi-objective optimization problems (MOPs) stands for a set of
solutions that are non-dominated to each other but are superior to the rest of solutions in the
search space. Evidently, changing the vector of design variables in such a Pareto optimal

 Advances in Evolutionary Algorithms

298

solutions consisting of these non-dominated solutions would not lead to the improvement
of all objectives simultaneously. Consequently, such change leads to a deterioration of at
least one objective to an inferior one. Thus, each solution of the Pareto set includes at least
one objective inferior to that of another solution in that Pareto set, although both are
superior to others in the rest of search space.
The inherent parallelism in evolutionary algorithms makes them suitably eligible for solving
MOPs. The early use of evolutionary search is first reported in 1960s by Rosenberg
(Rosenberg, 1967). Since then, there has been a growing interest in devising different
evolutionary algorithms for MOPs. Basically, most of them are Pareto-based approaches and
use the well-known non-dominated sorting procedure. In such Pareto-based approaches, the
values of objective functions are used to distinguish the non-dominated solutions in the
current population. Among these methods, the Vector Evaluated Genetic Algorithm
(VEGA) proposed by Schaffer (Schaffer, 1985), Fonseca and Fleming’s Genetic Algorithm
(MOGA) (Fonseca & Fleming, 1993), Non-dominated Sorting Genetic Algorithm (NSGA) by
Srinivas and Deb (Srinivas & Deb, 1994), and Strength Pareto Evolutionary Algorithm
(SPEA) by Zitzler and Thiele (Zitzler & Thiele, 1998), and the Pareto Archived Evolution
Strategy (PAES) by Knowles and Corne (Knowles & Corne, 1999) are the most important
ones. A very good and comprehensive survey of these methods has been presented in
(Coello Coello, 1999; Deb, 2001; Khare et al., 2003). Coello (Coello Coello, home page) has
also presented an internet based collection of many papers as a very good and easily
accessible literature resource. Basically, both NSGA and MOGA as Pareto-based approaches
use the revolutionary non-dominated sorting procedure originally proposed by Goldberg
(Goldberg, 1989).
There are two important issues that have to be considered in such evolutionary multi-
objective optimization methods: driving the search towards the true Pareto-optimal set or
front and preventing premature convergence or maintaining the genetic diversity within the
population (Toffolo & Benini, 2003). The lack of elitism was also a motivation for
modification of that algorithm to NSGA-II (Deb et al., 2002) in which a direct elitist
mechanism, instead of a sharing mechanism, has been introduced to enhance the population
diversity. This modified algorithm represents the state-of-the-art in evolutionary MOPs
(Coello Coello & Becerra, 2003). A comparison study among SPEA and other evolutionary
algorithms on several problems and test functions showed that SPEA clearly outperforms
the other multi-objective EAs (Zitzler et al., 2000). Some further investigations reported in
reference (Toffolo & Benini, 2003) demonstrated, however, that the elitist variant of NSGA
(NSGA-II) equals the performance of SPEA. Despite its popularity and effectiveness, NSGA-
II is modified in this work to enhance its diversity preserving mechanism especially for
problems with more than two objective functions.
In this chapter, a new simple algorithm in conjunction with the original Pareto ranking of
non-dominated optimal solutions is proposed and tested for MOPs including some test
functions and engineering problems in power and energy conversion. In the Multi-objective
Uniform-diversity Genetic Algorithm (MUGA), a є-elimination diversity approach is used
such that all the clones and/or є-similar individuals based on normalized Euclidean norm of
two vectors are recognized and simply eliminated from the current population. The
superiority of MUGA is shown in comparison with NSGA-II in terms of diversity of
population and Pareto fronts both for bi-objective and multi-objective optimization
problems.

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

299

2. Multi-objective optimization
Multi-objective optimization which is also called multicriteria optimization or vector
optimization has been defined as finding a vector of decision variables satisfying constraints
to give optimal values to all objective functions (Coello Coello & Christiansen, 2000;
Homaifar et al., 1994) . In general, it can be mathematically defined as:

find the vector TnxxxX
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡= *,...,*
2,*

1
* to optimize:

 TXkfXfXfXF ⎥
⎦

⎤
⎢
⎣

⎡=)(),...,(2),(1)((1)

subject to m inequality constraints:

 m to1i , 0)(=≤Xig (2)

and p equality constraints:

 p to1j , 0)(==Xjh (3)

where nX ℜ∈* is the vector of decision or design variables, and kXF ℜ∈)(is the vector of
objective functions. Without loss of generality, it is assumed that all objective functions are
to be minimized. Such multi-objective minimization based on the Pareto approach can be
conducted using some definitions:
Definition of Pareto dominance
A vector k

kuuuU ℜ∈= ⎥
⎦

⎤
⎢
⎣

⎡ ,...,2,1 dominates to vector k
kvvvV ℜ∈= ⎥
⎦

⎤
⎢
⎣

⎡ ,...,2,1 (denoted by VU ≺

) if and only if }{ ki ,...,2,1∈∀ , iviu ≤ ∧ }{ kj ,...,2,1∈∃ : ju < jv . It means that there is at least

one ju which is smaller than jv whilst the rest u ’s are either smaller or equal to

corresponding v ’s.
Definition of Pareto optimality
A point Ω∈*X (Ω is a feasible region in nℜ satisfying equations (2) and (3)) is said to be
Pareto optimal (minimal) with respect to all Ω∈X if and only if)()*(XFXF ≺ .
Alternatively, it can be readily restated as }{ ki ,...,2,1∈∀ , }*{XX −Ω∈∀)()*(XifXif ≤ ∧

}{ kj ,...,2,1∈∃ :)()*(XjfXjf < . It means that the solution *X is said to be Pareto optimal

(minimal) if no other solution can be found to dominate *X using the definition of Pareto
dominance.
Definition of Pareto Set
For a given MOP, a Pareto set Ƥ٭ is a set in the decision variable space consisting of all the
Pareto optimal vectors, Ƥ٭ |{ Ω∈= X ∄)}()(: XFXFX ≺′Ω∈′ . In other words, there is no

other X ′ in Ω that dominates any X ∈Ƥ٭.
Definition of Pareto front
For a given MOP, the Pareto front ƤŦ٭ is a set of vectors of objective functions which are
obtained using the vectors of decision variables in the Pareto set Ƥ٭, that is,

 Advances in Evolutionary Algorithms

298

solutions consisting of these non-dominated solutions would not lead to the improvement
of all objectives simultaneously. Consequently, such change leads to a deterioration of at
least one objective to an inferior one. Thus, each solution of the Pareto set includes at least
one objective inferior to that of another solution in that Pareto set, although both are
superior to others in the rest of search space.
The inherent parallelism in evolutionary algorithms makes them suitably eligible for solving
MOPs. The early use of evolutionary search is first reported in 1960s by Rosenberg
(Rosenberg, 1967). Since then, there has been a growing interest in devising different
evolutionary algorithms for MOPs. Basically, most of them are Pareto-based approaches and
use the well-known non-dominated sorting procedure. In such Pareto-based approaches, the
values of objective functions are used to distinguish the non-dominated solutions in the
current population. Among these methods, the Vector Evaluated Genetic Algorithm
(VEGA) proposed by Schaffer (Schaffer, 1985), Fonseca and Fleming’s Genetic Algorithm
(MOGA) (Fonseca & Fleming, 1993), Non-dominated Sorting Genetic Algorithm (NSGA) by
Srinivas and Deb (Srinivas & Deb, 1994), and Strength Pareto Evolutionary Algorithm
(SPEA) by Zitzler and Thiele (Zitzler & Thiele, 1998), and the Pareto Archived Evolution
Strategy (PAES) by Knowles and Corne (Knowles & Corne, 1999) are the most important
ones. A very good and comprehensive survey of these methods has been presented in
(Coello Coello, 1999; Deb, 2001; Khare et al., 2003). Coello (Coello Coello, home page) has
also presented an internet based collection of many papers as a very good and easily
accessible literature resource. Basically, both NSGA and MOGA as Pareto-based approaches
use the revolutionary non-dominated sorting procedure originally proposed by Goldberg
(Goldberg, 1989).
There are two important issues that have to be considered in such evolutionary multi-
objective optimization methods: driving the search towards the true Pareto-optimal set or
front and preventing premature convergence or maintaining the genetic diversity within the
population (Toffolo & Benini, 2003). The lack of elitism was also a motivation for
modification of that algorithm to NSGA-II (Deb et al., 2002) in which a direct elitist
mechanism, instead of a sharing mechanism, has been introduced to enhance the population
diversity. This modified algorithm represents the state-of-the-art in evolutionary MOPs
(Coello Coello & Becerra, 2003). A comparison study among SPEA and other evolutionary
algorithms on several problems and test functions showed that SPEA clearly outperforms
the other multi-objective EAs (Zitzler et al., 2000). Some further investigations reported in
reference (Toffolo & Benini, 2003) demonstrated, however, that the elitist variant of NSGA
(NSGA-II) equals the performance of SPEA. Despite its popularity and effectiveness, NSGA-
II is modified in this work to enhance its diversity preserving mechanism especially for
problems with more than two objective functions.
In this chapter, a new simple algorithm in conjunction with the original Pareto ranking of
non-dominated optimal solutions is proposed and tested for MOPs including some test
functions and engineering problems in power and energy conversion. In the Multi-objective
Uniform-diversity Genetic Algorithm (MUGA), a є-elimination diversity approach is used
such that all the clones and/or є-similar individuals based on normalized Euclidean norm of
two vectors are recognized and simply eliminated from the current population. The
superiority of MUGA is shown in comparison with NSGA-II in terms of diversity of
population and Pareto fronts both for bi-objective and multi-objective optimization
problems.

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

299

2. Multi-objective optimization
Multi-objective optimization which is also called multicriteria optimization or vector
optimization has been defined as finding a vector of decision variables satisfying constraints
to give optimal values to all objective functions (Coello Coello & Christiansen, 2000;
Homaifar et al., 1994) . In general, it can be mathematically defined as:

find the vector TnxxxX
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡= *,...,*
2,*

1
* to optimize:

 TXkfXfXfXF ⎥
⎦

⎤
⎢
⎣

⎡=)(),...,(2),(1)((1)

subject to m inequality constraints:

 m to1i , 0)(=≤Xig (2)

and p equality constraints:

 p to1j , 0)(==Xjh (3)

where nX ℜ∈* is the vector of decision or design variables, and kXF ℜ∈)(is the vector of
objective functions. Without loss of generality, it is assumed that all objective functions are
to be minimized. Such multi-objective minimization based on the Pareto approach can be
conducted using some definitions:
Definition of Pareto dominance
A vector k

kuuuU ℜ∈= ⎥
⎦

⎤
⎢
⎣

⎡ ,...,2,1 dominates to vector k
kvvvV ℜ∈= ⎥
⎦

⎤
⎢
⎣

⎡ ,...,2,1 (denoted by VU ≺

) if and only if }{ ki ,...,2,1∈∀ , iviu ≤ ∧ }{ kj ,...,2,1∈∃ : ju < jv . It means that there is at least

one ju which is smaller than jv whilst the rest u ’s are either smaller or equal to

corresponding v ’s.
Definition of Pareto optimality
A point Ω∈*X (Ω is a feasible region in nℜ satisfying equations (2) and (3)) is said to be
Pareto optimal (minimal) with respect to all Ω∈X if and only if)()*(XFXF ≺ .
Alternatively, it can be readily restated as }{ ki ,...,2,1∈∀ , }*{XX −Ω∈∀)()*(XifXif ≤ ∧

}{ kj ,...,2,1∈∃ :)()*(XjfXjf < . It means that the solution *X is said to be Pareto optimal

(minimal) if no other solution can be found to dominate *X using the definition of Pareto
dominance.
Definition of Pareto Set
For a given MOP, a Pareto set Ƥ٭ is a set in the decision variable space consisting of all the
Pareto optimal vectors, Ƥ٭ |{ Ω∈= X ∄)}()(: XFXFX ≺′Ω∈′ . In other words, there is no

other X ′ in Ω that dominates any X ∈Ƥ٭.
Definition of Pareto front
For a given MOP, the Pareto front ƤŦ٭ is a set of vectors of objective functions which are
obtained using the vectors of decision variables in the Pareto set Ƥ٭, that is,

 Advances in Evolutionary Algorithms

300

ƤŦ٭ ∈== XXkfXfXfXF :))(....,),(2),(1()({ Ƥ٭}. Therefore, the Pareto front ƤŦ٭ is a set of the

vectors of objective functions mapped from Ƥ٭.
Evolutionary algorithms have been widely used for multi-objective optimization because of
their natural properties suited for these types of problems. This is mostly because of their
parallel or population-based search approach. Therefore, most difficulties and deficiencies
within the classical methods in solving multi-objective optimization problems are
eliminated. For example, there is no need for either several runs to find the Pareto front or
quantification of the importance of each objective using numerical weights. It is very
important in evolutionary algorithms that the genetic diversity within the population be
preserved sufficiently. This main issue in MOPs has been addressed by much related
research work (Toffolo & Benini, 2003). Consequently, the premature convergence of
MOEAs is prevented and the solutions are directed and distributed along the true Pareto
front if such genetic diversity is well provided. The Pareto-based approach of NSGA-II (Deb
et al., 2002) has been recently used in a wide range of engineering MOPs because of its
simple yet efficient non-dominance ranking procedure in yielding different levels of Pareto
frontiers. However, the crowding approach in such a state-of-the-art MOEA (Coello Coello
& Becerra, 2003) works efficiently for two-objective optimization problems as a diversity-
preserving operator which is not the case for problems with more than two objective
functions. The reason is that the sorting procedure of individuals based on each objective in
this algorithm will cause different enclosing hyper-boxes. Thus, the overall crowding
distance of an individual computed in this way may not exactly reflect the true measure of
diversity or crowding property. In order to show this issue more clearly, some basics of
NSGA-II are now represented. The entire population Rt is simply the current parent
population Pt plus its offspring population Qt which is created from the parent population Pt
by using usual genetic operators. The selection is based on non-dominated sorting
procedure which is used to classify the entire population Rt according to increasing order of
dominance (Deb et al., 2002). Thereafter, the best Pareto fronts from the top of the sorted list
is transferred to create the new parent population Pt+1 which is half the size of the entire
population Rt. Therefore, it should be noted that all the individuals of a certain front cannot
be accommodated in the new parent population because of space. In order to choose exact
number of individuals of that particular front, a crowded comparison operator is used in
NSGA-II to find the best solutions to fill the rest of the new parent population slots. The
crowded comparison procedure is based on density estimation of solutions surrounding a
particular solution in a population or front. In this way, the solutions of a Pareto front are
first sorted in each objective direction in the ascending order of that objective value. The
crowding distance is then assigned equal to the half of the perimeter of the enclosing hyper-
box (a rectangular in bi-objective optimization problems). The sorting procedure is then
repeated for other objectives and the overall crowding distance is calculated as the sum of
the crowding distances from all objectives. The less crowded non-dominated individuals of
that particular Pareto front are then selected to fill the new parent population. It must be
noted that, in a two-objective Pareto optimization, if the solutions of a Pareto front are
sorted in a decreasing order of importance to one objective, these solutions are then
automatically ordered in an increasing order of importance to the second objective. Thus,
the hyper-boxes surrounding an individual solution remain unchanged in the objective-wise
sorting procedure of the crowding distance of NSGA-II in the two-objective Pareto
optimization problem. However, in multi-objective Pareto optimization problems with more

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

301

than two objectives, such sorting procedure of individuals based on each objective in this
algorithm will cause different enclosing hyper-boxes. Thus, the overall crowding distance of
an individual computed in this way may not exactly reflect the true measure of diversity or
crowding property for the multi-objective Pareto optimization problems with more than
two objectives.
In our work, a new method is presented to modify NSGA-II so that it can be safely used for
any number of objective functions (particularly for more than two objectives) in MOPs. Such
a modified MOEA is then used for four-objective thermodynamic optimization of subsonic
turbojet engines.

3. Multi-objective Uniform-diversity Genetic Algorithm (MUGA)
The multi-objective uniform-diversity genetic algorithm (MUGA) uses non-dominated
sorting mechanism together with a ε-elimination diversity preserving algorithm to get
Pareto optimal solutions of MOPs more precisely and uniformly.

3.1 The non-dominated sorting method
The basic idea of sorting of non-dominated solutions originally proposed by Goldberg
(Goldberg, 1989) used in different evolutionary multi-objective optimization algorithms
such as in NSGA-II by Deb (Deb et al., 2002) has been adopted here. The algorithm simply
compares each individual in the population with others to determine its non-dominancy.
Once the first front has been found, all its non-dominated individuals are removed from the
main population and the procedure is repeated for the subsequent fronts until the entire
population is sorted and non-dominately divided into different fronts.
A sorting procedure to constitute a front could be simply accomplished by comparing all the
individuals of the population and including the non-dominated individuals in the front.
Such procedure can be simply represented as following steps:

 1-Get the population (pop)
 2-Include the first individual {ind(1)} in the front P* as P*(1), let P*_size=1;
 3-Compare other individuals {ind (j), j=2, Pop_size)} of the pop with { P*(K), K=1, P*_size}
 of the P*;
 If ind(j)<P*(K) replace the P*(K) with ind(j)
 If P*(K)<ind(K), j=j+1, continue comparison;
 Else include ind(j) in P*, P*_size= P*_size+1, j=j+1, continue comparison;
 4-End of front P*;

It can be easily seen that the number of non-dominated solutions in P* grows until no
further one is found. At this stage, all the non-dominated individuals so far found in P* are
removed from the main population and the whole procedure of finding another front may
be accomplished again. This procedure is repeated until the whole population is divided
into different ranked fronts. It should be noted that the first rank front of the final
generation constitute the final Pareto optimal solution of the multi-objective optimization
problem.

3.2 The ε-elimination diversity preserving approach
In the ε-elimination diversity approach that is used to replaced the crowding distance
assignment approach in NSGA-II (Deb et al., 2002), all the clones and ε-similar individuals

 Advances in Evolutionary Algorithms

300

ƤŦ٭ ∈== XXkfXfXfXF :))(....,),(2),(1()({ Ƥ٭}. Therefore, the Pareto front ƤŦ٭ is a set of the

vectors of objective functions mapped from Ƥ٭.
Evolutionary algorithms have been widely used for multi-objective optimization because of
their natural properties suited for these types of problems. This is mostly because of their
parallel or population-based search approach. Therefore, most difficulties and deficiencies
within the classical methods in solving multi-objective optimization problems are
eliminated. For example, there is no need for either several runs to find the Pareto front or
quantification of the importance of each objective using numerical weights. It is very
important in evolutionary algorithms that the genetic diversity within the population be
preserved sufficiently. This main issue in MOPs has been addressed by much related
research work (Toffolo & Benini, 2003). Consequently, the premature convergence of
MOEAs is prevented and the solutions are directed and distributed along the true Pareto
front if such genetic diversity is well provided. The Pareto-based approach of NSGA-II (Deb
et al., 2002) has been recently used in a wide range of engineering MOPs because of its
simple yet efficient non-dominance ranking procedure in yielding different levels of Pareto
frontiers. However, the crowding approach in such a state-of-the-art MOEA (Coello Coello
& Becerra, 2003) works efficiently for two-objective optimization problems as a diversity-
preserving operator which is not the case for problems with more than two objective
functions. The reason is that the sorting procedure of individuals based on each objective in
this algorithm will cause different enclosing hyper-boxes. Thus, the overall crowding
distance of an individual computed in this way may not exactly reflect the true measure of
diversity or crowding property. In order to show this issue more clearly, some basics of
NSGA-II are now represented. The entire population Rt is simply the current parent
population Pt plus its offspring population Qt which is created from the parent population Pt
by using usual genetic operators. The selection is based on non-dominated sorting
procedure which is used to classify the entire population Rt according to increasing order of
dominance (Deb et al., 2002). Thereafter, the best Pareto fronts from the top of the sorted list
is transferred to create the new parent population Pt+1 which is half the size of the entire
population Rt. Therefore, it should be noted that all the individuals of a certain front cannot
be accommodated in the new parent population because of space. In order to choose exact
number of individuals of that particular front, a crowded comparison operator is used in
NSGA-II to find the best solutions to fill the rest of the new parent population slots. The
crowded comparison procedure is based on density estimation of solutions surrounding a
particular solution in a population or front. In this way, the solutions of a Pareto front are
first sorted in each objective direction in the ascending order of that objective value. The
crowding distance is then assigned equal to the half of the perimeter of the enclosing hyper-
box (a rectangular in bi-objective optimization problems). The sorting procedure is then
repeated for other objectives and the overall crowding distance is calculated as the sum of
the crowding distances from all objectives. The less crowded non-dominated individuals of
that particular Pareto front are then selected to fill the new parent population. It must be
noted that, in a two-objective Pareto optimization, if the solutions of a Pareto front are
sorted in a decreasing order of importance to one objective, these solutions are then
automatically ordered in an increasing order of importance to the second objective. Thus,
the hyper-boxes surrounding an individual solution remain unchanged in the objective-wise
sorting procedure of the crowding distance of NSGA-II in the two-objective Pareto
optimization problem. However, in multi-objective Pareto optimization problems with more

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

301

than two objectives, such sorting procedure of individuals based on each objective in this
algorithm will cause different enclosing hyper-boxes. Thus, the overall crowding distance of
an individual computed in this way may not exactly reflect the true measure of diversity or
crowding property for the multi-objective Pareto optimization problems with more than
two objectives.
In our work, a new method is presented to modify NSGA-II so that it can be safely used for
any number of objective functions (particularly for more than two objectives) in MOPs. Such
a modified MOEA is then used for four-objective thermodynamic optimization of subsonic
turbojet engines.

3. Multi-objective Uniform-diversity Genetic Algorithm (MUGA)
The multi-objective uniform-diversity genetic algorithm (MUGA) uses non-dominated
sorting mechanism together with a ε-elimination diversity preserving algorithm to get
Pareto optimal solutions of MOPs more precisely and uniformly.

3.1 The non-dominated sorting method
The basic idea of sorting of non-dominated solutions originally proposed by Goldberg
(Goldberg, 1989) used in different evolutionary multi-objective optimization algorithms
such as in NSGA-II by Deb (Deb et al., 2002) has been adopted here. The algorithm simply
compares each individual in the population with others to determine its non-dominancy.
Once the first front has been found, all its non-dominated individuals are removed from the
main population and the procedure is repeated for the subsequent fronts until the entire
population is sorted and non-dominately divided into different fronts.
A sorting procedure to constitute a front could be simply accomplished by comparing all the
individuals of the population and including the non-dominated individuals in the front.
Such procedure can be simply represented as following steps:

 1-Get the population (pop)
 2-Include the first individual {ind(1)} in the front P* as P*(1), let P*_size=1;
 3-Compare other individuals {ind (j), j=2, Pop_size)} of the pop with { P*(K), K=1, P*_size}
 of the P*;
 If ind(j)<P*(K) replace the P*(K) with ind(j)
 If P*(K)<ind(K), j=j+1, continue comparison;
 Else include ind(j) in P*, P*_size= P*_size+1, j=j+1, continue comparison;
 4-End of front P*;

It can be easily seen that the number of non-dominated solutions in P* grows until no
further one is found. At this stage, all the non-dominated individuals so far found in P* are
removed from the main population and the whole procedure of finding another front may
be accomplished again. This procedure is repeated until the whole population is divided
into different ranked fronts. It should be noted that the first rank front of the final
generation constitute the final Pareto optimal solution of the multi-objective optimization
problem.

3.2 The ε-elimination diversity preserving approach
In the ε-elimination diversity approach that is used to replaced the crowding distance
assignment approach in NSGA-II (Deb et al., 2002), all the clones and ε-similar individuals

 Advances in Evolutionary Algorithms

302

are recognized and simply eliminated from the current population. Therefore, based on a
value of ε as the elimination threshold, all the individuals in a front within this limit of a
particular individual are eliminated. It should be noted that such ε-similarity must exist both
in the space of objectives and in the space of the associated design variables. This will ensure
that very different individuals in the space of design variables having ε-similarity in the
space of objectives will not be eliminated from the population. The pseudo-code of the ε-
elimination approach is depicted in Fig. 1. Evidently, the clones and ε-similar individuals
are replaced from the population by the same number of new randomly generated
individuals. Meanwhile, this will additionally help to explore the search space of the given
MOP more effectively. It is clear that such replacement does not appear when a front rather
than the entire population is truncated for ε-similar individual.

Fig. 1. The ε-elimination diversity preserving pseudo-code

3.3 The main algorithm of MUGA
It is now possible to present the main algorithm of MUGA which uses both non-dominated
sorting procedure and ε-elimination diversity preserving approach which is given in Fig.2. It
first initiates a population randomly. Using genetic operators, another same size population
is then created. Based on the ε-elimination algorithm, the whole population is then reduced
by removing ε-similar individuals. At this stage, the population is re-filled by randomly
generated individuals which helps to explore the search space more effectively. The whole
population is then sorted using non-dominated sorting procedure. The obtained fronts are

ε-elim= ε-elimination(pop) // pop includes design variables and
objective function

i=1; j=1;
get K (K=1 for the first front);
While i,j <pop_size

 e(i,j)= ║X(i,:),X(j,:) ║/║X(i,:) ║; X(i),X(j) ϵ P*k Ụ PF*k //finding mean value of ε

within pop.
end
ε=mean(e);
i=1;
until i+1<pop_size;
j=i+1
 until j<pop_size
 if e(i,j)<ε
 then {pop}={pop}/ {pop(j)} //remove the ε-similar individual
 j=j+1

end
i=i+1
end

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

303

then used to constitute the main population. It must be noted that the front which must be
truncated to match the size of the population is also evaluated by ε-elimination procedure to
identify the ε-similar individuals. Such procedure is only performed to match the size of
population within ±10 percent deviation to prevent excessive computational effort to
population size adjustment. Finally, unless the number of individuals in the first rank front
is changing in certain number of generations, randomly created individuals are inserted in
the main population occasionally (e.g. every 20 generations of having non-varying first rank
front).

Fig. 2. The pseudo-code of the main algorithm of MUGA

4. Numerical results of MUGA using test functions
In this section four test functions which have been widely used in literature (Deb et al., 2002)
are adopted here to test and compare the effectiveness of MUGA with that of NSGA-II.
These test functions are all bi-objective and have no constraint. A generation number of 250
with a population size of 100 have been used in all experiments. The probabilities of
crossover and mutation have been chosen as 0.9 and 0.1, respectively. Each test function has

Get N //population size
t=1 ; //set generation number
Random_N(Pt); //generate the first population (P1) randomly
Qt=Recomb(Pt) //generate population Qt from Pt by genetic operators
Rt=Pt Ụ Qt //union of both parent and offspring population
Rt′=ε-elimination (Rt) //remove ε-similar individuals in Rt
Rt′′= Rt′ Ụ Random_(Rt_size-R′t_size) (Pt′) //add random individuals to fill Rt to 2N

Do non-dominate sorting procedure (Rt′′) //Rt′′=P*1Ụ P*2Ụ…ỤP*k where k is total

number of fronts
i=1
Pt+1=Θ
While not Pt+1_size>N //includes fronts into new population
 Pt+1= Pt+1Ụ P*i
 i=i+1
end
N′=N- Pt+1_size
While not (0.9 N′< Pt+1_size<1.1 N′) //remove the ε-similar individuals within

the tolerance of ±10 percent
 Ғ′=ε-elimination (P*i-1)
 If Ғ′_size< N′

e=1.1*e
else
e=0.9 * e //adjust the value of threshold to get the right population

size of the last front
end

end
t=t+1 //Start next generation

 Advances in Evolutionary Algorithms

302

are recognized and simply eliminated from the current population. Therefore, based on a
value of ε as the elimination threshold, all the individuals in a front within this limit of a
particular individual are eliminated. It should be noted that such ε-similarity must exist both
in the space of objectives and in the space of the associated design variables. This will ensure
that very different individuals in the space of design variables having ε-similarity in the
space of objectives will not be eliminated from the population. The pseudo-code of the ε-
elimination approach is depicted in Fig. 1. Evidently, the clones and ε-similar individuals
are replaced from the population by the same number of new randomly generated
individuals. Meanwhile, this will additionally help to explore the search space of the given
MOP more effectively. It is clear that such replacement does not appear when a front rather
than the entire population is truncated for ε-similar individual.

Fig. 1. The ε-elimination diversity preserving pseudo-code

3.3 The main algorithm of MUGA
It is now possible to present the main algorithm of MUGA which uses both non-dominated
sorting procedure and ε-elimination diversity preserving approach which is given in Fig.2. It
first initiates a population randomly. Using genetic operators, another same size population
is then created. Based on the ε-elimination algorithm, the whole population is then reduced
by removing ε-similar individuals. At this stage, the population is re-filled by randomly
generated individuals which helps to explore the search space more effectively. The whole
population is then sorted using non-dominated sorting procedure. The obtained fronts are

ε-elim= ε-elimination(pop) // pop includes design variables and
objective function

i=1; j=1;
get K (K=1 for the first front);
While i,j <pop_size

 e(i,j)= ║X(i,:),X(j,:) ║/║X(i,:) ║; X(i),X(j) ϵ P*k Ụ PF*k //finding mean value of ε

within pop.
end
ε=mean(e);
i=1;
until i+1<pop_size;
j=i+1
 until j<pop_size
 if e(i,j)<ε
 then {pop}={pop}/ {pop(j)} //remove the ε-similar individual
 j=j+1

end
i=i+1
end

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

303

then used to constitute the main population. It must be noted that the front which must be
truncated to match the size of the population is also evaluated by ε-elimination procedure to
identify the ε-similar individuals. Such procedure is only performed to match the size of
population within ±10 percent deviation to prevent excessive computational effort to
population size adjustment. Finally, unless the number of individuals in the first rank front
is changing in certain number of generations, randomly created individuals are inserted in
the main population occasionally (e.g. every 20 generations of having non-varying first rank
front).

Fig. 2. The pseudo-code of the main algorithm of MUGA

4. Numerical results of MUGA using test functions
In this section four test functions which have been widely used in literature (Deb et al., 2002)
are adopted here to test and compare the effectiveness of MUGA with that of NSGA-II.
These test functions are all bi-objective and have no constraint. A generation number of 250
with a population size of 100 have been used in all experiments. The probabilities of
crossover and mutation have been chosen as 0.9 and 0.1, respectively. Each test function has

Get N //population size
t=1 ; //set generation number
Random_N(Pt); //generate the first population (P1) randomly
Qt=Recomb(Pt) //generate population Qt from Pt by genetic operators
Rt=Pt Ụ Qt //union of both parent and offspring population
Rt′=ε-elimination (Rt) //remove ε-similar individuals in Rt
Rt′′= Rt′ Ụ Random_(Rt_size-R′t_size) (Pt′) //add random individuals to fill Rt to 2N

Do non-dominate sorting procedure (Rt′′) //Rt′′=P*1Ụ P*2Ụ…ỤP*k where k is total

number of fronts
i=1
Pt+1=Θ
While not Pt+1_size>N //includes fronts into new population
 Pt+1= Pt+1Ụ P*i
 i=i+1
end
N′=N- Pt+1_size
While not (0.9 N′< Pt+1_size<1.1 N′) //remove the ε-similar individuals within

the tolerance of ±10 percent
 Ғ′=ε-elimination (P*i-1)
 If Ғ′_size< N′

e=1.1*e
else
e=0.9 * e //adjust the value of threshold to get the right population

size of the last front
end

end
t=t+1 //Start next generation

 Advances in Evolutionary Algorithms

304

been run for 5 times to compute the mean and variance of the metric of non-uniformity of
the solutions obtained in the final Pareto front.
In order to evaluate the diversity of the obtained Pareto front, a metric, Δ, has been adopted
here to measure the spread and uniformity of the achieved non-dominated solutions along a
Pareto front (Deb et al., 2002). Such metric basically calculates the relative Euclidean
distance of consecutive solutions from their average value. Hence, a lower value of Δ (zero
in ideal case) indicates a better uniformly spread non-dominated solutions. It is therefore
possible to simply compare the performance of MUGA with that of NSGA-II in term of
uniformity using the same metric.
Four different functions which have been used to test and compare the results of MUGA
with those of NSGA-II are as follows:

1-
⎪
⎪
⎩

⎪⎪
⎨

⎧

−∈
−=

=
1000,1000][x22)(x(x)2f

2x(x)1f

2- 30n,[0,1]x

1nn
2i ix91g(x)

g(x)ix1g(x)(x)2f

1x(x)1f

=∈

−∑ =+=

−=

=

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎠
⎞⎜

⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

3- 30, =∈

−∑ =+=

−=

=

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎠
⎞⎜

⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n[0,1]x

1nn
2i ix91g(x)

2
g(x)ix1g(x)(x)2f

1x(x)1f

4- 3, =−∈

∑ = +=

∑ −
=

+
+−−

=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛

n5,5][x

n
1i

3
i

5sinx
0.8

i
x(x)

2
f

1n
1i

2
1i

x2
i

x0.210exp
(x)

1
f

Figure 3 depicts the Pareto fronts obtained for test functions 1 and 2 using MUGA. Figure 4
depicts the same for test functions 3 and 4. The uniformity of the well spread-out of the non-
dominated solutions is evident from these figures.
In order to compare the uniformity of the results of this work (MUGA) with those of NSGA-
II, Table 1 shows the means and variances of metric Δ of both methods for multiple runs
(Deb et al., 2002).

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

305

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5

f 2

f1

Pareto front of test function 1 (MUGA)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f2

f1

Pareto front of test function 2 (MUGA)

(a) (b)

Fig. 3. Pareto fronts obtained by MUGA: (a) Test function 1 (b):Test function 2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f2

f1

Pareto front of test function 3 (MUGA)

-12

-10

-8

-6

-4

-2

0

2

-20 -19 -18 -17 -16 -15 -14

f2

f1

Pareto front of test function 4(MUGA)

 (a) (b)

Fig. 4. Pareto fronts obtained by MUGA: (a) Test function 3 (b):Test function 4

Methods Test function 1 Test function 2 Test function 3 Test function 4
0.449265 0.463292 0.435112 0.442195

NSGA-II
0.002062 0.041622 0.024607 0.001498
1.021110 0.784525 0.755148 0.852490

SPEA
0.004372 0.004440 0.004521 0.002619
1.063288 1.229794 1.165942 1.079838

PAES
0.002868 0.004839 0.007682 0.013772
0.162595 0.273347 0.225211 0.402798

MUGA (this work)
2.9E-06 0.000261 2.1E-07 0.0

Table 1. Comparison of mean and variance of metric Δ of different methods (Deb et al., 2002)
with those of MUGA (shaded rows are mean values and un-shaded rows are variances)

 Advances in Evolutionary Algorithms

304

been run for 5 times to compute the mean and variance of the metric of non-uniformity of
the solutions obtained in the final Pareto front.
In order to evaluate the diversity of the obtained Pareto front, a metric, Δ, has been adopted
here to measure the spread and uniformity of the achieved non-dominated solutions along a
Pareto front (Deb et al., 2002). Such metric basically calculates the relative Euclidean
distance of consecutive solutions from their average value. Hence, a lower value of Δ (zero
in ideal case) indicates a better uniformly spread non-dominated solutions. It is therefore
possible to simply compare the performance of MUGA with that of NSGA-II in term of
uniformity using the same metric.
Four different functions which have been used to test and compare the results of MUGA
with those of NSGA-II are as follows:

1-
⎪
⎪
⎩

⎪⎪
⎨

⎧

−∈
−=

=
1000,1000][x22)(x(x)2f

2x(x)1f

2- 30n,[0,1]x

1nn
2i ix91g(x)

g(x)ix1g(x)(x)2f

1x(x)1f

=∈

−∑ =+=

−=

=

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎠
⎞⎜

⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

3- 30, =∈

−∑ =+=

−=

=

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎠
⎞⎜

⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n[0,1]x

1nn
2i ix91g(x)

2
g(x)ix1g(x)(x)2f

1x(x)1f

4- 3, =−∈

∑ = +=

∑ −
=

+
+−−

=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛

n5,5][x

n
1i

3
i

5sinx
0.8

i
x(x)

2
f

1n
1i

2
1i

x2
i

x0.210exp
(x)

1
f

Figure 3 depicts the Pareto fronts obtained for test functions 1 and 2 using MUGA. Figure 4
depicts the same for test functions 3 and 4. The uniformity of the well spread-out of the non-
dominated solutions is evident from these figures.
In order to compare the uniformity of the results of this work (MUGA) with those of NSGA-
II, Table 1 shows the means and variances of metric Δ of both methods for multiple runs
(Deb et al., 2002).

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

305

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5

f 2

f1

Pareto front of test function 1 (MUGA)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f2

f1

Pareto front of test function 2 (MUGA)

(a) (b)

Fig. 3. Pareto fronts obtained by MUGA: (a) Test function 1 (b):Test function 2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f2

f1

Pareto front of test function 3 (MUGA)

-12

-10

-8

-6

-4

-2

0

2

-20 -19 -18 -17 -16 -15 -14

f2

f1

Pareto front of test function 4(MUGA)

 (a) (b)

Fig. 4. Pareto fronts obtained by MUGA: (a) Test function 3 (b):Test function 4

Methods Test function 1 Test function 2 Test function 3 Test function 4
0.449265 0.463292 0.435112 0.442195

NSGA-II
0.002062 0.041622 0.024607 0.001498
1.021110 0.784525 0.755148 0.852490

SPEA
0.004372 0.004440 0.004521 0.002619
1.063288 1.229794 1.165942 1.079838

PAES
0.002868 0.004839 0.007682 0.013772
0.162595 0.273347 0.225211 0.402798

MUGA (this work)
2.9E-06 0.000261 2.1E-07 0.0

Table 1. Comparison of mean and variance of metric Δ of different methods (Deb et al., 2002)
with those of MUGA (shaded rows are mean values and un-shaded rows are variances)

 Advances in Evolutionary Algorithms

306

It is very evident from Table 1 that the performance of MUGA is better than that of other
methods in achieving lower Δ in obtaining more uniform non-dominated solutions for these
test functions. Further, the very small value of variances of that metric obtained in multiple
runs simply demonstrates the robustness of finding uniform Pareto fronts in MOPs using
MUGA.

5. Multi-objective thermodynamic optimization of turbojet engines with two
design variables
Turbojet engines use air as the working fluid and produce thrust based on the variation of
kinetic energy of burnt gases after combustion. The study of the thermodynamic cycle of a
turbojet engine involves different thermo-mechanical aspects such as specific thrust, thermal
and propulsive efficiencies, and thrust-specific fuel consumption (Atashkari, et al., 2005). A
detailed description of the thermodynamic analysis and equations (Mattingly, 1996) of ideal
turbojet engines is given in Appendix A (Atashkari, et al., 2005). This elementary
thermodynamic model is sufficient to capture the principles of behaviour and interactions
among different input and output parameters in a multi-objective optimal sense.
Furthermore, this provides a suitable real-world engineering benchmark for comparing
purpose between MOEA using the new diversity preserving mechanism of this work.
The input parameters involved in such thermodynamic analysis in an ideal turbojet engine
given in Appendix A are flight Mach number (M0), input air temperature (T0, K), specific
heat ratio (γ), heating value of fuel (hpr, kJ/kg), exit burner total temperature (Tt4, K), and
pressure ratio, πc. The output parameters involved in the thermodynamic analysis in the
ideal turbojet engine given in Appendix A are, specific thrust, (ST, N/kg/s), fuel-to-air ratio
(f), thrust-specific fuel consumption (TSFC, kg/s/N), thermal efficiency (ηt), and propulsive
efficiency (ηp). However, in the multi-objective optimization study, some input parameters
are already known or assumed as, T0 = 216.6 K, γ =1.4, hpr =48000 kJ/kg, and Tt4 = 1666 K.
The input flight Mach number 0 < M0 ≤ 1 and the compressor pressure ratio 1 ≤ πc ≤ 40 are
considered as design variables to be optimally found based on multi-objective optimization
of 4 output parameters, namely, ST, TSFC, ηt, and ηp.

5.2 Two-objective thermodynamic optimization of turbojet engines
In order to investigate the optimal thermodynamic behaviour of subsonic turbojet engines, 5
different sets, each including two objectives of the output parameters, are considered
individually. Such pairs of objectives to be optimized separately have been chosen as (ηp,
TSFCx105), (ηp, ST), (ηt, TSFCx105), (ηt, ST), and (ηp, ηt). Evidently, it can be observed that
ηp, ηt, and ST are maximized whilst TSFC is minimized in those sets of objective functions.
A population size of 100 has been chosen in all runs with crossover probability Pc and
mutation probability Pm as 0.8 and 0.1, respectively.
The results of the two-objective optimizations considering those 5 different combinations of
objectives are summarized in Table 2. Some Pareto fronts of each pair of two objectives have
been shown through figures (5-6) using both the approach of this work and that of NSGA-II.

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

307

Pairs of objectives in two-objective optimizations

(ηp, TSFC) (ηt, TSFC) (ηp, ST) (ηt, ST) (ηp, ηt)

0 <ηp≤0.39

2.1≤TSFC≤2.43

0.4<ηp ≤0.55

3.16≤TSFC≤6.8

.65≤ηt ≤ 0.7

2.1≤TSFC≤2.43

0.41<ηp≤0.5

515≤ST≤817

0 < ηp 0.39

906≤ST≤1169

0.64≤ηt 0.7

890≤ST≤1169

0.4≤ηp≤0.56

0.16≤ηt≤0.55

M0 0 < Mo ≤1 1 0 < Mo ≤1 0.85≤Mo≤1 0<Mo≤1 0<Mo≤1 1

πc πc = 40 1.0 ≤πc ≤ 8.25 πc = 40 1.2≤πc≤4.28 13.5≤πc≤39.3 37.3≤πc≤40 1≤πc≤ 8.78

Table 2. Values of decision variables and objective functions in various two-objective
optimizations (Atashkari, et al., 2005)
It is clear from these figures that choosing appropriate values for the decision variables,
namely flight Mach number (M0) and pressure ratio (πc), to obtain a better value of one
objective would normally cause a worse value of another objective. However, if the set of
decision variables is selected based on each of a Pareto front, it will lead to the best possible
combination of that pair of objectives. In other words, if any other pair of decision variables
M0 and πc is chosen, the corresponding values of the particular pair of objectives will locate a
point inferior to that Pareto front. The inferior area in the space of objective functions (plane
in these cases) for figures (5-6) are in fact bottom/left sides. A better diversity of results
obtained using the approach of this work than those of NSGA-II can also observed in these
figures. Evidently, figures (5-6) reveal some important and interesting optimal relationships
among the thermodynamic parameters in the ideal thermodynamic cycle of turbojet engines
that may not have been found without a multi-objective optimization approach. Such
relationships have been called a worthwhile task for a designer by Deb in (Deb, 2003). These
figures and the associated values of the decision variables and the objective functions given
in Table 1 simply covers all the 4 objectives studied in the two-objective Pareto optimization.

0 .6 2

0 .6 3

0 .6 4

0 .6 5

0 .6 6

0 .6 7

0 .6 8

0 .6 9

0 .7

8 5 0 9 5 0 1 0 5 0 1 1 5 0

s p e c if ic th ru s t (N /k g /s e c)

th
er

m
al

 e
ffi

ci
en

cy

T h e rm a l E f f ic ie n c y v s S p e c if ic T h ru s t

0 .6 2

0 .6 3

0 .6 4

0 .6 5

0 .6 6

0 .6 7

0 .6 8

0 .6 9

0 .7

8 5 0 9 5 0 1 0 5 0 1 1 5 0

s p e c if ic th r u s t (N /k g /s e c)

th
er

m
al

 e
ff

ic
ie

nc
y

T h e r m a l E f f ic ie n c y v s S p e c i f ic T h r u s t

 (a) (b)
Fig. 5. Pareto front of thermal efficiency and specific thrust in 2-objective optimization: (a)
MUGA (b) NSGA-II
However, other pairs of objective functions in the two-objective Pareto optimization
together with their associated values of the decision variables have been shown in Table 1. A

 Advances in Evolutionary Algorithms

306

It is very evident from Table 1 that the performance of MUGA is better than that of other
methods in achieving lower Δ in obtaining more uniform non-dominated solutions for these
test functions. Further, the very small value of variances of that metric obtained in multiple
runs simply demonstrates the robustness of finding uniform Pareto fronts in MOPs using
MUGA.

5. Multi-objective thermodynamic optimization of turbojet engines with two
design variables
Turbojet engines use air as the working fluid and produce thrust based on the variation of
kinetic energy of burnt gases after combustion. The study of the thermodynamic cycle of a
turbojet engine involves different thermo-mechanical aspects such as specific thrust, thermal
and propulsive efficiencies, and thrust-specific fuel consumption (Atashkari, et al., 2005). A
detailed description of the thermodynamic analysis and equations (Mattingly, 1996) of ideal
turbojet engines is given in Appendix A (Atashkari, et al., 2005). This elementary
thermodynamic model is sufficient to capture the principles of behaviour and interactions
among different input and output parameters in a multi-objective optimal sense.
Furthermore, this provides a suitable real-world engineering benchmark for comparing
purpose between MOEA using the new diversity preserving mechanism of this work.
The input parameters involved in such thermodynamic analysis in an ideal turbojet engine
given in Appendix A are flight Mach number (M0), input air temperature (T0, K), specific
heat ratio (γ), heating value of fuel (hpr, kJ/kg), exit burner total temperature (Tt4, K), and
pressure ratio, πc. The output parameters involved in the thermodynamic analysis in the
ideal turbojet engine given in Appendix A are, specific thrust, (ST, N/kg/s), fuel-to-air ratio
(f), thrust-specific fuel consumption (TSFC, kg/s/N), thermal efficiency (ηt), and propulsive
efficiency (ηp). However, in the multi-objective optimization study, some input parameters
are already known or assumed as, T0 = 216.6 K, γ =1.4, hpr =48000 kJ/kg, and Tt4 = 1666 K.
The input flight Mach number 0 < M0 ≤ 1 and the compressor pressure ratio 1 ≤ πc ≤ 40 are
considered as design variables to be optimally found based on multi-objective optimization
of 4 output parameters, namely, ST, TSFC, ηt, and ηp.

5.2 Two-objective thermodynamic optimization of turbojet engines
In order to investigate the optimal thermodynamic behaviour of subsonic turbojet engines, 5
different sets, each including two objectives of the output parameters, are considered
individually. Such pairs of objectives to be optimized separately have been chosen as (ηp,
TSFCx105), (ηp, ST), (ηt, TSFCx105), (ηt, ST), and (ηp, ηt). Evidently, it can be observed that
ηp, ηt, and ST are maximized whilst TSFC is minimized in those sets of objective functions.
A population size of 100 has been chosen in all runs with crossover probability Pc and
mutation probability Pm as 0.8 and 0.1, respectively.
The results of the two-objective optimizations considering those 5 different combinations of
objectives are summarized in Table 2. Some Pareto fronts of each pair of two objectives have
been shown through figures (5-6) using both the approach of this work and that of NSGA-II.

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

307

Pairs of objectives in two-objective optimizations

(ηp, TSFC) (ηt, TSFC) (ηp, ST) (ηt, ST) (ηp, ηt)

0 <ηp≤0.39

2.1≤TSFC≤2.43

0.4<ηp ≤0.55

3.16≤TSFC≤6.8

.65≤ηt ≤ 0.7

2.1≤TSFC≤2.43

0.41<ηp≤0.5

515≤ST≤817

0 < ηp 0.39

906≤ST≤1169

0.64≤ηt 0.7

890≤ST≤1169

0.4≤ηp≤0.56

0.16≤ηt≤0.55

M0 0 < Mo ≤1 1 0 < Mo ≤1 0.85≤Mo≤1 0<Mo≤1 0<Mo≤1 1

πc πc = 40 1.0 ≤πc ≤ 8.25 πc = 40 1.2≤πc≤4.28 13.5≤πc≤39.3 37.3≤πc≤40 1≤πc≤ 8.78

Table 2. Values of decision variables and objective functions in various two-objective
optimizations (Atashkari, et al., 2005)
It is clear from these figures that choosing appropriate values for the decision variables,
namely flight Mach number (M0) and pressure ratio (πc), to obtain a better value of one
objective would normally cause a worse value of another objective. However, if the set of
decision variables is selected based on each of a Pareto front, it will lead to the best possible
combination of that pair of objectives. In other words, if any other pair of decision variables
M0 and πc is chosen, the corresponding values of the particular pair of objectives will locate a
point inferior to that Pareto front. The inferior area in the space of objective functions (plane
in these cases) for figures (5-6) are in fact bottom/left sides. A better diversity of results
obtained using the approach of this work than those of NSGA-II can also observed in these
figures. Evidently, figures (5-6) reveal some important and interesting optimal relationships
among the thermodynamic parameters in the ideal thermodynamic cycle of turbojet engines
that may not have been found without a multi-objective optimization approach. Such
relationships have been called a worthwhile task for a designer by Deb in (Deb, 2003). These
figures and the associated values of the decision variables and the objective functions given
in Table 1 simply covers all the 4 objectives studied in the two-objective Pareto optimization.

0 .6 2

0 .6 3

0 .6 4

0 .6 5

0 .6 6

0 .6 7

0 .6 8

0 .6 9

0 .7

8 5 0 9 5 0 1 0 5 0 1 1 5 0

s p e c if ic th ru s t (N /k g /s e c)

th
er

m
al

 e
ffi

ci
en

cy

T h e rm a l E f f ic ie n c y v s S p e c if ic T h ru s t

0 .6 2

0 .6 3

0 .6 4

0 .6 5

0 .6 6

0 .6 7

0 .6 8

0 .6 9

0 .7

8 5 0 9 5 0 1 0 5 0 1 1 5 0

s p e c if ic th r u s t (N /k g /s e c)

th
er

m
al

 e
ff

ic
ie

nc
y

T h e r m a l E f f ic ie n c y v s S p e c i f ic T h r u s t

 (a) (b)
Fig. 5. Pareto front of thermal efficiency and specific thrust in 2-objective optimization: (a)
MUGA (b) NSGA-II
However, other pairs of objective functions in the two-objective Pareto optimization
together with their associated values of the decision variables have been shown in Table 1. A

 Advances in Evolutionary Algorithms

308

careful investigation of these Pareto optimization results reveals some interesting and
informative design aspects. It can be observed that a small value of pressure ratio (πc <8.7) is
required in large value of Mach number (0.85<M0 <1) when high value of ηp is important to
the designer (0.4 <ηp <0.55). In this case both ST and TSFC get their worse values (ST
becomes smaller and TSFC becomes larger), whilst ηt varies between small and medium
values (0.16<ηt<0.55) depending on the value of flight Mach number. However, with high
value of pressure ratio (37<πc<40) in a wide range of flight Mach number (0<M0 <1), TSFC,
ST, and ηt improve whilst ηp cannot be better than 0.4. The specific values of these objectives
depend on the exact value of flight Mach number which have been given in Table 1.
However, such important and worthwhile information can be simply discovered using a
four-objective Pareto optimization, which will be presented in the next section.

0 .3

0 .3 5

0 .4

0 .4 5

0 .5

0 .5 5

0 .6

0 .1 0 .3 0 .5 0 .7

th e r m a l e f f ic ie n c y

pr
op

ul
si

on
 e

ffi
ci

en
cy

P r o p u ls io n E f f ic ie n c y v s T h e rm a l e f f ic ie n c y

0 .3

0 .3 5

0 .4

0 .4 5

0 .5

0 .5 5

0 .6

0 .1 0 .3 0 .5 0 .7

th e r m a l e f f ic ie n c y

pr
op

ul
si

on
 e

ffi
ci

en
cy

P r o p u ls io n E f f ic ie n c y v s T h e r m a l E f f ic ie n c y

 (a) (b)

Fig. 6. Pareto front of propulsive efficiency and thermal efficiency in 2-objective
optimization: (a) MUGA (b) NSGA-II
Moreover, figures (5-6) also reveal some important and interesting optimal relationships of
such objective functions in ideal thermodynamic cycle of turbojet engines that may have not
been known without a multi-objective optimization approach. For example, figure (3)
demonstrates that the optimal behaviours of ηt with respect to ST can be readily represented
by

 ηt ∝ (ST)2 (4)

Figure (4) represents a non-linear optimal relationship of ηt and ηp in the form of

 ηt ∝ (ηp)2 (5)

 It should be noted that these relationships, which have been obtained from the two-
objective Pareto optimization results, are valid when the corresponding two-objective
optimization of such functions is of importance to the designer and, in fact, demonstrates
the optimal compromise of such pairs of objectives.

5.3 Four-objective thermodynamic optimization of turbojet engines
A multi-objective thermodynamic optimization including all four objectives simultaneously
can offer more choices for a designer. Moreover, such 4-objective optimization can subsume

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

309

all the 2-objective optimization results presented in the previous section. Therefore, in this
section, four objectives, namely, TSFC, ST, ηp, and ηt, are chosen for multi-objective
optimization in which ST, ηp, and ηt are maximized whilst TSFC is minimized
simultaneously. A population size of 200 has been chosen with crossover probability Pc and
mutation probability Pm as 0.8 and 0.02, respectively.
Figure (7) depicts the non-dominated individuals in both 4-objective and previously
obtained 2-objective optimization in the plane of (ηt-ST). Such non-dominated individuals in
both 4 and 2-objective optimization have alternatively been shown in the plane of (ηp-ηt) in
figure (8). It should be noted that there is a single set of individuals as a result of 4-objective
optimization of TSFC, ST, ηp, and ηt that are shown in different planes together with the
corresponding 2-objective optimization results. Therefore, there are some points in each
plane that may dominate others in the same plane in the case of 4-objective optimization.
However, these individuals are all non-dominated when considering all four objectives
simultaneously. By careful investigation of the results of 4-objective optimization in each
plane, the Pareto fronts of the corresponding two-objective optimization can now be
observed in these figures. It can be readily observed that the results of such 4-objective
optimization include the Pareto fronts of each 2-objective optimization and provide,
therefore, more optimal choices for the designer.

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0 1 2 0 0
s p e c ific th ru s t (N /k g /s)

th
er

m
al

 e
ffi

ci
en

cy

F o u r-o b je c tiv e o p tim iz a tio n T w o -o b je c tiv e o p tim iz a tio n

Fig. 7. Thermal efficiency variation with specific thrust in both 4-objective & 2-objective
optimisation

The non-dominated individuals obtained in 4-objective optimization demonstrate some
interesting behaviours in terms of design variables. Two different parts can be easily
observed in figures (7-8). One of these parts which is less populated corresponds to high
value of pressure ratio (0.4<ηp<0.55), unlike the rest of objective functions which all together
degrades in their values simultaneously, that is, 3<TSFCx105<6.3, 515<ST<890, 0.2<ηt<0.52.
The corresponding values of objectives for the second part can be given as, 0<ηp<0.4,
2<TSFCx105<3, 900<ST<1169, 0.6<ηt<0.71 which can be appropriately chosen by the

 Advances in Evolutionary Algorithms

308

careful investigation of these Pareto optimization results reveals some interesting and
informative design aspects. It can be observed that a small value of pressure ratio (πc <8.7) is
required in large value of Mach number (0.85<M0 <1) when high value of ηp is important to
the designer (0.4 <ηp <0.55). In this case both ST and TSFC get their worse values (ST
becomes smaller and TSFC becomes larger), whilst ηt varies between small and medium
values (0.16<ηt<0.55) depending on the value of flight Mach number. However, with high
value of pressure ratio (37<πc<40) in a wide range of flight Mach number (0<M0 <1), TSFC,
ST, and ηt improve whilst ηp cannot be better than 0.4. The specific values of these objectives
depend on the exact value of flight Mach number which have been given in Table 1.
However, such important and worthwhile information can be simply discovered using a
four-objective Pareto optimization, which will be presented in the next section.

0 .3

0 .3 5

0 .4

0 .4 5

0 .5

0 .5 5

0 .6

0 .1 0 .3 0 .5 0 .7

th e r m a l e f f ic ie n c y

pr
op

ul
si

on
 e

ffi
ci

en
cy

P r o p u ls io n E f f ic ie n c y v s T h e rm a l e f f ic ie n c y

0 .3

0 .3 5

0 .4

0 .4 5

0 .5

0 .5 5

0 .6

0 .1 0 .3 0 .5 0 .7

th e r m a l e f f ic ie n c y

pr
op

ul
si

on
 e

ffi
ci

en
cy

P r o p u ls io n E f f ic ie n c y v s T h e r m a l E f f ic ie n c y

 (a) (b)

Fig. 6. Pareto front of propulsive efficiency and thermal efficiency in 2-objective
optimization: (a) MUGA (b) NSGA-II
Moreover, figures (5-6) also reveal some important and interesting optimal relationships of
such objective functions in ideal thermodynamic cycle of turbojet engines that may have not
been known without a multi-objective optimization approach. For example, figure (3)
demonstrates that the optimal behaviours of ηt with respect to ST can be readily represented
by

 ηt ∝ (ST)2 (4)

Figure (4) represents a non-linear optimal relationship of ηt and ηp in the form of

 ηt ∝ (ηp)2 (5)

 It should be noted that these relationships, which have been obtained from the two-
objective Pareto optimization results, are valid when the corresponding two-objective
optimization of such functions is of importance to the designer and, in fact, demonstrates
the optimal compromise of such pairs of objectives.

5.3 Four-objective thermodynamic optimization of turbojet engines
A multi-objective thermodynamic optimization including all four objectives simultaneously
can offer more choices for a designer. Moreover, such 4-objective optimization can subsume

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

309

all the 2-objective optimization results presented in the previous section. Therefore, in this
section, four objectives, namely, TSFC, ST, ηp, and ηt, are chosen for multi-objective
optimization in which ST, ηp, and ηt are maximized whilst TSFC is minimized
simultaneously. A population size of 200 has been chosen with crossover probability Pc and
mutation probability Pm as 0.8 and 0.02, respectively.
Figure (7) depicts the non-dominated individuals in both 4-objective and previously
obtained 2-objective optimization in the plane of (ηt-ST). Such non-dominated individuals in
both 4 and 2-objective optimization have alternatively been shown in the plane of (ηp-ηt) in
figure (8). It should be noted that there is a single set of individuals as a result of 4-objective
optimization of TSFC, ST, ηp, and ηt that are shown in different planes together with the
corresponding 2-objective optimization results. Therefore, there are some points in each
plane that may dominate others in the same plane in the case of 4-objective optimization.
However, these individuals are all non-dominated when considering all four objectives
simultaneously. By careful investigation of the results of 4-objective optimization in each
plane, the Pareto fronts of the corresponding two-objective optimization can now be
observed in these figures. It can be readily observed that the results of such 4-objective
optimization include the Pareto fronts of each 2-objective optimization and provide,
therefore, more optimal choices for the designer.

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0 1 2 0 0
s p e c ific th ru s t (N /k g /s)

th
er

m
al

 e
ffi

ci
en

cy

F o u r-o b je c tiv e o p tim iz a tio n T w o -o b je c tiv e o p tim iz a tio n

Fig. 7. Thermal efficiency variation with specific thrust in both 4-objective & 2-objective
optimisation

The non-dominated individuals obtained in 4-objective optimization demonstrate some
interesting behaviours in terms of design variables. Two different parts can be easily
observed in figures (7-8). One of these parts which is less populated corresponds to high
value of pressure ratio (0.4<ηp<0.55), unlike the rest of objective functions which all together
degrades in their values simultaneously, that is, 3<TSFCx105<6.3, 515<ST<890, 0.2<ηt<0.52.
The corresponding values of objectives for the second part can be given as, 0<ηp<0.4,
2<TSFCx105<3, 900<ST<1169, 0.6<ηt<0.71 which can be appropriately chosen by the

 Advances in Evolutionary Algorithms

310

designer. Such facts would be very important to the designer to switch from one optimal
solution to another for achieving different trade-off requirements of the objectives (Deb,
2003).

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
thermal efficiency

pr
op

ul
si

ve
 e

ffi
ci

en
cy

Four-objective optimizatioon Two-objective optimization

Fig. 8. Propulsive efficiency variation with thermal efficiency in both 4-objective & 2-
objective optimization

Additionally, there are some more profound optimal design relationships among the
objective functions and the decision variables which have been discovered by the four-
objective thermodynamic Pareto optimization of ideal turbojet engines. Such important
optimal design facts could not have been found without the multi-objective Pareto
optimization. Firstly, figure (9) shows the variation of 4 optimized objective functions ST,
TSFC, ηp, and ηt with the pressure ratio. It can be seen that for pressure ratio less than 14,
three objectives ST, TSFC, and ηt become worse, unlike ηp which gradually starts getting
better. The slope of such degradation for ST, TSFC, and ηt becomes faster especially in TSFC
and ηt when the pressure ratio becomes smaller than 6. However, for high pressure ratios,
the variation of optimal values of TSFC and ηt are small whilst there are a wide range of
selections for ηp ≈ 0.4. Secondly, figure (10) demonstrates the behaviours of ST and ηp with
respect to flight Mach number in high pressure ratios. It can be readily seen that the optimal
values of ST changes linearly with M0, that is

 ST = -264.75 M0 + 1164.5 (7)

with a R-squared value of 0.999. The optimal relationship of ηp with M0 is non-linear and is
represented as

 ηp=-0.0977 (M0)2 +0.491 M0 +0.0013 (8)

with a R-squared value of 0.998.

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

311

Therefore, such multi-objective optimization of ST, TSFC, ηp, and ηt provide optimal choices
of design variables based on Pareto non-dominated points.

Fig. 9. Variation of four objective functions with pressure ratio in 4-objective optimization

6. Conclusion
A new multi-objective uniform-diversity genetic algorithm (MUGA) has been proposed and
successfully used for some test functions and for thermodynamic cycle optimization of ideal
turbojet engines. It has been shown that the performance of this algorithm is superior to that

 Advances in Evolutionary Algorithms

310

designer. Such facts would be very important to the designer to switch from one optimal
solution to another for achieving different trade-off requirements of the objectives (Deb,
2003).

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
thermal efficiency

pr
op

ul
si

ve
 e

ffi
ci

en
cy

Four-objective optimizatioon Two-objective optimization

Fig. 8. Propulsive efficiency variation with thermal efficiency in both 4-objective & 2-
objective optimization

Additionally, there are some more profound optimal design relationships among the
objective functions and the decision variables which have been discovered by the four-
objective thermodynamic Pareto optimization of ideal turbojet engines. Such important
optimal design facts could not have been found without the multi-objective Pareto
optimization. Firstly, figure (9) shows the variation of 4 optimized objective functions ST,
TSFC, ηp, and ηt with the pressure ratio. It can be seen that for pressure ratio less than 14,
three objectives ST, TSFC, and ηt become worse, unlike ηp which gradually starts getting
better. The slope of such degradation for ST, TSFC, and ηt becomes faster especially in TSFC
and ηt when the pressure ratio becomes smaller than 6. However, for high pressure ratios,
the variation of optimal values of TSFC and ηt are small whilst there are a wide range of
selections for ηp ≈ 0.4. Secondly, figure (10) demonstrates the behaviours of ST and ηp with
respect to flight Mach number in high pressure ratios. It can be readily seen that the optimal
values of ST changes linearly with M0, that is

 ST = -264.75 M0 + 1164.5 (7)

with a R-squared value of 0.999. The optimal relationship of ηp with M0 is non-linear and is
represented as

 ηp=-0.0977 (M0)2 +0.491 M0 +0.0013 (8)

with a R-squared value of 0.998.

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

311

Therefore, such multi-objective optimization of ST, TSFC, ηp, and ηt provide optimal choices
of design variables based on Pareto non-dominated points.

Fig. 9. Variation of four objective functions with pressure ratio in 4-objective optimization

6. Conclusion
A new multi-objective uniform-diversity genetic algorithm (MUGA) has been proposed and
successfully used for some test functions and for thermodynamic cycle optimization of ideal
turbojet engines. It has been shown that the performance of this algorithm is superior to that

 Advances in Evolutionary Algorithms

312

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

0 0 .2 0 .4 0 .6 0 .8 1 1 .2
M a c h N o .

sp
ec

ifi
c

th
ru

st
 (N

/k
g/

se
c)

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

pr
op

ul
si

ve
 e

ffi
ci

en
cy

S p e c i f ic th r u s t P r o p u ls iv e e f f ic ie n c y

Fig. 10. Relationships of specific thrust & propulsive efficiency with flight Mach No. in 4-
objective optimization (Atashkari, et al., 2005)

of NSGA-II in terms of diversity and the uniformity of Pareto front obtained for both 2-
objective and 4-objective optimization processes. The robustness of uniform Pareto fronts
obtained using MUGA has been shown by the very small values of variance of the metric Δ
in multiple runs in comparisons with that of other methods. Further, such multi-objective
optimization led to the discovering of important relationships and useful optimal design
principles in thermodynamic optimization of ideal turbojet engines both in the space of
objective functions and decision variables. The evolutionary multi-objective optimization
process has helped to discover important relationships with relatively few efforts of
modeling preparation that would otherwise have required at least a very through
mathematical analysis. If the underlying objective modeling becomes more complex (like
deviating from the ideality of components behaviour) evolutionary multi-objective
optimization process may even be expected to become the sole present-time means of
attaining respective solutions.

Appendix A
Thermodynamic model of ideal turbojet engine
Assumptions: Inlet diffuser, compressor, turbine and exit nozzle, all operate isentropically.
No pressure loss in the burner.
f =(fuel/air)<<1, eP (turbojet exit pressure)= 0P (ambient pressure), PC =1.004 (kJ/kg.K)

K216.6 0T = , 1.4=γ ,
kg
kJ 48000PRh = , K1666 t4T = (in 2 design variables), gc=1

(kg-m/(N-s2))

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

313

Input parameters:

)(),
.

(,),(0,0 kg
kJ

PRhKkg
kJ

PcKTM γ , cKtT π),(4

Output parameters:

PtN
skgSFCskg

N
m
FST ηη ,),/(),

/
(

0
=

Equations:

pcR .1
γ
γ −= (A-1)

00 TcRga γ= (A-2)

2
02

11 Mr
−+= γτ (A-3)

0
4

T
tT

=λτ (A-4)

() γγπτ ⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ −= 1cc (A-5)

⎟
⎠
⎞⎜

⎝
⎛ −−= 11 cr

t τ
λτ
ττ (A-6)

⎟
⎠
⎞⎜

⎝
⎛ −

−
= 11

2
0
9

tcrcra
V

τττττ
λτ

γ (A-7)

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−== 00
90

0
Ma

V
cg

a
m
FST (A-8)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= cr
PRh
TPc

f ττλτ
0 (A-9)

ST
fSFC = (A-10)

crt ττη 11−= (A-11)

00/9
02

MaV
M

p +
=η (A-12)

7. References
Arora, J.S. (1989). Introduction to Optimum Design, McGraw-Hill
Atashkari, K.; Nariman-zadeh, N., Pilechi, A.; Jamali, A.; Yao, X.,(2005), Thermodynamic

Pareto Optimization of Turbojet Engines using Multi-objective Genetic Algorithms,
International Journal of Thermal Sciences, 44, 1061-1071

Back, T.; Fogel, D. B. & Michalewicz, Z. (1997). Handbook of Evolutionary Computation,
Institute of Physics Publishing and New York: Oxford University Press

 Advances in Evolutionary Algorithms

312

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

0 0 .2 0 .4 0 .6 0 .8 1 1 .2
M a c h N o .

sp
ec

ifi
c

th
ru

st
 (N

/k
g/

se
c)

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

pr
op

ul
si

ve
 e

ffi
ci

en
cy

S p e c i f ic th r u s t P r o p u ls iv e e f f ic ie n c y

Fig. 10. Relationships of specific thrust & propulsive efficiency with flight Mach No. in 4-
objective optimization (Atashkari, et al., 2005)

of NSGA-II in terms of diversity and the uniformity of Pareto front obtained for both 2-
objective and 4-objective optimization processes. The robustness of uniform Pareto fronts
obtained using MUGA has been shown by the very small values of variance of the metric Δ
in multiple runs in comparisons with that of other methods. Further, such multi-objective
optimization led to the discovering of important relationships and useful optimal design
principles in thermodynamic optimization of ideal turbojet engines both in the space of
objective functions and decision variables. The evolutionary multi-objective optimization
process has helped to discover important relationships with relatively few efforts of
modeling preparation that would otherwise have required at least a very through
mathematical analysis. If the underlying objective modeling becomes more complex (like
deviating from the ideality of components behaviour) evolutionary multi-objective
optimization process may even be expected to become the sole present-time means of
attaining respective solutions.

Appendix A
Thermodynamic model of ideal turbojet engine
Assumptions: Inlet diffuser, compressor, turbine and exit nozzle, all operate isentropically.
No pressure loss in the burner.
f =(fuel/air)<<1, eP (turbojet exit pressure)= 0P (ambient pressure), PC =1.004 (kJ/kg.K)

K216.6 0T = , 1.4=γ ,
kg
kJ 48000PRh = , K1666 t4T = (in 2 design variables), gc=1

(kg-m/(N-s2))

Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

313

Input parameters:

)(),
.

(,),(0,0 kg
kJ

PRhKkg
kJ

PcKTM γ , cKtT π),(4

Output parameters:

PtN
skgSFCskg

N
m
FST ηη ,),/(),

/
(

0
=

Equations:

pcR .1
γ
γ −= (A-1)

00 TcRga γ= (A-2)

2
02

11 Mr
−+= γτ (A-3)

0
4

T
tT

=λτ (A-4)

() γγπτ ⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ −= 1cc (A-5)

⎟
⎠
⎞⎜

⎝
⎛ −−= 11 cr

t τ
λτ
ττ (A-6)

⎟
⎠
⎞⎜

⎝
⎛ −

−
= 11

2
0
9

tcrcra
V

τττττ
λτ

γ (A-7)

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−== 00
90

0
Ma

V
cg

a
m
FST (A-8)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= cr
PRh
TPc

f ττλτ
0 (A-9)

ST
fSFC = (A-10)

crt ττη 11−= (A-11)

00/9
02

MaV
M

p +
=η (A-12)

7. References
Arora, J.S. (1989). Introduction to Optimum Design, McGraw-Hill
Atashkari, K.; Nariman-zadeh, N., Pilechi, A.; Jamali, A.; Yao, X.,(2005), Thermodynamic

Pareto Optimization of Turbojet Engines using Multi-objective Genetic Algorithms,
International Journal of Thermal Sciences, 44, 1061-1071

Back, T.; Fogel, D. B. & Michalewicz, Z. (1997). Handbook of Evolutionary Computation,
Institute of Physics Publishing and New York: Oxford University Press

 Advances in Evolutionary Algorithms

314

Coello Coello, C.A, http://www.lania.mx/~ccoello/EMOO
Coello Coello, C.A. (1999). A comprehensive survey of evolutionary based multiobjective

optimization techniques, Knowledge and Information Systems: An Int. Journal, (3), pp
269-308

Coello Coello, C.A. & Becerra, R.L. (2003). Evolutionary Multiobjective Optimization using a
Cultural Algorithm, IEEE Swarm Intelligence Symp., pp 6-13, USA

Coello Coello, C.A. & Christiansen, A.D. (2000). Multiobjective optimization of trusses using
genetic algorithms, Computers & Structures, 75, pp 647-660

Coello Coello, C.A.; Van Veldhuizen, D.A. & Lamont, G.B. (2002). Evolutionary Algorithms
for Solving Multi-objective problems, Kluwer Academic Publishers, NY

Deb, K. (2003). Unveiling innovative design principles by means of multiple conflicting
objectives, Engineering Optimization, Vol. 35, No. 5, pp. 445--470, October

Deb, K.; Agrawal, S.; Pratap, A. & Meyarivan, T. (2002). A fast and elitist multi-objective
genetic algorithm: NSGA-II, IEEE Trans. On Evolutionary Computation, 6(2):182-197

Deb., K. (2001). Multi-objective Optimization using evolutionary algorithms, John Wiley, UK
Fonseca, C.M. & Fleming, P.J. (1993). Genetic algorithms for multi-objective optimization:

Formulation, discussion and generalization, In Proc. Of the Fifth Int. Conf. On genetic
Algorithms, Forrest S. (Ed.), San Mateo, CA, Morgan Kaufmann, pp 416-423

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley

Homaifar, A.; Lai, H. Y. & McCormick, E. (1994). System optimization of turbofan engines
using genetic algorithms, Applied Mathematical Modelling, Volume 18, Issue 2, Pages
72-83

Khare, V.; Yao, X. & Deb, K. (2003). Performance Scaling of Multi-objective Evolutionary
Algorithms, Proc. Of Second International Conference on Evolutionary Multi-Criterion
Optimization, (EMO’03), Portugal

Knowles, J. & Corne, D. (1999). The Pareto archived evolution strategy: A new baseline
algorithm for multiobjective optimization, in Proc. Of the 1999 congress on
Evolutionary Computation, Piscataway, NJ: IEEE Service Center, pp 98-105

Mattingly, J.P. (1996). Elements of Gas Turbine Propulsion, Mc-Graw Hill
Pareto, V. (1986). Cours d’economic politique, Lausanne, Switzerland, Rouge
Rao, S.S. (1996). Engineering Optimization: Theory and Practice, John Wiley & Sons
Renner, G. & Ekart, A. (2003). Genetic algorithms in computer aided design, Computer-Aided

Design, Vol. 35, pp 709-726
Rosenberg, R.S. (1967). Simulation of genetic populations with biochemical properties, PhD

Thesis, University of Michigan, Ann Harbor, Michigan
Schaffer, J.D. (1985). Multiple objective optimization with vector evaluated genetic

algorithms, in Grefenstette, J.J., (ed.) Proc. of First Int. Conf. On Genetic Algorithms
and Their Applications, pp 93-100, London, Lawrence Erlbaum

Srinivas, N. & Deb, K. (1994). Multiobjective optimization Using Nondominated Sorting in
Genetic Algorithms, Evolutionary Computation, Vol. 2, No. 3, pp 221-248

Toffolo, A. & Benini, E. (2003). Genetic Diversity as an Objective in Multi-objective
evolutionary Algorithms, Evolutionary Computation 11(2):151-167, MIT Press

Zitzler, E. & Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization:
The strength Pareto approach, Tech. Report 43, Computer engineering and
communication network Lab, Swiss federal ins. of Tech., Zurich

Zitzler, E.; Deb, K. & Thiele, L. (2000). Comparison of multi objective evolutionary
algorithms: empirical results, Evolutionary Computation 8(2), pp 173-175

16

EA-based Problem Solving
Environment over the GRID

Mohamed Wahib1, Asim Munawar1, Masaharu Munetomo2
and Kiyoshi Akama2

1 Graduate School Of Information Science and Technology
2 Division of Large Scale Computing Systems, Information Initiative Center

Hokkaido University
Sapporo, Japan

1. Introduction
EA-based problem solving environments have progressively evolved in the last two decades
from explicit one-problem serial solvers to multi-solvers platforms running on vast
distributed heterogeneous resources. Significant efforts in the literature were devoted
towards designing EA-based problem solving environments. Those research efforts were
mainly directed to innovating new EAs with a parallel implementation (Cantu-Paz, 2000),
and the counterpart for those research efforts were directed towards designing and
constructing parallel computing environments (Weise, 2007) that could host parallel and
distributed implementations of EAs. Still for the evolution of the problem solving
paradigms, problem solving environments have not fully shifted to parallel and distributed
models, and even up till today practices of serially implementing EAs problems of medium
complexity are still noticeable. These practices prevailed in part due to the continuous
increase in clock speeds, multicore processors, and problem nature.
Yet, in the past few years, the significant increase in distributed resources, high
bandwidth/low latency networks and cheap data storage along with the wide expansion in
problem scope and addressing new problem types that were not attainable before, all
combined together strongly motivated to rethinking the strategy of designing EA-based
problem solving environments. Various distributed computing paradigms were used as
platforms for EA-based problem solving environments, (Munawar et al., 2008) gives a brief
illustration of those paradigms. In this chapter we concentrate on a modern distributed
computing paradigm, namely grid computing (Foster & Kesselman, 1999). In the recent
years, grid computing acquired widespread attention from both research and industrial
institutions, as it provides contextual establishment of open standard platforms for
distributed computing (more details in section 2.1)
 Constructing an EA-based problem solving environment requires two main streams of
working, one is the algorithm design and the other is the challenges associated with
constructing a Grid based platform. The algorithm design is significantly affected when
using distributed technologies, therefore many points should be taken into account when
designing algorithms for distributed environments: fault tolerance, support of

 Advances in Evolutionary Algorithms

314

Coello Coello, C.A, http://www.lania.mx/~ccoello/EMOO
Coello Coello, C.A. (1999). A comprehensive survey of evolutionary based multiobjective

optimization techniques, Knowledge and Information Systems: An Int. Journal, (3), pp
269-308

Coello Coello, C.A. & Becerra, R.L. (2003). Evolutionary Multiobjective Optimization using a
Cultural Algorithm, IEEE Swarm Intelligence Symp., pp 6-13, USA

Coello Coello, C.A. & Christiansen, A.D. (2000). Multiobjective optimization of trusses using
genetic algorithms, Computers & Structures, 75, pp 647-660

Coello Coello, C.A.; Van Veldhuizen, D.A. & Lamont, G.B. (2002). Evolutionary Algorithms
for Solving Multi-objective problems, Kluwer Academic Publishers, NY

Deb, K. (2003). Unveiling innovative design principles by means of multiple conflicting
objectives, Engineering Optimization, Vol. 35, No. 5, pp. 445--470, October

Deb, K.; Agrawal, S.; Pratap, A. & Meyarivan, T. (2002). A fast and elitist multi-objective
genetic algorithm: NSGA-II, IEEE Trans. On Evolutionary Computation, 6(2):182-197

Deb., K. (2001). Multi-objective Optimization using evolutionary algorithms, John Wiley, UK
Fonseca, C.M. & Fleming, P.J. (1993). Genetic algorithms for multi-objective optimization:

Formulation, discussion and generalization, In Proc. Of the Fifth Int. Conf. On genetic
Algorithms, Forrest S. (Ed.), San Mateo, CA, Morgan Kaufmann, pp 416-423

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley

Homaifar, A.; Lai, H. Y. & McCormick, E. (1994). System optimization of turbofan engines
using genetic algorithms, Applied Mathematical Modelling, Volume 18, Issue 2, Pages
72-83

Khare, V.; Yao, X. & Deb, K. (2003). Performance Scaling of Multi-objective Evolutionary
Algorithms, Proc. Of Second International Conference on Evolutionary Multi-Criterion
Optimization, (EMO’03), Portugal

Knowles, J. & Corne, D. (1999). The Pareto archived evolution strategy: A new baseline
algorithm for multiobjective optimization, in Proc. Of the 1999 congress on
Evolutionary Computation, Piscataway, NJ: IEEE Service Center, pp 98-105

Mattingly, J.P. (1996). Elements of Gas Turbine Propulsion, Mc-Graw Hill
Pareto, V. (1986). Cours d’economic politique, Lausanne, Switzerland, Rouge
Rao, S.S. (1996). Engineering Optimization: Theory and Practice, John Wiley & Sons
Renner, G. & Ekart, A. (2003). Genetic algorithms in computer aided design, Computer-Aided

Design, Vol. 35, pp 709-726
Rosenberg, R.S. (1967). Simulation of genetic populations with biochemical properties, PhD

Thesis, University of Michigan, Ann Harbor, Michigan
Schaffer, J.D. (1985). Multiple objective optimization with vector evaluated genetic

algorithms, in Grefenstette, J.J., (ed.) Proc. of First Int. Conf. On Genetic Algorithms
and Their Applications, pp 93-100, London, Lawrence Erlbaum

Srinivas, N. & Deb, K. (1994). Multiobjective optimization Using Nondominated Sorting in
Genetic Algorithms, Evolutionary Computation, Vol. 2, No. 3, pp 221-248

Toffolo, A. & Benini, E. (2003). Genetic Diversity as an Objective in Multi-objective
evolutionary Algorithms, Evolutionary Computation 11(2):151-167, MIT Press

Zitzler, E. & Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization:
The strength Pareto approach, Tech. Report 43, Computer engineering and
communication network Lab, Swiss federal ins. of Tech., Zurich

Zitzler, E.; Deb, K. & Thiele, L. (2000). Comparison of multi objective evolutionary
algorithms: empirical results, Evolutionary Computation 8(2), pp 173-175

16

EA-based Problem Solving
Environment over the GRID

Mohamed Wahib1, Asim Munawar1, Masaharu Munetomo2
and Kiyoshi Akama2

1 Graduate School Of Information Science and Technology
2 Division of Large Scale Computing Systems, Information Initiative Center

Hokkaido University
Sapporo, Japan

1. Introduction
EA-based problem solving environments have progressively evolved in the last two decades
from explicit one-problem serial solvers to multi-solvers platforms running on vast
distributed heterogeneous resources. Significant efforts in the literature were devoted
towards designing EA-based problem solving environments. Those research efforts were
mainly directed to innovating new EAs with a parallel implementation (Cantu-Paz, 2000),
and the counterpart for those research efforts were directed towards designing and
constructing parallel computing environments (Weise, 2007) that could host parallel and
distributed implementations of EAs. Still for the evolution of the problem solving
paradigms, problem solving environments have not fully shifted to parallel and distributed
models, and even up till today practices of serially implementing EAs problems of medium
complexity are still noticeable. These practices prevailed in part due to the continuous
increase in clock speeds, multicore processors, and problem nature.
Yet, in the past few years, the significant increase in distributed resources, high
bandwidth/low latency networks and cheap data storage along with the wide expansion in
problem scope and addressing new problem types that were not attainable before, all
combined together strongly motivated to rethinking the strategy of designing EA-based
problem solving environments. Various distributed computing paradigms were used as
platforms for EA-based problem solving environments, (Munawar et al., 2008) gives a brief
illustration of those paradigms. In this chapter we concentrate on a modern distributed
computing paradigm, namely grid computing (Foster & Kesselman, 1999). In the recent
years, grid computing acquired widespread attention from both research and industrial
institutions, as it provides contextual establishment of open standard platforms for
distributed computing (more details in section 2.1)
 Constructing an EA-based problem solving environment requires two main streams of
working, one is the algorithm design and the other is the challenges associated with
constructing a Grid based platform. The algorithm design is significantly affected when
using distributed technologies, therefore many points should be taken into account when
designing algorithms for distributed environments: fault tolerance, support of

 Advances in Evolutionary Algorithms

316

interconnection for loosely coupled resources, support of late binding and dynamic
migration. The other main stream which is the challenges accompanied with the grid
computing environments both that are general (i.e. grid computing traditional problems)
and specific (i.e. challenges related to EA-based solvers deployment).
In this chapter we present MHGrid (Meta Heuristics Grid), a service-oriented grid
application that provides easy to use robust environment for meta heuristics optimization
solvers, including EAs, over a grid. The objective of MHGrid is to offer a framework, using
which a user can solve complex global optimization problems using EAs over a grid with
minimal effort. MHGrid is designed in a service-oriented fashion and offers the following
services to the user:
1. Allow the user to use any of the solvers registered with MHGrid to solve a problem

with minimal input and in a black box manner.
2. Allow solver developers to write and register a new EA-based solver with MHGrid.
3. Allow solver developers to write and register a new objective function with MHGrid.
4. Ability to control the parallelization model of the solver and objective function for high

complexity problems.
5. Provide all the preceding services at both the application layer and middleware layer.
This chapter is intended for a reader interested in the implementation of grid based problem
solving environments of EAs. The reader is expected to have the basic background about
EAs so the chapter scope will be focused on the grid computing problem solving
environment and the effect of using the grid on the algorithms (i.e. parallelization and
solver–to-objective function relation). We have tried not to overload the chapter with details
by providing a very brief summary of the most notable and significant related work. So the
chapter is focusing the discussion on the MHGrid platform and not devoted to being a
comprehensive overview or survey of the previous work done in the area.
The chapter is organized as follows, section 2 discusses grid-based EAs problem solving
environments, it briefly investigates the related work of grid-based EAs. Section 3 discusses
the design, architecture and implementation of MHGrid as a problem solving environment.
Section 4 presents a close-up, from the service orientation perspective, to the SOA (Service
Oriented Architecture) that MHGrid encompasses and also the modelling of MHGrid
solvers as services. Section 5 illustrates a full test case starting from a user registering his
service to using the registered service. Finally, section 6 concludes the whole chapter and
gives an insight for the future work.

2. Grid-based problem solving environment in EAs
This section will give a very brief introduction of grid computing and why use grid
computing with EA followed by showing the impact of the grid on algorithm design. Also a
revision of the related work is discussed.

2.1 Grid computing
The most commonly used definition to abstractly define a grid is: “Coordinated resource
sharing and problem solving in dynamic, multi-institutional virtual organization” (Foster &
Kesselman, 1999). The most common among the categories of grid are:
- Computational Grids: Grids that basically aggregate computational resource to offer

transparent computational power to the applications that use them.

EA-based Problem Solving Environment over the GRID

317

- Data Grids: Used to manage and control access to huge distributed data stored on
heterogeneous storage devices.

- Utility Grid: A market-oriented Grid that applies utility computing concepts in
designing the grid.

EAs problem solving environments when associated with grid fall under the category of
computational grids. Yet in some problem solving environments that require extensive data
handling, techniques that are basic components in data grids such as data replication and
staging are introduced in the computational grid. Now almost every production level
computational grid has support to what is known as workflow (transfer of data and files
across the grid). Nonetheless, grid computing when addressed in EAs conventionally means
computational grids.
The grid architecture as shown in figure 2 is a revised version of the traditional grid
architecture. The traditional grid architecture is composed of three layers only, the
resources, the middleware layer and the application layer. The middleware is a software
layer that resides between an application and the underlying platform, in grids the
middleware hides the underlying low-level details and complexities from the application
layer. Yet, practically in grids, a big semantic gap lies between the middleware and the
application layer, so (Abramson, 2006) revised the traditional architecture and modified it
by splitting the middleware layer into two layers, the upper middleware layer and the lower
middleware layer. This architecture was adopted in MHGrid due to its enhanced subjective
representation and ease of modelling.

Fig.2. General revised architecture of MHGrid as a computational grid.

GT4
Deployment

Service Directory
Index

Development
Tools Execution

Tools

Lower Middleware Layer

Application & Serviceware

High Speed
Networks

Storage
Clusters

Servers

User

Application
Service

Upper Middleware Layer

Problem Solving
Environment

Resources & Infrastructure

 Advances in Evolutionary Algorithms

316

interconnection for loosely coupled resources, support of late binding and dynamic
migration. The other main stream which is the challenges accompanied with the grid
computing environments both that are general (i.e. grid computing traditional problems)
and specific (i.e. challenges related to EA-based solvers deployment).
In this chapter we present MHGrid (Meta Heuristics Grid), a service-oriented grid
application that provides easy to use robust environment for meta heuristics optimization
solvers, including EAs, over a grid. The objective of MHGrid is to offer a framework, using
which a user can solve complex global optimization problems using EAs over a grid with
minimal effort. MHGrid is designed in a service-oriented fashion and offers the following
services to the user:
1. Allow the user to use any of the solvers registered with MHGrid to solve a problem

with minimal input and in a black box manner.
2. Allow solver developers to write and register a new EA-based solver with MHGrid.
3. Allow solver developers to write and register a new objective function with MHGrid.
4. Ability to control the parallelization model of the solver and objective function for high

complexity problems.
5. Provide all the preceding services at both the application layer and middleware layer.
This chapter is intended for a reader interested in the implementation of grid based problem
solving environments of EAs. The reader is expected to have the basic background about
EAs so the chapter scope will be focused on the grid computing problem solving
environment and the effect of using the grid on the algorithms (i.e. parallelization and
solver–to-objective function relation). We have tried not to overload the chapter with details
by providing a very brief summary of the most notable and significant related work. So the
chapter is focusing the discussion on the MHGrid platform and not devoted to being a
comprehensive overview or survey of the previous work done in the area.
The chapter is organized as follows, section 2 discusses grid-based EAs problem solving
environments, it briefly investigates the related work of grid-based EAs. Section 3 discusses
the design, architecture and implementation of MHGrid as a problem solving environment.
Section 4 presents a close-up, from the service orientation perspective, to the SOA (Service
Oriented Architecture) that MHGrid encompasses and also the modelling of MHGrid
solvers as services. Section 5 illustrates a full test case starting from a user registering his
service to using the registered service. Finally, section 6 concludes the whole chapter and
gives an insight for the future work.

2. Grid-based problem solving environment in EAs
This section will give a very brief introduction of grid computing and why use grid
computing with EA followed by showing the impact of the grid on algorithm design. Also a
revision of the related work is discussed.

2.1 Grid computing
The most commonly used definition to abstractly define a grid is: “Coordinated resource
sharing and problem solving in dynamic, multi-institutional virtual organization” (Foster &
Kesselman, 1999). The most common among the categories of grid are:
- Computational Grids: Grids that basically aggregate computational resource to offer

transparent computational power to the applications that use them.

EA-based Problem Solving Environment over the GRID

317

- Data Grids: Used to manage and control access to huge distributed data stored on
heterogeneous storage devices.

- Utility Grid: A market-oriented Grid that applies utility computing concepts in
designing the grid.

EAs problem solving environments when associated with grid fall under the category of
computational grids. Yet in some problem solving environments that require extensive data
handling, techniques that are basic components in data grids such as data replication and
staging are introduced in the computational grid. Now almost every production level
computational grid has support to what is known as workflow (transfer of data and files
across the grid). Nonetheless, grid computing when addressed in EAs conventionally means
computational grids.
The grid architecture as shown in figure 2 is a revised version of the traditional grid
architecture. The traditional grid architecture is composed of three layers only, the
resources, the middleware layer and the application layer. The middleware is a software
layer that resides between an application and the underlying platform, in grids the
middleware hides the underlying low-level details and complexities from the application
layer. Yet, practically in grids, a big semantic gap lies between the middleware and the
application layer, so (Abramson, 2006) revised the traditional architecture and modified it
by splitting the middleware layer into two layers, the upper middleware layer and the lower
middleware layer. This architecture was adopted in MHGrid due to its enhanced subjective
representation and ease of modelling.

Fig.2. General revised architecture of MHGrid as a computational grid.

GT4
Deployment

Service Directory
Index

Development
Tools Execution

Tools

Lower Middleware Layer

Application & Serviceware

High Speed
Networks

Storage
Clusters

Servers

User

Application
Service

Upper Middleware Layer

Problem Solving
Environment

Resources & Infrastructure

 Advances in Evolutionary Algorithms

318

2.2 Why grid computing for EAs
An often repeatedly aroused question is why use grid computing for EAs, as it naturally
adds a significant overhead to the performance compared to other technologies such as
cluster computing. Also designing and implementing a problem solving environment over
the grid involves much more complexity than compared to other techniques. The answer to
that question lies in a three point checklist by Ian Foster (Foster, 2002), that is when satisfied,
classifies the distributed computing framework as a grid. The checklist is:
- Resources are not administered centrally.
- Open standard, general-purpose interfaces and protocols are used.
- Non-trivial quality of service is achieved.
From the checklist above, considering the non-trivial quality of service, grid will be a good
choice as a distributed computing paradigm. The major non trivial quality of service is the
grid application hosting environment. As the grid application can be available over the
Internet and accessed through a Web portal (this is the case in MHGrid), so the hosting
environment in this case is the Internet, and the user could be any person accessing the
portal and having a valid grid certificate. Other parallel computing paradigms on the other
hand (e.g. cluster computing and supercomputing) are available locally in the scale of a
LAN, and thus the users in this case, are users having direct access to the resources. This
feature of grid computing (i.e. availability over Internet and Intranets) is a basic advantage
that attracts developers in the case of applications that are intended to be accessed widely
with remote resources.
Other non trivial qualities of service include availability, latency and throughput. A more
detailed study on quality of service metrics and aspects in grid is at (Daniel & Emiliano,
2004). The handling and presentation of those metrics could be through defining utility
functions (Chunlin & Layuan, 2007) or by defining the provided functionalities as services
and thus have a SLA (Service Level Agreement) for each service. One more case that will be
most suitable to adopt grid technology with EAs and that is the case of using grid to
aggregate resources to provide a huge underlying computational power that enables
addressing new complex and relatively expensive problems that were not addressed before
due to resource limitation. One fine example to this case is (Chrabakh & Wolski, 2006) in
which the authors were able to solve problems that were not solved before due to resource
limitation. (Chrabakh & Wolski, 2006) is mainly designated for SAT problems but it still
gives a clear evidence of how the grid can be used to address problems of higher complexity
compared to other distributed computing paradigms.
Summarizing the need of using grid for EAs; the ability to use non-trivial quality of service
metrics rather than speedup, and the ability to use the application over the Internet rather
than direct local access is particularly the most important non trivial quality of service.
Another reason will be the ability to address new problem of high order complexity and cost
depending on the grid ability to aggregate heterogeneous geographically dispersed
resources.

2.3 Impact of grid on algorithms
A common practice of running EAs over grid is to use legacy EAs that were written to run
on another parallel computing paradigm and running it intactly on the grid. This practice
for some algorithms will not be suitable and will be error-prone (i.e. an algorithm that is

EA-based Problem Solving Environment over the GRID

319

tightly coupled with out being able to tolerate communication delays will have very
significant performance degradation.). From the other side, if the algorithm design did not
take into account the nature of the grid it will not benefit most from using a grid and will at
best expectations run without any degradation in performance. Therefore the following
points should be taken into account when designing EAs for a grid:
- The algorithm should be designed and implemented in a manner that supports

interconnection of loosely coupled entities.
- The algorithm should be able to tolerate communication delays for up to 100’s

milliseconds without significant performance degradation.
- The algorithm should have interfaces allowing for late binding to allow a space for

dynamic scheduling and workflows.
- The algorithm should be able to rely on remote data sources as copying the data locally

before executing might not be feasible.
- The Algorithm should be fault tolerant.

2.4 Related work
Projects using EAs over grids or EAs problem solving environmets over grid are numerous.
Table 1 summarizes some of the notable efforts in this direction and also projects trageted to
optimization problem solving environments in general. The table has a comparison of
MHGrid with different projects, of different scopes and using different technologies, it gives
a close-up to the relation of optimization problems with grids.
NEOS (Czyzck, 1998): The only non-grid based project among the other projects in the table,
yet it later motivated using grids for the similar functionality. NEOS is simply a client-server
system that is dedicated to solving optimization problems by allowing the user to submit his
optimization problems as well as allowing the user to add a solver of his own through
NEOS management. The user has no control over the solver parallelization.
Folding@Home (Larson, 2003): This project is categorized as what is called desktop grids,
utilizing processor cycles of distributed non-dedicated normal PCs, it was designed to
perform computationally intensive simulations of protein folding and other molecular
dynamics, it involves GROMACS optimization, and it does not allow user interaction with
the job running, the user just installs the client and offer his resources for usage.
Folding@Home has not provided optimization solving problem solving environment, yet it
is a well known example of how aggregated resources when combined can address new
problem scope.
Nimrod/O (Abramson et al., 2000): A very significant project as the authors not only
designed the problem solving environment but they also added and modified the grid
middleware to adapt with the grid application. Nimrod/O offers namely 4 optimization
solving packages solving non-linear optimization problems, but it doesn’t allow the user to
add his own solver and limits him/her to the provided solvers. Further to mention,
Nimrod/O uses an ontology based module to guide the user to the best solver considering
his/her problem.
GEODISE (Cox et al., 2002): Specific to optimization problems in computational fluid
dynamics, it uses Application Service Provision (ASP) and offers the services through a
custom Matlab toolbox, it was designed for production and like Nimrod/O and had a
commercial version.

 Advances in Evolutionary Algorithms

318

2.2 Why grid computing for EAs
An often repeatedly aroused question is why use grid computing for EAs, as it naturally
adds a significant overhead to the performance compared to other technologies such as
cluster computing. Also designing and implementing a problem solving environment over
the grid involves much more complexity than compared to other techniques. The answer to
that question lies in a three point checklist by Ian Foster (Foster, 2002), that is when satisfied,
classifies the distributed computing framework as a grid. The checklist is:
- Resources are not administered centrally.
- Open standard, general-purpose interfaces and protocols are used.
- Non-trivial quality of service is achieved.
From the checklist above, considering the non-trivial quality of service, grid will be a good
choice as a distributed computing paradigm. The major non trivial quality of service is the
grid application hosting environment. As the grid application can be available over the
Internet and accessed through a Web portal (this is the case in MHGrid), so the hosting
environment in this case is the Internet, and the user could be any person accessing the
portal and having a valid grid certificate. Other parallel computing paradigms on the other
hand (e.g. cluster computing and supercomputing) are available locally in the scale of a
LAN, and thus the users in this case, are users having direct access to the resources. This
feature of grid computing (i.e. availability over Internet and Intranets) is a basic advantage
that attracts developers in the case of applications that are intended to be accessed widely
with remote resources.
Other non trivial qualities of service include availability, latency and throughput. A more
detailed study on quality of service metrics and aspects in grid is at (Daniel & Emiliano,
2004). The handling and presentation of those metrics could be through defining utility
functions (Chunlin & Layuan, 2007) or by defining the provided functionalities as services
and thus have a SLA (Service Level Agreement) for each service. One more case that will be
most suitable to adopt grid technology with EAs and that is the case of using grid to
aggregate resources to provide a huge underlying computational power that enables
addressing new complex and relatively expensive problems that were not addressed before
due to resource limitation. One fine example to this case is (Chrabakh & Wolski, 2006) in
which the authors were able to solve problems that were not solved before due to resource
limitation. (Chrabakh & Wolski, 2006) is mainly designated for SAT problems but it still
gives a clear evidence of how the grid can be used to address problems of higher complexity
compared to other distributed computing paradigms.
Summarizing the need of using grid for EAs; the ability to use non-trivial quality of service
metrics rather than speedup, and the ability to use the application over the Internet rather
than direct local access is particularly the most important non trivial quality of service.
Another reason will be the ability to address new problem of high order complexity and cost
depending on the grid ability to aggregate heterogeneous geographically dispersed
resources.

2.3 Impact of grid on algorithms
A common practice of running EAs over grid is to use legacy EAs that were written to run
on another parallel computing paradigm and running it intactly on the grid. This practice
for some algorithms will not be suitable and will be error-prone (i.e. an algorithm that is

EA-based Problem Solving Environment over the GRID

319

tightly coupled with out being able to tolerate communication delays will have very
significant performance degradation.). From the other side, if the algorithm design did not
take into account the nature of the grid it will not benefit most from using a grid and will at
best expectations run without any degradation in performance. Therefore the following
points should be taken into account when designing EAs for a grid:
- The algorithm should be designed and implemented in a manner that supports

interconnection of loosely coupled entities.
- The algorithm should be able to tolerate communication delays for up to 100’s

milliseconds without significant performance degradation.
- The algorithm should have interfaces allowing for late binding to allow a space for

dynamic scheduling and workflows.
- The algorithm should be able to rely on remote data sources as copying the data locally

before executing might not be feasible.
- The Algorithm should be fault tolerant.

2.4 Related work
Projects using EAs over grids or EAs problem solving environmets over grid are numerous.
Table 1 summarizes some of the notable efforts in this direction and also projects trageted to
optimization problem solving environments in general. The table has a comparison of
MHGrid with different projects, of different scopes and using different technologies, it gives
a close-up to the relation of optimization problems with grids.
NEOS (Czyzck, 1998): The only non-grid based project among the other projects in the table,
yet it later motivated using grids for the similar functionality. NEOS is simply a client-server
system that is dedicated to solving optimization problems by allowing the user to submit his
optimization problems as well as allowing the user to add a solver of his own through
NEOS management. The user has no control over the solver parallelization.
Folding@Home (Larson, 2003): This project is categorized as what is called desktop grids,
utilizing processor cycles of distributed non-dedicated normal PCs, it was designed to
perform computationally intensive simulations of protein folding and other molecular
dynamics, it involves GROMACS optimization, and it does not allow user interaction with
the job running, the user just installs the client and offer his resources for usage.
Folding@Home has not provided optimization solving problem solving environment, yet it
is a well known example of how aggregated resources when combined can address new
problem scope.
Nimrod/O (Abramson et al., 2000): A very significant project as the authors not only
designed the problem solving environment but they also added and modified the grid
middleware to adapt with the grid application. Nimrod/O offers namely 4 optimization
solving packages solving non-linear optimization problems, but it doesn’t allow the user to
add his own solver and limits him/her to the provided solvers. Further to mention,
Nimrod/O uses an ontology based module to guide the user to the best solver considering
his/her problem.
GEODISE (Cox et al., 2002): Specific to optimization problems in computational fluid
dynamics, it uses Application Service Provision (ASP) and offers the services through a
custom Matlab toolbox, it was designed for production and like Nimrod/O and had a
commercial version.

 Advances in Evolutionary Algorithms

320

Table 1. Comparison of Different projects providing optimization solving environments.

U
se

r
G

ui
d-

en
ce

 to

So
lv

er
s

Te
xt

D

es
cr

ib
in

g
Ea

ch

So
lv

er

N
/A

O
nt

ol
og

y

O
nt

ol
og

y

D
es

ig
na

t-
ed

 T
oo

ls

N
on

e

N
on

e

SL
D

 +

SL
A

U
se

r I
nt

e-
rf

ac
e

W
eb

-b
as

ed

Jo
b

Su
bm

is
si

on

Fo
ld

in
g@

H
om

e
C

lie
nt

W
eb

 P
or

ta
l

M
at

la
b

To
ol

bo
x/

Po

rt
al

W
eb

 P
or

ta
l

N
on

e

Ja
va

C

la
ss

es

In
te

gr
at

io
n

W
eb

 P
or

ta
l O

R

W
eb

Se

rv
ic

es

So
lv

er
 P

ar
al

l-
el

iz
at

io
n

Pr
ed

ef
in

ed

In
de

pe
nd

en
t

W
or

k
U

ni
ts

Pr
ed

ef
in

ed

Pr
ed

ef
in

ed

Pr
ed

ef
in

ed

Fi
xe

d
Is

la
nd

M

od
el

St
ru

ct
ur

ed

D
ef

in
iti

on

So
lv

er
 W

ri
te

r
de

fin
es

 h
is

ow

n
Pa

ra
lle

l/

D
is

tr
ib

ut
ed

M

od
el

Se
cu

ri
ty

N
o

Y
es

 (2
04

8
bi

t D
ig

ita
l

Si
gn

at
-

ur
e)

Y
es

 (G
SI

)

Y
es

 (G
SI

)

Y
es

Y
es

 (G
SI

)

Y
es

 (G
SI

)

Y
es

 (G
SI

)

A
dd

in
g

N
ew

So

lv
er

 B
y

U
se

r

A
llo

w
ed

(T
hr

-
ou

gh

M
an

ag
em

-
en

t)

N
ot

A

llo
w

ed

N
ot

A

llo
w

ed

N
ot

A

llo
w

ed

N
ot

A

llo
w

ed

N
ot

A

llo
w

ed

A
lo

w
ed

(p
a

rt
ia

lly
)

A
llo

w
ed

(T

hr
ou

gh

Po
rt

al
)

In
fo

.
Ex

ch
an

ge

Pl
ai

n
So

ck
et

s

C
lie

nt
-S

er
ve

r
So

ck
et

s

A
ct

iv
e

Sh
ee

ts

En
vi

ro
nm

en
t

A
PI

A
M

PL
/M

PL

En
vi

ro
nm

en
t

A
PI

Ja
va

In

te
rf

ac
es

M
H

M
L

(X
M

L-
ba

se
d)

M
id

dl
ew

ar
e

N
on

-
St

an
da

rd

SM
P

C
lie

nt

O
G

SA

C
om

pl
ia

nt

O
G

SA

C
om

pl
ia

nt

A
gg

re
ga

te
d

C
om

po
ne

nt
s

O
G

SA

C
om

pl
ia

nt

O
G

SA

C
om

pl
ia

nt

O
G

SA

C
om

pl
ia

nt

A
rc

h-
it

ec
tu

re

Tr
iv

ia
l

W
eb

A

pp
lic

-
at

io
n

D
is

tr
i-

bu
te

d

Ev
en

t
D

ri
ve

n

A
SP

A
SP

Tr
iv

ia
l

D
is

tr
ib

ut
-

ed

A
pp

li-
ca

tio
n

A
SP

Se
rv

ic
e

or
ie

nt
-

ed
 g

ri
d

ap
pl

ic
-

at
io

n

B
la

ck
-

B
ox

N
ot

Su

pp
-

or
te

d

N
ot

Su

pp
-

or
te

d

N
ot

Su

pp
-

or
te

d

N
ot

Su

pp
-

or
te

d

N
ot

Su

pp
-

or
te

d

Su
pp

-
or

te
d

N
ot

Su

pp
-

or
te

d

Su
pp

-
or

te
d

Sc
op

e

A
ny

 O
pt

im
-

iz
at

io
n

G
R

O
M

A
C

S
O

pt
im

-iz
at

io
n

N
on

-li
ne

ar

O
pt

im
iz

at
io

n

Fl
ui

d
D

yn
-

am
ic

s

D
ec

is
io

n
Su

pp
-o

rt

Sy
st

em

Is
la

nd
-m

od
el

G

en
et

ic

A
lg

or
ith

m

C
om

bi
na

to
r-

ia
l

op
tim

iz
at

io
n

G
lo

ba
l

O
pt

im
iz

at
io

n
w

ith

m
et

ah
eu

ri
st

ic
s

(G
A

,S
A

,E
D

A

,..
.)

Pr
oj

ec
t

N
EO

S

Fo
ld

in
g

@
H

om
e

N
im

ro
d/

O

G
EO

D
IS

E

O
SP

G
E-

H
PG

A

M
W

M
H

G
ri

d

EA-based Problem Solving Environment over the GRID

321

OSP (Optimization Service Provider, www.osp.org): A recent EU funded project using ASP
for solving decision support systems optimization problems. It was later extended to
another project (WEBOPT, www.webopt.org) that uses the E-service model instead. Both of
them intend to offer a web-based DSS optimization solving environment.
GE-HPGA (Lim et al., 2007): It is similar to MHGrid in offering black-box optimization, the
framework is limited to only one solver and the main target was to offer speedup compared
to other distributed models. To achieve it’s target, GE-HPGA used the island model GA that
splits the population into sub-populations to minimize the program inter-communication as
much as possible and thus minimize the grid overhead as much as possible.
MW (Glankwamdee & Linderoth, 2006): A framework that is targeting to offer
combinatorial optimization solvers over the grid, MW has a very interesting feature for
solver and task definition where through MW API (Java interfaces), the user can implement
the interfaces to define his task, and also his solver. This technique solves the problem of
solver deployment but on the other hand enforces the user to use Java language which is
relatively slow, yet it eases the usage of MW by defining flexible interfaces.
MHGrid is a service oriented grid-based framework compliant with OGSA, Open Grid
Services Architecture (Foster et al., 2005). It offers various solvers to global optimization
problems. All solvers belong to the meta heuristics family of solvers (meta heuristics is a
wide category containing EAs and other solver types like search heuristics). Solvers that are
meta heuristics based support black box optimization in which the user provides the input
and receives the output without knowledge of the underlying computation, black box
optimization is a highly desirable feature in optimization solvers to relief the user from
involvement in too much details. As for the user interface, the user could use MHGrid’s web
portal or directly use the Web services of MHGrid. Information interchange between the
user and the system is maintained through MHML (Meta Heuristics Mark up Language),
Details for MHML are in section 3.4.

3. MHGrid: A grid-based global optimization problem solving environment
MHGrid is a framework dedicated for solving optimization problems over Grid. The main
target of the framework is global optimization problems (global optimization is a branch of
applied mathematics and numerical analysis that deals with the optimization of a function
or a set of functions to some criteria). The framework is intended for the solvers based on
heuristic or meta heuristic searching methods.
MHGrid targets general purpose global optimization problems, a major challenge is that
according to the No Free Lunch theorem, NFL, (Wolpert & Macready, 1995), no single
optimization algorithm will give good results will all problems. The strategy that MHGrid
uses to overcome this part is by offering diverse techniques for global optimization covering
a wide range of problem type, and also offering mediation between the problem-solver pairs
to assure that the solver used is the most adequate to the problem in hand. The strategies
enforced by MHGrid to overcome the NFL problem are discussed later in sections 4.1, 4.2.
MHGrid provides the following functions to the user:
- Allows the usage of a solver registered with MHGrid to solve a problem in hand, this is

done with a minimal input.
- Enables solver developers to write a new solver that is integrated with MHGrid sing

MHAPI, and register it.
- Enables solver developers write a new objective function and register it.

 Advances in Evolutionary Algorithms

320

Table 1. Comparison of Different projects providing optimization solving environments.

U
se

r
G

ui
d-

en
ce

 to

So
lv

er
s

Te
xt

D

es
cr

ib
in

g
Ea

ch

So
lv

er

N
/A

O
nt

ol
og

y

O
nt

ol
og

y

D
es

ig
na

t-
ed

 T
oo

ls

N
on

e

N
on

e

SL
D

 +

SL
A

U
se

r I
nt

e-
rf

ac
e

W
eb

-b
as

ed

Jo
b

Su
bm

is
si

on

Fo
ld

in
g@

H
om

e
C

lie
nt

W
eb

 P
or

ta
l

M
at

la
b

To
ol

bo
x/

Po

rt
al

W
eb

 P
or

ta
l

N
on

e

Ja
va

C

la
ss

es

In
te

gr
at

io
n

W
eb

 P
or

ta
l O

R

W
eb

Se

rv
ic

es

So
lv

er
 P

ar
al

l-
el

iz
at

io
n

Pr
ed

ef
in

ed

In
de

pe
nd

en
t

W
or

k
U

ni
ts

Pr
ed

ef
in

ed

Pr
ed

ef
in

ed

Pr
ed

ef
in

ed

Fi
xe

d
Is

la
nd

M

od
el

St
ru

ct
ur

ed

D
ef

in
iti

on

So
lv

er
 W

ri
te

r
de

fin
es

 h
is

ow

n
Pa

ra
lle

l/

D
is

tr
ib

ut
ed

M

od
el

Se
cu

ri
ty

N
o

Y
es

 (2
04

8
bi

t D
ig

ita
l

Si
gn

at
-

ur
e)

Y
es

 (G
SI

)

Y
es

 (G
SI

)

Y
es

Y
es

 (G
SI

)

Y
es

 (G
SI

)

Y
es

 (G
SI

)

A
dd

in
g

N
ew

So

lv
er

 B
y

U
se

r

A
llo

w
ed

(T
hr

-
ou

gh

M
an

ag
em

-
en

t)

N
ot

A

llo
w

ed

N
ot

A

llo
w

ed

N
ot

A

llo
w

ed

N
ot

A

llo
w

ed

N
ot

A

llo
w

ed

A
lo

w
ed

(p
a

rt
ia

lly
)

A
llo

w
ed

(T

hr
ou

gh

Po
rt

al
)

In
fo

.
Ex

ch
an

ge

Pl
ai

n
So

ck
et

s

C
lie

nt
-S

er
ve

r
So

ck
et

s

A
ct

iv
e

Sh
ee

ts

En
vi

ro
nm

en
t

A
PI

A
M

PL
/M

PL

En
vi

ro
nm

en
t

A
PI

Ja
va

In

te
rf

ac
es

M
H

M
L

(X
M

L-
ba

se
d)

M
id

dl
ew

ar
e

N
on

-
St

an
da

rd

SM
P

C
lie

nt

O
G

SA

C
om

pl
ia

nt

O
G

SA

C
om

pl
ia

nt

A
gg

re
ga

te
d

C
om

po
ne

nt
s

O
G

SA

C
om

pl
ia

nt

O
G

SA

C
om

pl
ia

nt

O
G

SA

C
om

pl
ia

nt

A
rc

h-
it

ec
tu

re

Tr
iv

ia
l

W
eb

A

pp
lic

-
at

io
n

D
is

tr
i-

bu
te

d

Ev
en

t
D

ri
ve

n

A
SP

A
SP

Tr
iv

ia
l

D
is

tr
ib

ut
-

ed

A
pp

li-
ca

tio
n

A
SP

Se
rv

ic
e

or
ie

nt
-

ed
 g

ri
d

ap
pl

ic
-

at
io

n

B
la

ck
-

B
ox

N
ot

Su

pp
-

or
te

d

N
ot

Su

pp
-

or
te

d

N
ot

Su

pp
-

or
te

d

N
ot

Su

pp
-

or
te

d

N
ot

Su

pp
-

or
te

d

Su
pp

-
or

te
d

N
ot

Su

pp
-

or
te

d

Su
pp

-
or

te
d

Sc
op

e

A
ny

 O
pt

im
-

iz
at

io
n

G
R

O
M

A
C

S
O

pt
im

-iz
at

io
n

N
on

-li
ne

ar

O
pt

im
iz

at
io

n

Fl
ui

d
D

yn
-

am
ic

s

D
ec

is
io

n
Su

pp
-o

rt

Sy
st

em

Is
la

nd
-m

od
el

G

en
et

ic

A
lg

or
ith

m

C
om

bi
na

to
r-

ia
l

op
tim

iz
at

io
n

G
lo

ba
l

O
pt

im
iz

at
io

n
w

ith

m
et

ah
eu

ri
st

ic
s

(G
A

,S
A

,E
D

A

,..
.)

Pr
oj

ec
t

N
EO

S

Fo
ld

in
g

@
H

om
e

N
im

ro
d/

O

G
EO

D
IS

E

O
SP

G
E-

H
PG

A

M
W

M
H

G
ri

d

EA-based Problem Solving Environment over the GRID

321

OSP (Optimization Service Provider, www.osp.org): A recent EU funded project using ASP
for solving decision support systems optimization problems. It was later extended to
another project (WEBOPT, www.webopt.org) that uses the E-service model instead. Both of
them intend to offer a web-based DSS optimization solving environment.
GE-HPGA (Lim et al., 2007): It is similar to MHGrid in offering black-box optimization, the
framework is limited to only one solver and the main target was to offer speedup compared
to other distributed models. To achieve it’s target, GE-HPGA used the island model GA that
splits the population into sub-populations to minimize the program inter-communication as
much as possible and thus minimize the grid overhead as much as possible.
MW (Glankwamdee & Linderoth, 2006): A framework that is targeting to offer
combinatorial optimization solvers over the grid, MW has a very interesting feature for
solver and task definition where through MW API (Java interfaces), the user can implement
the interfaces to define his task, and also his solver. This technique solves the problem of
solver deployment but on the other hand enforces the user to use Java language which is
relatively slow, yet it eases the usage of MW by defining flexible interfaces.
MHGrid is a service oriented grid-based framework compliant with OGSA, Open Grid
Services Architecture (Foster et al., 2005). It offers various solvers to global optimization
problems. All solvers belong to the meta heuristics family of solvers (meta heuristics is a
wide category containing EAs and other solver types like search heuristics). Solvers that are
meta heuristics based support black box optimization in which the user provides the input
and receives the output without knowledge of the underlying computation, black box
optimization is a highly desirable feature in optimization solvers to relief the user from
involvement in too much details. As for the user interface, the user could use MHGrid’s web
portal or directly use the Web services of MHGrid. Information interchange between the
user and the system is maintained through MHML (Meta Heuristics Mark up Language),
Details for MHML are in section 3.4.

3. MHGrid: A grid-based global optimization problem solving environment
MHGrid is a framework dedicated for solving optimization problems over Grid. The main
target of the framework is global optimization problems (global optimization is a branch of
applied mathematics and numerical analysis that deals with the optimization of a function
or a set of functions to some criteria). The framework is intended for the solvers based on
heuristic or meta heuristic searching methods.
MHGrid targets general purpose global optimization problems, a major challenge is that
according to the No Free Lunch theorem, NFL, (Wolpert & Macready, 1995), no single
optimization algorithm will give good results will all problems. The strategy that MHGrid
uses to overcome this part is by offering diverse techniques for global optimization covering
a wide range of problem type, and also offering mediation between the problem-solver pairs
to assure that the solver used is the most adequate to the problem in hand. The strategies
enforced by MHGrid to overcome the NFL problem are discussed later in sections 4.1, 4.2.
MHGrid provides the following functions to the user:
- Allows the usage of a solver registered with MHGrid to solve a problem in hand, this is

done with a minimal input.
- Enables solver developers to write a new solver that is integrated with MHGrid sing

MHAPI, and register it.
- Enables solver developers write a new objective function and register it.

 Advances in Evolutionary Algorithms

322

- Do all the previous either through MHGrid’s web portal or by directly consuming
MHGrid’s Web services.

The key contribution is combining the computational power offered by grid technology
along with the optimization efficiency of meta heuristics algorithms to give an easy to use
general purpose Problem Solving Environment (PSE) for global optimization problems. All
MHGrid Web services are WSRF complaint web service to enable the user to use the
services directly or through the portal. We have used a unique hybrid parallelization
technique that employs GridRPC (Symour et al., 2002) + GridMPI (Ishikawa et al., 2005)
approach to dynamically adapt to the grain size of the solver. We have also developed an
XML based mark up language, MHML, which acts as an interface between the user and
MHGrid Web services.

3.1 MHGrid architecture
Figure 3 gives an overview of MHGrid’s architecture, it shows the services that are directly
or indirectly used by MHGrid. As the figure shows, the base layer is a high performance
grid network, on the top of that runs our Web services in a globus GT4 container (Foster,
2006). All other technologies and services are either build on top of globus or they use
globus in one way or the other. Globus Toolkit Monitoring and Discovery Service (MDS) are
used by the Condor-G scheduler (Frey et al., 2001) to collect information about the current
state of the dynamically changing Grid environment. This information is used by the
Condor-G based scheduler to negotiate SLA (Service Level Agreement) with the web service
and also to manage and schedule the jobs in a better way.

Fig.3. MHGrid architecture at an abstract level.

EA-based Problem Solving Environment over the GRID

323

GridRPC (Symour et al., 2002) - MHGrid uses Ninf-G (Tanaka et al., 2003) implementation
of GridRPC- and GridMPI (Ishikawa et al., 2005) are also built on top of the Grid
technologies, they are Grid variants of the famous Remote Procedure Call (RPC) and
Message Passing Interface (MPI) technologies respectively and their use is almost similar to
that of their non-Grid counterparts. Next is the Directory index, which is responsible for
storing the logs and maintaining the indexes for the solvers and objective functions. A
Workflow management module is needed for managing data staging in case of solvers
requiring remote datasets. Service Level Agreement (SLA) layer is used for controlling the
negotiations between the resource broker (i.e. Condor-G Central Manager) and the users
submitting jobs. On top of all these layers come the solvers that run on the Grid to solve
global optimization problems.

Fig.4. A close-up to MHGrid internals.
Figure 4 gives an insight to the internals of MHGrid and the flow of information inside
MHGrid. The arrows with short dashed show the information flow for a user submitting a
job, while the dashed-single dotted show an objective function developer registering an
objective function and the long dashed are of a solver developer registering a solver.
Different modules and functionalities provided by the framework are visible from the
figure. The modules of the framework are as follows:
Web Portal: A 2nd generation portal using Gridshpere (Novotny, 2004) as a portlet container.
Custom JSR compliant portlets are added to enable the user to use MHGrid with minimal
effort. The portal is simply a client application consuming MHGrid’s Web services on behalf
of the user.

 Advances in Evolutionary Algorithms

322

- Do all the previous either through MHGrid’s web portal or by directly consuming
MHGrid’s Web services.

The key contribution is combining the computational power offered by grid technology
along with the optimization efficiency of meta heuristics algorithms to give an easy to use
general purpose Problem Solving Environment (PSE) for global optimization problems. All
MHGrid Web services are WSRF complaint web service to enable the user to use the
services directly or through the portal. We have used a unique hybrid parallelization
technique that employs GridRPC (Symour et al., 2002) + GridMPI (Ishikawa et al., 2005)
approach to dynamically adapt to the grain size of the solver. We have also developed an
XML based mark up language, MHML, which acts as an interface between the user and
MHGrid Web services.

3.1 MHGrid architecture
Figure 3 gives an overview of MHGrid’s architecture, it shows the services that are directly
or indirectly used by MHGrid. As the figure shows, the base layer is a high performance
grid network, on the top of that runs our Web services in a globus GT4 container (Foster,
2006). All other technologies and services are either build on top of globus or they use
globus in one way or the other. Globus Toolkit Monitoring and Discovery Service (MDS) are
used by the Condor-G scheduler (Frey et al., 2001) to collect information about the current
state of the dynamically changing Grid environment. This information is used by the
Condor-G based scheduler to negotiate SLA (Service Level Agreement) with the web service
and also to manage and schedule the jobs in a better way.

Fig.3. MHGrid architecture at an abstract level.

EA-based Problem Solving Environment over the GRID

323

GridRPC (Symour et al., 2002) - MHGrid uses Ninf-G (Tanaka et al., 2003) implementation
of GridRPC- and GridMPI (Ishikawa et al., 2005) are also built on top of the Grid
technologies, they are Grid variants of the famous Remote Procedure Call (RPC) and
Message Passing Interface (MPI) technologies respectively and their use is almost similar to
that of their non-Grid counterparts. Next is the Directory index, which is responsible for
storing the logs and maintaining the indexes for the solvers and objective functions. A
Workflow management module is needed for managing data staging in case of solvers
requiring remote datasets. Service Level Agreement (SLA) layer is used for controlling the
negotiations between the resource broker (i.e. Condor-G Central Manager) and the users
submitting jobs. On top of all these layers come the solvers that run on the Grid to solve
global optimization problems.

Fig.4. A close-up to MHGrid internals.
Figure 4 gives an insight to the internals of MHGrid and the flow of information inside
MHGrid. The arrows with short dashed show the information flow for a user submitting a
job, while the dashed-single dotted show an objective function developer registering an
objective function and the long dashed are of a solver developer registering a solver.
Different modules and functionalities provided by the framework are visible from the
figure. The modules of the framework are as follows:
Web Portal: A 2nd generation portal using Gridshpere (Novotny, 2004) as a portlet container.
Custom JSR compliant portlets are added to enable the user to use MHGrid with minimal
effort. The portal is simply a client application consuming MHGrid’s Web services on behalf
of the user.

 Advances in Evolutionary Algorithms

324

MHGrid’s Web services: Runs in a globus container and are the core of MHGrid connecting all
components together. Three main services exist, one for retrieving the list of solvers and
objective functions registered, one for adding a new solver or objective function to MHGrid
and the last is for job submission.
Directory Index: A database that consists of all the objective functions and solvers registered
with the framework. It maintains a list of all the jobs and is also responsible for keeping a
log of all the previous runs along with the obtained results.
Condor-G based Scheduler: A simple scheduler that is responsible for scheduling jobs to
appropriate resources in the grid.

Fig. 5.Different grain size depending on parallelization combination. a) A solver running in
serial fashion and objective function computing also running in serial, simplest scenario
with no parallelization. b) The solver running serial but the objective computing is running
parallel in another cluster, Master-slave GAs are an example that will use this scenario. The
Master here is the solver process running in serial and the GridMPI objective function
processes are the slaves. c) The solver running in parallel while objective function
calculation is serial, a solver like parallel BOA will use this scenario where the objective
function calculation is not heavy while the solver involves heavy computation (candidate
selection). In this scenario one of the GridMPI solver processes is a controlling node that will
call upon objective function calculation. d) Both solver and objective function are running in
parallel on different clusters. This scenario will have one of the GridMPI solver processes
acting as a controlling node that will be acting as a master for the GridMPI objective
function processes.

3.2 Dynamic grain size in MHGrid
Parallelization in meta heuristics in general differs depending on the algorithm
communication/computation ratio. To offer an environment that will host a variety of
solvers, there is a necessity of having a mechanism that allows the usage of different
parallelization technologies to be used within the solvers and objective functions. MHGrid
uses a hybrid of two technologies, GridMPI and GridRPC (MHGrid uses Ninf-G, a wrapper
for GridRPC). Figure 5 shows how the mixed use of GridMPI and GridRPC can offer

GridRPC GridRPC GridRPC GridRPC

Serial

Serial Serial

Serial

GridMPI

a b c d
Solver Objective

Function
Cluster or node

GridMPI

GridMPI GridMPI

EA-based Problem Solving Environment over the GRID

325

different parallelization models providing the solver developer with flexibility in designing
his solver. This unique parallelization technique employing GridRPC and GridMPI was first
used in (Takemiya et al, 2006) for a specific problem. MHGrid deploys this technique as a
general model for dynamic grain size definition.
The deployment of solvers and objective functions in such a way to provide those
parallelization models is a complicated process that uses both Ninf-G and Condor-G
deployment techniques. Detailed method of objective function deployment is discussed in
(Munawar et al., 2008).

3.3 Solver developing and integration to MHGrid
When a user requires adding a solver to MHGrid, he is required to provide two things, the
first is the solver source files and the other is an MHML file including the SLD of the solver
to be added (the SLD part of MHML usage will be explained later in section 4.2). On the
other hand for the user to be able to integrate his solver with MHGrid, he/she needs to use
MHAPI. MHAPI is an API provided by MHGrid that includes a set of functions that allow
the user to run and deploy his solver on MHGrid. As shown in figure 6 the solver developer
writes the solver and uses the APIs in MHAPI for the following:
- Reading the input and configuration data from the job’s MHML file.
- Calling the objective function calculation whenever needed.
- Initialize the deployment of the objective function. Then MHGrid will transparently

deploy the objective function on behalf of the user.

Fig.6.Main functionalities provided by MHAPI. Note that every thing is kept transparent
from the solver developer.

MHAPI

Solver
Using GridMPI

Implements

Objective Func.
Using GridMPI

Transparent

1 mhgrid_ninf_init
2 mhgrid_ninf_destroy
3 mhgrid_ninf_obj_func_async_call
4 mhgrid_ninf_obj_func_sync_call
5 mhgrid_ninf_obj_func_wait_all
6 mhgrid_ninf_obj_func_wait
7 mhgrid_mhml_init
8 mhgrid_mhml_destroy
9 mhgrid_mhml_parse_file
10 mhgrid_mhml_read_client_info
11 hgrid_mhml_read_objective_function_config
12 mhgrid_mhml_read_objective_function_sld
13 mhgrid_mhml_read_solver_config
14 mhgrid_mhml_read_solver_sld
15 mhgrid_mhml_read_job
16 mhgrid_mhml_write_results
17 mhgrid_init
18 mhgrid_destroy

MHAPI

GridRPC
Server

GridRPC
Client

Solver
Developer

 Advances in Evolutionary Algorithms

324

MHGrid’s Web services: Runs in a globus container and are the core of MHGrid connecting all
components together. Three main services exist, one for retrieving the list of solvers and
objective functions registered, one for adding a new solver or objective function to MHGrid
and the last is for job submission.
Directory Index: A database that consists of all the objective functions and solvers registered
with the framework. It maintains a list of all the jobs and is also responsible for keeping a
log of all the previous runs along with the obtained results.
Condor-G based Scheduler: A simple scheduler that is responsible for scheduling jobs to
appropriate resources in the grid.

Fig. 5.Different grain size depending on parallelization combination. a) A solver running in
serial fashion and objective function computing also running in serial, simplest scenario
with no parallelization. b) The solver running serial but the objective computing is running
parallel in another cluster, Master-slave GAs are an example that will use this scenario. The
Master here is the solver process running in serial and the GridMPI objective function
processes are the slaves. c) The solver running in parallel while objective function
calculation is serial, a solver like parallel BOA will use this scenario where the objective
function calculation is not heavy while the solver involves heavy computation (candidate
selection). In this scenario one of the GridMPI solver processes is a controlling node that will
call upon objective function calculation. d) Both solver and objective function are running in
parallel on different clusters. This scenario will have one of the GridMPI solver processes
acting as a controlling node that will be acting as a master for the GridMPI objective
function processes.

3.2 Dynamic grain size in MHGrid
Parallelization in meta heuristics in general differs depending on the algorithm
communication/computation ratio. To offer an environment that will host a variety of
solvers, there is a necessity of having a mechanism that allows the usage of different
parallelization technologies to be used within the solvers and objective functions. MHGrid
uses a hybrid of two technologies, GridMPI and GridRPC (MHGrid uses Ninf-G, a wrapper
for GridRPC). Figure 5 shows how the mixed use of GridMPI and GridRPC can offer

GridRPC GridRPC GridRPC GridRPC

Serial

Serial Serial

Serial

GridMPI

a b c d
Solver Objective

Function
Cluster or node

GridMPI

GridMPI GridMPI

EA-based Problem Solving Environment over the GRID

325

different parallelization models providing the solver developer with flexibility in designing
his solver. This unique parallelization technique employing GridRPC and GridMPI was first
used in (Takemiya et al, 2006) for a specific problem. MHGrid deploys this technique as a
general model for dynamic grain size definition.
The deployment of solvers and objective functions in such a way to provide those
parallelization models is a complicated process that uses both Ninf-G and Condor-G
deployment techniques. Detailed method of objective function deployment is discussed in
(Munawar et al., 2008).

3.3 Solver developing and integration to MHGrid
When a user requires adding a solver to MHGrid, he is required to provide two things, the
first is the solver source files and the other is an MHML file including the SLD of the solver
to be added (the SLD part of MHML usage will be explained later in section 4.2). On the
other hand for the user to be able to integrate his solver with MHGrid, he/she needs to use
MHAPI. MHAPI is an API provided by MHGrid that includes a set of functions that allow
the user to run and deploy his solver on MHGrid. As shown in figure 6 the solver developer
writes the solver and uses the APIs in MHAPI for the following:
- Reading the input and configuration data from the job’s MHML file.
- Calling the objective function calculation whenever needed.
- Initialize the deployment of the objective function. Then MHGrid will transparently

deploy the objective function on behalf of the user.

Fig.6.Main functionalities provided by MHAPI. Note that every thing is kept transparent
from the solver developer.

MHAPI

Solver
Using GridMPI

Implements

Objective Func.
Using GridMPI

Transparent

1 mhgrid_ninf_init
2 mhgrid_ninf_destroy
3 mhgrid_ninf_obj_func_async_call
4 mhgrid_ninf_obj_func_sync_call
5 mhgrid_ninf_obj_func_wait_all
6 mhgrid_ninf_obj_func_wait
7 mhgrid_mhml_init
8 mhgrid_mhml_destroy
9 mhgrid_mhml_parse_file
10 mhgrid_mhml_read_client_info
11 hgrid_mhml_read_objective_function_config
12 mhgrid_mhml_read_objective_function_sld
13 mhgrid_mhml_read_solver_config
14 mhgrid_mhml_read_solver_sld
15 mhgrid_mhml_read_job
16 mhgrid_mhml_write_results
17 mhgrid_init
18 mhgrid_destroy

MHAPI

GridRPC
Server

GridRPC
Client

Solver
Developer

 Advances in Evolutionary Algorithms

326

Two points to note here about objective function calling and objective function deployment.
For objective function calling, the writer of the objective function is usually different from
the writer of the solver, so for an objective function to be used by solvers in MHGrid, it must
comply with a predefined Ninf IDL. This IDL defines the interfacing between the solver
and any objective function that will be used with it with eyes on the different problem
encodings that can be used (e.g. binary, real, combinatorial … etc). Figure 7 shows how a
simple Ninf-IDL file looks like.

Fig. 7.Simple sample of a Ninf-IDL file.

3.4 MHML
MHML is an XML-based language providing all the functionalities required from a
language to describe meta heuristics information interchange. Full details about MHML is
beyond the scope of this chapter, MHML language is fully demonstrated in (Munawar et al.,
2007), we will only summarize why the need to use MHML and the basic features of
MHML.

Fig.8.Top level hierarchy of MHML.

// Sample IDL file

Module obj;
Define obj-func(IN int in_length_of_chromosome, IN float in_chromosome[length], OUT float *out_fitness)
“sga on rpc”
Required “obj_func.o”
{
 Extern float obj_func(float length, float *x);
 *out_fitness = obj_func(int in_length_of_chromosome, in_chromosome);
}

EA-based Problem Solving Environment over the GRID

327

The rationale behind MHML was the need for standardizing the communication interface.
Standardizing the communication interface not only enables a flexible design, but also eases
the process of extendibility and interoperability. XML was chosen as it appears the most
promising information interchange language, and its wide dominance in the area of web-
based information interchange.
MHML basically is an extension/modification to an earlier attempt by (Alba et al., 2003).
(Alba et al., 2003) proposed a language to configure optimization algorithms as XML DTD.
Yet, it failed to address important issues considering the configuration of optimization
algorithms. MHML offers many advantages compared to (Alba et al., 2003), from the top-
level hierarchy of MHML shown in figure 8, it is clear that MHML has the capability to
represent: Job configuration, Solver description and configuration, Objective function description
and configuration, submitting client information and job results

4. Service orientation aspect in MHGrid
Creating a general framework for global optimization problem solving is challenged with
two major problems that will compromise the generality-to-performance trade-off; the first
problem is that if the set of available solvers is fixed then the overall scope of the framework
will be limited to the solvers in hand. The second problem is the reduced efficiency due to
week or non existing relation between the solver and the problem using the solver. Added
to the complexity of the second problem is that the nature and availability of the underlying
resources is dynamically changing in Grid-based systems. Another complexity added to the
second problem is the compound nature of meta heuristics based solvers, as Meta heuristic
based solvers constitute of the main solver code and the objective function which is a
computationally independent, cost expensive and repeatedly called function. Thus, the need
to formulate the interaction between solver and objective function counterparts.
MHGrid tackles these two problems by adopting service oriented architecture (SOA), this
SOA is attained in MHGrid by applying a set of strategies in both the vertical and horizontal
direction. And by applying these set of strategies that melt down MHGrid in a SOA frame,
the performance of MHGrid as a framework is leveraged to the desired level of being a
general framework (i.e. addressing problems of different scope.) while still offering a
reasonable performance to the problems submitted. Figure 9 shows three different models
with different problem type to performance relations. The Narrow scope-High Quality
model is the typical case of optimization problem solvers according to NFL (Wolpert &
Macready., 1995). The Wide scope low quality model is a model having a set of robust
solvers. This model targets average performance for wide scope of problem types. The last
model, MHGrid, targets a wide problem scope with performance that is high above the
average by modelling MHGrid in a SOA through applying strategies to expand in the
horizontal and vertical directions.
This section will give a close-up to the SOA of MHGrid by discussing the strategies used to
model MHGrid into a SOA. An important point to note here is that MHGrid doesn’t
embrace SOA by just using OGSA and Web services in the middleware layer, as normally in
SOA context, modelling a framework to fit into a SOA implies using Web services. This is
not the case in MHGrid, as Web services – though used in all modules of MHGrid – are just
tools in the middleware layer. The SOA referred to here is effective at the application layer
(i.e. solvers as services), section 4.2 discusses this point in details. The next sections will
discuss the horizontal expansion strategies, vertical expansion strategies and finally the
impact of those expansions on the adaptation of MHGrid into a SOA.

 Advances in Evolutionary Algorithms

326

Two points to note here about objective function calling and objective function deployment.
For objective function calling, the writer of the objective function is usually different from
the writer of the solver, so for an objective function to be used by solvers in MHGrid, it must
comply with a predefined Ninf IDL. This IDL defines the interfacing between the solver
and any objective function that will be used with it with eyes on the different problem
encodings that can be used (e.g. binary, real, combinatorial … etc). Figure 7 shows how a
simple Ninf-IDL file looks like.

Fig. 7.Simple sample of a Ninf-IDL file.

3.4 MHML
MHML is an XML-based language providing all the functionalities required from a
language to describe meta heuristics information interchange. Full details about MHML is
beyond the scope of this chapter, MHML language is fully demonstrated in (Munawar et al.,
2007), we will only summarize why the need to use MHML and the basic features of
MHML.

Fig.8.Top level hierarchy of MHML.

// Sample IDL file

Module obj;
Define obj-func(IN int in_length_of_chromosome, IN float in_chromosome[length], OUT float *out_fitness)
“sga on rpc”
Required “obj_func.o”
{
 Extern float obj_func(float length, float *x);
 *out_fitness = obj_func(int in_length_of_chromosome, in_chromosome);
}

EA-based Problem Solving Environment over the GRID

327

The rationale behind MHML was the need for standardizing the communication interface.
Standardizing the communication interface not only enables a flexible design, but also eases
the process of extendibility and interoperability. XML was chosen as it appears the most
promising information interchange language, and its wide dominance in the area of web-
based information interchange.
MHML basically is an extension/modification to an earlier attempt by (Alba et al., 2003).
(Alba et al., 2003) proposed a language to configure optimization algorithms as XML DTD.
Yet, it failed to address important issues considering the configuration of optimization
algorithms. MHML offers many advantages compared to (Alba et al., 2003), from the top-
level hierarchy of MHML shown in figure 8, it is clear that MHML has the capability to
represent: Job configuration, Solver description and configuration, Objective function description
and configuration, submitting client information and job results

4. Service orientation aspect in MHGrid
Creating a general framework for global optimization problem solving is challenged with
two major problems that will compromise the generality-to-performance trade-off; the first
problem is that if the set of available solvers is fixed then the overall scope of the framework
will be limited to the solvers in hand. The second problem is the reduced efficiency due to
week or non existing relation between the solver and the problem using the solver. Added
to the complexity of the second problem is that the nature and availability of the underlying
resources is dynamically changing in Grid-based systems. Another complexity added to the
second problem is the compound nature of meta heuristics based solvers, as Meta heuristic
based solvers constitute of the main solver code and the objective function which is a
computationally independent, cost expensive and repeatedly called function. Thus, the need
to formulate the interaction between solver and objective function counterparts.
MHGrid tackles these two problems by adopting service oriented architecture (SOA), this
SOA is attained in MHGrid by applying a set of strategies in both the vertical and horizontal
direction. And by applying these set of strategies that melt down MHGrid in a SOA frame,
the performance of MHGrid as a framework is leveraged to the desired level of being a
general framework (i.e. addressing problems of different scope.) while still offering a
reasonable performance to the problems submitted. Figure 9 shows three different models
with different problem type to performance relations. The Narrow scope-High Quality
model is the typical case of optimization problem solvers according to NFL (Wolpert &
Macready., 1995). The Wide scope low quality model is a model having a set of robust
solvers. This model targets average performance for wide scope of problem types. The last
model, MHGrid, targets a wide problem scope with performance that is high above the
average by modelling MHGrid in a SOA through applying strategies to expand in the
horizontal and vertical directions.
This section will give a close-up to the SOA of MHGrid by discussing the strategies used to
model MHGrid into a SOA. An important point to note here is that MHGrid doesn’t
embrace SOA by just using OGSA and Web services in the middleware layer, as normally in
SOA context, modelling a framework to fit into a SOA implies using Web services. This is
not the case in MHGrid, as Web services – though used in all modules of MHGrid – are just
tools in the middleware layer. The SOA referred to here is effective at the application layer
(i.e. solvers as services), section 4.2 discusses this point in details. The next sections will
discuss the horizontal expansion strategies, vertical expansion strategies and finally the
impact of those expansions on the adaptation of MHGrid into a SOA.

 Advances in Evolutionary Algorithms

328

Fig.9. MHGrid scope according to problem-type space.

4.1 Horizontal expansion strategies
Expanding MHGrid in the horizontal direction is mainly directed to widen the solvers base.
The strategies that MHGrid use to expand horizontally can be summarized in two points:
- Offer a variety of state-of-art robust solvers that make the framework suitable for

different problem types.
- Allow the user to add his own solver(s) and objective function(s).
For the first point, a set of robust solvers developed by the information systems design
laboratory at the information initiative center, Hokkaido university are to be used in
MHGrid platform. These solvers are the fuel of MHGrid that provide the ability to address a
wide variety of problems. The second point is as mentioned before in section 3.3, providing
a mechanism to allow the solver developers to add their solvers and objective functions.

4.2 Vertical expansion strategies
The vertical expansion strategies are much more complicated as they are mainly concerned
with increasing the semantics of the solver to problem relation. The following are the
strategies:
- Solvers and objective functions are represented as services in MHGrid, thus binding a

Service Level Description (SLD) with each solver/objective function to describe the
service level offered by the solver/objective function. MHML has two main sections one
for solvers and the other for objective functions. The SLD part should be submitted with
newly added solvers/objective functions. The SLD section contains information like
what problem type is the solver targeting, problem encoding and what model of
parallelization is used (e.g. Island model GA will use any parallel model while
master/slave pBOA requires the solver to run in parallel on the same cluster). The SLD
information is later used to guide the user for which solver to select to the problem in
hand and to check if the grid resources will support the parallelization model required.

- Having an M-N relation between the solvers and objective functions registered with
MHGrid, where the user can run the same solver against many objective functions and
vice versa. This strategy is handled through the Ninf-IDL interface described in section
3.3.

Performance

Type of Problem

average

Narrow Scope-High Quality

MHGrid’s Scope

Wide Scope-Low Quality

EA-based Problem Solving Environment over the GRID

329

- Allowing the solver developer to control the parallelization model in the solver
/objective function he writes. The solver developer can choose the parallelization
model and thus the grain size as mentioned in section 3.2.

- Offering two SAPs (Service Access Points) for the user of MHGrid, one of them is the
web portal and the other is by consuming the MHGrid’s Web services directly.
Accessing MHGrid services through the portal will be shown in the test case of section
5, also there is another SAP that can be used in case the user wants to avoid the
overhead in using the web portal and also to use MHGrid’s services automatically in
case he needs that.

- Having a Service Level Agreement (SLA) for each job submitted to MHGrid. Initially
upon job submission and after the user chooses the solver/objective function pair, the
scheduler checks the state of the available resources, then the SLA manager using the
state of resources along with the solver/objective function SLD informs the user with
the expected scenario that rises from running the selected solver/objective function
running on the current available resources. The SLA in the case of MHGrid is at the
application layer and not the middleware layer, and therefore refraining from the
expected SLA procedure at middleware (i.e. SLA based scheduling). SLA at the
application layer guarantee to the user that his problem is well matched to a solver,
while if at middleware layer will be targeting QoS metrics such as time, cost and
resources availability. The current SLA implementation is rather trivial, but different
options are now being investigated and it is anticipated that SLA mechanism will later
use e-contracts at the application level.

4.3 MHGrid as a grid application benefiting from SOA
Grid applications are combined with SOA and service fundamentals in many projects, and
often the grid application that are modelled after SOA are referred to as service-oriented grid
applications. The case of MHGrid despite being a service-oriented application, yet it used a
different approach to combine SOA with grid technology. MHGrid as a framework is
designed to be a general framework for global optimization, yet this goal was challenged
with the NFL theorem, and so the expansion in both directions was thought of in order to
enable more generality for MHGrid. This expansion design for MHGrid was clearly
consistent with SOA fundamentals and concepts, for example the following are the SOA
projections mapped to the vertical expansion strategies:
- Solvers as services with SLDs. Mapping: A well known practice of SOA, where every

service in a SOA model should have a description of what it is doing in order to be used
later for QoS process. Analogous to WSDL associated with Web services.

- M-N solver to objective function relation (one solver can be associated to many
objective functions and vice versa). Mapping: Service interoperability is a main concept in
SOA.

- Solver developer control over the parallelization model. Mapping: From SOA
perspective, this is providing strong semantics for inter-services relations.

- Offering two SAPs. Mapping: The two service access points for the solvers in MHGrid comes
in favour of ease of use, this polymorphic interfacing to the services is indeed a merit from SOA
perspective.

- Having an SLA for each job submitted. Mapping: A straightforward SOA pillar.

 Advances in Evolutionary Algorithms

328

Fig.9. MHGrid scope according to problem-type space.

4.1 Horizontal expansion strategies
Expanding MHGrid in the horizontal direction is mainly directed to widen the solvers base.
The strategies that MHGrid use to expand horizontally can be summarized in two points:
- Offer a variety of state-of-art robust solvers that make the framework suitable for

different problem types.
- Allow the user to add his own solver(s) and objective function(s).
For the first point, a set of robust solvers developed by the information systems design
laboratory at the information initiative center, Hokkaido university are to be used in
MHGrid platform. These solvers are the fuel of MHGrid that provide the ability to address a
wide variety of problems. The second point is as mentioned before in section 3.3, providing
a mechanism to allow the solver developers to add their solvers and objective functions.

4.2 Vertical expansion strategies
The vertical expansion strategies are much more complicated as they are mainly concerned
with increasing the semantics of the solver to problem relation. The following are the
strategies:
- Solvers and objective functions are represented as services in MHGrid, thus binding a

Service Level Description (SLD) with each solver/objective function to describe the
service level offered by the solver/objective function. MHML has two main sections one
for solvers and the other for objective functions. The SLD part should be submitted with
newly added solvers/objective functions. The SLD section contains information like
what problem type is the solver targeting, problem encoding and what model of
parallelization is used (e.g. Island model GA will use any parallel model while
master/slave pBOA requires the solver to run in parallel on the same cluster). The SLD
information is later used to guide the user for which solver to select to the problem in
hand and to check if the grid resources will support the parallelization model required.

- Having an M-N relation between the solvers and objective functions registered with
MHGrid, where the user can run the same solver against many objective functions and
vice versa. This strategy is handled through the Ninf-IDL interface described in section
3.3.

Performance

Type of Problem

average

Narrow Scope-High Quality

MHGrid’s Scope

Wide Scope-Low Quality

EA-based Problem Solving Environment over the GRID

329

- Allowing the solver developer to control the parallelization model in the solver
/objective function he writes. The solver developer can choose the parallelization
model and thus the grain size as mentioned in section 3.2.

- Offering two SAPs (Service Access Points) for the user of MHGrid, one of them is the
web portal and the other is by consuming the MHGrid’s Web services directly.
Accessing MHGrid services through the portal will be shown in the test case of section
5, also there is another SAP that can be used in case the user wants to avoid the
overhead in using the web portal and also to use MHGrid’s services automatically in
case he needs that.

- Having a Service Level Agreement (SLA) for each job submitted to MHGrid. Initially
upon job submission and after the user chooses the solver/objective function pair, the
scheduler checks the state of the available resources, then the SLA manager using the
state of resources along with the solver/objective function SLD informs the user with
the expected scenario that rises from running the selected solver/objective function
running on the current available resources. The SLA in the case of MHGrid is at the
application layer and not the middleware layer, and therefore refraining from the
expected SLA procedure at middleware (i.e. SLA based scheduling). SLA at the
application layer guarantee to the user that his problem is well matched to a solver,
while if at middleware layer will be targeting QoS metrics such as time, cost and
resources availability. The current SLA implementation is rather trivial, but different
options are now being investigated and it is anticipated that SLA mechanism will later
use e-contracts at the application level.

4.3 MHGrid as a grid application benefiting from SOA
Grid applications are combined with SOA and service fundamentals in many projects, and
often the grid application that are modelled after SOA are referred to as service-oriented grid
applications. The case of MHGrid despite being a service-oriented application, yet it used a
different approach to combine SOA with grid technology. MHGrid as a framework is
designed to be a general framework for global optimization, yet this goal was challenged
with the NFL theorem, and so the expansion in both directions was thought of in order to
enable more generality for MHGrid. This expansion design for MHGrid was clearly
consistent with SOA fundamentals and concepts, for example the following are the SOA
projections mapped to the vertical expansion strategies:
- Solvers as services with SLDs. Mapping: A well known practice of SOA, where every

service in a SOA model should have a description of what it is doing in order to be used
later for QoS process. Analogous to WSDL associated with Web services.

- M-N solver to objective function relation (one solver can be associated to many
objective functions and vice versa). Mapping: Service interoperability is a main concept in
SOA.

- Solver developer control over the parallelization model. Mapping: From SOA
perspective, this is providing strong semantics for inter-services relations.

- Offering two SAPs. Mapping: The two service access points for the solvers in MHGrid comes
in favour of ease of use, this polymorphic interfacing to the services is indeed a merit from SOA
perspective.

- Having an SLA for each job submitted. Mapping: A straightforward SOA pillar.

 Advances in Evolutionary Algorithms

330

Fig.10. MHGrid modules mapped to a typical SOA layout.
The point of concern that can be concluded from merging MHGrid as a grid application with
SOA, is that MHGrid was not designed as a SOA compliant model in order to benefit from the
typical advantages of SOA such as ease of extensibility, but MHGrid was framed into a SOA
model to achieve the basis of having a general problem solving framework in terms of wide
problem type support. Figure 10 shows a mapping of MHGrid modules to a typical SOA layout.

5. Test case of MHGrid from user perspective
This section illustrates a test case example for MHGrid from the user perspective. The illustration
will start by a solver developer registering a solver he wrote for MHGrid, then as a user
retrieving the list of solvers and objective functions and finally submitting a job to MHGrid.
- Solver registration: The solver developer will initially write his solver that uses MHAPI,

and then write the MHML file with the SLD section of the solver. Then the solver
developer logins to the portal opens the solver registration portlet and uploads both the
solver tar ball and the MHML file. The solver developer will be notified though his e-
mail registered with the portal. Figure 11 middle snapshot shows the solver registration
portlet while registering a solver.

- Job submission: The job submission is done in two steps, first the user uses the retrieve
portlet to get a list of all the registered solvers and the registered objective functions.
For each solver and objective function displayed, the information for the corresponding
SLD is displayed to give guidance to the user. Figure 11 top snapshot shows the retrieve
portlet where the user can view the solvers and objective functions before deciding
which one to use. The next step where the user actually submits the job, the user will
switch to the job submission portlet and choose a solver/objective function pair, and
then the portlet will give the user an indication of how the current available resources
are coherent with the SLDs of the solver and objective function. After the user decides
which solver/objective function pair to use, he has to supply the MHML job file, and
he’ll later get the MHML result file on his e-mail. Figure 11 bottom snapshot shows the
job submission portlet while in submission process.

EA-based Problem Solving Environment over the GRID

331

Fig.11. Top Snapshot: A user registering a solver with MHGrid through the web portal.
Middle snapshot: A user retrieving information about the solvers and objective functions
registered with MHGrid through the web portal. Bottom snapshot: A user submitting a job
to MHGrid through the web portal

 Advances in Evolutionary Algorithms

330

Fig.10. MHGrid modules mapped to a typical SOA layout.
The point of concern that can be concluded from merging MHGrid as a grid application with
SOA, is that MHGrid was not designed as a SOA compliant model in order to benefit from the
typical advantages of SOA such as ease of extensibility, but MHGrid was framed into a SOA
model to achieve the basis of having a general problem solving framework in terms of wide
problem type support. Figure 10 shows a mapping of MHGrid modules to a typical SOA layout.

5. Test case of MHGrid from user perspective
This section illustrates a test case example for MHGrid from the user perspective. The illustration
will start by a solver developer registering a solver he wrote for MHGrid, then as a user
retrieving the list of solvers and objective functions and finally submitting a job to MHGrid.
- Solver registration: The solver developer will initially write his solver that uses MHAPI,

and then write the MHML file with the SLD section of the solver. Then the solver
developer logins to the portal opens the solver registration portlet and uploads both the
solver tar ball and the MHML file. The solver developer will be notified though his e-
mail registered with the portal. Figure 11 middle snapshot shows the solver registration
portlet while registering a solver.

- Job submission: The job submission is done in two steps, first the user uses the retrieve
portlet to get a list of all the registered solvers and the registered objective functions.
For each solver and objective function displayed, the information for the corresponding
SLD is displayed to give guidance to the user. Figure 11 top snapshot shows the retrieve
portlet where the user can view the solvers and objective functions before deciding
which one to use. The next step where the user actually submits the job, the user will
switch to the job submission portlet and choose a solver/objective function pair, and
then the portlet will give the user an indication of how the current available resources
are coherent with the SLDs of the solver and objective function. After the user decides
which solver/objective function pair to use, he has to supply the MHML job file, and
he’ll later get the MHML result file on his e-mail. Figure 11 bottom snapshot shows the
job submission portlet while in submission process.

EA-based Problem Solving Environment over the GRID

331

Fig.11. Top Snapshot: A user registering a solver with MHGrid through the web portal.
Middle snapshot: A user retrieving information about the solvers and objective functions
registered with MHGrid through the web portal. Bottom snapshot: A user submitting a job
to MHGrid through the web portal

 Advances in Evolutionary Algorithms

332

This was a simple example case just to acknowledge the reader with how MHGrid is viewed
from the user perspective, nevertheless, MHGrid can still be accessed directly from the Web
services, but illustration for that was skipped to refrain the user from details outside the
scope of the book.

6. Conclusions and future work
This chapter presented a grid based problem solving environment that uses EAs and other
algorithms all falling under the meta heuristics category to offer black box global
optimization for the user. The chapter first highlighted the grid computing technology and
then discussed with reasons behind using the grid for MHGrid, Meta Heuristics Grid, and
the benefits of the grid technology compared to other distributed paradigms.
Then a comparison of MHGrid with related work was discussed, to imply the concepts
behind the design of optimization solving grid applications. The design and implementation
of MHGrid was explained, including the layered architecture, the workflow inside the
framework and explanation of MHAPI, a library that allows the solver developers to
integrate their solvers with MHGrid.
MHGrid as a model was expanded in both the vertical and horizontal directions in order to
widen the base of MHGrid to be a general framework rather than being tailored to one
problem type. The expansion strategies reformed the architecture of MHGrid into a SOA,
the main impact for MHGrid adopting SOA was the representation of solvers and objective
functions as services and thus having the service oriented grid application mostly affecting
the application layer whilst using OGSA and Web services at the middleware layer. A
sample example case was demonstrated to acknowledge the reader with the user
perspective of MHGrid.
For the future work, modifications and extensions will cover different aspects. Major points
will include adopting a more sophisticated SLA mechanism, defining new interfaces that
allow one solver to use another solver, for example pBOA algorithm can internally use Tabu
search for candidate offspring selection, and one more important point is to conduct more
study on the dynamic grain size in EAs to reach the best formulation of parallelization
models adopted. Other minor points will include enchantments on the portlets to auto
generate the MHML files on behalf of the users.

7. References
Abramson, D. ; Lewis, A. & Peachy, T. (2000). Nimrod/O: A Tool for Automatic Design

Optimization, Proceedings of 4th International Conference on Algorithms & Architectures
for Parallel Processing; ICA3PP 2000, pp. 90-98, ISBN, Hong Kong, December 2000,
World Scientific Publishing

Abramson, D. (2006). Applications Development for the Computational Grid, Proceedings of
APWEB 2006, pp. 1-12, China, January 2006, Springer, Harbin

Alba, E.; Garc-Nieto, J. & Nebro, A. (2003). On the Configuration of Optimization Algorithms by
Using XML Files, Technical report, http://neo.lcc.uma.es/publications/Publi2003

Cantu-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms, Springer, 0792372212,
Chicago IL.

Chrabakh, W. & Wolski, R. (2006). GridSAT: Design and Implementation of a

EA-based Problem Solving Environment over the GRID

333

Computational Grid Application. Journal of Grid Computing, Vol. 4, No. 2, (June 2006) pp.
177-193. 1570-7873

Chunlin, L. & Layuan, L. (2007). Utility Based Multiple QoS Guaranteed Resource
Scheduling Optimization in Grid Computing. Proceeding of the International
Conference on Computing: Theory and Applications, 2007. ICCTA apos;07, pp 165-169,
India, October 2007, Kolkata.

Cox, S.; Chen, L.; Campobasso, S.; Duta, M.; Eres, M.; Giles, M.; Goble, C.; Jiao, Z.; Keane,
A.; Pound, G.; Roberts, A.; Shadbolt, N.; Tao, F.; Wason, J. & Xu, F. (2002). Grid
Enabled Optimization and Design Search (GEODISE), Technical report,
www.geodise.org

Czyzck, J.; Mesnier, M. & More, J. (1998). The NEOS Server. IEEE Journal on Computational
Science and Engineering, Vol. 5, No. 3, (May 1998) pp. 68-75.

Daniel, M. & Emiliano, C. (2004). Quality of Service Aspects and Metrics in Grid
Computing. Proceeding of Computer Measurement Group Conference, pp 102-111, USA,
December 2004, Las Vegas, NV.

Foster, I. & Kesselman, C. (1999). The Grid : Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers, 1558604758, Chicago IL.

Foster, I. (2002). What is the Grid? A three point checklist. GRIDtoday, Vol. 1, No. 6,
(February 2002)

Foster, I.; Kishimoto, H..; Sava, A.; Berry, D.; Djaoui, A.; Grimshaw, A.; Horn, B.; Maciel, F.;
Siebenlist, F.; Subramaniam, R.; Treadwell, J. & Reich, J. (2005). The Open Grid
Services Architecutre Version 1.0, GGF informational document Global Grid forum,
www.globalgridforum.org

Foster, I. (2006). Globus toolkit version 4: Software for service oriented systems, Proceedings
 of IFIP International Conference on Network and Parallel Computing,, pp. 2-13, Japan,

October 2006, Sprinder-Verlag LINCS 3779, Tokyo
Frey, J.; Tannenbaum, T.; Foster, I.; Livny, M. & Tuecke, S. (2001). Condor-G: A

Computation Management Agent for Multi-institutional Grids, Proceedings of 10th
IEEE symposium on High Performance Distributed Computing, pp. 7-19, USA, August
2001, Morgan Kaufmann Publishers, San Francisco, California

Glankwamdee, V. & Linderoth, J. (2006). MW: A Software Framework for Combinatorial
Optimization on Computational Grids, In: Parallel Combinatorial Optimization, Talbi,
E., pp. 239-256, Wiley-Interscience, 0471721018

Ishikawa, Y.; Kaneo, Y.; Edamoto, M.; Okazaki, F.; Koie, H.; Takano, R.; Kudoh, T. &
Kodama. Y., (2005). Overview of GridMPI Version 1.0, Proceedings of SWoPP’05, pp.
116-127, Japan, October, Tokyo

Larson, S.; Snow, C. & Pande, V. (2003). Folding@Home and Genome@Home: Using Distributed
Computing to Tackle Previously Intractable Problems in Computational Biology, R. Grant,
Horizon Press

Lim, D.; Ong, Y.; Jin, Y.; Sendhoff, B. & Lee, S. (2007). Efficient Hierarchical Parallel Genetic
Algorithms using Grid Computing. Future Generation Computational systems, Vol. 4,
No. 23, (May 2007) pp. 658-670.

Munawar, A.; Wahib, M.; Munetomo, M. & Akama, K. (2007). Optimization Problem
Solving Framework Employing GAs with Linkage Identification over a Grid
Environment, Proceedings of CEC2007: IEEE Congress on Evolutionary Computation,
pp. 3659-3661, Singapore, September 2007

 Advances in Evolutionary Algorithms

332

This was a simple example case just to acknowledge the reader with how MHGrid is viewed
from the user perspective, nevertheless, MHGrid can still be accessed directly from the Web
services, but illustration for that was skipped to refrain the user from details outside the
scope of the book.

6. Conclusions and future work
This chapter presented a grid based problem solving environment that uses EAs and other
algorithms all falling under the meta heuristics category to offer black box global
optimization for the user. The chapter first highlighted the grid computing technology and
then discussed with reasons behind using the grid for MHGrid, Meta Heuristics Grid, and
the benefits of the grid technology compared to other distributed paradigms.
Then a comparison of MHGrid with related work was discussed, to imply the concepts
behind the design of optimization solving grid applications. The design and implementation
of MHGrid was explained, including the layered architecture, the workflow inside the
framework and explanation of MHAPI, a library that allows the solver developers to
integrate their solvers with MHGrid.
MHGrid as a model was expanded in both the vertical and horizontal directions in order to
widen the base of MHGrid to be a general framework rather than being tailored to one
problem type. The expansion strategies reformed the architecture of MHGrid into a SOA,
the main impact for MHGrid adopting SOA was the representation of solvers and objective
functions as services and thus having the service oriented grid application mostly affecting
the application layer whilst using OGSA and Web services at the middleware layer. A
sample example case was demonstrated to acknowledge the reader with the user
perspective of MHGrid.
For the future work, modifications and extensions will cover different aspects. Major points
will include adopting a more sophisticated SLA mechanism, defining new interfaces that
allow one solver to use another solver, for example pBOA algorithm can internally use Tabu
search for candidate offspring selection, and one more important point is to conduct more
study on the dynamic grain size in EAs to reach the best formulation of parallelization
models adopted. Other minor points will include enchantments on the portlets to auto
generate the MHML files on behalf of the users.

7. References
Abramson, D. ; Lewis, A. & Peachy, T. (2000). Nimrod/O: A Tool for Automatic Design

Optimization, Proceedings of 4th International Conference on Algorithms & Architectures
for Parallel Processing; ICA3PP 2000, pp. 90-98, ISBN, Hong Kong, December 2000,
World Scientific Publishing

Abramson, D. (2006). Applications Development for the Computational Grid, Proceedings of
APWEB 2006, pp. 1-12, China, January 2006, Springer, Harbin

Alba, E.; Garc-Nieto, J. & Nebro, A. (2003). On the Configuration of Optimization Algorithms by
Using XML Files, Technical report, http://neo.lcc.uma.es/publications/Publi2003

Cantu-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms, Springer, 0792372212,
Chicago IL.

Chrabakh, W. & Wolski, R. (2006). GridSAT: Design and Implementation of a

EA-based Problem Solving Environment over the GRID

333

Computational Grid Application. Journal of Grid Computing, Vol. 4, No. 2, (June 2006) pp.
177-193. 1570-7873

Chunlin, L. & Layuan, L. (2007). Utility Based Multiple QoS Guaranteed Resource
Scheduling Optimization in Grid Computing. Proceeding of the International
Conference on Computing: Theory and Applications, 2007. ICCTA apos;07, pp 165-169,
India, October 2007, Kolkata.

Cox, S.; Chen, L.; Campobasso, S.; Duta, M.; Eres, M.; Giles, M.; Goble, C.; Jiao, Z.; Keane,
A.; Pound, G.; Roberts, A.; Shadbolt, N.; Tao, F.; Wason, J. & Xu, F. (2002). Grid
Enabled Optimization and Design Search (GEODISE), Technical report,
www.geodise.org

Czyzck, J.; Mesnier, M. & More, J. (1998). The NEOS Server. IEEE Journal on Computational
Science and Engineering, Vol. 5, No. 3, (May 1998) pp. 68-75.

Daniel, M. & Emiliano, C. (2004). Quality of Service Aspects and Metrics in Grid
Computing. Proceeding of Computer Measurement Group Conference, pp 102-111, USA,
December 2004, Las Vegas, NV.

Foster, I. & Kesselman, C. (1999). The Grid : Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers, 1558604758, Chicago IL.

Foster, I. (2002). What is the Grid? A three point checklist. GRIDtoday, Vol. 1, No. 6,
(February 2002)

Foster, I.; Kishimoto, H..; Sava, A.; Berry, D.; Djaoui, A.; Grimshaw, A.; Horn, B.; Maciel, F.;
Siebenlist, F.; Subramaniam, R.; Treadwell, J. & Reich, J. (2005). The Open Grid
Services Architecutre Version 1.0, GGF informational document Global Grid forum,
www.globalgridforum.org

Foster, I. (2006). Globus toolkit version 4: Software for service oriented systems, Proceedings
 of IFIP International Conference on Network and Parallel Computing,, pp. 2-13, Japan,

October 2006, Sprinder-Verlag LINCS 3779, Tokyo
Frey, J.; Tannenbaum, T.; Foster, I.; Livny, M. & Tuecke, S. (2001). Condor-G: A

Computation Management Agent for Multi-institutional Grids, Proceedings of 10th
IEEE symposium on High Performance Distributed Computing, pp. 7-19, USA, August
2001, Morgan Kaufmann Publishers, San Francisco, California

Glankwamdee, V. & Linderoth, J. (2006). MW: A Software Framework for Combinatorial
Optimization on Computational Grids, In: Parallel Combinatorial Optimization, Talbi,
E., pp. 239-256, Wiley-Interscience, 0471721018

Ishikawa, Y.; Kaneo, Y.; Edamoto, M.; Okazaki, F.; Koie, H.; Takano, R.; Kudoh, T. &
Kodama. Y., (2005). Overview of GridMPI Version 1.0, Proceedings of SWoPP’05, pp.
116-127, Japan, October, Tokyo

Larson, S.; Snow, C. & Pande, V. (2003). Folding@Home and Genome@Home: Using Distributed
Computing to Tackle Previously Intractable Problems in Computational Biology, R. Grant,
Horizon Press

Lim, D.; Ong, Y.; Jin, Y.; Sendhoff, B. & Lee, S. (2007). Efficient Hierarchical Parallel Genetic
Algorithms using Grid Computing. Future Generation Computational systems, Vol. 4,
No. 23, (May 2007) pp. 658-670.

Munawar, A.; Wahib, M.; Munetomo, M. & Akama, K. (2007). Optimization Problem
Solving Framework Employing GAs with Linkage Identification over a Grid
Environment, Proceedings of CEC2007: IEEE Congress on Evolutionary Computation,
pp. 3659-3661, Singapore, September 2007

 Advances in Evolutionary Algorithms

334

Munawar, A.; Wahib, M.; Munetomo, M. & Akama, K. (To Appear). Parallel GEAs with
Linkage Analysis over Grid, In: Linkage in Genetic and Evolutionary Algorithms,
Springer.

Novotny, J.; Russell, M. & Wehrens, O. (2004). Gridsphere: A Portal Framework for Building
Collaborations, Concurrent Computing: Practices and Exercises, Vol. 5, No. 16, （June
2004) pp. 503-513

Symour, K.; Nakada, H.; Matsuoka, S.; Dongarra, J.; Lee, C. & Casanova, H. (2002).
Overview of GridRPC: A Remote Procedure Call API for Grid Computing,
Proceedings of 3rd International Workshop of Grid Computing, pp. 274-278, USA,
November 2002, Morgan Kaufmann Publishers, Baltimore, Maryland

Takemiya, H.; Tanaka, Y.; Sekiguchi, S.; Ogata, S.; Kalia, R.; Nakano, A. & Vashishta, P.
(2006). Sustainable Adaptive Grid Supercomputing: Multiscale Simulation of
Semiconductor Processing Across the Pacific, Proceedings of the 2006 ACM/IEEE
conference on Super Computing; SC’06, pp. 106-118, USA, November 2006, Morgan
Kaufmann Publishers, New York, NY

Tanaka, Y.; Nakada, H.; Sekiguchi, S.; Suzumura, T. & Matsuoka, S. (2003). Ninf-G: A
Reference Implementation of RPC based Programming Middleware for Grid
Computing, Journal of Grid Computing, Vol. 3, No. 7, (June 2003) pp. 41-51

Wahib, M.; Munawar, A.; Munetomo, M. & Akama, K. (2007). MHGrid: Towards an Ideal
Optimization Environment for Global Optimization Problems using Grid
Computing, Proceedings of Parallel and Distributed Computing, Applications and
Technologies; PDCAT2007, pp. 217-220, Australia, December 2007, Morgan
Kaufmann Publishers, Adelaide

Weise, T. (2007). Global Optimization Techniques and Genetic Programming Applied to
 Distributed Computing, Thomas Weise, Online as e-book.
Wolpert, H. & Macready, G. (1995). No Free Lunch Theorems for Search, Technical report, SFI-

TR-95-02-010 Santa Fe, NM

Part IV:

Applications

 Advances in Evolutionary Algorithms

334

Munawar, A.; Wahib, M.; Munetomo, M. & Akama, K. (To Appear). Parallel GEAs with
Linkage Analysis over Grid, In: Linkage in Genetic and Evolutionary Algorithms,
Springer.

Novotny, J.; Russell, M. & Wehrens, O. (2004). Gridsphere: A Portal Framework for Building
Collaborations, Concurrent Computing: Practices and Exercises, Vol. 5, No. 16, （June
2004) pp. 503-513

Symour, K.; Nakada, H.; Matsuoka, S.; Dongarra, J.; Lee, C. & Casanova, H. (2002).
Overview of GridRPC: A Remote Procedure Call API for Grid Computing,
Proceedings of 3rd International Workshop of Grid Computing, pp. 274-278, USA,
November 2002, Morgan Kaufmann Publishers, Baltimore, Maryland

Takemiya, H.; Tanaka, Y.; Sekiguchi, S.; Ogata, S.; Kalia, R.; Nakano, A. & Vashishta, P.
(2006). Sustainable Adaptive Grid Supercomputing: Multiscale Simulation of
Semiconductor Processing Across the Pacific, Proceedings of the 2006 ACM/IEEE
conference on Super Computing; SC’06, pp. 106-118, USA, November 2006, Morgan
Kaufmann Publishers, New York, NY

Tanaka, Y.; Nakada, H.; Sekiguchi, S.; Suzumura, T. & Matsuoka, S. (2003). Ninf-G: A
Reference Implementation of RPC based Programming Middleware for Grid
Computing, Journal of Grid Computing, Vol. 3, No. 7, (June 2003) pp. 41-51

Wahib, M.; Munawar, A.; Munetomo, M. & Akama, K. (2007). MHGrid: Towards an Ideal
Optimization Environment for Global Optimization Problems using Grid
Computing, Proceedings of Parallel and Distributed Computing, Applications and
Technologies; PDCAT2007, pp. 217-220, Australia, December 2007, Morgan
Kaufmann Publishers, Adelaide

Weise, T. (2007). Global Optimization Techniques and Genetic Programming Applied to
 Distributed Computing, Thomas Weise, Online as e-book.
Wolpert, H. & Macready, G. (1995). No Free Lunch Theorems for Search, Technical report, SFI-

TR-95-02-010 Santa Fe, NM

Part IV:

Applications

17

Evolutionary Methods for Learning Bayesian
Network Structures

Thierry Brouard, Alain Delaplace and Hubert Cardot
Université Francois-Rabelais de Tours - Laboratoire Informatique

France

1. Introduction
Bayesian networks (BN) are a family of probabilistic graphical models representing a joint
distribution for a set of random variables. Conditional dependencies between these
variables are symbolized by a Directed Acyclic Graph (DAG). Two classical approaches are
often encountered when automaticaly determining an appropriate graphical structure from
a database of cases,. The first one consists in the detection of (in)dependencies between the
variables (Spirtes et al., 2001; Cheng et al., 2002). The second one uses a scoring metric
(Chickering, 2002a). But neither the first nor the second are really satisfactory. The first one
uses statistical tests which are not reliable enough when in presence of small datasets. If
numerous variables are required, it is the computing time that highly increases. Even if
score-based methods require relatively less computation, their disadvantage lies in that the
searcher is often confronted with the presence of many local optima within the search space
of candidate DAGs. Finally, in the case of the automatic determination of the appropriate
graphical structure of a BN, it was shown that the search space is huge (Robinson, 1976) and
that is a NP-hard problem (Chickering et al., 1994) for a scoring approach.
In this field of research, evolutionary methods such as Genetic Algorithms – GAs (De Jong,
2006) have already been used in various forms (Larrañaga et al., 1996; Muruzábal & Cotta,
2004; Wong et al., 1999; Wong et al., 2002; Van Dijk et al., 2003b; Acid & De Campos, 2003).
Among these works, two lines of research are interesting. The first idea is to effectively
reduce the search space using the notion of equivalence class (Pearl, 1988). In (Van Dijk et
al., 2003b) for example the authors have tried to implement a genetic algorithm over the
partial directed acyclic graph space in hope to benefit from the resulting non-redundancy,
without noticeable effect. Our idea is to take advantage both from the (relative) simplicity of
the DAG space in terms of manipulation and fitness calculation and the unicity of the
equivalence classes’ representations.
One major difficulty when tackling the problem of structure learning with scoring methods
— evolutionary methods included — is to avoid the premature convergence of the
population to a local optimum. When using a genetic algorithm, local optima avoidance is
often ensured by preserving some genetic diversity. However, the latter often leads to slow
convergence and difficulties in tuning the GA's parameters.
To overcome these problems, we designed a general genetic algorithm based upon
dedicated operators: mutation, crossover but also a mutual information-driven repair

17

Evolutionary Methods for Learning Bayesian
Network Structures

Thierry Brouard, Alain Delaplace and Hubert Cardot
Université Francois-Rabelais de Tours - Laboratoire Informatique

France

1. Introduction
Bayesian networks (BN) are a family of probabilistic graphical models representing a joint
distribution for a set of random variables. Conditional dependencies between these
variables are symbolized by a Directed Acyclic Graph (DAG). Two classical approaches are
often encountered when automaticaly determining an appropriate graphical structure from
a database of cases,. The first one consists in the detection of (in)dependencies between the
variables (Spirtes et al., 2001; Cheng et al., 2002). The second one uses a scoring metric
(Chickering, 2002a). But neither the first nor the second are really satisfactory. The first one
uses statistical tests which are not reliable enough when in presence of small datasets. If
numerous variables are required, it is the computing time that highly increases. Even if
score-based methods require relatively less computation, their disadvantage lies in that the
searcher is often confronted with the presence of many local optima within the search space
of candidate DAGs. Finally, in the case of the automatic determination of the appropriate
graphical structure of a BN, it was shown that the search space is huge (Robinson, 1976) and
that is a NP-hard problem (Chickering et al., 1994) for a scoring approach.
In this field of research, evolutionary methods such as Genetic Algorithms – GAs (De Jong,
2006) have already been used in various forms (Larrañaga et al., 1996; Muruzábal & Cotta,
2004; Wong et al., 1999; Wong et al., 2002; Van Dijk et al., 2003b; Acid & De Campos, 2003).
Among these works, two lines of research are interesting. The first idea is to effectively
reduce the search space using the notion of equivalence class (Pearl, 1988). In (Van Dijk et
al., 2003b) for example the authors have tried to implement a genetic algorithm over the
partial directed acyclic graph space in hope to benefit from the resulting non-redundancy,
without noticeable effect. Our idea is to take advantage both from the (relative) simplicity of
the DAG space in terms of manipulation and fitness calculation and the unicity of the
equivalence classes’ representations.
One major difficulty when tackling the problem of structure learning with scoring methods
— evolutionary methods included — is to avoid the premature convergence of the
population to a local optimum. When using a genetic algorithm, local optima avoidance is
often ensured by preserving some genetic diversity. However, the latter often leads to slow
convergence and difficulties in tuning the GA's parameters.
To overcome these problems, we designed a general genetic algorithm based upon
dedicated operators: mutation, crossover but also a mutual information-driven repair

 Advances in Evolutionary Algorithms

336

operator which ensures the closeness of the previous. Various strategies were then tested in
order to find a balance between speed of convergence and avoidance of local optima. We
focus particularly onto two of these: a new adaptive scheme to the mutation rate on one
hand and sequential niching techniques on the other.
The remaining of the chapter is structured as follows: In the second section we will define
the problem, ended by a brief state of the art. In the third section, we will show how an
evolutionary approach is well suited to this kind of problem. After briefly recalling the
theory of genetic algorithms, we will describe the representation of a Bayesian network
adapted to genetic algorithms and all the needed operators necessary to take in account the
inherent constraints to Bayesian networks. In the fourth section the various strategies will
then be developed: Adaptive scheme to the mutation rate on one hand and niching
techniques on the other hand. The fifth section will describe the test protocol and the results
obtained compared to other classical algorithms. A study of the behaviour of the used
strategies will also be given. And finally, the sixth section will present future search in this
domain.

2. Problem settings and related work
2.1 Settings
A probabilistic graphical model can represent a whole of conditional relations within a field
X = {X1, X2,…, Xn} of random variables having each one their own field of definition.
Bayesian networks belong to a specific branch of the family of the probabilistic graphical
models and appear as a directed acryclic graph (DAG) symbolizing the various
dependences existing between the variables represented. An example of such a model is
given Fig. 1.

Fig. 1. Example of a Bayesian network.

Evolutionary Methods for Learning Bayesian Network Structures

337

A Bayesian network is denoted B = {G, θ}. Here, G = {X, E} is a directed acyclic graph whose
set of vertices X represents a set of random variables and its set of arcs E represents the
dependencies between these variables. The set of parameters θ holds the conditional
probabilities for each vertice, depending on the values taken by its parents in G. The
probability θi = {P(Xi|Pa(Xi))}, where Pa(Xi) are the parents of variable Xi in G. If Xi has no
parents, then Pa(Xi) = Ø.
The main convenience of Bayesian networks is that, given the representation of conditional
independences by its structure and the set θ of local conditional distributions, we can write
the global joint probability distribution as:

 ∏
=

=
n

k
kkn XPaXPXXP

1
1))((),...,((1)

2.2. Field of applications of Bayesian networks
Bayesian networks are encountered in various applications like filtering junk e-mail (Sahami
et al., 1998), assistance for blind people (Lacey & MacNamara, 2000), meteorology (Cano et
al., 2004), traffic accident reconstruction (Davis, 2003), image analysis for tactical computer-
aided decision (Fennell & Wishner, 1998), market research (Jaronski et al., 2001), user
assistance in sofware use (Horvitz et al. 1998), fraud detection (Ezawa & Schuermann, 1995),
human-machine interaction enhancement (Allanach et al., 2004).
The growing interest, since the mid-nineties, that has been shown by the industry for
Bayesian models is growing particularly through the widespread process of interaction
between man and machine to accelerate decisions. Moreover, it should be emphasized their
ability, in combination with Bayesian statistical methods (i.e. taking into account prior
probability distribution model) to combine the knowledge derived from the observed
domain with a prior knowledge of that domain. This knowledge, subjective, is frequently
the product of the advice of a human expert on the subject. This property is valuable when it
is known that in the practical application, data acquisition is not only costly in resources and
in time, but, unfortunately, often leads to a small knowledge database.

2.3 Training the structure of a Bayesian network
Learning Bayesian network can be broken up into two phases. As a first step, the network
structure is determined, either by an expert, either automatically from observations made
over the studied domain (most often). Finally, the set of parameters θ is defined here too by
an expert or by means of an algorithm.
The problem of learning structure can be compared to the exploration of the data, i.e. the
extraction of knowledge (in our case, network topology) from a database (Krause, 1999). It is
not always possible for experts to determine the structure of a Bayesian network. In some
cases, the determination of the model can therefore be a problem to solve. Thus, in (Yu et al.,
2002) learning the structure of a Bayesian network can be used to identify the most obvious
relationships between different genetic regulators in order to guide subsequent experiments.
The structure is then only a part of the solution to the problem but itself a solution.
Learning the structure of a Bayesian network may need to take into account the nature of
the data provided for learning (or just the nature of the modelled domain): continuous
variables— variables can take their values in a continuous space (Lauritzen & Wermuth,

 Advances in Evolutionary Algorithms

336

operator which ensures the closeness of the previous. Various strategies were then tested in
order to find a balance between speed of convergence and avoidance of local optima. We
focus particularly onto two of these: a new adaptive scheme to the mutation rate on one
hand and sequential niching techniques on the other.
The remaining of the chapter is structured as follows: In the second section we will define
the problem, ended by a brief state of the art. In the third section, we will show how an
evolutionary approach is well suited to this kind of problem. After briefly recalling the
theory of genetic algorithms, we will describe the representation of a Bayesian network
adapted to genetic algorithms and all the needed operators necessary to take in account the
inherent constraints to Bayesian networks. In the fourth section the various strategies will
then be developed: Adaptive scheme to the mutation rate on one hand and niching
techniques on the other hand. The fifth section will describe the test protocol and the results
obtained compared to other classical algorithms. A study of the behaviour of the used
strategies will also be given. And finally, the sixth section will present future search in this
domain.

2. Problem settings and related work
2.1 Settings
A probabilistic graphical model can represent a whole of conditional relations within a field
X = {X1, X2,…, Xn} of random variables having each one their own field of definition.
Bayesian networks belong to a specific branch of the family of the probabilistic graphical
models and appear as a directed acryclic graph (DAG) symbolizing the various
dependences existing between the variables represented. An example of such a model is
given Fig. 1.

Fig. 1. Example of a Bayesian network.

Evolutionary Methods for Learning Bayesian Network Structures

337

A Bayesian network is denoted B = {G, θ}. Here, G = {X, E} is a directed acyclic graph whose
set of vertices X represents a set of random variables and its set of arcs E represents the
dependencies between these variables. The set of parameters θ holds the conditional
probabilities for each vertice, depending on the values taken by its parents in G. The
probability θi = {P(Xi|Pa(Xi))}, where Pa(Xi) are the parents of variable Xi in G. If Xi has no
parents, then Pa(Xi) = Ø.
The main convenience of Bayesian networks is that, given the representation of conditional
independences by its structure and the set θ of local conditional distributions, we can write
the global joint probability distribution as:

 ∏
=

=
n

k
kkn XPaXPXXP

1
1))((),...,((1)

2.2. Field of applications of Bayesian networks
Bayesian networks are encountered in various applications like filtering junk e-mail (Sahami
et al., 1998), assistance for blind people (Lacey & MacNamara, 2000), meteorology (Cano et
al., 2004), traffic accident reconstruction (Davis, 2003), image analysis for tactical computer-
aided decision (Fennell & Wishner, 1998), market research (Jaronski et al., 2001), user
assistance in sofware use (Horvitz et al. 1998), fraud detection (Ezawa & Schuermann, 1995),
human-machine interaction enhancement (Allanach et al., 2004).
The growing interest, since the mid-nineties, that has been shown by the industry for
Bayesian models is growing particularly through the widespread process of interaction
between man and machine to accelerate decisions. Moreover, it should be emphasized their
ability, in combination with Bayesian statistical methods (i.e. taking into account prior
probability distribution model) to combine the knowledge derived from the observed
domain with a prior knowledge of that domain. This knowledge, subjective, is frequently
the product of the advice of a human expert on the subject. This property is valuable when it
is known that in the practical application, data acquisition is not only costly in resources and
in time, but, unfortunately, often leads to a small knowledge database.

2.3 Training the structure of a Bayesian network
Learning Bayesian network can be broken up into two phases. As a first step, the network
structure is determined, either by an expert, either automatically from observations made
over the studied domain (most often). Finally, the set of parameters θ is defined here too by
an expert or by means of an algorithm.
The problem of learning structure can be compared to the exploration of the data, i.e. the
extraction of knowledge (in our case, network topology) from a database (Krause, 1999). It is
not always possible for experts to determine the structure of a Bayesian network. In some
cases, the determination of the model can therefore be a problem to solve. Thus, in (Yu et al.,
2002) learning the structure of a Bayesian network can be used to identify the most obvious
relationships between different genetic regulators in order to guide subsequent experiments.
The structure is then only a part of the solution to the problem but itself a solution.
Learning the structure of a Bayesian network may need to take into account the nature of
the data provided for learning (or just the nature of the modelled domain): continuous
variables— variables can take their values in a continuous space (Lauritzen & Wermuth,

 Advances in Evolutionary Algorithms

338

1989; Lerner et al. 2001, Cobb & Shenoy, 2006) —, incomplete databases (Lauritzen, 1995;
Heckerman, 1995). We assume in this work that the variables modelled take their values in a
discrete set, they are fully observed, there is no latent variable i.e. there is no model in the
field of non-observable variable that is the parent of two or more observed variables.
The methods used for learning the structure of a Bayesian network can be divided into two
main groups:
1. Discovery of independence relationships: these methods consist in the testing

procedures on allowing conditional independence to find a structure;
2. Exploration and evaluation: these methods use a score to evaluate the ability of the

graph to recreate conditional independence within the model. A search algorithm will
build a solution based on the value of the score and will make it evolve iteratively.

Without being exhaustive, belonging to the statistical test-based methods it should be noted
first the algorithm PC, changing the algorithm SGS (Spirtes et al. 2001). In this approach,
considering a graph G (X, E, θ), two vertices Xi and Xj from X and a subset of vertices SXi,Xj ∈
X /{Xi,Xj}, the vertices Xi and Xj are connected by an arc in G if there is no SXi,Xj such as (Xi ⊥
Xj|SXi,Xj) where ⊥ denotes the relation of conditional independence. Based on an undirected
and fully connected graph, the detection of independence allows us to remove the
corresponding arcs until the obtention the skeleton of the expected DAG. Then followed two
distinct phases: i) detection and determination of the V-structures1 of the graph and ii)
orientation of the remaining arcs. The algorithm returns a directed graph belonging to the
Markov’s equivalence class of the sought model. The orientation of the arcs, except those of
V-structures detected, does not necessarily correspond to the real causality of this model. In
parallel to the algorithm PC, another algorithm, called IC (Inductive Causation) has been
developed by the team of Judea Pearl (Pearl & Verma, 1991). This algorithm is similar to the
algorithm PC, but starts with an empty structure and links couples of variables as soon as a
conditional dependency is detected (in the sense that there is no identified subset
conditioning SXi,Xj such as (Xi ⊥ Xj|SXi,Xj). The common disadvantage to the two algorithms
is the numerous tests required to detect conditional independences. Finally, the algorithm
BNPC — Bayes Net Power Constructor — (Cheng et al., 2002) uses a quantitative analysis of
mutual information between the variables in the studied field to build a structure G. Tests of
conditional independence are equivalent to determine a threshold for mutual information
(conditional or not) between couples of involved variables. In the latter case, a work
(Chickering & Meek, 2003) comes to question the reliability of BNPC.
Many algorithms, by conducting casual research, are quite similar. These algorithms
propose a gradual construction of the structure returned. However, we noticed some
remaining shortcomings. In the presence of an insufficient number of cases describing the
observed domain, the statistical tests of independence are not reliable enough. The number
of tests to be independently carried out to cover all the variables is huge. An alternative is
the use of a measure for evaluating the quality of a structure knowing the training database
in combination with a heuristic exploring a space of options.
Scoring methods use a score to evaluate the consistency of the current structure with the
probability distribution that generated the data. Thus, in (Cooper & Herskovits, 1992) a
formulation was proposed, under certain conditions, to compute the Bayesian score,

1 We call V-structure, or convergence, a triplet (x, y, z) such as y depends on x and z
(x→y←z).

Evolutionary Methods for Learning Bayesian Network Structures

339

(denoted BD and corresponds in fact to the marginal likelihood we are trying to maximize
through the determination of a structure G). In (Heckerman et al. 1995a) a variant of
Bayesian score based on an assumption of equivalency of likelihood is presented. BDe, the
resulting score, has the advantage of preventing a particular configuration of a variable Xi
and of its parents Pa(Xi) from being regarded as impossible. A variant, BDeu, initializes the
prior probability distributions of parameters according to a uniform law. In (Kayaalp &
Cooper, 2002) authors have shown that under certain conditions, this algorithm was able to
detect arcs corresponding to low-weighted conditional dependencies. AIC, the Akaike
Information Criterion (Akaike, 1970) tries to avoid the learning problems related to
likelihood alone. When penalizing the complexity of the structures evaluated, the AIC
criterion focuses the simplest model being the most expressive of extracted knowledge from
the base D. AIC is not consistent with the dimension of the model, with the result that other
alternatives have emerged, for example CAIC - Consistent AIC - (Bozdogan, 1987). If the
size of the database is very small, it is generally preferable to use AICC - Akaike Information
Corrected Criterion - (Hurvich & Tsai, 1989). The MDL criterion (Rissanen, 1978; Suzuki,
1996) incorporates a penalizing scheme for the structures which are too complex. It takes
into account the complexity of the model and the complexity of encoding data related to this
model. Finally, the BIC criterion (Bayesian Information Criterion), proposed in (Schwartz,
1978), is similar to the AIC criterion. Properties such as equivalence, breakdown-ability of
the score and consistency are introduced. Due to its tendency to return the simplest models
(Bouckaert, 1994), BIC is a metric evaluation as widely used as the BDeu score.
To efficiently go through the huge space of solutions, algorithms use heuristics. We can
found in the literature deterministic ones like K2 (Cooper & Herskovits, 1992), GES
(Chickering, 2002b), KES (Nielsen et al., 2003) or stochastic ones like an application of Monte
Carlo Markov Chains methods (Madigan & York, 1995) for example. We particularly notice
evolutionary methods applied to the training of a Bayesian network structure. Initial work is
presented in (Larrañaga et al., 1996; Etxeberria et al., 1997). In this work, the structure is
build using a genetic algorithm and with or without the knowledge of a topologically
correct order on the variables of the network. In (Larrañaga et al., 1996) an evolutionary
algorithm is used to conduct research over all topologic orders and then the K2 algorithm is
used to train the model. Cotta and Muruzábal (Cotta & Muruzábal, 2002) emphasize the use
of phenotypic operators instead of genotypic ones. The first one takes into account the
expression of the individual’s allele while the latter uses a purely random selection. In
(Wong et al., 1999), structures are learned using the MDL criterion. Their algorithm, named
MDLEP, does not require a crossover operator but is based on a succession of mutation
operators. An advanced version of MDLEP named HEP (Hybrid Evolutionary
Programming) was proposed (Wong et al., 2002). Based on a hybrid technique, it limits the
search space by determining in advance a network skeleton by conducting a series of low-
order tests of independence: if X and Y are independent variables, the arcs X→Y and X←Y
can not be added by the mutation operator. The algorithm forbids the creation of a cycle
during and after the mutation. In (Van Dijk et al., 2003a, Van Dijk et al., 2003b, Van Dijk &
Thierens, 2004) a similar method was proposed. The chromosome contains all the arcs of the
network, and three alleles are defined: none, X→Y and X←Y. The algorithm acts as Wong’s
one (Wong et al., 2002) but only recombination and repair are used to make the individuals
evolve. The results presented in (Van Dijk & Thierens, 2004) are slightly better than these

 Advances in Evolutionary Algorithms

338

1989; Lerner et al. 2001, Cobb & Shenoy, 2006) —, incomplete databases (Lauritzen, 1995;
Heckerman, 1995). We assume in this work that the variables modelled take their values in a
discrete set, they are fully observed, there is no latent variable i.e. there is no model in the
field of non-observable variable that is the parent of two or more observed variables.
The methods used for learning the structure of a Bayesian network can be divided into two
main groups:
1. Discovery of independence relationships: these methods consist in the testing

procedures on allowing conditional independence to find a structure;
2. Exploration and evaluation: these methods use a score to evaluate the ability of the

graph to recreate conditional independence within the model. A search algorithm will
build a solution based on the value of the score and will make it evolve iteratively.

Without being exhaustive, belonging to the statistical test-based methods it should be noted
first the algorithm PC, changing the algorithm SGS (Spirtes et al. 2001). In this approach,
considering a graph G (X, E, θ), two vertices Xi and Xj from X and a subset of vertices SXi,Xj ∈
X /{Xi,Xj}, the vertices Xi and Xj are connected by an arc in G if there is no SXi,Xj such as (Xi ⊥
Xj|SXi,Xj) where ⊥ denotes the relation of conditional independence. Based on an undirected
and fully connected graph, the detection of independence allows us to remove the
corresponding arcs until the obtention the skeleton of the expected DAG. Then followed two
distinct phases: i) detection and determination of the V-structures1 of the graph and ii)
orientation of the remaining arcs. The algorithm returns a directed graph belonging to the
Markov’s equivalence class of the sought model. The orientation of the arcs, except those of
V-structures detected, does not necessarily correspond to the real causality of this model. In
parallel to the algorithm PC, another algorithm, called IC (Inductive Causation) has been
developed by the team of Judea Pearl (Pearl & Verma, 1991). This algorithm is similar to the
algorithm PC, but starts with an empty structure and links couples of variables as soon as a
conditional dependency is detected (in the sense that there is no identified subset
conditioning SXi,Xj such as (Xi ⊥ Xj|SXi,Xj). The common disadvantage to the two algorithms
is the numerous tests required to detect conditional independences. Finally, the algorithm
BNPC — Bayes Net Power Constructor — (Cheng et al., 2002) uses a quantitative analysis of
mutual information between the variables in the studied field to build a structure G. Tests of
conditional independence are equivalent to determine a threshold for mutual information
(conditional or not) between couples of involved variables. In the latter case, a work
(Chickering & Meek, 2003) comes to question the reliability of BNPC.
Many algorithms, by conducting casual research, are quite similar. These algorithms
propose a gradual construction of the structure returned. However, we noticed some
remaining shortcomings. In the presence of an insufficient number of cases describing the
observed domain, the statistical tests of independence are not reliable enough. The number
of tests to be independently carried out to cover all the variables is huge. An alternative is
the use of a measure for evaluating the quality of a structure knowing the training database
in combination with a heuristic exploring a space of options.
Scoring methods use a score to evaluate the consistency of the current structure with the
probability distribution that generated the data. Thus, in (Cooper & Herskovits, 1992) a
formulation was proposed, under certain conditions, to compute the Bayesian score,

1 We call V-structure, or convergence, a triplet (x, y, z) such as y depends on x and z
(x→y←z).

Evolutionary Methods for Learning Bayesian Network Structures

339

(denoted BD and corresponds in fact to the marginal likelihood we are trying to maximize
through the determination of a structure G). In (Heckerman et al. 1995a) a variant of
Bayesian score based on an assumption of equivalency of likelihood is presented. BDe, the
resulting score, has the advantage of preventing a particular configuration of a variable Xi
and of its parents Pa(Xi) from being regarded as impossible. A variant, BDeu, initializes the
prior probability distributions of parameters according to a uniform law. In (Kayaalp &
Cooper, 2002) authors have shown that under certain conditions, this algorithm was able to
detect arcs corresponding to low-weighted conditional dependencies. AIC, the Akaike
Information Criterion (Akaike, 1970) tries to avoid the learning problems related to
likelihood alone. When penalizing the complexity of the structures evaluated, the AIC
criterion focuses the simplest model being the most expressive of extracted knowledge from
the base D. AIC is not consistent with the dimension of the model, with the result that other
alternatives have emerged, for example CAIC - Consistent AIC - (Bozdogan, 1987). If the
size of the database is very small, it is generally preferable to use AICC - Akaike Information
Corrected Criterion - (Hurvich & Tsai, 1989). The MDL criterion (Rissanen, 1978; Suzuki,
1996) incorporates a penalizing scheme for the structures which are too complex. It takes
into account the complexity of the model and the complexity of encoding data related to this
model. Finally, the BIC criterion (Bayesian Information Criterion), proposed in (Schwartz,
1978), is similar to the AIC criterion. Properties such as equivalence, breakdown-ability of
the score and consistency are introduced. Due to its tendency to return the simplest models
(Bouckaert, 1994), BIC is a metric evaluation as widely used as the BDeu score.
To efficiently go through the huge space of solutions, algorithms use heuristics. We can
found in the literature deterministic ones like K2 (Cooper & Herskovits, 1992), GES
(Chickering, 2002b), KES (Nielsen et al., 2003) or stochastic ones like an application of Monte
Carlo Markov Chains methods (Madigan & York, 1995) for example. We particularly notice
evolutionary methods applied to the training of a Bayesian network structure. Initial work is
presented in (Larrañaga et al., 1996; Etxeberria et al., 1997). In this work, the structure is
build using a genetic algorithm and with or without the knowledge of a topologically
correct order on the variables of the network. In (Larrañaga et al., 1996) an evolutionary
algorithm is used to conduct research over all topologic orders and then the K2 algorithm is
used to train the model. Cotta and Muruzábal (Cotta & Muruzábal, 2002) emphasize the use
of phenotypic operators instead of genotypic ones. The first one takes into account the
expression of the individual’s allele while the latter uses a purely random selection. In
(Wong et al., 1999), structures are learned using the MDL criterion. Their algorithm, named
MDLEP, does not require a crossover operator but is based on a succession of mutation
operators. An advanced version of MDLEP named HEP (Hybrid Evolutionary
Programming) was proposed (Wong et al., 2002). Based on a hybrid technique, it limits the
search space by determining in advance a network skeleton by conducting a series of low-
order tests of independence: if X and Y are independent variables, the arcs X→Y and X←Y
can not be added by the mutation operator. The algorithm forbids the creation of a cycle
during and after the mutation. In (Van Dijk et al., 2003a, Van Dijk et al., 2003b, Van Dijk &
Thierens, 2004) a similar method was proposed. The chromosome contains all the arcs of the
network, and three alleles are defined: none, X→Y and X←Y. The algorithm acts as Wong’s
one (Wong et al., 2002) but only recombination and repair are used to make the individuals
evolve. The results presented in (Van Dijk & Thierens, 2004) are slightly better than these

 Advances in Evolutionary Algorithms

340

obtained by HEP. A search, directly done in the equivalence graph space, is presented in
(Muruzábal & Cotta, 2004, Muruzábal & Cotta, 2007). Another approach, where the
algorithm works in the limited partially directed acyclic graph is reported in (Acid & De
Campos, 2003). These are a special form of PDAG where many of these could fit the same
equivalence class. Finally, approaches such as Estimation of Distribution Algorithms (EDA)
are applied in (Mühlenbein & Paab, 1996). In (Blanco et al., 2003), the authors have
implemented two approaches (UMDA and PBIL) to search structures over the PDAG space.
These algorithms were applied to the distribution of arcs in the adjacency matrix of the
expected structure. The results appear to support the approach PBIL. In (Romero et al.,
2004), two approaches (UMDA and MIMIC) have been applied to the topological orders
space. Individuals (i.e. topological orders candidates) are themselves evaluated with the
Bayesian scoring.

2.5 Our contribution
For the training of the structure of a Bayesian network with a score function and without
prior knowledge like the topology of the structure sought, one often use a greedy search
algorithm over the space of structures or in the equivalence classes. But these methods have
the disadvantage of being frequently trapped into a solution corresponding to a local
optimum of the evaluation function. This is due to the presence of many local optima in
space solutions. The smaller the training base is the numerous the optima are. The main
reason for a premature convergence is that a greedy algorithm considers, at each moment,
only one solution. The search stops if there is no better evaluated solution around a given
point. The most widespread technique to avoid this is to use multiple initialization of the
greedy algorithm, from very different initial structures and keep the best solution obtained.
This technique has the disadvantage to dramatically increase the computing time but also
offer no guarantee of obtaining x distinct solutions for x different initialization of the
algorithm.
Evolutionary algorithms have two major advantages when processing a problem with many
local optima. On the one hand, they allow us to maintain a population of solutions, i.e.
several points in the space of solutions. With the maintenance and development of
alternatives it becomes possible to reduce the chances of being trapped in a single locally
optimum. On the other hand, stochastic behaviour of these methods through the mutation
operator can amplify the robustness to local optima attraction (conditionally on the use of
parameters and adapted operators) by allowing an exploration of the solutions area which is
no longer limited to the immediate neighbourhood of individuals in the population.

3. Genetic algorithm design
Genetic algorithms are a family of computational models inspired by Darwin’s theory of
Evolution. Genetic algorithms encode potential solutions to a problem in a chromosome-like
data structure, exploring and exploiting the search space using dedicated operators. Their
actual form is mainly issued from the work of J.Holland (Holland, 1992) in which we can
find the general scheme of a genetic algorithm (see Fig. 2) called canonical GA. Throughout
the years, different strategies and operators have been developed in order to perform an
efficient search over the considered space of individuals: selection, mutation and crossing
operators, etc.

Evolutionary Methods for Learning Bayesian Network Structures

341

 /* Initialization*/
t ← 0;
Randomly and uniformly generate an initial population P0 of λ individuals and
evaluate them using a fitness function ƒ
/* Evolution */
Select Pt individuals for the reproduction
Build new individuals by application of the crossing operator on the
beforehand selected individuals
Apply a mutation operator to the new individuals: individuals obtained are
affected to the new population Pt+1
/* Evaluation */
Evaluate the individuals of Pt+1 using ƒ
t ← t + 1
/* Stop */
If a definite criterion is met then stop else start again the evolution phase

Fig. 2. Holland’s canonical genetic algorithm (Holland, 1992)

Applied to the search for Bayesian networks structures, genetic algorithm pose two
problems:
• The constraint on the absence of circuits in the structures creates a strong link between

the different genes — and alleles — of a person, regardless of the chosen representation.
Ideally, operators should reflect this property;

• Often, a heuristic searching over the space of solutions (genetic algorithm, greedy
algorithm and so on.) finds itself trapped in a local optimum. This makes it difficult to
find a balance between a technique able to avoid this problem, with the risk of
overlooking many quality solutions, and a more careful exploration with a good chance
to compute only a locally-optimal solution.

If the first item involves essentially the design of a thoughtful and evolutionary approach to
the problem, the second point characterizes an issue relating to the multimodal
optimization. For this kind of problem, there is a particular methodology: the niching.
We now proceed to a description of a genetic algorithm adapted to find a good structure for
a Bayesian network.

3.1 Representation
As our search is performed over the space of directed acyclic graphs, each invidual is
represented by an adjacency matrix. Denoting with N the number of variables in the
domain, an individual is thus described by an N×N binary matrix Adjij where one of its
coefficients aij is equal to 1 if an oriented arc going from Xi to Xj in G exists.
Whereas the traditional genetic algorithm considers chromosomes defined by a binary
alphabet, we chose to model the Bayesian network structure by a chain of N genes (where N
is the number of variables in the network). Each gene represents one row of the adjacency
matrix, that’s to say each gene corresponds to the set of parents of one variable. Although
this non-binary encoding is unusual in the domain of structure learning, it is not an
uncommon practice among genetic algorithms. In fact, this approach turns out to be
especially practical for the manipulation and evaluation of candidate solutions.

 Advances in Evolutionary Algorithms

340

obtained by HEP. A search, directly done in the equivalence graph space, is presented in
(Muruzábal & Cotta, 2004, Muruzábal & Cotta, 2007). Another approach, where the
algorithm works in the limited partially directed acyclic graph is reported in (Acid & De
Campos, 2003). These are a special form of PDAG where many of these could fit the same
equivalence class. Finally, approaches such as Estimation of Distribution Algorithms (EDA)
are applied in (Mühlenbein & Paab, 1996). In (Blanco et al., 2003), the authors have
implemented two approaches (UMDA and PBIL) to search structures over the PDAG space.
These algorithms were applied to the distribution of arcs in the adjacency matrix of the
expected structure. The results appear to support the approach PBIL. In (Romero et al.,
2004), two approaches (UMDA and MIMIC) have been applied to the topological orders
space. Individuals (i.e. topological orders candidates) are themselves evaluated with the
Bayesian scoring.

2.5 Our contribution
For the training of the structure of a Bayesian network with a score function and without
prior knowledge like the topology of the structure sought, one often use a greedy search
algorithm over the space of structures or in the equivalence classes. But these methods have
the disadvantage of being frequently trapped into a solution corresponding to a local
optimum of the evaluation function. This is due to the presence of many local optima in
space solutions. The smaller the training base is the numerous the optima are. The main
reason for a premature convergence is that a greedy algorithm considers, at each moment,
only one solution. The search stops if there is no better evaluated solution around a given
point. The most widespread technique to avoid this is to use multiple initialization of the
greedy algorithm, from very different initial structures and keep the best solution obtained.
This technique has the disadvantage to dramatically increase the computing time but also
offer no guarantee of obtaining x distinct solutions for x different initialization of the
algorithm.
Evolutionary algorithms have two major advantages when processing a problem with many
local optima. On the one hand, they allow us to maintain a population of solutions, i.e.
several points in the space of solutions. With the maintenance and development of
alternatives it becomes possible to reduce the chances of being trapped in a single locally
optimum. On the other hand, stochastic behaviour of these methods through the mutation
operator can amplify the robustness to local optima attraction (conditionally on the use of
parameters and adapted operators) by allowing an exploration of the solutions area which is
no longer limited to the immediate neighbourhood of individuals in the population.

3. Genetic algorithm design
Genetic algorithms are a family of computational models inspired by Darwin’s theory of
Evolution. Genetic algorithms encode potential solutions to a problem in a chromosome-like
data structure, exploring and exploiting the search space using dedicated operators. Their
actual form is mainly issued from the work of J.Holland (Holland, 1992) in which we can
find the general scheme of a genetic algorithm (see Fig. 2) called canonical GA. Throughout
the years, different strategies and operators have been developed in order to perform an
efficient search over the considered space of individuals: selection, mutation and crossing
operators, etc.

Evolutionary Methods for Learning Bayesian Network Structures

341

 /* Initialization*/
t ← 0;
Randomly and uniformly generate an initial population P0 of λ individuals and
evaluate them using a fitness function ƒ
/* Evolution */
Select Pt individuals for the reproduction
Build new individuals by application of the crossing operator on the
beforehand selected individuals
Apply a mutation operator to the new individuals: individuals obtained are
affected to the new population Pt+1
/* Evaluation */
Evaluate the individuals of Pt+1 using ƒ
t ← t + 1
/* Stop */
If a definite criterion is met then stop else start again the evolution phase

Fig. 2. Holland’s canonical genetic algorithm (Holland, 1992)

Applied to the search for Bayesian networks structures, genetic algorithm pose two
problems:
• The constraint on the absence of circuits in the structures creates a strong link between

the different genes — and alleles — of a person, regardless of the chosen representation.
Ideally, operators should reflect this property;

• Often, a heuristic searching over the space of solutions (genetic algorithm, greedy
algorithm and so on.) finds itself trapped in a local optimum. This makes it difficult to
find a balance between a technique able to avoid this problem, with the risk of
overlooking many quality solutions, and a more careful exploration with a good chance
to compute only a locally-optimal solution.

If the first item involves essentially the design of a thoughtful and evolutionary approach to
the problem, the second point characterizes an issue relating to the multimodal
optimization. For this kind of problem, there is a particular methodology: the niching.
We now proceed to a description of a genetic algorithm adapted to find a good structure for
a Bayesian network.

3.1 Representation
As our search is performed over the space of directed acyclic graphs, each invidual is
represented by an adjacency matrix. Denoting with N the number of variables in the
domain, an individual is thus described by an N×N binary matrix Adjij where one of its
coefficients aij is equal to 1 if an oriented arc going from Xi to Xj in G exists.
Whereas the traditional genetic algorithm considers chromosomes defined by a binary
alphabet, we chose to model the Bayesian network structure by a chain of N genes (where N
is the number of variables in the network). Each gene represents one row of the adjacency
matrix, that’s to say each gene corresponds to the set of parents of one variable. Although
this non-binary encoding is unusual in the domain of structure learning, it is not an
uncommon practice among genetic algorithms. In fact, this approach turns out to be
especially practical for the manipulation and evaluation of candidate solutions.

 Advances in Evolutionary Algorithms

342

3.2 Fitness function
We chose to use the Bayesian Information Criterion (BIC) score as the fitness function for
our algorithm:

 ())log()(
2
1),(log),(NBDimBDLDBS MAP

BIC ×−= θ (2)

where D represents the training data, θMAP the MAP-estimated parameters, and Dim() is the
dimension function defined by Eq. 3:

 ∏∑
∈=

×−=
)(1

)1()(
ik XPaX
k

n

i
i rrBDim (3)

where ri is the number of possible values for Xi. The fitness function ƒ(individual) can be
written as in Eq. 4:

 ∑
=

=
n

k
kkk XPaXfindividualf

1

))(,()((4)

where ƒk is the local BIC score computed over the family of variable Xk.
The genetic algorithm takes advantage of the breakdown of the evaluation function and
evaluates new individuals from their inception, through crossing, mutation or repair. The
impact of any change on local an individual's genome shall be immediately passed on to the
phenotype of it through the computing of the local score. The direct consequence is that the
evaluation phase of the generated population took actually place for each individual,
depending on the changes made, as a result of changes endured by him.

3.3 Seting up the population
We choose to initialize the population of structures by the various trees (depending on the
chosen root vertice) returned by the MWST algorithm. Although these n trees are Markov-
equivalent, the initialization can generate individuals with relevant characteristics.
Moreover, since early generations, the combined action of the crossover and the mutation
operators provides various and good quality individuals in order to significantly improve
the convergence time. We use the undirected tree returned by the algorithm: each individual
of the population is initialized by a tree directed from a randomly-chosen root. This
mechanism introduces some diversity in the population.

3.4 Selection of the individuals
We use a rank selection where each one of the λ individuals in the population is selected
with a probability equal to:

)1(

)(12)(
+×

−+
×=

λλ
λ individualrankindividualPselect (5)

This strategy allows promote individuals which best suit the problem while leaving the
weakest one the opportunity to participate to the evolution process. If the major drawback
of this method is to require a systematic classification of individuals in advance, the cost is
negligible. Other common strategies have been evaluated without success: the roulette

Evolutionary Methods for Learning Bayesian Network Structures

343

wheel (prematured convergence), the tournament (the selection pressure remained too
strong) and the fitness scaling (Forrest, 1985; Kreinovich et al., 1993). The latter aims to allow
in the first instance to prevent the phenomenon of predominance of "super individuals" in
the early generations while ensuring when the population converges, that the mid-quality
individuals did not hamper the reproduction of the best ones.

3.5 Repair operator
In order to preserve the closeness of our operators over the space of directed acyclic graphs,
we need to design a repair operator to convert those invalid graphs (typically, cyclic
directed graphs) into valid directed acyclic graphs. When one cycle is detected within a
graph, the operator suppresses the one arc in the cycle bearing the weakest mutual
information. The mutual information between two variables is defined as in (Chow & Liu,
1968):

 ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ba xx ba

abab
BA NN

NN
N

NXXW
,

log),((6)

Where the mutual information W(XA,XB) between two variables XA and XB is calculated
according to the number of times Nab that XA=a and XB=b, Na the number of times XA=a and
so on. The mutual information is computed once for a given database. It may happen that an
individual has several circuits, as a result of a mutation that generated and/or inverted
several arcs. In this case, the repair is iteratively performed, starting with deleting the
shortest circuit until the entire circuit has been deleted.

3.6 Crossover operator
A first attempt was to create a one-point crossover operator. At least, the operator used has
been developed from the model of (Vekaria & Clack, 1998). This operator is used to generate
two individuals with the particularity of defining the crossing point as a function of the
quality of the individual. The form taken by the criterion (BIC and, in general, by any
decomposable score) makes it possible to assign a local score to the set {Xi, Pa(Xi)}. Using
these different local scores we can therefore choose to generate an individual which received
the best elements of his ancestors. This operation is shown Fig. 3.
This generation can be performed only if a DAG is produced (the operator is closed). In our
experiments, Pcross, the probability that an individual is crossed with another is set to 0.8.

3.7 Mutation operator
Each node of one individual has a Pmute probability to either lose or gain one parent or to see
one of its incoming arcs reverted (i.e. reversing the relationship with one parent).

3.8 Other parameters
The five best individuals from the previous population are automatically transferred to the
next one. The rest of the population at t+1 is composed of the S−5 best children where S is
the size of the population.
Now, after describing our basic GA, we will present how it can be improved by i) a specific
adaptive mutation scheme and ii) an exploration strategy: the niching.

 Advances in Evolutionary Algorithms

342

3.2 Fitness function
We chose to use the Bayesian Information Criterion (BIC) score as the fitness function for
our algorithm:

 ())log()(
2
1),(log),(NBDimBDLDBS MAP

BIC ×−= θ (2)

where D represents the training data, θMAP the MAP-estimated parameters, and Dim() is the
dimension function defined by Eq. 3:

 ∏∑
∈=

×−=
)(1

)1()(
ik XPaX
k

n

i
i rrBDim (3)

where ri is the number of possible values for Xi. The fitness function ƒ(individual) can be
written as in Eq. 4:

 ∑
=

=
n

k
kkk XPaXfindividualf

1

))(,()((4)

where ƒk is the local BIC score computed over the family of variable Xk.
The genetic algorithm takes advantage of the breakdown of the evaluation function and
evaluates new individuals from their inception, through crossing, mutation or repair. The
impact of any change on local an individual's genome shall be immediately passed on to the
phenotype of it through the computing of the local score. The direct consequence is that the
evaluation phase of the generated population took actually place for each individual,
depending on the changes made, as a result of changes endured by him.

3.3 Seting up the population
We choose to initialize the population of structures by the various trees (depending on the
chosen root vertice) returned by the MWST algorithm. Although these n trees are Markov-
equivalent, the initialization can generate individuals with relevant characteristics.
Moreover, since early generations, the combined action of the crossover and the mutation
operators provides various and good quality individuals in order to significantly improve
the convergence time. We use the undirected tree returned by the algorithm: each individual
of the population is initialized by a tree directed from a randomly-chosen root. This
mechanism introduces some diversity in the population.

3.4 Selection of the individuals
We use a rank selection where each one of the λ individuals in the population is selected
with a probability equal to:

)1(

)(12)(
+×

−+
×=

λλ
λ individualrankindividualPselect (5)

This strategy allows promote individuals which best suit the problem while leaving the
weakest one the opportunity to participate to the evolution process. If the major drawback
of this method is to require a systematic classification of individuals in advance, the cost is
negligible. Other common strategies have been evaluated without success: the roulette

Evolutionary Methods for Learning Bayesian Network Structures

343

wheel (prematured convergence), the tournament (the selection pressure remained too
strong) and the fitness scaling (Forrest, 1985; Kreinovich et al., 1993). The latter aims to allow
in the first instance to prevent the phenomenon of predominance of "super individuals" in
the early generations while ensuring when the population converges, that the mid-quality
individuals did not hamper the reproduction of the best ones.

3.5 Repair operator
In order to preserve the closeness of our operators over the space of directed acyclic graphs,
we need to design a repair operator to convert those invalid graphs (typically, cyclic
directed graphs) into valid directed acyclic graphs. When one cycle is detected within a
graph, the operator suppresses the one arc in the cycle bearing the weakest mutual
information. The mutual information between two variables is defined as in (Chow & Liu,
1968):

 ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ba xx ba

abab
BA NN

NN
N

NXXW
,

log),((6)

Where the mutual information W(XA,XB) between two variables XA and XB is calculated
according to the number of times Nab that XA=a and XB=b, Na the number of times XA=a and
so on. The mutual information is computed once for a given database. It may happen that an
individual has several circuits, as a result of a mutation that generated and/or inverted
several arcs. In this case, the repair is iteratively performed, starting with deleting the
shortest circuit until the entire circuit has been deleted.

3.6 Crossover operator
A first attempt was to create a one-point crossover operator. At least, the operator used has
been developed from the model of (Vekaria & Clack, 1998). This operator is used to generate
two individuals with the particularity of defining the crossing point as a function of the
quality of the individual. The form taken by the criterion (BIC and, in general, by any
decomposable score) makes it possible to assign a local score to the set {Xi, Pa(Xi)}. Using
these different local scores we can therefore choose to generate an individual which received
the best elements of his ancestors. This operation is shown Fig. 3.
This generation can be performed only if a DAG is produced (the operator is closed). In our
experiments, Pcross, the probability that an individual is crossed with another is set to 0.8.

3.7 Mutation operator
Each node of one individual has a Pmute probability to either lose or gain one parent or to see
one of its incoming arcs reverted (i.e. reversing the relationship with one parent).

3.8 Other parameters
The five best individuals from the previous population are automatically transferred to the
next one. The rest of the population at t+1 is composed of the S−5 best children where S is
the size of the population.
Now, after describing our basic GA, we will present how it can be improved by i) a specific
adaptive mutation scheme and ii) an exploration strategy: the niching.

 Advances in Evolutionary Algorithms

344

Fig. 3. The crossover operator and the transformation it performs over two DAGs.

4. Strategies
The many parameters of a GA are usually fixed by the user and, unfortunately, usually lead
to sub-optimal choices. As the amount of tests required to evaluate all the conceivable sets of
parameters will be eventually exponential, a natural approach consists in letting the
different parameters evolve along with the algorithm. (Eiben et al., 1999) defines a
terminology for self-adaptiveness which can be resumed as follows:
• Deterministic Parameter Control: the parameters are modified by a deterministic rule;
• Adaptive Parameter Control: consists in modifying the parameters using feedback from

the search;
• Self-adaptive Parameter Control: parameters are encoded in the individuals and evolve

along.
We now present three techniques. The first one, an adaptive parameter control, aims at
managing the mutation rate. The second one, an evolutionary method tries to avoid local

Evolutionary Methods for Learning Bayesian Network Structures

345

optima using a penalizing scheme. Finaly, the third one, another evolutionary method,
makes many populations evolve granting sometimes a few individuals to go from one
population to another.

4.1 Self-adaptive scheme of the mutation rate
As for the mutation rate, the usual approach consists in starting with a high mutation rate
and reducing it as the population converges. Indeed, as the population clusters near one
optimum, high mutation rates tend to be degrading. In this case, a self-adaptive strategy
would naturally decrease the mutation rate of individuals so that they would be more likely
to undergo the minor changes required to reach the optimum.
However, applying this kind of policy can do more harm than good. When there are many
local optima, as in our case, we can be confronted with the bowl effect described in (Glickman
& Sycara, 2000). That is: when the population is clustered around a local optimum and the
mutation rate is too low to allow at least one individual to escape this local optimum, a
strictly decrementing adaptive policy will only trap the population around this optimum.
Other strategies have been proposed which allow the individual mutation rates to either
increase or decrease, such as in (Thierens, 2002). There, the mutation step of one individual
induces three differently rated mutations: greater, equal and smaller than the individual’s
actual rate. The issued individual and its mutation rate are chosen accordingly to the
qualitative results of the three mutations. Unfortunately, as the mutation process is the most
costly operation in our algorithm, we obviously cannot choose such a strategy. Therefore,
we designed two adaptive policies.
The first one is given Fig. 4:

 At each mutation process, given one individual I, its fitness value ƒ(I) and its
mutation rate Pm,ω < 1, γ > 1:

1. Mutate individual I according to its mutation rate Pm: (I,Pm)→(I')
2. If ƒ (I') > ƒ (I): allocate mutation rate ω ×Pm to individual I' and γ ×Pm

to individual I,
3. If ƒ (I') ≤ƒ (I): allocate mutation rate γ ×Pm to individual I' and ω×Pm to

individual I

Fig. 4. Basic adaptive mutation rate scheme.

This principle is based on the fact that, during an evolution-based process, the less fit
individuals have the best chances to produce new, fitter individuals. Our scheme is based on
the idea of maximizing the mutation rate of less fit individuals while reducing the mutation
rate of the fitter. However, in order to control the computational complexity of the algorithm
as well as to leave to the best individuals the possibility to explore their neighbourhood, we
define a maximum threshold Mutemax and a minimum threshold Mutemin for the mutation
rate of all individuals. Since we also apply an elitist strategy, we added a deterministic rule
in order to control the mutation rate of the best individuals: At the end of each iteration
multipliy the mutation rates of the best D individuals by ω where D is the degree of our
elitist policy.
An improvement of this approach is now proposed. Indeed, the computed probability
concerns all the possible mutation operations. But, perharps some could be benefits, others
none. So we propose to conduct the search over the space of solutions by taking into account
information on the quality of later searchs. Our goal is to define a probability distribution

 Advances in Evolutionary Algorithms

344

Fig. 3. The crossover operator and the transformation it performs over two DAGs.

4. Strategies
The many parameters of a GA are usually fixed by the user and, unfortunately, usually lead
to sub-optimal choices. As the amount of tests required to evaluate all the conceivable sets of
parameters will be eventually exponential, a natural approach consists in letting the
different parameters evolve along with the algorithm. (Eiben et al., 1999) defines a
terminology for self-adaptiveness which can be resumed as follows:
• Deterministic Parameter Control: the parameters are modified by a deterministic rule;
• Adaptive Parameter Control: consists in modifying the parameters using feedback from

the search;
• Self-adaptive Parameter Control: parameters are encoded in the individuals and evolve

along.
We now present three techniques. The first one, an adaptive parameter control, aims at
managing the mutation rate. The second one, an evolutionary method tries to avoid local

Evolutionary Methods for Learning Bayesian Network Structures

345

optima using a penalizing scheme. Finaly, the third one, another evolutionary method,
makes many populations evolve granting sometimes a few individuals to go from one
population to another.

4.1 Self-adaptive scheme of the mutation rate
As for the mutation rate, the usual approach consists in starting with a high mutation rate
and reducing it as the population converges. Indeed, as the population clusters near one
optimum, high mutation rates tend to be degrading. In this case, a self-adaptive strategy
would naturally decrease the mutation rate of individuals so that they would be more likely
to undergo the minor changes required to reach the optimum.
However, applying this kind of policy can do more harm than good. When there are many
local optima, as in our case, we can be confronted with the bowl effect described in (Glickman
& Sycara, 2000). That is: when the population is clustered around a local optimum and the
mutation rate is too low to allow at least one individual to escape this local optimum, a
strictly decrementing adaptive policy will only trap the population around this optimum.
Other strategies have been proposed which allow the individual mutation rates to either
increase or decrease, such as in (Thierens, 2002). There, the mutation step of one individual
induces three differently rated mutations: greater, equal and smaller than the individual’s
actual rate. The issued individual and its mutation rate are chosen accordingly to the
qualitative results of the three mutations. Unfortunately, as the mutation process is the most
costly operation in our algorithm, we obviously cannot choose such a strategy. Therefore,
we designed two adaptive policies.
The first one is given Fig. 4:

 At each mutation process, given one individual I, its fitness value ƒ(I) and its
mutation rate Pm,ω < 1, γ > 1:

1. Mutate individual I according to its mutation rate Pm: (I,Pm)→(I')
2. If ƒ (I') > ƒ (I): allocate mutation rate ω ×Pm to individual I' and γ ×Pm

to individual I,
3. If ƒ (I') ≤ƒ (I): allocate mutation rate γ ×Pm to individual I' and ω×Pm to

individual I

Fig. 4. Basic adaptive mutation rate scheme.

This principle is based on the fact that, during an evolution-based process, the less fit
individuals have the best chances to produce new, fitter individuals. Our scheme is based on
the idea of maximizing the mutation rate of less fit individuals while reducing the mutation
rate of the fitter. However, in order to control the computational complexity of the algorithm
as well as to leave to the best individuals the possibility to explore their neighbourhood, we
define a maximum threshold Mutemax and a minimum threshold Mutemin for the mutation
rate of all individuals. Since we also apply an elitist strategy, we added a deterministic rule
in order to control the mutation rate of the best individuals: At the end of each iteration
multipliy the mutation rates of the best D individuals by ω where D is the degree of our
elitist policy.
An improvement of this approach is now proposed. Indeed, the computed probability
concerns all the possible mutation operations. But, perharps some could be benefits, others
none. So we propose to conduct the search over the space of solutions by taking into account
information on the quality of later searchs. Our goal is to define a probability distribution

 Advances in Evolutionary Algorithms

346

which drives the choice of the mutation operation. This distribution should reflect the
performance of the mutation operations being applied over the individuals during the
previous iterations of the search.
Let us define P(i,j,opmute) the probability that the coefficient aij of the adjacency matrix is
modified by the mutation operation opmute. The mutation decays according to the choice of
i, j and opmute. We can simplify the density of probability by conditionning a subset of
{i,j,opmute} by its complementary; this latter being activated according to a static distribution
of probability. After studying all the possible combination, we have chosen to design a
process to control P(i|opmute,j). This one influences the choice of the source vertex knowing
the destination vertex and for a given mutation operation. So the mutation operator can be
rewritten such as shown by Fig. 5.

 for j = 1 to n do
 if Pa(Xj) mute with a probability Pmute then
 choose a mutation operation among these allowed on Pa(Xj)
 apply opmute(i, j) with the probability P(i|opmute ,j)
 end if
end for

Fig. 5. The mutation operator scheme
Assuming that the selection probability of Pa(Xj) is uniformly distributed and equals a given
Pmute, Eq. 7 must be verified:

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎩
⎨
⎧

=

=∑

else
allowed is if 1

1),(

),(

),(

O
(i,j)op

jopiP

muteji
op

op
mute

ji
op

mute

mute
mute

δ

δ

 (7)

The diversity of the individuals lay down to compute P(i|opmute,j) for each allowed opmute
and for each individual Xj. We introduce a set of coefficients denoted ζ(i,j,opmute(i,j)) where
1≤i,j≤n and i≠j to control P(i|opmute,j). So we define:

∑

=
)),(,,(

)),(,,(),(),(jiopji
jiopjijopiP

mute
ji

op

mute
mute

mute
ζδ

ζ (8)

During the initialisation and without any prior knowledge, ζ(i,j,opmute(i,j)) follows an
uniform distribution:

⎩
⎨
⎧
∀

≤≤∀
−

=
mute

mute op
nji

n
jiopji

,1

1

1)),(,,(ζ (9)

Finally, to avoid the predominance of a given opmute (probability set to 1) and a total lack of a
given opmute (probability set to 0) we add a constraint given by Eq.10:

⎩
⎨
⎧
∀

≤≤∀
≤≤

mute
mute op

nji
jiopji

,1

 9.0)),(,,(01.0 ζ (10)

Now, to modify ζ(i,j,opmute(i,j)) we must take in account the quality of the mutations and
either their frequencies. After each evolution phase, the ζ(i,j,opmute(i,j)) associated to the opmute

Evolutionary Methods for Learning Bayesian Network Structures

347

applied at least one time are reestimated. This compute is made according to a parameter γ
which quantifies the modification range of ζ(i,j,opmute(i,j)) and depends on ω which is
computed as the number of successful applications of opmute minus the number of
detrimental ones in the current population. Eq.11 gives the computation. In this relation, if
we set γ=0 the algorithm acts as the basic genetic algorithm previoulsy defined.

⎩
⎨
⎧

−×
>−×

←
else)01.0,)1()),(,,(max(

0 if)9.0,)1()),(,,(min(
)),(,,(

ω

ω

γζ
ωγζ

ζ
jiopji
jiopji

jiopji
mute

mute
mute (11)

The regular update ζ(i,j,opmute(i,j)) leads to standardize the P(i|opmute,j) values and avoids a
prematured convergence of the algorithm as seen in (Glickman & Sycara, 2000) in which the
mutation probability is strictly decreasing. Our approach is different from an EDA one: we
drive the evolution by influencing the mutation operator when an EDA makes the best
individuals features probability distribution evolve until then generated.

4.2 Niching
Niching methods appear to be a valuable choice for learning the structure of a Bayesian
network because they are well-adapted to multi-modal optimization problem. Two kind of
niching techniques could be encountered: spatial ones and temporal ones. They all have in
common the definition of a distance which is used to define the niches. In (Mahfoud, 1995),
it seemed to be expressed a global consensus about performance: spatial approch gives
better results than temporal one. But the latter is easier to implement because it consists in
the addition of a penalizing scheme to a given evolutionnary method.

4.2.1 Sequential niching
So we propose two algorithms. The first one is apparented to a sequential niching. It makes
a similar trend to that of a classic genetic algorithm (iterated cycles evaluation, selection,
crossover, mutation and replacement of individuals) except for the fact that a list of optima
is maintained. Individuals matching these optima see their fitness deteriorated to discourage
any inspection and maintenance of these individuals in the future.
The local optima, in the context of our method, correspond to the equivalence classes in the
meaning of Markov. When at least one equivalence class has been labelled as corresponding
to an optimum value of the fitness, the various individuals in the population belonging to
this optimum saw the value of their fitness deteriorated to discourage any further use of
these parts of the space of solutions. The determination of whether or not an individual
belongs to a class of equivalence of the list occurs during the evaluation phase, after
generation by crossover and mutation of the new population. The graph equivalent of each
new individual is then calculated and compared with those contained in the list of optima. If
a match is determined, then the individual sees his fitness penalized and set to at an
arbitrary value (very low, lower than the score of the empty structure).
The equivalence classes identified by the list are determined during the course of the
algorithm: if, after a predetermined number of iterations Iteopt, there is no improvement of
the fitness of the best individual, the algorithm retrieves the graph equivalent of the
equivalence class of it and adds it to the list.
It is important to note here that the local optima are not formally banned in the population.
The registered optima may well reappear in our population due to a crossover. The

 Advances in Evolutionary Algorithms

346

which drives the choice of the mutation operation. This distribution should reflect the
performance of the mutation operations being applied over the individuals during the
previous iterations of the search.
Let us define P(i,j,opmute) the probability that the coefficient aij of the adjacency matrix is
modified by the mutation operation opmute. The mutation decays according to the choice of
i, j and opmute. We can simplify the density of probability by conditionning a subset of
{i,j,opmute} by its complementary; this latter being activated according to a static distribution
of probability. After studying all the possible combination, we have chosen to design a
process to control P(i|opmute,j). This one influences the choice of the source vertex knowing
the destination vertex and for a given mutation operation. So the mutation operator can be
rewritten such as shown by Fig. 5.

 for j = 1 to n do
 if Pa(Xj) mute with a probability Pmute then
 choose a mutation operation among these allowed on Pa(Xj)
 apply opmute(i, j) with the probability P(i|opmute ,j)
 end if
end for

Fig. 5. The mutation operator scheme
Assuming that the selection probability of Pa(Xj) is uniformly distributed and equals a given
Pmute, Eq. 7 must be verified:

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎩
⎨
⎧

=

=∑

else
allowed is if 1

1),(

),(

),(

O
(i,j)op

jopiP

muteji
op

op
mute

ji
op

mute

mute
mute

δ

δ

 (7)

The diversity of the individuals lay down to compute P(i|opmute,j) for each allowed opmute
and for each individual Xj. We introduce a set of coefficients denoted ζ(i,j,opmute(i,j)) where
1≤i,j≤n and i≠j to control P(i|opmute,j). So we define:

∑

=
)),(,,(

)),(,,(),(),(jiopji
jiopjijopiP

mute
ji

op

mute
mute

mute
ζδ

ζ (8)

During the initialisation and without any prior knowledge, ζ(i,j,opmute(i,j)) follows an
uniform distribution:

⎩
⎨
⎧
∀

≤≤∀
−

=
mute

mute op
nji

n
jiopji

,1

1

1)),(,,(ζ (9)

Finally, to avoid the predominance of a given opmute (probability set to 1) and a total lack of a
given opmute (probability set to 0) we add a constraint given by Eq.10:

⎩
⎨
⎧
∀

≤≤∀
≤≤

mute
mute op

nji
jiopji

,1

 9.0)),(,,(01.0 ζ (10)

Now, to modify ζ(i,j,opmute(i,j)) we must take in account the quality of the mutations and
either their frequencies. After each evolution phase, the ζ(i,j,opmute(i,j)) associated to the opmute

Evolutionary Methods for Learning Bayesian Network Structures

347

applied at least one time are reestimated. This compute is made according to a parameter γ
which quantifies the modification range of ζ(i,j,opmute(i,j)) and depends on ω which is
computed as the number of successful applications of opmute minus the number of
detrimental ones in the current population. Eq.11 gives the computation. In this relation, if
we set γ=0 the algorithm acts as the basic genetic algorithm previoulsy defined.

⎩
⎨
⎧

−×
>−×

←
else)01.0,)1()),(,,(max(

0 if)9.0,)1()),(,,(min(
)),(,,(

ω

ω

γζ
ωγζ

ζ
jiopji
jiopji

jiopji
mute

mute
mute (11)

The regular update ζ(i,j,opmute(i,j)) leads to standardize the P(i|opmute,j) values and avoids a
prematured convergence of the algorithm as seen in (Glickman & Sycara, 2000) in which the
mutation probability is strictly decreasing. Our approach is different from an EDA one: we
drive the evolution by influencing the mutation operator when an EDA makes the best
individuals features probability distribution evolve until then generated.

4.2 Niching
Niching methods appear to be a valuable choice for learning the structure of a Bayesian
network because they are well-adapted to multi-modal optimization problem. Two kind of
niching techniques could be encountered: spatial ones and temporal ones. They all have in
common the definition of a distance which is used to define the niches. In (Mahfoud, 1995),
it seemed to be expressed a global consensus about performance: spatial approch gives
better results than temporal one. But the latter is easier to implement because it consists in
the addition of a penalizing scheme to a given evolutionnary method.

4.2.1 Sequential niching
So we propose two algorithms. The first one is apparented to a sequential niching. It makes
a similar trend to that of a classic genetic algorithm (iterated cycles evaluation, selection,
crossover, mutation and replacement of individuals) except for the fact that a list of optima
is maintained. Individuals matching these optima see their fitness deteriorated to discourage
any inspection and maintenance of these individuals in the future.
The local optima, in the context of our method, correspond to the equivalence classes in the
meaning of Markov. When at least one equivalence class has been labelled as corresponding
to an optimum value of the fitness, the various individuals in the population belonging to
this optimum saw the value of their fitness deteriorated to discourage any further use of
these parts of the space of solutions. The determination of whether or not an individual
belongs to a class of equivalence of the list occurs during the evaluation phase, after
generation by crossover and mutation of the new population. The graph equivalent of each
new individual is then calculated and compared with those contained in the list of optima. If
a match is determined, then the individual sees his fitness penalized and set to at an
arbitrary value (very low, lower than the score of the empty structure).
The equivalence classes identified by the list are determined during the course of the
algorithm: if, after a predetermined number of iterations Iteopt, there is no improvement of
the fitness of the best individual, the algorithm retrieves the graph equivalent of the
equivalence class of it and adds it to the list.
It is important to note here that the local optima are not formally banned in the population.
The registered optima may well reappear in our population due to a crossover. The

 Advances in Evolutionary Algorithms

348

evaluation of these equivalence classes began, in fact until the end of a period of change; an
optimum previously memorized may well reappear at the end of the crossover operation
and the individual concerned undergo mutation allowing to explore the neighbourhood of
the optimum.
The authors of (Beasley et al., 1993) carry out an evolutionary process reset after each
determination of an optimum. Our algorithm continues the evolution considering the
updated list of these optima. However, by allowing the people to move in the
neighbourhood of the detected optima, we seek to preserve the various building blocks
hitherto found, as well as reducing the number of evaluations required by multiple launches
of the algorithm.
At the meeting of a stopping criterion, the genetic algorithm completes its execution thus
returning the list of previously determined optima. The stopping criterion of the algorithm
can also be viewed in different ways, for example:
• After a fixed number of local optima detected;
• After a fixed number of iterations (generations).
We opt for the second option. Choosing a fixed number of local optima may, in fact, appear
to be a much more arbitrary choice as the number of iterations. Depending on the problem
under consideration and/or data learning, the number of local optima in which the
evolutionary process may vary. The algorithm returns a directed acyclic graph
corresponding to the instantiation of the graph equivalent attached to the highest score in
the list of optima.
An important parameter of the algorithm is, at first glance, the threshold beyond which an
individual is identified as qu'optimum of the evaluation function. It is necessary to define a
value of this parameter, which we call Iteopt that is:
• Neither too small: take it too hasty a class of equity as a local optimum hamper space

exploration research of the genetic algorithm, and it amalga over too many optima;
• Nor too high: loss of the benefit of the method staying too long in the same point in

space research: the local optima actually impede the progress of the research.
Experience has taught us that Iteopt value of between 15 and 25 iterations can get good
results. The value of the required parameter Iteopt seems to be fairly stable as it allows both to
stay a short time around the same optimum while allowing solutions to converge around it.
The value of the penalty imposed on equivalence classes is arbitrary. The only constraint is
that the value is lowered when assessing the optimum detected is lower than the worst
possible structure, for example: -1015.

4.2.2 Sequential and spatial niching combined
The second algorithm uses the same approach as for the sequential niching combined with a
technique used in parallels GAs to split the population. We use an island model approach
for our distributed algorithm. This model is inspired from a model used in genetic of
populations (Wright, 1964). In this model, the population is distributed to k islands. Each
island can exchange individuals with others avoiding the uniformization of the genome of
the individuals. The goals of all of this is to preserve (or to introduce) genetic diversity.
Some additional parameters are required to control this second algorithm. First, we denote
Imig the migration interval, i.e. the number if iteration of the GA between two migration
phases. Then, we use Rmig the migration rate: the rate of individuals selected for a migration.

Evolutionary Methods for Learning Bayesian Network Structures

349

Nisl is the number of islands and finaly Isize represents the number of individuals in each
island.
In order to remember the local optima encountered by the populations, we follow the next
process:
• The population of each island evolves during Imig iterations and then transfert Rmig × Isize

individuals
• Local optima detected in a given island are registered in a shared list. Then they can be

known by all the islands.

5. Evaluation and discussion
From an experimental point of view, the training of the structure of a Bayesian network
consists in:
• to have an input database containing examples of instantiation of the variables
• to determine the conditional relationship between the variables of the model

• Either from statistical tests performed on several subsets of variables;
• Either from measurements of a match between a given solution and the training

database
• to compare the learned structures to determine the respective qualities of the different

algorithms used

5.1 Tested methods
So that we can compare with existing methods, we used some of the most-used learning
methods: the K2 algorithm, the greedy algorithm applied to the structures space, denoted
GS; the greedy algorithm applied to the graph equivalent space, noted GES; the MWST
algorithm, the PC algorithm. These methods are compared to our four evolutionary
algorithms learning: the simple genetic algorithm (GA); genetic algorithm combined with a
strategy of sequential niching (GA-SN); the hybrid sequential-spatial genetic approach (GA-
HN); the genetic algorithm with the dynamic adaptive mutation scheme GA-AM.

5.2 The Bayesian networks used
We apply the various algorithms in search of some common structures like: Insurance
(Binder et al., 1997) consisting of 27 variables and 52 arcs; ALARM (Beinlich et al. 1989)
consisting of 37 variables and 46 arcs. We use each of these networks to summarize:
• Four training data sets for each network, each one containing a number of databases of

the same size (250, 500, 1000 & 2000 samples);
• A single and large database (20000 or 30000 samples) for each network. This one is

supposed to be sufficiently representative of the conditional dependencies of the
network it comes from.

All these data sets is obtained by logic probabilistic sampling (Henrion, 1988): the value of
vertices with no predecessors is randomly set, according to the probability distributions of
the guenine network, and then the remaining variables are sampled following the same
principle, taking into account the values of the parent vertices. We use several training
databases for a given network and for a given number of cases, in order to reduce any bias
due to sampling error. Indeed, in the case of small databases, it is possible (and it is
common) that the extracted statistics are not exactly the conditional dependencies in the

 Advances in Evolutionary Algorithms

348

evaluation of these equivalence classes began, in fact until the end of a period of change; an
optimum previously memorized may well reappear at the end of the crossover operation
and the individual concerned undergo mutation allowing to explore the neighbourhood of
the optimum.
The authors of (Beasley et al., 1993) carry out an evolutionary process reset after each
determination of an optimum. Our algorithm continues the evolution considering the
updated list of these optima. However, by allowing the people to move in the
neighbourhood of the detected optima, we seek to preserve the various building blocks
hitherto found, as well as reducing the number of evaluations required by multiple launches
of the algorithm.
At the meeting of a stopping criterion, the genetic algorithm completes its execution thus
returning the list of previously determined optima. The stopping criterion of the algorithm
can also be viewed in different ways, for example:
• After a fixed number of local optima detected;
• After a fixed number of iterations (generations).
We opt for the second option. Choosing a fixed number of local optima may, in fact, appear
to be a much more arbitrary choice as the number of iterations. Depending on the problem
under consideration and/or data learning, the number of local optima in which the
evolutionary process may vary. The algorithm returns a directed acyclic graph
corresponding to the instantiation of the graph equivalent attached to the highest score in
the list of optima.
An important parameter of the algorithm is, at first glance, the threshold beyond which an
individual is identified as qu'optimum of the evaluation function. It is necessary to define a
value of this parameter, which we call Iteopt that is:
• Neither too small: take it too hasty a class of equity as a local optimum hamper space

exploration research of the genetic algorithm, and it amalga over too many optima;
• Nor too high: loss of the benefit of the method staying too long in the same point in

space research: the local optima actually impede the progress of the research.
Experience has taught us that Iteopt value of between 15 and 25 iterations can get good
results. The value of the required parameter Iteopt seems to be fairly stable as it allows both to
stay a short time around the same optimum while allowing solutions to converge around it.
The value of the penalty imposed on equivalence classes is arbitrary. The only constraint is
that the value is lowered when assessing the optimum detected is lower than the worst
possible structure, for example: -1015.

4.2.2 Sequential and spatial niching combined
The second algorithm uses the same approach as for the sequential niching combined with a
technique used in parallels GAs to split the population. We use an island model approach
for our distributed algorithm. This model is inspired from a model used in genetic of
populations (Wright, 1964). In this model, the population is distributed to k islands. Each
island can exchange individuals with others avoiding the uniformization of the genome of
the individuals. The goals of all of this is to preserve (or to introduce) genetic diversity.
Some additional parameters are required to control this second algorithm. First, we denote
Imig the migration interval, i.e. the number if iteration of the GA between two migration
phases. Then, we use Rmig the migration rate: the rate of individuals selected for a migration.

Evolutionary Methods for Learning Bayesian Network Structures

349

Nisl is the number of islands and finaly Isize represents the number of individuals in each
island.
In order to remember the local optima encountered by the populations, we follow the next
process:
• The population of each island evolves during Imig iterations and then transfert Rmig × Isize

individuals
• Local optima detected in a given island are registered in a shared list. Then they can be

known by all the islands.

5. Evaluation and discussion
From an experimental point of view, the training of the structure of a Bayesian network
consists in:
• to have an input database containing examples of instantiation of the variables
• to determine the conditional relationship between the variables of the model

• Either from statistical tests performed on several subsets of variables;
• Either from measurements of a match between a given solution and the training

database
• to compare the learned structures to determine the respective qualities of the different

algorithms used

5.1 Tested methods
So that we can compare with existing methods, we used some of the most-used learning
methods: the K2 algorithm, the greedy algorithm applied to the structures space, denoted
GS; the greedy algorithm applied to the graph equivalent space, noted GES; the MWST
algorithm, the PC algorithm. These methods are compared to our four evolutionary
algorithms learning: the simple genetic algorithm (GA); genetic algorithm combined with a
strategy of sequential niching (GA-SN); the hybrid sequential-spatial genetic approach (GA-
HN); the genetic algorithm with the dynamic adaptive mutation scheme GA-AM.

5.2 The Bayesian networks used
We apply the various algorithms in search of some common structures like: Insurance
(Binder et al., 1997) consisting of 27 variables and 52 arcs; ALARM (Beinlich et al. 1989)
consisting of 37 variables and 46 arcs. We use each of these networks to summarize:
• Four training data sets for each network, each one containing a number of databases of

the same size (250, 500, 1000 & 2000 samples);
• A single and large database (20000 or 30000 samples) for each network. This one is

supposed to be sufficiently representative of the conditional dependencies of the
network it comes from.

All these data sets is obtained by logic probabilistic sampling (Henrion, 1988): the value of
vertices with no predecessors is randomly set, according to the probability distributions of
the guenine network, and then the remaining variables are sampled following the same
principle, taking into account the values of the parent vertices. We use several training
databases for a given network and for a given number of cases, in order to reduce any bias
due to sampling error. Indeed, in the case of small databases, it is possible (and it is
common) that the extracted statistics are not exactly the conditional dependencies in the

 Advances in Evolutionary Algorithms

350

guenine network. After training with small databases, the BIC score of the returned
structures by the different methods are computed from the large database mentioned
earlier, in order to assess qualitative measures.

5.3 Experiments
GAs: The parameters of the evolutionary algorithms are given in Table 1.

Parameter Value Remarks
Population size 150
Mutation probability 1/n
Crossover probability 0.8
Recombination scheme elitist The best solution is never lost
Stop criterion 1000 iter.
Initialisation See footnote2
Iteopt 20 For GA-SN only
γ 0.5 For D1-GA & GA-AM
Imig 20 For GA-HN only
Rmig 0.1 For GA-HN only
Nisl 30 For GA-HN only
Isize 30 For GA-HN only

Table 1. Parameters used for the evolutionary algorithms.

GS: This algorihtm is initialized with a tree returned by the MWST method, where the root
vertice is randomly chosen.
GES: This algorithm is initialized with the empty structure.
MWST: it is initialized with a root node randomly selected (it had no effect on the score of
the structure obtained).
K2: This algorithm requires a topological order on the vertices of the graph. We used for this
purpose two types of initialization:
• The topological order of a tree returned by the MWST algorithm (method K2-T);
• A topological order random (method K2-R).
For each instance of K2-R — i.e. for each training database considered — we are proceeding
with 5 × n random initialization for choosing only those returning the best BIC score.
Some of these values (crossover, mutation probability) are coming from some habits of the
domain (Bäck, 1993) but especially from experiments too. The choice of the iteration number
is therefore sufficient to monitor and interpret the performance of the method considered
while avoiding a number of assessments distorting the comparison of results with greedy
methods.
We evaluate the quality of the solutions with two criteria: the BIC score from one hand, and
a graphic distance measuring the number of differences between two graphs on the other

2 The populations of the evolutionary methods are all initialized like GS. We make sure,
however, that each vertice will be selected at least once as root.

Evolutionary Methods for Learning Bayesian Network Structures

351

hand. The latter is defined from 4 terms: (D) the total number of different arcs between two
graphs G1 and G2, (+) the number of arcs existing in G1 but not in G2, (-) the number of arcs
existing in G2 but not in G1 and (inv) the number of arcs inverted in G1 comparing to G2.
These terms are important because, when considering two graphs of the same equivalence
class, some arcs could be inverted. This implies that the corresponding arcs are not oriented
in the corresponding PDAG. The consequence is that G1 and G2 have the same BIC score but
not the same graphic distance. To compare the results with we also give the score of the
empty structure G0 and the score of the reference network GR.

5.4 Results for the INSURANCE network
Results are given Table 2 & Table 3. The evaluation is averaged over 30 databases. Table 2
shows the means and the standard deviations of the BIC scores. For a better seeing, values
are all divided by 10. Values labelled by † are significantly different from the best mean
score (Mann-Whitney’s test).
The results in Table 2 give an advantage to evolutionary methods. While it is impossible to
distinguish clearly the performance of the different evolutionary methods, it is interesting to
note that these latter generally outperform algorithms like GES and GS. Only the algorithm
GS has such good results as the evolutionary methods on small databases (250 and 500). We
can notice too, according to a Mann-Whitney’s test that, for large datasets, GA-SN & GA-
AM returns a structure close to the original one. Standard deviations are not very large for
the GAs, showing a relative stability of the algorithms and so, a good avoidance of local
optima.

 250 500 1000 2000
GA −32135 ± 290 −31200 ± 333 −29584 ± 359 −28841 ± 89†

GA-SN −31917 ± 286 −31099 ± 282 −29766 ± 492 −28681±156
GA-HN −31958±246 −31075 ± 255 −29428 ± 290 −28715 ± 164
GA-AM −31826±270 −31076 ± 151 −29635 ± 261 −28688 ± 165

GS −32227 ± 397 −31217 ± 314 −29789 ± 225† −28865 ± 151†
GES −33572 ± 247† −31952 ± 273† −30448 ± 836† −29255 ± 634†
K2-T −32334 ± 489† −31772 ± 339† −30322 ± 337† −29248 ± 163†
K2-R −33002 ± 489† −31858 ± 395† −29866 ± 281† −29320 ± 245†

MWST −34045 ± 141† −33791 ± 519† −33744 ± 296† −33717 ± 254†
GR −28353
G0 −45614

Table 2. Means and standard deviations of the BIC scores (INSURANCE).

Table 3 shows the mean structural differences between the original network and these
delivered by some learning algorithms. There, we can see that evolutionary methods,
particularly GA-SN, return the structures which are the closest to the original one. This
network was chosen because it contains numerous low-valued conditional probabilities.
These are difficult to find using small databases. So even if the BIC score is rather close to
the original one, graphical distances reveals some differences. First, we can see that D is

 Advances in Evolutionary Algorithms

350

guenine network. After training with small databases, the BIC score of the returned
structures by the different methods are computed from the large database mentioned
earlier, in order to assess qualitative measures.

5.3 Experiments
GAs: The parameters of the evolutionary algorithms are given in Table 1.

Parameter Value Remarks
Population size 150
Mutation probability 1/n
Crossover probability 0.8
Recombination scheme elitist The best solution is never lost
Stop criterion 1000 iter.
Initialisation See footnote2
Iteopt 20 For GA-SN only
γ 0.5 For D1-GA & GA-AM
Imig 20 For GA-HN only
Rmig 0.1 For GA-HN only
Nisl 30 For GA-HN only
Isize 30 For GA-HN only

Table 1. Parameters used for the evolutionary algorithms.

GS: This algorihtm is initialized with a tree returned by the MWST method, where the root
vertice is randomly chosen.
GES: This algorithm is initialized with the empty structure.
MWST: it is initialized with a root node randomly selected (it had no effect on the score of
the structure obtained).
K2: This algorithm requires a topological order on the vertices of the graph. We used for this
purpose two types of initialization:
• The topological order of a tree returned by the MWST algorithm (method K2-T);
• A topological order random (method K2-R).
For each instance of K2-R — i.e. for each training database considered — we are proceeding
with 5 × n random initialization for choosing only those returning the best BIC score.
Some of these values (crossover, mutation probability) are coming from some habits of the
domain (Bäck, 1993) but especially from experiments too. The choice of the iteration number
is therefore sufficient to monitor and interpret the performance of the method considered
while avoiding a number of assessments distorting the comparison of results with greedy
methods.
We evaluate the quality of the solutions with two criteria: the BIC score from one hand, and
a graphic distance measuring the number of differences between two graphs on the other

2 The populations of the evolutionary methods are all initialized like GS. We make sure,
however, that each vertice will be selected at least once as root.

Evolutionary Methods for Learning Bayesian Network Structures

351

hand. The latter is defined from 4 terms: (D) the total number of different arcs between two
graphs G1 and G2, (+) the number of arcs existing in G1 but not in G2, (-) the number of arcs
existing in G2 but not in G1 and (inv) the number of arcs inverted in G1 comparing to G2.
These terms are important because, when considering two graphs of the same equivalence
class, some arcs could be inverted. This implies that the corresponding arcs are not oriented
in the corresponding PDAG. The consequence is that G1 and G2 have the same BIC score but
not the same graphic distance. To compare the results with we also give the score of the
empty structure G0 and the score of the reference network GR.

5.4 Results for the INSURANCE network
Results are given Table 2 & Table 3. The evaluation is averaged over 30 databases. Table 2
shows the means and the standard deviations of the BIC scores. For a better seeing, values
are all divided by 10. Values labelled by † are significantly different from the best mean
score (Mann-Whitney’s test).
The results in Table 2 give an advantage to evolutionary methods. While it is impossible to
distinguish clearly the performance of the different evolutionary methods, it is interesting to
note that these latter generally outperform algorithms like GES and GS. Only the algorithm
GS has such good results as the evolutionary methods on small databases (250 and 500). We
can notice too, according to a Mann-Whitney’s test that, for large datasets, GA-SN & GA-
AM returns a structure close to the original one. Standard deviations are not very large for
the GAs, showing a relative stability of the algorithms and so, a good avoidance of local
optima.

 250 500 1000 2000
GA −32135 ± 290 −31200 ± 333 −29584 ± 359 −28841 ± 89†

GA-SN −31917 ± 286 −31099 ± 282 −29766 ± 492 −28681±156
GA-HN −31958±246 −31075 ± 255 −29428 ± 290 −28715 ± 164
GA-AM −31826±270 −31076 ± 151 −29635 ± 261 −28688 ± 165

GS −32227 ± 397 −31217 ± 314 −29789 ± 225† −28865 ± 151†
GES −33572 ± 247† −31952 ± 273† −30448 ± 836† −29255 ± 634†
K2-T −32334 ± 489† −31772 ± 339† −30322 ± 337† −29248 ± 163†
K2-R −33002 ± 489† −31858 ± 395† −29866 ± 281† −29320 ± 245†

MWST −34045 ± 141† −33791 ± 519† −33744 ± 296† −33717 ± 254†
GR −28353
G0 −45614

Table 2. Means and standard deviations of the BIC scores (INSURANCE).

Table 3 shows the mean structural differences between the original network and these
delivered by some learning algorithms. There, we can see that evolutionary methods,
particularly GA-SN, return the structures which are the closest to the original one. This
network was chosen because it contains numerous low-valued conditional probabilities.
These are difficult to find using small databases. So even if the BIC score is rather close to
the original one, graphical distances reveals some differences. First, we can see that D is

 Advances in Evolutionary Algorithms

352

rather high (the original network GR is made with only 52 arcs, compared to D which
minimum is 24.4) even if the BIC score is very close (resp. -28353 compared to -28681).
Second, as expected, D decreases when the size of the learning database grows, mainly
because of the (-) term. Third, GAs obtains the closest models to the original in 11 cases over
16; the 5 others are provided by GES.

250 500

D + inv - D + inv -
GA 39.6 4.4 7.2 28 34 3.1 7.6 23.3

GA-SN 37 3.5 7.1 26.4 35.1 3.7 7.4 24
GA-HN 38.1 3.5 7.5 27.1 33.3 3 7.3 23
GA-AM 37.5 4.3 6.6 26.6 33.9 3.2 7.7 23

GS 42.1 4.6 9.4 28.1 37.7 4.5 9.4 23.8
GES 39.5 3.7 7.1 28.7 35.1 3 7.1 25
K2-T 42.7 5.1 8.4 29.2 40.8 5.4 8.8 26.6
K2-R 42.4 4.8 7.2 30.4 41.8 6.5 8.8 26.6

MWST 41.7 4 7.7 30 41.3 3.5 8.3 29.5
1000 2000

D + inv - D + inv -

GA 39.6 4.4 7.2 28 27.8 4.7 8 15.1
GA-SN 30.8 3.8 7.4 19.6 24,4 3.4 6.7 14.3
GA-HN 29.3 3.6 6.5 19.2 26.6 3.6 8.6 14.4
GA-AM 31.4 4 8 19.4 27 4.3 8.4 14.3

GS 35.9 5.1 10 20.8 31.9 5.2 11.4 15.3
GES 32.4 4.1 8.1 20.2 27.5 4 8.4 15.1
K2-T 38.7 5.9 11 21.8 34.6 7.3 10.9 16.4
K2-R 39.6 8.3 8.3 23 36.1 8.5 8.5 9.1

MWST 37.7 1.7 8.3 27.7 36.3 1.2 7.9 27.2

Table 3. Mean structural differences between the original INSURANCE network and the
best solutions founded by some algorithms

5.5 Results for the ALARM network
The results are shown Table 4 & Table 5. This network contains more vertices than the
INSURANCE one, but less low-valued arcs. The evaluation is averaged over 30 databases.
Table 4 shows that evolutionary algorithms obtain the best scores. But while GES provides
less qualitative solutions accordingly to the BIC score, these solutions are closest to the
original one if we consider the graphical distance. Here, a strategy consisting in gradually
building a solution seems to produce better structures than an evolutionary search. In this
case, a GA has a huge space (3×10237 when applying the Robinson's formula) into which one
it enumerates solutions. If we increases the size of the population the results are better than
these provided by GES.

Evolutionary Methods for Learning Bayesian Network Structures

353

 250 500 1000 2000
GA −36239 ± 335 −34815 ± 317 −33839 ± 159 −33722 ± 204†

GA-SN −36094±297 −34863 ± 346 −33865 ± 203 −33640 ± 196†
GA-HN −36144 ± 326 −34864 ± 337 −33723 ± 251 −33496 ± 170
GA-AM −36104 ± 316 −34791±340 −33942 ± 198† −33722 ± 204†

GS −36301 ± 309† −35049 ± 380† −33839 ± 109† −33638 ± 964†
GES −36124 ± 315 −34834 ± 288 −33801 ± 562† −33593 ± 692†
K2-T −36615 ± 308† −35637 ± 328† −34427 ± 200† −34045 ± 818†
K2-R −37173 ± 435† −35756 ± 264† −34579 ± 305† −34128 ± 173†

MWST −37531 ± 185† −37294 ± 737† −37218 ± 425† −37207 ± 366†
GR −33097
G0 −63113

Table 4. Means and standard deviations of the BIC scores (ALARM).

250 500

D + inv - D + inv -
GA 34.2 4.8 13.9 15.5 25.7 4.5 10.2 11

GA-SN 33.1 4.6 13.5 15 25.6 4.2 10.6 10.8
GA-HN 33.6 4.6 13.8 15.2 25.1 3.7 10.7 10.7
GA-AM 33 4.6 13.4 15 26.2 4 11.5 10.7

GS 33.7 5 12.6 16.1 30.2 5 13.5 11.7
GES 32.5 4.5 12.7 15.3 23.3 3.8 8 11.5
K2-T 34.5 5.1 13.1 16.3 35.1 7.2 15.2 12.7
K2-R 36.5 6.6 10.2 19.6 35 8.7 11.3 11.5

MWST 38.5 6.9 14.7 16.9 36.5 4.7 17.1 14.7
1000 2000

D + inv - D + inv -
GA 19.7 3.7 9 6.9 23 5.3 11.8 5.9

GA-SN 22 4.5 10.4 7.1 20.1 4.1 10.2 5.8
GA-HN 18.3 3.3 10.1 4.9 18.9 3.6 9 6.3
GA-AM 27 6.4 13.1 7.4 29 7.4 16 6.3

GS 27.8 6.2 14.5 7.1 25.4 6.2 13.6 5.6
GES 20.2 4.3 8.5 7.3 17.3 3.5 8.2 5.6
K2-T 35.4 10.4 15.7 9.3 36.9 12.3 17.4 7.2
K2-R 37.1 11.4 15.1 10.6 40.2 14.6 16.1 9.5

MWST 35.1 4.4 16.3 14.4 34.1 14 16.1 14

Table 5. Mean structural differences between the original ALARM network and the best
solutions founded by some algorithms

 Advances in Evolutionary Algorithms

352

rather high (the original network GR is made with only 52 arcs, compared to D which
minimum is 24.4) even if the BIC score is very close (resp. -28353 compared to -28681).
Second, as expected, D decreases when the size of the learning database grows, mainly
because of the (-) term. Third, GAs obtains the closest models to the original in 11 cases over
16; the 5 others are provided by GES.

250 500

D + inv - D + inv -
GA 39.6 4.4 7.2 28 34 3.1 7.6 23.3

GA-SN 37 3.5 7.1 26.4 35.1 3.7 7.4 24
GA-HN 38.1 3.5 7.5 27.1 33.3 3 7.3 23
GA-AM 37.5 4.3 6.6 26.6 33.9 3.2 7.7 23

GS 42.1 4.6 9.4 28.1 37.7 4.5 9.4 23.8
GES 39.5 3.7 7.1 28.7 35.1 3 7.1 25
K2-T 42.7 5.1 8.4 29.2 40.8 5.4 8.8 26.6
K2-R 42.4 4.8 7.2 30.4 41.8 6.5 8.8 26.6

MWST 41.7 4 7.7 30 41.3 3.5 8.3 29.5
1000 2000

D + inv - D + inv -

GA 39.6 4.4 7.2 28 27.8 4.7 8 15.1
GA-SN 30.8 3.8 7.4 19.6 24,4 3.4 6.7 14.3
GA-HN 29.3 3.6 6.5 19.2 26.6 3.6 8.6 14.4
GA-AM 31.4 4 8 19.4 27 4.3 8.4 14.3

GS 35.9 5.1 10 20.8 31.9 5.2 11.4 15.3
GES 32.4 4.1 8.1 20.2 27.5 4 8.4 15.1
K2-T 38.7 5.9 11 21.8 34.6 7.3 10.9 16.4
K2-R 39.6 8.3 8.3 23 36.1 8.5 8.5 9.1

MWST 37.7 1.7 8.3 27.7 36.3 1.2 7.9 27.2

Table 3. Mean structural differences between the original INSURANCE network and the
best solutions founded by some algorithms

5.5 Results for the ALARM network
The results are shown Table 4 & Table 5. This network contains more vertices than the
INSURANCE one, but less low-valued arcs. The evaluation is averaged over 30 databases.
Table 4 shows that evolutionary algorithms obtain the best scores. But while GES provides
less qualitative solutions accordingly to the BIC score, these solutions are closest to the
original one if we consider the graphical distance. Here, a strategy consisting in gradually
building a solution seems to produce better structures than an evolutionary search. In this
case, a GA has a huge space (3×10237 when applying the Robinson's formula) into which one
it enumerates solutions. If we increases the size of the population the results are better than
these provided by GES.

Evolutionary Methods for Learning Bayesian Network Structures

353

 250 500 1000 2000
GA −36239 ± 335 −34815 ± 317 −33839 ± 159 −33722 ± 204†

GA-SN −36094±297 −34863 ± 346 −33865 ± 203 −33640 ± 196†
GA-HN −36144 ± 326 −34864 ± 337 −33723 ± 251 −33496 ± 170
GA-AM −36104 ± 316 −34791±340 −33942 ± 198† −33722 ± 204†

GS −36301 ± 309† −35049 ± 380† −33839 ± 109† −33638 ± 964†
GES −36124 ± 315 −34834 ± 288 −33801 ± 562† −33593 ± 692†
K2-T −36615 ± 308† −35637 ± 328† −34427 ± 200† −34045 ± 818†
K2-R −37173 ± 435† −35756 ± 264† −34579 ± 305† −34128 ± 173†

MWST −37531 ± 185† −37294 ± 737† −37218 ± 425† −37207 ± 366†
GR −33097
G0 −63113

Table 4. Means and standard deviations of the BIC scores (ALARM).

250 500

D + inv - D + inv -
GA 34.2 4.8 13.9 15.5 25.7 4.5 10.2 11

GA-SN 33.1 4.6 13.5 15 25.6 4.2 10.6 10.8
GA-HN 33.6 4.6 13.8 15.2 25.1 3.7 10.7 10.7
GA-AM 33 4.6 13.4 15 26.2 4 11.5 10.7

GS 33.7 5 12.6 16.1 30.2 5 13.5 11.7
GES 32.5 4.5 12.7 15.3 23.3 3.8 8 11.5
K2-T 34.5 5.1 13.1 16.3 35.1 7.2 15.2 12.7
K2-R 36.5 6.6 10.2 19.6 35 8.7 11.3 11.5

MWST 38.5 6.9 14.7 16.9 36.5 4.7 17.1 14.7
1000 2000

D + inv - D + inv -
GA 19.7 3.7 9 6.9 23 5.3 11.8 5.9

GA-SN 22 4.5 10.4 7.1 20.1 4.1 10.2 5.8
GA-HN 18.3 3.3 10.1 4.9 18.9 3.6 9 6.3
GA-AM 27 6.4 13.1 7.4 29 7.4 16 6.3

GS 27.8 6.2 14.5 7.1 25.4 6.2 13.6 5.6
GES 20.2 4.3 8.5 7.3 17.3 3.5 8.2 5.6
K2-T 35.4 10.4 15.7 9.3 36.9 12.3 17.4 7.2
K2-R 37.1 11.4 15.1 10.6 40.2 14.6 16.1 9.5

MWST 35.1 4.4 16.3 14.4 34.1 14 16.1 14

Table 5. Mean structural differences between the original ALARM network and the best
solutions founded by some algorithms

 Advances in Evolutionary Algorithms

354

5.5 Behaviour of the GAs
Now look at some measures in order to evaluate the behaviour of our genetic algorithms.
A repair operator was designed to avoid individuals having a cycle. Statistics computed
during the tests show that the rate of individuals repaired does not seem to depend neither
on the algorithm used nor and on the size of the training set. It seems to be directly related
to the complexity of the network. Thus, this rate is about 15% for the INSURANCE network
and about 7% for the ALARM network.
The mean number of iterations before the GA found the best solution returned for the
INSURANCE network is given Table 6. The data obtained for the ALARM network are the
same order of magnitude. We note here that GA-HN quickly gets the best solution. This
makes it competitive in terms of computing time if we could detect this event.

 250 500 1000 2000

GA 364 454 425 555

GA-AM 704 605 694 723

GA-SN 398 414 526 501

GA-HN 82 106 166 116

Table 6. Mean of the necessary number of iterations to find the best structure
(INSURANCE).

The averaged computing time of each algorithm is given Table 7 (for the ALARM network).
We note here that GA-HN is only three times slower than GES. We note too that these
computing times are rather stable when the size of the database increases.

 250 500 1000 2000

GA 3593 ± 47 3659 ± 41 3871 ± 53 4088 ± 180

GA-AM 3843 ± 58 3877 ± 44 4051 ± 59 4332 ± 78

GA-SN 3875 ± 32 4005 ± 43 4481 ± 46 4834 ± 52

GA-HN 9118 ± 269 9179 ± 285 9026 ± 236 9214 ± 244

GS 9040 ± 1866 9503 ± 1555 12283 ± 1403 16216 ± 2192

GES 3112 ± 321 2762 ± 166 4055 ± 3.4 5759 ± 420

K2-T 733 ± 9 855 ± 25 1011 ± 14 1184 ± 8

K2-R 3734 ± 61 4368 ± 152 5019 ± 67 5982 ± 43

MWST 10 ± 1 10 ± 2 11 ± 1 12 ± 1

Table 7. Averaged computing times (in seconds) and standard deviations (ALARM).

An example of the evolution of the fitness of the population is given Fig. 6. The curves for
GA, GA-SN and GA-AM are very similar. The curve associated with GA-HN increases
through levels, a consequence of spatial niching policy who promptly exchange some

Evolutionary Methods for Learning Bayesian Network Structures

355

individuals between islands. Although the average quality is progressing more slowly, it is
revealed fairly quickly, however, better than in other genetic algorithms. Although the curve
corresponding to the algorithm GA seems well placed, Tables 4 and 5 learn us a bit more.
First, the score is not considered equivalent: the algorithm GA-HN have the best one.
Second, the graphical distance of GA-HN is the lowest. Although GA-SN seems more
remote, the results presented in Tables 4 and 5 show that the BIC score obtained by GA-SN
is closer to the optimal, and the editing distance of GA-SN is better than the GA one.

Fig. 6. Evolution of the individuals’ fitness (ALARM, 2000 training samples).

6. Future search
We will continue the development of the hybrid niching technique. The first step is the
distribution over a cluster of computers. Then we plan to develop new strategies implying a
global behaviour like in GA-HN and a dynamic mutation scheme like this one used in GA-
AM. The next goal will be the definition of a stopping criterion based on population’s
statistics to make our algorithm competitive in term of computing time.

7. Conclusion
We have presented three methods for learning the structure of a Bayesian network. The first
one consists in the control of the probability distribution of mutation in the genetic
algorithm. The second one is to incorporate a scheme penalty in the genetic algorithm so
that it avoids certain areas of space research. The third method is to search through several
competing populations and to allow timely exchange among these populations. We have
shown experimentally that different algorithms behaved satisfactorily, in particular that
they were proving to be successful on large databases. We also examined the behaviour of
proposed algorithms. Niching strategies are interesting, especially using the spatial one,
which focuses quickly on the best solutions.

 Advances in Evolutionary Algorithms

354

5.5 Behaviour of the GAs
Now look at some measures in order to evaluate the behaviour of our genetic algorithms.
A repair operator was designed to avoid individuals having a cycle. Statistics computed
during the tests show that the rate of individuals repaired does not seem to depend neither
on the algorithm used nor and on the size of the training set. It seems to be directly related
to the complexity of the network. Thus, this rate is about 15% for the INSURANCE network
and about 7% for the ALARM network.
The mean number of iterations before the GA found the best solution returned for the
INSURANCE network is given Table 6. The data obtained for the ALARM network are the
same order of magnitude. We note here that GA-HN quickly gets the best solution. This
makes it competitive in terms of computing time if we could detect this event.

 250 500 1000 2000

GA 364 454 425 555

GA-AM 704 605 694 723

GA-SN 398 414 526 501

GA-HN 82 106 166 116

Table 6. Mean of the necessary number of iterations to find the best structure
(INSURANCE).

The averaged computing time of each algorithm is given Table 7 (for the ALARM network).
We note here that GA-HN is only three times slower than GES. We note too that these
computing times are rather stable when the size of the database increases.

 250 500 1000 2000

GA 3593 ± 47 3659 ± 41 3871 ± 53 4088 ± 180

GA-AM 3843 ± 58 3877 ± 44 4051 ± 59 4332 ± 78

GA-SN 3875 ± 32 4005 ± 43 4481 ± 46 4834 ± 52

GA-HN 9118 ± 269 9179 ± 285 9026 ± 236 9214 ± 244

GS 9040 ± 1866 9503 ± 1555 12283 ± 1403 16216 ± 2192

GES 3112 ± 321 2762 ± 166 4055 ± 3.4 5759 ± 420

K2-T 733 ± 9 855 ± 25 1011 ± 14 1184 ± 8

K2-R 3734 ± 61 4368 ± 152 5019 ± 67 5982 ± 43

MWST 10 ± 1 10 ± 2 11 ± 1 12 ± 1

Table 7. Averaged computing times (in seconds) and standard deviations (ALARM).

An example of the evolution of the fitness of the population is given Fig. 6. The curves for
GA, GA-SN and GA-AM are very similar. The curve associated with GA-HN increases
through levels, a consequence of spatial niching policy who promptly exchange some

Evolutionary Methods for Learning Bayesian Network Structures

355

individuals between islands. Although the average quality is progressing more slowly, it is
revealed fairly quickly, however, better than in other genetic algorithms. Although the curve
corresponding to the algorithm GA seems well placed, Tables 4 and 5 learn us a bit more.
First, the score is not considered equivalent: the algorithm GA-HN have the best one.
Second, the graphical distance of GA-HN is the lowest. Although GA-SN seems more
remote, the results presented in Tables 4 and 5 show that the BIC score obtained by GA-SN
is closer to the optimal, and the editing distance of GA-SN is better than the GA one.

Fig. 6. Evolution of the individuals’ fitness (ALARM, 2000 training samples).

6. Future search
We will continue the development of the hybrid niching technique. The first step is the
distribution over a cluster of computers. Then we plan to develop new strategies implying a
global behaviour like in GA-HN and a dynamic mutation scheme like this one used in GA-
AM. The next goal will be the definition of a stopping criterion based on population’s
statistics to make our algorithm competitive in term of computing time.

7. Conclusion
We have presented three methods for learning the structure of a Bayesian network. The first
one consists in the control of the probability distribution of mutation in the genetic
algorithm. The second one is to incorporate a scheme penalty in the genetic algorithm so
that it avoids certain areas of space research. The third method is to search through several
competing populations and to allow timely exchange among these populations. We have
shown experimentally that different algorithms behaved satisfactorily, in particular that
they were proving to be successful on large databases. We also examined the behaviour of
proposed algorithms. Niching strategies are interesting, especially using the spatial one,
which focuses quickly on the best solutions.

 Advances in Evolutionary Algorithms

356

8. Acknowledgements
This work was realized using Matlab and two toolboxes dedicated to Bayesian networks
manipulation: Bayesian Net Toolbox from K. P. Murphy (Murphy, 2001) and Structure
Learning Package (SLP) from P. Leray & O. François (Francois & Leray, 2004).

9. References
Acid, S. & De Campos, L.M. (2003). Searching for Bayesian network structures in the space

of restricted acyclic partially directed graphs. Journal of Artificial Intelligence
Research, Vol. 18, 05/03, 445-490, 11076-9757

Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical
Mathematics, Vol. 22, No. 1, 12/70, 203–217, 0020-3157

Allanach, J.; Tu, H.; Singh, S.; Pattipati, K. & Willett, P. (2004). Detecting, tracking and
counteracting terrorist networks via hidden markov models, Proceedings of IEEE
Aerospace Conference, pp. 3257, 0-7803-8155-6, 03/2004

Bäck, T. (1993). Optimal mutation rates in genetic search, Proceedings of International
Conference on Genetic Algorithms, pp. 2-8, 1-55860-299-2, San Mateo (CA), Morgan
Kaufmann

Beasley, D.; Bull, D.R.; & Martin, R.R. (1993). A sequential niche technique for multimodal
function optimization. Evolutionary Computation, Vol. 1, No. 2, 101–125, 1063-6560

Beinlich, I.A.; Suermondt, H.J.; Chavez, R.M. & Cooper, G.F. (1989). The alarm monitoring
system : A case study with two probabilistic inference techniques for belief
networks, Proceedings of European Conference on Artificial Intelligence in Medicine, pp.
247–256, London, Springer-Verlag, Berlin

Binder, J.; Koller, D.; Russell, S.J. & Kanazawa, K. (1997). Adaptive probabilistic networks
with hidden variables. Machine Learning, Vol. 29, No. 2-3, 11/97, 213–244, 0885-6125

Blanco, R. ; Inza, I. ; & Larrañaga, P. (2003). Learning bayesian networks in the space of
structures by estimation of distribution algorithms. International Journal of Intelligent
Systems, Vol. 18, No. 2, 205–220, 0884-8173

Bouckaert, R. (1994). Properties of bayesian belief network learning algorithms, Proceedings
of Uncertainty in Artificial Intelligence, pp. 102–10, Morgan Kaufmann, San Francisco
(CA)

Bozdogan, H. (1987). Model selection and Akaike’s information criteria (AIC): The general
theory and its analytical extentions. Psychometrika, Vol. 52, 354–370, 0033-3123

Cano, R.; Sordo, C.; & Gutiérrez, J. (2004). Applications of Bayesian Networks in
Meteorology, In Advances in Bayesian Networks, Gámez J.A, Moral S. & Salmerón A.
(Eds.), 309-327, Springer, 3540208763

Cheng, J.; Bell, D.A. & Liu, W. (2002). Learning belief networks from data: An information
theory based approach. Artificial Intelligence, Vol. 137, No. 1-2, 43–90

Chickering, D.M. (2002b). Learning equivalence classes of Bayesian network structures.
Journal of Machine Learning Research, Vol. 2, 03/02, 445–498, 1532-4435

Chickering, D.M. & Meek, C. (2003). Monotone DAG faithfulness : A bad assumption.
Technical Report MSR-TR-2003-16, Microsoft Research

Evolutionary Methods for Learning Bayesian Network Structures

357

Chickering, D.M. (2002a). Optimal structure identification with greedy search. Journal of
Machine Learning Research, Vol. 3, 03/03, 507–554, 1532-4435

Chickering, D.M.; Geiger, D. & Heckerman, D. (1994). Learning Bayesian networks is np-
hard. Technical Report MSR-TR-94-17, Microsoft Research

Chow, C. & Liu, C. (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, Vol. 14, No. 3, 05/68,
462-467, 0018-9448

Cobb, B.R. & Shenoy, P.P. (2006). Inference in hybrid bayesian networks with mixtures of
truncated exponentials. International Journal of Approximate Reasoning, Vol. 41, No. 3,
04/06, 257–286, 0888-613X

Cooper, G. & Herskovits, E. (1992). A bayesian method for the induction of probabilistic
networks from data. Machine Learning, Vol. 9, No. 4, 10/92, 309–347, 0885-6125

Cotta, C. & Muruzábal, J. (2002). Towards a more efficient evolutionary induction of
bayesian networks, Proceedings of Parallel Problem Solving from Nature, pp. 730-739,
Granada, 09/2002

Davis, G.A. (2003) Bayesian reconstruction of traffic accidents, Law, Probability and Risk, Vol.
2, No. 2, 69-89, 1470-8396

De Jong, K. (2006). Evolutionary Computation: A Unified Approach, MIT Press, 0262041944
Eiben, A.E.; Hinterding, R. & Michalewicz, Z. (1999). Parameter control in evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, 124-141,
1089-778X

Etxeberria, R.; Larrañaga, P. & Picaza, J.M. (1997). Analysis of the behaviour of genetic
algorithms when learning bayesian network structure from data. Pattern
Recognition Letters, Vol. 18, No. 11-13, 11/97, 1269–1273, 0167-8655

Ezawa, K.J. & Schuermann, T. (1995) Fraud/Uncollectible Debt Detection Using a Bayesian
Network Based Learning System: A Rare Binary Outcome with Mixed Data
Structures, Proceedings of Uncertainty in Artificial Intelligence, pp.157-16, Morgan
Kaufmann, San Francisco (CA)

Fennell, M.T. & Wishner, R.P. (1998). Battlefield awareness via synergistic SAR and MTI
exploitation. IEEE Aerospace and Electronic Systems Magazine, Vol. 13, No. 2, 39-43,
0885-8985

Forrest, S. (1985). Documentation for prisoner’s dilemma and norms programs that use the
genetic algorithm, Technical Report, Univ. of Michigan.

Francois, O. & Leray, P. (2004). BNT structure learning package: documentation and
experiments, Technical Report, Univ. of Rouen (France).

Glickman, M. & Sycara, K. (2000). Reasons for premature convergence of self-adapting
mutation rates, Proceedings of Evolutionary Computation, pp. 62 – 69, 07/2000

Heckerman, D. (1995a). A tutorial on learning bayesian networks, Technical Report MSR-
TR-95-06, Microsoft Research

Heckerman, D.; Mamdani, A. & Wellman, M.P. (1995b). Real world applications of bayesian
networks. Communications of the ACM, Vol. 38, No. 3, 03/95, 24-30, 0001-0782

Henrion, M. (1988). Propagation of uncertainty by probabilistic logic sampling in bayes
networks. Proceedings of Uncertainty in Artificial Intelligence, pp. 149–164, Morgan
Kaufmann, San Francisco (CA)

 Advances in Evolutionary Algorithms

356

8. Acknowledgements
This work was realized using Matlab and two toolboxes dedicated to Bayesian networks
manipulation: Bayesian Net Toolbox from K. P. Murphy (Murphy, 2001) and Structure
Learning Package (SLP) from P. Leray & O. François (Francois & Leray, 2004).

9. References
Acid, S. & De Campos, L.M. (2003). Searching for Bayesian network structures in the space

of restricted acyclic partially directed graphs. Journal of Artificial Intelligence
Research, Vol. 18, 05/03, 445-490, 11076-9757

Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical
Mathematics, Vol. 22, No. 1, 12/70, 203–217, 0020-3157

Allanach, J.; Tu, H.; Singh, S.; Pattipati, K. & Willett, P. (2004). Detecting, tracking and
counteracting terrorist networks via hidden markov models, Proceedings of IEEE
Aerospace Conference, pp. 3257, 0-7803-8155-6, 03/2004

Bäck, T. (1993). Optimal mutation rates in genetic search, Proceedings of International
Conference on Genetic Algorithms, pp. 2-8, 1-55860-299-2, San Mateo (CA), Morgan
Kaufmann

Beasley, D.; Bull, D.R.; & Martin, R.R. (1993). A sequential niche technique for multimodal
function optimization. Evolutionary Computation, Vol. 1, No. 2, 101–125, 1063-6560

Beinlich, I.A.; Suermondt, H.J.; Chavez, R.M. & Cooper, G.F. (1989). The alarm monitoring
system : A case study with two probabilistic inference techniques for belief
networks, Proceedings of European Conference on Artificial Intelligence in Medicine, pp.
247–256, London, Springer-Verlag, Berlin

Binder, J.; Koller, D.; Russell, S.J. & Kanazawa, K. (1997). Adaptive probabilistic networks
with hidden variables. Machine Learning, Vol. 29, No. 2-3, 11/97, 213–244, 0885-6125

Blanco, R. ; Inza, I. ; & Larrañaga, P. (2003). Learning bayesian networks in the space of
structures by estimation of distribution algorithms. International Journal of Intelligent
Systems, Vol. 18, No. 2, 205–220, 0884-8173

Bouckaert, R. (1994). Properties of bayesian belief network learning algorithms, Proceedings
of Uncertainty in Artificial Intelligence, pp. 102–10, Morgan Kaufmann, San Francisco
(CA)

Bozdogan, H. (1987). Model selection and Akaike’s information criteria (AIC): The general
theory and its analytical extentions. Psychometrika, Vol. 52, 354–370, 0033-3123

Cano, R.; Sordo, C.; & Gutiérrez, J. (2004). Applications of Bayesian Networks in
Meteorology, In Advances in Bayesian Networks, Gámez J.A, Moral S. & Salmerón A.
(Eds.), 309-327, Springer, 3540208763

Cheng, J.; Bell, D.A. & Liu, W. (2002). Learning belief networks from data: An information
theory based approach. Artificial Intelligence, Vol. 137, No. 1-2, 43–90

Chickering, D.M. (2002b). Learning equivalence classes of Bayesian network structures.
Journal of Machine Learning Research, Vol. 2, 03/02, 445–498, 1532-4435

Chickering, D.M. & Meek, C. (2003). Monotone DAG faithfulness : A bad assumption.
Technical Report MSR-TR-2003-16, Microsoft Research

Evolutionary Methods for Learning Bayesian Network Structures

357

Chickering, D.M. (2002a). Optimal structure identification with greedy search. Journal of
Machine Learning Research, Vol. 3, 03/03, 507–554, 1532-4435

Chickering, D.M.; Geiger, D. & Heckerman, D. (1994). Learning Bayesian networks is np-
hard. Technical Report MSR-TR-94-17, Microsoft Research

Chow, C. & Liu, C. (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, Vol. 14, No. 3, 05/68,
462-467, 0018-9448

Cobb, B.R. & Shenoy, P.P. (2006). Inference in hybrid bayesian networks with mixtures of
truncated exponentials. International Journal of Approximate Reasoning, Vol. 41, No. 3,
04/06, 257–286, 0888-613X

Cooper, G. & Herskovits, E. (1992). A bayesian method for the induction of probabilistic
networks from data. Machine Learning, Vol. 9, No. 4, 10/92, 309–347, 0885-6125

Cotta, C. & Muruzábal, J. (2002). Towards a more efficient evolutionary induction of
bayesian networks, Proceedings of Parallel Problem Solving from Nature, pp. 730-739,
Granada, 09/2002

Davis, G.A. (2003) Bayesian reconstruction of traffic accidents, Law, Probability and Risk, Vol.
2, No. 2, 69-89, 1470-8396

De Jong, K. (2006). Evolutionary Computation: A Unified Approach, MIT Press, 0262041944
Eiben, A.E.; Hinterding, R. & Michalewicz, Z. (1999). Parameter control in evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, 124-141,
1089-778X

Etxeberria, R.; Larrañaga, P. & Picaza, J.M. (1997). Analysis of the behaviour of genetic
algorithms when learning bayesian network structure from data. Pattern
Recognition Letters, Vol. 18, No. 11-13, 11/97, 1269–1273, 0167-8655

Ezawa, K.J. & Schuermann, T. (1995) Fraud/Uncollectible Debt Detection Using a Bayesian
Network Based Learning System: A Rare Binary Outcome with Mixed Data
Structures, Proceedings of Uncertainty in Artificial Intelligence, pp.157-16, Morgan
Kaufmann, San Francisco (CA)

Fennell, M.T. & Wishner, R.P. (1998). Battlefield awareness via synergistic SAR and MTI
exploitation. IEEE Aerospace and Electronic Systems Magazine, Vol. 13, No. 2, 39-43,
0885-8985

Forrest, S. (1985). Documentation for prisoner’s dilemma and norms programs that use the
genetic algorithm, Technical Report, Univ. of Michigan.

Francois, O. & Leray, P. (2004). BNT structure learning package: documentation and
experiments, Technical Report, Univ. of Rouen (France).

Glickman, M. & Sycara, K. (2000). Reasons for premature convergence of self-adapting
mutation rates, Proceedings of Evolutionary Computation, pp. 62 – 69, 07/2000

Heckerman, D. (1995a). A tutorial on learning bayesian networks, Technical Report MSR-
TR-95-06, Microsoft Research

Heckerman, D.; Mamdani, A. & Wellman, M.P. (1995b). Real world applications of bayesian
networks. Communications of the ACM, Vol. 38, No. 3, 03/95, 24-30, 0001-0782

Henrion, M. (1988). Propagation of uncertainty by probabilistic logic sampling in bayes
networks. Proceedings of Uncertainty in Artificial Intelligence, pp. 149–164, Morgan
Kaufmann, San Francisco (CA)

 Advances in Evolutionary Algorithms

358

Holland, J.H. (1992). Adaptation in natural and artificial systems, The MIT Press, 0262581116
Horvitz, E.; Breese, J.; Heckerman, D.; Hovel, D. & Rommelse, K. (1998) The Lumiere Project:

Bayesian User Modeling for Inferring the Goals and Needs of Software Users,
Proceedings of Uncertainty in Artificial Intelligence, 07/1998, Morgan Kaufmann, San
Francisco (CA).

Hurvich, C.M. & Tsai, C.-L. (1989). Regression and time series model selection in small
samples. Biometrika, Vol. 76, No. 2, 297-307, 0006-3444

Jaronski, W.; Bloemer, J.; Vanhoof, K. & Wets, G. (2001). Use of bayesian belief networks to
help understand online audience, Proceedings of ECML/PKDD, 09/2001, Freiburg,
Germany.

Kayaalp, M. & Cooper, G.F. (2002). A bayesian network scoring metric that is based on
globally uniform parameter priors, Proceedings of Uncertainty in Artificial Intelligence,
pp. 251-258, Morgan Kaufmann, San Francisco (CA)

Krause, P.J. (1999). Learning probabilistic networks. The Knowledge Engineering Review, Vol.
13, No. 4, 321–351, 0269-8889

Kreinovich, V., Quintana, C. & Fuentes, O. (1993). Genetic algorithms: What fitness scaling is
optimal ? Cybernetics and Systems, Vol. 24, No. 1, 9–26, 0196-9722

Lacey, G. & MacNamara, S. (2000). Context-aware shared control of a robot mobility aid for
the elderly blind. International Journal of Robotic Research, Vol. 19, No. 11, 1054-1065,
0278-3649

Larranãga, P.; Poza, M.; Yurramendi, Y.; Murga, R. & Kuijpers. C. (1996). Structure learning
of Bayesian networks by genetic algorithms: A performance analysis of control
parameters. IEEE Transactions PAMI, Vol. 18, No. 9, 912–926, 0162-8828

Lauritzen, S.L. (1995). The EM algorithm for graphical association models with missing data.
Computational Statistics & Data Analysis, Vol. 19, No. 2, 191 201, 0167-9473

Lauritzen, S.L. & Wermuth, N. (1989). Graphical models for associations between variables,
some of which are qualitative and some quantitative. The Annals of Statistics, Vol.
17, No. 1, 31-57, 0090-5364

Lerner, U. ; Segal, E. & Koller, D. (2001). Exact inference in networks with discrete children
of continuous parents, Proceedings of Uncertainty in Artificial Intelligence, pp. 319-32,
Morgan Kaufmann, San Francisco (CA)

Madigan, D. & York, J. (1995). Bayesian graphical models for discrete data. International
Statistical Review, Vol. 63, No. 2, 215–232, 03067734

Mahfoud, S.W. (1995). Niching methods for genetic algorithms. PhD thesis, University of
Illinois at Urbana-Champaign, Urbana, IL, USA. IlliGAL Report 95001

Mühlenbein, H. & Paab, G. (1996). From recombination of genes to the estimation of
distributions, Proceedings of Parallel Solving from Nature, pp. 178–187.

Murphy, K. (2001). The Bayes net toolbox for matlab. Computing Science and Statistics, Vol.
33, 331-350

Muruzábal, J. & Cotta, C. (2007). A study on the evolution of bayesian network graph
structures. Studies in Fuzziness and Soft Computing, Vol. 213, 193-214, 1434-9922.

Muruzábal, J. & Cotta, C. (2004). A primer on the evolution of equivalence classes of
Bayesian network structures, Proceedings of Parallel Problem Solving from Nature, pp.
612–621, Birmingham, 09/2004

Evolutionary Methods for Learning Bayesian Network Structures

359

Nielsen, J.D.; Kocka, T. & Peña, J.M. (2003). On local optima in learning bayesian networks,
Proceedings of Uncertainty in Artificial Intelligence, pp. 435–442, Acapulco, Morgan
Kaufmann, San Francisco (CA)

Pearl, J. & Verma, T.S. (1991). A theory of inferred causation, In: Principles of Knowledge
Representation and Reasoning, Allen J.F., Fikes R.& Sandewall, E. (Eds.), pp. 441-452,
Morgan Kaufmann, San Francisco (CA)

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Morgan Kaufmann, 0934613737, San Francisco (CA)

Rissanen, J. (1978). Modelling by shortest data description. Automatica, Vol. 14, 465–471,
0005-1098

Robinson, R. (1976). Counting unlabeled acyclic digraphs, Proceedings of Combinatorial
Mathematics, pp. 28–43

Romero, T. ; Larrañaga, P. & Sierra, B. (2004). Learning bayesian networks in the space of
orderings with estimation of distribution algorithms. International Journal of Pattern
Recognition and Artificial Intelligence, Vol. 18, No. 4, 607–625, 0218-0014

Sahami, M.; Dumais, S.; Heckerman, D. & Horvitz, E. (1998). A bayesian approach to
filtering junk e-mail, Proceedings of the AAAI-98 Workshop on Text Categorization,
pp.55-62, Madison (WI), 07/1998, AAAI Press.

Schwartz, G. (1978). Estimating the dimensions of a model. The Annals of Statistics, Vol. 6,
No. 2, 461–464, 0090-5364

Spirtes, P.; Glymour, C. & Scheines, R. (2001). Causation, Prediction and Search, The MIT
Press, 0262194406,

Suzuki, J. (1996). Learning bayesian belief networks based on the minimum description
length principle: An efficient algorithm using the B&B technique, Proceedings of
International Conference on Machine Learning, pp. 462-470

Thierens, D. (2002). Adaptive mutation rate control schemes in genetic algorithms, Technical
Report UU-CS-2002-056, Utrecht University

Van Dijk, S. & Thierens, D. (2004). On the use of a non-redundant encoding for learning
bayesian networks from data with a GA, Proceedings of Parallel Problem Solving from
Nature, pp. 141–150, Birmingham, 09/2004

Van Dijk, S., Thierens, D., & Van Der Gaag, L.C. (2003a). Building a GA from design
principles for learning bayesian networks, Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 886–897.

Van Dijk, S., Van Der Gaag, L.C. & Thierens, D. (2003b). A skeleton-based approach to
learning bayesian networks from data, Proceedings of Principles and Practice of
Knowledge Discovery in Databases, pp. 132–143, Cavtat-Dubrovnik, 09/2003

Vekaria, K. & Clack, C. (1998). Selective crossover in genetic algorithms: An empirical study,
Proceedings of Parallel Problem Solving from Nature, pp. 438-447, Amsterdam, 09/1998

Wong, M., Lee, S.Y. & Leung, K.S. (2002). A hybrid data-mining approach to discover
bayesian networks using evolutionary programming, Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 214-222.

Wong, M.L., Lam,W., & Leung, K.S. (1999). Using evolutionary programming and minimum
description length principle for data mining of bayesian networks. IEEE
Transactions PAMI, Vol. 21, No. 2, 174-178, 0162-8828

 Advances in Evolutionary Algorithms

358

Holland, J.H. (1992). Adaptation in natural and artificial systems, The MIT Press, 0262581116
Horvitz, E.; Breese, J.; Heckerman, D.; Hovel, D. & Rommelse, K. (1998) The Lumiere Project:

Bayesian User Modeling for Inferring the Goals and Needs of Software Users,
Proceedings of Uncertainty in Artificial Intelligence, 07/1998, Morgan Kaufmann, San
Francisco (CA).

Hurvich, C.M. & Tsai, C.-L. (1989). Regression and time series model selection in small
samples. Biometrika, Vol. 76, No. 2, 297-307, 0006-3444

Jaronski, W.; Bloemer, J.; Vanhoof, K. & Wets, G. (2001). Use of bayesian belief networks to
help understand online audience, Proceedings of ECML/PKDD, 09/2001, Freiburg,
Germany.

Kayaalp, M. & Cooper, G.F. (2002). A bayesian network scoring metric that is based on
globally uniform parameter priors, Proceedings of Uncertainty in Artificial Intelligence,
pp. 251-258, Morgan Kaufmann, San Francisco (CA)

Krause, P.J. (1999). Learning probabilistic networks. The Knowledge Engineering Review, Vol.
13, No. 4, 321–351, 0269-8889

Kreinovich, V., Quintana, C. & Fuentes, O. (1993). Genetic algorithms: What fitness scaling is
optimal ? Cybernetics and Systems, Vol. 24, No. 1, 9–26, 0196-9722

Lacey, G. & MacNamara, S. (2000). Context-aware shared control of a robot mobility aid for
the elderly blind. International Journal of Robotic Research, Vol. 19, No. 11, 1054-1065,
0278-3649

Larranãga, P.; Poza, M.; Yurramendi, Y.; Murga, R. & Kuijpers. C. (1996). Structure learning
of Bayesian networks by genetic algorithms: A performance analysis of control
parameters. IEEE Transactions PAMI, Vol. 18, No. 9, 912–926, 0162-8828

Lauritzen, S.L. (1995). The EM algorithm for graphical association models with missing data.
Computational Statistics & Data Analysis, Vol. 19, No. 2, 191 201, 0167-9473

Lauritzen, S.L. & Wermuth, N. (1989). Graphical models for associations between variables,
some of which are qualitative and some quantitative. The Annals of Statistics, Vol.
17, No. 1, 31-57, 0090-5364

Lerner, U. ; Segal, E. & Koller, D. (2001). Exact inference in networks with discrete children
of continuous parents, Proceedings of Uncertainty in Artificial Intelligence, pp. 319-32,
Morgan Kaufmann, San Francisco (CA)

Madigan, D. & York, J. (1995). Bayesian graphical models for discrete data. International
Statistical Review, Vol. 63, No. 2, 215–232, 03067734

Mahfoud, S.W. (1995). Niching methods for genetic algorithms. PhD thesis, University of
Illinois at Urbana-Champaign, Urbana, IL, USA. IlliGAL Report 95001

Mühlenbein, H. & Paab, G. (1996). From recombination of genes to the estimation of
distributions, Proceedings of Parallel Solving from Nature, pp. 178–187.

Murphy, K. (2001). The Bayes net toolbox for matlab. Computing Science and Statistics, Vol.
33, 331-350

Muruzábal, J. & Cotta, C. (2007). A study on the evolution of bayesian network graph
structures. Studies in Fuzziness and Soft Computing, Vol. 213, 193-214, 1434-9922.

Muruzábal, J. & Cotta, C. (2004). A primer on the evolution of equivalence classes of
Bayesian network structures, Proceedings of Parallel Problem Solving from Nature, pp.
612–621, Birmingham, 09/2004

Evolutionary Methods for Learning Bayesian Network Structures

359

Nielsen, J.D.; Kocka, T. & Peña, J.M. (2003). On local optima in learning bayesian networks,
Proceedings of Uncertainty in Artificial Intelligence, pp. 435–442, Acapulco, Morgan
Kaufmann, San Francisco (CA)

Pearl, J. & Verma, T.S. (1991). A theory of inferred causation, In: Principles of Knowledge
Representation and Reasoning, Allen J.F., Fikes R.& Sandewall, E. (Eds.), pp. 441-452,
Morgan Kaufmann, San Francisco (CA)

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Morgan Kaufmann, 0934613737, San Francisco (CA)

Rissanen, J. (1978). Modelling by shortest data description. Automatica, Vol. 14, 465–471,
0005-1098

Robinson, R. (1976). Counting unlabeled acyclic digraphs, Proceedings of Combinatorial
Mathematics, pp. 28–43

Romero, T. ; Larrañaga, P. & Sierra, B. (2004). Learning bayesian networks in the space of
orderings with estimation of distribution algorithms. International Journal of Pattern
Recognition and Artificial Intelligence, Vol. 18, No. 4, 607–625, 0218-0014

Sahami, M.; Dumais, S.; Heckerman, D. & Horvitz, E. (1998). A bayesian approach to
filtering junk e-mail, Proceedings of the AAAI-98 Workshop on Text Categorization,
pp.55-62, Madison (WI), 07/1998, AAAI Press.

Schwartz, G. (1978). Estimating the dimensions of a model. The Annals of Statistics, Vol. 6,
No. 2, 461–464, 0090-5364

Spirtes, P.; Glymour, C. & Scheines, R. (2001). Causation, Prediction and Search, The MIT
Press, 0262194406,

Suzuki, J. (1996). Learning bayesian belief networks based on the minimum description
length principle: An efficient algorithm using the B&B technique, Proceedings of
International Conference on Machine Learning, pp. 462-470

Thierens, D. (2002). Adaptive mutation rate control schemes in genetic algorithms, Technical
Report UU-CS-2002-056, Utrecht University

Van Dijk, S. & Thierens, D. (2004). On the use of a non-redundant encoding for learning
bayesian networks from data with a GA, Proceedings of Parallel Problem Solving from
Nature, pp. 141–150, Birmingham, 09/2004

Van Dijk, S., Thierens, D., & Van Der Gaag, L.C. (2003a). Building a GA from design
principles for learning bayesian networks, Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 886–897.

Van Dijk, S., Van Der Gaag, L.C. & Thierens, D. (2003b). A skeleton-based approach to
learning bayesian networks from data, Proceedings of Principles and Practice of
Knowledge Discovery in Databases, pp. 132–143, Cavtat-Dubrovnik, 09/2003

Vekaria, K. & Clack, C. (1998). Selective crossover in genetic algorithms: An empirical study,
Proceedings of Parallel Problem Solving from Nature, pp. 438-447, Amsterdam, 09/1998

Wong, M., Lee, S.Y. & Leung, K.S. (2002). A hybrid data-mining approach to discover
bayesian networks using evolutionary programming, Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 214-222.

Wong, M.L., Lam,W., & Leung, K.S. (1999). Using evolutionary programming and minimum
description length principle for data mining of bayesian networks. IEEE
Transactions PAMI, Vol. 21, No. 2, 174-178, 0162-8828

 Advances in Evolutionary Algorithms

360

Wright, S. (1964). Stochastic processes in evolution, In Stochastic models in medecine and
biology, Gurland, J. (Ed.), 199-241, Univ. of Wisconsin Press, Madison

Yu, J.; Smith, V.A.; Wang, P.P.; Hartemink, A.J. & Jarvis., E.D. (2002). Using bayesian
network inference algorithms to recover molecular genetic regulatory networks,
Proceedings of International Conference on Systems Biology

18

Design of Phased Antenna Arrays using
Evolutionary Optimization Techniques

Marco A. Panduro1, David H. Covarrubias2 and Aldo L. Mendez1

1Reynosa-Rodhe Multidisciplinary Academic Center,
 Universidad Autónoma de Tamaulipas

2CICESE Research Center, Tijuana
México

1. Introduction
Mobile and wireless communication systems have now arrived at the point where
substancial advances in antenna technology have become a critical issue. The majority of
these systems consist of an antenna array combined with an appropriate signal processing
(Soni et al., 2002; Godara, 2002), i.e., the antenna elements are allowed to work in concert by
means of array element phasing, which is accomplished with hardware or is performed
digitally.
In these systems, the antenna array performance over a certain steering range is of primary
concern. In this case, the antenna array design problem consists of finding weights that
make the radiation pattern satisfy the desired characteristics (a maximum directivity, a
minimum side lobe level, etc), so the direction of the main beam can be steered at will.
Generally, the design problem is formulated as an optimization problem. The design of
antenna arrays has a nonlinear and non-convex dependence of elements parameters [Kurup
et al. 2003], because of that, the interest has been focused on stochastic search techniques,
such as simulated annealing (Murino et al., 1996), and mainly, genetic algorithms (GA’s)
(Ares-Pena et al., 1999; Haupt, 1994; Haupt, 1995; Panduro et al., 2005; Rahmat-Samii et al,
1999; Weile et al., 1997; Yan et al., 1997), widely used in electromagnetic problems, including
the synthesis of phased antenna arrays (Mailloux, 2005; Hansen, 1998).
The antenna arrays optimization for improving performance represents an open line of
research in the antenna design field. In the application of evolutionary optimization
techniques for designing antenna arrays, it has been considered the design of different
phased array structures, such as the linear arrays (Bray et al., 2002; Panduro, 2006) and the
circular arrays (Panduro et al., 2006), among others. The design of planar arrays is dealt with
in (Bae et al., 2005). In many design cases, it has been considered the optimization in the
design of scannable arrays with non-uniform separation (Bray et al., 2002; Bae et al., 2004;
Junker et al., 1998; Tian et al., 2005; Lommi et al., 2002).
In this chapter it is considered the case of designing scannable arrays with the optimization
of the amplitude and phase excitations for maximum side lobe level reduction in a wide
scanning range.
The purpose of this chapter is to investigate the behavior of the radiation pattern for the
design of different phased array structures (linear and circular arrays) considering the

 Advances in Evolutionary Algorithms

360

Wright, S. (1964). Stochastic processes in evolution, In Stochastic models in medecine and
biology, Gurland, J. (Ed.), 199-241, Univ. of Wisconsin Press, Madison

Yu, J.; Smith, V.A.; Wang, P.P.; Hartemink, A.J. & Jarvis., E.D. (2002). Using bayesian
network inference algorithms to recover molecular genetic regulatory networks,
Proceedings of International Conference on Systems Biology

18

Design of Phased Antenna Arrays using
Evolutionary Optimization Techniques

Marco A. Panduro1, David H. Covarrubias2 and Aldo L. Mendez1

1Reynosa-Rodhe Multidisciplinary Academic Center,
 Universidad Autónoma de Tamaulipas

2CICESE Research Center, Tijuana
México

1. Introduction
Mobile and wireless communication systems have now arrived at the point where
substancial advances in antenna technology have become a critical issue. The majority of
these systems consist of an antenna array combined with an appropriate signal processing
(Soni et al., 2002; Godara, 2002), i.e., the antenna elements are allowed to work in concert by
means of array element phasing, which is accomplished with hardware or is performed
digitally.
In these systems, the antenna array performance over a certain steering range is of primary
concern. In this case, the antenna array design problem consists of finding weights that
make the radiation pattern satisfy the desired characteristics (a maximum directivity, a
minimum side lobe level, etc), so the direction of the main beam can be steered at will.
Generally, the design problem is formulated as an optimization problem. The design of
antenna arrays has a nonlinear and non-convex dependence of elements parameters [Kurup
et al. 2003], because of that, the interest has been focused on stochastic search techniques,
such as simulated annealing (Murino et al., 1996), and mainly, genetic algorithms (GA’s)
(Ares-Pena et al., 1999; Haupt, 1994; Haupt, 1995; Panduro et al., 2005; Rahmat-Samii et al,
1999; Weile et al., 1997; Yan et al., 1997), widely used in electromagnetic problems, including
the synthesis of phased antenna arrays (Mailloux, 2005; Hansen, 1998).
The antenna arrays optimization for improving performance represents an open line of
research in the antenna design field. In the application of evolutionary optimization
techniques for designing antenna arrays, it has been considered the design of different
phased array structures, such as the linear arrays (Bray et al., 2002; Panduro, 2006) and the
circular arrays (Panduro et al., 2006), among others. The design of planar arrays is dealt with
in (Bae et al., 2005). In many design cases, it has been considered the optimization in the
design of scannable arrays with non-uniform separation (Bray et al., 2002; Bae et al., 2004;
Junker et al., 1998; Tian et al., 2005; Lommi et al., 2002).
In this chapter it is considered the case of designing scannable arrays with the optimization
of the amplitude and phase excitations for maximum side lobe level reduction in a wide
scanning range.
The purpose of this chapter is to investigate the behavior of the radiation pattern for the
design of different phased array structures (linear and circular arrays) considering the

 Advances in Evolutionary Algorithms

362

optimization of the amplitude and phase excitation across the antenna elements, by using
the well-known method of Genetic Algorithms. Due to the great variety of parameters
involved, optimization techniques such as Genetic Algorithms are very appropriate tools to
search for the best antenna array models.
The primary focus of this chapter is to present a study of the application of GA techniques to
the design of scannable linear and circular arrays in a uniform geometry considering the
optimization of the amplitude and phase excitation across the antenna elements. This study
considers the design of scannable linear and circular arrays to be a problem optimizing a
simple objective function. This objective function considers the synthesis of the radiation
diagram with desired characteristics of the side lobe level and the directivity in a wide
steering range. The contribution of this work is to present a model for the design of
scannable linear and circular arrays that includes the synthesis of the radiation diagram
using the method of genetic algorithms.
The remainder of this chapter is organized as follows. Section 2 states the design of phased
linear arrays. A description of the objective function used by the genetic algorithm and the
obtained results for this design problem are presented in this section. Following the same
design philosophy, the design of phased circular arrays is presented in the section 3.
Discussions and open problems are presented in the section 4. Finally, the summary and
conclusions of this work are presented in the section 5.

2. Design of phased linear arrays
The design of scannable linear arrays has been dealt with in many papers. In these
documents, the study has been focused mainly to design scannable linear arrays with non-
uniform separation (Bray et al., 2002; Bae et al., 2004; Junker et al., 1998; Tian et al., 2005;
Lommi et al., 2002; Panduro et al., 2005)., i.e, the performance of the array is improved, in
the sense of the side lobe level, optimizing the spacing between antenna elements. In this
case, it is presented the design of scannable linear arrays optimizing the amplitude and
phase excitations across the antenna elements. It is believed by the authors that the
performance of the array could be improved substantially, with respect to the linear array
with the conventional progressive phase excitation, if the amplitude and phase excitations
are set or optimized in an adequate way. Next, it is presented the theoretical model for the
design of scannable linear arrays.

2.1 Theoretical model
Consider a scannable linear array with N antenna elements uniformly spaced, as shown in
figure 1. If the elements in the linear array are taken to be isotropic sources, the radiation
pattern of this array can be described by its array factor (Stutzman, 1998). The array factor
for a conventional linear array in the x-y plane is given by (Balanis, 2005)

(1)

In this case, the array factor for a linear array with phase excitation is created by adding in
the appropriate element phase perturbations, P = [δβ1, δβ2, ..., δβN], δβi represents the phase
perturbation of the ith element of the array, such that

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

363

(2)

In these equations, I = [I1, I2, ..., IN], Ii represents the amplitude excitation of the ith element
of the array, ψn=kdncosθ0, θ0 is the direction of maximum radiation, k = 2π/λ is the phase
constant and θ is the angle of incidence of a plane wave, λ is the signal wavelength.

Figure 1. Steerable linear array with antenna elements uniformly spaced.

The idea of adding perturbations in the conventional array factor is that the optimization
algorithm searches possible optimal phase excitations in angles near the direction of desired
maximum gain. The optimization process developed in this paper for generating arrays that
have radiation patterns with low side lobe level will be based on (2).
We now need to formulate the objective function we want to optimize.

2.2 Objective function used to optimize the design of linear arrays.
The objective function is the driving force behind the GA (Goldberg, 1989). It is called from
the GA to determine the fitness of each solution string generated during the search. In this
case, each solution string represents possible amplitude excitations and phase perturbations
of antenna elements. As already being pointed out, the objective of the present study is to
evaluate the radiation pattern of scannable linear arrays in a uniform geometry considering
the optimization of the amplitude and phase excitation across the antenna elements. In this
case, it is studied the behavior of the array factor for the scanning range of 50°≤θ0≤130° with
an angular step of 10°. In order to calculate the objective function of an individual, the
procedure described below is followed.

 Advances in Evolutionary Algorithms

362

optimization of the amplitude and phase excitation across the antenna elements, by using
the well-known method of Genetic Algorithms. Due to the great variety of parameters
involved, optimization techniques such as Genetic Algorithms are very appropriate tools to
search for the best antenna array models.
The primary focus of this chapter is to present a study of the application of GA techniques to
the design of scannable linear and circular arrays in a uniform geometry considering the
optimization of the amplitude and phase excitation across the antenna elements. This study
considers the design of scannable linear and circular arrays to be a problem optimizing a
simple objective function. This objective function considers the synthesis of the radiation
diagram with desired characteristics of the side lobe level and the directivity in a wide
steering range. The contribution of this work is to present a model for the design of
scannable linear and circular arrays that includes the synthesis of the radiation diagram
using the method of genetic algorithms.
The remainder of this chapter is organized as follows. Section 2 states the design of phased
linear arrays. A description of the objective function used by the genetic algorithm and the
obtained results for this design problem are presented in this section. Following the same
design philosophy, the design of phased circular arrays is presented in the section 3.
Discussions and open problems are presented in the section 4. Finally, the summary and
conclusions of this work are presented in the section 5.

2. Design of phased linear arrays
The design of scannable linear arrays has been dealt with in many papers. In these
documents, the study has been focused mainly to design scannable linear arrays with non-
uniform separation (Bray et al., 2002; Bae et al., 2004; Junker et al., 1998; Tian et al., 2005;
Lommi et al., 2002; Panduro et al., 2005)., i.e, the performance of the array is improved, in
the sense of the side lobe level, optimizing the spacing between antenna elements. In this
case, it is presented the design of scannable linear arrays optimizing the amplitude and
phase excitations across the antenna elements. It is believed by the authors that the
performance of the array could be improved substantially, with respect to the linear array
with the conventional progressive phase excitation, if the amplitude and phase excitations
are set or optimized in an adequate way. Next, it is presented the theoretical model for the
design of scannable linear arrays.

2.1 Theoretical model
Consider a scannable linear array with N antenna elements uniformly spaced, as shown in
figure 1. If the elements in the linear array are taken to be isotropic sources, the radiation
pattern of this array can be described by its array factor (Stutzman, 1998). The array factor
for a conventional linear array in the x-y plane is given by (Balanis, 2005)

(1)

In this case, the array factor for a linear array with phase excitation is created by adding in
the appropriate element phase perturbations, P = [δβ1, δβ2, ..., δβN], δβi represents the phase
perturbation of the ith element of the array, such that

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

363

(2)

In these equations, I = [I1, I2, ..., IN], Ii represents the amplitude excitation of the ith element
of the array, ψn=kdncosθ0, θ0 is the direction of maximum radiation, k = 2π/λ is the phase
constant and θ is the angle of incidence of a plane wave, λ is the signal wavelength.

Figure 1. Steerable linear array with antenna elements uniformly spaced.

The idea of adding perturbations in the conventional array factor is that the optimization
algorithm searches possible optimal phase excitations in angles near the direction of desired
maximum gain. The optimization process developed in this paper for generating arrays that
have radiation patterns with low side lobe level will be based on (2).
We now need to formulate the objective function we want to optimize.

2.2 Objective function used to optimize the design of linear arrays.
The objective function is the driving force behind the GA (Goldberg, 1989). It is called from
the GA to determine the fitness of each solution string generated during the search. In this
case, each solution string represents possible amplitude excitations and phase perturbations
of antenna elements. As already being pointed out, the objective of the present study is to
evaluate the radiation pattern of scannable linear arrays in a uniform geometry considering
the optimization of the amplitude and phase excitation across the antenna elements. In this
case, it is studied the behavior of the array factor for the scanning range of 50°≤θ0≤130° with
an angular step of 10°. In order to calculate the objective function of an individual, the
procedure described below is followed.

 Advances in Evolutionary Algorithms

364

1. A set of 1000 points is used to specify a desired radiation pattern with direction of
maximum gain in each angle of the scanning range. Each point represents the ith desired
normalized radiation pattern value.
2. An individual is generated by the GA (amplitude excitations and phase perturbations of
antenna elements). Each individual is in general represented by a vector of real numbers,
i.e., I = [I1, I2, ..., IN], and a vector of real numbers restrained on the range (0, 2π), i.e.,
P = [δβ1, δβ2, ..., δβN].
3. The value of the objective function is calculated as

 (3)

where θMSL is the angle where the maximum side lobe is attained, and DIR the directivity for
the radiation pattern. In this case, the design problem is formulated as minimize the
objective function of.
4. A random population of individuals is generated and the genetic mechanisms of
crossover, survival and mutation are used to obtain better and better individuals, until the
GA converges to the best solution or the desired goals are achieved.
The results of using a GA for the design of scannable linear arrays are described in the next
section.

2.3 Results obtained for the design of phased linear arrays
The method of Genetic Algorithms was implemented to study the behavior of the radiation
pattern for scannable linear arrays. In this case, it is studied the behavior of the array factor
for the scanning range of 50°≤θ0≤130°. Several experiments were carried out with different
number of antenna elements. In the experiments the algorithm parameters, after a trial and
error procedure, were set as follows: maximum number of generations rmax = 500,
population size gsize = 200, crossover probability pc = 1.0 and mutation probability pm = 0.1.
A selection scheme combining Fitness Ranking and Elitist Selection (Goldberg, 1989) was
implemented instead of a common weighted roulette wheel selection. The used genetic
operators are standard: the well known two point crossover (Goldberg, 1989) along with a
single mutation where a locus is randomly selected and the allele is replaced by a random
number uniformly distributed in the feasible region. The obtained results are explained
below.
Figure 2 shows the behavior of the radiation pattern for a scannable linear array with the
amplitude and phase excitation optimized by the GA. The separation between antenna
elements is set as d=0.5λ. In this case, we illustrate the examples for a) N=6, b) N=8, c) N=12.
As shown in the examples of the Figure 2, the Genetic Algorithm generates a set of
amplitude and phase excitations in each angle of the scanning range to provide a
normalized array factor with a side lobe level < -20 dB in the steering range. The
optimization of the array can maintain a low side lobe level without pattern distortion
during beam steering.
Numerical values of the side lobe level, directivity, amplitude and phase perturbation
distributions for the array factor illustrated in Figure 2 are presented in the Table 1.
Table 1 illustrates that the design case with the amplitude and phase optimized by the GA
could provide a better performance in the side lobe level with respect to the conventional

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

365

case. These low values of the side lobe level for the optimized design case could be achieved
with very similar values of directivity and the same aperture in both design cases.

(a)

(b)

Figure 2. Behavior of the radiation pattern for a scannable linear array in a steering range of
50°≤θ0≤130° with the amplitude and phase excitation optimized by the GA, a) N=6, b) N=8,
c) N=12.

 Advances in Evolutionary Algorithms

364

1. A set of 1000 points is used to specify a desired radiation pattern with direction of
maximum gain in each angle of the scanning range. Each point represents the ith desired
normalized radiation pattern value.
2. An individual is generated by the GA (amplitude excitations and phase perturbations of
antenna elements). Each individual is in general represented by a vector of real numbers,
i.e., I = [I1, I2, ..., IN], and a vector of real numbers restrained on the range (0, 2π), i.e.,
P = [δβ1, δβ2, ..., δβN].
3. The value of the objective function is calculated as

 (3)

where θMSL is the angle where the maximum side lobe is attained, and DIR the directivity for
the radiation pattern. In this case, the design problem is formulated as minimize the
objective function of.
4. A random population of individuals is generated and the genetic mechanisms of
crossover, survival and mutation are used to obtain better and better individuals, until the
GA converges to the best solution or the desired goals are achieved.
The results of using a GA for the design of scannable linear arrays are described in the next
section.

2.3 Results obtained for the design of phased linear arrays
The method of Genetic Algorithms was implemented to study the behavior of the radiation
pattern for scannable linear arrays. In this case, it is studied the behavior of the array factor
for the scanning range of 50°≤θ0≤130°. Several experiments were carried out with different
number of antenna elements. In the experiments the algorithm parameters, after a trial and
error procedure, were set as follows: maximum number of generations rmax = 500,
population size gsize = 200, crossover probability pc = 1.0 and mutation probability pm = 0.1.
A selection scheme combining Fitness Ranking and Elitist Selection (Goldberg, 1989) was
implemented instead of a common weighted roulette wheel selection. The used genetic
operators are standard: the well known two point crossover (Goldberg, 1989) along with a
single mutation where a locus is randomly selected and the allele is replaced by a random
number uniformly distributed in the feasible region. The obtained results are explained
below.
Figure 2 shows the behavior of the radiation pattern for a scannable linear array with the
amplitude and phase excitation optimized by the GA. The separation between antenna
elements is set as d=0.5λ. In this case, we illustrate the examples for a) N=6, b) N=8, c) N=12.
As shown in the examples of the Figure 2, the Genetic Algorithm generates a set of
amplitude and phase excitations in each angle of the scanning range to provide a
normalized array factor with a side lobe level < -20 dB in the steering range. The
optimization of the array can maintain a low side lobe level without pattern distortion
during beam steering.
Numerical values of the side lobe level, directivity, amplitude and phase perturbation
distributions for the array factor illustrated in Figure 2 are presented in the Table 1.
Table 1 illustrates that the design case with the amplitude and phase optimized by the GA
could provide a better performance in the side lobe level with respect to the conventional

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

365

case. These low values of the side lobe level for the optimized design case could be achieved
with very similar values of directivity and the same aperture in both design cases.

(a)

(b)

Figure 2. Behavior of the radiation pattern for a scannable linear array in a steering range of
50°≤θ0≤130° with the amplitude and phase excitation optimized by the GA, a) N=6, b) N=8,
c) N=12.

 Advances in Evolutionary Algorithms

366

(c)

Figure 2. (continued).

(a)

Table 1. Numerical values of the side lobe level (SLL), directivity (DIR), amplitude and
phase perturbation distribution for the array factor illustrated in Fig. 2, a) N=6, b) N=8, c)
N=12.

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

367

(b)

(c)

Table 1. (continued)

 Advances in Evolutionary Algorithms

366

(c)

Figure 2. (continued).

(a)

Table 1. Numerical values of the side lobe level (SLL), directivity (DIR), amplitude and
phase perturbation distribution for the array factor illustrated in Fig. 2, a) N=6, b) N=8, c)
N=12.

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

367

(b)

(c)

Table 1. (continued)

 Advances in Evolutionary Algorithms

368

From the results shown previously, it is illustrated a perspective of designing scannable
linear arrays in a uniform structure with amplitude and phase optimization using genetic
algorithms. The genetic algorithm efficiently computes a set of antenna element amplitude
and phase excitations in each angle of the steering range in order to provide a radiation
pattern with maximum side lobe level reduction in all scanning range. The optimized design
case provides a considerable side lobe level reduction with respect to the conventional
phased array, with very similar values of directivity and maintaining the same aperture.
The design case for phased circular arrays is presented in the next section.

3. Design of phased circular arrays
Among antenna array configurations, the phased linear array is the most common form
employed in cellular and personal communication systems (PCS) (Song et al., 2001).
However, 360° scanning of the radiation beam can be obtained by combining a few linear
arrays whose sector scans add to give the desired 360° scan. This could result in
objectionably high costs, i.e., the array cost, the control complexity, and the data processing
load are increased. Furthermore, the radiation pattern varies with the scan angle, i.e., the
gain of a linear array degrades in its end-fire directions giving way to interference coming
from other directions (Durrani et al., 2002). Unlike the linear array, the performance of the
circular arrays (Du, 2004; Goto et al., 1977; Tsai et al., 2001; Tsai et al., 2004; Vescovo, 1995;
Watanabe, 1980) has not been extensively studied. Therefore, in this section it is presented
the design of scannable circular arrays optimizing the amplitude and phase excitations
across the antenna elements. It is believed by the authors that an evaluation of the array
factor for scannable circular arrays optimized by GA’s considering a scanning range in all
azimuth plane (360°) has not been presented previously. Depending on the performance
improvement that we could get (in terms of the side lobe level and the directivity) with
respect to the circular array with the conventional progressive phase excitation, this
information could be interesting for antenna designers. Next, it is presented the theoretical
model for this design case.

3.1 Theoretical model
Consider a circular antenna array of N antenna elements uniformly spaced on a circle of
radius a in the x-y plane. The array factor for the circular array shown in Figure 1,
considering the center of the circle as the phase reference, is given by

(4)

where Δφn=2π(n-1)/N for n=1,2, …, N is the angular position of the nth element on the x-y
plane, ka=Nd, i.e., a=Ndλ/2π, I = [I1, I2, ..., IN], In represents the amplitude excitation of the
nth element of the array, φ0 is the direction of maximum radiation and φ is the angle of
incidence of the plane wave.
As it was established for the linear array case, the array factor with phase excitation is
created by adding in the appropriate element phase perturbations, P = [δβ1, δβ2, ..., δβN], δβi

represents the phase perturbation of the ith element of the array, such that

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

369

 (5)

where ϕn=ka[cos(φ-Δφn)- cos(φ0-Δφn)].
It is important to mention that as the center of the circle is taken as the phase reference in the
array factor, it is considered a symmetrical excitation for the optimization process, i.e, the
phase perturbation would be given in the next way I1exp(jδβ1), …, IN/2exp(jδβN/2),
IN/2+1exp(jδβN/2+1)=I1exp(-jδβ1), …, INδβN=IN/2exp(-jδβN/2). Note that we will have N/2
amplitude and phase excitations in the optimization process.

Figure 3. Array geometry for an N element uniform circular array with inter-element
spacing d.

As already being pointed out, the objective of this section is to present an evaluation of the
array factor for scannable circular arrays in a uniform geometry considering the
optimization of the amplitude and phase excitation across the antenna elements. In this case,
it is studied the behavior of the array factor for the scanning range of 0°≤φ0≤360° with an
angular step of 30°. In this case, the objective function and the optimization process are set
as they were presented for the linear array case, with the considerations of the scanning
range and the symmetrical excitation aforementioned.
The results of using the GA for the design of scannable circular arrays are described in the
next section.

3.3 Results obtained for the design of phased circular arrays
The application of a phased circular array has sense when it is used to have a scanning
range in all azimuth plane (360°). Therefore, the method of GA’s was implemented to
evaluate the behavior of the array factor for the scanning range of 0°≤φ0≤360° with an
angular step of 30°. Next, some examples of the obtained results for the design of scannable
circular arrays are explained.
Figure 4 shows the behavior of the array factor for a scannable circular array with the
amplitude and phase excitation optimized by the GA. In this case, the separation between

 Advances in Evolutionary Algorithms

368

From the results shown previously, it is illustrated a perspective of designing scannable
linear arrays in a uniform structure with amplitude and phase optimization using genetic
algorithms. The genetic algorithm efficiently computes a set of antenna element amplitude
and phase excitations in each angle of the steering range in order to provide a radiation
pattern with maximum side lobe level reduction in all scanning range. The optimized design
case provides a considerable side lobe level reduction with respect to the conventional
phased array, with very similar values of directivity and maintaining the same aperture.
The design case for phased circular arrays is presented in the next section.

3. Design of phased circular arrays
Among antenna array configurations, the phased linear array is the most common form
employed in cellular and personal communication systems (PCS) (Song et al., 2001).
However, 360° scanning of the radiation beam can be obtained by combining a few linear
arrays whose sector scans add to give the desired 360° scan. This could result in
objectionably high costs, i.e., the array cost, the control complexity, and the data processing
load are increased. Furthermore, the radiation pattern varies with the scan angle, i.e., the
gain of a linear array degrades in its end-fire directions giving way to interference coming
from other directions (Durrani et al., 2002). Unlike the linear array, the performance of the
circular arrays (Du, 2004; Goto et al., 1977; Tsai et al., 2001; Tsai et al., 2004; Vescovo, 1995;
Watanabe, 1980) has not been extensively studied. Therefore, in this section it is presented
the design of scannable circular arrays optimizing the amplitude and phase excitations
across the antenna elements. It is believed by the authors that an evaluation of the array
factor for scannable circular arrays optimized by GA’s considering a scanning range in all
azimuth plane (360°) has not been presented previously. Depending on the performance
improvement that we could get (in terms of the side lobe level and the directivity) with
respect to the circular array with the conventional progressive phase excitation, this
information could be interesting for antenna designers. Next, it is presented the theoretical
model for this design case.

3.1 Theoretical model
Consider a circular antenna array of N antenna elements uniformly spaced on a circle of
radius a in the x-y plane. The array factor for the circular array shown in Figure 1,
considering the center of the circle as the phase reference, is given by

(4)

where Δφn=2π(n-1)/N for n=1,2, …, N is the angular position of the nth element on the x-y
plane, ka=Nd, i.e., a=Ndλ/2π, I = [I1, I2, ..., IN], In represents the amplitude excitation of the
nth element of the array, φ0 is the direction of maximum radiation and φ is the angle of
incidence of the plane wave.
As it was established for the linear array case, the array factor with phase excitation is
created by adding in the appropriate element phase perturbations, P = [δβ1, δβ2, ..., δβN], δβi

represents the phase perturbation of the ith element of the array, such that

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

369

 (5)

where ϕn=ka[cos(φ-Δφn)- cos(φ0-Δφn)].
It is important to mention that as the center of the circle is taken as the phase reference in the
array factor, it is considered a symmetrical excitation for the optimization process, i.e, the
phase perturbation would be given in the next way I1exp(jδβ1), …, IN/2exp(jδβN/2),
IN/2+1exp(jδβN/2+1)=I1exp(-jδβ1), …, INδβN=IN/2exp(-jδβN/2). Note that we will have N/2
amplitude and phase excitations in the optimization process.

Figure 3. Array geometry for an N element uniform circular array with inter-element
spacing d.

As already being pointed out, the objective of this section is to present an evaluation of the
array factor for scannable circular arrays in a uniform geometry considering the
optimization of the amplitude and phase excitation across the antenna elements. In this case,
it is studied the behavior of the array factor for the scanning range of 0°≤φ0≤360° with an
angular step of 30°. In this case, the objective function and the optimization process are set
as they were presented for the linear array case, with the considerations of the scanning
range and the symmetrical excitation aforementioned.
The results of using the GA for the design of scannable circular arrays are described in the
next section.

3.3 Results obtained for the design of phased circular arrays
The application of a phased circular array has sense when it is used to have a scanning
range in all azimuth plane (360°). Therefore, the method of GA’s was implemented to
evaluate the behavior of the array factor for the scanning range of 0°≤φ0≤360° with an
angular step of 30°. Next, some examples of the obtained results for the design of scannable
circular arrays are explained.
Figure 4 shows the behavior of the array factor for a scannable circular array with the
amplitude and phase excitation optimized by the GA. In this case, the separation between

 Advances in Evolutionary Algorithms

370

antenna elements is set as d=0.5λ, and it is illustrated the examples for a) N=12 and b) N=18.
The numerical values of the side lobe level, directivity, amplitude and phase perturbation
distributions for the array factor shown in Figure 4 are presented in the Table 2.

(a)

(b)

Figure 4. Behavior of the radiation pattern for a scannable circular array in a steering range
of 0°≤φ0≤360° with the amplitude and phase excitation optimized by the GA, a) N=12, b)
N=18.

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

371

As illustrated in the Figure 4 and the Table 2, the results of the side lobe level and the
directivity for the optimized design are surprising. Observing the results, the conventional
case of progressive phase excitation provides a SLL= -7.16 dB, and DIR=10.6 dB for a) N=12,
and a SLL= -7.9 dB, DIR=12 dB for b) N=18. For the case of the optimized design, it is
obtained a SLLmin= -12.17 dB, SLLmax= -13.68 dB and DIRmin=11.35 dB, DIRmax=11.56 dB for a)
N=12, and a SLLmin= -13.50 dB, SLLmax= -16.74 dB and DIRmin=12.96 dB, DIRmax=13.23 dB for
b) N=18.
These values mean a substantial improvement in the performance of the array for the design
optimized by the GA with respect to the conventional case, i.,e, it is obtained a substantial
improvement in the sense of the side lobe level and an improvement of about 1 dB in the
directivity, maintaining the same scanning range and the same aperture.

(a)

Table 2. Numerical values of the side lobe level (SLL), directivity (DIR), amplitude and
phase perturbation distribution for the array factor illustrated in Fig. 4, a) N=12, b) N=18.

 Advances in Evolutionary Algorithms

370

antenna elements is set as d=0.5λ, and it is illustrated the examples for a) N=12 and b) N=18.
The numerical values of the side lobe level, directivity, amplitude and phase perturbation
distributions for the array factor shown in Figure 4 are presented in the Table 2.

(a)

(b)

Figure 4. Behavior of the radiation pattern for a scannable circular array in a steering range
of 0°≤φ0≤360° with the amplitude and phase excitation optimized by the GA, a) N=12, b)
N=18.

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

371

As illustrated in the Figure 4 and the Table 2, the results of the side lobe level and the
directivity for the optimized design are surprising. Observing the results, the conventional
case of progressive phase excitation provides a SLL= -7.16 dB, and DIR=10.6 dB for a) N=12,
and a SLL= -7.9 dB, DIR=12 dB for b) N=18. For the case of the optimized design, it is
obtained a SLLmin= -12.17 dB, SLLmax= -13.68 dB and DIRmin=11.35 dB, DIRmax=11.56 dB for a)
N=12, and a SLLmin= -13.50 dB, SLLmax= -16.74 dB and DIRmin=12.96 dB, DIRmax=13.23 dB for
b) N=18.
These values mean a substantial improvement in the performance of the array for the design
optimized by the GA with respect to the conventional case, i.,e, it is obtained a substantial
improvement in the sense of the side lobe level and an improvement of about 1 dB in the
directivity, maintaining the same scanning range and the same aperture.

(a)

Table 2. Numerical values of the side lobe level (SLL), directivity (DIR), amplitude and
phase perturbation distribution for the array factor illustrated in Fig. 4, a) N=12, b) N=18.

 Advances in Evolutionary Algorithms

372

(b)

Table 2. (continued).

Now, if the results of the side lobe level and the directivity for the scannable circular array
optimized by the GA (for N=12, shown in the Table 2a) are compared with the linear array
case with conventional phase excitation (for N=12, shown in the Table 1c), we observe that
the values of the SLL and DIR are a little better for the circular array case with the great
advantage of having a scanning range several times bigger than the linear array case.

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

373

4. Discussions and open problems
The main objective of this chapter is to illustrate the application of an evolutionary
optimization technique in the problem of designing scannable antenna arrays with
geometry lineal and circular. A genetic algorithm is applied to evaluate the performance
of scannable linear and circular arrays optimizing the amplitude and phase excitations
across the antenna elements. The results obtained for the design of scannable linear and
circular arrays reveal that the performance of the phased array could be improved
substantially, with respect to the conventional case of progressive phase excitation, if the
amplitude and phase excitations are optimized in an adequate way by an evolutionary
algorithm.
There are many remaining open problems. In this case, we propose the following
questions:
• Which is the best evolutionary algorithm for the problem in terms of solution quality

and in terms of computation time?
• Given the algorithm, what is the best representation and the best genetic operators to

use?
• Is there a better way to model or represent the problem in such a way to avoid the

evaluation of the SLL and the DIR for each angle in the scanning range?
• What are the limits of performance for non-uniformly spaced phased arrays? How do

these limits compare with the ones obtained by uniformly spaced phased arrays?

5. Conclusions
This chapter illustrates how to model the design of phased linear and circular arrays with
the optimization of the amplitude and phase excitations for improving the performance of
the array in the sense of the side lobe level and the directivity.
In the case of the scannable linear arrays, the experimental results illustrated that the
design of scannable linear arrays with the amplitude and phase optimized with the use of
genetic algorithms could provide a lower side lobe level (<-20 dB), with respect to a
conventional phased linear array. In this case, these values of the side lobe level for the
optimized design case are achieved with very similar values of directivity and the same
aperture in both design cases.
For the case of the scannable circular arrays, the obtained results illustrated that the
optimization of the array could provide a substantial improvement in the side lobe level
and an improvement of about 1 dB in the directivity, with respect to the conventional case
of progressive phase excitation. These improvements in the performance of the array are
achieved maintaining the same scanning range, i.e., in all azimuth plane (360°), and the
same aperture.
Future research will be aimed at considering the application and performance evaluation of
new evolutionary algorithms in the design of different array geometries to understand
which algorithm fits best a given problem. Also, the answer for the proposed set of
questions will be investigated. Furthermore, it will be investigated the application of
evolutionary techniques in the optimization of different phased arrays considering the
feeding network in order to simplify the beam-forming network.

 Advances in Evolutionary Algorithms

372

(b)

Table 2. (continued).

Now, if the results of the side lobe level and the directivity for the scannable circular array
optimized by the GA (for N=12, shown in the Table 2a) are compared with the linear array
case with conventional phase excitation (for N=12, shown in the Table 1c), we observe that
the values of the SLL and DIR are a little better for the circular array case with the great
advantage of having a scanning range several times bigger than the linear array case.

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

373

4. Discussions and open problems
The main objective of this chapter is to illustrate the application of an evolutionary
optimization technique in the problem of designing scannable antenna arrays with
geometry lineal and circular. A genetic algorithm is applied to evaluate the performance
of scannable linear and circular arrays optimizing the amplitude and phase excitations
across the antenna elements. The results obtained for the design of scannable linear and
circular arrays reveal that the performance of the phased array could be improved
substantially, with respect to the conventional case of progressive phase excitation, if the
amplitude and phase excitations are optimized in an adequate way by an evolutionary
algorithm.
There are many remaining open problems. In this case, we propose the following
questions:
• Which is the best evolutionary algorithm for the problem in terms of solution quality

and in terms of computation time?
• Given the algorithm, what is the best representation and the best genetic operators to

use?
• Is there a better way to model or represent the problem in such a way to avoid the

evaluation of the SLL and the DIR for each angle in the scanning range?
• What are the limits of performance for non-uniformly spaced phased arrays? How do

these limits compare with the ones obtained by uniformly spaced phased arrays?

5. Conclusions
This chapter illustrates how to model the design of phased linear and circular arrays with
the optimization of the amplitude and phase excitations for improving the performance of
the array in the sense of the side lobe level and the directivity.
In the case of the scannable linear arrays, the experimental results illustrated that the
design of scannable linear arrays with the amplitude and phase optimized with the use of
genetic algorithms could provide a lower side lobe level (<-20 dB), with respect to a
conventional phased linear array. In this case, these values of the side lobe level for the
optimized design case are achieved with very similar values of directivity and the same
aperture in both design cases.
For the case of the scannable circular arrays, the obtained results illustrated that the
optimization of the array could provide a substantial improvement in the side lobe level
and an improvement of about 1 dB in the directivity, with respect to the conventional case
of progressive phase excitation. These improvements in the performance of the array are
achieved maintaining the same scanning range, i.e., in all azimuth plane (360°), and the
same aperture.
Future research will be aimed at considering the application and performance evaluation of
new evolutionary algorithms in the design of different array geometries to understand
which algorithm fits best a given problem. Also, the answer for the proposed set of
questions will be investigated. Furthermore, it will be investigated the application of
evolutionary techniques in the optimization of different phased arrays considering the
feeding network in order to simplify the beam-forming network.

 Advances in Evolutionary Algorithms

374

6. Acknowledgements
This work was supported by the Mexican National Science and Technology Council,
CONACyT, under grant J50839-Y, and the Science and Technology Council of Tamaulipas
Mexico (COTACYT) under grant 2007-C13-73901.

7. References
Ares-Pena, F. J., Rodriguez-Gonzalez, J. A., Villanueva-Lopez, E., & Rengarajan, S. R.

(1999). Genetic algorithms in the design and optimization of antenna array
patterns. IEEE Transactions on Antennas and Propagation, 47, 506-510.

Bae, J., Kim, K., & Pyo, C. (2005). Design of steerable linear and planar array geometry
with non-uniform spacing for side-lobe reduction. IEICE Transactions on
Communications, E88-B (1), 345-357.

Bae, J., Kim, K., Pyo, C., & Chae, J. S. (2004). Design of scannable non-uniform planar
array structure for maximum side-lobe reduction. ETRI Journal, 26 (1), 53-56.

Balanis, C. (2005). Antenna Theory-Analysis and Design. Third Edition, New York: Wiley.
Bray, M. G., Werner, D. H., Boeringer, D. W., & Machuga, D. W. (2002). Optimization of

thinned aperiodic linear phased arrays using genetic algorithms to reduce
grating lobes during scanning. IEEE Transactions on Antennas and Propagation, 50,
1732–1742.

Du, K. L. (2004). Pattern Analysis of Uniform Circular Array. IEEE Transactions on
Antennas and Propagation, 52 (4), 1125-1129.

Durrani, S., & Bialkowski, M. E. (2002). An investigation into the interference rejection
capability of a linear array in a wireless communications system. Microwave and
Optical Technology Letters, 35, 445-449.

Godara, L. C. (2002). Handbook of Antennas in Wireless Communications. CRC Press.
Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, Massachusetts.
Goto, N., & Tsunoda, Y. (1977). Sidelobe reduction of circular arrays with a constant

excitation amplitude. IEEE Transactions on Antennas and Propagation, 25 (6), 896-
898.

Hansen, R. C. (1998). Phased Array Antennas. New York: Wiley.
Haupt, R. (1994). Thinned arrays using genetic algorithms. IEEE Transactions on Antennas

and Propagation, 42, 993-999.
Haupt, R. L. (1995). An introduction to genetic algorithms for electromagnetics. IEEE

Antennas and Propagation Magazine, 37, 7-15.
Junker, G. P., Kuo, S. S., & Chen, C. H. (1998). Genetic algorithm optimization of antenna

arrays with variable interlement spacings. Proceedings of IEEE Antennas and
Propagation Society International Symposium: Vol. 1 (pp. 50-53), Atlanta GA.

Kurup, D., Himdi, M., & Rydberg, A. (2003). Synthesis of uniform amplitude unequally
spaced antenna arrays using the differential algorithm. IEEE Transactions on
Antennas and Propagation, 51, 2210-2217.

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

375

Lommi, A., Massa, A., Storti, E., & Trucco, A. (2002). Sidelobe reduction in sparse linear
arrays by genetic algorithms. Microwave and Optical Technology Letters, 32, 194-
196.

Mailloux, R. J. (2005). Phased array antenna handbook. Artech House, Boston, Second
edition.

Murino, V., Trucco, A., & Regazzoni, C. S. (1996). Synthesis of unequally spaced arrays
by simulated annealing. IEEE Transactions on Signal Processing, 44, 119–123.

Panduro, M. A., Covarrubias, D. H., Brizuela, C. A., & Marante, F. R. (2005). A multi-
objective approach in the linear antenna array design. AEU International Journal
of Electronics and Communications, 59 (4), 205-212.

Panduro, M. A. (2006). Optimization of non-uniform linear phased array using genetic
algorithms to provide maximum interference reduction in a wireless
communication system. Journal of the Chinese Institute of Engineers JCIE, 29 (7),
Special Issue: Communications, 1195-1201.

Panduro, M. A., Mendez, A. L., Dominguez, R., & Romero, G. (2006). Design of non-
uniform circular antenna arrays for side lobe reduction using the method of
genetic algorithms. AEU International Journal of Electronics and Communications,
60 (10), 713-717.

Rahmat-Samii, Y., & Michielssen, E. (1999). Electromagnetic Optimisation by Genetic
Algorithms. New York: Wiley-Interscience.

Soni, RA, Buehrer, R. M., & Benning, R. D. (2002). Intelligent antenna system for
cdma2000. IEEE Signal Processing Magazine, 19, 54-67.

Song, Y. S., Kwon, H. M., & Min, B. J. (2001). Computationally efficient smart antennas
for CDMA wireless communications. IEEE Transactions on Vehicular Technology,
50, 1613-1628.

Stutzman, W. L., & Thiele, G. A. (1998). Antenna Theory and Design. Wiley, second edition.
Tian, Y. B., & Qian, J. (2005). Improve the performance of a linear array by changing the

spaces among array elements in terms of genetic algorithm. IEEE Transactions on
Antennas and Propagation, 53 (7), 2226–2230.

Tsai, J. A., & Woerner, B. D. (2001). Adaptive beamforming of uniform circular arrays
(UCA) for wireless CDMA system. 35th Asimolar Conference, Pacific Grove, CA.

Tsai, J. A., Buehrer, R. M., & Woerner, B. D. (2004). BER performance of a uniform
circular array versus a uniform linear array in a mobile radio environment. IEEE
Transactions on Wireless Communications, 3, 695-700.

Vescovo, R. (1995). Constrained and Unconstrained Synthesis of Array Factor for
Circular Arrays. IEEE Transactions on Antennas and Propagation, 43 (12), 1405-
1410.

Watanabe, F., Goto, N., Nagayama, A., & Yoshida, G. (1980). A Pattern Synthesis of
Circular Arrays by Phase Adjustment. IEEE Transactions on Antennas and
Propagation, 28 (6), 857-863.

Weile, D. S., & Michielsen, E. (1997). Genetic algorithm optimization applied to
electromagnetics: A review. IEEE Antennas and Propagation Magazine, 45, 343-353.

 Advances in Evolutionary Algorithms

374

6. Acknowledgements
This work was supported by the Mexican National Science and Technology Council,
CONACyT, under grant J50839-Y, and the Science and Technology Council of Tamaulipas
Mexico (COTACYT) under grant 2007-C13-73901.

7. References
Ares-Pena, F. J., Rodriguez-Gonzalez, J. A., Villanueva-Lopez, E., & Rengarajan, S. R.

(1999). Genetic algorithms in the design and optimization of antenna array
patterns. IEEE Transactions on Antennas and Propagation, 47, 506-510.

Bae, J., Kim, K., & Pyo, C. (2005). Design of steerable linear and planar array geometry
with non-uniform spacing for side-lobe reduction. IEICE Transactions on
Communications, E88-B (1), 345-357.

Bae, J., Kim, K., Pyo, C., & Chae, J. S. (2004). Design of scannable non-uniform planar
array structure for maximum side-lobe reduction. ETRI Journal, 26 (1), 53-56.

Balanis, C. (2005). Antenna Theory-Analysis and Design. Third Edition, New York: Wiley.
Bray, M. G., Werner, D. H., Boeringer, D. W., & Machuga, D. W. (2002). Optimization of

thinned aperiodic linear phased arrays using genetic algorithms to reduce
grating lobes during scanning. IEEE Transactions on Antennas and Propagation, 50,
1732–1742.

Du, K. L. (2004). Pattern Analysis of Uniform Circular Array. IEEE Transactions on
Antennas and Propagation, 52 (4), 1125-1129.

Durrani, S., & Bialkowski, M. E. (2002). An investigation into the interference rejection
capability of a linear array in a wireless communications system. Microwave and
Optical Technology Letters, 35, 445-449.

Godara, L. C. (2002). Handbook of Antennas in Wireless Communications. CRC Press.
Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, Massachusetts.
Goto, N., & Tsunoda, Y. (1977). Sidelobe reduction of circular arrays with a constant

excitation amplitude. IEEE Transactions on Antennas and Propagation, 25 (6), 896-
898.

Hansen, R. C. (1998). Phased Array Antennas. New York: Wiley.
Haupt, R. (1994). Thinned arrays using genetic algorithms. IEEE Transactions on Antennas

and Propagation, 42, 993-999.
Haupt, R. L. (1995). An introduction to genetic algorithms for electromagnetics. IEEE

Antennas and Propagation Magazine, 37, 7-15.
Junker, G. P., Kuo, S. S., & Chen, C. H. (1998). Genetic algorithm optimization of antenna

arrays with variable interlement spacings. Proceedings of IEEE Antennas and
Propagation Society International Symposium: Vol. 1 (pp. 50-53), Atlanta GA.

Kurup, D., Himdi, M., & Rydberg, A. (2003). Synthesis of uniform amplitude unequally
spaced antenna arrays using the differential algorithm. IEEE Transactions on
Antennas and Propagation, 51, 2210-2217.

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques

375

Lommi, A., Massa, A., Storti, E., & Trucco, A. (2002). Sidelobe reduction in sparse linear
arrays by genetic algorithms. Microwave and Optical Technology Letters, 32, 194-
196.

Mailloux, R. J. (2005). Phased array antenna handbook. Artech House, Boston, Second
edition.

Murino, V., Trucco, A., & Regazzoni, C. S. (1996). Synthesis of unequally spaced arrays
by simulated annealing. IEEE Transactions on Signal Processing, 44, 119–123.

Panduro, M. A., Covarrubias, D. H., Brizuela, C. A., & Marante, F. R. (2005). A multi-
objective approach in the linear antenna array design. AEU International Journal
of Electronics and Communications, 59 (4), 205-212.

Panduro, M. A. (2006). Optimization of non-uniform linear phased array using genetic
algorithms to provide maximum interference reduction in a wireless
communication system. Journal of the Chinese Institute of Engineers JCIE, 29 (7),
Special Issue: Communications, 1195-1201.

Panduro, M. A., Mendez, A. L., Dominguez, R., & Romero, G. (2006). Design of non-
uniform circular antenna arrays for side lobe reduction using the method of
genetic algorithms. AEU International Journal of Electronics and Communications,
60 (10), 713-717.

Rahmat-Samii, Y., & Michielssen, E. (1999). Electromagnetic Optimisation by Genetic
Algorithms. New York: Wiley-Interscience.

Soni, RA, Buehrer, R. M., & Benning, R. D. (2002). Intelligent antenna system for
cdma2000. IEEE Signal Processing Magazine, 19, 54-67.

Song, Y. S., Kwon, H. M., & Min, B. J. (2001). Computationally efficient smart antennas
for CDMA wireless communications. IEEE Transactions on Vehicular Technology,
50, 1613-1628.

Stutzman, W. L., & Thiele, G. A. (1998). Antenna Theory and Design. Wiley, second edition.
Tian, Y. B., & Qian, J. (2005). Improve the performance of a linear array by changing the

spaces among array elements in terms of genetic algorithm. IEEE Transactions on
Antennas and Propagation, 53 (7), 2226–2230.

Tsai, J. A., & Woerner, B. D. (2001). Adaptive beamforming of uniform circular arrays
(UCA) for wireless CDMA system. 35th Asimolar Conference, Pacific Grove, CA.

Tsai, J. A., Buehrer, R. M., & Woerner, B. D. (2004). BER performance of a uniform
circular array versus a uniform linear array in a mobile radio environment. IEEE
Transactions on Wireless Communications, 3, 695-700.

Vescovo, R. (1995). Constrained and Unconstrained Synthesis of Array Factor for
Circular Arrays. IEEE Transactions on Antennas and Propagation, 43 (12), 1405-
1410.

Watanabe, F., Goto, N., Nagayama, A., & Yoshida, G. (1980). A Pattern Synthesis of
Circular Arrays by Phase Adjustment. IEEE Transactions on Antennas and
Propagation, 28 (6), 857-863.

Weile, D. S., & Michielsen, E. (1997). Genetic algorithm optimization applied to
electromagnetics: A review. IEEE Antennas and Propagation Magazine, 45, 343-353.

 Advances in Evolutionary Algorithms

376

Yan, K., & Lu, Y. (1997). Sidelobe reduction in array-pattern synthesis using genetic
algorithm. IEEE Transactions on Antennas and Propagation, 45, 1117–1122. 19

Design of an Efficient Genetic Algorithm to
Solve the Industrial Car Sequencing Problem

A. Zinflou1, C. Gagné2 and M. Gravel2

1 Département des sciences appliquées, Université du Québec à Chicoutimi,
2 Département d’informatique et de mathématique, Université du Québec à Chicoutimi,

1,2Canada

1. Introduction
In many industrial sectors, decision makers are faced with large and complex problems that
are often multi-objective. Many of these problems may be expressed as a combinatorial
optimization problem in which we define one or more objective functions that we are trying
to optimize. Thus, the car sequencing problem in an assembly line is a well known
combinatorial optimization problem that cars manufacturers face. This problem involves
scheduling cars along an assembly line composed of three consecutive shops: body welding
and construction, painting and assembly. In the literature, this problem is most often treated
as a single objective problem and only the capacity constraints of the assembly shop are
considered (Dincbas et al., 1988). In this workshop, each car is characterized by a set of
different options and the workstations where each option is installed are designed to handle
a certain percentage of cars requiring the same options. To smooth the workload at the
critical assembly workstations, cars requiring high work content must be dispersed
throughout the production sequence. Industrial car sequencing formulation subdivides the
capacity constraints into two categories, that are the capacity constraints linked to the high-
priority options and the capacity constraints linked to the low-priority options.
However, the reality of industrial production does not only take into account the assembly
shop requirements. The industrial formulation proposed by French automobile
manufacturer Renault, in the context of the ROADEF 2005 Challenge, also takes into account
the paint shop requirements. In this workshop, the minimization of the amount of solvent
used to purge the painting nozzles for colour changeovers, or when a known maximum
number of vehicle bodies of the same colour have been painted, is an important objective to
consider. Indeed, long sequences of cars of the same colour tend to render visual quality
controls inaccurate. To ensure this quality control, the number of cars of the same colour
must not exceed an upper limit.
The industrial car sequencing problem (ICSP) is thus a multi-objective problem in nature,
with three conflicting objectives to minimize. In the assembly shop, one tries to minimize
the number of violations of capacity constraints related to high-priority options (HPO) and
to low-priority options (LPO). In the paint shop, one tries to minimize the number of colour
changes (COLOUR). In the 2005 ROADEF Challenge, the Renault automobile manufacturer
proposes to tackle the problem by treating the three objectives lexicographically.

 Advances in Evolutionary Algorithms

376

Yan, K., & Lu, Y. (1997). Sidelobe reduction in array-pattern synthesis using genetic
algorithm. IEEE Transactions on Antennas and Propagation, 45, 1117–1122. 19

Design of an Efficient Genetic Algorithm to
Solve the Industrial Car Sequencing Problem

A. Zinflou1, C. Gagné2 and M. Gravel2

1 Département des sciences appliquées, Université du Québec à Chicoutimi,
2 Département d’informatique et de mathématique, Université du Québec à Chicoutimi,

1,2Canada

1. Introduction
In many industrial sectors, decision makers are faced with large and complex problems that
are often multi-objective. Many of these problems may be expressed as a combinatorial
optimization problem in which we define one or more objective functions that we are trying
to optimize. Thus, the car sequencing problem in an assembly line is a well known
combinatorial optimization problem that cars manufacturers face. This problem involves
scheduling cars along an assembly line composed of three consecutive shops: body welding
and construction, painting and assembly. In the literature, this problem is most often treated
as a single objective problem and only the capacity constraints of the assembly shop are
considered (Dincbas et al., 1988). In this workshop, each car is characterized by a set of
different options and the workstations where each option is installed are designed to handle
a certain percentage of cars requiring the same options. To smooth the workload at the
critical assembly workstations, cars requiring high work content must be dispersed
throughout the production sequence. Industrial car sequencing formulation subdivides the
capacity constraints into two categories, that are the capacity constraints linked to the high-
priority options and the capacity constraints linked to the low-priority options.
However, the reality of industrial production does not only take into account the assembly
shop requirements. The industrial formulation proposed by French automobile
manufacturer Renault, in the context of the ROADEF 2005 Challenge, also takes into account
the paint shop requirements. In this workshop, the minimization of the amount of solvent
used to purge the painting nozzles for colour changeovers, or when a known maximum
number of vehicle bodies of the same colour have been painted, is an important objective to
consider. Indeed, long sequences of cars of the same colour tend to render visual quality
controls inaccurate. To ensure this quality control, the number of cars of the same colour
must not exceed an upper limit.
The industrial car sequencing problem (ICSP) is thus a multi-objective problem in nature,
with three conflicting objectives to minimize. In the assembly shop, one tries to minimize
the number of violations of capacity constraints related to high-priority options (HPO) and
to low-priority options (LPO). In the paint shop, one tries to minimize the number of colour
changes (COLOUR). In the 2005 ROADEF Challenge, the Renault automobile manufacturer
proposes to tackle the problem by treating the three objectives lexicographically.

 Advances in Evolutionary Algorithms

378

Among the resolution methods proposed by the participants of the challenge, one finds
essentially neighbourhood search methods as simulated annealing, iterative tabu search,
iterative local search and variable neighbourhood search (Briant et al., 2007; Cordeau et al.,
2007; Estellon et al., 2007; Ribiero et al., 2007a; Gavranović, 2007; Benoist, 2007), an ant colony
optimization algorithm (ACO) (Gagné et al., 2006) and a genetic algorithm (GA) (Jaszkiewicz
et al., 2004). Since the work of all the participating teams was not published, the previous
enumeration is not exhaustive. After the challenge, other authors proposed to solve the
problem using an integer linear programming model (Estellon et al., 2005; Gagné et al., 2006;
Prandtstetter and Raidl, 2007), an algorithm hybridizing variable neighbourhood search and
integer linear programming (Prandtstetter and Raidl, 2007) or an iterative local search
approach (Ribeiro et al., 2007b).
One may note that few authors proposed GAs to solve this multi-objective problem, except
for Jaszkiewicz et al. (Jaszkiewicz et al., 2004). Moreover, this team was not amongst the
twelve finalists of the 2005 ROADEF Challenge that included 55 teams from 15 countries at
the beginning. As for the ICSP, one may only find the GAs proposed by Warwick and Tsang
(1995), Terada et al. (2006) and Zinflou et al. (2007) in the literature for the standard version
of the car sequencing problem. Among them, only Zinflou et al. (2007) succeeded in
proposing an efficient GA, suggesting that this metaheuristic is not well suited to deal with
the specificities of this problem.
The main purpose of this chapter is to show that GAs can be efficient approaches for solving
the ICSP when the different mechanisms of the algorithm are specially design to deal with
the specificities of the problem. To achieve this, we present the different choices made
during the design of the genetic operators. In particular, we propose two new crossover
operators dedicated to the multi-objective characteristic of the problem. The performance of
the proposed approaches is assessed experimentally using the different instances of the 2005
ROADEF Challenge and compared with the best results obtained during the challenge.
This chapter is organized as follows: Section 2 briefly defines the industrial car sequencing
problem and Section 3 describes the new crossover operators proposed for this multi-
objective problem. The basic features of the proposed GA are presented in Section 4.
Section 5 is dedicated to computational experiments and comparisons with previous results
from literature. Finally, the conclusion of this research work is given in Section 6.

2. The industrial car sequencing problem
This section provides the main elements to describe the ICSP. The reader may consult
Nguyen & Cung (2005) and Solnon et al. (2007) for a complete description of the problem.
On each production day, customer orders are sent in real time to the assembly plant. The
daily task of the planners is then: (1) to assign a production day to each ordered vehicle,
according to production line capacities and delivery dates that were promised to customers;
and (2) to schedule the cars within each production day while satisfying as many of the
requirements as possible of the three manufacturing workshops, as illustrated in Figure 1.
The sequence thus found is then applied to the whole assembly line.
In the definition of ICSP proposed during the 2005 ROADEF Challenge, the Renault car
manufacturer stated that technologies used in the plants are such that the body shop does
not set requirements for the daily schedule. The ICPS then consists in scheduling a set of
cars (Nb_cars) for a production day taking into consideration the paint shop and assembly
shop requirements.

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

379

Body Paint Assembly

Fig. 1. The three workshops of the assembly line (Nguyen & Cung, 2005)

In the paint shop, production scheduler tries to group cars by paint colour to minimize the
number of colour changes. Painting nozzles must be purged with solvent when changing
car colour, or after a maximum number of cars (rlmax) painted the same colour, to ensure
quality. Each purge requires a colour change. Then, each solution with more consecutive
cars than rlmax to be painted the same colour must be considered unfeasible.
In the assembly shop, many elements are added to the painted body to complete the car
assembly. Each car is characterized by a set of different options O for which the
workstations, where these options are installed, are designed to handle up to a certain
percentage of the cars requiring the same options. These capacity constraints may be
expressed by a ratio r0/s0, that means that any consecutive subsequence of s cars must
include at most r cars with option o. Cars requiring the same configuration of options must
be dispersed throughout the production sequence to smooth out the workload at various
critical workstations. If, for a subsequence of length s, it is impossible to satisfy the capacity
constraint for option o, the number of cars that exceeds r defines what is called conflicts or
violations. As mentioned previously, the ICSP subdivides the capacity constraints of the
assembly shop into two groups; the constraints related to the high-priority options and
those related to the low-priority options. In this shop, production scheduler tries to
optimize two different objectives: the number of capacity constraint violations related to the
high-priority options (HPO) and the number of capacity constraints violations related to the
low-priority options (LPO).
We choose to cluster the cars requiring the same configuration of high-priority and low-
priority options into V car classes, for which we know the exact number to produce (cv).
These quantities represent the production constraints of the problem. Table 1(a) shows an
example of the industrial problem for producing 25 cars (Nb_cars) having 5 options (O) with
6 car classes (V) and a possibility of 4 different colours across each class. One defines a
production sequence Y by two vectors representing respectively the car classes (Classes) and
the car colour codes (Colours) as shown in Figure 1(b). A production sequence will be
designated by Y = {Classes/Colours} in the remainder of the chapter and the element at
position i of the sequence will be defined by Y(i) = Classes(i)/Colours(i).
Another interesting feature of the ICSP is that it links the different production days. Thus,
the evaluation of a solution must take into account the end of the previous production day
and must extrapolate the minimum number of conflicts generated with the next production
day. Similarly, a colour change will be added if the colour of the first car of the current day
is different from the colour of the last car of the previous day.
To evaluate the number of conflicts for each option, we first construct binary matrix S of size
O * Nb_cars using solution vector Y. We have Soi = 1 if the class of car assigned to position i
of the solution vector requires option o, otherwise it is equal to 0. The decomposition of the

 Advances in Evolutionary Algorithms

378

Among the resolution methods proposed by the participants of the challenge, one finds
essentially neighbourhood search methods as simulated annealing, iterative tabu search,
iterative local search and variable neighbourhood search (Briant et al., 2007; Cordeau et al.,
2007; Estellon et al., 2007; Ribiero et al., 2007a; Gavranović, 2007; Benoist, 2007), an ant colony
optimization algorithm (ACO) (Gagné et al., 2006) and a genetic algorithm (GA) (Jaszkiewicz
et al., 2004). Since the work of all the participating teams was not published, the previous
enumeration is not exhaustive. After the challenge, other authors proposed to solve the
problem using an integer linear programming model (Estellon et al., 2005; Gagné et al., 2006;
Prandtstetter and Raidl, 2007), an algorithm hybridizing variable neighbourhood search and
integer linear programming (Prandtstetter and Raidl, 2007) or an iterative local search
approach (Ribeiro et al., 2007b).
One may note that few authors proposed GAs to solve this multi-objective problem, except
for Jaszkiewicz et al. (Jaszkiewicz et al., 2004). Moreover, this team was not amongst the
twelve finalists of the 2005 ROADEF Challenge that included 55 teams from 15 countries at
the beginning. As for the ICSP, one may only find the GAs proposed by Warwick and Tsang
(1995), Terada et al. (2006) and Zinflou et al. (2007) in the literature for the standard version
of the car sequencing problem. Among them, only Zinflou et al. (2007) succeeded in
proposing an efficient GA, suggesting that this metaheuristic is not well suited to deal with
the specificities of this problem.
The main purpose of this chapter is to show that GAs can be efficient approaches for solving
the ICSP when the different mechanisms of the algorithm are specially design to deal with
the specificities of the problem. To achieve this, we present the different choices made
during the design of the genetic operators. In particular, we propose two new crossover
operators dedicated to the multi-objective characteristic of the problem. The performance of
the proposed approaches is assessed experimentally using the different instances of the 2005
ROADEF Challenge and compared with the best results obtained during the challenge.
This chapter is organized as follows: Section 2 briefly defines the industrial car sequencing
problem and Section 3 describes the new crossover operators proposed for this multi-
objective problem. The basic features of the proposed GA are presented in Section 4.
Section 5 is dedicated to computational experiments and comparisons with previous results
from literature. Finally, the conclusion of this research work is given in Section 6.

2. The industrial car sequencing problem
This section provides the main elements to describe the ICSP. The reader may consult
Nguyen & Cung (2005) and Solnon et al. (2007) for a complete description of the problem.
On each production day, customer orders are sent in real time to the assembly plant. The
daily task of the planners is then: (1) to assign a production day to each ordered vehicle,
according to production line capacities and delivery dates that were promised to customers;
and (2) to schedule the cars within each production day while satisfying as many of the
requirements as possible of the three manufacturing workshops, as illustrated in Figure 1.
The sequence thus found is then applied to the whole assembly line.
In the definition of ICSP proposed during the 2005 ROADEF Challenge, the Renault car
manufacturer stated that technologies used in the plants are such that the body shop does
not set requirements for the daily schedule. The ICPS then consists in scheduling a set of
cars (Nb_cars) for a production day taking into consideration the paint shop and assembly
shop requirements.

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

379

Body Paint Assembly

Fig. 1. The three workshops of the assembly line (Nguyen & Cung, 2005)

In the paint shop, production scheduler tries to group cars by paint colour to minimize the
number of colour changes. Painting nozzles must be purged with solvent when changing
car colour, or after a maximum number of cars (rlmax) painted the same colour, to ensure
quality. Each purge requires a colour change. Then, each solution with more consecutive
cars than rlmax to be painted the same colour must be considered unfeasible.
In the assembly shop, many elements are added to the painted body to complete the car
assembly. Each car is characterized by a set of different options O for which the
workstations, where these options are installed, are designed to handle up to a certain
percentage of the cars requiring the same options. These capacity constraints may be
expressed by a ratio r0/s0, that means that any consecutive subsequence of s cars must
include at most r cars with option o. Cars requiring the same configuration of options must
be dispersed throughout the production sequence to smooth out the workload at various
critical workstations. If, for a subsequence of length s, it is impossible to satisfy the capacity
constraint for option o, the number of cars that exceeds r defines what is called conflicts or
violations. As mentioned previously, the ICSP subdivides the capacity constraints of the
assembly shop into two groups; the constraints related to the high-priority options and
those related to the low-priority options. In this shop, production scheduler tries to
optimize two different objectives: the number of capacity constraint violations related to the
high-priority options (HPO) and the number of capacity constraints violations related to the
low-priority options (LPO).
We choose to cluster the cars requiring the same configuration of high-priority and low-
priority options into V car classes, for which we know the exact number to produce (cv).
These quantities represent the production constraints of the problem. Table 1(a) shows an
example of the industrial problem for producing 25 cars (Nb_cars) having 5 options (O) with
6 car classes (V) and a possibility of 4 different colours across each class. One defines a
production sequence Y by two vectors representing respectively the car classes (Classes) and
the car colour codes (Colours) as shown in Figure 1(b). A production sequence will be
designated by Y = {Classes/Colours} in the remainder of the chapter and the element at
position i of the sequence will be defined by Y(i) = Classes(i)/Colours(i).
Another interesting feature of the ICSP is that it links the different production days. Thus,
the evaluation of a solution must take into account the end of the previous production day
and must extrapolate the minimum number of conflicts generated with the next production
day. Similarly, a colour change will be added if the colour of the first car of the current day
is different from the colour of the last car of the previous day.
To evaluate the number of conflicts for each option, we first construct binary matrix S of size
O * Nb_cars using solution vector Y. We have Soi = 1 if the class of car assigned to position i
of the solution vector requires option o, otherwise it is equal to 0. The decomposition of the

 Advances in Evolutionary Algorithms

380

Classes vector of solution Y from Table 1 into its different options to obtain S is given in
Table 2. In Table 2(a), we also report the end of the previous production day sequence to
allow to evaluate the number of conflicts related to the link of these two production days. In
Table 2(b), we also evaluate the solution based on the next day, assuming cars without any
option.

 Class #
o r s 1 2 3 4 5 6
1 1 2 0 1 1 0 0 0
2 2 5 1 0 1 0 1 1
3 1 3 0 1 0 0 0 0
4 3 5 0 0 0 1 0 1
5 2 3 0 1 1 0 1 0

cv 5 5 4 4 3 4
1 2 1 1 2 1 1
2 1 1 0 2 1 1
3 1 3 2 0 0 2

C
o
l

 o #
u
r 4 1 0 1 0 1 0

(a)
Y 1 2 3 4 5 6 ….. 21 22 23 24 25

Classes 3 5 5 4 6 4 3 1 4 5 1
Colours 4 4 2 2 2 2 3 3 1 1 1

(b)

Table 1. Example and solution of an ICSP

 Previous day (D-1) Current day (D)
Positions -5 -4 -3 -2 -1 1 2 3 4 5 6 ………

Classes 4 1 4 4 2 3 5 5 4 6 4
1/2 0 0 0 0 1 1 0 0 0 0 0
2/5 0 1 0 0 0 1 1 1 0 1 0
1/3 0 0 0 0 1 0 0 0 0 0 0
3/5 1 0 1 1 0 0 0 0 1 1 1

O
P
T
I
O
N

2/3 0 0 0 0 1 1 1 1 0 0 0
(a)

 Current day (D) Next day (D+1)
Positions …. 21 22 23 24 25 26 27 28 29 30

Classes 3 1 4 5 1
1/2 1 0 0 0 0 0 0 0 0 0
2/5 1 1 0 1 1 0 0 0 0 0
1/3 0 0 0 0 0 0 0 0 0 0
3/5 0 0 1 0 0 0 0 0 0 0

O
P
T
I
O
N

2/3 1 0 0 1 0 0 0 0 0 0
(b)

Table 2. Evaluation of the solution shown in Table 1

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

381

For the current production day D, options 1, 3 and 4 do not cause any violation in this part
of the solution. Indeed, for each of these three options, we never have a subsequence of size
s, with more than r cars with the option. However, for option 2, there are two conflicts
located between positions 1 to 5 since we have 4 cars having the option while the capacity
constraint limits the maximum to 2. In addition, there is one conflict located between
positions 2 to 6, another conflict between positions 20 to 24 and two other conflicts between
positions 21 to 25, since capacity constraint 2/5 is not satisfied. For option 5, we also have
one conflict as capacity constraint 2/3 is not satisfied between positions 1 to 3.
For the link with previous production day D-1, we have one conflict located between positions
-1 to 1 for option 1 , two conflicts located between positions -2 to 3 and positions -1 to 4 for
option 2, and another conflict between positions -1 to 2 for option 5. For the link with next
production day D+1, we only have one conflict located between positions 22 to 26 for option 2.
Considering that the first three options are high-priority and that the other two are low-
priority, we therefore have 10 conflicts for the HPO objective and 2 conflicts for the LPO
objective for this solution Y. Then, we only have to count the number of colour changes
(COLOUR) to complete the evaluation of solution Y.
The 2005 ROADEF Challenge proposed to tackle the problem using a weighted sum method
that assigns different weights w1, w2 and w3 to each objective according to their priority
level, in order to evaluate a solution Y. The quality of solution Y is then given by:

 F(Y)=w1*obj1+w2*obj2+w3*obj3 (1)

where obj1, obj2 and obj3 correspond respectively to the values obtained for a solution Y on
each objective according to the priority level assigned. The weights w1, w2 and w3 are
respectively set at 1000000, 1000 and 1 (Nguyen & Cung, 2005). According to the different
configurations of the Renault plants, the three following objective hierarchies are possible:
HPO-COLOUR-LPO, HPO-LPO-COLOUR and COLOUR-HPO-LPO.

3. Introducing problem knowledge in crossover design for the industrial car
sequencing problem
Traditional crossover operators are not well suited to deal with the specificities of the car
sequencing problem. Indeed, Warwick and Tsang (1995), and Terada et al. (2006) used such
operators to solve the single objective car sequencing problem found in the literature and
their results were not competitive. However, Zinflou et al. (2007) obtained very competitive
results using two highly-specialized crossover operators for the same problem.
For the multi-objective ICSP, Jaszkiewicz et al. (2004) proposed to use a common sequence
preserving crossover. Basically, the purpose of this operator is to create an offspring using
the common maximum subsequence of the indices of the groups in two given solutions
(parents). However, even if the results of this approach are promising, they did not allow
the authors to be part of the twelve finalists during the 2005 ROADEF Challenge.
The crossover operators proposed by Zinflou et al. (2007) for the single objective car
sequencing problem, called non-conflict position crossover (NCPX) and interest based crossover
(IBX), use problem-knowledge to perform recombination. The concept used by NCPX and
IBX crossovers to use problem-knowledge is called interest. The idea behind this concept is
to penalize the conflicting car classes, by counting the number of new conflicts caused by the
addition of these classes as a cost. Conversely, if the addition of a car class does not cause

 Advances in Evolutionary Algorithms

380

Classes vector of solution Y from Table 1 into its different options to obtain S is given in
Table 2. In Table 2(a), we also report the end of the previous production day sequence to
allow to evaluate the number of conflicts related to the link of these two production days. In
Table 2(b), we also evaluate the solution based on the next day, assuming cars without any
option.

 Class #
o r s 1 2 3 4 5 6
1 1 2 0 1 1 0 0 0
2 2 5 1 0 1 0 1 1
3 1 3 0 1 0 0 0 0
4 3 5 0 0 0 1 0 1
5 2 3 0 1 1 0 1 0

cv 5 5 4 4 3 4
1 2 1 1 2 1 1
2 1 1 0 2 1 1
3 1 3 2 0 0 2

C
o
l

 o #
u
r 4 1 0 1 0 1 0

(a)
Y 1 2 3 4 5 6 ….. 21 22 23 24 25

Classes 3 5 5 4 6 4 3 1 4 5 1
Colours 4 4 2 2 2 2 3 3 1 1 1

(b)

Table 1. Example and solution of an ICSP

 Previous day (D-1) Current day (D)
Positions -5 -4 -3 -2 -1 1 2 3 4 5 6 ………

Classes 4 1 4 4 2 3 5 5 4 6 4
1/2 0 0 0 0 1 1 0 0 0 0 0
2/5 0 1 0 0 0 1 1 1 0 1 0
1/3 0 0 0 0 1 0 0 0 0 0 0
3/5 1 0 1 1 0 0 0 0 1 1 1

O
P
T
I
O
N

2/3 0 0 0 0 1 1 1 1 0 0 0
(a)

 Current day (D) Next day (D+1)
Positions …. 21 22 23 24 25 26 27 28 29 30

Classes 3 1 4 5 1
1/2 1 0 0 0 0 0 0 0 0 0
2/5 1 1 0 1 1 0 0 0 0 0
1/3 0 0 0 0 0 0 0 0 0 0
3/5 0 0 1 0 0 0 0 0 0 0

O
P
T
I
O
N

2/3 1 0 0 1 0 0 0 0 0 0
(b)

Table 2. Evaluation of the solution shown in Table 1

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

381

For the current production day D, options 1, 3 and 4 do not cause any violation in this part
of the solution. Indeed, for each of these three options, we never have a subsequence of size
s, with more than r cars with the option. However, for option 2, there are two conflicts
located between positions 1 to 5 since we have 4 cars having the option while the capacity
constraint limits the maximum to 2. In addition, there is one conflict located between
positions 2 to 6, another conflict between positions 20 to 24 and two other conflicts between
positions 21 to 25, since capacity constraint 2/5 is not satisfied. For option 5, we also have
one conflict as capacity constraint 2/3 is not satisfied between positions 1 to 3.
For the link with previous production day D-1, we have one conflict located between positions
-1 to 1 for option 1 , two conflicts located between positions -2 to 3 and positions -1 to 4 for
option 2, and another conflict between positions -1 to 2 for option 5. For the link with next
production day D+1, we only have one conflict located between positions 22 to 26 for option 2.
Considering that the first three options are high-priority and that the other two are low-
priority, we therefore have 10 conflicts for the HPO objective and 2 conflicts for the LPO
objective for this solution Y. Then, we only have to count the number of colour changes
(COLOUR) to complete the evaluation of solution Y.
The 2005 ROADEF Challenge proposed to tackle the problem using a weighted sum method
that assigns different weights w1, w2 and w3 to each objective according to their priority
level, in order to evaluate a solution Y. The quality of solution Y is then given by:

 F(Y)=w1*obj1+w2*obj2+w3*obj3 (1)

where obj1, obj2 and obj3 correspond respectively to the values obtained for a solution Y on
each objective according to the priority level assigned. The weights w1, w2 and w3 are
respectively set at 1000000, 1000 and 1 (Nguyen & Cung, 2005). According to the different
configurations of the Renault plants, the three following objective hierarchies are possible:
HPO-COLOUR-LPO, HPO-LPO-COLOUR and COLOUR-HPO-LPO.

3. Introducing problem knowledge in crossover design for the industrial car
sequencing problem
Traditional crossover operators are not well suited to deal with the specificities of the car
sequencing problem. Indeed, Warwick and Tsang (1995), and Terada et al. (2006) used such
operators to solve the single objective car sequencing problem found in the literature and
their results were not competitive. However, Zinflou et al. (2007) obtained very competitive
results using two highly-specialized crossover operators for the same problem.
For the multi-objective ICSP, Jaszkiewicz et al. (2004) proposed to use a common sequence
preserving crossover. Basically, the purpose of this operator is to create an offspring using
the common maximum subsequence of the indices of the groups in two given solutions
(parents). However, even if the results of this approach are promising, they did not allow
the authors to be part of the twelve finalists during the 2005 ROADEF Challenge.
The crossover operators proposed by Zinflou et al. (2007) for the single objective car
sequencing problem, called non-conflict position crossover (NCPX) and interest based crossover
(IBX), use problem-knowledge to perform recombination. The concept used by NCPX and
IBX crossovers to use problem-knowledge is called interest. The idea behind this concept is
to penalize the conflicting car classes, by counting the number of new conflicts caused by the
addition of these classes as a cost. Conversely, if the addition of a car class does not cause

 Advances in Evolutionary Algorithms

382

new conflicts, then this is counted as a profit equal to the difficulty of class Dv as proposed
by Gottlieb et al. (2003). Basically, NCPX crossover tries to minimize the number of relocated
cars by emphasizing non conflict position information from both parents. The IBX crossover,
in turn, rather tries to keep the cars in the same area of the chromosome as it occupied with
one of the two parents. For more details about these two crossover operators, the reader
may consult Zinflou et al. (2007).
The following sections will show how to adapt the two NCPX and IBX crossover operators
to the multi-objective ICSP.

3.1 Adaptation of the interest calculation for the industrial car sequencing problem
To present the different adaptation of the crossover operators, we must redefine the interest
concept to be able to take into account the multi-objective nature of the ICSP. We define the
total weighted interest (TWI) to establish if it is interesting to add a car of class v, of colour
colour at a position i in the sequence. The total weighted interest is expressed by:

 + + TWI I * w I * w I * wv,i,HPO HPO v,i,COLOUR COLOUR v,i,LPO LPOv,colour,i = (2)

where wHPO, wCOLOUR and wLPO correspond respectively to the weight of each objective
(1000000, 1000 or 1 according to their priority levels) and Iv,i,HPO, Iv,i,COLOUR and Iv,i,LPO
correspond to the interest in inserting a car of class v at the position i for each objective. The
interest concept may be defined according to each objective.
According to Equation 3, the interest Iv,i,COLOUR to insert a car of class v at position i to
minimize objective COLOUR is set at 1 if it is possible to complete the current colour
subsequence with a car of class v. If it isn’t possible, the interest is set to -1.

 (1) max
, ,

 1 if () 0 & _

1 otherwise

colour i
v i COLOUR

nb v run length rl
I −

⎧ > <⎪=⎨
⎪−⎩

 (3)

nb(vcolour(i-1)) indicates the number of cars of class v painted the same colour as the car in
position i-1, run_length indicates the size of the consecutive subsequence of cars of the same
colour as the car in position i-1 and rlmax indicates the maximum length of a subsequence of
the same colour. This notion serves to favour the classes of cars that have the same colour as
the car located in the previous position, to lengthen the colour subsequence to the maximum
size. Conversely, we penalize the car classes for which the addition implies a colour change.
Iv,i,HPO and Iv,i,LPO indicate the interest to insert a car of class v at position i in the sequence to
minimize objectives HPO and LPO respectively. According to Equation 4, the interest
corresponds to the difficulty for class v if the addition of this class does not cause new
conflicts respectively on high-priority options (k = HPO) and on low-priority options (k =
LPO). In the opposite case, we will define the cost that corresponds to the number of new
conflicts produced on the high-priority or low-priority options, to discourage the insertion
of this class at position i.

, , ,
, ,

, ,

if 0

 otherwise

v k v i k
v i k

v i k

D N bN ew C onflicts
I

NbN ew Conflicts

⎧ =⎪= ⎨
⎪−⎩

(4)

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

383

NbNewConflictsv,i,k corresponds to the number of new conflicts for the high-priority options
(k = HPO) or for the low-priority options (k = LPO) caused by the addition of a car of class v
at position i. Dv,k indicates the difficulty of class v for high-priority options (k = HPO) and
for low-priority options (k = LPO). The idea behind this concept is simply to penalize the
classes of cars for which the addition leads to additional conflicts for the high-priority or
low-priority options, on considering this number of new conflicts as a cost. Conversely, if
the addition of a class does not cause new conflicts on the options, we then evaluate the
benefit of placing this class according to its difficulty. Gottlieb et al. (2003) established that
the difficulty of a class of cars v for high-priority or low-priority options (Dv,k) is the sum of
the utilization rates of the high-priority options (k = HPO) or low-priority options (k = LPO)
that compose that class. The utilization rate of an option may be expressed as the ratio
between the number of cars requiring this option and the maximum number of cars that
may have this option such that the ro/so constraint is satisfied.

3.2 The multi-objective NCPX crossover operator (NCPXMO)
The NCPXMO procedure for the ICSP is inspired by the NCPX crossover proposed for the
single objective car sequencing problem (Zinflou et al., 2007) and is carried out in two main
steps. Step 1 consists of selecting a parent P1 and establishing in this chromosome the
number of positions that are not part of a conflict for objectives HPO (nbposHPO) and LPO
(nbposLPO) and the number of positions where there is no colour change (nbposCOLOUR). Then,
we randomly select a number nbgk between 0 and nbposk for each objective k (k = HPO, LPO,
COLOUR). These three numbers are used to determine, for each objective k, the number of
"good" genes that will maintain in offspring E1 the same position they had in P1. To take
into account the priority of the objectives, we must make sure that the number of "good"
genes kept for the main objective is greater or equal to the number of "good" genes selected
for the secondary objective, and so forth. Once we establish these numbers, starting position
(sPos) that is between 1 and Nb_cars, is randomly selected in the offspring to be created. The
process of copying the good genes of P1 to the offspring being created starts from sPos by
first considering the main objective. If we reach the end of the chromosome and the number
of genes copied for objective k is less than its corresponding nbgk, the copy process restarts
this time from the beginning of the offspring up to sPos-1. The same process is repeated for
the other objectives, taking into account the already copied genes. Thereafter, the remainder
of the genes from P1 are used to constitute a non-orderly list L for the cars that must still be
placed. We then randomly determine a position (Pos) from which the remaining positions
of chromosome E1 will be completed.
In Step 2, the cars in L are sorted according to their TWI. In case of a tie in TWI, if one of the
cars is in P2 at the position to be completed, this car is then selected. In the opposite case,
we randomly select a car amongst those of equal ranking.
The operation of this cross operator is illustrated in Figure 2 for two parents P1 =
{21352446/62224622} and P2 = {32621454/26242622} with the following objective hierarchy
HPO-LPO-COLOUR. Let us assume that the evaluation of P1 gives 5 positions without
conflicts for objective HPO and for objective LPO (expressed by 0 in vectors “conflicts on
HPO and LPO” below chromosome P1), 4 positions where there is no colour change
(expressed by 0 in vector the “colour changes” below chromosome P1) and the values for
numbers nbgHPO = 4, nbgLPO =2, nbgCOLOUR =1 and sPos = 3 by random setting. Starting with
sPos and considering objective HPO, we may copy genes 5/2, 4/6, 4/2 and 2/6 in the

 Advances in Evolutionary Algorithms

382

new conflicts, then this is counted as a profit equal to the difficulty of class Dv as proposed
by Gottlieb et al. (2003). Basically, NCPX crossover tries to minimize the number of relocated
cars by emphasizing non conflict position information from both parents. The IBX crossover,
in turn, rather tries to keep the cars in the same area of the chromosome as it occupied with
one of the two parents. For more details about these two crossover operators, the reader
may consult Zinflou et al. (2007).
The following sections will show how to adapt the two NCPX and IBX crossover operators
to the multi-objective ICSP.

3.1 Adaptation of the interest calculation for the industrial car sequencing problem
To present the different adaptation of the crossover operators, we must redefine the interest
concept to be able to take into account the multi-objective nature of the ICSP. We define the
total weighted interest (TWI) to establish if it is interesting to add a car of class v, of colour
colour at a position i in the sequence. The total weighted interest is expressed by:

 + + TWI I * w I * w I * wv,i,HPO HPO v,i,COLOUR COLOUR v,i,LPO LPOv,colour,i = (2)

where wHPO, wCOLOUR and wLPO correspond respectively to the weight of each objective
(1000000, 1000 or 1 according to their priority levels) and Iv,i,HPO, Iv,i,COLOUR and Iv,i,LPO
correspond to the interest in inserting a car of class v at the position i for each objective. The
interest concept may be defined according to each objective.
According to Equation 3, the interest Iv,i,COLOUR to insert a car of class v at position i to
minimize objective COLOUR is set at 1 if it is possible to complete the current colour
subsequence with a car of class v. If it isn’t possible, the interest is set to -1.

 (1) max
, ,

 1 if () 0 & _

1 otherwise

colour i
v i COLOUR

nb v run length rl
I −

⎧ > <⎪=⎨
⎪−⎩

 (3)

nb(vcolour(i-1)) indicates the number of cars of class v painted the same colour as the car in
position i-1, run_length indicates the size of the consecutive subsequence of cars of the same
colour as the car in position i-1 and rlmax indicates the maximum length of a subsequence of
the same colour. This notion serves to favour the classes of cars that have the same colour as
the car located in the previous position, to lengthen the colour subsequence to the maximum
size. Conversely, we penalize the car classes for which the addition implies a colour change.
Iv,i,HPO and Iv,i,LPO indicate the interest to insert a car of class v at position i in the sequence to
minimize objectives HPO and LPO respectively. According to Equation 4, the interest
corresponds to the difficulty for class v if the addition of this class does not cause new
conflicts respectively on high-priority options (k = HPO) and on low-priority options (k =
LPO). In the opposite case, we will define the cost that corresponds to the number of new
conflicts produced on the high-priority or low-priority options, to discourage the insertion
of this class at position i.

, , ,
, ,

, ,

if 0

 otherwise

v k v i k
v i k

v i k

D N bNewC onflicts
I

N bN ew C onflicts

⎧ =⎪= ⎨
⎪−⎩

(4)

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

383

NbNewConflictsv,i,k corresponds to the number of new conflicts for the high-priority options
(k = HPO) or for the low-priority options (k = LPO) caused by the addition of a car of class v
at position i. Dv,k indicates the difficulty of class v for high-priority options (k = HPO) and
for low-priority options (k = LPO). The idea behind this concept is simply to penalize the
classes of cars for which the addition leads to additional conflicts for the high-priority or
low-priority options, on considering this number of new conflicts as a cost. Conversely, if
the addition of a class does not cause new conflicts on the options, we then evaluate the
benefit of placing this class according to its difficulty. Gottlieb et al. (2003) established that
the difficulty of a class of cars v for high-priority or low-priority options (Dv,k) is the sum of
the utilization rates of the high-priority options (k = HPO) or low-priority options (k = LPO)
that compose that class. The utilization rate of an option may be expressed as the ratio
between the number of cars requiring this option and the maximum number of cars that
may have this option such that the ro/so constraint is satisfied.

3.2 The multi-objective NCPX crossover operator (NCPXMO)
The NCPXMO procedure for the ICSP is inspired by the NCPX crossover proposed for the
single objective car sequencing problem (Zinflou et al., 2007) and is carried out in two main
steps. Step 1 consists of selecting a parent P1 and establishing in this chromosome the
number of positions that are not part of a conflict for objectives HPO (nbposHPO) and LPO
(nbposLPO) and the number of positions where there is no colour change (nbposCOLOUR). Then,
we randomly select a number nbgk between 0 and nbposk for each objective k (k = HPO, LPO,
COLOUR). These three numbers are used to determine, for each objective k, the number of
"good" genes that will maintain in offspring E1 the same position they had in P1. To take
into account the priority of the objectives, we must make sure that the number of "good"
genes kept for the main objective is greater or equal to the number of "good" genes selected
for the secondary objective, and so forth. Once we establish these numbers, starting position
(sPos) that is between 1 and Nb_cars, is randomly selected in the offspring to be created. The
process of copying the good genes of P1 to the offspring being created starts from sPos by
first considering the main objective. If we reach the end of the chromosome and the number
of genes copied for objective k is less than its corresponding nbgk, the copy process restarts
this time from the beginning of the offspring up to sPos-1. The same process is repeated for
the other objectives, taking into account the already copied genes. Thereafter, the remainder
of the genes from P1 are used to constitute a non-orderly list L for the cars that must still be
placed. We then randomly determine a position (Pos) from which the remaining positions
of chromosome E1 will be completed.
In Step 2, the cars in L are sorted according to their TWI. In case of a tie in TWI, if one of the
cars is in P2 at the position to be completed, this car is then selected. In the opposite case,
we randomly select a car amongst those of equal ranking.
The operation of this cross operator is illustrated in Figure 2 for two parents P1 =
{21352446/62224622} and P2 = {32621454/26242622} with the following objective hierarchy
HPO-LPO-COLOUR. Let us assume that the evaluation of P1 gives 5 positions without
conflicts for objective HPO and for objective LPO (expressed by 0 in vectors “conflicts on
HPO and LPO” below chromosome P1), 4 positions where there is no colour change
(expressed by 0 in vector the “colour changes” below chromosome P1) and the values for
numbers nbgHPO = 4, nbgLPO =2, nbgCOLOUR =1 and sPos = 3 by random setting. Starting with
sPos and considering objective HPO, we may copy genes 5/2, 4/6, 4/2 and 2/6 in the

 Advances in Evolutionary Algorithms

384

offspring. Repeating the same procedure with LPO, one notes that the three good genes 5/2,
4/2 and 2/6 are already transferred to the offspring, that corresponds to the number of good
genes to transfer for this objective. Also, the two good genes 5/2 and 2/6 are already
present in the offspring for the COLOUR objective, that corresponds to the number of good
genes to transfer for this objective. Genes 1/2, 3/2, 2/4 and 6/2 of P1 are then used to
constitute non-orderly list L. In Step 2, assuming that Pos = 7 and that the TWI calculation
places the genes in the order 3/2, 2/4, 6/2, 1/2 with equal TWI value on genes 2/4 and 6/2.
We then place 3/2 gene in position 8 and favour placing gene 6/2 in position 3 since it
occupies this position in P2 and genes 2/4 and 1/2 are placed in positions 2 and 5
respectively. In this example, genes 1/2 and 6/2 are directly inherited from P2 since they
have the same position in the second parent. The offspring produced from P1 and P2 is then
E1= {22651443/64222622}.
A second offspring is created similarly, this time starting with parent P2.

Fig. 2. Schematic of the NCPXMO crossover

3.3 The multi-objective IBX crossover operator (IBXMO)
The IBXMO crossover procedure for the ICSP is inspired by the functioning of the IBX for the
single objective car sequencing problem (Zinflou et al., 2007) and proceed in three main
steps. Step 1 consists in randomly determining two cut-off points for both parents P1 and P2.
Once these temporary cut-off points are determined, the colours of the preceding cars at the
1st cut-off point and the colour of the cars immediately after the 2nd cut-off point in P1 are
verified so as not to interrupt an ongoing colour subsequence. As long as the colour of the
cars located before the 1st cut-off point is the same as the colour of the car located at the cut-
off point, we move the cut-off point to the left. Inversely, as long as the colour of the car at
the 2nd cut-off point is identical to the colour of the car after that cut-of point, we move the
2nd cut-off point to the right.
In Figure 3, once the cut-off points are set for both parents P1 = {22351446/46222622} and P2
= {32421465/24662222}, the genes subsequence {351/222} included between the two cut-off
points of the first parent (a1 ∈ P1) is directly recopied in the offspring. Thereafter, two non-

 2 1 3 5 2 4 4 6

 3 2 6 2 1 4 5 4

P1

P2

 0 0 1 0 1 0 0 1

 1 0 0 0 0 0 1 1

sPos

 Step 1 2 5 4 4 Step 2

L=

Pos

 2 6 1 3 2 5 4 4

E1 E1

 1 0 0 0 0 0 0 1

 2 6 2 4 2 6 2 2

 0 1 0 0 0 1 0 1

Conflicts on HPO

Conflicts on LPO

 6 2 2 2 4 6 2 2

Classes

Colours

Classes

Colours

 1 1 1 1 1 1 1 0

 0 1 0 0 1 1 1 0 Colour changes

 6 2 6 2 4 2 2 2 6 2 6 2

L= 1/2, 3/2, 2/4, 6/2 3/2, 2/4, 6/2, 1/2

Conflicts on HPO

Conflicts on LPO

Colour changes

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

385

orderly lists (L1 and L2) are created from subsequence b3 = {32/24} and b4 = {465/222} of P2
and will be used to complete the beginning and the end of offspring E1. However, during
this operation, part of the information may be lost by the addition of duplicates. One effect
of this process is that the production requirements will not always be satisfied. In the
example in Figure 3, we may thus notice that the production constraints for the 2, 3, 4 and 5
car classes are no longer met. To restore all the genes and to produce exactly cv cars of the v
class, replacement of genes 3/2 and 5/2 (obtained from a1-a2) whose number exceeds the
production constraints are replaced by genes 4/6 and 2/6 (obtained from a2-a1) whose
number is now lower than the production constraints. This replacement is done randomly
in the second step to adjust the L1 and L2 lists.

Fig. 3. Schematic of the IBXMO crossover
Finally, the last step consists in rebuilding the beginning and the end of the offspring using
the two corrected lists L1 and L2 by using TWI as defined in Equation 2. In both cases, the
reconstruction starts from the cut-off point towards the beginning or the end of the
offspring, depending on the situation. For example, we calculate the TWI for each car ∈ L1
to reconstruct the beginning of the offspring. The car class v to place is then chosen
deterministically in 95% of the cases and in the remaining 5% of the cases the car class v to
be placed is chosen probabilistically using the roulette wheel principle (Goldberg, 1989). The
second vector of the solution for this position is then completed by the colour associated to
this class. We then remove this class from list L1 and restart the calculations for the next
position. The same process is repeated to reconstruct the end of the offspring from list L2.
A second offspring is created by using the same process, but this time starting from parent
P2.

4. Genetic algorithm for the industrial car sequencing problem
In this section, we present the complete description of the genetic algorithm (GA) used to
solve the multi-objective ICSP.

2 4 6 6 2 2 2 2

2 2 3 5 1 4 4 6

3 2 4 2 1 4 6 5

 3 5 1

L1=

L2=

L1=

L2=

 3 5 1

2 4 3 5 1 6 4 2

Step 1 Step 2

Step 3

E1

b3 b4

b1 b2 a1

a2

E1

E1

2 4 6 6 2 2 2 2

4 6 2 2 2 6 2 2

6 6 2 2 2 2 2 4

2 2 2 2 2 2

Classes

Colours

Classes

Colours

2 2 3 5 1 4 4 6

3 2 4 2 1 4 6 5

4 6 2 2 2 6 2 2

Temporary cut points Final cut points

P1

P2 3/2, 2/4

4/2, 6/2, 5/2

4/6, 2/4

4/2, 6/2, 2/6

 Advances in Evolutionary Algorithms

384

offspring. Repeating the same procedure with LPO, one notes that the three good genes 5/2,
4/2 and 2/6 are already transferred to the offspring, that corresponds to the number of good
genes to transfer for this objective. Also, the two good genes 5/2 and 2/6 are already
present in the offspring for the COLOUR objective, that corresponds to the number of good
genes to transfer for this objective. Genes 1/2, 3/2, 2/4 and 6/2 of P1 are then used to
constitute non-orderly list L. In Step 2, assuming that Pos = 7 and that the TWI calculation
places the genes in the order 3/2, 2/4, 6/2, 1/2 with equal TWI value on genes 2/4 and 6/2.
We then place 3/2 gene in position 8 and favour placing gene 6/2 in position 3 since it
occupies this position in P2 and genes 2/4 and 1/2 are placed in positions 2 and 5
respectively. In this example, genes 1/2 and 6/2 are directly inherited from P2 since they
have the same position in the second parent. The offspring produced from P1 and P2 is then
E1= {22651443/64222622}.
A second offspring is created similarly, this time starting with parent P2.

Fig. 2. Schematic of the NCPXMO crossover

3.3 The multi-objective IBX crossover operator (IBXMO)
The IBXMO crossover procedure for the ICSP is inspired by the functioning of the IBX for the
single objective car sequencing problem (Zinflou et al., 2007) and proceed in three main
steps. Step 1 consists in randomly determining two cut-off points for both parents P1 and P2.
Once these temporary cut-off points are determined, the colours of the preceding cars at the
1st cut-off point and the colour of the cars immediately after the 2nd cut-off point in P1 are
verified so as not to interrupt an ongoing colour subsequence. As long as the colour of the
cars located before the 1st cut-off point is the same as the colour of the car located at the cut-
off point, we move the cut-off point to the left. Inversely, as long as the colour of the car at
the 2nd cut-off point is identical to the colour of the car after that cut-of point, we move the
2nd cut-off point to the right.
In Figure 3, once the cut-off points are set for both parents P1 = {22351446/46222622} and P2
= {32421465/24662222}, the genes subsequence {351/222} included between the two cut-off
points of the first parent (a1 ∈ P1) is directly recopied in the offspring. Thereafter, two non-

 2 1 3 5 2 4 4 6

 3 2 6 2 1 4 5 4

P1

P2

 0 0 1 0 1 0 0 1

 1 0 0 0 0 0 1 1

sPos

 Step 1 2 5 4 4 Step 2

L=

Pos

 2 6 1 3 2 5 4 4

E1 E1

 1 0 0 0 0 0 0 1

 2 6 2 4 2 6 2 2

 0 1 0 0 0 1 0 1

Conflicts on HPO

Conflicts on LPO

 6 2 2 2 4 6 2 2

Classes

Colours

Classes

Colours

 1 1 1 1 1 1 1 0

 0 1 0 0 1 1 1 0 Colour changes

 6 2 6 2 4 2 2 2 6 2 6 2

L= 1/2, 3/2, 2/4, 6/2 3/2, 2/4, 6/2, 1/2

Conflicts on HPO

Conflicts on LPO

Colour changes

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

385

orderly lists (L1 and L2) are created from subsequence b3 = {32/24} and b4 = {465/222} of P2
and will be used to complete the beginning and the end of offspring E1. However, during
this operation, part of the information may be lost by the addition of duplicates. One effect
of this process is that the production requirements will not always be satisfied. In the
example in Figure 3, we may thus notice that the production constraints for the 2, 3, 4 and 5
car classes are no longer met. To restore all the genes and to produce exactly cv cars of the v
class, replacement of genes 3/2 and 5/2 (obtained from a1-a2) whose number exceeds the
production constraints are replaced by genes 4/6 and 2/6 (obtained from a2-a1) whose
number is now lower than the production constraints. This replacement is done randomly
in the second step to adjust the L1 and L2 lists.

Fig. 3. Schematic of the IBXMO crossover
Finally, the last step consists in rebuilding the beginning and the end of the offspring using
the two corrected lists L1 and L2 by using TWI as defined in Equation 2. In both cases, the
reconstruction starts from the cut-off point towards the beginning or the end of the
offspring, depending on the situation. For example, we calculate the TWI for each car ∈ L1
to reconstruct the beginning of the offspring. The car class v to place is then chosen
deterministically in 95% of the cases and in the remaining 5% of the cases the car class v to
be placed is chosen probabilistically using the roulette wheel principle (Goldberg, 1989). The
second vector of the solution for this position is then completed by the colour associated to
this class. We then remove this class from list L1 and restart the calculations for the next
position. The same process is repeated to reconstruct the end of the offspring from list L2.
A second offspring is created by using the same process, but this time starting from parent
P2.

4. Genetic algorithm for the industrial car sequencing problem
In this section, we present the complete description of the genetic algorithm (GA) used to
solve the multi-objective ICSP.

2 4 6 6 2 2 2 2

2 2 3 5 1 4 4 6

3 2 4 2 1 4 6 5

 3 5 1

L1=

L2=

L1=

L2=

 3 5 1

2 4 3 5 1 6 4 2

Step 1 Step 2

Step 3

E1

b3 b4

b1 b2 a1

a2

E1

E1

2 4 6 6 2 2 2 2

4 6 2 2 2 6 2 2

6 6 2 2 2 2 2 4

2 2 2 2 2 2

Classes

Colours

Classes

Colours

2 2 3 5 1 4 4 6

3 2 4 2 1 4 6 5

4 6 2 2 2 6 2 2

Temporary cut points Final cut points

P1

P2 3/2, 2/4

4/2, 6/2, 5/2

4/6, 2/4

4/2, 6/2, 2/6

 Advances in Evolutionary Algorithms

386

4.1 Representation of the chromosome
As shown previously in Table 1(b), instead of choosing classical bit-string encoding, that
seems ill-suited for this type of problem, a chromosome is represented using two vectors of
size Nb_cars corresponding respectively to the class and the colour of the car.

4.2 Creating the initial population
In the proposed implementation, the individuals of the initial population are generated in
two ways: 70 % randomly and 30 % using a greedy heuristic based on the concept of
interest. Two greedy heuristics are used according the main objective. If the main objective
is to minimize the number of colour changes (COLOUR), the greedy heuristic used is
greedy_colour. If the main objective is to minimize the number of conflicts on high-priority
options (HPO), the greedy heuristic used is greedy_ratio. Figure 4 resumes the operation of
these two heuristics. Notice that in both cases, one ensures that the individuals produced
are feasible solutions.

 greedy _colour heuristic greedy_ratio heuristic
1: Start with an individual Y consisting of the D-1

production day cars
2 : i=1 ; run_length =1
3 : previous_colour = Colours(-1)
4: While there are cars to place
5: If run_length < rlmax and there remain cars with

previous_colour then
6: colour = previous_colour
7: run_lenght ++
8: Else
9: Choose randomly previous_colour ≠ colour
10: run_length = 1
11: End If
12: Restricted the choice to the m car classes having the

selected colour
13: For each of these m car classes
14: Evaluate the interest Iv,i,COLOUR of adding a car

class v at position i
15: End For
16: Choose randomly a number rnd between 0 and 1
17: If rnd < 0.95 then
18: Choose car class v according to Arg Max

{Iv,i,COLOUR}
19: In case of a tie, choose car class v randomly
20: Else
21: Choose v using the roulette wheel principle
22: End If
23: Y(i) = v / colour
24 : i=i+1
25: End While

1: Start with an individual Y consisting of the D-1
production day cars

2 : i=1; run_length =1
3 : previous_colour = Colours(-1)
4: While there are cars to place
5: If run_length = rlmax then
6: Exclude the cars for which colour= previous_colour

from the candidates cars list
7: End If
8: For each candidate car class v
9: Evaluate the interest Iv,i,HPO of adding a car class v

at position i
10: End For
11: Choose randomly a number rnd between 0 and 1
12: If rnd < 0.95 Then
13: Choose class v according to Arg Max {Iv,i,HPO}
14: In case of a tie, break the tie lexicographically by

using the interest of the second objective and then
the third objective (Iv,i,LPO or Iv,i,COLOUR). In case of
ties for the 3 objectives, choose a class randomly

15: Else
16: Choose car class v using the roulette wheel

principle
17: End If
18: For the selected car class v, choose colour with Arg

Max {Iv,i,COLOUR}. In case of a tie, choose colour
randomly

19: Y(i) = v / colour
20: If run_length = rlmax OR colour ≠ previous_colour then
21: run_length= 1
22 : Else
23 : run_length= run_length +1
24 : End If
25 : previous_colour=colour
26 : i=i+1
27: End While

Fig. 4. Greedy construction of an individual us the greedy_colour or greedy_ratio heuristic

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

387

Greedy_colour begins with an initial solution composed of the cars planned the previous
production day. In fact, to link with the previous production day, we only need to know the
maximum value of so for all the options and this value determines the length of the sequence
required at the end of the previous day to evaluate the current solution. Then, we initialize
the counter for positions i at 1, the length of the current colour subsequence (run_length) that
is also at 1 and the colour of the last car produced the previous day (previous_colour) (lines 2-
3). The selection iteration process for the next car to place in the building sequence (lines 4-
25) begins by selecting a current colour (colour) according to rlmax and previous_colour (lines 5-
11). Once the colour of the next car to place is determined, we limit the selection process to
the m car classes having that colour. At this step, for each of the m classes, we evaluate the
interest Iv,i,COLOUR to place a car of class v at the current position i. In 95 % of the cases, the
selected class is the one with the largest Iv,i,COLOUR (Arg Max { Iv,i,COLOUR }). For the remaining
5 % of the cases, the car class to place is selected using the roulette wheel principle. Once
the colour and the car class are selected, we add the selected car class v and the selected
colour at position i of sequence Y being built (line 23). This process is thus repeated until an
entire sequence of cars is built. The main purpose of this greedy_colour heuristic is thus to
minimize, in a greedy way, the number of colour changes.
The second proposed construction heuristic, called greedy_ratio, also uses a greedy approach
to build an individual Y. However, for this heuristic, the main greedy criterion used to select
the car to add in the next position of sequence Y being built is the interest Iv,i,HPO. Just as for
the greedy_colour heuristic, the greedy_ratio procedure starts with an initial solution
consisting of cars already sequenced the previous production day. We then initialize the
various counters and the colour of the previous car produced on day D-1 the same way as
for the greedy_colour heuristic. The main loop of the algorithm (lines 4-27) first checks if the
maximum length for a subsequence of identical colour, rlmax, has not been reached. If rlmax is
reached, we withdraw all the cars of colour previous_colour from the list of classes that may
be added at current position i (list of candidate car classes). This step ensures that the
generated solution is feasible. Then, for each candidate car class v, we calculate the interest
Iv,i,HPO to place a car of class v at the current position i according to the HPO objective. Then,
the selection of the next car class to place in the sequence is made in 95 % of the cases by
selecting the class with the largest Iv,i,HPO. Note that in case of a tie for the Iv,i,HPO, the tie is
broken using the highest interest for the second objective and then the third objective,
respectively. In 5 % of the cases, the car class to place is selected using the roulette wheel
principle. Once the car class is selected, we choose the colour of the car to add from the
colours available for this class according to Iv,i,COLOUR. If all the colours for this class of cars
are of the same interest, we choose a colour randomly. Thereafter, we add the selected car
class and colour at position i in sequence Y being built. Finally, we update the various
counters (run_length and i) and previous_colour. This process is repeated until a complete
sequence of cars is done.

4.3 Selection
Several selection strategies could have been considered in the GA based algorithm to solve
the multi-objective ICSP. However, since it is easy to implement and that it is efficient for
the standard car sequencing problem (Zinflou et al., 2007), the selection procedure chosen to
solve the multi-objective ICSP is a binary tournament selection.

 Advances in Evolutionary Algorithms

386

4.1 Representation of the chromosome
As shown previously in Table 1(b), instead of choosing classical bit-string encoding, that
seems ill-suited for this type of problem, a chromosome is represented using two vectors of
size Nb_cars corresponding respectively to the class and the colour of the car.

4.2 Creating the initial population
In the proposed implementation, the individuals of the initial population are generated in
two ways: 70 % randomly and 30 % using a greedy heuristic based on the concept of
interest. Two greedy heuristics are used according the main objective. If the main objective
is to minimize the number of colour changes (COLOUR), the greedy heuristic used is
greedy_colour. If the main objective is to minimize the number of conflicts on high-priority
options (HPO), the greedy heuristic used is greedy_ratio. Figure 4 resumes the operation of
these two heuristics. Notice that in both cases, one ensures that the individuals produced
are feasible solutions.

 greedy _colour heuristic greedy_ratio heuristic
1: Start with an individual Y consisting of the D-1

production day cars
2 : i=1 ; run_length =1
3 : previous_colour = Colours(-1)
4: While there are cars to place
5: If run_length < rlmax and there remain cars with

previous_colour then
6: colour = previous_colour
7: run_lenght ++
8: Else
9: Choose randomly previous_colour ≠ colour
10: run_length = 1
11: End If
12: Restricted the choice to the m car classes having the

selected colour
13: For each of these m car classes
14: Evaluate the interest Iv,i,COLOUR of adding a car

class v at position i
15: End For
16: Choose randomly a number rnd between 0 and 1
17: If rnd < 0.95 then
18: Choose car class v according to Arg Max

{Iv,i,COLOUR}
19: In case of a tie, choose car class v randomly
20: Else
21: Choose v using the roulette wheel principle
22: End If
23: Y(i) = v / colour
24 : i=i+1
25: End While

1: Start with an individual Y consisting of the D-1
production day cars

2 : i=1; run_length =1
3 : previous_colour = Colours(-1)
4: While there are cars to place
5: If run_length = rlmax then
6: Exclude the cars for which colour= previous_colour

from the candidates cars list
7: End If
8: For each candidate car class v
9: Evaluate the interest Iv,i,HPO of adding a car class v

at position i
10: End For
11: Choose randomly a number rnd between 0 and 1
12: If rnd < 0.95 Then
13: Choose class v according to Arg Max {Iv,i,HPO}
14: In case of a tie, break the tie lexicographically by

using the interest of the second objective and then
the third objective (Iv,i,LPO or Iv,i,COLOUR). In case of
ties for the 3 objectives, choose a class randomly

15: Else
16: Choose car class v using the roulette wheel

principle
17: End If
18: For the selected car class v, choose colour with Arg

Max {Iv,i,COLOUR}. In case of a tie, choose colour
randomly

19: Y(i) = v / colour
20: If run_length = rlmax OR colour ≠ previous_colour then
21: run_length= 1
22 : Else
23 : run_length= run_length +1
24 : End If
25 : previous_colour=colour
26 : i=i+1
27: End While

Fig. 4. Greedy construction of an individual us the greedy_colour or greedy_ratio heuristic

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

387

Greedy_colour begins with an initial solution composed of the cars planned the previous
production day. In fact, to link with the previous production day, we only need to know the
maximum value of so for all the options and this value determines the length of the sequence
required at the end of the previous day to evaluate the current solution. Then, we initialize
the counter for positions i at 1, the length of the current colour subsequence (run_length) that
is also at 1 and the colour of the last car produced the previous day (previous_colour) (lines 2-
3). The selection iteration process for the next car to place in the building sequence (lines 4-
25) begins by selecting a current colour (colour) according to rlmax and previous_colour (lines 5-
11). Once the colour of the next car to place is determined, we limit the selection process to
the m car classes having that colour. At this step, for each of the m classes, we evaluate the
interest Iv,i,COLOUR to place a car of class v at the current position i. In 95 % of the cases, the
selected class is the one with the largest Iv,i,COLOUR (Arg Max { Iv,i,COLOUR }). For the remaining
5 % of the cases, the car class to place is selected using the roulette wheel principle. Once
the colour and the car class are selected, we add the selected car class v and the selected
colour at position i of sequence Y being built (line 23). This process is thus repeated until an
entire sequence of cars is built. The main purpose of this greedy_colour heuristic is thus to
minimize, in a greedy way, the number of colour changes.
The second proposed construction heuristic, called greedy_ratio, also uses a greedy approach
to build an individual Y. However, for this heuristic, the main greedy criterion used to select
the car to add in the next position of sequence Y being built is the interest Iv,i,HPO. Just as for
the greedy_colour heuristic, the greedy_ratio procedure starts with an initial solution
consisting of cars already sequenced the previous production day. We then initialize the
various counters and the colour of the previous car produced on day D-1 the same way as
for the greedy_colour heuristic. The main loop of the algorithm (lines 4-27) first checks if the
maximum length for a subsequence of identical colour, rlmax, has not been reached. If rlmax is
reached, we withdraw all the cars of colour previous_colour from the list of classes that may
be added at current position i (list of candidate car classes). This step ensures that the
generated solution is feasible. Then, for each candidate car class v, we calculate the interest
Iv,i,HPO to place a car of class v at the current position i according to the HPO objective. Then,
the selection of the next car class to place in the sequence is made in 95 % of the cases by
selecting the class with the largest Iv,i,HPO. Note that in case of a tie for the Iv,i,HPO, the tie is
broken using the highest interest for the second objective and then the third objective,
respectively. In 5 % of the cases, the car class to place is selected using the roulette wheel
principle. Once the car class is selected, we choose the colour of the car to add from the
colours available for this class according to Iv,i,COLOUR. If all the colours for this class of cars
are of the same interest, we choose a colour randomly. Thereafter, we add the selected car
class and colour at position i in sequence Y being built. Finally, we update the various
counters (run_length and i) and previous_colour. This process is repeated until a complete
sequence of cars is done.

4.3 Selection
Several selection strategies could have been considered in the GA based algorithm to solve
the multi-objective ICSP. However, since it is easy to implement and that it is efficient for
the standard car sequencing problem (Zinflou et al., 2007), the selection procedure chosen to
solve the multi-objective ICSP is a binary tournament selection.

 Advances in Evolutionary Algorithms

388

4.4 Mutation operator
According to the objective hierarchy, four mutation operators are used here: reflection,
random_swap, group_exchange and block_reflection. Note that these four operators have often
been used in the literature for the ICSP to explore the neighbourhood within a local search
method (Solnon et al., 2007). For problems with HPO-COLOUR-LPO and HPO-LPO-
COLOUR objective hierarchies, the mutation operators used are reflection and
random_swap. A reflection consists in randomly selecting two positions and reversing the
subsequence included between these two positions. A random_swap simply consists in
randomly exchanging the positions of two cars belonging to different classes. For problems
with COLOUR-HPO-LPO objective hierarchy, the mutation operators used are the
group_exchange and the block_reflection. The group_exchange mutation consists in
randomly exchanging the position of two subsequences of consecutive cars painted the
same colour. The block_reflection consists in selecting a subsequence of consecutive cars
painted the same colour and in inverting the position of the cars included in this
subsequence.

4.5 Replacement strategy
The proposed GA is an elitist approach in that it has explicit mechanisms that keep the best
solution found during the search process. To ensure that elitism, the replacement strategy
used is a (λ+μ) type of deterministic replacement. In this replacement strategy, the parent
and offspring populations are combined and sorted and only the λ best individuals are kept
to form the next generation.

1: Generate randomly or using the two greedy heuristics of the initial population POP0
2: Evaluate each individual Y ∈ POP0 and sort POP0
3: While no stop criterion is reached
4: While | Qt | < N
5: Choose randomly a number rnd between 0 and 1
6: If rnd < pc then
7: Select parents P1 and P2
8: Create two offspring E1 and E2 using NCPXMO or IBXMO crossover
9: Evaluate the generated offspring
10: else
11: Generate random migrant using the greedy heuristic
12: End If
13: Choose randomly a number rnd between 0 and 1
14: If rnd < pm then
15: Mutate and evaluate the offspring or the migrant
16: End If
17: Add E1 and E2 or the migrant to Qt
18: End While
19: Sort Qt ∪ POPt
20: Choose the first N individuals of Qt ∪ POPt to the next generation POPt+1

21: t = t +1
22: End while
23: Return the best individual found so far

Fig. 5. The proposed GA procedure for ICSP
Figure 5 describes the general procedure of our GA for the ICSP. The GA starts building an
initial population POP0 in which each individual Y ∈ POP0 is evaluated. Then it performs a

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

389

series of iterations called generations. At each generation t, a limited number of individuals
are selected to perform recombination according to a crossover probability (pc). Notice that,
occasionally, a new individual is introduced in the offspring population to maintain
diversity and avoid stagnation. This individual called random migrant is created using the
greedy heuristic used to creation the initial population according to the objective hierarchy
of the problem to solve. After the crossover, the generated offspring or the migrant is
mutated according to mutation probability (pm). Finally, the current population is updated
by selecting the best individuals from the pool of parents (POPt) and offspring (Qt). This
process is repeated until a stop criterion is reached.

5. Computational experiments
The GA proposed in this chapter was implemented in C++ and compiled with Visual Studio
.Net 2005. The computational experiments were run on a Dell Pentium with a Xeon 3.6 GHz
processor and 1 Gb of RAM, with Windows XP. For all the experiments performed, the
parameters N, pc, pm, Tmax that represent respectively the population size, crossover
probability, mutation probability and time limit allowed for the GA are set at the following
values: 5, 0.8, 0.35 and 350 seconds. The small population size and the mutation and
crossover probabilities were determined using the theoretical results of Goldberg (1989) and
the work of Coello Coello and Pulido (2001). According to these authors, a very small
population size is sufficient to obtain convergence, regardless of the chromosome length.
Thus, the use of a small population with a high crossover probability allows, on one hand,
to increase the efficiency of the GA for the ICSP by limiting the computation time required
to evaluate the fitness of each individual. In fact, the evaluation of the fitness of a solution
for the ICSP requires considerable computation time. On the other hand, a high crossover
probability usually allows better exploration of the search space (Grefenstette, 1986). In
addition to the difficulties related to the multi-objective nature of the ICSP, a 600 second
time limit was set for a Pentium 4/1.6 GHz/Win2000/1 Go RAM computer for the 2005
ROADEF Challenge. To meet this time limit, we set the running time of our GA at 350
seconds, that corresponds roughly to the time limit defined in the Challenge, considering
the differences in hardware.
Three versions of our GA will be used for the numerical experiments. The first version
integrates the NCPXMO crossover operator (AG-NCPXMO), the second uses the IBXMO
crossover operator (AG-IBXMO) and the third version integrates the NCPXMO crossover
operator with a local search procedure (AG-NCPXMO+LS).

5.1 Benchmark problems
The performance of the proposed multi-objective GAs is evaluated using three test suites
provided by the Renault car manufacturer and that are available from the Challenge website
at : http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/. The first set (SET
A) includes 16 sets of data to sequence 334 to 1314 cars that have from 6 to 22 options that
create from 36 to 287 cars classes with 11 to 24 different colours. This set allowed to evaluate
the teams during the qualification phase and thus to determine the 18 teams who qualified
for the next phase of the Challenge. The second set (SET B) consists of a wide range of 45
instances each consisting of 65 to 1270 cars having from 4 to 25 options, with 11 to 339 car
classes and 4 to 20 different colours. This set was used by the qualified teams to improve
and tune their algorithms. Finally, the last set (SET X) consists of 19 instances having from

 Advances in Evolutionary Algorithms

388

4.4 Mutation operator
According to the objective hierarchy, four mutation operators are used here: reflection,
random_swap, group_exchange and block_reflection. Note that these four operators have often
been used in the literature for the ICSP to explore the neighbourhood within a local search
method (Solnon et al., 2007). For problems with HPO-COLOUR-LPO and HPO-LPO-
COLOUR objective hierarchies, the mutation operators used are reflection and
random_swap. A reflection consists in randomly selecting two positions and reversing the
subsequence included between these two positions. A random_swap simply consists in
randomly exchanging the positions of two cars belonging to different classes. For problems
with COLOUR-HPO-LPO objective hierarchy, the mutation operators used are the
group_exchange and the block_reflection. The group_exchange mutation consists in
randomly exchanging the position of two subsequences of consecutive cars painted the
same colour. The block_reflection consists in selecting a subsequence of consecutive cars
painted the same colour and in inverting the position of the cars included in this
subsequence.

4.5 Replacement strategy
The proposed GA is an elitist approach in that it has explicit mechanisms that keep the best
solution found during the search process. To ensure that elitism, the replacement strategy
used is a (λ+μ) type of deterministic replacement. In this replacement strategy, the parent
and offspring populations are combined and sorted and only the λ best individuals are kept
to form the next generation.

1: Generate randomly or using the two greedy heuristics of the initial population POP0
2: Evaluate each individual Y ∈ POP0 and sort POP0
3: While no stop criterion is reached
4: While | Qt | < N
5: Choose randomly a number rnd between 0 and 1
6: If rnd < pc then
7: Select parents P1 and P2
8: Create two offspring E1 and E2 using NCPXMO or IBXMO crossover
9: Evaluate the generated offspring
10: else
11: Generate random migrant using the greedy heuristic
12: End If
13: Choose randomly a number rnd between 0 and 1
14: If rnd < pm then
15: Mutate and evaluate the offspring or the migrant
16: End If
17: Add E1 and E2 or the migrant to Qt
18: End While
19: Sort Qt ∪ POPt
20: Choose the first N individuals of Qt ∪ POPt to the next generation POPt+1

21: t = t +1
22: End while
23: Return the best individual found so far

Fig. 5. The proposed GA procedure for ICSP
Figure 5 describes the general procedure of our GA for the ICSP. The GA starts building an
initial population POP0 in which each individual Y ∈ POP0 is evaluated. Then it performs a

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

389

series of iterations called generations. At each generation t, a limited number of individuals
are selected to perform recombination according to a crossover probability (pc). Notice that,
occasionally, a new individual is introduced in the offspring population to maintain
diversity and avoid stagnation. This individual called random migrant is created using the
greedy heuristic used to creation the initial population according to the objective hierarchy
of the problem to solve. After the crossover, the generated offspring or the migrant is
mutated according to mutation probability (pm). Finally, the current population is updated
by selecting the best individuals from the pool of parents (POPt) and offspring (Qt). This
process is repeated until a stop criterion is reached.

5. Computational experiments
The GA proposed in this chapter was implemented in C++ and compiled with Visual Studio
.Net 2005. The computational experiments were run on a Dell Pentium with a Xeon 3.6 GHz
processor and 1 Gb of RAM, with Windows XP. For all the experiments performed, the
parameters N, pc, pm, Tmax that represent respectively the population size, crossover
probability, mutation probability and time limit allowed for the GA are set at the following
values: 5, 0.8, 0.35 and 350 seconds. The small population size and the mutation and
crossover probabilities were determined using the theoretical results of Goldberg (1989) and
the work of Coello Coello and Pulido (2001). According to these authors, a very small
population size is sufficient to obtain convergence, regardless of the chromosome length.
Thus, the use of a small population with a high crossover probability allows, on one hand,
to increase the efficiency of the GA for the ICSP by limiting the computation time required
to evaluate the fitness of each individual. In fact, the evaluation of the fitness of a solution
for the ICSP requires considerable computation time. On the other hand, a high crossover
probability usually allows better exploration of the search space (Grefenstette, 1986). In
addition to the difficulties related to the multi-objective nature of the ICSP, a 600 second
time limit was set for a Pentium 4/1.6 GHz/Win2000/1 Go RAM computer for the 2005
ROADEF Challenge. To meet this time limit, we set the running time of our GA at 350
seconds, that corresponds roughly to the time limit defined in the Challenge, considering
the differences in hardware.
Three versions of our GA will be used for the numerical experiments. The first version
integrates the NCPXMO crossover operator (AG-NCPXMO), the second uses the IBXMO
crossover operator (AG-IBXMO) and the third version integrates the NCPXMO crossover
operator with a local search procedure (AG-NCPXMO+LS).

5.1 Benchmark problems
The performance of the proposed multi-objective GAs is evaluated using three test suites
provided by the Renault car manufacturer and that are available from the Challenge website
at : http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/. The first set (SET
A) includes 16 sets of data to sequence 334 to 1314 cars that have from 6 to 22 options that
create from 36 to 287 cars classes with 11 to 24 different colours. This set allowed to evaluate
the teams during the qualification phase and thus to determine the 18 teams who qualified
for the next phase of the Challenge. The second set (SET B) consists of a wide range of 45
instances each consisting of 65 to 1270 cars having from 4 to 25 options, with 11 to 339 car
classes and 4 to 20 different colours. This set was used by the qualified teams to improve
and tune their algorithms. Finally, the last set (SET X) consists of 19 instances having from

 Advances in Evolutionary Algorithms

390

65 to 1319 cars to sequence, with 5 to 26 options, 10 to 328 car classes and 5 to 20 different
colours. This set remained unknown to the teams until the last phase of the Challenge and
was used by the jury to establish the final ranking.
In comparison with the standard car sequencing problem whose largest instances included
400 cars, 5 options and from 18 to 24 car classes, the resolution of the multi-objective ICSP
thus represents a large challenge.

5.2 Experimental comparison
To evaluate the performance of the algorithms proposed in this chapter, we compare our
results with the best results obtained during the 2005 ROADEF Challenge for the 61
instances of SET A and SET B. All the results of the 2005 ROADEF Challenge are available
online from the Challenge website. Thus, Tables 3 to 5 report the comparative results of GA-
NCPXMO, GA-IBXMO and GA-NCPXMO+LS with those of the Challenge Winning Team and
those of the GLS (Jaszkiewicz et al., 2004) which is the best evolutionary algorithm proposed
during the Challenge. The rank of the solution found by each algorithm for the same
instance is listed in Tables 3 to 5 and is based on the results of the 18 qualified teams and the
results of the three GAs proposed here .
In these tables, we group instances in three categories:
• those for which the main objective is the minimization of the number of conflicts on

high-priority options (HPO) and where the requirements for these high-priority options
are considered “easy” according to Renault (Table 3) ;

• those for which the main objective is the minimization of the number of conflicts on
high-priority options (HPO) and where the requirements for these high-priority options
are considered “difficult” according to Renault (Table 4) ; and

• those for which the main objective is the minimization of the number of colour changes
(COLOUR) (Table 5).

Each row of Tables 3 to 5 indicates the name of the instance, the value and the rank of the
solution found respectively by the Winning Team, the GLS (Jaszkiewicz et al., 2004), the GA-
IBXMO, the GA-NCPXMO and the GA-NCPXMO+LS. The best results obtained for each
instance are highlighted in bold in the different tables. It is important to note that as for the
Challenge results, the GAs proposed were run once only and what we report is the solution
value obtained for this execution. The results reported in the different tables indicate the
objectives weighted sum value (F(X)) of the solution as calculated in Equation 1.
Table 3 reports the results for instances with “easy” high-priority options according to
Renault. These instances have two possible hierarchies that are HPO-LPO-COLOUR or
HPO-COLOUR-LPO. By examining the results of Table 3, one may note that GA-NCPXMO
outperforms GA-IBXMO for all the instances of SET A and SET B, except for instance
028_ch2_S23_J3 with HPO_COLOUR_LPO objective hierarchy where the two algorithms
obtain equal results. These results seem to highlight the superiority of the NCPXMO
crossover operator over the IBXMO crossover operator for the ICSP. The best performance of
the NCPXMO crossover operator may probably be explained by its ability to use information
about non-conflict positions. Thus, this crossover is able to do a better search intensification
during the allowed time.
Except for instance 028_ch2_S23_J3 with HPO_LPO_COLOUR objective hierarchy, that is
trivially solved by all algorithms, GA-IBXMO ranks between 11th and 19th while GA-NCPXMO
ranks between 1st and 17th according to the instances. It should be noted that, contrary to

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

391

most algorithms of the Challenge, GA-IBXMO and GA-NCPXMO do not use a local search
procedure in their algorithm.
By comparing the results of GA-NCPXMO and GA-IBXMO to those of GLS, one may note for
SET A that GLS globally outperforms GA-IBXMO but GA-NCPXMO clearly outperforms GLS.
Indeed, GLS outperforms GA-IBXMO for 3 instances of Set A, is worse for one instance while
it obtains identical results for the remaining instance. By contrast, GLS is worse than GA-
NCPXMO for 4 of the 5 instances of SET A shown in Table 3. These results are confirmed
with a few slight differences for the instances of SET B. Thus, GLS outperforms GA-IBXMO
for 10 instances, is worse for 7 instances while obtaining identical results for the remaining
instance. Compared to GA-NCPXMO, GLS achieves better results for 6 instances, is worse for
8 instances while obtaining identical results for the 4 remaining instances. We may
therefore notice a slight advantage for GA-NCPXMO for the instances of SET B with easy
high-priority options. These results are very promising considering that GLS is a memetic
algorithm, that is, an approach hybridizing GA with local search method.
When we now compare the results of GA-NCPXMO and GA-IBXMO to those of the Winning
Team for the 2005 ROADEF Challenge, one may notice that the results of the two proposed
GAs are clearly lower than the results of the Winning Team in terms of solution quality. We
believe that this gap may be explained by the lack of intensification of the search for this
type of approach. By combining GA-NCPXMO with a local search procedure inspired from
the one proposed by Estellon et al. (2007) and using the mutation operators presented in
Section 4.4 to explore the neighbourhood, we obtain the results shown in the last column of
Table 3. We mention here that GA-NCPXMO+LS was executed with the same time limit as
the other algorithms presented in this chapter. We observe that adding the local search
procedure clearly improves the performance of the algorithm. Indeed, GA-NCPXMO+LS
clearly outperforms GA-NCPXMO and achieves competitive results compared to those of the
Challenge Winning Team for all instances of SET A with easy high-priority options. In fact,
GA-NCPXMO+LS ranks first for all these instances and even finds new minimums for
instance 022_3_4 with HPO_COLOUR_LPO objective hierarchy and for instance 25_38_1
with HPO_LPO_COLOUR objective hierarchy. For the instances of SET B, GA-NCPXMO+LS
obtains similar results as those of the Challenge Winning Team for 10 of the 16 instances. For
the remaining instances, we observe a small gap that comes from the results of the second or
the third objective. Indeed, GA-NCPXMO+LS is always ranked between 1st and 3rd, except for
instance 064_ch1_S22_J3 with HPO_COLOUR_LPO objective hierarchy where it ranks 7th.
Table 4 reports the results obtained by the different algorithms for the instances of SET A
and SET B considered by Renault as “difficult “ high-priority options. The two possible
objective hierarchies for these instances are HPO-LPO-COLOUR and HPO-COLOUR-LPO.
We may notice again that GA-NCPXMO clearly outperforms GA-IBXMO. Therefore, for the
instances of SET A, GA-NCPXMO obtains better results than GA-IBXMO for 6 of the 7
instances while GA-IBXMO is better for the only remaining instance. The results are quite the
same for the instances of SET B where, this time, GA-NCPXMO always outperforms GA-
IBXMO. GA-IBXMO ranks between 12th and 20th while GA-NCPXMO ranks between 1st and 19th
depending on the instances. Despite the fact these two algorithms do not use a local search
procedure, they are quite competitive with the global results of the teams that qualified for
the Challenge. However, for the instances with easy high-priority options, we notice that
the results of the two proposed algorithms are not competitive with those of the Challenge
Winning Team.

 Advances in Evolutionary Algorithms

390

65 to 1319 cars to sequence, with 5 to 26 options, 10 to 328 car classes and 5 to 20 different
colours. This set remained unknown to the teams until the last phase of the Challenge and
was used by the jury to establish the final ranking.
In comparison with the standard car sequencing problem whose largest instances included
400 cars, 5 options and from 18 to 24 car classes, the resolution of the multi-objective ICSP
thus represents a large challenge.

5.2 Experimental comparison
To evaluate the performance of the algorithms proposed in this chapter, we compare our
results with the best results obtained during the 2005 ROADEF Challenge for the 61
instances of SET A and SET B. All the results of the 2005 ROADEF Challenge are available
online from the Challenge website. Thus, Tables 3 to 5 report the comparative results of GA-
NCPXMO, GA-IBXMO and GA-NCPXMO+LS with those of the Challenge Winning Team and
those of the GLS (Jaszkiewicz et al., 2004) which is the best evolutionary algorithm proposed
during the Challenge. The rank of the solution found by each algorithm for the same
instance is listed in Tables 3 to 5 and is based on the results of the 18 qualified teams and the
results of the three GAs proposed here .
In these tables, we group instances in three categories:
• those for which the main objective is the minimization of the number of conflicts on

high-priority options (HPO) and where the requirements for these high-priority options
are considered “easy” according to Renault (Table 3) ;

• those for which the main objective is the minimization of the number of conflicts on
high-priority options (HPO) and where the requirements for these high-priority options
are considered “difficult” according to Renault (Table 4) ; and

• those for which the main objective is the minimization of the number of colour changes
(COLOUR) (Table 5).

Each row of Tables 3 to 5 indicates the name of the instance, the value and the rank of the
solution found respectively by the Winning Team, the GLS (Jaszkiewicz et al., 2004), the GA-
IBXMO, the GA-NCPXMO and the GA-NCPXMO+LS. The best results obtained for each
instance are highlighted in bold in the different tables. It is important to note that as for the
Challenge results, the GAs proposed were run once only and what we report is the solution
value obtained for this execution. The results reported in the different tables indicate the
objectives weighted sum value (F(X)) of the solution as calculated in Equation 1.
Table 3 reports the results for instances with “easy” high-priority options according to
Renault. These instances have two possible hierarchies that are HPO-LPO-COLOUR or
HPO-COLOUR-LPO. By examining the results of Table 3, one may note that GA-NCPXMO
outperforms GA-IBXMO for all the instances of SET A and SET B, except for instance
028_ch2_S23_J3 with HPO_COLOUR_LPO objective hierarchy where the two algorithms
obtain equal results. These results seem to highlight the superiority of the NCPXMO
crossover operator over the IBXMO crossover operator for the ICSP. The best performance of
the NCPXMO crossover operator may probably be explained by its ability to use information
about non-conflict positions. Thus, this crossover is able to do a better search intensification
during the allowed time.
Except for instance 028_ch2_S23_J3 with HPO_LPO_COLOUR objective hierarchy, that is
trivially solved by all algorithms, GA-IBXMO ranks between 11th and 19th while GA-NCPXMO
ranks between 1st and 17th according to the instances. It should be noted that, contrary to

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

391

most algorithms of the Challenge, GA-IBXMO and GA-NCPXMO do not use a local search
procedure in their algorithm.
By comparing the results of GA-NCPXMO and GA-IBXMO to those of GLS, one may note for
SET A that GLS globally outperforms GA-IBXMO but GA-NCPXMO clearly outperforms GLS.
Indeed, GLS outperforms GA-IBXMO for 3 instances of Set A, is worse for one instance while
it obtains identical results for the remaining instance. By contrast, GLS is worse than GA-
NCPXMO for 4 of the 5 instances of SET A shown in Table 3. These results are confirmed
with a few slight differences for the instances of SET B. Thus, GLS outperforms GA-IBXMO
for 10 instances, is worse for 7 instances while obtaining identical results for the remaining
instance. Compared to GA-NCPXMO, GLS achieves better results for 6 instances, is worse for
8 instances while obtaining identical results for the 4 remaining instances. We may
therefore notice a slight advantage for GA-NCPXMO for the instances of SET B with easy
high-priority options. These results are very promising considering that GLS is a memetic
algorithm, that is, an approach hybridizing GA with local search method.
When we now compare the results of GA-NCPXMO and GA-IBXMO to those of the Winning
Team for the 2005 ROADEF Challenge, one may notice that the results of the two proposed
GAs are clearly lower than the results of the Winning Team in terms of solution quality. We
believe that this gap may be explained by the lack of intensification of the search for this
type of approach. By combining GA-NCPXMO with a local search procedure inspired from
the one proposed by Estellon et al. (2007) and using the mutation operators presented in
Section 4.4 to explore the neighbourhood, we obtain the results shown in the last column of
Table 3. We mention here that GA-NCPXMO+LS was executed with the same time limit as
the other algorithms presented in this chapter. We observe that adding the local search
procedure clearly improves the performance of the algorithm. Indeed, GA-NCPXMO+LS
clearly outperforms GA-NCPXMO and achieves competitive results compared to those of the
Challenge Winning Team for all instances of SET A with easy high-priority options. In fact,
GA-NCPXMO+LS ranks first for all these instances and even finds new minimums for
instance 022_3_4 with HPO_COLOUR_LPO objective hierarchy and for instance 25_38_1
with HPO_LPO_COLOUR objective hierarchy. For the instances of SET B, GA-NCPXMO+LS
obtains similar results as those of the Challenge Winning Team for 10 of the 16 instances. For
the remaining instances, we observe a small gap that comes from the results of the second or
the third objective. Indeed, GA-NCPXMO+LS is always ranked between 1st and 3rd, except for
instance 064_ch1_S22_J3 with HPO_COLOUR_LPO objective hierarchy where it ranks 7th.
Table 4 reports the results obtained by the different algorithms for the instances of SET A
and SET B considered by Renault as “difficult “ high-priority options. The two possible
objective hierarchies for these instances are HPO-LPO-COLOUR and HPO-COLOUR-LPO.
We may notice again that GA-NCPXMO clearly outperforms GA-IBXMO. Therefore, for the
instances of SET A, GA-NCPXMO obtains better results than GA-IBXMO for 6 of the 7
instances while GA-IBXMO is better for the only remaining instance. The results are quite the
same for the instances of SET B where, this time, GA-NCPXMO always outperforms GA-
IBXMO. GA-IBXMO ranks between 12th and 20th while GA-NCPXMO ranks between 1st and 19th
depending on the instances. Despite the fact these two algorithms do not use a local search
procedure, they are quite competitive with the global results of the teams that qualified for
the Challenge. However, for the instances with easy high-priority options, we notice that
the results of the two proposed algorithms are not competitive with those of the Challenge
Winning Team.

 Advances in Evolutionary Algorithms

392

 Winning
Team

GLS
(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET A
HPO_COLOUR_LPO
 022_3_4 31001 (1) 37000 (14) 32022 (11) 32001 (8) 31001 (1)
 025_38_1 231452 (4) 262460 (15) 262460 (15) 231772 (6) 229295 (1)
 064_38_2_ch1 112759 (1) 139757 (15) 184775 (17) 164760 (16) 112759 (1)
 064_38_2_ch2 34051 (1) 36056 (15) 37156 (16) 34052 (8) 34051 (1)
HPO_ LPO_COLOUR
 025_38_1 99720 (2) 200711 (10) 270686 (14) 150767 (6) 97076 (1)

SET B
HPO_COLOUR_LPO
022_S22-J1 19144 (1) 23144 (13) 21174 (12) 20176 (9) 19144 (1)
025_S22-J3 172180 (1) 281877 (20) 264156 (19) 222711 (13) 179378 (3)
028_ch_S22_J2 54049124 (1) 54059164 (13) 54072436 (19) 54063113 (14) 54049124 (1)
028_ch2_S23_J3 4071 (1) 4071 (1) 5078 (17) 4071 (1) 4071 (1)
039_ch1_S22_J4 78089 (1) 92308 (17) 82731 (14) 79128 (7) 78220 (3)
039_ch3_S22_J4 189146 (4) 199223 (17) 195718 (15) 192160 (12) 189122 (2)
048_ch1_S22_J3 161378 (1) 186438 (18) 180440 (16) 170377 (12) 161401 (2)
064_ch1_S22_J3 130187 (1) 158222 (14) 183149 (19) 177376 (17) 134368 (7)
064_ch2_S22_J4 130069 (1) 130069 (1) 130088 (14) 130069 (1) 130069 (1)
HPO_LPO_COLOUR
022_S22_J1 3109 (1) 3138 (12) 3191 (14) 3186 (13) 3109 (1)
025_S22_J3 3912479 (1) 3926649 (11) 4041787 (19) 3928619 (12) 3912479 (1)
028_ch1_S22_J2 54003079 (4) 54021114 (12) 54065112 (14) 54017116 (9) 54003077 (2)
028_ch2_S23_J3 70006 (1) 70006 (1) 70006 (1) 70006 (1) 70006 (1)
039_ch1_ S22_J4 29117 (1) 29385 (16) 29375 (15) 29272 (11) 29117 (1)
039_ch3_ S22_J4 197 (1) 276 (12) 315 (17) 290 (13) 201 (2)
048_ch1_S22_J3 200 (1) 298 (15) 367 (19) 298 (15) 203 (3)
064_ch1_S22_J3 182 (1) 1359 (18) 421 (15) 240 (10) 182 (1)
064_ch2_S22_J4 69130 (1) 69131 (9) 69161 (19) 69132 (11) 69130 (1)

Table 3. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
“easy” high-priority options instances with HPO as the main objective
If we now compare the performance of GA-IBXMO and GA-NCPXMO with those of GLS, we
notice that GLS clearly outperforms GA-IBXMO, both for the instances of SET A and SET B.
Thus, GLS obtains better results than GA-IBXMO for 6 of the 7 instances of SET A and for 11
of 12 instances of SET B. We believe that the poor performance of GA-IBXMO may be
explained by the difficulty of these instances which, combined with the time limit, more
highlight the lack in terms of intensification of the search process of the crossover operator.
However, when we compare the results of GLS with those of GA-NCPXMO, we observe
essentially the same results as those obtained in Table 3 for the instances of SET A. Indeed,
GA-NCPXMO outperforms GLS for 6 of the 7 instances of SET A. But, for the SET B instances,
the results slightly favour GLS. Thus, GA-NCPXMO is better than GLS for 4 instances, is
worse for 5 instances while obtaining identical results for the 3 remaining instances.
These results confirm the previous observations made and once again highlight the need to
incorporate more explicit intensification mechanisms in our GA. By analyzing the results of
adding a local search procedure to GA-NCPXMO (last column of Table 4), we notice a clear

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

393

improvement of the performance for all the instances. In fact, the results of GA-NCPXMO+LS
are competitive with those of the Challenge Winning Team by obtaining equal or better results
for 9 of the 19 instances of the two sets, while obtaining significantly closer results for the
remaining instances. GA-NCPXMO+LS always ranks between 1st and 6th except for instance
024_38_5 with HPO_COLOUR_LPO hierarchy where it ranks 12th. Compared to GLS, GA-
NCPXMO+LS always obtains better result except for two instances for which the two
algorithms obtain identical results.

 Winning
Team

GLS
(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET A
HPO_COLOUR_LPO
024_38_3 4249083 (1) 4327229 (12) 4471615 (15) 4304266 (9) 4256186 (3)
024_38_5 4280079 (1) 7347154 (17) 26015122 (18) 6501289 (15) 4392151 (12)
039_38_4_ch1 13129000 (1) 15179000 (11) 17201000 (14) 14122000 (8) 13129000 (1)
048_39_1 175615 (4) 202740 (13) 3286796 (18) 191750 (11) 174690 (2)
HPO_LPO_COLOUR
024_38_3 4000306 (1) 4041506 (8) 5035482 (13) 6015504 (14) 4033403 (6)
024_38_5 4034309 (1) 6080457 (18) 58072610 (17) 5068407 (15) 4045349 (6)
048_39_1 61290 (1) 83403 (11) 246439 (17) 81406 (10) 63323 (4)

SET B
HPO_COLOUR_LPO
023_S23_J3 48310008 (1) 48349006 (10) 48465018 (18) 48429000 (13) 48313000 (4)
024_V2_S22_J1 1074299068 (1) 1100352464 (8) 1124857475 (16) 1106420563 (10) 1078310188 (4)
029_HPO_ S21_J6 35167170 (1) 35192150 (14) 35187151 (12) 35173150 (6) 35168171 (3)
035_ch1_ S22_J3 67036064 (7) 67037063 (12) 67044083 (20) 67037063 (12) 67036061 (1)
035_ch2_ S22_J3 385187351 (1) 385187351 (1) 385187353 (17) 385187351 (1) 385187351 (1)
048_ch2_ S22_J3 3094029 (1) 3126017 (15) 3131944 (17) 3124086 (12) 3094030 (2)
HPO_LPO_COLOUR
023_S23_J3 48000317 (3) 48000406 (10) 65000453 (19) 48000496 (15) 48000316 (1)
024_V2_S22_J1 1074850430 (1) 1097921524 (9) 1179022413 (19) 1113997557 (13) 1075884555 (4)
029_HPO _S21_J6 37150167 (1) 37150194 (12) 37150402 (18) 37150182 (9) 37150167 (1)
035_ch1 _S22_J3 67052049 (1) 67052052 (9) 67059057 (19) 67052052 (9) 67052049 (1)
035_ch2 _S22_J3 385341205 (1) 385341205 (1) 388350188 (20) 385353192 (19) 385341205 (1)
048_ch2_S22_J3 3000337 (1) 3000375 (14) 3000405 (17) 3000356 (7) 3000337 (1)

Table 4. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
“difficult” high-priority options instances with HPO as the main objective

Table 5 lists the results of the different algorithms for the instances of SET A and SET B with
COLOUR-HPO-LPO objective hierarchy. By comparing first GA-IBXMO and GA-NCPXMO,
we observe once again that GA-NCPXMO globally outperforms GA-IBXMO. GA-NCPXMO
obtains better results for 18 instances out of 19 and identical results for the remaining
instance. However, contrary to the previous observation, the gap between the two
algorithms is smaller for this group of instances. Except for three instances, the two
algorithms give the same value for the main objective. For these instances, the gap between
the two algorithms is observed for the second and third objective. However, we notice again
that the results of the two algorithms are not competitive with those of the Challenge

 Advances in Evolutionary Algorithms

392

 Winning
Team

GLS
(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET A
HPO_COLOUR_LPO
 022_3_4 31001 (1) 37000 (14) 32022 (11) 32001 (8) 31001 (1)
 025_38_1 231452 (4) 262460 (15) 262460 (15) 231772 (6) 229295 (1)
 064_38_2_ch1 112759 (1) 139757 (15) 184775 (17) 164760 (16) 112759 (1)
 064_38_2_ch2 34051 (1) 36056 (15) 37156 (16) 34052 (8) 34051 (1)
HPO_ LPO_COLOUR
 025_38_1 99720 (2) 200711 (10) 270686 (14) 150767 (6) 97076 (1)

SET B
HPO_COLOUR_LPO
022_S22-J1 19144 (1) 23144 (13) 21174 (12) 20176 (9) 19144 (1)
025_S22-J3 172180 (1) 281877 (20) 264156 (19) 222711 (13) 179378 (3)
028_ch_S22_J2 54049124 (1) 54059164 (13) 54072436 (19) 54063113 (14) 54049124 (1)
028_ch2_S23_J3 4071 (1) 4071 (1) 5078 (17) 4071 (1) 4071 (1)
039_ch1_S22_J4 78089 (1) 92308 (17) 82731 (14) 79128 (7) 78220 (3)
039_ch3_S22_J4 189146 (4) 199223 (17) 195718 (15) 192160 (12) 189122 (2)
048_ch1_S22_J3 161378 (1) 186438 (18) 180440 (16) 170377 (12) 161401 (2)
064_ch1_S22_J3 130187 (1) 158222 (14) 183149 (19) 177376 (17) 134368 (7)
064_ch2_S22_J4 130069 (1) 130069 (1) 130088 (14) 130069 (1) 130069 (1)
HPO_LPO_COLOUR
022_S22_J1 3109 (1) 3138 (12) 3191 (14) 3186 (13) 3109 (1)
025_S22_J3 3912479 (1) 3926649 (11) 4041787 (19) 3928619 (12) 3912479 (1)
028_ch1_S22_J2 54003079 (4) 54021114 (12) 54065112 (14) 54017116 (9) 54003077 (2)
028_ch2_S23_J3 70006 (1) 70006 (1) 70006 (1) 70006 (1) 70006 (1)
039_ch1_ S22_J4 29117 (1) 29385 (16) 29375 (15) 29272 (11) 29117 (1)
039_ch3_ S22_J4 197 (1) 276 (12) 315 (17) 290 (13) 201 (2)
048_ch1_S22_J3 200 (1) 298 (15) 367 (19) 298 (15) 203 (3)
064_ch1_S22_J3 182 (1) 1359 (18) 421 (15) 240 (10) 182 (1)
064_ch2_S22_J4 69130 (1) 69131 (9) 69161 (19) 69132 (11) 69130 (1)

Table 3. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
“easy” high-priority options instances with HPO as the main objective
If we now compare the performance of GA-IBXMO and GA-NCPXMO with those of GLS, we
notice that GLS clearly outperforms GA-IBXMO, both for the instances of SET A and SET B.
Thus, GLS obtains better results than GA-IBXMO for 6 of the 7 instances of SET A and for 11
of 12 instances of SET B. We believe that the poor performance of GA-IBXMO may be
explained by the difficulty of these instances which, combined with the time limit, more
highlight the lack in terms of intensification of the search process of the crossover operator.
However, when we compare the results of GLS with those of GA-NCPXMO, we observe
essentially the same results as those obtained in Table 3 for the instances of SET A. Indeed,
GA-NCPXMO outperforms GLS for 6 of the 7 instances of SET A. But, for the SET B instances,
the results slightly favour GLS. Thus, GA-NCPXMO is better than GLS for 4 instances, is
worse for 5 instances while obtaining identical results for the 3 remaining instances.
These results confirm the previous observations made and once again highlight the need to
incorporate more explicit intensification mechanisms in our GA. By analyzing the results of
adding a local search procedure to GA-NCPXMO (last column of Table 4), we notice a clear

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

393

improvement of the performance for all the instances. In fact, the results of GA-NCPXMO+LS
are competitive with those of the Challenge Winning Team by obtaining equal or better results
for 9 of the 19 instances of the two sets, while obtaining significantly closer results for the
remaining instances. GA-NCPXMO+LS always ranks between 1st and 6th except for instance
024_38_5 with HPO_COLOUR_LPO hierarchy where it ranks 12th. Compared to GLS, GA-
NCPXMO+LS always obtains better result except for two instances for which the two
algorithms obtain identical results.

 Winning
Team

GLS
(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET A
HPO_COLOUR_LPO
024_38_3 4249083 (1) 4327229 (12) 4471615 (15) 4304266 (9) 4256186 (3)
024_38_5 4280079 (1) 7347154 (17) 26015122 (18) 6501289 (15) 4392151 (12)
039_38_4_ch1 13129000 (1) 15179000 (11) 17201000 (14) 14122000 (8) 13129000 (1)
048_39_1 175615 (4) 202740 (13) 3286796 (18) 191750 (11) 174690 (2)
HPO_LPO_COLOUR
024_38_3 4000306 (1) 4041506 (8) 5035482 (13) 6015504 (14) 4033403 (6)
024_38_5 4034309 (1) 6080457 (18) 58072610 (17) 5068407 (15) 4045349 (6)
048_39_1 61290 (1) 83403 (11) 246439 (17) 81406 (10) 63323 (4)

SET B
HPO_COLOUR_LPO
023_S23_J3 48310008 (1) 48349006 (10) 48465018 (18) 48429000 (13) 48313000 (4)
024_V2_S22_J1 1074299068 (1) 1100352464 (8) 1124857475 (16) 1106420563 (10) 1078310188 (4)
029_HPO_ S21_J6 35167170 (1) 35192150 (14) 35187151 (12) 35173150 (6) 35168171 (3)
035_ch1_ S22_J3 67036064 (7) 67037063 (12) 67044083 (20) 67037063 (12) 67036061 (1)
035_ch2_ S22_J3 385187351 (1) 385187351 (1) 385187353 (17) 385187351 (1) 385187351 (1)
048_ch2_ S22_J3 3094029 (1) 3126017 (15) 3131944 (17) 3124086 (12) 3094030 (2)
HPO_LPO_COLOUR
023_S23_J3 48000317 (3) 48000406 (10) 65000453 (19) 48000496 (15) 48000316 (1)
024_V2_S22_J1 1074850430 (1) 1097921524 (9) 1179022413 (19) 1113997557 (13) 1075884555 (4)
029_HPO _S21_J6 37150167 (1) 37150194 (12) 37150402 (18) 37150182 (9) 37150167 (1)
035_ch1 _S22_J3 67052049 (1) 67052052 (9) 67059057 (19) 67052052 (9) 67052049 (1)
035_ch2 _S22_J3 385341205 (1) 385341205 (1) 388350188 (20) 385353192 (19) 385341205 (1)
048_ch2_S22_J3 3000337 (1) 3000375 (14) 3000405 (17) 3000356 (7) 3000337 (1)

Table 4. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
“difficult” high-priority options instances with HPO as the main objective

Table 5 lists the results of the different algorithms for the instances of SET A and SET B with
COLOUR-HPO-LPO objective hierarchy. By comparing first GA-IBXMO and GA-NCPXMO,
we observe once again that GA-NCPXMO globally outperforms GA-IBXMO. GA-NCPXMO
obtains better results for 18 instances out of 19 and identical results for the remaining
instance. However, contrary to the previous observation, the gap between the two
algorithms is smaller for this group of instances. Except for three instances, the two
algorithms give the same value for the main objective. For these instances, the gap between
the two algorithms is observed for the second and third objective. However, we notice again
that the results of the two algorithms are not competitive with those of the Challenge

 Advances in Evolutionary Algorithms

394

Winning Team, except for instance 35_ch2_S22_J4 with COLOUR_HPO_LPO objective
hierarchy for which all algorithms obtain the same result. GA-IBXMO ranks between 12th and
20th while GA-NCPXMO ranks between 1st and 17th. We also notice that, except for one
instance for GA-NCPXMO and three instances for GA-IBXMO, the two algorithms obtain the
same value for the main objective as the Challenge Winning Team did. We can make this
conclusion considering that the weight of the main objective is set at 1000000 and that the
gap between the algorithms is less than this value.

 Winning
Team

GLS
(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET A
COLOUR_HPO_LPO
022_3_4 11039001 (1) 11041001 (15) 11039131 (12) 11039098 (11) 11039001 (1)
039_38_4 _ch1 68161000 (3) 68265000 (15) 68265000 (15) 68249000 (12) 68155000 (1)
064_38_2 _ch1 63423782 (1) 63435799 (15) 63443831 (17) 63423782 (1) 63423782 (1)
064_38_2_ch2 27367052 (1) 27367052 (1) 27367067 (15) 27367052 (1) 27367052 (1)

SET B
COLOUR_HPO_LPO
022_S22_J1 13022148 (1) 13022154 (11) 13022189 (19) 13022178 (17) 13022148 (1)
023_S23_J3 51327031 (1) 54349063 (21) 51735264 (20) 51393130 (17) 51343070 (9)
024_V2_S22_J1 134023158 (1) 135226676 (20) 134902740 (19) 134230457 (14) 134057341 (4)
025_S22_J3 126127589 (1) 133129840 (21) 126300350 (18) 126136839 (12) 126127589 (1)
028_ch1_S22_J2 38098201 (4) 38098251 (9) 38099330 (16) 38098334 (12) 38098188 (1)
028_ch2_S23_J3 4000071 (1) 4000071 (1) 5000078 (18) 4000071 (1) 4000071 (1)
029_ S21_J6 52711171 (1) 52755179 (14) 52905570 (20) 52763341 (15) 52717428 (8)
035_ch1_S22_J3 6156090 (1) 6156092 (10) 6156109 (18) 6156092 (10) 6156090 (1)
035_ch2_S22_J3 7651671 (1) 7651671 (1) 7651671 (1) 7651671 (1) 7651671 (1)
039_ch1_S22_J4 55045096 (1) 55045235 (9) 55046737 (18) 55045235 (9) 55045096 (1)
039_ch3_ S22_J4 59214671 (1) 59214698 (12) 59214783 (15) 59214681 (9) 59214671 (1)
048_ch1_ S22_J3 64115670 (1) 64135847 (14) 64153806 (15) 64124687 (12) 64115670(1)
048_ch2_ S22_J3 58283180 (1) 58288194 (12) 58312194 (19) 58290183 (13) 58283180 (1)
064_ch1_ S22_J3 62095288 (1) 62108458 (10) 63116379 (19) 62113381 (12) 62097307 (3)
064_ch2_ S22_J4 31052178 (1) 31052184 (9) 32052158 (16) 31053188 (13) 31052178 (1)

Table 5. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
instances with COLOUR as the main objective

By comparing the results of our algorithms with those of GLS, we again notice that GLS
outperforms GA-IBXMO for 2 of 4 instances of SET A, is worse for only one instance while
obtaining an identical result for the remaining instance. However, for the SET B instances,
GLS clearly outperforms GA-IBXMO by obtaining better results for 11 instances, worse results
for 3 instances and identical results for the remaining instance. By comparing the results of
GA-NCPXMO with those of GLS, one notes that GA-NCPXMO obtains better results for all
instances of SET A except one where the two algorithms achieve identical results. For the
SET B instances, GA-NCPXMO obtains better results than GLS for 5 instances, is worse for 6
instances while obtaining identical results for the 4 remaining instances. Again, we observe
very close performance between the two algorithms.
By now comparing the results of the two GAs to those of the Challenge Winning Team, we
notice on one hand that GA-NCPXMO always reaches the same value for the main objective.

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

395

On the other hand, GLS doesn’t always reach these values. GLS even obtains the worst
solution for instances 023_S23_J3 and 025_S22_J3 with COLOUR_HPO_LPO objective
hierarchy.
By analysing the results of GA-NCPXMO+LS, we observe a clear performance improvement
for all the instances. Thus, for SET A instances, GA-NCPXMO+LS always obtains identical or
better results than those of the Challenge Winning Team. For SET B instances, GA-
NCPXMO+LS obtains identical or better results than those of the Challenge Winning Team for
11 of the 15 instances. GA-NCPXMO+LS always ranks between 1st and 4th except for instances
023_S23_J3 and 029_S21_J6 with COLOUR_HPO_LPO objective hierarchy, where it ranks 9th
and 8th respectively. Compared to GLS, GA-NCPXMO+LS gets better results for 16 of the 19
instances while obtaining identical results for the 3 remaining ones.
Finally, Table 6 gives the results of the different algorithms for the 19 instances of SET X that
was used in the 2005 ROADEF Challenge to determine the final ranking. Here, instead of
executing the algorithms once as we did in the previous results, we executed the algorithms
5 times as was done for the qualified teams in this phase of the Challenge. The values
reported in this table are thus the average results of 5 runs.

 Winning
Team

GLS
(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET X
HPO_COLOUR_LPO
023_S49_J2 192466 (1) 246268.20 (17) 246268.40 (18) 211879 (12) 193077 (3)
024_S49_J2 337006 (1) 421425 (8) 27046420.20 (18) 506015 (11) 346202.20 (2)
029_S49_J5 110442.60 (2) 120855 (11) 150969.20 (17) 123029.20 (12) 111093.20 (3)
034_VP_S51_J1_J2_J3 56386.80 (1) 76217.60 (17) 74354.20 (15) 66750 (12) 57577.40 (5)
034_VU_S51_J1_J2_J3 8087037 (4) 8091450.20 (10) 8112049 (16) 8103064 (15) 8087035.80 (1)
039_CH1_S49_J1 69239 (1) 69455.60 (6) 69705 (9) 69479.60 (7) 69355.20 (2)
039_CH3_S49_J1 231030.20 (2) 239593.20 (16) 250670 (17) 235475.40 (13) 231030.40 (3)
048_CH1_S50_J4 197044.80 (3) 206509.60 (16) 207634 (17) 204182 (14) 197045.40 (4)
048_CH2_S49_J5 31077916.20 (1) 31104598.80 (12) 31128931 (18) 31106266.2 (13) 31078317.20 (2)
064_CH1_S49_J1 61187229.80 (1) 61229518.80 (12) 61309246.20 (20) 61223429 (10) 61190429 (2)
064_CH2_S49_J4 37000 (1) 40400 (14) 42000 (15) 39000 (12) 37000 (1)
655_CH1_S51_J2_J3_J4 30000 (1) 30000 (1) 30000 (1) 30000 (1) 30000 (1)
655_CH2_S52_J1_J2_S01_J1 153034000 (1) 153035200 (8) 153047000 (12) 153041000 (11) 153034000 (1)
COLOUR_HPO_LPO
022_S49_J2 12002003 (1) 12002003 (1) 12002008 (16) 12002003 (1) 12002003 (1)
035_CH1_S50_J4 5010000 (1) - 5010000 (1) 5010000 (1) 5010000 (1)
035_CH2_S50_J4 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1)
LPO_COLOUR_HPO
025_ S49_J1 160407.60 (2) 189390.20 (15) 188118.20 (13) 176454.60 (10) 160407.20 (1)
028_CH1_S50_J4 36370094 (4) 36377907.20 (5) 49863125.80 (20) 39634315.20 (12) 36360092.40 (2)

 028_CH2_S51_J1 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)

Table 6. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
SET X instances

When we compare the average results of GA-IBXMO and GA-NCPXMO, we again notice for
this set that GA-NCPXMO clearly outperforms GA-IBXMO by obtaining better results except
for 4 instances for which the two algorithms obtain the same average results. We also notice
for these 4 instances that the two algorithms always find the same solution for each run.
Moreover, the results obtained by the two GAs are the same as those of the Winning Team.

 Advances in Evolutionary Algorithms

394

Winning Team, except for instance 35_ch2_S22_J4 with COLOUR_HPO_LPO objective
hierarchy for which all algorithms obtain the same result. GA-IBXMO ranks between 12th and
20th while GA-NCPXMO ranks between 1st and 17th. We also notice that, except for one
instance for GA-NCPXMO and three instances for GA-IBXMO, the two algorithms obtain the
same value for the main objective as the Challenge Winning Team did. We can make this
conclusion considering that the weight of the main objective is set at 1000000 and that the
gap between the algorithms is less than this value.

 Winning
Team

GLS
(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET A
COLOUR_HPO_LPO
022_3_4 11039001 (1) 11041001 (15) 11039131 (12) 11039098 (11) 11039001 (1)
039_38_4 _ch1 68161000 (3) 68265000 (15) 68265000 (15) 68249000 (12) 68155000 (1)
064_38_2 _ch1 63423782 (1) 63435799 (15) 63443831 (17) 63423782 (1) 63423782 (1)
064_38_2_ch2 27367052 (1) 27367052 (1) 27367067 (15) 27367052 (1) 27367052 (1)

SET B
COLOUR_HPO_LPO
022_S22_J1 13022148 (1) 13022154 (11) 13022189 (19) 13022178 (17) 13022148 (1)
023_S23_J3 51327031 (1) 54349063 (21) 51735264 (20) 51393130 (17) 51343070 (9)
024_V2_S22_J1 134023158 (1) 135226676 (20) 134902740 (19) 134230457 (14) 134057341 (4)
025_S22_J3 126127589 (1) 133129840 (21) 126300350 (18) 126136839 (12) 126127589 (1)
028_ch1_S22_J2 38098201 (4) 38098251 (9) 38099330 (16) 38098334 (12) 38098188 (1)
028_ch2_S23_J3 4000071 (1) 4000071 (1) 5000078 (18) 4000071 (1) 4000071 (1)
029_ S21_J6 52711171 (1) 52755179 (14) 52905570 (20) 52763341 (15) 52717428 (8)
035_ch1_S22_J3 6156090 (1) 6156092 (10) 6156109 (18) 6156092 (10) 6156090 (1)
035_ch2_S22_J3 7651671 (1) 7651671 (1) 7651671 (1) 7651671 (1) 7651671 (1)
039_ch1_S22_J4 55045096 (1) 55045235 (9) 55046737 (18) 55045235 (9) 55045096 (1)
039_ch3_ S22_J4 59214671 (1) 59214698 (12) 59214783 (15) 59214681 (9) 59214671 (1)
048_ch1_ S22_J3 64115670 (1) 64135847 (14) 64153806 (15) 64124687 (12) 64115670(1)
048_ch2_ S22_J3 58283180 (1) 58288194 (12) 58312194 (19) 58290183 (13) 58283180 (1)
064_ch1_ S22_J3 62095288 (1) 62108458 (10) 63116379 (19) 62113381 (12) 62097307 (3)
064_ch2_ S22_J4 31052178 (1) 31052184 (9) 32052158 (16) 31053188 (13) 31052178 (1)

Table 5. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
instances with COLOUR as the main objective

By comparing the results of our algorithms with those of GLS, we again notice that GLS
outperforms GA-IBXMO for 2 of 4 instances of SET A, is worse for only one instance while
obtaining an identical result for the remaining instance. However, for the SET B instances,
GLS clearly outperforms GA-IBXMO by obtaining better results for 11 instances, worse results
for 3 instances and identical results for the remaining instance. By comparing the results of
GA-NCPXMO with those of GLS, one notes that GA-NCPXMO obtains better results for all
instances of SET A except one where the two algorithms achieve identical results. For the
SET B instances, GA-NCPXMO obtains better results than GLS for 5 instances, is worse for 6
instances while obtaining identical results for the 4 remaining instances. Again, we observe
very close performance between the two algorithms.
By now comparing the results of the two GAs to those of the Challenge Winning Team, we
notice on one hand that GA-NCPXMO always reaches the same value for the main objective.

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

395

On the other hand, GLS doesn’t always reach these values. GLS even obtains the worst
solution for instances 023_S23_J3 and 025_S22_J3 with COLOUR_HPO_LPO objective
hierarchy.
By analysing the results of GA-NCPXMO+LS, we observe a clear performance improvement
for all the instances. Thus, for SET A instances, GA-NCPXMO+LS always obtains identical or
better results than those of the Challenge Winning Team. For SET B instances, GA-
NCPXMO+LS obtains identical or better results than those of the Challenge Winning Team for
11 of the 15 instances. GA-NCPXMO+LS always ranks between 1st and 4th except for instances
023_S23_J3 and 029_S21_J6 with COLOUR_HPO_LPO objective hierarchy, where it ranks 9th
and 8th respectively. Compared to GLS, GA-NCPXMO+LS gets better results for 16 of the 19
instances while obtaining identical results for the 3 remaining ones.
Finally, Table 6 gives the results of the different algorithms for the 19 instances of SET X that
was used in the 2005 ROADEF Challenge to determine the final ranking. Here, instead of
executing the algorithms once as we did in the previous results, we executed the algorithms
5 times as was done for the qualified teams in this phase of the Challenge. The values
reported in this table are thus the average results of 5 runs.

 Winning
Team

GLS
(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET X
HPO_COLOUR_LPO
023_S49_J2 192466 (1) 246268.20 (17) 246268.40 (18) 211879 (12) 193077 (3)
024_S49_J2 337006 (1) 421425 (8) 27046420.20 (18) 506015 (11) 346202.20 (2)
029_S49_J5 110442.60 (2) 120855 (11) 150969.20 (17) 123029.20 (12) 111093.20 (3)
034_VP_S51_J1_J2_J3 56386.80 (1) 76217.60 (17) 74354.20 (15) 66750 (12) 57577.40 (5)
034_VU_S51_J1_J2_J3 8087037 (4) 8091450.20 (10) 8112049 (16) 8103064 (15) 8087035.80 (1)
039_CH1_S49_J1 69239 (1) 69455.60 (6) 69705 (9) 69479.60 (7) 69355.20 (2)
039_CH3_S49_J1 231030.20 (2) 239593.20 (16) 250670 (17) 235475.40 (13) 231030.40 (3)
048_CH1_S50_J4 197044.80 (3) 206509.60 (16) 207634 (17) 204182 (14) 197045.40 (4)
048_CH2_S49_J5 31077916.20 (1) 31104598.80 (12) 31128931 (18) 31106266.2 (13) 31078317.20 (2)
064_CH1_S49_J1 61187229.80 (1) 61229518.80 (12) 61309246.20 (20) 61223429 (10) 61190429 (2)
064_CH2_S49_J4 37000 (1) 40400 (14) 42000 (15) 39000 (12) 37000 (1)
655_CH1_S51_J2_J3_J4 30000 (1) 30000 (1) 30000 (1) 30000 (1) 30000 (1)
655_CH2_S52_J1_J2_S01_J1 153034000 (1) 153035200 (8) 153047000 (12) 153041000 (11) 153034000 (1)
COLOUR_HPO_LPO
022_S49_J2 12002003 (1) 12002003 (1) 12002008 (16) 12002003 (1) 12002003 (1)
035_CH1_S50_J4 5010000 (1) - 5010000 (1) 5010000 (1) 5010000 (1)
035_CH2_S50_J4 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1)
LPO_COLOUR_HPO
025_ S49_J1 160407.60 (2) 189390.20 (15) 188118.20 (13) 176454.60 (10) 160407.20 (1)
028_CH1_S50_J4 36370094 (4) 36377907.20 (5) 49863125.80 (20) 39634315.20 (12) 36360092.40 (2)

 028_CH2_S51_J1 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)

Table 6. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
SET X instances

When we compare the average results of GA-IBXMO and GA-NCPXMO, we again notice for
this set that GA-NCPXMO clearly outperforms GA-IBXMO by obtaining better results except
for 4 instances for which the two algorithms obtain the same average results. We also notice
for these 4 instances that the two algorithms always find the same solution for each run.
Moreover, the results obtained by the two GAs are the same as those of the Winning Team.

 Advances in Evolutionary Algorithms

396

By looking more closely at the characteristics of these 4 instances, we notice that they are
small instances where the number of cars to schedule is between 65 and 376. These small
sizes probably explain why the two algorithms solve these 4 instances trivially. As shown in
the previous results, the gap between the two algorithms seems to be related to the size of
the instances. Indeed, GA-IBXMO seems to have more difficulty to converge towards a good
solution for large instances. This situation is again confirmed using instance 024_S49_J2 with
HPO_COLOUR_LPO objective hierarchy and 1319 cars to schedule. For this instance, the
gap between the average results of the two algorithms for the main objective is over 26
conflicts. Except for the 4 small size instances solved trivially, GA-IBXMO ranks between 9th
and 20th while GA-NCPXMO ranks between 7th and 15th.
If we now compare the results of our two algorithms to those of GLS, we observe similar
results to those obtained for SET A et SET B. GA-IBXMO is worse than GLS for 13 instances,
better for 3 instances while identical for the 3 other instances. We notice that among the 3
instances for which GA-IBXMO achieves better average results than GLS, there is one instance
(035_CH1_S50_J4 with COLOUR_HPO_LPO hierarchy) for which GLS did not provide a
feasible solution during this phase of the Challenge. When we now compare GLS to GA-
NCPXMO, we notice that GA-NCPXMO outperforms GLS for 8 instances, is worse for 7
instances while identical for the 4 remaining instances.
We also notice that the results of GA-IBXMO and GA-NCPXMO are not competitive with the
average results of the Winning Team. However, by adding a local search procedure to GA-
NCPXMO, we considerably improve the performance of the algorithm by obtaining the best
average results for 10 instances while obtaining very close average results for the other
instances. GA-NCPXMO+LS ranks between 1st and 5th for all the instances of SET X.
Now, to compare the performance of the proposed approaches with the results of the teams
that qualified for the Challenge, we used the ranking procedure described in the Challenge
description, that consists in calculating a mark for each instance of SET X according to
Equation 5. The mark of each algorithm is calculated according to the best and the worst
solution found by the 18 teams that qualified for the Challenge and the 3 proposed
algorithms. The score is a normalized measure of solution quality that necessarily lies
between 0 and 1.

resultworstresultBest

resultBestresult
oAmark oA

__
_

)lg(lg

−

−
=

 (5)

In Equation 5, Best_result and Worst_result indicate respectively the best and the worst
average result found for an instance while resultAlgo indicates the average result found by the
algorithm for which we compute the mark for the same instance. Then, each row of Table 7
lists the mark of the Winning Team, the GA-IBXMO, the GA-NCPXMO and GA-NCPXMO +LS
for each instance of SET X. The last row of this table lists the total mark of each algorithm
for the whole set. On analysing the results of Table 7, we notice that they confirm the results
of Tables 3 to 6, namely that GA-NCPXMO is a better performer than GA-IBXMO and that GA-
NCPXMO+LS is the best performer compared to the two other algorithms. It is important to
mention that, according to the final rank of the Challenge that is published by the organizers
and that is available online from the Challenge website, GLS ranks 13th with a mark of
16.8937 while the Winning Team has a mark of 18.9935. Based on these results, we may
conclude that the difference between the results of our best genetic approach and those of
the Winning Team is rather small (0.0345). We also notice that both GA-NCPXMO obtain a

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

397

better mark than GLS, with and without local search procedure. We may then conclude that
the methods proposed in this chapter achieve competitive results for the multi-objective
ICSP. Thus, we demonstrate that GAs are well suited to address this category of problem if
they incorporate specific knowledge of the problem to design dedicated genetic operators.

 Marks

SET X Winning
Team AG-IBXMO AG-NCXMO AG-

NCXMO+LS
HPO_COLOUR_LPO
023_S49_J2 1 0.5575 0.8403 0.9950
024_S49_J2 1 0.4605 0.9966 0.9998
029_S49_J5 0.9980 0.4249 0.8200 0.9888
034_VP_S51_J1_J2_J3 0.9956 0.7949 0.8799 0.9823
034_VU_S51_J1_J2_J3 1 0.9998 0.9999 1
039_CH1_S49_J1 1 0.9755 0.9873 0.9939
039_CH3_S49_J1 0.9999 0.6368 0.9178 1
048_CH1_S50_J4 0.9999 0.9952 0.9968 1
048_CH2_S49_J5 1 0.9868 0.9927 0.9999
064_CH1_S49_J1 1 0.9799 0.9940 0.9995
064_CH2_S49_J4 1 0.8588 0.9435 1
655_CH1_S51_J2_J3_J4 1 1 1 1
655_CH2_S52_J1_J2_S01_J1 1 0.9999 0.9999 1
COLOUR_ HPO_LPO
022_S49_J2 1 0.9999 1 1
035_CH1_S50_J4 1 1 1 1
035_CH2_S50_J4 1 1 1 1
HPO_LPO_COLOUR
025_S49_J1 1 0.9983 0.9990 1
028_CH1_S50_J4 0.9999 0.9553 0.9891 0.9999
028_CH2_S51_J1 1 1 1 1
Total 18.9935 16.6241 18.3569 18.9590

Table 7. Marks of the Winning Team, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for SET
X instances.

6. Conclusion
In this chapter, we have introduced a GA based on two specialized crossover operators
dedicated to the multi-objective nature of the ICSP proposed by French automobile
manufacturer Renault for the ROADEF 2005 Challenge. If GAs are known to be well suited
for multi-objective optimization (Barichard, 2003; Basseur, 2004; Zinflou et al., 2006), few
researchers and industrials decided to use this category of algorithms to solve the ICSP.
Among the 18 teams that qualified for the second phase of the Challenge, only one proposed
a genetic algorithm based approach. This situation may be explained by the difficulty in
defining specific and efficient genetic operators that take into account the specificities of the
problem. The approach proposed in this chapter is essentially based on adapting highly
specialized genetic crossover operators to the specificities of the industrial version of the
single objective car sequencing problem, for which we have three conflicting objectives to
optimize. The numerical experiments allowed us to demonstrate the efficiency of the

 Advances in Evolutionary Algorithms

396

By looking more closely at the characteristics of these 4 instances, we notice that they are
small instances where the number of cars to schedule is between 65 and 376. These small
sizes probably explain why the two algorithms solve these 4 instances trivially. As shown in
the previous results, the gap between the two algorithms seems to be related to the size of
the instances. Indeed, GA-IBXMO seems to have more difficulty to converge towards a good
solution for large instances. This situation is again confirmed using instance 024_S49_J2 with
HPO_COLOUR_LPO objective hierarchy and 1319 cars to schedule. For this instance, the
gap between the average results of the two algorithms for the main objective is over 26
conflicts. Except for the 4 small size instances solved trivially, GA-IBXMO ranks between 9th
and 20th while GA-NCPXMO ranks between 7th and 15th.
If we now compare the results of our two algorithms to those of GLS, we observe similar
results to those obtained for SET A et SET B. GA-IBXMO is worse than GLS for 13 instances,
better for 3 instances while identical for the 3 other instances. We notice that among the 3
instances for which GA-IBXMO achieves better average results than GLS, there is one instance
(035_CH1_S50_J4 with COLOUR_HPO_LPO hierarchy) for which GLS did not provide a
feasible solution during this phase of the Challenge. When we now compare GLS to GA-
NCPXMO, we notice that GA-NCPXMO outperforms GLS for 8 instances, is worse for 7
instances while identical for the 4 remaining instances.
We also notice that the results of GA-IBXMO and GA-NCPXMO are not competitive with the
average results of the Winning Team. However, by adding a local search procedure to GA-
NCPXMO, we considerably improve the performance of the algorithm by obtaining the best
average results for 10 instances while obtaining very close average results for the other
instances. GA-NCPXMO+LS ranks between 1st and 5th for all the instances of SET X.
Now, to compare the performance of the proposed approaches with the results of the teams
that qualified for the Challenge, we used the ranking procedure described in the Challenge
description, that consists in calculating a mark for each instance of SET X according to
Equation 5. The mark of each algorithm is calculated according to the best and the worst
solution found by the 18 teams that qualified for the Challenge and the 3 proposed
algorithms. The score is a normalized measure of solution quality that necessarily lies
between 0 and 1.

resultworstresultBest

resultBestresult
oAmark oA

__
_

)lg(lg

−

−
=

 (5)

In Equation 5, Best_result and Worst_result indicate respectively the best and the worst
average result found for an instance while resultAlgo indicates the average result found by the
algorithm for which we compute the mark for the same instance. Then, each row of Table 7
lists the mark of the Winning Team, the GA-IBXMO, the GA-NCPXMO and GA-NCPXMO +LS
for each instance of SET X. The last row of this table lists the total mark of each algorithm
for the whole set. On analysing the results of Table 7, we notice that they confirm the results
of Tables 3 to 6, namely that GA-NCPXMO is a better performer than GA-IBXMO and that GA-
NCPXMO+LS is the best performer compared to the two other algorithms. It is important to
mention that, according to the final rank of the Challenge that is published by the organizers
and that is available online from the Challenge website, GLS ranks 13th with a mark of
16.8937 while the Winning Team has a mark of 18.9935. Based on these results, we may
conclude that the difference between the results of our best genetic approach and those of
the Winning Team is rather small (0.0345). We also notice that both GA-NCPXMO obtain a

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

397

better mark than GLS, with and without local search procedure. We may then conclude that
the methods proposed in this chapter achieve competitive results for the multi-objective
ICSP. Thus, we demonstrate that GAs are well suited to address this category of problem if
they incorporate specific knowledge of the problem to design dedicated genetic operators.

 Marks

SET X Winning
Team AG-IBXMO AG-NCXMO AG-

NCXMO+LS
HPO_COLOUR_LPO
023_S49_J2 1 0.5575 0.8403 0.9950
024_S49_J2 1 0.4605 0.9966 0.9998
029_S49_J5 0.9980 0.4249 0.8200 0.9888
034_VP_S51_J1_J2_J3 0.9956 0.7949 0.8799 0.9823
034_VU_S51_J1_J2_J3 1 0.9998 0.9999 1
039_CH1_S49_J1 1 0.9755 0.9873 0.9939
039_CH3_S49_J1 0.9999 0.6368 0.9178 1
048_CH1_S50_J4 0.9999 0.9952 0.9968 1
048_CH2_S49_J5 1 0.9868 0.9927 0.9999
064_CH1_S49_J1 1 0.9799 0.9940 0.9995
064_CH2_S49_J4 1 0.8588 0.9435 1
655_CH1_S51_J2_J3_J4 1 1 1 1
655_CH2_S52_J1_J2_S01_J1 1 0.9999 0.9999 1
COLOUR_ HPO_LPO
022_S49_J2 1 0.9999 1 1
035_CH1_S50_J4 1 1 1 1
035_CH2_S50_J4 1 1 1 1
HPO_LPO_COLOUR
025_S49_J1 1 0.9983 0.9990 1
028_CH1_S50_J4 0.9999 0.9553 0.9891 0.9999
028_CH2_S51_J1 1 1 1 1
Total 18.9935 16.6241 18.3569 18.9590

Table 7. Marks of the Winning Team, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for SET
X instances.

6. Conclusion
In this chapter, we have introduced a GA based on two specialized crossover operators
dedicated to the multi-objective nature of the ICSP proposed by French automobile
manufacturer Renault for the ROADEF 2005 Challenge. If GAs are known to be well suited
for multi-objective optimization (Barichard, 2003; Basseur, 2004; Zinflou et al., 2006), few
researchers and industrials decided to use this category of algorithms to solve the ICSP.
Among the 18 teams that qualified for the second phase of the Challenge, only one proposed
a genetic algorithm based approach. This situation may be explained by the difficulty in
defining specific and efficient genetic operators that take into account the specificities of the
problem. The approach proposed in this chapter is essentially based on adapting highly
specialized genetic crossover operators to the specificities of the industrial version of the
single objective car sequencing problem, for which we have three conflicting objectives to
optimize. The numerical experiments allowed us to demonstrate the efficiency of the

 Advances in Evolutionary Algorithms

398

proposed approach for this industrial problem. A natural conclusion of these experimental
results is that GAs may be robust and efficient alternative to solve the multi-objective ICSP.
These results also again highlight the importance of incorporating specific problem
knowledge into genetic operators, even if classical genetic operators could be used. We are
also aware of the fact that having known the solutions found by the algorithms of the
different qualified teams has facilitated improving and tuning our algorithms. However, the
main purpose of this study was to demonstrate that GAs can be an efficient alternative to
solve this kind of industrial problem.
The lexicographical treatment of the objectives proposed by Renault is such that it can
eliminate several “interesting” solutions for the manufacturer. Indeed, the relaxation of the
importance granted to the main objective can highlight other attractive solutions for the
company. For example, if an additional violation on the HPO objective allows to avoid 5
colour changes, the production scheduler could then be interested to a such solution to
make his final schedule. We therefore believe that the industrial problem introduced by
Renault would benefit to be treated to obtain so-called “compromise solutions”. In this
context, the GAs proposed in this chapter represent very interesting alternatives to find
these compromise solutions. In fact, GAs are well suited for multi-objective optimization in
the Pareto sense and these approaches have proven their ability to generate compromise
solutions in a single optimization step. Since the mid-nineties, an increasing number of
approaches exploit the principle of dominance (Zitzler and Thiele, 1998; Deb, 2000; Knowles
and Corne, 2000a; Knowles and Corne, 2000b; Coello Coello and Pulido, 2001) in the Pareto
sense as defined by Goldberg (1989). These evolutionary multi-objective algorithms use the
concepts of dominance, niches and elitism (Deb, 2000; Knowles and Corne, 2000b; Deb and
Goel, 2001; Zitzler et al., 2001). The NSGAII algorithm (Deb, 2000), the SPEA2 algorithm
(Zitler et al., 2001) and the PMSMO algorithm (Zinflou et al., 2007) are recognized as amongst
the best performing of the elitist multi-objective evolutionary algorithms. These algorithms
are said to be elitist because they include one or several mechanisms allowing the
memorization of the best solutions found during the execution of the GA.
For future work, we will use this type of approaches to consider the objectives
simultaneously, without assigning priority or weight. A set of compromise solutions may
then be found for comparison to the solution by considering the objectives in lexicographical
order. It will thus be possible to highlight different solutions that are much more financially
interesting for a manufacturer and that are better suited to industrial reality.

7. References
Barichard, V. (2003). Approches hybrides pour les problèmes multiobjectifs, Ph.D. Thesis,

Université d'Angers, France.
Basseur, M. (2004). Conception d'algorithmes coopératifs pour l'optimisation multi-objectifs :

Application aux problèmes d'ordonnancement de type flow-shop, Ph.D. Thesis, Université
des Sciences et Technologies de Lille, France.

Benoit, T. (2007). Soft car sequencing with colors: Lower bounds and optimality proofs,
European Journal of Operational Research: doi:10.1016/j.ejor.2007.04.035.

Briant, O.; Naddef, D. & Mounié, G. (2007). Greedy approach and multi-criteria simulated
annealing for the car sequencing problem, European Journal of Operational Research:
doi:10.1016/j.ejor.2007.04.052.

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

399

Coello Coello, A. C. & Pulido, G. T. (2001). Multiobjective optimization using a micro-
genetic Algorithm, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO'2001), 274-282, San Francisco, California.

Cordeau, J.-F.; Laporte, G. & Pasin, F. (2007). An iterated local search heuristic for the car
sequencing problem, European Journal of Operational Research:
doi:10.1016/j.ejor.2007.04.048.

Deb, K. (2000). A fast elitist non-dominated sorting genetic algorithm for multiobjective
optimization : NSGA II, Proceedings of Parallel problem Solving form Nature – PPSN
VI, Lecture Notes in Computer Science, M. Schoenauer et al. (Eds), Springer, 849-
858.

Deb, K. & Goel, T. (2001). Controlled elitist non-dominated sorting genetic algorithms for
better convergence, Proceedings of Evolutionary Multi-Criterion Optimization, Lecture
Notes in Computer Science 1993, E. Zitler et al. (Eds), Springer-Verlag.

Dincbas, M.; Simonis, H. & van Hentenryck, P. (1988). Solving the car sequencing problem
in constraint logic programming, Proceedings of the European Conference on Artificial
Intelligence (ECAI-88), Munich, Germany, Pitmann Publishing, London, 290-295.

Estellon, B. ; Gardi, F. & Nouioua, K. (2005). Ordonnancement de véhicules: une approche
par recherche locale à grand voisinage, Proceedings of Journées Francophones de
Programmation par Contraintes, 21-28, Lens, France.

Estellon, B.; Gardi, F. & Nouioua, K. (2007). Two local search approaches for solving real-
life car sequencing problem, European Journal of Operational Research,
doi:10.1016/j.ejor.2007.04.043.

Gagné, C.; Gravel, M. & Price, W. L. (2006). Solving real car sequencing problems with ant
colony optimization, European Journal of Operational Research, 174(3), 1427-1448.

Gavranović, H. (2007). Local search and suffix tree for car-sequencing problem with colors,
European Journal of Operational Research, doi:10.1016/j.ejor.2007.04.051.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Massachusetts, Addison-Wesley, Reading.

Gottlieb, J.; Puchta, M. & Solnon, C. (2003). A study of greedy, local search and ant colony
optimization approaches for car sequencing problems, Computers Science, 246-257.

Grefenstette, J. J. (1986). Optimization of Control parameters for genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics, 16(1), 122-128.

Jaszkiewicz, A.; Kubiak, M. & Kominek, P. (2004). The application of the genetic local search
algorithm to Car Sequencing Problem, Proceedings of the 7th National Conference on
Evolutionary Algorithms and Global Optimization, Kazimierz Dolny, Poland.

Knowles, J. D. & Corne, D. W. (2000a). M-PAES : A Memetic Algorithm for Multiobjective
Optimization, Proceedings of the 2000 Congress on Evolutionary Computation, 325-332.

Knowles, J. D. & Corne, D. W. (2000b). The pareto-envelope based selection algorithm for
multiobjective optimization, Proceedings of the Sixth International Conference on
Parallel Problem Solving from Nature (PPSN VI), 839-848, Berlin.

Nguyen, A. & Cung, V.-D. (2005). Le problème du Car Sequencing Renault et le challenge
ROADEF' 2005, Proceedings of Journées Francophones de Programmation par
Contraintes, 3-10, 2005.

Prandtstetter, M. & Raidl, G. R. (2007). An integer linear programming approach and a
hybrid variable neighborhood search for the car sequencing problem, European
Journal of Operational Research, doi:10.1016/j.ejor.2007.04.044.

 Advances in Evolutionary Algorithms

398

proposed approach for this industrial problem. A natural conclusion of these experimental
results is that GAs may be robust and efficient alternative to solve the multi-objective ICSP.
These results also again highlight the importance of incorporating specific problem
knowledge into genetic operators, even if classical genetic operators could be used. We are
also aware of the fact that having known the solutions found by the algorithms of the
different qualified teams has facilitated improving and tuning our algorithms. However, the
main purpose of this study was to demonstrate that GAs can be an efficient alternative to
solve this kind of industrial problem.
The lexicographical treatment of the objectives proposed by Renault is such that it can
eliminate several “interesting” solutions for the manufacturer. Indeed, the relaxation of the
importance granted to the main objective can highlight other attractive solutions for the
company. For example, if an additional violation on the HPO objective allows to avoid 5
colour changes, the production scheduler could then be interested to a such solution to
make his final schedule. We therefore believe that the industrial problem introduced by
Renault would benefit to be treated to obtain so-called “compromise solutions”. In this
context, the GAs proposed in this chapter represent very interesting alternatives to find
these compromise solutions. In fact, GAs are well suited for multi-objective optimization in
the Pareto sense and these approaches have proven their ability to generate compromise
solutions in a single optimization step. Since the mid-nineties, an increasing number of
approaches exploit the principle of dominance (Zitzler and Thiele, 1998; Deb, 2000; Knowles
and Corne, 2000a; Knowles and Corne, 2000b; Coello Coello and Pulido, 2001) in the Pareto
sense as defined by Goldberg (1989). These evolutionary multi-objective algorithms use the
concepts of dominance, niches and elitism (Deb, 2000; Knowles and Corne, 2000b; Deb and
Goel, 2001; Zitzler et al., 2001). The NSGAII algorithm (Deb, 2000), the SPEA2 algorithm
(Zitler et al., 2001) and the PMSMO algorithm (Zinflou et al., 2007) are recognized as amongst
the best performing of the elitist multi-objective evolutionary algorithms. These algorithms
are said to be elitist because they include one or several mechanisms allowing the
memorization of the best solutions found during the execution of the GA.
For future work, we will use this type of approaches to consider the objectives
simultaneously, without assigning priority or weight. A set of compromise solutions may
then be found for comparison to the solution by considering the objectives in lexicographical
order. It will thus be possible to highlight different solutions that are much more financially
interesting for a manufacturer and that are better suited to industrial reality.

7. References
Barichard, V. (2003). Approches hybrides pour les problèmes multiobjectifs, Ph.D. Thesis,

Université d'Angers, France.
Basseur, M. (2004). Conception d'algorithmes coopératifs pour l'optimisation multi-objectifs :

Application aux problèmes d'ordonnancement de type flow-shop, Ph.D. Thesis, Université
des Sciences et Technologies de Lille, France.

Benoit, T. (2007). Soft car sequencing with colors: Lower bounds and optimality proofs,
European Journal of Operational Research: doi:10.1016/j.ejor.2007.04.035.

Briant, O.; Naddef, D. & Mounié, G. (2007). Greedy approach and multi-criteria simulated
annealing for the car sequencing problem, European Journal of Operational Research:
doi:10.1016/j.ejor.2007.04.052.

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

399

Coello Coello, A. C. & Pulido, G. T. (2001). Multiobjective optimization using a micro-
genetic Algorithm, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO'2001), 274-282, San Francisco, California.

Cordeau, J.-F.; Laporte, G. & Pasin, F. (2007). An iterated local search heuristic for the car
sequencing problem, European Journal of Operational Research:
doi:10.1016/j.ejor.2007.04.048.

Deb, K. (2000). A fast elitist non-dominated sorting genetic algorithm for multiobjective
optimization : NSGA II, Proceedings of Parallel problem Solving form Nature – PPSN
VI, Lecture Notes in Computer Science, M. Schoenauer et al. (Eds), Springer, 849-
858.

Deb, K. & Goel, T. (2001). Controlled elitist non-dominated sorting genetic algorithms for
better convergence, Proceedings of Evolutionary Multi-Criterion Optimization, Lecture
Notes in Computer Science 1993, E. Zitler et al. (Eds), Springer-Verlag.

Dincbas, M.; Simonis, H. & van Hentenryck, P. (1988). Solving the car sequencing problem
in constraint logic programming, Proceedings of the European Conference on Artificial
Intelligence (ECAI-88), Munich, Germany, Pitmann Publishing, London, 290-295.

Estellon, B. ; Gardi, F. & Nouioua, K. (2005). Ordonnancement de véhicules: une approche
par recherche locale à grand voisinage, Proceedings of Journées Francophones de
Programmation par Contraintes, 21-28, Lens, France.

Estellon, B.; Gardi, F. & Nouioua, K. (2007). Two local search approaches for solving real-
life car sequencing problem, European Journal of Operational Research,
doi:10.1016/j.ejor.2007.04.043.

Gagné, C.; Gravel, M. & Price, W. L. (2006). Solving real car sequencing problems with ant
colony optimization, European Journal of Operational Research, 174(3), 1427-1448.

Gavranović, H. (2007). Local search and suffix tree for car-sequencing problem with colors,
European Journal of Operational Research, doi:10.1016/j.ejor.2007.04.051.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Massachusetts, Addison-Wesley, Reading.

Gottlieb, J.; Puchta, M. & Solnon, C. (2003). A study of greedy, local search and ant colony
optimization approaches for car sequencing problems, Computers Science, 246-257.

Grefenstette, J. J. (1986). Optimization of Control parameters for genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics, 16(1), 122-128.

Jaszkiewicz, A.; Kubiak, M. & Kominek, P. (2004). The application of the genetic local search
algorithm to Car Sequencing Problem, Proceedings of the 7th National Conference on
Evolutionary Algorithms and Global Optimization, Kazimierz Dolny, Poland.

Knowles, J. D. & Corne, D. W. (2000a). M-PAES : A Memetic Algorithm for Multiobjective
Optimization, Proceedings of the 2000 Congress on Evolutionary Computation, 325-332.

Knowles, J. D. & Corne, D. W. (2000b). The pareto-envelope based selection algorithm for
multiobjective optimization, Proceedings of the Sixth International Conference on
Parallel Problem Solving from Nature (PPSN VI), 839-848, Berlin.

Nguyen, A. & Cung, V.-D. (2005). Le problème du Car Sequencing Renault et le challenge
ROADEF' 2005, Proceedings of Journées Francophones de Programmation par
Contraintes, 3-10, 2005.

Prandtstetter, M. & Raidl, G. R. (2007). An integer linear programming approach and a
hybrid variable neighborhood search for the car sequencing problem, European
Journal of Operational Research, doi:10.1016/j.ejor.2007.04.044.

 Advances in Evolutionary Algorithms

400

Ribeiro, C. C.; Aloise, D. Noronha, T. F. Rocha, C. & Urrutia, S. (2007a). An efficient
implementation of a VNS/ILS heuristic for a real-life car sequencing problem,
European Journal of Operational Research, doi:10.1016/j.ejor.2007.02.003.

Ribiero, C. C.; Aloise, D. Noronha, T. F. Rocha, C. & Urrutia, S. (2007b). A hybrid heuristic
for a multi-objective real-life car sequencing, European Journal of Operational
Research, doi:10.1016/j.ejor.2007.04.034.

Solnon, C.; Cung, V.-D. & Artigues, C. (2007). The car sequencing problem: overview of
state-of-the-art methods and industrial case-study of the ROADEF’2005 challenge
problem, European Journal of Operational Research, doi:10.1016/j.ejor.2007.04.033.

Terada, J.; Vo, H. & Joslin, D. (2006). Combining genetic algorithms with squeaky-wheel
optimization, Proceedings of Genetic and Evolutionary Computation COnference
(GECCO) 2006, Seattle.

Warwick, T. & Tsang, E. (1995). Tackling car sequencing problem using a generic genetic
algorithm, Evolutionary Computation, 3(3), 267-298.

Zinflou, A., Gagné, C. & Gravel, M. (2007). Crossover operators for the car-sequencing
problem, Proceedings of the Seventh European Conference on Evolutionary Computation
in Combinatorial Optimisation (EvoCOP 2007), LNCS 4446, C. Cotta and J. van
Hemert (Eds.), Springer-Verlag Berlin Heidelberg, 229-239.

Zinflou, A. ; Gagné, C. Gravel, M. & Price, W. L. (2006). Pareto memetic algorithm for
multiple objectives optimization with an industrial application, Journal of Heuristics,
doi: 10.1007/s10732-007-9042-2.

Zitzler, E.; Laumanns, M. & Thiele, L. (2001). SPEA2: Improving the strength pareto
evolutionary algorithm, Technical Report 103, Computer Engineering and
Communication Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland.

Zitzler, E. & Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization: the
strength pareto approach, Technical Report 43, Computer Engineering and
Communication Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland.

20

Symbiotic Evolution Genetic Algorithms for
Reinforcement Fuzzy Systems Design

Chia-Feng Juang* and I-Fang Chung**
*Department of Electrical Engineering, National Chung-Hsing University

**Institute of Biomedical Informatics, National Yang-Ming University
 Taiwan, R.O.C.

1. Introduction
The advent of fuzzy logic controllers has inspired the allocation of new resources for the
possible realization of more efficient methods of control. In comparison with traditional
controller design methods requiring mathematical models of the plants, one key advantage
of fuzzy controller design lies in its model-free approach. Conventionally, the selection of
fuzzy if-then rules often relies heavily upon the substantial amounts of heuristic observation
to express the strategy's proper knowledge. It is very difficult for human experts to examine
all the input-output data from a complex system, and then to design a number of proper
rules for the fuzzy logic controllers. Many design approaches for automatic fuzzy rules
generation have been developed in an effort to tackle this problem (Lin & Lee, 1996). The
neural learning method is one of them. In (Miller et al., 1990), several neural learning
methods including supervised and reinforcement based control configurations are studied.
For many control problems, the training data are usually difficult and expensive, if not
impossible, to obtain. Besides, many control problems require selecting control actions
whose consequences emerge over uncertain periods for which training data are not readily
available. In reinforcement learning, agents learn from signals that provide some measure of
performance which may be delivered after a sequence of decisions being made. Hence,
when the above mentioned control problems occur, reinforcement learning is more
appropriate than supervised learning.
Genetic algorithms (GAs) are stochastic search algorithms based on the mechanics of natural
selection and natural genetics (Goldberg, 1989). Since GAs do not require or use derivative
information, one appropriate application for their use is the circumstance where gradient
information is unavailable or costly to obtain. Reinforcement learning is an example of such
domain. The link of GAs and reinforcement learning may be called genetic reinforcement
learning (Whitley et al., 1993). In genetic reinforcement learning, the only feedback used by
the algorithm is the information about the relative performance of different individuals and
may be applied to reinforcement problems where the evaluative signals contain relative
performance information. Besides GAs, another general approach for realizing
reinforcement learning is the temporal difference (TD) based method (Sutton & Barto, 1998).
One generally used TD-based reinforcement learning method is Adaptive Heuristic Critic
(AHC) learning algorithm. AHC learning algorithm relies upon both the learned evaluation

 Advances in Evolutionary Algorithms

400

Ribeiro, C. C.; Aloise, D. Noronha, T. F. Rocha, C. & Urrutia, S. (2007a). An efficient
implementation of a VNS/ILS heuristic for a real-life car sequencing problem,
European Journal of Operational Research, doi:10.1016/j.ejor.2007.02.003.

Ribiero, C. C.; Aloise, D. Noronha, T. F. Rocha, C. & Urrutia, S. (2007b). A hybrid heuristic
for a multi-objective real-life car sequencing, European Journal of Operational
Research, doi:10.1016/j.ejor.2007.04.034.

Solnon, C.; Cung, V.-D. & Artigues, C. (2007). The car sequencing problem: overview of
state-of-the-art methods and industrial case-study of the ROADEF’2005 challenge
problem, European Journal of Operational Research, doi:10.1016/j.ejor.2007.04.033.

Terada, J.; Vo, H. & Joslin, D. (2006). Combining genetic algorithms with squeaky-wheel
optimization, Proceedings of Genetic and Evolutionary Computation COnference
(GECCO) 2006, Seattle.

Warwick, T. & Tsang, E. (1995). Tackling car sequencing problem using a generic genetic
algorithm, Evolutionary Computation, 3(3), 267-298.

Zinflou, A., Gagné, C. & Gravel, M. (2007). Crossover operators for the car-sequencing
problem, Proceedings of the Seventh European Conference on Evolutionary Computation
in Combinatorial Optimisation (EvoCOP 2007), LNCS 4446, C. Cotta and J. van
Hemert (Eds.), Springer-Verlag Berlin Heidelberg, 229-239.

Zinflou, A. ; Gagné, C. Gravel, M. & Price, W. L. (2006). Pareto memetic algorithm for
multiple objectives optimization with an industrial application, Journal of Heuristics,
doi: 10.1007/s10732-007-9042-2.

Zitzler, E.; Laumanns, M. & Thiele, L. (2001). SPEA2: Improving the strength pareto
evolutionary algorithm, Technical Report 103, Computer Engineering and
Communication Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland.

Zitzler, E. & Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization: the
strength pareto approach, Technical Report 43, Computer Engineering and
Communication Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland.

20

Symbiotic Evolution Genetic Algorithms for
Reinforcement Fuzzy Systems Design

Chia-Feng Juang* and I-Fang Chung**
*Department of Electrical Engineering, National Chung-Hsing University

**Institute of Biomedical Informatics, National Yang-Ming University
 Taiwan, R.O.C.

1. Introduction
The advent of fuzzy logic controllers has inspired the allocation of new resources for the
possible realization of more efficient methods of control. In comparison with traditional
controller design methods requiring mathematical models of the plants, one key advantage
of fuzzy controller design lies in its model-free approach. Conventionally, the selection of
fuzzy if-then rules often relies heavily upon the substantial amounts of heuristic observation
to express the strategy's proper knowledge. It is very difficult for human experts to examine
all the input-output data from a complex system, and then to design a number of proper
rules for the fuzzy logic controllers. Many design approaches for automatic fuzzy rules
generation have been developed in an effort to tackle this problem (Lin & Lee, 1996). The
neural learning method is one of them. In (Miller et al., 1990), several neural learning
methods including supervised and reinforcement based control configurations are studied.
For many control problems, the training data are usually difficult and expensive, if not
impossible, to obtain. Besides, many control problems require selecting control actions
whose consequences emerge over uncertain periods for which training data are not readily
available. In reinforcement learning, agents learn from signals that provide some measure of
performance which may be delivered after a sequence of decisions being made. Hence,
when the above mentioned control problems occur, reinforcement learning is more
appropriate than supervised learning.
Genetic algorithms (GAs) are stochastic search algorithms based on the mechanics of natural
selection and natural genetics (Goldberg, 1989). Since GAs do not require or use derivative
information, one appropriate application for their use is the circumstance where gradient
information is unavailable or costly to obtain. Reinforcement learning is an example of such
domain. The link of GAs and reinforcement learning may be called genetic reinforcement
learning (Whitley et al., 1993). In genetic reinforcement learning, the only feedback used by
the algorithm is the information about the relative performance of different individuals and
may be applied to reinforcement problems where the evaluative signals contain relative
performance information. Besides GAs, another general approach for realizing
reinforcement learning is the temporal difference (TD) based method (Sutton & Barto, 1998).
One generally used TD-based reinforcement learning method is Adaptive Heuristic Critic
(AHC) learning algorithm. AHC learning algorithm relies upon both the learned evaluation

 Advances in Evolutionary Algorithms

402

network and the learned action network. Learning of these two networks is based on
gradient-descent learning algorithms with errors derived from internal and external
reinforcement signals. In comparison with the GAs, one disadvantage of AHC learning
algorithms is that they usually suffer the local minimum problem in network learning due
to the use of the gradient descent method. Overall performance comparisons between TD-
based reinforcement learning methods, including AHC and Q-learning, and GAs are made
in (Whitley et al., 1993; Moriarty & Miikkulainen, 1996). The results show that GAs achieve
better performance both in CPU time and number of control trials. In the past, some studies
on the combination of GAs with TD-based reinforcement learning methods were proposed
(Lin & Jou, 1999; Juang, 2005a). These studies show that the combination approach achieves
better performance than using only GAs or the TD-based method.
Many approaches to fuzzy system design using GAs have been proposed (Cordón et al.,
2004). If we distinguish them by individual representation in GAs, the major ones include
Pittsburgh, Michigan, and the iterative rule learning (IRL) approach (Cordón et al., 2001). In
the Pittsburgh approach, each individual represents an entire fuzzy rule set. A population of
candidate rule sets is maintained by performing genetic operators to produce new
generations of rule sets. Most GA-based fuzzy controller design methods belong to this
approach (Karr, 1991; Homaifar & McCormick, 1995; Shi et al., 1999; Belarbi & Titel, 2000;
Chung et al., 2000; Juang, 2004; Chou, 2006). In (Karr, 1991), Karr applied GAs to the design
of the membership functions of a fuzzy controller, with the fuzzy rule set assigned in
advance. Since the membership functions and rule sets are co-dependent, simultaneous
design of these two approaches would be a more appropriate methodology. Based upon this
concept, many researchers have applied GAs to optimize both the parameters of the
membership functions and the rule sets. Differences between the approaches depend mainly
on the type of coding and the way in which the membership functions are optimized. The
disadvantage of this approach is the computational cost, since a population of rule set has to
be evaluated in each generation. Also, the dimension of search space increases significantly,
making it substantially difficult to find good solutions. In the Michigan approach, each
individual of the population represents a single rule and a rule set is represented by the
entire population. All researches in (Valenzuela-Rendon, 1991; Bonarini, 1993; Furuhashi et
al., 1995) belong to this approach. As the evolutionary process is applied to the individual
rule base, this approach invariably leads to consideration of both cooperation and
competition. Obviously, it is difficult to obtain a good cooperation among the fuzzy rules
that compete with each other. To solve this cooperation versus competition problem, a
complex credit assignment policy is required, which is a disadvantage of this approach. This
credit assignment task becomes more difficult especially for controller design based upon
reinforcement learning problems, where the reinforcement signal is available after a long
sequence of control actions. Besides, if the rule number in the designed fuzzy system is
small, the small rule set in the population may easily converge to a local optimum and
degrade the search speed. Like the Michigan approach, in IRL, each individual represents a
single rule. However, in contrast to the former, only the best rule is adopted and added to
the rule set in every GA run. The process is run several times to obtain the complete rule set.
The IRL approach is considered to design genetic processes for off-line inductive learning
problems and is not suitable to the controller design problem considered here.
Recently, the adoption of coevolutionary GAs for fuzzy system design has also been
proposed. In GAs, coevolution refers to the simultaneous evolution of two or more species

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

403

with coupled fitness (Zhao, 1998; Paredis, 1995). Coevolution may be performed at the
population level (Potter et al., 1995; Pena -Reyes & Sipper, 2001) or at the individual level
(Juang et al., 2000). The idea of coevolutionary GA is similar to the Michigan approach. The
cooperative coevolutionary GAs (Potter & DeJong, 2000; Pena -Reyes & Sipper, 2001) and
Symbiotic GAs (Moriarty & Miikkulainen, 1996; Moriarty & Miikkulainen, 1998; Juang et al.,
2000; Juang, 2005b; Lin & Xu, 2006) are of this type. In (Moriarty & Miikkulainen, 1996;
Moriarty & Miikkulainen, 1998), Symbiotic Adaptive Neuro-Evolution (SANE) and
hierarchical SANE were proposed for neural networks design. In (Juang et al., 2000), a
Symbiotic-Evolution-based Fuzzy Controller (SEFC) was proposed and the performance of
SEFC is shown to be better than SANE. In (Juang, 2005b), a coevolutionary GA with divide-
and-conquer (CGA-DC) technique was proposed. The CGA-DC not only performs a GA
search on separate fuzzy rules, but also on a global fuzzy network simultaneously.
Therefore, the performance of CGA-DC is better than SEFC. This chapter extends the idea of
CGA-DC to both feedforward and recurrent fuzzy systems design, and the design method is
called hierarchical SEFC (HSEFC).
Besides GAs, another factor that may influence fuzzy controller performance is its structure.
Depending on the property of a controlled plant, different types of fuzzy controller
structures are used in this chapter. A feedforward fuzzy controller is designed for a static
plant. For a dynamic plant, whose output depends upon either previous states or control
inputs or both, a recurrent controller should be a better choice. To apply a feedforward
controller to this type of plant, we need to know the exact order of the plant in advance, and
the inclusion of the past values to the controller input increases the controller size. Several
recurrent fuzzy systems have been proposed (Zhang & Morris, 1999; Juang & Lin, 1999; Lee
&. Teng, 2000; Juang, 2002). The performance of these systems has been demonstrated to be
superior to that of recurrent neural networks. Based on this observation, a recurrent fuzzy
controller should be a better choice compared to a recurrent neural controller under genetic
reinforcement learning.
This Chapter introduces feedforward and recurrent fuzzy controllers design using HSEFC.
For a static plant control problem under reinforcement learning environment, HSEFC for
feedforward fuzzy controller design (HSEFC-F) is introduced, while for a dynamic plant,
HSEFC for recurrent fuzzy controller (HSEFC-R) is proposed. In HSEFC-F, two populations
are created. One of the populations is for searching the well-performed local rules, and each
individual in the population represents only a fuzzy rule. Within the other population, each
individual represents a whole fuzzy controller. The objective of the population is to search
the best fuzzy system participating rules selected from the rule population, and the
relationship between each rule is cooperative. Concurrent evolution of the local-mapping
and global-mapping stages increases the design efficiency. With the above techniques,
HSEFC-F performs an efficient fuzzy controller design task with a small population size.
HSEFC-R is applied to the design of a recurrent fuzzy controller obtained by adding
feedback structures into the feedforward fuzzy systems. In the local-mapping stage, each
recurrent fuzzy rule is divided into two sub-rules, one representing a spatial mapping and
the other doing a temporal mapping. These two sub-rules are considered as two distant
species, and two populations are created for each sub-rule search, which is a technique
based on the divide-and-conquer concept. In the global-mapping search stage, the third
population is created to seek the best combination of spatial sub-rules, temporal sub-rules or
both.

 Advances in Evolutionary Algorithms

402

network and the learned action network. Learning of these two networks is based on
gradient-descent learning algorithms with errors derived from internal and external
reinforcement signals. In comparison with the GAs, one disadvantage of AHC learning
algorithms is that they usually suffer the local minimum problem in network learning due
to the use of the gradient descent method. Overall performance comparisons between TD-
based reinforcement learning methods, including AHC and Q-learning, and GAs are made
in (Whitley et al., 1993; Moriarty & Miikkulainen, 1996). The results show that GAs achieve
better performance both in CPU time and number of control trials. In the past, some studies
on the combination of GAs with TD-based reinforcement learning methods were proposed
(Lin & Jou, 1999; Juang, 2005a). These studies show that the combination approach achieves
better performance than using only GAs or the TD-based method.
Many approaches to fuzzy system design using GAs have been proposed (Cordón et al.,
2004). If we distinguish them by individual representation in GAs, the major ones include
Pittsburgh, Michigan, and the iterative rule learning (IRL) approach (Cordón et al., 2001). In
the Pittsburgh approach, each individual represents an entire fuzzy rule set. A population of
candidate rule sets is maintained by performing genetic operators to produce new
generations of rule sets. Most GA-based fuzzy controller design methods belong to this
approach (Karr, 1991; Homaifar & McCormick, 1995; Shi et al., 1999; Belarbi & Titel, 2000;
Chung et al., 2000; Juang, 2004; Chou, 2006). In (Karr, 1991), Karr applied GAs to the design
of the membership functions of a fuzzy controller, with the fuzzy rule set assigned in
advance. Since the membership functions and rule sets are co-dependent, simultaneous
design of these two approaches would be a more appropriate methodology. Based upon this
concept, many researchers have applied GAs to optimize both the parameters of the
membership functions and the rule sets. Differences between the approaches depend mainly
on the type of coding and the way in which the membership functions are optimized. The
disadvantage of this approach is the computational cost, since a population of rule set has to
be evaluated in each generation. Also, the dimension of search space increases significantly,
making it substantially difficult to find good solutions. In the Michigan approach, each
individual of the population represents a single rule and a rule set is represented by the
entire population. All researches in (Valenzuela-Rendon, 1991; Bonarini, 1993; Furuhashi et
al., 1995) belong to this approach. As the evolutionary process is applied to the individual
rule base, this approach invariably leads to consideration of both cooperation and
competition. Obviously, it is difficult to obtain a good cooperation among the fuzzy rules
that compete with each other. To solve this cooperation versus competition problem, a
complex credit assignment policy is required, which is a disadvantage of this approach. This
credit assignment task becomes more difficult especially for controller design based upon
reinforcement learning problems, where the reinforcement signal is available after a long
sequence of control actions. Besides, if the rule number in the designed fuzzy system is
small, the small rule set in the population may easily converge to a local optimum and
degrade the search speed. Like the Michigan approach, in IRL, each individual represents a
single rule. However, in contrast to the former, only the best rule is adopted and added to
the rule set in every GA run. The process is run several times to obtain the complete rule set.
The IRL approach is considered to design genetic processes for off-line inductive learning
problems and is not suitable to the controller design problem considered here.
Recently, the adoption of coevolutionary GAs for fuzzy system design has also been
proposed. In GAs, coevolution refers to the simultaneous evolution of two or more species

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

403

with coupled fitness (Zhao, 1998; Paredis, 1995). Coevolution may be performed at the
population level (Potter et al., 1995; Pena -Reyes & Sipper, 2001) or at the individual level
(Juang et al., 2000). The idea of coevolutionary GA is similar to the Michigan approach. The
cooperative coevolutionary GAs (Potter & DeJong, 2000; Pena -Reyes & Sipper, 2001) and
Symbiotic GAs (Moriarty & Miikkulainen, 1996; Moriarty & Miikkulainen, 1998; Juang et al.,
2000; Juang, 2005b; Lin & Xu, 2006) are of this type. In (Moriarty & Miikkulainen, 1996;
Moriarty & Miikkulainen, 1998), Symbiotic Adaptive Neuro-Evolution (SANE) and
hierarchical SANE were proposed for neural networks design. In (Juang et al., 2000), a
Symbiotic-Evolution-based Fuzzy Controller (SEFC) was proposed and the performance of
SEFC is shown to be better than SANE. In (Juang, 2005b), a coevolutionary GA with divide-
and-conquer (CGA-DC) technique was proposed. The CGA-DC not only performs a GA
search on separate fuzzy rules, but also on a global fuzzy network simultaneously.
Therefore, the performance of CGA-DC is better than SEFC. This chapter extends the idea of
CGA-DC to both feedforward and recurrent fuzzy systems design, and the design method is
called hierarchical SEFC (HSEFC).
Besides GAs, another factor that may influence fuzzy controller performance is its structure.
Depending on the property of a controlled plant, different types of fuzzy controller
structures are used in this chapter. A feedforward fuzzy controller is designed for a static
plant. For a dynamic plant, whose output depends upon either previous states or control
inputs or both, a recurrent controller should be a better choice. To apply a feedforward
controller to this type of plant, we need to know the exact order of the plant in advance, and
the inclusion of the past values to the controller input increases the controller size. Several
recurrent fuzzy systems have been proposed (Zhang & Morris, 1999; Juang & Lin, 1999; Lee
&. Teng, 2000; Juang, 2002). The performance of these systems has been demonstrated to be
superior to that of recurrent neural networks. Based on this observation, a recurrent fuzzy
controller should be a better choice compared to a recurrent neural controller under genetic
reinforcement learning.
This Chapter introduces feedforward and recurrent fuzzy controllers design using HSEFC.
For a static plant control problem under reinforcement learning environment, HSEFC for
feedforward fuzzy controller design (HSEFC-F) is introduced, while for a dynamic plant,
HSEFC for recurrent fuzzy controller (HSEFC-R) is proposed. In HSEFC-F, two populations
are created. One of the populations is for searching the well-performed local rules, and each
individual in the population represents only a fuzzy rule. Within the other population, each
individual represents a whole fuzzy controller. The objective of the population is to search
the best fuzzy system participating rules selected from the rule population, and the
relationship between each rule is cooperative. Concurrent evolution of the local-mapping
and global-mapping stages increases the design efficiency. With the above techniques,
HSEFC-F performs an efficient fuzzy controller design task with a small population size.
HSEFC-R is applied to the design of a recurrent fuzzy controller obtained by adding
feedback structures into the feedforward fuzzy systems. In the local-mapping stage, each
recurrent fuzzy rule is divided into two sub-rules, one representing a spatial mapping and
the other doing a temporal mapping. These two sub-rules are considered as two distant
species, and two populations are created for each sub-rule search, which is a technique
based on the divide-and-conquer concept. In the global-mapping search stage, the third
population is created to seek the best combination of spatial sub-rules, temporal sub-rules or
both.

 Advances in Evolutionary Algorithms

404

This chapter is organized as follows. Section 2 describes the types and functions of the fuzzy
controller to be designed, including feedforward and recurrent fuzzy controllers. Section 3
describes the concepts of symbiotic evolution for fuzzy systems. Section 4 introduces HSEFC
for fuzzy controller design, including HSEFC-F and HSEFC-R. Section 5 presents simulation
results, where HSEFC-F is applied to control a cart-pole balancing system and HSEFC-R is
applied to control a dynamic system with delays. Comparisons with SEFC for the same task
are also made in this section. The conclusions are summarized in the last section.

2. Fuzzy controller
Control Systems represent an important application for reinforcement learning algorithms.
From the perspective of controller learning, since GAs only require the appropriate
evaluation of the controller performance to yield the fitness values for evolution, they are
suitable for fuzzy controller design under reinforcement learning problems.

2.1 Feedforward fuzzy controller
Several types of fuzzy systems have been proposed depending on the types of fuzzy if-then
rules and fuzzy reasoning. In this chapter, each rule in the feedforward fuzzy controller is
presented in the following form:

 Rule i : IF 1 ()x t is 1iA And … And ()nx t is inA Then (1)u t + is ib (1)

where jx is the input variable, u is the control output variable, ijA is a fuzzy set, and ib is

a fuzzy singleton. For a fuzzy set ijA , a Gaussian membership function with

 2() exp{ () }j ij
ij j

ij

x m
M x

σ

−
= − (2)

is used, where ijm and ijσ denote the mean and width of a fuzzy set ijA , respectively. In

the fuzzification process, crisp input jx is converted into a fuzzy singleton and is mapped

to the fuzzy set ijA with degree ()ij jM x . In the inference engine, the fuzzy AND operation

is implemented by the algebraic product in fuzzy theory. Given an input data set

1(, ...,)nx x=x , the firing strength ()iμ x of rule i is calculated by

 2

11

() exp{ () }
n n

j ij

i ij
jj ij

x m
Mμ

σ==

−
= = −∑∏x (3)

The output from each rule is a crisp value. The fuzzy logic control action is the combination
of the output of each rule using the weighted average defuzzification method. Suppose that
a fuzzy controller consists of r rules, and then the output of the controller is

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

405

 1

1

()

()

r

i i
i

r

i
i

b
u

μ

μ

=

=

=
∑

∑

x

x
 (4)

 In applying HSEFC to the feedforward fuzzy controller design, only the number of rules
should be assigned in advance. Instead of grid type partition, the rules are flexibly
partitioned in the input space. If the total number of rules is set to r , then the number of
fuzzy sets in each input variable as well as the number of fuzzy singletons in the consequent
part are also equal to r .

2.2 Recurrent fuzzy controller
For a dynamic plant control, a recurrent controller appears to be a better choice than a
feedforward controller. In the previous studies (Juang & Lin, 1999; Juang, 2002),
performance recorded by applying recurrent fuzzy systems to dynamic problems solving
has been shown to be superior to recurrent neural networks. The recurrent fuzzy controller
designed in this chapter is a slight modification of that used in TSK-type recurrent fuzzy
network (TRFN) (Juang, 2002) in that the consequent part is of zero-order instead of first-
order TSK type. Figure 1 shows structure of the recurrent fuzzy system. Suppose the system
consists of two rules. Each recurrent fuzzy if-then rule is in the following form

 Rule i : IF 1 ()x t is 1iA AND … AND ()nx t is inA AND ()ih t is G

 THEN (1)u t + is ib AND 1 (1)h t + is 1iw AND 2 (1)h t + is 2 iw , 1, 2i = (5)

where ijA and G are fuzzy sets, u is the output variable, ih is the internal variable, ijw

and ib are the consequent parameters for inference outputs ih and u , respectively. The

recurrent reasoning implies that the inference output (1)u t + is affected by the internal

variable ()ih t , and the current internal output (1)ih t + is a function of previous output

value ()ih t , i.e., the internal variable ()ih t itself forms a recurrent reasoning. As in a

feedforward fuzzy controller, Gaussian membership function is used for the fuzzy set ijA .

For the fuzzy set G , a global membership function () 1/(1)xG x e−= + is used. Given an

input set 1(, ...,)nx x=x , the inference and internal outputs of the recurrent fuzzy controller
are calculated, respectively, by

 1

1

()
(1)

()

r

i i
i

r

i
i

b
u t

μ

μ

=

=

+ =
∑

∑

x

x
 (6)

and

 Advances in Evolutionary Algorithms

404

This chapter is organized as follows. Section 2 describes the types and functions of the fuzzy
controller to be designed, including feedforward and recurrent fuzzy controllers. Section 3
describes the concepts of symbiotic evolution for fuzzy systems. Section 4 introduces HSEFC
for fuzzy controller design, including HSEFC-F and HSEFC-R. Section 5 presents simulation
results, where HSEFC-F is applied to control a cart-pole balancing system and HSEFC-R is
applied to control a dynamic system with delays. Comparisons with SEFC for the same task
are also made in this section. The conclusions are summarized in the last section.

2. Fuzzy controller
Control Systems represent an important application for reinforcement learning algorithms.
From the perspective of controller learning, since GAs only require the appropriate
evaluation of the controller performance to yield the fitness values for evolution, they are
suitable for fuzzy controller design under reinforcement learning problems.

2.1 Feedforward fuzzy controller
Several types of fuzzy systems have been proposed depending on the types of fuzzy if-then
rules and fuzzy reasoning. In this chapter, each rule in the feedforward fuzzy controller is
presented in the following form:

 Rule i : IF 1 ()x t is 1iA And … And ()nx t is inA Then (1)u t + is ib (1)

where jx is the input variable, u is the control output variable, ijA is a fuzzy set, and ib is

a fuzzy singleton. For a fuzzy set ijA , a Gaussian membership function with

 2() exp{ () }j ij
ij j

ij

x m
M x

σ

−
= − (2)

is used, where ijm and ijσ denote the mean and width of a fuzzy set ijA , respectively. In

the fuzzification process, crisp input jx is converted into a fuzzy singleton and is mapped

to the fuzzy set ijA with degree ()ij jM x . In the inference engine, the fuzzy AND operation

is implemented by the algebraic product in fuzzy theory. Given an input data set

1(, ...,)nx x=x , the firing strength ()iμ x of rule i is calculated by

 2

11

() exp{ () }
n n

j ij

i ij
jj ij

x m
Mμ

σ==

−
= = −∑∏x (3)

The output from each rule is a crisp value. The fuzzy logic control action is the combination
of the output of each rule using the weighted average defuzzification method. Suppose that
a fuzzy controller consists of r rules, and then the output of the controller is

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

405

 1

1

()

()

r

i i
i

r

i
i

b
u

μ

μ

=

=

=
∑

∑

x

x
 (4)

 In applying HSEFC to the feedforward fuzzy controller design, only the number of rules
should be assigned in advance. Instead of grid type partition, the rules are flexibly
partitioned in the input space. If the total number of rules is set to r , then the number of
fuzzy sets in each input variable as well as the number of fuzzy singletons in the consequent
part are also equal to r .

2.2 Recurrent fuzzy controller
For a dynamic plant control, a recurrent controller appears to be a better choice than a
feedforward controller. In the previous studies (Juang & Lin, 1999; Juang, 2002),
performance recorded by applying recurrent fuzzy systems to dynamic problems solving
has been shown to be superior to recurrent neural networks. The recurrent fuzzy controller
designed in this chapter is a slight modification of that used in TSK-type recurrent fuzzy
network (TRFN) (Juang, 2002) in that the consequent part is of zero-order instead of first-
order TSK type. Figure 1 shows structure of the recurrent fuzzy system. Suppose the system
consists of two rules. Each recurrent fuzzy if-then rule is in the following form

 Rule i : IF 1 ()x t is 1iA AND … AND ()nx t is inA AND ()ih t is G

 THEN (1)u t + is ib AND 1 (1)h t + is 1iw AND 2 (1)h t + is 2 iw , 1, 2i = (5)

where ijA and G are fuzzy sets, u is the output variable, ih is the internal variable, ijw

and ib are the consequent parameters for inference outputs ih and u , respectively. The

recurrent reasoning implies that the inference output (1)u t + is affected by the internal

variable ()ih t , and the current internal output (1)ih t + is a function of previous output

value ()ih t , i.e., the internal variable ()ih t itself forms a recurrent reasoning. As in a

feedforward fuzzy controller, Gaussian membership function is used for the fuzzy set ijA .

For the fuzzy set G , a global membership function () 1/(1)xG x e−= + is used. Given an

input set 1(, ...,)nx x=x , the inference and internal outputs of the recurrent fuzzy controller
are calculated, respectively, by

 1

1

()
(1)

()

r

i i
i

r

i
i

b
u t

μ

μ

=

=

+ =
∑

∑

x

x
 (6)

and

 Advances in Evolutionary Algorithms

406

1

(1) ()
r

i k ik
k

h t wμ
=

+ = ∑ x (7)

where

1

() (()) ()
n

i i ij j
j

G h t M xμ
=

= ⋅∏x (8)

In applying HSEFC to the recurrent fuzzy controller design, only the number of recurrent
fuzzy rules should be assigned in advance. Suppose there are r rules in total, then the
numbers of fuzzy sets A's on each external input variable ix and the internal variable ih ,
are all equal to r .

1b

1y

2 (1)h t +

1 (1)h t +

1()h t 2 ()h t

22w
21w

12w11w

1x 2x

R1 R2

Z-1Z-1

Layer 4

Layer 1

Layer 2

Layer 3

Layer 5
2b1b

1y

2 (1)h t +

1 (1)h t +

1()h t 2 ()h t

22w
21w

12w11w

1x 2x

R1 R2

Z-1Z-1

Layer 4

Layer 1

Layer 2

Layer 3

Layer 5
2b

Fig. 1. Recurrent fuzzy system structure.

3. Symbiotic Evolution-based Fuzzy Controller (SEFC)
The symbiotic evolution-based fuzzy controller (SEFC) was proposed in (Juang et al., 2000),
and the idea was used in many later studies (Mahfouf et al., 2001, Jamei et al., 2004, Kuo et
al., 2004, Juang, 2005b, Lin & Xu, 2006). Unlike general GAs' evolution algorithms which
operate on a population of full solutions to a problem (the Pittsburgh approach), symbiotic
evolution assumes that each individual in the population represents only a partial solution;
complete solutions are formed by combining several individuals. Figure 2(a) and (b) show

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

407

codings of a fuzzy system using the general and symbiotic evolutions, respectively. Each
individual in Fig. 2(a) represents a whole fuzzy system. On the contrary, each individual in
Fig. 2(b) represents a single fuzzy rule. In general GAs, a single individual is responsible for
the overall performance, with the fitness value assigned to itself according to its
performance. In symbiotic evolution, the fitness of an individual (a partial solution) depends
on others. Partial solutions can be characterized as specializations. The specialization
property tries to keep search diversity which prevents convergence of the population. The
symbiotic evolution appears to be a faster and more efficient search scheme than the general
evolution approaches for reinforcement learning problems (Moriarty & Miikkulainen, 1996;
Juang et al., 2000; Lin & Xu, 2006).

rule rrule jrule 1

Consequent
parameters

Antecedent
parameters

…..Antecedent
parameters

Coding of a
fuzzy system

Coding of a
rule

variable 1

individual i

variable n

… …

(a)

rule rrule jrule 1

Consequent
parameters

Antecedent
parameters

…..Antecedent
parameters

Coding of a
fuzzy system

Coding of a
rule

variable 1

individual i

variable n

… …

(a)

Rule 1

 sP

rule 8rule7…..Rule 2

fuzzy system 1

rule 9….rule 4rule 1

fuzzy system fN

Individual 1

Individual k

Individual

Rule k

Rule

Select r
individuals
randomly

Select r
individuals
randomly

…
.

…
.

r rules

(b)

sP

Rule 1

 sP

rule 8rule7…..Rule 2

fuzzy system 1

rule 9….rule 4rule 1

fuzzy system fN

Individual 1

Individual k

Individual

Rule k

Rule

Select r
individuals
randomly

Select r
individuals
randomly

…
.

…
.

r rules

(b)

sP

Fig. 2. Coding of a fuzzy system using (a) the general and (b) symbiotic evolutions.

The basic idea of SEFC is on the representation of a single fuzzy rule by an individual. A
whole fuzzy system is formed by combining r randomly selected rules from a population.
With the fitness assignment performed by symbiotic evolution and the local property of a
fuzzy rule, symbiotic evolution and the fuzzy system design can complement each other. If
a normal GA evolution scheme is adopted for fuzzy system design, only the overall
performance of a fuzzy system is known, not the performance of each fuzzy rule. The
method to replace the unsuitable fuzzy rules that degrade the overall performance of a
fuzzy system is through random crossover operations, followed by observing the

 Advances in Evolutionary Algorithms

406

1

(1) ()
r

i k ik
k

h t wμ
=

+ = ∑ x (7)

where

1

() (()) ()
n

i i ij j
j

G h t M xμ
=

= ⋅∏x (8)

In applying HSEFC to the recurrent fuzzy controller design, only the number of recurrent
fuzzy rules should be assigned in advance. Suppose there are r rules in total, then the
numbers of fuzzy sets A's on each external input variable ix and the internal variable ih ,
are all equal to r .

1b

1y

2 (1)h t +

1 (1)h t +

1()h t 2 ()h t

22w
21w

12w11w

1x 2x

R1 R2

Z-1Z-1

Layer 4

Layer 1

Layer 2

Layer 3

Layer 5
2b1b

1y

2 (1)h t +

1 (1)h t +

1()h t 2 ()h t

22w
21w

12w11w

1x 2x

R1 R2

Z-1Z-1

Layer 4

Layer 1

Layer 2

Layer 3

Layer 5
2b

Fig. 1. Recurrent fuzzy system structure.

3. Symbiotic Evolution-based Fuzzy Controller (SEFC)
The symbiotic evolution-based fuzzy controller (SEFC) was proposed in (Juang et al., 2000),
and the idea was used in many later studies (Mahfouf et al., 2001, Jamei et al., 2004, Kuo et
al., 2004, Juang, 2005b, Lin & Xu, 2006). Unlike general GAs' evolution algorithms which
operate on a population of full solutions to a problem (the Pittsburgh approach), symbiotic
evolution assumes that each individual in the population represents only a partial solution;
complete solutions are formed by combining several individuals. Figure 2(a) and (b) show

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

407

codings of a fuzzy system using the general and symbiotic evolutions, respectively. Each
individual in Fig. 2(a) represents a whole fuzzy system. On the contrary, each individual in
Fig. 2(b) represents a single fuzzy rule. In general GAs, a single individual is responsible for
the overall performance, with the fitness value assigned to itself according to its
performance. In symbiotic evolution, the fitness of an individual (a partial solution) depends
on others. Partial solutions can be characterized as specializations. The specialization
property tries to keep search diversity which prevents convergence of the population. The
symbiotic evolution appears to be a faster and more efficient search scheme than the general
evolution approaches for reinforcement learning problems (Moriarty & Miikkulainen, 1996;
Juang et al., 2000; Lin & Xu, 2006).

rule rrule jrule 1

Consequent
parameters

Antecedent
parameters

…..Antecedent
parameters

Coding of a
fuzzy system

Coding of a
rule

variable 1

individual i

variable n

… …

(a)

rule rrule jrule 1

Consequent
parameters

Antecedent
parameters

…..Antecedent
parameters

Coding of a
fuzzy system

Coding of a
rule

variable 1

individual i

variable n

… …

(a)

Rule 1

 sP

rule 8rule7…..Rule 2

fuzzy system 1

rule 9….rule 4rule 1

fuzzy system fN

Individual 1

Individual k

Individual

Rule k

Rule

Select r
individuals
randomly

Select r
individuals
randomly

…
.

…
.

r rules

(b)

sP

Rule 1

 sP

rule 8rule7…..Rule 2

fuzzy system 1

rule 9….rule 4rule 1

fuzzy system fN

Individual 1

Individual k

Individual

Rule k

Rule

Select r
individuals
randomly

Select r
individuals
randomly

…
.

…
.

r rules

(b)

sP

Fig. 2. Coding of a fuzzy system using (a) the general and (b) symbiotic evolutions.

The basic idea of SEFC is on the representation of a single fuzzy rule by an individual. A
whole fuzzy system is formed by combining r randomly selected rules from a population.
With the fitness assignment performed by symbiotic evolution and the local property of a
fuzzy rule, symbiotic evolution and the fuzzy system design can complement each other. If
a normal GA evolution scheme is adopted for fuzzy system design, only the overall
performance of a fuzzy system is known, not the performance of each fuzzy rule. The
method to replace the unsuitable fuzzy rules that degrade the overall performance of a
fuzzy system is through random crossover operations, followed by observing the

 Advances in Evolutionary Algorithms

408

performance of the offspring. Only when the overall performance of the fuzzy system is
good do we know that the unsuitable rules have been replaced. In SEFC, the performance
of each fuzzy rule may be implicitly evaluated. Such implicit evaluation is especially
suitable for reinforcement learnimg problems which require only evaluation instead of
instructive feedback information. With the local property of a fuzzy rule, the fitness
assignment performed by the SEFC is quite representative. In this way, symbiotic evolution
and fuzzy system design can complement each other, which result in a fast, efficient genetic
search for reinforcement learning problems.

4. Hierarchical SEFC (HSEFC)
In SEFC, a GA search is performed only on the separate rules. The information about the
participating rules in a well-performed fuzzy network is not propagated from generation to
generation. If, besides the local rule search, we can propagate the information to the next
generation and perform a global fuzzy network search simultaneously, then a better design
performance could be achieved. This is the motivation of Hierarchical SEFC (HSEFC). This
section introduces the detailed HSEFC implementation algorithm. Subsection 3.1 presents
the HSEFC implementation algorithm for feedforward fuzzy controller design (HSEFC-F).
In subsection 3.2, the HSEFC for recurrent fuzzy controller design (HSEFC-R) is presented.

4.1 HSEFC for feedforward fuzzy controller design (HSEFC-F)
Figure 3 shows the structure of the HSEFC-F design system. It consists of two populations.
In population 1, each individual represents only a single fuzzy rule in the form described in
(1). A whole fuzzy system constituted by r fuzzy rules is built by randomly selecting
r individuals from population 1. The selected rules are recorded in an individual of
population 2. Therefore, each individual in population 2 indicates a whole fuzzy system,
with each gene representing a rule selected from population 1. Each constituted fuzzy
controller in population 2 is applied to the plant to be controlled with a controller
performance evaluation returned and used as the fitness value. This fitness value is assigned
not only to the action system in population 2, but also distributed to the rules participating
in the system. The concurrent evolution of populations 1 and 2 leads to an efficient
algorithm. Detailed processes of these two stages are described as follows.

4.1.1 Local mapping stage
This stage performs evolution of population 1. Like general GAs, the evolution consists of
three major operations: reproduction, crossover, and mutation. Initially, this stage randomly
generates a population of individuals, each of which represents a set of parameters for the
fuzzy rule in (1). The population size is denoted as 1SP , which indicates that 1SP fuzzy rules
are generated. Each gene is represented by a floating number and the encoded form of each
rule (individual) is as follows,

1 1 2 2| | | | | ... | | | |i i i i in in im m m bσ σ σ

After creating a whole population with real-valued individuals, an interpreter takes one
from the population and uses it to set part of the parameters in a fuzzy system. Suppose
there are r rules in a fuzzy system, then a whole fuzzy system is constructed by selecting r

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

409

individuals from population 1. The fuzzy system runs in a feedforward fashion to control
the plant until a failure or a success occurs. Then, in the reinforcement control problem, we
should assign a credit to the fuzzy system. From the view point of temporal credit, if the
fuzzy system can control the plant for a longer time, then the degree of success is higher and
a higher credit should be assigned. Based on this concept, for each individual in population
2, the fitness value is assigned at the moment of failure.

biσ inmin‧ ‧ ‧σ i2mi2σ i1mi1

‧
‧
‧

individual i

individual 1

a fuzzy rule

individual Ps1

2n+1 genes

‧ ‧

‧
‧
‧
‧

‧ ‧

‧ ‧

‧ ‧
individual 1
individual 2

a fuzzy system

individual Ps2

‧
‧
‧

System
Evaluation

r genes

Fitness Value

Population 1 Population 2

…
…

Select r
individuals

randomly

2 4 r 6

individual 2

variable 1 variable 2 variable 3 consequence

biσ inmin‧ ‧ ‧σ i2mi2σ i1mi1

‧
‧
‧

individual i

individual 1

a fuzzy rule

individual Ps1

2n+1 genes

‧ ‧

‧
‧
‧
‧

‧ ‧

‧ ‧

‧ ‧
individual 1
individual 2

a fuzzy system

individual Ps2

‧
‧
‧

System
Evaluation

r genes

Fitness Value

Population 1 Population 2

…
…

Select r
individuals

randomly

2 4 r 6

individual 2

biσ inmin‧ ‧ ‧σ i2mi2σ i1mi1

‧
‧
‧

individual i

individual 1

a fuzzy rule

individual Ps1

2n+1 genes

‧ ‧

‧
‧
‧
‧

‧ ‧

‧ ‧

‧ ‧
individual 1
individual 2

a fuzzy system

individual Ps2

‧
‧
‧

System
Evaluation

r genes

Fitness Value

Population 1 Population 2

…
…

Select r
individuals

randomly

2 4 r 6

individual 2

variable 1 variable 2 variable 3 consequence

Fig. 3. Structure of the HSEFC for feedforward fuzzy system design (HSEFC-F).

To evaluate the performance of each individual in population 1, the credit assignment is not
as direct as that used in population 2. We should apportion the credit to the participating
rules in a fuzzy system. This credit assignment problem also occurs in the Michigan
approach. In the Michigan approach, many different credit assignment schemes have been
proposed (Cordón et al., 2001). The two most important ones are the bucket bridge
algorithm (BBA) (Booker et al., 1989) and the profit sharing plan (PSP) (Grefenstette, 1988).
The BBA adjusts the strength of an individual rule classifier by distributing the obtained
reward across the sequence of active rule classifiers that are directly or indirectly
contributed to the past actions by the fuzzy classifier system. It uses only the local
interactions between rules to distribute credit. In contrast to the BBA, the PSP is a global
learning scheme and typically achieves a better performance than the BBA. In (Ishibuchi et
al., 1999), a simpler credit assignment algorithm is proposed. In this algorithm, there is
always a unique winner rule to be rewarded or penalized depending on whether it correctly
predicts the class of the training example. The fitness value of each rule is determined by the
total reward assigned to the rule. Basically, the aforementioned schemes are based on an

 Advances in Evolutionary Algorithms

408

performance of the offspring. Only when the overall performance of the fuzzy system is
good do we know that the unsuitable rules have been replaced. In SEFC, the performance
of each fuzzy rule may be implicitly evaluated. Such implicit evaluation is especially
suitable for reinforcement learnimg problems which require only evaluation instead of
instructive feedback information. With the local property of a fuzzy rule, the fitness
assignment performed by the SEFC is quite representative. In this way, symbiotic evolution
and fuzzy system design can complement each other, which result in a fast, efficient genetic
search for reinforcement learning problems.

4. Hierarchical SEFC (HSEFC)
In SEFC, a GA search is performed only on the separate rules. The information about the
participating rules in a well-performed fuzzy network is not propagated from generation to
generation. If, besides the local rule search, we can propagate the information to the next
generation and perform a global fuzzy network search simultaneously, then a better design
performance could be achieved. This is the motivation of Hierarchical SEFC (HSEFC). This
section introduces the detailed HSEFC implementation algorithm. Subsection 3.1 presents
the HSEFC implementation algorithm for feedforward fuzzy controller design (HSEFC-F).
In subsection 3.2, the HSEFC for recurrent fuzzy controller design (HSEFC-R) is presented.

4.1 HSEFC for feedforward fuzzy controller design (HSEFC-F)
Figure 3 shows the structure of the HSEFC-F design system. It consists of two populations.
In population 1, each individual represents only a single fuzzy rule in the form described in
(1). A whole fuzzy system constituted by r fuzzy rules is built by randomly selecting
r individuals from population 1. The selected rules are recorded in an individual of
population 2. Therefore, each individual in population 2 indicates a whole fuzzy system,
with each gene representing a rule selected from population 1. Each constituted fuzzy
controller in population 2 is applied to the plant to be controlled with a controller
performance evaluation returned and used as the fitness value. This fitness value is assigned
not only to the action system in population 2, but also distributed to the rules participating
in the system. The concurrent evolution of populations 1 and 2 leads to an efficient
algorithm. Detailed processes of these two stages are described as follows.

4.1.1 Local mapping stage
This stage performs evolution of population 1. Like general GAs, the evolution consists of
three major operations: reproduction, crossover, and mutation. Initially, this stage randomly
generates a population of individuals, each of which represents a set of parameters for the
fuzzy rule in (1). The population size is denoted as 1SP , which indicates that 1SP fuzzy rules
are generated. Each gene is represented by a floating number and the encoded form of each
rule (individual) is as follows,

1 1 2 2| | | | | ... | | | |i i i i in in im m m bσ σ σ

After creating a whole population with real-valued individuals, an interpreter takes one
from the population and uses it to set part of the parameters in a fuzzy system. Suppose
there are r rules in a fuzzy system, then a whole fuzzy system is constructed by selecting r

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

409

individuals from population 1. The fuzzy system runs in a feedforward fashion to control
the plant until a failure or a success occurs. Then, in the reinforcement control problem, we
should assign a credit to the fuzzy system. From the view point of temporal credit, if the
fuzzy system can control the plant for a longer time, then the degree of success is higher and
a higher credit should be assigned. Based on this concept, for each individual in population
2, the fitness value is assigned at the moment of failure.

biσ inmin‧ ‧ ‧σ i2mi2σ i1mi1

‧
‧
‧

individual i

individual 1

a fuzzy rule

individual Ps1

2n+1 genes

‧ ‧

‧
‧
‧
‧

‧ ‧

‧ ‧

‧ ‧
individual 1
individual 2

a fuzzy system

individual Ps2

‧
‧
‧

System
Evaluation

r genes

Fitness Value

Population 1 Population 2

…
…

Select r
individuals

randomly

2 4 r 6

individual 2

variable 1 variable 2 variable 3 consequence

biσ inmin‧ ‧ ‧σ i2mi2σ i1mi1

‧
‧
‧

individual i

individual 1

a fuzzy rule

individual Ps1

2n+1 genes

‧ ‧

‧
‧
‧
‧

‧ ‧

‧ ‧

‧ ‧
individual 1
individual 2

a fuzzy system

individual Ps2

‧
‧
‧

System
Evaluation

r genes

Fitness Value

Population 1 Population 2

…
…

Select r
individuals

randomly

2 4 r 6

individual 2

biσ inmin‧ ‧ ‧σ i2mi2σ i1mi1

‧
‧
‧

individual i

individual 1

a fuzzy rule

individual Ps1

2n+1 genes

‧ ‧

‧
‧
‧
‧

‧ ‧

‧ ‧

‧ ‧
individual 1
individual 2

a fuzzy system

individual Ps2

‧
‧
‧

System
Evaluation

r genes

Fitness Value

Population 1 Population 2

…
…

Select r
individuals

randomly

2 4 r 6

individual 2

variable 1 variable 2 variable 3 consequence

Fig. 3. Structure of the HSEFC for feedforward fuzzy system design (HSEFC-F).

To evaluate the performance of each individual in population 1, the credit assignment is not
as direct as that used in population 2. We should apportion the credit to the participating
rules in a fuzzy system. This credit assignment problem also occurs in the Michigan
approach. In the Michigan approach, many different credit assignment schemes have been
proposed (Cordón et al., 2001). The two most important ones are the bucket bridge
algorithm (BBA) (Booker et al., 1989) and the profit sharing plan (PSP) (Grefenstette, 1988).
The BBA adjusts the strength of an individual rule classifier by distributing the obtained
reward across the sequence of active rule classifiers that are directly or indirectly
contributed to the past actions by the fuzzy classifier system. It uses only the local
interactions between rules to distribute credit. In contrast to the BBA, the PSP is a global
learning scheme and typically achieves a better performance than the BBA. In (Ishibuchi et
al., 1999), a simpler credit assignment algorithm is proposed. In this algorithm, there is
always a unique winner rule to be rewarded or penalized depending on whether it correctly
predicts the class of the training example. The fitness value of each rule is determined by the
total reward assigned to the rule. Basically, the aforementioned schemes are based on an

 Advances in Evolutionary Algorithms

410

economic analogy and consist of a bid competition between fuzzy rules. They measure only
the goodness of an individual rule and do not consider the ability to cooperate with the
remaining ones in the population. In fact, in the Michigan approach, since a population
represents a whole system, each individual cooperates with the same ones in each
generation. The quality of cooperation is difficult to obtain among these competing
individuals.
In HSANE-F, many fuzzy systems are formed in each generation, and each individual may
combine with different ones in each fuzzy system construction. By taking the average
system fitness value in which an individual participates, we can approximately measure the
individual cooperation ability. The measure is based on the fact that the fitness of each
individual depends on the quality of the whole system it participates in, thus measuring
how well it cooperates to solve the problem. As to the goodness of each individual, owing to
the local mapping property, a well-performed rule will also have certain contribution to the
system performance. On the contrary, a wrongly-mapped rule will degrade the system
performance. The contribution of each rule to the system depends on its firing strength.
However, the fitness value is available only when the control fails, during which the firing
strength of each rule varies with time. It would be complex to distribute the fitness value
among the participating rules based on the firing strength. A simple way is to equally
distribute the system fitness value among the participating rules to measure its goodness.
Therefore, by taking the average system fitness values in which an individual participates,
we can approximately measure both the cooperation and goodness of the individual.
Effectiveness of this fitness value distribution approach will be verified in simulations.
Detailed steps of the approach are as follows.
Step 1. Divide the fitness value by r and accumulate the divided value to the fitness record

of the r selected rules with their fitness set to zero initially.
Step 2. The above rule selection, plant control, and fitness division process are repeated 2SP

(the size of population 2) times. The process ends when each rule has been selected
for a sufficient number of times. Record the number of times each rule has
participated in a fuzzy system.

Step 3. Divide the accumulated fitness value of each rule by the number of times it has been
selected. The average fitness value represents the performance of an individual.

When the average fitness of each individual in population 1 is obtained, the HSEFC then
looks for a better set of individuals to form a new population in the next generation by using
genetic operators, including reproduction, crossover, and mutation. The detailed description
of the three operations is as follows.
In reproduction operation, the elite strategy and tournament selection techniques are used.
The top-half of best-performing individuals in the population are sorted according to their
fitness value. Based on the elite strategy, these elites are advanced directly to the next
generation. Also, to keep a non-decreasing best-so-far fitness value, the rules participating in
the best-performing system in each generation are directly reproduced in the next
generation. The remaining individuals are generated by performing tournament selection
and crossover operations on the elites.
In crossover operation, the tournament selection scheme is used to select parents. Two
individuals in the top-half of best-performing individuals are selected at random in the
tournament selection, and their fitness values are compared. The individual with higher

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

411

fitness value is selected as one parent. The other is also selected in the same way. Two
offspring are created by performing crossover on the selected parents. Here, one point
crossover operation is performed. The top-half of worst-performing individuals are replaced
by the newly produced offspring. The adopted crossover may be regarded as a kind of elite
crossover.
In mutation operation, the gene in an individual is altered randomly by mutation. Uniform
mutation is used, where a mutated gene is drawn randomly and uniformly from its search
domain. In the following simulations, mutation probability pm is set to 0.1.
The elite strategy above can improve the searching speed, but the population diversity may
also be lost quickly at the same time. To overcome this disadvantage, a population renewal
technique is used. In each generation, the relationship between each individual is
monitored. Since half of the next generation population is generated by performing
crossover on the top-half of best-performing individuals, it is only necessary to check the
similarities between the top-half of best-performers. The cross correlation value between
two neighbouring individuals in a performance ranked list is calculated and averaged. The
mathematical form for this measure is as follows:

1

1 1

/ 2 1

11

2
12 ()S

T T

i i i i

P

iS

T
i iS

P

D D
D D D D

+ +

−

=

+= ∑ (9)

where Di is the i th best-performing individual in the rank list. The dimension of Di is 1× ,
where is the number of genes in the individual. With this measure, if all of the individuals
are exactly the same, then S is equal to 1. This similarity measure is performed for each
generation. When the measurement similarity is higher than a pre-specified threshold Thr, it
reflects that the elites have moved to a degree of convergence. If this phenomenon occurs,
then most parts of the individuals are renewed. In the renewal process, only a portion of the
top best-performing individuals are reproduced to the next generation, and the remaining
parts are replaced by newly generated individuals. After the renewal process, the similarity
value is again calculated on each subsequent generation, and the renewal process is
performed when the value is higher than the threshold Thr. The renewal process can always
keep the diversity of the population and thus helps to find the best fuzzy rules.

4.1.2 Global mapping stage
This stage performs evolution of population 2. The function of population 2 consists of both
exploitation and exploration of the rule-combination in a fuzzy system. In exploitation, the
information about which rules are combined together in a well-performed fuzzy system is
propagated from generation to generation. On the other hand, evolutionary procedure is
performed on population 2 to search the best-combination in exploration. Without
population 2, in each generation, the rules participating in a fuzzy system should be
randomly selected from population 1. Population 2 helps to concentrate the search on the
best rule combination. Since populations 1 and 2 are evolved concurrently, if individuals in
the former are updated frequently, the search in the latter might be meaningless. To avoid
this phenomenon, as stated in the local-mapping-search-stage, the top-half of best-
performing individuals in population 1 are reproduced directly to the next generation. Only

 Advances in Evolutionary Algorithms

410

economic analogy and consist of a bid competition between fuzzy rules. They measure only
the goodness of an individual rule and do not consider the ability to cooperate with the
remaining ones in the population. In fact, in the Michigan approach, since a population
represents a whole system, each individual cooperates with the same ones in each
generation. The quality of cooperation is difficult to obtain among these competing
individuals.
In HSANE-F, many fuzzy systems are formed in each generation, and each individual may
combine with different ones in each fuzzy system construction. By taking the average
system fitness value in which an individual participates, we can approximately measure the
individual cooperation ability. The measure is based on the fact that the fitness of each
individual depends on the quality of the whole system it participates in, thus measuring
how well it cooperates to solve the problem. As to the goodness of each individual, owing to
the local mapping property, a well-performed rule will also have certain contribution to the
system performance. On the contrary, a wrongly-mapped rule will degrade the system
performance. The contribution of each rule to the system depends on its firing strength.
However, the fitness value is available only when the control fails, during which the firing
strength of each rule varies with time. It would be complex to distribute the fitness value
among the participating rules based on the firing strength. A simple way is to equally
distribute the system fitness value among the participating rules to measure its goodness.
Therefore, by taking the average system fitness values in which an individual participates,
we can approximately measure both the cooperation and goodness of the individual.
Effectiveness of this fitness value distribution approach will be verified in simulations.
Detailed steps of the approach are as follows.
Step 1. Divide the fitness value by r and accumulate the divided value to the fitness record

of the r selected rules with their fitness set to zero initially.
Step 2. The above rule selection, plant control, and fitness division process are repeated 2SP

(the size of population 2) times. The process ends when each rule has been selected
for a sufficient number of times. Record the number of times each rule has
participated in a fuzzy system.

Step 3. Divide the accumulated fitness value of each rule by the number of times it has been
selected. The average fitness value represents the performance of an individual.

When the average fitness of each individual in population 1 is obtained, the HSEFC then
looks for a better set of individuals to form a new population in the next generation by using
genetic operators, including reproduction, crossover, and mutation. The detailed description
of the three operations is as follows.
In reproduction operation, the elite strategy and tournament selection techniques are used.
The top-half of best-performing individuals in the population are sorted according to their
fitness value. Based on the elite strategy, these elites are advanced directly to the next
generation. Also, to keep a non-decreasing best-so-far fitness value, the rules participating in
the best-performing system in each generation are directly reproduced in the next
generation. The remaining individuals are generated by performing tournament selection
and crossover operations on the elites.
In crossover operation, the tournament selection scheme is used to select parents. Two
individuals in the top-half of best-performing individuals are selected at random in the
tournament selection, and their fitness values are compared. The individual with higher

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

411

fitness value is selected as one parent. The other is also selected in the same way. Two
offspring are created by performing crossover on the selected parents. Here, one point
crossover operation is performed. The top-half of worst-performing individuals are replaced
by the newly produced offspring. The adopted crossover may be regarded as a kind of elite
crossover.
In mutation operation, the gene in an individual is altered randomly by mutation. Uniform
mutation is used, where a mutated gene is drawn randomly and uniformly from its search
domain. In the following simulations, mutation probability pm is set to 0.1.
The elite strategy above can improve the searching speed, but the population diversity may
also be lost quickly at the same time. To overcome this disadvantage, a population renewal
technique is used. In each generation, the relationship between each individual is
monitored. Since half of the next generation population is generated by performing
crossover on the top-half of best-performing individuals, it is only necessary to check the
similarities between the top-half of best-performers. The cross correlation value between
two neighbouring individuals in a performance ranked list is calculated and averaged. The
mathematical form for this measure is as follows:

1

1 1

/ 2 1

11

2
12 ()S

T T

i i i i

P

iS

T
i iS

P

D D
D D D D

+ +

−

=

+= ∑ (9)

where Di is the i th best-performing individual in the rank list. The dimension of Di is 1× ,
where is the number of genes in the individual. With this measure, if all of the individuals
are exactly the same, then S is equal to 1. This similarity measure is performed for each
generation. When the measurement similarity is higher than a pre-specified threshold Thr, it
reflects that the elites have moved to a degree of convergence. If this phenomenon occurs,
then most parts of the individuals are renewed. In the renewal process, only a portion of the
top best-performing individuals are reproduced to the next generation, and the remaining
parts are replaced by newly generated individuals. After the renewal process, the similarity
value is again calculated on each subsequent generation, and the renewal process is
performed when the value is higher than the threshold Thr. The renewal process can always
keep the diversity of the population and thus helps to find the best fuzzy rules.

4.1.2 Global mapping stage
This stage performs evolution of population 2. The function of population 2 consists of both
exploitation and exploration of the rule-combination in a fuzzy system. In exploitation, the
information about which rules are combined together in a well-performed fuzzy system is
propagated from generation to generation. On the other hand, evolutionary procedure is
performed on population 2 to search the best-combination in exploration. Without
population 2, in each generation, the rules participating in a fuzzy system should be
randomly selected from population 1. Population 2 helps to concentrate the search on the
best rule combination. Since populations 1 and 2 are evolved concurrently, if individuals in
the former are updated frequently, the search in the latter might be meaningless. To avoid
this phenomenon, as stated in the local-mapping-search-stage, the top-half of best-
performing individuals in population 1 are reproduced directly to the next generation. Only

 Advances in Evolutionary Algorithms

412

the remaining poorly-performed individuals are updated. Owing to the local mapping
property, the update of these rules has only local influence on its participating fuzzy system.
In general, the newly generated rules outperform the original poorly-performing ones. So
the evolution of population 1 is also helpful to that of population 2, that is, both are
cooperative. This property will be verified in the simulations.
In this stage, an integer-value encoding scheme is used, and the alleles have values in the set
{1, 2, …, 1SP }. There are r genes in each individual, and it has the following form,

| 2| 7|5|9| … | 1SP | … |8|1|

The population size of population 2 is set to be 2SP , indicating that 2SP fuzzy controllers are

applied to plant control in each generation. Due to the following two reasons, the genetic
operation used in this stage is different from that used in the local-mapping search stage.
First, since a flexible partition of precondition part is adopted and reinforcement learning is
performed, the rule number r in a fuzzy system is usually small. Population 2 converges
quickly due to the small individual length. Second, the character of population 2 in the
whole searching task is auxiliary and should always maintain diversity to coordinate the
evolution of population 1 from generation to generation. If population 2 converges faster
than population 1, then the evolution of population 1 is useless. In order to maintain
population diversity, the following genetic operation is used. The top-half of best-
performing individuals in population 2 are sorted according to their fitness values. To select
the parents for crossover operation, the tournament select scheme is adopted and performed
on the top-half of best-performing individuals. By performing the one-point crossover
operation on the selected parents, offspring can be created and half of the new population is
produced in this way. As stated in the local-rule searching stage, it is desired to maintain a
non-decreasing best-so-far fitness value, consequently the best-performing individual is
directly reproduced in the next generation. As to the remaining half of the population, they
are created by randomly generated individuals. For the mutation operation, a mutated gene
is selected randomly and uniformly from the integer set {1, 2, …, 1SP }. The mutation

probability is set to 0.1.
After the above crossover and mutation operations, overlapping of rules might occur. If this
occurs, then the total number of rules in a fuzzy system is less than r . For this situation, the
overlapping of each rule is regarded as a weighting factor F of its firing strength. If the
overlapping number of rule i is in , then i iF n= . With the weighting factor, the output

equation of the fuzzy system in (4) can be rewritten as

 1

1

()

()

r

i i i
i

r

i i
i

Fb
u

F

μ

μ

′

=
′

=

=
∑

∑

x

x

 (10)

where r r′ ≤ is the total number of rules and
1

r

ii
F r

′

=
=∑ .

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

413

4.2 HSEFC for recurrent fuzzy controller design (HSEFC-R)
This subsection introduces the application of HSEFC to recurrent fuzzy controller design.
The recurrent fuzzy rule to be designed is previously described in (5). By regarding each
recurrent rule as an individual in population 1 of HSEFC-F, the recurrent fuzzy controller
can be designed. However, this approach does not use the recurrent fuzzy system structure
to its full advantage. To speed up the design process, the HSEFC-R designed specifically for
the recurrent fuzzy rule is proposed. The divide-and-conquer concept is incorporated in
HSEFC-R (Juang, 2005b). Based on this concept, the recurrent fuzzy rule in (5) is
decomposed into two sub-rules, the spatial sub-rule and the temporal sub-rule. The
antecedent parts of both sub-rules are the same as that in (5). The consequent part in each
spatial sub-rule considers only the output variable u , while the consequent part in each

temporal sub-rule considers only the variables 1h , …, rh . In HSEFC-R, the spatial and

temporal sub-rules are evolved simultaneously. Figure 4 shows the HSEFC-R structure,

．
．
．
．

．
．
．
．

．
．

．． individual 1

Population 3

Population 1

Population 2

biσ inminσ i2mi2σ i1mi1

individual i

a spatial
sub-rule

Individual Ps

individual 2

individual 1

variable 1 variable 2 variable Consequencen

Individual Ps

individual 2

individual 1

a temporal
sub-rule

2n+1 genes

individual i

 genesr

a recurrent
fuzzy system

r r

...
1iω 2iω irω

S3individual P

Fitness value
assignment

System
Evaluation

Fitness value
assignment

Select r
individuals
randomly

Select r
individuals
randomly

…
…

．
．
．
．

．
．
．
．

．
．

．． individual 1

Population 3

Population 1

Population 2

biσ inminσ i2mi2σ i1mi1

individual i

a spatial
sub-rule

Individual Ps

individual 2

individual 1

variable 1 variable 2 variable Consequencen

Individual Ps

individual 2

individual 1

a temporal
sub-rule

2n+1 genes

individual i

 genesr

a recurrent
fuzzy system

r r

...
1iω 2iω irω

S3individual P

Fitness value
assignment

System
Evaluation

Fitness value
assignment

Select r
individuals
randomly

Select r
individuals
randomly

…
…

Fig. 4. Structure of the HSEFC for recurrent fuzzy system design (HSEFRC-R).

where there are three populations. Populations 1 and 2 are responsible for spatial and
temporal sub-rules searches, respectively. Population 3 is responsible for the whole
recurrent fuzzy system search. Each individual in population 1 represents a spatial sub-rule,
whereas each individual in population 2 represents a temporal sub-rule. Since the spatial
and temporal sub-rules share the same antecedent part, the antecedent parameters are
encoded in population 1 only. A recurrent fuzzy system consisting of r rules is constructed

 Advances in Evolutionary Algorithms

412

the remaining poorly-performed individuals are updated. Owing to the local mapping
property, the update of these rules has only local influence on its participating fuzzy system.
In general, the newly generated rules outperform the original poorly-performing ones. So
the evolution of population 1 is also helpful to that of population 2, that is, both are
cooperative. This property will be verified in the simulations.
In this stage, an integer-value encoding scheme is used, and the alleles have values in the set
{1, 2, …, 1SP }. There are r genes in each individual, and it has the following form,

| 2| 7|5|9| … | 1SP | … |8|1|

The population size of population 2 is set to be 2SP , indicating that 2SP fuzzy controllers are

applied to plant control in each generation. Due to the following two reasons, the genetic
operation used in this stage is different from that used in the local-mapping search stage.
First, since a flexible partition of precondition part is adopted and reinforcement learning is
performed, the rule number r in a fuzzy system is usually small. Population 2 converges
quickly due to the small individual length. Second, the character of population 2 in the
whole searching task is auxiliary and should always maintain diversity to coordinate the
evolution of population 1 from generation to generation. If population 2 converges faster
than population 1, then the evolution of population 1 is useless. In order to maintain
population diversity, the following genetic operation is used. The top-half of best-
performing individuals in population 2 are sorted according to their fitness values. To select
the parents for crossover operation, the tournament select scheme is adopted and performed
on the top-half of best-performing individuals. By performing the one-point crossover
operation on the selected parents, offspring can be created and half of the new population is
produced in this way. As stated in the local-rule searching stage, it is desired to maintain a
non-decreasing best-so-far fitness value, consequently the best-performing individual is
directly reproduced in the next generation. As to the remaining half of the population, they
are created by randomly generated individuals. For the mutation operation, a mutated gene
is selected randomly and uniformly from the integer set {1, 2, …, 1SP }. The mutation

probability is set to 0.1.
After the above crossover and mutation operations, overlapping of rules might occur. If this
occurs, then the total number of rules in a fuzzy system is less than r . For this situation, the
overlapping of each rule is regarded as a weighting factor F of its firing strength. If the
overlapping number of rule i is in , then i iF n= . With the weighting factor, the output

equation of the fuzzy system in (4) can be rewritten as

 1

1

()

()

r

i i i
i

r

i i
i

Fb
u

F

μ

μ

′

=
′

=

=
∑

∑

x

x

 (10)

where r r′ ≤ is the total number of rules and
1

r

ii
F r

′

=
=∑ .

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

413

4.2 HSEFC for recurrent fuzzy controller design (HSEFC-R)
This subsection introduces the application of HSEFC to recurrent fuzzy controller design.
The recurrent fuzzy rule to be designed is previously described in (5). By regarding each
recurrent rule as an individual in population 1 of HSEFC-F, the recurrent fuzzy controller
can be designed. However, this approach does not use the recurrent fuzzy system structure
to its full advantage. To speed up the design process, the HSEFC-R designed specifically for
the recurrent fuzzy rule is proposed. The divide-and-conquer concept is incorporated in
HSEFC-R (Juang, 2005b). Based on this concept, the recurrent fuzzy rule in (5) is
decomposed into two sub-rules, the spatial sub-rule and the temporal sub-rule. The
antecedent parts of both sub-rules are the same as that in (5). The consequent part in each
spatial sub-rule considers only the output variable u , while the consequent part in each

temporal sub-rule considers only the variables 1h , …, rh . In HSEFC-R, the spatial and

temporal sub-rules are evolved simultaneously. Figure 4 shows the HSEFC-R structure,

．
．
．
．

．
．
．
．

．
．

．． individual 1

Population 3

Population 1

Population 2

biσ inminσ i2mi2σ i1mi1

individual i

a spatial
sub-rule

Individual Ps

individual 2

individual 1

variable 1 variable 2 variable Consequencen

Individual Ps

individual 2

individual 1

a temporal
sub-rule

2n+1 genes

individual i

 genesr

a recurrent
fuzzy system

r r

...
1iω 2iω irω

S3individual P

Fitness value
assignment

System
Evaluation

Fitness value
assignment

Select r
individuals
randomly

Select r
individuals
randomly

…
…

．
．
．
．

．
．
．
．

．
．

．． individual 1

Population 3

Population 1

Population 2

biσ inminσ i2mi2σ i1mi1

individual i

a spatial
sub-rule

Individual Ps

individual 2

individual 1

variable 1 variable 2 variable Consequencen

Individual Ps

individual 2

individual 1

a temporal
sub-rule

2n+1 genes

individual i

 genesr

a recurrent
fuzzy system

r r

...
1iω 2iω irω

S3individual P

Fitness value
assignment

System
Evaluation

Fitness value
assignment

Select r
individuals
randomly

Select r
individuals
randomly

…
…

Fig. 4. Structure of the HSEFC for recurrent fuzzy system design (HSEFRC-R).

where there are three populations. Populations 1 and 2 are responsible for spatial and
temporal sub-rules searches, respectively. Population 3 is responsible for the whole
recurrent fuzzy system search. Each individual in population 1 represents a spatial sub-rule,
whereas each individual in population 2 represents a temporal sub-rule. Since the spatial
and temporal sub-rules share the same antecedent part, the antecedent parameters are
encoded in population 1 only. A recurrent fuzzy system consisting of r rules is constructed

 Advances in Evolutionary Algorithms

414

by randomly selecting r individuals from both populations 1 and 2. The selected
individuals from both populations are recorded in population 3. Each individual in
population 3 represents a whole fuzzy system. The task of creating population 3 is not only
to search the best combinations of the r spatial sub-rules or temporal sub-rules selected
from each population, but also to search for the best match of both types of sub-rules. Each
recurrent fuzzy system encoded in population 3 is applied to a dynamic plant control with
the return of a performed evaluation. The evaluation is used as the fitness value of the
controller. As in HSEFC-F, the fitness value for each individual in population 3 is set to the
time steps until failure for each control trial. This fitness value is then assigned to the
participating sub-rules selected from populations 1 and 2. With the distributed fitness value,
evolution of populations 1 and 2 is performed in the local-mapping search stage, while
evolution of population 3 is performed in the global-mapping search stage. These two stages
are executed concurrently until a successful control is achieved. Detailed operations of these
two stages are described as follows.

4.2.1 Local mapping stage
The objective of this stage is to explore the well-performing spatial and temporal sub-rules
in each local input region. First, populations 1 and 2 are created by randomly generated
individuals. The sizes of both the populations are equal to and are denoted as SP . The real-
value encoding scheme is used in both populations. Each individual in population 1 encodes
a spatial sub-rule and has the following form:

1 1 2 2| | | | | ... | | | |i i i i in in im m m bσ σ σ

Each individual in population 2 encodes only the consequent part of a temporal sub-rule
because the spatial and temporal sub-rules share the same antecedent part. Each individual
has the following form:

1 2| | | ... | |i i irw w w

 The relationship between the individuals in populations 1 and 2 is cooperative. The genetic
operation of each population is executed independently and concurrently. The fitness value
decision method of an individual is similar to that used in HSEFC-F. If the fitness value of
the recurrent fuzzy system consisting of r recurrent rules is Fit, then the distributed fitness
value of each participating individuals from populations 1 and 2 is set to Fit/r. When the
fitness value of each individual in both populations is given, new populations are generated
by using genetic operations. Like HSEFC-F, the elite strategy and tournament selection
techniques are used here. The reproduction, crossover, and mutation operations are the
same as those used in the local-mapping search stage of HSEFC-F. The mutation probability
is set at 0.1. To keep population diversity, the population renewal technique is applied to
both the populations. A threshold value, Thr, is set for both populations. If the similarity
value of the top-half of best-performing individuals is higher than Thr in each individual,
then the renewing technique is applied to that population.

4.2.2 Global mapping stage
This stage performs evolution of population 3. An integer-value encoding scheme is used.
Each individual contains 2 r genes. The first r genes represent the r spatial sub-rules

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

415

selected from population 1, while the remaining r genes represent the r temporal sub-rules
selected from population 2. Each gene representing the selected sub-rule has value in the
integer set {1, 2, …, SP }. Each individual has the following form

|7|2|4|…| SP | …|11|4||2|13|7|…| SP |…|15|4|

The temporal sub-rule recorded in position r k+ shares the same antecedent part with the

spatial sub-rule in position k . The population size is set to 3SP , indicating that 3SP recurrent

fuzzy controllers are built and applied to a dynamic plant control in each generation. The
fitness value of each individual is assigned according to the controller performance
evaluation. For the genetic operation, in addition to the crossover operation, the other
operations used are the same as those used in the global-mapping search stage of HSEFC-F.
In the crossover operation, to exchange the spatial and temporal sub-rule combination
information of each population, a two-point crossover operation is performed. One
crossover site is located at the first r genes, indicating the exchange of spatial sub-rule
combination information; the other is located at the last r genes, indicating the exchange of
temporal sub-rule combination information.

5. Simulations
This section presents simulation results of HSEFC for feedforward and recurrent fuzzy
controller design under genetic reinforcement learning environments. All simulations in the
following examples are written in C++ program, and run on a Pentium-1G personal
computer. For the fuzzy rule number selection, it is somewhat heuristic and depends on the
complexity of the plant to be controlled. In the following examples, the number of rules in
each fuzzy system is set to five, i.e., r = 5.

5.1 Feedforward fuzzy controller design
Example 1. Cart-Pole Balancing System. In this example, HSEFC-F is applied to a classic
control problem referred to as the cart-pole balancing problem. This problem is often used
as an example of inherently unstable and dynamic systems to demonstrate both modern and
classic control techniques, and is now used as a control benchmark (Andersonm 1989). The
cart-pole balancing problem is the problem of learning how to balance an upright pole.
There are four state variables in the system:θ, the angle of the pole from an upright position
(in degrees); θ , the angular velocity of the pole (in degrees/second); x , the horizontal
position of the center of the cart (in meters); and x , the velocity of the cart (in m/s). The
only control action is u , which is the amount of force (Newton) applied to the cart to move
it toward its left or right. The system fails when the pole falls past a certain angle (12 degrees
is used here) or the cart runs into the bounds of its track (the distance is 2.4m from the center
to both bounds of the track). Details of the control system description can be found in (Juang
et al. 2000). A control strategy is deemed successful if it can balance a pole for 120000 time
steps. In designing the fuzzy controller, the four states are fed as the controller inputs, and
the controller output is u . In HSEFC-F, the number of individuals (rules) in population 1 is
set to 50 (i.e., 1SP =50). The size of population 2 is set to 50 (i.e. 2SP =50), indicating that fifty

 Advances in Evolutionary Algorithms

414

by randomly selecting r individuals from both populations 1 and 2. The selected
individuals from both populations are recorded in population 3. Each individual in
population 3 represents a whole fuzzy system. The task of creating population 3 is not only
to search the best combinations of the r spatial sub-rules or temporal sub-rules selected
from each population, but also to search for the best match of both types of sub-rules. Each
recurrent fuzzy system encoded in population 3 is applied to a dynamic plant control with
the return of a performed evaluation. The evaluation is used as the fitness value of the
controller. As in HSEFC-F, the fitness value for each individual in population 3 is set to the
time steps until failure for each control trial. This fitness value is then assigned to the
participating sub-rules selected from populations 1 and 2. With the distributed fitness value,
evolution of populations 1 and 2 is performed in the local-mapping search stage, while
evolution of population 3 is performed in the global-mapping search stage. These two stages
are executed concurrently until a successful control is achieved. Detailed operations of these
two stages are described as follows.

4.2.1 Local mapping stage
The objective of this stage is to explore the well-performing spatial and temporal sub-rules
in each local input region. First, populations 1 and 2 are created by randomly generated
individuals. The sizes of both the populations are equal to and are denoted as SP . The real-
value encoding scheme is used in both populations. Each individual in population 1 encodes
a spatial sub-rule and has the following form:

1 1 2 2| | | | | ... | | | |i i i i in in im m m bσ σ σ

Each individual in population 2 encodes only the consequent part of a temporal sub-rule
because the spatial and temporal sub-rules share the same antecedent part. Each individual
has the following form:

1 2| | | ... | |i i irw w w

 The relationship between the individuals in populations 1 and 2 is cooperative. The genetic
operation of each population is executed independently and concurrently. The fitness value
decision method of an individual is similar to that used in HSEFC-F. If the fitness value of
the recurrent fuzzy system consisting of r recurrent rules is Fit, then the distributed fitness
value of each participating individuals from populations 1 and 2 is set to Fit/r. When the
fitness value of each individual in both populations is given, new populations are generated
by using genetic operations. Like HSEFC-F, the elite strategy and tournament selection
techniques are used here. The reproduction, crossover, and mutation operations are the
same as those used in the local-mapping search stage of HSEFC-F. The mutation probability
is set at 0.1. To keep population diversity, the population renewal technique is applied to
both the populations. A threshold value, Thr, is set for both populations. If the similarity
value of the top-half of best-performing individuals is higher than Thr in each individual,
then the renewing technique is applied to that population.

4.2.2 Global mapping stage
This stage performs evolution of population 3. An integer-value encoding scheme is used.
Each individual contains 2 r genes. The first r genes represent the r spatial sub-rules

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

415

selected from population 1, while the remaining r genes represent the r temporal sub-rules
selected from population 2. Each gene representing the selected sub-rule has value in the
integer set {1, 2, …, SP }. Each individual has the following form

|7|2|4|…| SP | …|11|4||2|13|7|…| SP |…|15|4|

The temporal sub-rule recorded in position r k+ shares the same antecedent part with the

spatial sub-rule in position k . The population size is set to 3SP , indicating that 3SP recurrent

fuzzy controllers are built and applied to a dynamic plant control in each generation. The
fitness value of each individual is assigned according to the controller performance
evaluation. For the genetic operation, in addition to the crossover operation, the other
operations used are the same as those used in the global-mapping search stage of HSEFC-F.
In the crossover operation, to exchange the spatial and temporal sub-rule combination
information of each population, a two-point crossover operation is performed. One
crossover site is located at the first r genes, indicating the exchange of spatial sub-rule
combination information; the other is located at the last r genes, indicating the exchange of
temporal sub-rule combination information.

5. Simulations
This section presents simulation results of HSEFC for feedforward and recurrent fuzzy
controller design under genetic reinforcement learning environments. All simulations in the
following examples are written in C++ program, and run on a Pentium-1G personal
computer. For the fuzzy rule number selection, it is somewhat heuristic and depends on the
complexity of the plant to be controlled. In the following examples, the number of rules in
each fuzzy system is set to five, i.e., r = 5.

5.1 Feedforward fuzzy controller design
Example 1. Cart-Pole Balancing System. In this example, HSEFC-F is applied to a classic
control problem referred to as the cart-pole balancing problem. This problem is often used
as an example of inherently unstable and dynamic systems to demonstrate both modern and
classic control techniques, and is now used as a control benchmark (Andersonm 1989). The
cart-pole balancing problem is the problem of learning how to balance an upright pole.
There are four state variables in the system:θ, the angle of the pole from an upright position
(in degrees); θ , the angular velocity of the pole (in degrees/second); x , the horizontal
position of the center of the cart (in meters); and x , the velocity of the cart (in m/s). The
only control action is u , which is the amount of force (Newton) applied to the cart to move
it toward its left or right. The system fails when the pole falls past a certain angle (12 degrees
is used here) or the cart runs into the bounds of its track (the distance is 2.4m from the center
to both bounds of the track). Details of the control system description can be found in (Juang
et al. 2000). A control strategy is deemed successful if it can balance a pole for 120000 time
steps. In designing the fuzzy controller, the four states are fed as the controller inputs, and
the controller output is u . In HSEFC-F, the number of individuals (rules) in population 1 is
set to 50 (i.e., 1SP =50). The size of population 2 is set to 50 (i.e. 2SP =50), indicating that fifty

 Advances in Evolutionary Algorithms

416

fuzzy controllers are built and evaluated per generation. The evaluation of a fuzzy controller
consists of a single trial to the cart-pole system. The similarity measure threshold Thr in the
renewing process is set at 0.5. The fitness value is equal to the number of time steps in which
the pole remains balanced. For each control trial, the initial values of (, , ,)x x θ θ are random
values in region [-2, 2]x[-1.5, 1.5]x[-5, 5]x[-40, 40]. In this example, 100 runs are simulated,
and a run ends when a successful controller is found or a failure run occurs. The definition
of a failure run is if no successful fuzzy controller is found after 25,000 trials. The number of
pole-balance trials and the CPU time (the time from the first trial to the end of a successful
trial) are measured. The average CPU time and trial number of the HSEFC-F are 4.0 (sec)
and 179, respectively. Figure 5 (a) and (b) show the control results of position and angle in
the first 1000 time steps of three different runs with different initial states. For SEFC, the
average results are 5.1 (sec) and 256 trials. The results show that the performance of HSEFC-
F is better than SEFC. Since the performance of SEFC has been shown to be better than other
compared reinforcement learning methods in (Juang et al., 2000), only SEFC is compared
this example.

Fig. 5. Control results of (a) position (b) angle in the first 1000 time steps of three different
runs with different initial states in Example 1.

5.2 Recurrent fuzzy controller design
Example 2. Dynamic Plant Control. The dynamic plant to be controlled is described by the
following equation

 2(1) 0.6 () 0.03 (1) () 0.01 (2) 0.2 (3)p p py k y k y k u k u k u k+ = + − + − + − (11)

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

417

The current output of the plant depends on two previous outputs and four previous inputs.
In (Kim et al., 1998), it is shown that for this type of plant, a poor performance is achieved by
a linear predictive control. The controller input u is in the range [-20, 20]. The initial states
are (0)py = (1)py = 3. The regulation point refy is set to 10. The performance of a controller

is measured by the number of time steps in which the controlled state py satisfies the

following constraint. The constraint set starts from the initial state and after 10 times of
control, the state of py should be within the region [refy -0.2, refy +0.2], otherwise a failure

occurs. A recurrent fuzzy controller designed by HSEFC-R is applied to the plant. In
HSEFC-R, the sizes of populations 1, 2, and 3 are all set to 100. The similarity measure
threshold hrT in the renewal process is set to 0.35. Since a recurrent fuzzy controller is used,

only the current state ()py k and reference state refy are fed as the controller inputs. Since a

recurrent fuzzy controller consists of five recurrent fuzzy rules, the number of genes in each
individual of populations 1 or 2 is equal to 5. One hundred runs are simulated, and a run
ends when a successful controller is found. A failure run is said to occur if no successful
fuzzy controller is found after 100,000 trials. The average CUP time and trial number of
HSANE-R are 0.65 (sec) and 1853, respectively. For SEFC, the results are 1.37 (sec) and 3960
trials. The performance of HSANE-R is much better than SEFC. Detailed comparisons of
different design methods can be found in (Juang, 2005b).

Fig. 6. Dynamic plant control results of five different runs using HSEFC-R in Example 2.

6. Conclusion
This chapter introduces a unified symbiotic evolution framework (the HSEFC) for
feedforward and recurrent fuzzy controller design in reinforced learning environments. The

 Advances in Evolutionary Algorithms

416

fuzzy controllers are built and evaluated per generation. The evaluation of a fuzzy controller
consists of a single trial to the cart-pole system. The similarity measure threshold Thr in the
renewing process is set at 0.5. The fitness value is equal to the number of time steps in which
the pole remains balanced. For each control trial, the initial values of (, , ,)x x θ θ are random
values in region [-2, 2]x[-1.5, 1.5]x[-5, 5]x[-40, 40]. In this example, 100 runs are simulated,
and a run ends when a successful controller is found or a failure run occurs. The definition
of a failure run is if no successful fuzzy controller is found after 25,000 trials. The number of
pole-balance trials and the CPU time (the time from the first trial to the end of a successful
trial) are measured. The average CPU time and trial number of the HSEFC-F are 4.0 (sec)
and 179, respectively. Figure 5 (a) and (b) show the control results of position and angle in
the first 1000 time steps of three different runs with different initial states. For SEFC, the
average results are 5.1 (sec) and 256 trials. The results show that the performance of HSEFC-
F is better than SEFC. Since the performance of SEFC has been shown to be better than other
compared reinforcement learning methods in (Juang et al., 2000), only SEFC is compared
this example.

Fig. 5. Control results of (a) position (b) angle in the first 1000 time steps of three different
runs with different initial states in Example 1.

5.2 Recurrent fuzzy controller design
Example 2. Dynamic Plant Control. The dynamic plant to be controlled is described by the
following equation

 2(1) 0.6 () 0.03 (1) () 0.01 (2) 0.2 (3)p p py k y k y k u k u k u k+ = + − + − + − (11)

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

417

The current output of the plant depends on two previous outputs and four previous inputs.
In (Kim et al., 1998), it is shown that for this type of plant, a poor performance is achieved by
a linear predictive control. The controller input u is in the range [-20, 20]. The initial states
are (0)py = (1)py = 3. The regulation point refy is set to 10. The performance of a controller

is measured by the number of time steps in which the controlled state py satisfies the

following constraint. The constraint set starts from the initial state and after 10 times of
control, the state of py should be within the region [refy -0.2, refy +0.2], otherwise a failure

occurs. A recurrent fuzzy controller designed by HSEFC-R is applied to the plant. In
HSEFC-R, the sizes of populations 1, 2, and 3 are all set to 100. The similarity measure
threshold hrT in the renewal process is set to 0.35. Since a recurrent fuzzy controller is used,

only the current state ()py k and reference state refy are fed as the controller inputs. Since a

recurrent fuzzy controller consists of five recurrent fuzzy rules, the number of genes in each
individual of populations 1 or 2 is equal to 5. One hundred runs are simulated, and a run
ends when a successful controller is found. A failure run is said to occur if no successful
fuzzy controller is found after 100,000 trials. The average CUP time and trial number of
HSANE-R are 0.65 (sec) and 1853, respectively. For SEFC, the results are 1.37 (sec) and 3960
trials. The performance of HSANE-R is much better than SEFC. Detailed comparisons of
different design methods can be found in (Juang, 2005b).

Fig. 6. Dynamic plant control results of five different runs using HSEFC-R in Example 2.

6. Conclusion
This chapter introduces a unified symbiotic evolution framework (the HSEFC) for
feedforward and recurrent fuzzy controller design in reinforced learning environments. The

 Advances in Evolutionary Algorithms

418

design of a fuzzy controller is divided by the HSEFC into two iterative search stages: the
local-mapping search stage and the global-mapping search stage. In this way, the
population in each stage is evolved independently and concurrently. Furthermore, to avoid
the premature population phenomenon, modifications of general genetic operations are also
incorporated in the design process. In the interests of utility and economy, the HSEFC
operates under two formats; HSEFC-F and HSEFC-R. For feedforward fuzzy controller
design, HSEFC-F is presented, while for recurrent fuzzy controller design, HSEFC-R, which
uses the divide-and-conquer technique on spatial and temporal sub-rules search, is
presented. As shown, simulation results in static and dynamic plant control problems have
verified the effectiveness and efficiency of HSEFC-F and HSEFC-R. Although in HSEFC
solutions, the designed fuzzy controller structure is currently assigned in advance, further
work on HSEFC intends to focus on its extension to automatic controller structure
determination. A more accurate fitness assignment for each single rule in symbiotic
evolution is another future research topic.

7. References
Anderson, C. W. (1989). Learning to control an inverted pendulum using neural networks.

IEEE Control Systems Magazine, Vol. 9, 31-37.
Belarbi, K. & Titel, F. (2000). Genetic algorithm for the design of a class of fuzzy controllers:

an alternative approach. IEEE Trans. Fuzzy Systems, Vol. 8, No. 4, 398-405.
Bonarini, A. (1993). ELF: learning incomplete fuzzy rule sets for an autonomous robot, Proc.

1st European Congress on Intelligent Technologies and Soft Computing, pp. 69-75,
Aachen, Germany.

Booker, L.B.; Goldberg, D.E. & Holland, J.H. (1989). Classifier systems and genetic
algorithms. Artificial Intelligence, Vol. 40, 235-282.

Chou, C.H. (2006). Genetic algorithm-based optimal fuzzy controller design in the linguistic
space. IEEE Trans. Fuzzy Systems, Vol. 14, No. 3, 372-385.

Chung, IF.; Lin, C.J. & Lin, C.T. (2000). A GA-based fuzzy adaptive learning control
network. Fuzzy Sets and Systems, Vol. 112, No. 1, 65-84.

Cordón, O.; Herrera, F.; Hoffmann, F. & Magdalena, L. (2001). Genetic Fuzzy Systems:
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, World Scientific.

Cordón, O.; Gomide, F.; Herrera, F.; Hoffmann, F. & Magdalena, L. (2004). Ten years of
genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems,
Vol. 141, No. 1, 5-31.

Goldberg, D.E. (1989). Genetic Algorithms in Search Optimization and Machine Learning,
Addison-Wesley.

Grefenstette, J.J. (1988). Credit assignment in rule discovery systems based on genetic
algorithms. Machine Leaqrning, Vol. 8, 225-246.

Furuhashi, T.; Nakaoka, K. & Uchikawa, Y. (1995). An efficient finding of fuzzy rules using a
new approach to genetic based machine learning, Proc. 4th IEEE Int. Conf. Fuzzy
Systems, pp. 715-722, Yokohama, Japan.

Homaifar, A. & McCormick, E. (1995). Simultaneous design of membership functions and
rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Systems,
Vol. 3, No. 2, 129-139.

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

419

Ishibuchi, H.; Nakashima, T. & Murata, T. (1999) Performance evaluation of fuzzy classfier
systems for multidimentioinal pattern classification problems. IEEE Trans. On
Systems, Man and Cybernetics, Part B: Cybernetics, Vol. 29, 601-618.

Jamei, M.; Mahfouf, M. & Linkens, D.A. (2004). Elicitation and fine-tuning of fuzzy control
rules using symbiotic evolution. Fuzzy Sets and Systems, Vol. 147, No. 1, 57-74.

Juang, C.F. & Lin, C.T. (1999). A recurrent self-organizing neural fuzzy inference network.
IEEE Trans. Neural Networks, Vol. 10, No. 4, 828-845.

Juang, C.F.; Lin, J.Y. & Lin, C.T. (2000). Genetic reinforcement learning through symbiotic
evolution for fuzzy controller design. IEEE Trans. Systems, Man, and Cybernetics,
Part B: Cybernetics, Vol. 30, No. 2, 290-302.

Juang, C.F. (2002). A TSK-type recurrent fuzzy network for dynamic systems processing by
neural network and genetic algorithms. IEEE Trans. Fuzzy Systems, Vol. 10, No. 2,
155-170.

Juang, C.F. (2004). Temporal problems solved by dynamic fuzzy network based on genetic
algorithm with variable-length chromosomes. Fuzzy Sets and Systems, Vol. 142, No.
2, 199-219.

Juang, C.F. (2005a). Combination of on-line clustering and Q-value based GA for
reinforcement fuzzy system design. IEEE Trans. Fuzzy Systems, Vo. 13, No. 3, 289-
302.

Juang, C.F. (2005b). Genetic recurrent fuzzy system by coevolutionary computation with
divide-and-conquer technique. IEEE Trans. Systems, Man, and Cybernetics, Part C:
Applications and Reviews , Vol. 35, No. 2, 249-254.

Karr, C.L. (1991). Design of an adaptive fuzzy logic controller using a genetic algorithm,
Proc. the Fourth Int. Conf. Genetic Algorithms, pp. 450-457.

Kim, J.H.; College, D.T.; Gun, A. & DO, G. (1998). Fuzzy model based predictive control,
Proc. IEEE. Int. Conf. Fuzzy Systems, pp. 405-409, Anchorage, AK, USA.

Kuo, H.C.; Chang, H.K. & Wang, Y.Z. (2004). Symbiotic evolution-based design of fuzzy-
neural diagnostic system for common acute abdominal pain. Expert Systems with
Applications, Vol. 27, No. 3, 391-401.

Lee, C.H. & Teng, C.C. (2000). Identification and control of dynamic systems using recurrent
fuzzy neural networks. IEEE Trans. Fuzzy Systems, Vol. 8, No. 4, 349-366.

Lin, C.T. & Jou, C.P. (1999). Controlling chaos by GA-based reinforcement learning neural
network. IEEE Trans. Neural Networks, Vol. 10, No. 4, 846-859.

Lin, C.T. & Lee, C.S.G. (1996). Neural Fuzzy Systems: A Neural-Fuzzy Synergism to Intelligent
Systems, Prentice Hall, USA.

Lin, C.J. & Xu, Y.J. (2006). A self-adaptive neural fuzzy network with group-based symbiotic
evolution and its prediction applications. Fuzzy Sets and Systems, Vol. 157, Issue 8,
1036-1056.

Mahfouf, M.; Jamei, M. & Linkens, D.A. (2001). Rule-base generation via symbiotic
evolution for a Mamdani-type fuzzy control system, Proc. the 10th IEEE Int. Conf.
Fuzzy Systems, pp. 396–399.

Miller, W.T.; Sutton, R.S. & Werbos, P.J. (1990). Neural Networks for Control, The MIT Press.
Moriarty, D.E. & Miikkulainen, R. (1996). Efficient reinforcement learning through symbiotic

evolution. Machine Learning, Vol. 22, 11-32.
Moriarity, D.E. & Miikkulainen, R. (1998). Hierarchical evolution of neural networks, Proc.

IEEE Conf. Evoulutionary Computation, pp. 428-433, Anchorage, AK, USA.

 Advances in Evolutionary Algorithms

418

design of a fuzzy controller is divided by the HSEFC into two iterative search stages: the
local-mapping search stage and the global-mapping search stage. In this way, the
population in each stage is evolved independently and concurrently. Furthermore, to avoid
the premature population phenomenon, modifications of general genetic operations are also
incorporated in the design process. In the interests of utility and economy, the HSEFC
operates under two formats; HSEFC-F and HSEFC-R. For feedforward fuzzy controller
design, HSEFC-F is presented, while for recurrent fuzzy controller design, HSEFC-R, which
uses the divide-and-conquer technique on spatial and temporal sub-rules search, is
presented. As shown, simulation results in static and dynamic plant control problems have
verified the effectiveness and efficiency of HSEFC-F and HSEFC-R. Although in HSEFC
solutions, the designed fuzzy controller structure is currently assigned in advance, further
work on HSEFC intends to focus on its extension to automatic controller structure
determination. A more accurate fitness assignment for each single rule in symbiotic
evolution is another future research topic.

7. References
Anderson, C. W. (1989). Learning to control an inverted pendulum using neural networks.

IEEE Control Systems Magazine, Vol. 9, 31-37.
Belarbi, K. & Titel, F. (2000). Genetic algorithm for the design of a class of fuzzy controllers:

an alternative approach. IEEE Trans. Fuzzy Systems, Vol. 8, No. 4, 398-405.
Bonarini, A. (1993). ELF: learning incomplete fuzzy rule sets for an autonomous robot, Proc.

1st European Congress on Intelligent Technologies and Soft Computing, pp. 69-75,
Aachen, Germany.

Booker, L.B.; Goldberg, D.E. & Holland, J.H. (1989). Classifier systems and genetic
algorithms. Artificial Intelligence, Vol. 40, 235-282.

Chou, C.H. (2006). Genetic algorithm-based optimal fuzzy controller design in the linguistic
space. IEEE Trans. Fuzzy Systems, Vol. 14, No. 3, 372-385.

Chung, IF.; Lin, C.J. & Lin, C.T. (2000). A GA-based fuzzy adaptive learning control
network. Fuzzy Sets and Systems, Vol. 112, No. 1, 65-84.

Cordón, O.; Herrera, F.; Hoffmann, F. & Magdalena, L. (2001). Genetic Fuzzy Systems:
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, World Scientific.

Cordón, O.; Gomide, F.; Herrera, F.; Hoffmann, F. & Magdalena, L. (2004). Ten years of
genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems,
Vol. 141, No. 1, 5-31.

Goldberg, D.E. (1989). Genetic Algorithms in Search Optimization and Machine Learning,
Addison-Wesley.

Grefenstette, J.J. (1988). Credit assignment in rule discovery systems based on genetic
algorithms. Machine Leaqrning, Vol. 8, 225-246.

Furuhashi, T.; Nakaoka, K. & Uchikawa, Y. (1995). An efficient finding of fuzzy rules using a
new approach to genetic based machine learning, Proc. 4th IEEE Int. Conf. Fuzzy
Systems, pp. 715-722, Yokohama, Japan.

Homaifar, A. & McCormick, E. (1995). Simultaneous design of membership functions and
rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Systems,
Vol. 3, No. 2, 129-139.

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design

419

Ishibuchi, H.; Nakashima, T. & Murata, T. (1999) Performance evaluation of fuzzy classfier
systems for multidimentioinal pattern classification problems. IEEE Trans. On
Systems, Man and Cybernetics, Part B: Cybernetics, Vol. 29, 601-618.

Jamei, M.; Mahfouf, M. & Linkens, D.A. (2004). Elicitation and fine-tuning of fuzzy control
rules using symbiotic evolution. Fuzzy Sets and Systems, Vol. 147, No. 1, 57-74.

Juang, C.F. & Lin, C.T. (1999). A recurrent self-organizing neural fuzzy inference network.
IEEE Trans. Neural Networks, Vol. 10, No. 4, 828-845.

Juang, C.F.; Lin, J.Y. & Lin, C.T. (2000). Genetic reinforcement learning through symbiotic
evolution for fuzzy controller design. IEEE Trans. Systems, Man, and Cybernetics,
Part B: Cybernetics, Vol. 30, No. 2, 290-302.

Juang, C.F. (2002). A TSK-type recurrent fuzzy network for dynamic systems processing by
neural network and genetic algorithms. IEEE Trans. Fuzzy Systems, Vol. 10, No. 2,
155-170.

Juang, C.F. (2004). Temporal problems solved by dynamic fuzzy network based on genetic
algorithm with variable-length chromosomes. Fuzzy Sets and Systems, Vol. 142, No.
2, 199-219.

Juang, C.F. (2005a). Combination of on-line clustering and Q-value based GA for
reinforcement fuzzy system design. IEEE Trans. Fuzzy Systems, Vo. 13, No. 3, 289-
302.

Juang, C.F. (2005b). Genetic recurrent fuzzy system by coevolutionary computation with
divide-and-conquer technique. IEEE Trans. Systems, Man, and Cybernetics, Part C:
Applications and Reviews , Vol. 35, No. 2, 249-254.

Karr, C.L. (1991). Design of an adaptive fuzzy logic controller using a genetic algorithm,
Proc. the Fourth Int. Conf. Genetic Algorithms, pp. 450-457.

Kim, J.H.; College, D.T.; Gun, A. & DO, G. (1998). Fuzzy model based predictive control,
Proc. IEEE. Int. Conf. Fuzzy Systems, pp. 405-409, Anchorage, AK, USA.

Kuo, H.C.; Chang, H.K. & Wang, Y.Z. (2004). Symbiotic evolution-based design of fuzzy-
neural diagnostic system for common acute abdominal pain. Expert Systems with
Applications, Vol. 27, No. 3, 391-401.

Lee, C.H. & Teng, C.C. (2000). Identification and control of dynamic systems using recurrent
fuzzy neural networks. IEEE Trans. Fuzzy Systems, Vol. 8, No. 4, 349-366.

Lin, C.T. & Jou, C.P. (1999). Controlling chaos by GA-based reinforcement learning neural
network. IEEE Trans. Neural Networks, Vol. 10, No. 4, 846-859.

Lin, C.T. & Lee, C.S.G. (1996). Neural Fuzzy Systems: A Neural-Fuzzy Synergism to Intelligent
Systems, Prentice Hall, USA.

Lin, C.J. & Xu, Y.J. (2006). A self-adaptive neural fuzzy network with group-based symbiotic
evolution and its prediction applications. Fuzzy Sets and Systems, Vol. 157, Issue 8,
1036-1056.

Mahfouf, M.; Jamei, M. & Linkens, D.A. (2001). Rule-base generation via symbiotic
evolution for a Mamdani-type fuzzy control system, Proc. the 10th IEEE Int. Conf.
Fuzzy Systems, pp. 396–399.

Miller, W.T.; Sutton, R.S. & Werbos, P.J. (1990). Neural Networks for Control, The MIT Press.
Moriarty, D.E. & Miikkulainen, R. (1996). Efficient reinforcement learning through symbiotic

evolution. Machine Learning, Vol. 22, 11-32.
Moriarity, D.E. & Miikkulainen, R. (1998). Hierarchical evolution of neural networks, Proc.

IEEE Conf. Evoulutionary Computation, pp. 428-433, Anchorage, AK, USA.

 Advances in Evolutionary Algorithms

420

Paredis, J. (1995). Coevolutionary computation. Aftifical Life, Vol. 2, No. 4, 355-375.
Pena -Reyes, C.A. & Sipper, M. (2001). Fuzzy CoCo: a cooperative-coevolutionary approach

to fuzzy modelling. IEEE Trans. Fuzzy Systems, Vol. 9, No. 5, 727-737.
Potter, M.A.; Jong, K.D. & Grefenstette, J. (1995). A coevolutionary approach to learning

sequential decision rules, Proc. 6th Int. Conf. Genetic Algorithms, pp. 366-372,
Pittsburgh, USA.

Potter, M.A. & DeJong, K.A. (2000). Cooperative coevolution: An architectural for evolving
coadopted subcomponents. Evol. Computation, Vol. 8, No. 1, 1-29.

Shi, Y.; Eberhart, R. & Chen, Y. (1999). Implementation of evolutionary fuzzy systems. IEEE
Trans. Fuzzy Systems, Vol. 7, No. 2, 109-119.

Sutton, R.S. & Barto, A.G. (1998). Reinforcement Learning, The MIT Press.
Whitley, D.; Dominic, S.; Das, R. & Anderson, C.W. (1993). Genetic reinforcement learning

for neurocontrol problems. Machine Learning, Vol. 13, 259-284.
Valenzuela-Rendon, M. (1991). The fuzzy classifier system: A classifier system for

continuously varying variables, Proc. 4th Int. Conf. Genetic Algorithms, pp. 346-353,
San Diego, USA.

Zhao, Q. (1998). A general framework for cooperative co-evolutionary algorithms: a society
model, Proc. IEEE Conf. Evolutionary Computation, pp. 57-62, Anchorage, AK, USA.

Zhang, J. & Morris, A.J. (1999). Recurrent neuro-fuzzy networks for nonlinear process
modeling. IEEE Trans. Neural Networks, Vol. 10, No. 2, 313-326.

21

Evolutionary Computation Applied to
Urban Traffic Optimization

Javier J. Sánchez Medina, Manuel J. Galán Moreno and Enrique Rubio Royo
Innovation Center for Information Society (CICEI)

University of Las Palmas de Gran Canaria
 Spain

1. Introduction
At the present time, many sings seem to indicate that we live a global energy and
environmental crisis. The scientific community argues that the global warming process is, at
least in some degree, a consequence of modern societies unsustainable development. A key
area in that situation is the citizens mobility. World economies seem to require fast and
efficient transportation infrastructures for a significant fraction of the population.
The non-stopping overload process that traffic networks are suffering calls for new
solutions. In the vast majority of cases it is not viable to extend that infrastructures due to
costs, lack of available space, and environmental impacts. Thus, traffic departments all
around the world are very interested in optimizing the existing infrastructures to obtain the
very best service they can provide.
In the last decade many initiatives have been developed to give the traffic network new
management facilities for its better exploitation. They are grouped in the so called Intelligent
Transportation Systems.
Examples of these approaches are the Advanced Traveler Information Systems (ATIS) and
Advanced Traffic Management Systems (ATMS). Most of them provide drivers or traffic
engineers the current traffic real/simulated situation or traffic forecasts. They may even
suggest actions to improve the traffic flow.
To do so, researchers have done a lot of work improving traffic simulations, specially
through the development of accurate microscopic simulators. In the last decades the
application of that family of simulators was restricted to small test cases due to its high
computing requirements. Currently, the availability of cheap faster computers has changed
this situation.
Some famous microsimulators are MITSIM(Yang, Q., 1997), INTEGRATION (Rakha, H., et
al., 1998), AIMSUN2 (Barcelo, J., et al., 1996), TRANSIMS (Nagel, K. & Barrett, C., 1997), etc.
They will be briefly explained in the following section.
Although traffic research is mainly targeted at obtaining accurate simulations there are few
groups focused at the optimization or improvement of traffic in an automatic manner — not
dependent on traffic engineers experience and “art”.

 Advances in Evolutionary Algorithms

420

Paredis, J. (1995). Coevolutionary computation. Aftifical Life, Vol. 2, No. 4, 355-375.
Pena -Reyes, C.A. & Sipper, M. (2001). Fuzzy CoCo: a cooperative-coevolutionary approach

to fuzzy modelling. IEEE Trans. Fuzzy Systems, Vol. 9, No. 5, 727-737.
Potter, M.A.; Jong, K.D. & Grefenstette, J. (1995). A coevolutionary approach to learning

sequential decision rules, Proc. 6th Int. Conf. Genetic Algorithms, pp. 366-372,
Pittsburgh, USA.

Potter, M.A. & DeJong, K.A. (2000). Cooperative coevolution: An architectural for evolving
coadopted subcomponents. Evol. Computation, Vol. 8, No. 1, 1-29.

Shi, Y.; Eberhart, R. & Chen, Y. (1999). Implementation of evolutionary fuzzy systems. IEEE
Trans. Fuzzy Systems, Vol. 7, No. 2, 109-119.

Sutton, R.S. & Barto, A.G. (1998). Reinforcement Learning, The MIT Press.
Whitley, D.; Dominic, S.; Das, R. & Anderson, C.W. (1993). Genetic reinforcement learning

for neurocontrol problems. Machine Learning, Vol. 13, 259-284.
Valenzuela-Rendon, M. (1991). The fuzzy classifier system: A classifier system for

continuously varying variables, Proc. 4th Int. Conf. Genetic Algorithms, pp. 346-353,
San Diego, USA.

Zhao, Q. (1998). A general framework for cooperative co-evolutionary algorithms: a society
model, Proc. IEEE Conf. Evolutionary Computation, pp. 57-62, Anchorage, AK, USA.

Zhang, J. & Morris, A.J. (1999). Recurrent neuro-fuzzy networks for nonlinear process
modeling. IEEE Trans. Neural Networks, Vol. 10, No. 2, 313-326.

21

Evolutionary Computation Applied to
Urban Traffic Optimization

Javier J. Sánchez Medina, Manuel J. Galán Moreno and Enrique Rubio Royo
Innovation Center for Information Society (CICEI)

University of Las Palmas de Gran Canaria
 Spain

1. Introduction
At the present time, many sings seem to indicate that we live a global energy and
environmental crisis. The scientific community argues that the global warming process is, at
least in some degree, a consequence of modern societies unsustainable development. A key
area in that situation is the citizens mobility. World economies seem to require fast and
efficient transportation infrastructures for a significant fraction of the population.
The non-stopping overload process that traffic networks are suffering calls for new
solutions. In the vast majority of cases it is not viable to extend that infrastructures due to
costs, lack of available space, and environmental impacts. Thus, traffic departments all
around the world are very interested in optimizing the existing infrastructures to obtain the
very best service they can provide.
In the last decade many initiatives have been developed to give the traffic network new
management facilities for its better exploitation. They are grouped in the so called Intelligent
Transportation Systems.
Examples of these approaches are the Advanced Traveler Information Systems (ATIS) and
Advanced Traffic Management Systems (ATMS). Most of them provide drivers or traffic
engineers the current traffic real/simulated situation or traffic forecasts. They may even
suggest actions to improve the traffic flow.
To do so, researchers have done a lot of work improving traffic simulations, specially
through the development of accurate microscopic simulators. In the last decades the
application of that family of simulators was restricted to small test cases due to its high
computing requirements. Currently, the availability of cheap faster computers has changed
this situation.
Some famous microsimulators are MITSIM(Yang, Q., 1997), INTEGRATION (Rakha, H., et
al., 1998), AIMSUN2 (Barcelo, J., et al., 1996), TRANSIMS (Nagel, K. & Barrett, C., 1997), etc.
They will be briefly explained in the following section.
Although traffic research is mainly targeted at obtaining accurate simulations there are few
groups focused at the optimization or improvement of traffic in an automatic manner — not
dependent on traffic engineers experience and “art”.

 Advances in Evolutionary Algorithms

422

One of the most important problems in traffic optimization is traffic light cycles1
optimization. This is a hard Combinatorial Problem which seems not to have a known
deterministic solution at the present time.
In our group we have been working on the optimization of traffic lights cycles for the better
performance of urban traffic networks. As shown in (Brockfeld, Elmar, et al., 2001), traffic
light cycles have a strong influence in traffic flow results. For that reason we decided to
focused on that problem. We have combined a Genetic Algorithm (GA) as optimization
technique with a traffic microscopic simulator running on a scalable MIMD multicomputer2.
We have tested the fore mentioned three pillar model with some works (Sánchez, J. J. et al.,
2004), (Sánchez, J. J. et al., 2005 A), (Sánchez, J. J. et al., 2005 B), (Sánchez, J. J. et al., 2006),
(Sánchez, J. J. et al., 2007) and (Sánchez, J. J. et al., 2008).
The rest of this chapter is organized as follows. In section 2 we give a wide survey of the
current State of the Art. In 2.4 we briefly expose our own contribution to the matter. In
section 3 we explain with some detail the proposed methodology. In section 4 we outline the
achieved goals obtained with the explained methodology. Finally, section 5 gives some
ideas of research foreseeable trends.

2. State of the art
In this subsection we want to give a survey o some significant works in the area. We have
categorized works in three classes: those mostly related to Advanced Traveler Information
Services (ATIS); those mainly about Advanced Traffic Management Systems (ATMS), and in
a third subset we have called Advanced Traffic Optimization Systems (ATOS), those where
traffic is not just managed but optimized — or tried to be optimized — in an automatic
manner, without human interaction.

2.1 Advanced traveler information services
Advanced Traveler Information Services are those services that can potentially help drivers
to make better decisions in order to reduce their travel time. There are many initiatives in
this area. Here we show some examples.
In (Florian, D. G, 2004), this thesis provides an empirical study of the impact of ATIS on
transportation network quality of service using an application of DynaMIT (Dynamic
network assignment for the Management of Information to Travelers). The main results are
that the provision of dynamic route guidance can simultaneously benefit the individual
performance of drivers, both guided and unguided, as well as the system performance of
existing transportation infrastructure.
In (Hafstein, S. F., et al., 2004) a high resolution cellular automata freeway traffic simulation
model applied to a Traffic Information System. They provide a simulation for current traffic
zones without loop detectors, and 30 min. and 60 min. future traffic forecasts. They run a
java applet in a web page in order to give the network users this useful information.

1 Traffic light cycle: the finite sequence of states — e.g. green, orange, etc. — that a traffic
light runs iteratively.
2 MIMD: Multiple Instruction Multiple Data: A type of parallel computing architecture
where many functional units perform different operations on different data. For example a
network of PC's working in parallel.

Evolutionary Computation Applied to Urban Traffic Optimization

423

2.2 Advanced traffic management systems.
Advanced Traffic Management Systems are those systems that help engineers to better
manage traffic networks. There are many works around this topic, most of them focused on
traffic simulation. Some examples are the following.
The INTEGRATION model has been used to simulate traffic for the Salt Lake Metropolitan
Area (Rakha, H., et al., 1998).The objective of this paper is threefold. First, the feasibility of
modeling a large-scale network at a microscopic level of detail is presented. Second, the
unique data collection challenges that are involved in constructing and calibrating a large-
scale network microscopically are described. Third, the unique opportunities and
applications from the use of a microscopic as opposed to a macroscopic simulation tool are
described.
The MITSIM model (Yang, Q., 1997) has been used to evaluate aspects of both the traffic
control system and the ramp configurations of the Central Artery/Tunnel project in Boston.
It explicitly incorporates traffic prediction, time variant traffic information, and dynamic
route choice.
AIMSUN2 has been used to simulate the Rings Roads of Barcelona (Barcelo, J., et al., 1996).
Uses parallel computers to shorten the execution time.
Traffic simulation using CA models has also been performed on vector supercomputers to
simulate traffic in shortest possible time (Nagel, K. & Schleicher, A., 1994).
The INTELSIM model is used in (Aycin, M. F. & Benekohal, R. F., 1998) and (Aycin, M. F. &
Benekohal, R. F., 1999). In those works a linear acceleration car-following model has been
developed for realistic simulation of traffic flow in intelligent transportation systems (ITS)
applications. The authors argue that the new model provides continuous acceleration
profiles instead of the stepwise profiles that are currently used. The brake reaction times and
chain reaction times of drivers are simulated. As a consequence, they say that the good
performance of the system in car-following and in stop-and-go conditions make this model
suitable to be used in ITS.
Moreover, in (Aycin, M. F. & Benekohal, R. F., 1999) they compare many car-following
methods with their proposed method, and with field data.
In (Bham et al., 2004) they proposed a ``high fidelity'' model for simulation of high volume
of traffic at the regional level. Their model uses concepts of Cellular Automata and Car-
Following models. They propose the concept of Space Occupancy (SOC) used to measure
the traffic congestion. Their aim is to simulate high volume of traffic with shorter execution
time using efficient algorithms on a personal computer. Like in our case, they based their
simulator on Cellular Automata concepts. Although their model could be more accurate
than the one of ourselves, in our work we go further using our simulator inside a GA for
optimizing the traffic — not just for simulating traffic.
In (Tveit, O., 2003), Dr. Tveit, a senior researcher with SINTEF3, explains that a common
cycle time4 for a set of intersections is a worse approach than a distributed and

3 SINTEF means The Foundation for Scientific and Industrial Research at the Norwegian
Institute of Technology.
4 Common cycle time: This is a very simple way of programming traffic lights in an
intersection or groups of intersections. All the traffic lights share a cycle length. The starting
point of each one of the states or stages in the particular cycle of every traffic light may be
different, but the cycle period is the same for all of them.

 Advances in Evolutionary Algorithms

422

One of the most important problems in traffic optimization is traffic light cycles1
optimization. This is a hard Combinatorial Problem which seems not to have a known
deterministic solution at the present time.
In our group we have been working on the optimization of traffic lights cycles for the better
performance of urban traffic networks. As shown in (Brockfeld, Elmar, et al., 2001), traffic
light cycles have a strong influence in traffic flow results. For that reason we decided to
focused on that problem. We have combined a Genetic Algorithm (GA) as optimization
technique with a traffic microscopic simulator running on a scalable MIMD multicomputer2.
We have tested the fore mentioned three pillar model with some works (Sánchez, J. J. et al.,
2004), (Sánchez, J. J. et al., 2005 A), (Sánchez, J. J. et al., 2005 B), (Sánchez, J. J. et al., 2006),
(Sánchez, J. J. et al., 2007) and (Sánchez, J. J. et al., 2008).
The rest of this chapter is organized as follows. In section 2 we give a wide survey of the
current State of the Art. In 2.4 we briefly expose our own contribution to the matter. In
section 3 we explain with some detail the proposed methodology. In section 4 we outline the
achieved goals obtained with the explained methodology. Finally, section 5 gives some
ideas of research foreseeable trends.

2. State of the art
In this subsection we want to give a survey o some significant works in the area. We have
categorized works in three classes: those mostly related to Advanced Traveler Information
Services (ATIS); those mainly about Advanced Traffic Management Systems (ATMS), and in
a third subset we have called Advanced Traffic Optimization Systems (ATOS), those where
traffic is not just managed but optimized — or tried to be optimized — in an automatic
manner, without human interaction.

2.1 Advanced traveler information services
Advanced Traveler Information Services are those services that can potentially help drivers
to make better decisions in order to reduce their travel time. There are many initiatives in
this area. Here we show some examples.
In (Florian, D. G, 2004), this thesis provides an empirical study of the impact of ATIS on
transportation network quality of service using an application of DynaMIT (Dynamic
network assignment for the Management of Information to Travelers). The main results are
that the provision of dynamic route guidance can simultaneously benefit the individual
performance of drivers, both guided and unguided, as well as the system performance of
existing transportation infrastructure.
In (Hafstein, S. F., et al., 2004) a high resolution cellular automata freeway traffic simulation
model applied to a Traffic Information System. They provide a simulation for current traffic
zones without loop detectors, and 30 min. and 60 min. future traffic forecasts. They run a
java applet in a web page in order to give the network users this useful information.

1 Traffic light cycle: the finite sequence of states — e.g. green, orange, etc. — that a traffic
light runs iteratively.
2 MIMD: Multiple Instruction Multiple Data: A type of parallel computing architecture
where many functional units perform different operations on different data. For example a
network of PC's working in parallel.

Evolutionary Computation Applied to Urban Traffic Optimization

423

2.2 Advanced traffic management systems.
Advanced Traffic Management Systems are those systems that help engineers to better
manage traffic networks. There are many works around this topic, most of them focused on
traffic simulation. Some examples are the following.
The INTEGRATION model has been used to simulate traffic for the Salt Lake Metropolitan
Area (Rakha, H., et al., 1998).The objective of this paper is threefold. First, the feasibility of
modeling a large-scale network at a microscopic level of detail is presented. Second, the
unique data collection challenges that are involved in constructing and calibrating a large-
scale network microscopically are described. Third, the unique opportunities and
applications from the use of a microscopic as opposed to a macroscopic simulation tool are
described.
The MITSIM model (Yang, Q., 1997) has been used to evaluate aspects of both the traffic
control system and the ramp configurations of the Central Artery/Tunnel project in Boston.
It explicitly incorporates traffic prediction, time variant traffic information, and dynamic
route choice.
AIMSUN2 has been used to simulate the Rings Roads of Barcelona (Barcelo, J., et al., 1996).
Uses parallel computers to shorten the execution time.
Traffic simulation using CA models has also been performed on vector supercomputers to
simulate traffic in shortest possible time (Nagel, K. & Schleicher, A., 1994).
The INTELSIM model is used in (Aycin, M. F. & Benekohal, R. F., 1998) and (Aycin, M. F. &
Benekohal, R. F., 1999). In those works a linear acceleration car-following model has been
developed for realistic simulation of traffic flow in intelligent transportation systems (ITS)
applications. The authors argue that the new model provides continuous acceleration
profiles instead of the stepwise profiles that are currently used. The brake reaction times and
chain reaction times of drivers are simulated. As a consequence, they say that the good
performance of the system in car-following and in stop-and-go conditions make this model
suitable to be used in ITS.
Moreover, in (Aycin, M. F. & Benekohal, R. F., 1999) they compare many car-following
methods with their proposed method, and with field data.
In (Bham et al., 2004) they proposed a ``high fidelity'' model for simulation of high volume
of traffic at the regional level. Their model uses concepts of Cellular Automata and Car-
Following models. They propose the concept of Space Occupancy (SOC) used to measure
the traffic congestion. Their aim is to simulate high volume of traffic with shorter execution
time using efficient algorithms on a personal computer. Like in our case, they based their
simulator on Cellular Automata concepts. Although their model could be more accurate
than the one of ourselves, in our work we go further using our simulator inside a GA for
optimizing the traffic — not just for simulating traffic.
In (Tveit, O., 2003), Dr. Tveit, a senior researcher with SINTEF3, explains that a common
cycle time4 for a set of intersections is a worse approach than a distributed and

3 SINTEF means The Foundation for Scientific and Industrial Research at the Norwegian
Institute of Technology.
4 Common cycle time: This is a very simple way of programming traffic lights in an
intersection or groups of intersections. All the traffic lights share a cycle length. The starting
point of each one of the states or stages in the particular cycle of every traffic light may be
different, but the cycle period is the same for all of them.

 Advances in Evolutionary Algorithms

424

individualized one. His conclusions appear sound and convincing, so we consider them in
our approach. In our system every intersection has independent cycles.
In (Smith, M. J., 1988) the use of responsive signals5, with network capacity (rather than total
travel cost) as a control criterion is argued. The capacity of the network is maximized if the
signals operate to equalize traffic density on the most occupied parts of the network. This is
another example of multiple local optimizations instead of a global optimization, like the
one of ours.
In (Logi, F. & Ritchie, S.G., 2001) a knowledge based system is presented for traffic
congestion management. The proposed model comprises a data fusion algorithm, an
algorithm for selection the suitable control plan, and it presents the proposed plan with an
explanation of the reasoning process for helping the traffic operators decisions. They
presented also a validation example for displaying the ability of their system to reduce
congestion. From our point of view, although this seems a very interesting approach to the
matter, both the selection of control strategies and the estimation of future traffic are based
on the experience of traffic engineers. In spite of this, in our methodology we use the
combination of two widely accepted and trusted techniques. We use a more accurate
estimation of future traffic — thought a microsimulator — and a genetic algorithm for the
optimization of the traffic flow.

2.3 Advanced traffic optimization systems
TRANSIMS project used CA models to simulate traffic for the city of Fortworth-Dallas using
parallel computers (Nagel, K. & Barrett, C., 1997). This paper presents a day-to-day re-
routing relaxation approach for traffic simulations. Starting from an initial plan-set for the
routes, the route-based microsimulation is executed. The result of the microsimulation is fed
into a rerouter, which re-routes a certain percentage of all trips.
In (Wann-Ming Wey, et al., 2001), an isolated intersection is controlled applying techniques
based on linear systems control theory to solve the linear traffic model problem. The main
contribution of this research is the development of a methodology for alleviating the
recurrent isolated intersection congestion caused by high transportation demand using
existing technology. Again this work deals with very small scale traffic networks — one
intersection.
In (Schutter, B. De & Moor, B. De, 1997) the authors present a single intersection — two two
ways streets — model describing the evolution of the queue lengths in each lane as a
function of time, and how (sub)optimal traffic switching schemes for this system can be
determined.
In (Febbraro, A. Di, et al., 2002) Petri Nets are applied to provide a modular representation
of urban traffic networks. An interesting feature of this model is the possibility of
representing the offsets among different traffic light cycles as embedded in the structure of
the model itself. Even though it is a very interesting work, the authors only optimize the
coordination among different traffic light cycles. Our cycle optimization methodology is a
complete flexible one because we implicitly optimize not only traffic light offsets but also
every stage length.

5 Responsive signals: Traffic signals capable o adapting their state to the current traffic
situation near them.

Evolutionary Computation Applied to Urban Traffic Optimization

425

Another interesting work using Petri Nets is (Li, L et al., 2004) where they are applied to
control a single intersection by means of programmable logic controllers (PLCs). They
compare three methods for modeling the traffic lights at an intersection and found out that
the more suitable is the one that combines Petri nets with PLCs. Again, in this research just
one intersection is optimized, and not a whole traffic network.
In (Spall, J.C. & Chin, D.C., 1994) the author presented a neural network (NN) approach for
optimizing traffic light cycles. A neural network is used to implement the traffic lights
control function. The training process of the NN is fed exclusively with real data. This being
so, it would only be useful in systems with an on-line data acquisition module installed.
However, so far such systems are not common at all.
The “offset-time”6 between two traffic lights is optimized using Artificial Neural Networks
(ANNs) at (López, S., et al. 1999). Although our system does not treat explicitly the offset
time parameter we think that our system faces traffic optimization in a much more flexible
manner.
In (GiYoung L., 2001) a real-time local optimization of one intersection technique is
proposed. It is based on fuzzy logic. Although an adaptive optimization may be very
interesting — we checked out this in (Sánchez, J. J. et al., 2004) — we believe that a global
optimization is a more complete approach to the problem.
In (You-Sik, H. et al., 1999) authors present a fuzzy control system for extending or
shortening the fixed traffic light cycle. By means of electrosensitive traffic lights they can
extend the traffic cycle when many vehicles are passing on the road or reduce the cycle if
there are few vehicles passing. Through simulation they presented efficiency improvement
results. This work performs a local adaptation for a single traffic light instead of a global
optimization.
In (Rouphail, N., et al., 2000) an “ad hoc” architecture is used to optimize a 9 intersection
traffic network. It uses Genetic Algorithms as an optimization technique running on a single
machine. The CORSIM7 model is used within the evaluation function of the GA. In this work
scalability is not addressed. Authors recognize that it is a customized non scalable system.
Our system has the scalability feature thanks to the intrinsic scalability of the Beowulf
Cluster and the parallel execution of the evaluation function within the GA.
In (You Sik Hong, et al., 2001) the concept of the optimal green time algorithm is proposed,
which reduces average vehicle waiting time while improving average vehicle speed using
fuzzy rules and neural networks. Through computer simulation, this method has been
proven to be much more efficient than using fixed time cycle signals. The fuzzy neural
network will consistently improve average waiting time, vehicle speed, and fuel
consumption. This work only considers a very small amount of traffic signals — two near
intersections — in the cycle optimization. We do agree with them about the non-suitability
of fixed cycles.
An interesting combination of Genetic Algorithms and Traffic Simulation is published in
(Taniguchi, E. & Shimamoto, H., 2004). In this work a routing and scheduling system for
freight carrier vehicles is presented. They use Genetic Algorithms as optimization technique.
The objective of the GA is the minimization of the costs of travel. A dynamic vehicle routing

6 Offset-time: the time since a traffic light turn green until the next traffic light — for
example, in a boulevard — turns also green.
7 CORSIM: Corridor Traffic Simulation Model (Halati A. et al., 1997).

 Advances in Evolutionary Algorithms

424

individualized one. His conclusions appear sound and convincing, so we consider them in
our approach. In our system every intersection has independent cycles.
In (Smith, M. J., 1988) the use of responsive signals5, with network capacity (rather than total
travel cost) as a control criterion is argued. The capacity of the network is maximized if the
signals operate to equalize traffic density on the most occupied parts of the network. This is
another example of multiple local optimizations instead of a global optimization, like the
one of ours.
In (Logi, F. & Ritchie, S.G., 2001) a knowledge based system is presented for traffic
congestion management. The proposed model comprises a data fusion algorithm, an
algorithm for selection the suitable control plan, and it presents the proposed plan with an
explanation of the reasoning process for helping the traffic operators decisions. They
presented also a validation example for displaying the ability of their system to reduce
congestion. From our point of view, although this seems a very interesting approach to the
matter, both the selection of control strategies and the estimation of future traffic are based
on the experience of traffic engineers. In spite of this, in our methodology we use the
combination of two widely accepted and trusted techniques. We use a more accurate
estimation of future traffic — thought a microsimulator — and a genetic algorithm for the
optimization of the traffic flow.

2.3 Advanced traffic optimization systems
TRANSIMS project used CA models to simulate traffic for the city of Fortworth-Dallas using
parallel computers (Nagel, K. & Barrett, C., 1997). This paper presents a day-to-day re-
routing relaxation approach for traffic simulations. Starting from an initial plan-set for the
routes, the route-based microsimulation is executed. The result of the microsimulation is fed
into a rerouter, which re-routes a certain percentage of all trips.
In (Wann-Ming Wey, et al., 2001), an isolated intersection is controlled applying techniques
based on linear systems control theory to solve the linear traffic model problem. The main
contribution of this research is the development of a methodology for alleviating the
recurrent isolated intersection congestion caused by high transportation demand using
existing technology. Again this work deals with very small scale traffic networks — one
intersection.
In (Schutter, B. De & Moor, B. De, 1997) the authors present a single intersection — two two
ways streets — model describing the evolution of the queue lengths in each lane as a
function of time, and how (sub)optimal traffic switching schemes for this system can be
determined.
In (Febbraro, A. Di, et al., 2002) Petri Nets are applied to provide a modular representation
of urban traffic networks. An interesting feature of this model is the possibility of
representing the offsets among different traffic light cycles as embedded in the structure of
the model itself. Even though it is a very interesting work, the authors only optimize the
coordination among different traffic light cycles. Our cycle optimization methodology is a
complete flexible one because we implicitly optimize not only traffic light offsets but also
every stage length.

5 Responsive signals: Traffic signals capable o adapting their state to the current traffic
situation near them.

Evolutionary Computation Applied to Urban Traffic Optimization

425

Another interesting work using Petri Nets is (Li, L et al., 2004) where they are applied to
control a single intersection by means of programmable logic controllers (PLCs). They
compare three methods for modeling the traffic lights at an intersection and found out that
the more suitable is the one that combines Petri nets with PLCs. Again, in this research just
one intersection is optimized, and not a whole traffic network.
In (Spall, J.C. & Chin, D.C., 1994) the author presented a neural network (NN) approach for
optimizing traffic light cycles. A neural network is used to implement the traffic lights
control function. The training process of the NN is fed exclusively with real data. This being
so, it would only be useful in systems with an on-line data acquisition module installed.
However, so far such systems are not common at all.
The “offset-time”6 between two traffic lights is optimized using Artificial Neural Networks
(ANNs) at (López, S., et al. 1999). Although our system does not treat explicitly the offset
time parameter we think that our system faces traffic optimization in a much more flexible
manner.
In (GiYoung L., 2001) a real-time local optimization of one intersection technique is
proposed. It is based on fuzzy logic. Although an adaptive optimization may be very
interesting — we checked out this in (Sánchez, J. J. et al., 2004) — we believe that a global
optimization is a more complete approach to the problem.
In (You-Sik, H. et al., 1999) authors present a fuzzy control system for extending or
shortening the fixed traffic light cycle. By means of electrosensitive traffic lights they can
extend the traffic cycle when many vehicles are passing on the road or reduce the cycle if
there are few vehicles passing. Through simulation they presented efficiency improvement
results. This work performs a local adaptation for a single traffic light instead of a global
optimization.
In (Rouphail, N., et al., 2000) an “ad hoc” architecture is used to optimize a 9 intersection
traffic network. It uses Genetic Algorithms as an optimization technique running on a single
machine. The CORSIM7 model is used within the evaluation function of the GA. In this work
scalability is not addressed. Authors recognize that it is a customized non scalable system.
Our system has the scalability feature thanks to the intrinsic scalability of the Beowulf
Cluster and the parallel execution of the evaluation function within the GA.
In (You Sik Hong, et al., 2001) the concept of the optimal green time algorithm is proposed,
which reduces average vehicle waiting time while improving average vehicle speed using
fuzzy rules and neural networks. Through computer simulation, this method has been
proven to be much more efficient than using fixed time cycle signals. The fuzzy neural
network will consistently improve average waiting time, vehicle speed, and fuel
consumption. This work only considers a very small amount of traffic signals — two near
intersections — in the cycle optimization. We do agree with them about the non-suitability
of fixed cycles.
An interesting combination of Genetic Algorithms and Traffic Simulation is published in
(Taniguchi, E. & Shimamoto, H., 2004). In this work a routing and scheduling system for
freight carrier vehicles is presented. They use Genetic Algorithms as optimization technique.
The objective of the GA is the minimization of the costs of travel. A dynamic vehicle routing

6 Offset-time: the time since a traffic light turn green until the next traffic light — for
example, in a boulevard — turns also green.
7 CORSIM: Corridor Traffic Simulation Model (Halati A. et al., 1997).

 Advances in Evolutionary Algorithms

426

algorithm is proposed and tested with a test road network. The implemented traffic
simulation model is macroscopic.
Another very interesting work is presented in (Varia, H.R. & Dhingra, S.L., 2004). A
dynamic system-optimal (DSO) traffic assignment model is formulated for a congested
urban network with a number of signalized intersections. They also combine traffic
simulation with Genetic Algorithms. The aim of this work is to assign any traveler a route. A
GA is used to minimize the users total travel time. A macroscopic model is used for the
estimation of traffic delays. The DSO problem is solved with fixed signal timings, and with
the optimization of signal timings.
In (Vogel, A. et al., 2000) every intersection is optimized considering only local information.
Moreover, it can be adapted to short and long term traffic fluctuations. In our case we
perform a global optimization instead of multiple local optimizations. We think that our
approach may be a more efficient exploitation of the traffic infrastructure.
A very interesting work is published in (Wiering, M. et al., 2004). In this work, traffic is
regarded as formed by a set of intersections to be optimized in a stand alone manner. They
proposed to use reinforcement learning algorithms to optimize what they consider a multi-
agent decision problem. We do not agree with them. Although a local optimization can
obviously reduce average waiting times of cars — as it seems to happen with simulated tests
at this work — we think that a global optimization taking into account every intersection in
a zone should be more profitable.

2.4 Own contribution.
In this subsection we have included our contribution to the art. In (Sánchez, J. J. et al., 2004)
we presented our methodology for the optimization of Traffic Light Cycles in a Traffic
Network. The very good results of a parallel speed-up study convinced us that it was
advisable to use a “Beowulf Cluster” as parallel computing system.
In OPTDES IV8 we shared a scalability study on that architecture. We ran tests using four
networks from 80 up to 1176 cells. In that work we found out that our system had a very
good performance for all cases.
In (Sánchez, J. J. et al., 2005 A) we compared two versions of our microscopic traffic
simulator: a stochastic versus a deterministic traffic simulator. There were three differences
between the stochastic and the deterministic version: The cells updating order; the new
vehicle creation time and the acceleration probability. From that work we realized that the
stochastic simulator is a suitable — convergent — statistical process to compare with; and
we demonstrated that the deterministic simulator outputs are highly linearly correlated
with the stochastic ones. Therefore, our deterministic simulator can arrange the population
ranking in order of fitness at least as well as the stochastic simulator, but with a remarkably
lower computing time.
In the research presented for CIMCA2005 (Sánchez, J. J., Galán, M. J., & Rubio, E., 2005 B)
we described the difference between two sorts of encoding, yielding different crossover and
mutation strategies. The main achievement in that work was to demonstrate — by means of
a wide set of tests — that, at least for our particular case, a bit level crossover combined with
a variable mutation probability means a great saving of computing time. Besides, we noticed

8 Optimization and Design in Industry IV, Tokyo, Japan, (September, 26-30th, 2004)

Evolutionary Computation Applied to Urban Traffic Optimization

427

how that choice lets the algorithm cover the solution space faster due to a bigger gene
variability between generations. This combination seems to avoid premature convergence.
In ECT2006 we delivered a research (Sánchez, J. J. et al., 2006) that included two goals. First,
we introduced a new methodology – such a visual one – helping those practitioners
occupied tuning a GA by giving them much deeper knowledge of how the GA is doing than
they had before. Furthermore, we tried this new methodology with a wide set of tests. We
used it for tuning the genetic algorithm within our traffic optimization architecture applied
to a particular network.
We presented another research in Eurocast 2007 (Sánchez, J. J. et al., 2007). In that
communication we shared a study considering three candidate criteria as a first step toward
extending our fitness function towards a multicriteria one. The criteria where related to the
total number of vehicles that left the network, the occupancy of the network and greenhouse
gases emissions. We performed a correlation study and, although conclusions where not
definitive, we obtained some interesting conclusions about the relationship among those
parameters.
Finally, soon we will publish an optimization research (Sánchez, J. J. et al., 2008) for another
traffic network situated in Santa Cruz de Tenerife, Spain. Although the scale of that network
is not as large as the one treated for the current paper, results are promising.

3. Methodology
3.1 Optimization model
The architecture of our system comprises thre items, namely a Genetic Algorithm (GA) as
Non- Deterministic Optimization Technique, a Cellular Automata (CA) based Traffic
Simulator inside the evaluation routine of the GA, and a Beowulf Cluster as MIMD
multicomputer. Through this section we will give a wide description for the GA and the CA
based Traffic Simulator used in our methodology. Finally, a brief description of the Beowulf
Cluster sill also be provided.

Fig. 1. Model Architecture

3.1.1 Genetic algorithm
In this subsection we will describe the genetic algorithm utilized.
3.1.1.1 Optimization criterion. Fitness function
After testing several criteria we found out that we obtained the better results just by using
the absolute number of vehicles that left the traffic network once the simulation finishes.

 Advances in Evolutionary Algorithms

426

algorithm is proposed and tested with a test road network. The implemented traffic
simulation model is macroscopic.
Another very interesting work is presented in (Varia, H.R. & Dhingra, S.L., 2004). A
dynamic system-optimal (DSO) traffic assignment model is formulated for a congested
urban network with a number of signalized intersections. They also combine traffic
simulation with Genetic Algorithms. The aim of this work is to assign any traveler a route. A
GA is used to minimize the users total travel time. A macroscopic model is used for the
estimation of traffic delays. The DSO problem is solved with fixed signal timings, and with
the optimization of signal timings.
In (Vogel, A. et al., 2000) every intersection is optimized considering only local information.
Moreover, it can be adapted to short and long term traffic fluctuations. In our case we
perform a global optimization instead of multiple local optimizations. We think that our
approach may be a more efficient exploitation of the traffic infrastructure.
A very interesting work is published in (Wiering, M. et al., 2004). In this work, traffic is
regarded as formed by a set of intersections to be optimized in a stand alone manner. They
proposed to use reinforcement learning algorithms to optimize what they consider a multi-
agent decision problem. We do not agree with them. Although a local optimization can
obviously reduce average waiting times of cars — as it seems to happen with simulated tests
at this work — we think that a global optimization taking into account every intersection in
a zone should be more profitable.

2.4 Own contribution.
In this subsection we have included our contribution to the art. In (Sánchez, J. J. et al., 2004)
we presented our methodology for the optimization of Traffic Light Cycles in a Traffic
Network. The very good results of a parallel speed-up study convinced us that it was
advisable to use a “Beowulf Cluster” as parallel computing system.
In OPTDES IV8 we shared a scalability study on that architecture. We ran tests using four
networks from 80 up to 1176 cells. In that work we found out that our system had a very
good performance for all cases.
In (Sánchez, J. J. et al., 2005 A) we compared two versions of our microscopic traffic
simulator: a stochastic versus a deterministic traffic simulator. There were three differences
between the stochastic and the deterministic version: The cells updating order; the new
vehicle creation time and the acceleration probability. From that work we realized that the
stochastic simulator is a suitable — convergent — statistical process to compare with; and
we demonstrated that the deterministic simulator outputs are highly linearly correlated
with the stochastic ones. Therefore, our deterministic simulator can arrange the population
ranking in order of fitness at least as well as the stochastic simulator, but with a remarkably
lower computing time.
In the research presented for CIMCA2005 (Sánchez, J. J., Galán, M. J., & Rubio, E., 2005 B)
we described the difference between two sorts of encoding, yielding different crossover and
mutation strategies. The main achievement in that work was to demonstrate — by means of
a wide set of tests — that, at least for our particular case, a bit level crossover combined with
a variable mutation probability means a great saving of computing time. Besides, we noticed

8 Optimization and Design in Industry IV, Tokyo, Japan, (September, 26-30th, 2004)

Evolutionary Computation Applied to Urban Traffic Optimization

427

how that choice lets the algorithm cover the solution space faster due to a bigger gene
variability between generations. This combination seems to avoid premature convergence.
In ECT2006 we delivered a research (Sánchez, J. J. et al., 2006) that included two goals. First,
we introduced a new methodology – such a visual one – helping those practitioners
occupied tuning a GA by giving them much deeper knowledge of how the GA is doing than
they had before. Furthermore, we tried this new methodology with a wide set of tests. We
used it for tuning the genetic algorithm within our traffic optimization architecture applied
to a particular network.
We presented another research in Eurocast 2007 (Sánchez, J. J. et al., 2007). In that
communication we shared a study considering three candidate criteria as a first step toward
extending our fitness function towards a multicriteria one. The criteria where related to the
total number of vehicles that left the network, the occupancy of the network and greenhouse
gases emissions. We performed a correlation study and, although conclusions where not
definitive, we obtained some interesting conclusions about the relationship among those
parameters.
Finally, soon we will publish an optimization research (Sánchez, J. J. et al., 2008) for another
traffic network situated in Santa Cruz de Tenerife, Spain. Although the scale of that network
is not as large as the one treated for the current paper, results are promising.

3. Methodology
3.1 Optimization model
The architecture of our system comprises thre items, namely a Genetic Algorithm (GA) as
Non- Deterministic Optimization Technique, a Cellular Automata (CA) based Traffic
Simulator inside the evaluation routine of the GA, and a Beowulf Cluster as MIMD
multicomputer. Through this section we will give a wide description for the GA and the CA
based Traffic Simulator used in our methodology. Finally, a brief description of the Beowulf
Cluster sill also be provided.

Fig. 1. Model Architecture

3.1.1 Genetic algorithm
In this subsection we will describe the genetic algorithm utilized.
3.1.1.1 Optimization criterion. Fitness function
After testing several criteria we found out that we obtained the better results just by using
the absolute number of vehicles that left the traffic network once the simulation finishes.

 Advances in Evolutionary Algorithms

428

During the traffic simulation many new vehicles are created as if they were arriving at the
inputs of the network. Furthermore, during the simulation many vehicles reach their
destination point and leave the network. The number of vehicles that reach their destination
point easily illustrates how the simulation was, and consequently helps us to compare a
particular cycle combination with another.
Other optimization criteria tested are the following:
• Mean time at the network — Mean Elapsed Time, MET. During the simulation, the

arrival and departure time of every vehicle is stored. With these values we can easily
calculate the number of iterations (or seconds) it takes any vehicle to leave the network.
Once the simulation finishes the average time at the network is calculated.

• Standard Deviation values of vehicle times at the network.
• A linear combination between the MET and the Standard Deviation of vehicle times at

the network.
• A linear combination between the MET and the total number of vehicles that have left

the network during the simulation.
• The traffic network mean occupancy density. To calculate this parameter we divided

the network into small sections and counted the number of vehicles inside every
section.

As we search the optimization criteria for our system we encountered an unexpected
problem. If we included the minimization of the MET in a multicriteria evaluation function
we provoked a very undesirable effect. The chromosomes that blocked the network faster
were the best marked. That is because only a few vehicles were able to leave the network (in
a small amount of iterations) before it collapsed. Hence, we obtained very “good” values but
caused by “false” optimal cycle combinations. Therefore, we resigned to include that
criterion in our fitness function.
3.1.1.2 Chromosome encoding
In figure 1 we present the chosen encoding used in our methodology. In this figure we
represent a chromosome example for a very simple traffic network. It consists of only two
intersections and two traffic lights for each intersection.

Fig. 2. Chromosome Codification

Evolutionary Computation Applied to Urban Traffic Optimization

429

Below the traffic network we have put the stages9 of each traffic light separated in two
different color regions, one for each one of the two intersections. The traffic light state at
each stage may be green (G), orange (O) or red (R).
This stages sequence is preestabilished, and wil cycle ad infinitum — or until we stop the
corresponding simulation. The objective of our system is to optimize the duration of each
stage (in seconds) in order to get the very best traffic behavior from the network under
study.
In figure 1 a chromosome encoding example I included. It can be seen that through several
translation steps we obtained a binary Gray Code encoding (Black, P. E., 2005). We have
proven out this methodology to be very efficient for our case in (Sánchez, J. J. et al., 2005 B).
We use Gray Code because it is designed in such a manner that when a bit changes its value
— when mutation occurs — the stage length value only increases or decreases one unit. This
is a desirable feature because it makes the search space to conform with the “Hamming
Distance Metric”.
3.1.1.3 Initial population
Before the GA starts we created an initial population. Initially we set a time range for every
preestablished stage. Each individual is created by choosing a random value within its
corresponding range.
3.1.1.4 Random number generation
For the random number generation we have employed the MT19937 generator of Makoto
Matsumoto and Takuji Nishimura, known as the "Mersenne Twister" generator. It has
passed the DIEHARD statistical tests (Matsumoto, M. & Nishimura, T., 1998). The seeds for
that algorithm were obtained from the ``/dev/urandom'' device provided by the Red Hat 9
operating system.
3.1.1.5 Selection strategy
We have chosen a Truncation and Elitism combination as selection strategy. It means that at
every generation a little group of individuals — the best two individuals in our case — is
cloned to the next generation. The remainder of the next generation is created by
crossovering the individuals from a best fitness subset — usually a 66 percent of the whole
population.
This combination seems to be the most fitted to our problem among a set of selection
strategies tested. However, we do not discard to change it if better results seem attainable.
Other selection strategies previously tested — and discarded — for this problem are
succinctly explained as follows:
• Elitism: The population is ordered by fitness and a small set with the best individuals

(elite) is cloned to the next generation.
• Truncation: The population is ordered by fitness. Then the population is divided into

two sets, one to survive and the another one is simply discarded.
• Tournament: Small groups of individuals are chosen at random. The best fitness

individual of each one of them is selected.
• Random Tournament: Like the Tournament Selection but the best individual is not

always selected. It will depend on a probability value.
• Roulette Linear Selection: Every individual has a survival probability proportional to its

fitness value.
• Elitism plus Random Tournament.

9 Stage: Every one of the states associated to an intersection, that contains a set of traffic
lights.

 Advances in Evolutionary Algorithms

428

During the traffic simulation many new vehicles are created as if they were arriving at the
inputs of the network. Furthermore, during the simulation many vehicles reach their
destination point and leave the network. The number of vehicles that reach their destination
point easily illustrates how the simulation was, and consequently helps us to compare a
particular cycle combination with another.
Other optimization criteria tested are the following:
• Mean time at the network — Mean Elapsed Time, MET. During the simulation, the

arrival and departure time of every vehicle is stored. With these values we can easily
calculate the number of iterations (or seconds) it takes any vehicle to leave the network.
Once the simulation finishes the average time at the network is calculated.

• Standard Deviation values of vehicle times at the network.
• A linear combination between the MET and the Standard Deviation of vehicle times at

the network.
• A linear combination between the MET and the total number of vehicles that have left

the network during the simulation.
• The traffic network mean occupancy density. To calculate this parameter we divided

the network into small sections and counted the number of vehicles inside every
section.

As we search the optimization criteria for our system we encountered an unexpected
problem. If we included the minimization of the MET in a multicriteria evaluation function
we provoked a very undesirable effect. The chromosomes that blocked the network faster
were the best marked. That is because only a few vehicles were able to leave the network (in
a small amount of iterations) before it collapsed. Hence, we obtained very “good” values but
caused by “false” optimal cycle combinations. Therefore, we resigned to include that
criterion in our fitness function.
3.1.1.2 Chromosome encoding
In figure 1 we present the chosen encoding used in our methodology. In this figure we
represent a chromosome example for a very simple traffic network. It consists of only two
intersections and two traffic lights for each intersection.

Fig. 2. Chromosome Codification

Evolutionary Computation Applied to Urban Traffic Optimization

429

Below the traffic network we have put the stages9 of each traffic light separated in two
different color regions, one for each one of the two intersections. The traffic light state at
each stage may be green (G), orange (O) or red (R).
This stages sequence is preestabilished, and wil cycle ad infinitum — or until we stop the
corresponding simulation. The objective of our system is to optimize the duration of each
stage (in seconds) in order to get the very best traffic behavior from the network under
study.
In figure 1 a chromosome encoding example I included. It can be seen that through several
translation steps we obtained a binary Gray Code encoding (Black, P. E., 2005). We have
proven out this methodology to be very efficient for our case in (Sánchez, J. J. et al., 2005 B).
We use Gray Code because it is designed in such a manner that when a bit changes its value
— when mutation occurs — the stage length value only increases or decreases one unit. This
is a desirable feature because it makes the search space to conform with the “Hamming
Distance Metric”.
3.1.1.3 Initial population
Before the GA starts we created an initial population. Initially we set a time range for every
preestablished stage. Each individual is created by choosing a random value within its
corresponding range.
3.1.1.4 Random number generation
For the random number generation we have employed the MT19937 generator of Makoto
Matsumoto and Takuji Nishimura, known as the "Mersenne Twister" generator. It has
passed the DIEHARD statistical tests (Matsumoto, M. & Nishimura, T., 1998). The seeds for
that algorithm were obtained from the ``/dev/urandom'' device provided by the Red Hat 9
operating system.
3.1.1.5 Selection strategy
We have chosen a Truncation and Elitism combination as selection strategy. It means that at
every generation a little group of individuals — the best two individuals in our case — is
cloned to the next generation. The remainder of the next generation is created by
crossovering the individuals from a best fitness subset — usually a 66 percent of the whole
population.
This combination seems to be the most fitted to our problem among a set of selection
strategies tested. However, we do not discard to change it if better results seem attainable.
Other selection strategies previously tested — and discarded — for this problem are
succinctly explained as follows:
• Elitism: The population is ordered by fitness and a small set with the best individuals

(elite) is cloned to the next generation.
• Truncation: The population is ordered by fitness. Then the population is divided into

two sets, one to survive and the another one is simply discarded.
• Tournament: Small groups of individuals are chosen at random. The best fitness

individual of each one of them is selected.
• Random Tournament: Like the Tournament Selection but the best individual is not

always selected. It will depend on a probability value.
• Roulette Linear Selection: Every individual has a survival probability proportional to its

fitness value.
• Elitism plus Random Tournament.

9 Stage: Every one of the states associated to an intersection, that contains a set of traffic
lights.

 Advances in Evolutionary Algorithms

430

3.1.1.6 Crossover operator
We have tested some different crossover operators: Uniform Crossover, Two Points
Crossover at fixed points and Two Points Crossover at random points. We reached the
conclusion that for our case the better one was the third one.
For a couple of parents, it simply chooses two random points at each one of the two
chromosomes, cut them into three pieces and then interchanges the central chunk of them.
3.1.1.7 Mutation operator
The value of a randomly chosen bit in the chromosome is just flipped.
The mutation probability is not fixed. It starts with a very high mutation probability that
will decrease multiplied by a factor value in the range (0,1) until it reaches probability
values near to the inverse of the population size as approaching the end of the planned
number of generations.

3.1.2 Traffic simulator
Traffic Simulation is known to be a very difficult task. There are mainly two different traffic
simulations paradigms. The first one is the Macroscopic model. Macroscopic simulators are
based on Fluid Dynamics, since they consider traffic flow as a continuous fluid. The second
paradigm is the one that includes Microscopic simulators. For them, traffic is considered as a
collection of discrete particles following some rules about their interaction. In the last decade
there has been a common belief about the better performance of Microscopic simulators to
do Traffic Modeling. One Microscopic model widely used is the Cellular Automata Model.
There has been a large tradition of macroscopic approaches for traffic modeling. In the 50's
some “first order” continuum theories of highway traffic appeared. In the 70's and later on
some other “second order” models were developed in order to correct the formers'
deficiencies. References (Helbing, D., 1995); (Kerner, B. S., & Konhäuser, P., 1994); (Kühne,
R. D., et al., 1991); (Kühne, R. D., 1991); (Payne, H. J., 1979) and (Witham, G. B., 1974) may
illustrate some of these models. However, in (Daganzo, C. F., 1995) “second order” models
are questioned due to some serious problems like negative flows predictions and negative
speeds under certain conditions.
Nowadays the microscopic simulators are widely used. One reason for this fact is that
macroscopic simulators can not model the discrete dynamics that arises from the interaction
among individual vehicles (Benjaafar, S., et al., 1997). Cellular Automata are usually faster
than any other traffic microsimulator (Nagel, K., & Schleicher, A., 1994), and, as said in
(Cremer, M. & Ludwig, J., 1986) “the computational requirements are rather low with
respect to both storage and computation time making it possible to simulate large traffic
networks on personal computers”
3.1.2.1 The cellular automata as inspiring model
Cellular Automata Simulators are based on the Cellular Automata Theory developed by
John Von Neumann (Neumann, J. von, 1963) at the end of the forties at the Logic of
Computers Group of the University of Michigan. Cellular Automata are discrete dynamical
systems whose behavior is specified in terms of local relation. Space is sampled into a grid,
with each cell containing a few bits of data. As time advances, each cell decides its next state
depending on the neighbors state and following a small set of rules.
In the Cellular Automata model not only space is sampled into a set of points, but also time
and speed. Time becomes iterations. A relationship between time and iterations is set. For
instance, 1(sec.) ≡ 1 (iteration). Consequently, speed turns into “cells over iterations”.

Evolutionary Computation Applied to Urban Traffic Optimization

431

In (Brockfeld, E. et al., 2003) we can find a well described list of microscopic models and a
comparative study of them. Although conclusions are not definitive, this work seems to
demonstrate that models using less parameters have a better performance.
We have developed a traffic model based on the SK10 model (Krauss, S., et al., 1997) and the
SchCh11 model (Schadschneider, A. et al., 1999). The SchCh model is a combination of a
highway traffic model (Nagel, K. & Schreckenberg, M., 1992) and a very simple city traffic
model (Biham et al., 1992). The SK model adds the “smooth braking” for avoiding abrupt
speed changes. We decided to base our model in the SK model due to its better results for all
the tests shown in (Brockfeld, E. et al., 2003).
3.1.2.2 Our improved cellular automata model
Based on the Cellular Automata Model we have developed a non-linear model for
simulating traffic behavior. The basic structure is the same as the one used in Cellular
Automata. However, in our case we add two new levels of complexity by creating two new
abstractions: “Paths”and “Vehicles”.
“Paths” are overlapping subsets included in the Cellular Automata set. There is one “Path”
for every origin-destination pair. To do this, every “Path” has a collection of positions and,
for each one of them, there exists an array of allowed next positions. In figure 2 we try to
illustrate this idea.
“Vehicles” consists of an array of structures, each one of them having the following
properties:
1. Position: the Cellular Automaton where it is situated. Note that every cell may be

occupied by one and only one vehicle.
2. Speed: the current speed of a vehicle. It means the number of cells it moves over every

iteration.
3. Path: In our model, every vehicle is related to a “path”.

Fig. 3. Paths in our Improved Cellular Automata Model

These are the rules applied to every vehicle:
1. A vehicle ought to accelerate up to the maximum speed allowed. If it has no obstacle in

its way (another vehicle, or a red traffic light), it will accelerate at a pace of 1 point per
iteration, every iteration.

2. If a vehicle can reach an occupied position, it will reduce its speed and will occupy the
free position just behind the preceding.

10 Stephan Krauss, the author.
11 Andreas Schadschneider and Debashish Chowdhury, the authors.

 Advances in Evolutionary Algorithms

430

3.1.1.6 Crossover operator
We have tested some different crossover operators: Uniform Crossover, Two Points
Crossover at fixed points and Two Points Crossover at random points. We reached the
conclusion that for our case the better one was the third one.
For a couple of parents, it simply chooses two random points at each one of the two
chromosomes, cut them into three pieces and then interchanges the central chunk of them.
3.1.1.7 Mutation operator
The value of a randomly chosen bit in the chromosome is just flipped.
The mutation probability is not fixed. It starts with a very high mutation probability that
will decrease multiplied by a factor value in the range (0,1) until it reaches probability
values near to the inverse of the population size as approaching the end of the planned
number of generations.

3.1.2 Traffic simulator
Traffic Simulation is known to be a very difficult task. There are mainly two different traffic
simulations paradigms. The first one is the Macroscopic model. Macroscopic simulators are
based on Fluid Dynamics, since they consider traffic flow as a continuous fluid. The second
paradigm is the one that includes Microscopic simulators. For them, traffic is considered as a
collection of discrete particles following some rules about their interaction. In the last decade
there has been a common belief about the better performance of Microscopic simulators to
do Traffic Modeling. One Microscopic model widely used is the Cellular Automata Model.
There has been a large tradition of macroscopic approaches for traffic modeling. In the 50's
some “first order” continuum theories of highway traffic appeared. In the 70's and later on
some other “second order” models were developed in order to correct the formers'
deficiencies. References (Helbing, D., 1995); (Kerner, B. S., & Konhäuser, P., 1994); (Kühne,
R. D., et al., 1991); (Kühne, R. D., 1991); (Payne, H. J., 1979) and (Witham, G. B., 1974) may
illustrate some of these models. However, in (Daganzo, C. F., 1995) “second order” models
are questioned due to some serious problems like negative flows predictions and negative
speeds under certain conditions.
Nowadays the microscopic simulators are widely used. One reason for this fact is that
macroscopic simulators can not model the discrete dynamics that arises from the interaction
among individual vehicles (Benjaafar, S., et al., 1997). Cellular Automata are usually faster
than any other traffic microsimulator (Nagel, K., & Schleicher, A., 1994), and, as said in
(Cremer, M. & Ludwig, J., 1986) “the computational requirements are rather low with
respect to both storage and computation time making it possible to simulate large traffic
networks on personal computers”
3.1.2.1 The cellular automata as inspiring model
Cellular Automata Simulators are based on the Cellular Automata Theory developed by
John Von Neumann (Neumann, J. von, 1963) at the end of the forties at the Logic of
Computers Group of the University of Michigan. Cellular Automata are discrete dynamical
systems whose behavior is specified in terms of local relation. Space is sampled into a grid,
with each cell containing a few bits of data. As time advances, each cell decides its next state
depending on the neighbors state and following a small set of rules.
In the Cellular Automata model not only space is sampled into a set of points, but also time
and speed. Time becomes iterations. A relationship between time and iterations is set. For
instance, 1(sec.) ≡ 1 (iteration). Consequently, speed turns into “cells over iterations”.

Evolutionary Computation Applied to Urban Traffic Optimization

431

In (Brockfeld, E. et al., 2003) we can find a well described list of microscopic models and a
comparative study of them. Although conclusions are not definitive, this work seems to
demonstrate that models using less parameters have a better performance.
We have developed a traffic model based on the SK10 model (Krauss, S., et al., 1997) and the
SchCh11 model (Schadschneider, A. et al., 1999). The SchCh model is a combination of a
highway traffic model (Nagel, K. & Schreckenberg, M., 1992) and a very simple city traffic
model (Biham et al., 1992). The SK model adds the “smooth braking” for avoiding abrupt
speed changes. We decided to base our model in the SK model due to its better results for all
the tests shown in (Brockfeld, E. et al., 2003).
3.1.2.2 Our improved cellular automata model
Based on the Cellular Automata Model we have developed a non-linear model for
simulating traffic behavior. The basic structure is the same as the one used in Cellular
Automata. However, in our case we add two new levels of complexity by creating two new
abstractions: “Paths”and “Vehicles”.
“Paths” are overlapping subsets included in the Cellular Automata set. There is one “Path”
for every origin-destination pair. To do this, every “Path” has a collection of positions and,
for each one of them, there exists an array of allowed next positions. In figure 2 we try to
illustrate this idea.
“Vehicles” consists of an array of structures, each one of them having the following
properties:
1. Position: the Cellular Automaton where it is situated. Note that every cell may be

occupied by one and only one vehicle.
2. Speed: the current speed of a vehicle. It means the number of cells it moves over every

iteration.
3. Path: In our model, every vehicle is related to a “path”.

Fig. 3. Paths in our Improved Cellular Automata Model

These are the rules applied to every vehicle:
1. A vehicle ought to accelerate up to the maximum speed allowed. If it has no obstacle in

its way (another vehicle, or a red traffic light), it will accelerate at a pace of 1 point per
iteration, every iteration.

2. If a vehicle can reach an occupied position, it will reduce its speed and will occupy the
free position just behind the preceding.

10 Stephan Krauss, the author.
11 Andreas Schadschneider and Debashish Chowdhury, the authors.

 Advances in Evolutionary Algorithms

432

3. If a vehicle has a red traffic light in front of, it will stop.
4. Smooth Braking: Once the vehicle position is updated, then the vehicle speed is

updated too. To do this, the number of free positions from the current position ahead is
taken into account. If there is not enough free space for the vehicle to move forward on
the next iteration going at its current speed (hypothetically, since in the next iteration
the traffic situation may change), it will reduce its speed in one unit.

5. Multi-lane Traffic: When a vehicle is trying to move on, or update its speed, it is
allowed to consider positions on other parallel lanes. For every origindestination couple
(path), at every point there exists a list of possible next positions. The first considered is
the one straight forward. If this one is not free, there may be more possible positions in
parallel lanes that will be considered. Of course, this list of possible next positions is
created taking the basic driving rules into account.

By means of these rules we can have lots of different path vehicles running in the same
network. This model may be seen as a set of N paths traditional Cellular Automata networks
working I parallel over the same physical points.
Note that, so far, we are not considering a different behavior for the green and the orange
state. However, our architecture is designed in such a manner that we can modify this
whenever we want to, with a small effort.
3.1.3 Beowulf cluster
The Architecture of our system is based on a five node Beowulf Cluster, due to its very
interesting price/performance relationship and the possibility of employing Open Software
on it. On the other hand, this is a very scalable MIMD computer, a very desirable feature in
order to solve all sort — and scales — of traffic problems.
Every cluster node consists of a Pentium IV processor at 3.06 GHz with 1 GB DDR RAM and
80GB HDD. The nodes are connected through a Gigabit Ethernet Backbone. Every node has
the same hardware, except the master node having an extra Gigabit Ethernet network card
for “out world” connection.
Every node has installed Red Hat 9 on it — Kernel 2.4.20-28.9, glibc ver. 2.3.2 and gcc ver.
3.3.2. It was also necessary for parallel programming the installation of LAM/MPI (LAM
6.5.8, MPI 2).
In our application there are two kinds of processes, namely master and slave process. There is
only one master process running on each test. At every generation it sends the chromosomes
(MPI_Send) to slave processes, receives the evaluation results (MPI_Recv) and creates the
next population. Slave processes are inside an endless loop, waiting to receive a new
chromosome (MPI_Recv). Then they evaluate it and send the evaluation result (MPI_Send).

4. Achieved goals and future aims
The main goal obtain with this methodology is its application to two real world test cases in
a simulated environment. To do so we have earned both collaboration agreements with
Saragossa and Santa Cruz de Tenerife local governments.

4.1 La Almozara
In figures 4 and 5 the Saragossa district number 7 — “La Almozara”— is shown. We want to
remark the large scale of the zone.
In our simulated environment we improve 10% fitness, in comparison with results obtained
with the times currently used in the zone.

Evolutionary Computation Applied to Urban Traffic Optimization

433

Fig. 4. Eye view of "La Almozara" in Saragossa (from Google Maps).

 Advances in Evolutionary Algorithms

432

3. If a vehicle has a red traffic light in front of, it will stop.
4. Smooth Braking: Once the vehicle position is updated, then the vehicle speed is

updated too. To do this, the number of free positions from the current position ahead is
taken into account. If there is not enough free space for the vehicle to move forward on
the next iteration going at its current speed (hypothetically, since in the next iteration
the traffic situation may change), it will reduce its speed in one unit.

5. Multi-lane Traffic: When a vehicle is trying to move on, or update its speed, it is
allowed to consider positions on other parallel lanes. For every origindestination couple
(path), at every point there exists a list of possible next positions. The first considered is
the one straight forward. If this one is not free, there may be more possible positions in
parallel lanes that will be considered. Of course, this list of possible next positions is
created taking the basic driving rules into account.

By means of these rules we can have lots of different path vehicles running in the same
network. This model may be seen as a set of N paths traditional Cellular Automata networks
working I parallel over the same physical points.
Note that, so far, we are not considering a different behavior for the green and the orange
state. However, our architecture is designed in such a manner that we can modify this
whenever we want to, with a small effort.
3.1.3 Beowulf cluster
The Architecture of our system is based on a five node Beowulf Cluster, due to its very
interesting price/performance relationship and the possibility of employing Open Software
on it. On the other hand, this is a very scalable MIMD computer, a very desirable feature in
order to solve all sort — and scales — of traffic problems.
Every cluster node consists of a Pentium IV processor at 3.06 GHz with 1 GB DDR RAM and
80GB HDD. The nodes are connected through a Gigabit Ethernet Backbone. Every node has
the same hardware, except the master node having an extra Gigabit Ethernet network card
for “out world” connection.
Every node has installed Red Hat 9 on it — Kernel 2.4.20-28.9, glibc ver. 2.3.2 and gcc ver.
3.3.2. It was also necessary for parallel programming the installation of LAM/MPI (LAM
6.5.8, MPI 2).
In our application there are two kinds of processes, namely master and slave process. There is
only one master process running on each test. At every generation it sends the chromosomes
(MPI_Send) to slave processes, receives the evaluation results (MPI_Recv) and creates the
next population. Slave processes are inside an endless loop, waiting to receive a new
chromosome (MPI_Recv). Then they evaluate it and send the evaluation result (MPI_Send).

4. Achieved goals and future aims
The main goal obtain with this methodology is its application to two real world test cases in
a simulated environment. To do so we have earned both collaboration agreements with
Saragossa and Santa Cruz de Tenerife local governments.

4.1 La Almozara
In figures 4 and 5 the Saragossa district number 7 — “La Almozara”— is shown. We want to
remark the large scale of the zone.
In our simulated environment we improve 10% fitness, in comparison with results obtained
with the times currently used in the zone.

Evolutionary Computation Applied to Urban Traffic Optimization

433

Fig. 4. Eye view of "La Almozara" in Saragossa (from Google Maps).

 Advances in Evolutionary Algorithms

434

Fig. 5. "La Almozara" Zone Scale.

Evolutionary Computation Applied to Urban Traffic Optimization

435

The statistics provided reflected a scarcely occupied network (under 10%). Everything
seems to indicate that when the traffic zone is that empty, no matter what is the combination
of traffic light times, the network would have similar outputs. In other words, a nearly
empty traffic network is not likely to be improved just by optimizing traffic light times.
Nevertheless, we are carrying out a stud increasing the network occupation, and results
seem really promising.

4.2 Las Ramblas
Illustrations 6 and 7 show the treated zone in Santa Cruz de Tenerife — Canary Islands.
In figure 8 we represent the performance results using the solutions given to us by the Local
Government — the first 9 points. The rest of the points represent the performance obtained
using the solutions yielded by our method. One may observe that there is an obvious
improvement using our times. Likewise, our 150 solutions seem to be more stable than
theirs.
Figure 9 shows the improvement — as a percentage — of the mean, best and worst values of
our 150 solutions against the 9 supplied.
This improvement (%) stays within a range fro 0.53 to 26.21. The smallest difference between
the optimized results and the supplied simulated results is 12 vehicles — solution 43 with
respect to supplied 'R1'. The biggest difference is 521 vehicles — distance from solution 69 to
supplied 'R6'.
The improvement stays within a range from 0.53 to 26.21. The smallest difference between
the optimized results and the supplied simulated results is 12 vehicles — solution 43 with
respect to supplied 'R1'. The biggest difference is 521 vehicles — distance from solution 69 to
supplied 'R6'.
One important conclusion is that we can clearl improve the supplied times in our simulated
environment. So, we can seek optimal cycle time combinations for the traffic lights
programming using our architecture with an appropriate amount of statistics. We have
proven this with a real world test case (nevertheless, using a simulated environment).
This is useful as reducing travel times in a city clearly means saving money and reducing
environmental impact.
It is important to note that our system is intrinsically adaptable to particularized
requirements, such as “Path” preferences, minimum and maximum stage length, etc. In this
sense, our system is flexible and adaptable.

4.3 Future work aims
Currently, we are planning to extend the model to a dynamic version. To do so we will need
new agreements with traffic departments in order to obtain real time data.
On a second step we plan to validate our model running real traffic lights with times
provided by us. This will require real commitment from any public institution, and we are
convinced that we will earn that confidence soon.
Finally, we are considering the possibility of extending our model to take into account the
“Pedestrians' Interaction” and including environmental aspects in the optimization criteria
using a multiobjective approach.

5. Research trends
Forecasting research trends is always tricky. Fortunately, new discoveries surprise the
scientific community every day, discarding common places and settled ideas.

 Advances in Evolutionary Algorithms

434

Fig. 5. "La Almozara" Zone Scale.

Evolutionary Computation Applied to Urban Traffic Optimization

435

The statistics provided reflected a scarcely occupied network (under 10%). Everything
seems to indicate that when the traffic zone is that empty, no matter what is the combination
of traffic light times, the network would have similar outputs. In other words, a nearly
empty traffic network is not likely to be improved just by optimizing traffic light times.
Nevertheless, we are carrying out a stud increasing the network occupation, and results
seem really promising.

4.2 Las Ramblas
Illustrations 6 and 7 show the treated zone in Santa Cruz de Tenerife — Canary Islands.
In figure 8 we represent the performance results using the solutions given to us by the Local
Government — the first 9 points. The rest of the points represent the performance obtained
using the solutions yielded by our method. One may observe that there is an obvious
improvement using our times. Likewise, our 150 solutions seem to be more stable than
theirs.
Figure 9 shows the improvement — as a percentage — of the mean, best and worst values of
our 150 solutions against the 9 supplied.
This improvement (%) stays within a range fro 0.53 to 26.21. The smallest difference between
the optimized results and the supplied simulated results is 12 vehicles — solution 43 with
respect to supplied 'R1'. The biggest difference is 521 vehicles — distance from solution 69 to
supplied 'R6'.
The improvement stays within a range from 0.53 to 26.21. The smallest difference between
the optimized results and the supplied simulated results is 12 vehicles — solution 43 with
respect to supplied 'R1'. The biggest difference is 521 vehicles — distance from solution 69 to
supplied 'R6'.
One important conclusion is that we can clearl improve the supplied times in our simulated
environment. So, we can seek optimal cycle time combinations for the traffic lights
programming using our architecture with an appropriate amount of statistics. We have
proven this with a real world test case (nevertheless, using a simulated environment).
This is useful as reducing travel times in a city clearly means saving money and reducing
environmental impact.
It is important to note that our system is intrinsically adaptable to particularized
requirements, such as “Path” preferences, minimum and maximum stage length, etc. In this
sense, our system is flexible and adaptable.

4.3 Future work aims
Currently, we are planning to extend the model to a dynamic version. To do so we will need
new agreements with traffic departments in order to obtain real time data.
On a second step we plan to validate our model running real traffic lights with times
provided by us. This will require real commitment from any public institution, and we are
convinced that we will earn that confidence soon.
Finally, we are considering the possibility of extending our model to take into account the
“Pedestrians' Interaction” and including environmental aspects in the optimization criteria
using a multiobjective approach.

5. Research trends
Forecasting research trends is always tricky. Fortunately, new discoveries surprise the
scientific community every day, discarding common places and settled ideas.

 Advances in Evolutionary Algorithms

436

Fig. 6. Eye View of "Las Ramblas", in Santa Cruz de Tenerife (from Google Maps)

Evolutionary Computation Applied to Urban Traffic Optimization

437

Fig. 7. "Las Ramblas" Zone Scale

 Advances in Evolutionary Algorithms

436

Fig. 6. Eye View of "Las Ramblas", in Santa Cruz de Tenerife (from Google Maps)

Evolutionary Computation Applied to Urban Traffic Optimization

437

Fig. 7. "Las Ramblas" Zone Scale

 Advances in Evolutionary Algorithms

438

Fig. 8. Number of Vehicles Leaving the Network for the 9 Solutions Provided (on the Left)
and the 50 Solutions Calculated by the System

Fig. 9. Improvement of Fitness

However, everything seems to indicate that human control of traffic will be progressively
replaced by automatic control systems, at least in crowded scenarios.
First, public traffic facilities, and then private vehicles, could be controlled by safe and
automatic systems, maximizing the use of infrastructures, the safety of passengers, and
minimizing the environmental impact of mobility.

Evolutionary Computation Applied to Urban Traffic Optimization

439

6. Acknowledgements
The authors would like to acknowledge th Saragossa Town Hall Traffic Department for their
kind help and assistance.
We would like to thank Mrs. María Luisa Sein- Echaluce Lacleta too, from the University of
Saragossa for her kind help to obtain the data from the Saragossa City Traffic Department.
Finally, the authors would like to acknowledge the Santa Cruz de Tenerife City Council
Traffic Department for their kind help. We specially would like to thank Mr. Hilario
Rodríguez González for his willingness to collaborate with us, making this work feasible.

7. References
Aycin, M. F. and Benekohal, R. F., (1998). Linear acceleration car-following model

development and validation, Transportation research record, 1644, 10—19
Aycin, M. F. and Benekohal, R. F., (1999). Comparison of car-following models for

simulation, Transportation research record, 1678, 116—127
Barcelo, J., et al., (1996). The Parallelization of AIMSUN2 microscopic simulator for ITS

applications, Proceedings of The 3rd World Congress on Intelligent Transportation
Systems

Benjaafar, S., et al., (1997). Cellular Automata for Traffic Flow Modeling, CTS 97-09,
Intelligent Transportation Systems Institute

Bham, Ghulam H. and Benekohal, Rahim F., (2004). A high fidelity traffic simulation model
based on cellular automata and car-following concepts, Transportation Research
Part C, 12, 1 —32

Biham, Ofer, et al., (1992). Self-organization and a dynamical transition in traffic-flow
models, Phys. Rev. A, 46, 10, R6124—R6127

Black, P. E., (2005). ``Gray code'', from Dictionary of Algorithms and Data Structures, Paul E.
Black, ed., NIST

Brockfeld, Elmar, et al., (2001). Optimizing traffic lights in a cellular automaton model for
city traffic, Phys. Rev. E, 64., 056132

Brockfeld, E. et al., (2003). Towards Benchmarking Microscopic Traffic Flow Models,
Transportation Research Record, 1852, 124—129, Washington, DC; National
Academy Press

Cremer, M. & Ludwig, J., (1986). A fast simulation model for traffic flow on the basis of
Boolean operations, Mathematics and Computers in Simulation, 28, 297—303

Daganzo, C. F., (1995). Requiem for second order fluid approximations of traffic flow,
Transportation Research B

Febbraro, A. Di, et al., (2002) On applying Petri nets to determine optimal offsets for
coordinated traffic light timings, On applying Petri nets to determine optimal
offsets for coordinated traffic light timings, The IEEE 5th International Conference
on Intelligent Transportation Systems, 773 — 778

FHWA, (1980). Development and Testing of INTRAS, a Microscopic Freeway Simulation
Model, Program Design, Parameter Calibration and Freeway Dynamics
Component Development, I, FHWA/RD-80/106

Florian, D. G, (2004). Simulation-based evaluation of Advanced Traveler Information
Services, PhD Thesis, Massachusetts Institute of Technology. Technology and
Policy Program

 Advances in Evolutionary Algorithms

438

Fig. 8. Number of Vehicles Leaving the Network for the 9 Solutions Provided (on the Left)
and the 50 Solutions Calculated by the System

Fig. 9. Improvement of Fitness

However, everything seems to indicate that human control of traffic will be progressively
replaced by automatic control systems, at least in crowded scenarios.
First, public traffic facilities, and then private vehicles, could be controlled by safe and
automatic systems, maximizing the use of infrastructures, the safety of passengers, and
minimizing the environmental impact of mobility.

Evolutionary Computation Applied to Urban Traffic Optimization

439

6. Acknowledgements
The authors would like to acknowledge th Saragossa Town Hall Traffic Department for their
kind help and assistance.
We would like to thank Mrs. María Luisa Sein- Echaluce Lacleta too, from the University of
Saragossa for her kind help to obtain the data from the Saragossa City Traffic Department.
Finally, the authors would like to acknowledge the Santa Cruz de Tenerife City Council
Traffic Department for their kind help. We specially would like to thank Mr. Hilario
Rodríguez González for his willingness to collaborate with us, making this work feasible.

7. References
Aycin, M. F. and Benekohal, R. F., (1998). Linear acceleration car-following model

development and validation, Transportation research record, 1644, 10—19
Aycin, M. F. and Benekohal, R. F., (1999). Comparison of car-following models for

simulation, Transportation research record, 1678, 116—127
Barcelo, J., et al., (1996). The Parallelization of AIMSUN2 microscopic simulator for ITS

applications, Proceedings of The 3rd World Congress on Intelligent Transportation
Systems

Benjaafar, S., et al., (1997). Cellular Automata for Traffic Flow Modeling, CTS 97-09,
Intelligent Transportation Systems Institute

Bham, Ghulam H. and Benekohal, Rahim F., (2004). A high fidelity traffic simulation model
based on cellular automata and car-following concepts, Transportation Research
Part C, 12, 1 —32

Biham, Ofer, et al., (1992). Self-organization and a dynamical transition in traffic-flow
models, Phys. Rev. A, 46, 10, R6124—R6127

Black, P. E., (2005). ``Gray code'', from Dictionary of Algorithms and Data Structures, Paul E.
Black, ed., NIST

Brockfeld, Elmar, et al., (2001). Optimizing traffic lights in a cellular automaton model for
city traffic, Phys. Rev. E, 64., 056132

Brockfeld, E. et al., (2003). Towards Benchmarking Microscopic Traffic Flow Models,
Transportation Research Record, 1852, 124—129, Washington, DC; National
Academy Press

Cremer, M. & Ludwig, J., (1986). A fast simulation model for traffic flow on the basis of
Boolean operations, Mathematics and Computers in Simulation, 28, 297—303

Daganzo, C. F., (1995). Requiem for second order fluid approximations of traffic flow,
Transportation Research B

Febbraro, A. Di, et al., (2002) On applying Petri nets to determine optimal offsets for
coordinated traffic light timings, On applying Petri nets to determine optimal
offsets for coordinated traffic light timings, The IEEE 5th International Conference
on Intelligent Transportation Systems, 773 — 778

FHWA, (1980). Development and Testing of INTRAS, a Microscopic Freeway Simulation
Model, Program Design, Parameter Calibration and Freeway Dynamics
Component Development, I, FHWA/RD-80/106

Florian, D. G, (2004). Simulation-based evaluation of Advanced Traveler Information
Services, PhD Thesis, Massachusetts Institute of Technology. Technology and
Policy Program

 Advances in Evolutionary Algorithms

440

GiYoung L. et al., (2001). The optimization of traffic signal light using artificial intelligence,
Fuzzy Systems, 2001. The 10th IEEE International Conference on, 3, 1279—1282

Hafstein, S. F., et al., (2004). A High-Resolution Cellular Automata Traffic Simulation Model
with Application in a Freeway Traffic Information System, Computer-Aided Civil
and Infrastructure Engineering, 19, 338—350

Halati A. et al., (1997). CORSIM - Corridor Traffic Simulation Model, The 76th Annual
Meeting of the Transportation Research Board, Washington, D. C.

Helbing, D., (1995). An improved fluid dynamical model for vehicular traffic, Physical
Review. E, 51, 3164

Kerner, B. S., & Konhäuser, P., (1994). Structure and Parameters of Clusters in Traffic Flow,
Physical Review E, 50:54

Kühne, R. D., et al., (1991). Macroscopic simulation model for freeway traffic with jams and
stop-start waves, WSC '91: Proceedings of the 23rd conference on Winter
simulation, 762 —770, Phoenix, Arizona, USA

Kühne, R. D., (1991). Verkehrsablauf auf Fernstraßen, Phys. Bl., 47, 3:201
Krauss, S., et al., (1997). Metastable states in a microscopic model of traffic flow, Phys. Rev.

E, 55, 5597 — 5605
Li, L. et al., (2004). Implementation of Traffic Lights Control Based on Petri Nets, Intelligent

Transportations Systems, IEEE 2003, 3, 1749— 1752
Logi, F. and Ritchie, S.G., (2001). Development and evaluation of a knowledge-based system

for traffic congestion management and control, Transportation Research Part C:
Emerging Technologies, 9, 6, 433—459

López, S., et al., (1999). Artificial Neural Networks as useful tools for the optimization of the
relative offset between two consecutive sets of traffic lights. LNCS. Foundations
and Tools for Neural Modeling. Springer-Verlag, 795—804

Matsumoto, M. & Nishimura, (1998). T., Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator, ACM Transactions on
Modeling and Computer Simulation, 8, 3—30

Nagel, K. & Schreckenberg, M., (1992). A Cellular Automaton Model for Freeway Traffic,
Journal de Physique I France, 33, 2, 2221—2229

Nagel, K., & Schleicher, A., (1994). Microscopic traffic modeling on parallel high
performance computers, Parallel Computing, 20, 1, 125— 146

Nagel, K. & Barrett, C., (1997). Using microsimulation feedback for trip adaptation for
realistic traffic in Dallas, Int.J.Mod.Phys.C, 505

Neumann, J. von, (1963). The General and Logical Theory of Automata. John von
Neumann— Collected Works, 5. A. H. Taub (ed.), Macmillan, New York, 288—328.

Payne, H. J., (1979). Freflo: A macroscopic simulation model of freeway traffic,
Transportation Research Record, 722:68

Rakha, H., et al., (1998). Construction and Calibration of a Large Scale Microsimulation
Model of the Salt Lake Area, Transportation Research Record, 1644, 93—102

Rouphail, N., et al., (2000). Direct Signal Timing Optimization: Strategy Development and
Results, In XI Pan American Conference in Traffic and Transportation Engineering

Sánchez, J. J., Galán, M. J., & Rubio, E., (2004). Genetic Algorithms and Cellular Automata: A
New Architecture for Traffic Light Cycles Optimization, Proceedings of The
Congress on Evolutionary Computation 2004 (CEC2004), 2, 1668—1674, Portland,
Oregon (USA)

Evolutionary Computation Applied to Urban Traffic Optimization

441

Sánchez, J., Galán, M. and Rubio, E. (2005A). Stochastic Vs Deterministic Traffic Simulator.
Comparative Study for its Use within a Traffic Light Cycles Optimization
Architecture, Proceedings of The International Workconference on the Interplay
between Natural and Artificial Computation (IWINAC), 2, 622— 631

Sánchez, J. J., Galán, M. J., & Rubio, (2005B). E., Bit Level Versus Gene Level Crossover in a
Traffic Modeling Environment, International Conference on Computational
Intelligence for Modelling Control and Automation - CIMCA'2005, 1, 1190 - 1195,
Vienna, Austria

Sánchez, J. J., Galán, M. J. and Rubio, E., (2006). A Visual and Statistical Study of a Real
World Traffic Optimization Problem, Proceedings of the Fifth International
Conference on Engineering Computational Technology, Civil- Comp Press, paper
147, Stirlingshire, United Kingdom

Sánchez, J. J., Galán, M. J. and Rubio, E., (2007). Study of Correlation Among Several Traffic
Parameters Using Evolutionary Algorithms: Traffic Flow, Greenhouse Emissions
and Network Ocuppancy, Proceedings of the EUROCAST 2007 conference. 1134-
1141

Sánchez, J. J., Galán, M. J. and Rubio, E., (2008). Applying a Traffic Lights Evolutionary
Optimization Technique to a Real Case: “Las Ramblas” Area in Santa Cruz de
Tenerife, Evolutionary Computation, IEEE Transactions on, Volume 12, Issue 1,
Feb. 2008 Page(s):25 - 40

Schadschneider, A., Chowdhury, D., Brockfeld, E., Klauck, K., Santen, L., & Zittartz, J.,
(1999). A new cellular automata model for city traffic, Traffic and Granular Flow
'99: Social, Traffic, and Granular Dynamics, Berlin

Schutter, B. De & Moor, B. De, (1997). Optimal Traffic Light Control for a Single Intersection,
Proceedings of the 1997 International Symposium on Nonlinear Theory and its
Applications (NOLTA'97), 1085—1088

Smith, M. J., (1988). Optimum network control using traffic signals, UK Developments in
Road Traffic Signalling, IEE Colloquium on, 8/1 — 8/3

Spall, J.C. & Chin, D.C., (1994). A model-free approach to optimal signal light timing for
system-wide traffic control, 33rd IEEE Conference on Decision and Control, 1994,
1868 — 1875

Taniguchi, E. and Shimamoto, H., (2004). Intelligent transportation system based dynamic
vehicle routing and scheduling with variable travel times, Transportation Research
Part C: Emerging Technologies, 12, 3—4, 235— 250

Tveit, O., (2003) . Common cycle time - a strength or barrier in traffic light signaling, Traffic
Engineering and Control (TEC) Magazine, 1, 44, 19—21

Varia, H.R. and Dhingra, S.L., (2004). Dynamic Optimal Traffic Assignment and Signal Time
Optimization Using Genetic Algorithms, Computer-Aided Civil and Infrastructure
Engineering, 19, 260—273

Vogel, A. et al., (2000). Evolutionary Algorithms for Optimizing Traffic Signal Operation,
ESIT 2000, 83—91, Aachen, Germany

Wann-Ming Wey, et al., (2001). Applications of linear systems controller to a cycle-based
traffic signal control, Intelligent Transportation Systems, 2001, 179 — 184

Wiering, M. et al., (2004). Simulation and Optimization of Traffic in a City, Intelligent
Vehicles Symposium, IEEE 2004, 453—458

Witham, G. B., (1974). Linear and Nonlinear Waves, Wiley, New York

 Advances in Evolutionary Algorithms

440

GiYoung L. et al., (2001). The optimization of traffic signal light using artificial intelligence,
Fuzzy Systems, 2001. The 10th IEEE International Conference on, 3, 1279—1282

Hafstein, S. F., et al., (2004). A High-Resolution Cellular Automata Traffic Simulation Model
with Application in a Freeway Traffic Information System, Computer-Aided Civil
and Infrastructure Engineering, 19, 338—350

Halati A. et al., (1997). CORSIM - Corridor Traffic Simulation Model, The 76th Annual
Meeting of the Transportation Research Board, Washington, D. C.

Helbing, D., (1995). An improved fluid dynamical model for vehicular traffic, Physical
Review. E, 51, 3164

Kerner, B. S., & Konhäuser, P., (1994). Structure and Parameters of Clusters in Traffic Flow,
Physical Review E, 50:54

Kühne, R. D., et al., (1991). Macroscopic simulation model for freeway traffic with jams and
stop-start waves, WSC '91: Proceedings of the 23rd conference on Winter
simulation, 762 —770, Phoenix, Arizona, USA

Kühne, R. D., (1991). Verkehrsablauf auf Fernstraßen, Phys. Bl., 47, 3:201
Krauss, S., et al., (1997). Metastable states in a microscopic model of traffic flow, Phys. Rev.

E, 55, 5597 — 5605
Li, L. et al., (2004). Implementation of Traffic Lights Control Based on Petri Nets, Intelligent

Transportations Systems, IEEE 2003, 3, 1749— 1752
Logi, F. and Ritchie, S.G., (2001). Development and evaluation of a knowledge-based system

for traffic congestion management and control, Transportation Research Part C:
Emerging Technologies, 9, 6, 433—459

López, S., et al., (1999). Artificial Neural Networks as useful tools for the optimization of the
relative offset between two consecutive sets of traffic lights. LNCS. Foundations
and Tools for Neural Modeling. Springer-Verlag, 795—804

Matsumoto, M. & Nishimura, (1998). T., Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator, ACM Transactions on
Modeling and Computer Simulation, 8, 3—30

Nagel, K. & Schreckenberg, M., (1992). A Cellular Automaton Model for Freeway Traffic,
Journal de Physique I France, 33, 2, 2221—2229

Nagel, K., & Schleicher, A., (1994). Microscopic traffic modeling on parallel high
performance computers, Parallel Computing, 20, 1, 125— 146

Nagel, K. & Barrett, C., (1997). Using microsimulation feedback for trip adaptation for
realistic traffic in Dallas, Int.J.Mod.Phys.C, 505

Neumann, J. von, (1963). The General and Logical Theory of Automata. John von
Neumann— Collected Works, 5. A. H. Taub (ed.), Macmillan, New York, 288—328.

Payne, H. J., (1979). Freflo: A macroscopic simulation model of freeway traffic,
Transportation Research Record, 722:68

Rakha, H., et al., (1998). Construction and Calibration of a Large Scale Microsimulation
Model of the Salt Lake Area, Transportation Research Record, 1644, 93—102

Rouphail, N., et al., (2000). Direct Signal Timing Optimization: Strategy Development and
Results, In XI Pan American Conference in Traffic and Transportation Engineering

Sánchez, J. J., Galán, M. J., & Rubio, E., (2004). Genetic Algorithms and Cellular Automata: A
New Architecture for Traffic Light Cycles Optimization, Proceedings of The
Congress on Evolutionary Computation 2004 (CEC2004), 2, 1668—1674, Portland,
Oregon (USA)

Evolutionary Computation Applied to Urban Traffic Optimization

441

Sánchez, J., Galán, M. and Rubio, E. (2005A). Stochastic Vs Deterministic Traffic Simulator.
Comparative Study for its Use within a Traffic Light Cycles Optimization
Architecture, Proceedings of The International Workconference on the Interplay
between Natural and Artificial Computation (IWINAC), 2, 622— 631

Sánchez, J. J., Galán, M. J., & Rubio, (2005B). E., Bit Level Versus Gene Level Crossover in a
Traffic Modeling Environment, International Conference on Computational
Intelligence for Modelling Control and Automation - CIMCA'2005, 1, 1190 - 1195,
Vienna, Austria

Sánchez, J. J., Galán, M. J. and Rubio, E., (2006). A Visual and Statistical Study of a Real
World Traffic Optimization Problem, Proceedings of the Fifth International
Conference on Engineering Computational Technology, Civil- Comp Press, paper
147, Stirlingshire, United Kingdom

Sánchez, J. J., Galán, M. J. and Rubio, E., (2007). Study of Correlation Among Several Traffic
Parameters Using Evolutionary Algorithms: Traffic Flow, Greenhouse Emissions
and Network Ocuppancy, Proceedings of the EUROCAST 2007 conference. 1134-
1141

Sánchez, J. J., Galán, M. J. and Rubio, E., (2008). Applying a Traffic Lights Evolutionary
Optimization Technique to a Real Case: “Las Ramblas” Area in Santa Cruz de
Tenerife, Evolutionary Computation, IEEE Transactions on, Volume 12, Issue 1,
Feb. 2008 Page(s):25 - 40

Schadschneider, A., Chowdhury, D., Brockfeld, E., Klauck, K., Santen, L., & Zittartz, J.,
(1999). A new cellular automata model for city traffic, Traffic and Granular Flow
'99: Social, Traffic, and Granular Dynamics, Berlin

Schutter, B. De & Moor, B. De, (1997). Optimal Traffic Light Control for a Single Intersection,
Proceedings of the 1997 International Symposium on Nonlinear Theory and its
Applications (NOLTA'97), 1085—1088

Smith, M. J., (1988). Optimum network control using traffic signals, UK Developments in
Road Traffic Signalling, IEE Colloquium on, 8/1 — 8/3

Spall, J.C. & Chin, D.C., (1994). A model-free approach to optimal signal light timing for
system-wide traffic control, 33rd IEEE Conference on Decision and Control, 1994,
1868 — 1875

Taniguchi, E. and Shimamoto, H., (2004). Intelligent transportation system based dynamic
vehicle routing and scheduling with variable travel times, Transportation Research
Part C: Emerging Technologies, 12, 3—4, 235— 250

Tveit, O., (2003) . Common cycle time - a strength or barrier in traffic light signaling, Traffic
Engineering and Control (TEC) Magazine, 1, 44, 19—21

Varia, H.R. and Dhingra, S.L., (2004). Dynamic Optimal Traffic Assignment and Signal Time
Optimization Using Genetic Algorithms, Computer-Aided Civil and Infrastructure
Engineering, 19, 260—273

Vogel, A. et al., (2000). Evolutionary Algorithms for Optimizing Traffic Signal Operation,
ESIT 2000, 83—91, Aachen, Germany

Wann-Ming Wey, et al., (2001). Applications of linear systems controller to a cycle-based
traffic signal control, Intelligent Transportation Systems, 2001, 179 — 184

Wiering, M. et al., (2004). Simulation and Optimization of Traffic in a City, Intelligent
Vehicles Symposium, IEEE 2004, 453—458

Witham, G. B., (1974). Linear and Nonlinear Waves, Wiley, New York

 Advances in Evolutionary Algorithms

442

Yang, Q., (1997). A Simulation Laboratory for Evaluation of Dynamic Traffic Management
Systems, PhD Thesis, Massachusetts Institute of Technology

You-Sik, H. et al., (1999). New Electrosensitive Traffic Light Using Fuzzy Neural Network,
IEEE Transactions on Fuzzy Systems, VII, 6, 759— 767

You Sik Hong, et al., (2001). Estimation of optimal green time simulation using fuzzy neural
network, Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE '99, 761 — 766

22

Evolutionary Algorithms in
Decision Tree Induction

Francesco Mola1, Raffaele Miele2 and Claudio Conversano1
1University of Cagliari,

2University of Naples Federico II
Italy

1. Introduction
One of the biggest problem that many data analysis techniques have to deal with nowadays
is Combinatorial Optimization that, in the past, has led many methods to be taken apart.
Actually, the (still not enough!) higher computing power available makes it possible to
apply such techniques within certain bounds. Since other research fields like Artificial
Intelligence have been (and still are) dealing with such problems, their contribute to
statistics has been very significant.
This chapter tries to cast the Combinatorial Optimization methods into the Artificial
Intelligence framework, particularly with respect Decision Tree Induction, which is
considered a powerful instrument for the knowledge extraction and the decision making
support. When the exhaustive enumeration and evaluation of all the possible candidate
solution to a Tree-based Induction problem is not computationally affordable, the use of
Nature Inspired Optimization Algorithms, which have been proven to be powerful
instruments for attacking many combinatorial optimization problems, can be of great help.
In this respect, the attention is focused on three main problems involving Decision Tree
Induction by mainly focusing the attention on the Classification and Regression Tree-CART
(Breiman et al., 1984) algorithm. First, the problem of splitting complex predictors such a
multi-attribute ones is faced through the use of Genetic Algorithms. In addition, the
possibility of growing “optimal” exploratory trees is also investigated by making use of Ant
Colony Optimization (ACO) algorithm. Finally, the derivation of a subset of decision trees
for modelling multi-attribute response on the basis of a data-driven heuristic is also
described. The proposed approaches might be useful for knowledge extraction from large
databases as well as for data mining applications. The solution they offer for complicated
data modelling and data analysis problems might be considered for a possible
implementation in a Decision Support System (DSS).
The remainder of the chapter is as follows. Section 2 describes the main features and the
recent developments of Decision Tree Induction. An overview of Combinatorial
Optimization with a particular focus on Genetic Algorithms and Ant Colony Optimization
is presented in section 3. The use of these two algorithms within the Decision Tree Induction
Framework is described in section 4, together with the description of the algorithm for
modelling multi-attribute response. Section 5 summarizes the results of the proposed

 Advances in Evolutionary Algorithms

442

Yang, Q., (1997). A Simulation Laboratory for Evaluation of Dynamic Traffic Management
Systems, PhD Thesis, Massachusetts Institute of Technology

You-Sik, H. et al., (1999). New Electrosensitive Traffic Light Using Fuzzy Neural Network,
IEEE Transactions on Fuzzy Systems, VII, 6, 759— 767

You Sik Hong, et al., (2001). Estimation of optimal green time simulation using fuzzy neural
network, Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE '99, 761 — 766

22

Evolutionary Algorithms in
Decision Tree Induction

Francesco Mola1, Raffaele Miele2 and Claudio Conversano1
1University of Cagliari,

2University of Naples Federico II
Italy

1. Introduction
One of the biggest problem that many data analysis techniques have to deal with nowadays
is Combinatorial Optimization that, in the past, has led many methods to be taken apart.
Actually, the (still not enough!) higher computing power available makes it possible to
apply such techniques within certain bounds. Since other research fields like Artificial
Intelligence have been (and still are) dealing with such problems, their contribute to
statistics has been very significant.
This chapter tries to cast the Combinatorial Optimization methods into the Artificial
Intelligence framework, particularly with respect Decision Tree Induction, which is
considered a powerful instrument for the knowledge extraction and the decision making
support. When the exhaustive enumeration and evaluation of all the possible candidate
solution to a Tree-based Induction problem is not computationally affordable, the use of
Nature Inspired Optimization Algorithms, which have been proven to be powerful
instruments for attacking many combinatorial optimization problems, can be of great help.
In this respect, the attention is focused on three main problems involving Decision Tree
Induction by mainly focusing the attention on the Classification and Regression Tree-CART
(Breiman et al., 1984) algorithm. First, the problem of splitting complex predictors such a
multi-attribute ones is faced through the use of Genetic Algorithms. In addition, the
possibility of growing “optimal” exploratory trees is also investigated by making use of Ant
Colony Optimization (ACO) algorithm. Finally, the derivation of a subset of decision trees
for modelling multi-attribute response on the basis of a data-driven heuristic is also
described. The proposed approaches might be useful for knowledge extraction from large
databases as well as for data mining applications. The solution they offer for complicated
data modelling and data analysis problems might be considered for a possible
implementation in a Decision Support System (DSS).
The remainder of the chapter is as follows. Section 2 describes the main features and the
recent developments of Decision Tree Induction. An overview of Combinatorial
Optimization with a particular focus on Genetic Algorithms and Ant Colony Optimization
is presented in section 3. The use of these two algorithms within the Decision Tree Induction
Framework is described in section 4, together with the description of the algorithm for
modelling multi-attribute response. Section 5 summarizes the results of the proposed

 Advances in Evolutionary Algorithms

444

method on real and simulated datasets. Concluding remarks are presented in section 6. The
chapter also includes an appendix that presents J-Fast, a Java-based software for Decision
Tree that currently implements Genetic Algorithms and Ant Colony Optimization.

2. Decision tree induction
Decision Tree Induction (DTI) is a tool to induce a classification or regression model from
(usually large) datasets characterized by N observations (records), each one containing a set
x of numerical or nominal variables, and a variable y. Statisticians use the terms “splitting
predictors” to identify x and “response variable” for y. DTI builds a model that summarizes
the underlying relationships between x and y. Actually, two kinds of model can be
estimated using decision trees: classification trees if y is nominal, and regression trees if y is
numerical. Hereinafter we refer to classification trees to show the main features of DTI and
briefly recall the main characteristics of regression trees at the end of the section.
DTI proceeds by inducing a series of follow-up (usually binary) questions about the
attributes of an unknown observation until a conclusion about what is its most likely class
label is reached. Questions and their alternative answers can be represented hierarchically in
the form of a decision tree. It contains a root node and some internal and terminal nodes.
The root node and the internal ones are used to partition observations of the dataset into
smaller subsets of relatively homogeneous classes. To classify a previously unlabelled
observation, say i* (i*=1,…..,N), we start from the test condition in the root node and follow
the appropriate pattern based on the outcome of the test. When an internal node is reached a
new test condition is applied, and so on down to a terminal node. Encountering a terminal
node, the modal class of the observations in that node is the class label of y assigned to the
(previously) unlabeled observation. For regression trees, the assigned class is the mean of y
for the observations belonging to that terminal node.
Because of their top-down binary splitting approach, decision trees can easily be converted
into IF-THEN rules and used for decision making purposes.
DTI is useful for knowledge extraction from large databases and data mining applications
because of the possibility to represent functions of numerical and nominal variables as well
as of its feasibility, predictive ability and interpretability. It can effectively handle missing
values and noisy data and can be used either as an explanatory tool for distinguishing
observations of different classes or as a prediction tool to class labels of previously unseen
observations.
Some of the well-known DTI algorithms include ID3 (Quinlan, 1983), CART (Breiman et al.,
1984), C4.5 (Quinlan, 1993), SLIQ (Metha et al., 1996), FAST (Mola & Siciliano, 1997) and
GUIDE (Loh, 2002). All these algorithms use a greedy, top-down recursive partitioning
approach. They primarily differ in terms of the splitting criteria, the type of splits (2-way or
multi-way) and the handling of the overfitting problem.
DTI uses a greedy, top-down recursive partitioning approach to induce a decision tree from
data. In general, DTI involves the following tasks: decision tree growing and decision tree
pruning.

2.1 Tree growing
As for the growing of a decision tree, DTI use a greedy heuristic to make a series of locally
optimum decisions about which value of a splitting predictor to use for data partitioning. A

Evolutionary Algorithms in Decision Tree Induction

445

test condition depending on a splitting method is applied to partition the data into more
homogeneous subgroups at each step of the greedy algorithm.
Splitting methods differ with respect to the type of splitting predictor: for nominal splitting
predictors the test condition is expressed as a question about one or more of its attributes,
whose outcomes are “Yes”/”No”. Grouping of splitting predictor attributes is required for
algorithms using 2-way splits. For ordinal or continuous splitting predictors the test
condition is expressed on the basis of a threshold value υ such as (xi ≤ υ?) or (xi > υ?). By
considering all the possible split points υ, the best one υ* partitioning the instances into
homogeneous subgroups is selected.
In the classification problem, the sample population consists of N observations deriving
from C response classes. A decision tree (or classifier) will break these observations into k
terminal groups, and to each of these a predicted class (being one of the possible attributes
of the response variable) is assigned. In actual application, most parameters are estimated
from the data. In fact, denoting with t some node of the tree (t represents both a set of
individuals in the sample data and, via the tree that produced it, a classification rule for
future data) from the binary tree it is possible to estimate P(t) and P(i|t) for future
observations as follows:

 () (){ } ()
1 1

C C

i i iA ii i
P t P x t x i n nπ τ π

= =
= ∈ = ≈∑ ∑ (1)

 () (){ } (){ } { } () ()
1

C

i i it i i it ii
P i t P x i x t P x t x i P x t n n n nτ π τ π π

=
= = ∈ = ∈ = ∈ ≈ ∑ (2)

where πi is the prior probability of each class i (i ∈ 1,2,….,C), τ(x) is the true class of an
observation xi (x is the vector of predictor variables), ni and nt are the number of
observations in the sample that respectively are class i and node t, and nit is the number of
observations in the sample that are class i and node t.
In addition, by denoting with R the risk of misclassification, the risk of t (denoted with R(t))
and the risk of a model (or tree) T (denoted with R(T)) are measured as follows:

 () () ()()1
,C

i
R t P i t L i tτ

=
=∑ (3)

 () () ()1
k

j jj
R T P t R t

=
=∑ (4)

where L(i,j) is the loss matrix for incorrectly classifying an i as a j (with L(i,i)=0), and τ(t) is
the class assigned to t once that t is a terminal node and τ(t) is chosen to minimize R(t) and tj
are terminal nodes of the tree T. If L(i,i)=1 for all i≠j, and the prior probabilities τ are set to
be equal to the observed class frequencies in the sample, then P(i|t)=nit/nt and R(T) is the
proportion of misclassified observations.
When splitting a node t into tr and tl (left and right sons), the following relationship holds:
P(tl) R(tl) + P(tr) R(tr) ≤ P(t) R(t). An obvious way to build a tree is to chose that split
maximizing ΔR, i.e., the decrease in risk. To this aim, several measures of impurity (or
diversity) of a node are used. Denoting with f some impurity function, the local impurity of
a node t is defined as:

 Advances in Evolutionary Algorithms

444

method on real and simulated datasets. Concluding remarks are presented in section 6. The
chapter also includes an appendix that presents J-Fast, a Java-based software for Decision
Tree that currently implements Genetic Algorithms and Ant Colony Optimization.

2. Decision tree induction
Decision Tree Induction (DTI) is a tool to induce a classification or regression model from
(usually large) datasets characterized by N observations (records), each one containing a set
x of numerical or nominal variables, and a variable y. Statisticians use the terms “splitting
predictors” to identify x and “response variable” for y. DTI builds a model that summarizes
the underlying relationships between x and y. Actually, two kinds of model can be
estimated using decision trees: classification trees if y is nominal, and regression trees if y is
numerical. Hereinafter we refer to classification trees to show the main features of DTI and
briefly recall the main characteristics of regression trees at the end of the section.
DTI proceeds by inducing a series of follow-up (usually binary) questions about the
attributes of an unknown observation until a conclusion about what is its most likely class
label is reached. Questions and their alternative answers can be represented hierarchically in
the form of a decision tree. It contains a root node and some internal and terminal nodes.
The root node and the internal ones are used to partition observations of the dataset into
smaller subsets of relatively homogeneous classes. To classify a previously unlabelled
observation, say i* (i*=1,…..,N), we start from the test condition in the root node and follow
the appropriate pattern based on the outcome of the test. When an internal node is reached a
new test condition is applied, and so on down to a terminal node. Encountering a terminal
node, the modal class of the observations in that node is the class label of y assigned to the
(previously) unlabeled observation. For regression trees, the assigned class is the mean of y
for the observations belonging to that terminal node.
Because of their top-down binary splitting approach, decision trees can easily be converted
into IF-THEN rules and used for decision making purposes.
DTI is useful for knowledge extraction from large databases and data mining applications
because of the possibility to represent functions of numerical and nominal variables as well
as of its feasibility, predictive ability and interpretability. It can effectively handle missing
values and noisy data and can be used either as an explanatory tool for distinguishing
observations of different classes or as a prediction tool to class labels of previously unseen
observations.
Some of the well-known DTI algorithms include ID3 (Quinlan, 1983), CART (Breiman et al.,
1984), C4.5 (Quinlan, 1993), SLIQ (Metha et al., 1996), FAST (Mola & Siciliano, 1997) and
GUIDE (Loh, 2002). All these algorithms use a greedy, top-down recursive partitioning
approach. They primarily differ in terms of the splitting criteria, the type of splits (2-way or
multi-way) and the handling of the overfitting problem.
DTI uses a greedy, top-down recursive partitioning approach to induce a decision tree from
data. In general, DTI involves the following tasks: decision tree growing and decision tree
pruning.

2.1 Tree growing
As for the growing of a decision tree, DTI use a greedy heuristic to make a series of locally
optimum decisions about which value of a splitting predictor to use for data partitioning. A

Evolutionary Algorithms in Decision Tree Induction

445

test condition depending on a splitting method is applied to partition the data into more
homogeneous subgroups at each step of the greedy algorithm.
Splitting methods differ with respect to the type of splitting predictor: for nominal splitting
predictors the test condition is expressed as a question about one or more of its attributes,
whose outcomes are “Yes”/”No”. Grouping of splitting predictor attributes is required for
algorithms using 2-way splits. For ordinal or continuous splitting predictors the test
condition is expressed on the basis of a threshold value υ such as (xi ≤ υ?) or (xi > υ?). By
considering all the possible split points υ, the best one υ* partitioning the instances into
homogeneous subgroups is selected.
In the classification problem, the sample population consists of N observations deriving
from C response classes. A decision tree (or classifier) will break these observations into k
terminal groups, and to each of these a predicted class (being one of the possible attributes
of the response variable) is assigned. In actual application, most parameters are estimated
from the data. In fact, denoting with t some node of the tree (t represents both a set of
individuals in the sample data and, via the tree that produced it, a classification rule for
future data) from the binary tree it is possible to estimate P(t) and P(i|t) for future
observations as follows:

 () (){ } ()
1 1

C C

i i iA ii i
P t P x t x i n nπ τ π

= =
= ∈ = ≈∑ ∑ (1)

 () (){ } (){ } { } () ()
1

C

i i it i i it ii
P i t P x i x t P x t x i P x t n n n nτ π τ π π

=
= = ∈ = ∈ = ∈ ≈ ∑ (2)

where πi is the prior probability of each class i (i ∈ 1,2,….,C), τ(x) is the true class of an
observation xi (x is the vector of predictor variables), ni and nt are the number of
observations in the sample that respectively are class i and node t, and nit is the number of
observations in the sample that are class i and node t.
In addition, by denoting with R the risk of misclassification, the risk of t (denoted with R(t))
and the risk of a model (or tree) T (denoted with R(T)) are measured as follows:

 () () ()()1
,C

i
R t P i t L i tτ

=
=∑ (3)

 () () ()1
k

j jj
R T P t R t

=
=∑ (4)

where L(i,j) is the loss matrix for incorrectly classifying an i as a j (with L(i,i)=0), and τ(t) is
the class assigned to t once that t is a terminal node and τ(t) is chosen to minimize R(t) and tj
are terminal nodes of the tree T. If L(i,i)=1 for all i≠j, and the prior probabilities τ are set to
be equal to the observed class frequencies in the sample, then P(i|t)=nit/nt and R(T) is the
proportion of misclassified observations.
When splitting a node t into tr and tl (left and right sons), the following relationship holds:
P(tl) R(tl) + P(tr) R(tr) ≤ P(t) R(t). An obvious way to build a tree is to chose that split
maximizing ΔR, i.e., the decrease in risk. To this aim, several measures of impurity (or
diversity) of a node are used. Denoting with f some impurity function, the local impurity of
a node t is defined as:

 Advances in Evolutionary Algorithms

446

 () ()1
C

iti
t f pε

=
=∑ (5)

where pit is the proportion of those in t that belong to class i for future samples. Since ε(t)=0
when t is pure, f must be concave with f(0)=f(1)=0. Two candidates for f are the information
index f(p) = -p log(p) and the Gini index f(p)= -p(1-p), that slightly differ for the two class
problem where nearly always choose the same split point. Once that f has been chosen, the
split maximizing the impurity reduction is:

 () () () () () ()l l r rp t t p t t p t tε ε ε εΔ = − − (6)

Data partitioning proceeds recursively until a stopping rule is satisfied: this usually happens
when the number of observations in a node is lower than a previously-specified minimum
number necessary for splitting, as well as when the same observations belong to the same
class or have the same response class.

2.2 FAST splitting algorithm
The goodness of split criterion based on (6) expresses in different way some equivalent
criteria which are present in most of the tree-growing procedures implemented in
specialized software; such as, for instance, CART (Breiman et al., 1984), ID3 and C4.5
(Quinlan, 1993).
In many situations the computational time required by a recursive partitioning algorithm is
an important issue that can not be neglected. In this respect, a fast algorithm is required to
speed up the procedure. In view of that, it is worth considering a two-stage splitting
criterion which takes into account of the global role played by a splitting predictor in the
partitioning step. A global impurity reduction factor of any predictor xi is defined as:

 () () ()| | |
s

s

y x y g
g G

t t p g tε
∈

Ε = ∑ (7)

where εy|g(t) is the impurity of the conditional distribution of y given the s-th attribute of xs
and G is the number of attributes of xs (g ε G). The two-stage criterion finds the best splitting
predictor(s) as the one (or those) minimizing (7) and, consequently, the best split point
among the candidate splits induced by the best predictor(s) minimizing the (6) by taking
account only the partitions or splits generated by the best predictor. This criterion can be
applied either sic et simpliciter or by considering alternative modelling strategies in the
predictor selection (an overview of the two-stage methodology can be found in Siciliano &
Mola, 2000).
The FAST splitting algorithm (Mola & Siciliano, 1997) can be applied when the following
property holds for the impurity measure:

 () ()| | ;
sy x y ht t h g h GΕ ≤ Ε ∀ ≠ ∈ (8)

and it consists of two basic rules:
• iterate the two-stage partitioning criterion by using (7) and (6): select one splitting

predictor at a time and consider, at each time, the previously unselected splitting
predictors;

Evolutionary Algorithms in Decision Tree Induction

447

• stop the iterations when the current best predictor in the order x(k) at iteration k does
not satisfy the condition ()

()
()*

1
| |k k

y x y ht t
−

Ε ≤ Ε , where s*(k−1) is the best partition at the

iteration (k − 1).
The algorithm finds the optimal split with substantial time savings in terms of the reduced
number of partitions or splits to be tried out at each node of the tree. Simulation studies
show that the relative reduction in the average number of splits analyzed by the FAST
algorithm with respect to the standard approaches in binary trees increases as a function of
both the number of attributes of the splitting predictor and of the number of observations at
a given node. Further theoretical results about the computational efficiency of FAST-like
algorithms can be found in Klaschka et al. (1998).

2.3 Tree pruning
As for the pruning step, it is usually required in DTI in order to control for the size of the
induced model and to avoid in this way data overfitting. Typically, data is partitioned into a
training set (containing two-third of the data) and a test set (with the remaining one-third).
Training set contains labelled observations and it is used for the tree growing. It is assumed
that the test set contains unlabelled observations and it is used for selecting the final
decision tree: to check whether a decision tree, say T, is generalizable, it is necessary to
evaluate its performance on the test set in terms of misclassification error by comparing the
true class labels of the test data against those predicted by T. Reduced-size trees perform
poorly on both training and test sets causing underfitting. Instead, increasing the size of T
improves both the training and test errors up to a “critical size” from which the test errors
increase even though the corresponding training errors decrease. This means that T overfits
the data and cannot be generalized to class prediction of unseen observations. In the
machine learning framework, the training error is named resubstitution error and the test
error is known as the generalization error.
It is possible to prevent overfitting by haltering the tree growing before it becomes too
complex (pre-pruning). In this framework, one can assume the training data is a good
representation of the overall data and use the resubstitution error as an optimistic estimate
of the error of the final DTI model (optimistic approach). Alternatively, Quinlan (1987)
proposed a pessimistic approach that penalizes complicated models by assigning a cost
penalty to each terminal node of the decision tree: for C4.5, the generalization error is
R(t)/nt+ε, where, for a node t, nt is the number of observations and R(t) is the
misclassification error. It is assumed that R(t) follows a Binomial distribution and that ε is
the upper bound for R(t) computed from such a distribution (Quinlan, 1993).
An alternative pruning strategy is based on the growing of the entire tree and the
subsequent retrospective trimming of some of its internal nodes (post-pruning): the subtree
departing from each internal node is replaced with a new terminal node whose class label
derives from the majority class of observations belonging to that subtree. The latter is
definitively replaced by the terminal node if such a replacement induces an improvement of
the generalization error. Pruning stops when no further improvements can be achieved. The
generalization error can be estimated through either the optimistic or pessimistic
approaches.
Other post-pruning algorithms, such as CART, use a complexity measure that accounts for
both the tree size and the generalization error. Once the entire tree is grown using training

 Advances in Evolutionary Algorithms

446

 () ()1
C

iti
t f pε

=
=∑ (5)

where pit is the proportion of those in t that belong to class i for future samples. Since ε(t)=0
when t is pure, f must be concave with f(0)=f(1)=0. Two candidates for f are the information
index f(p) = -p log(p) and the Gini index f(p)= -p(1-p), that slightly differ for the two class
problem where nearly always choose the same split point. Once that f has been chosen, the
split maximizing the impurity reduction is:

 () () () () () ()l l r rp t t p t t p t tε ε ε εΔ = − − (6)

Data partitioning proceeds recursively until a stopping rule is satisfied: this usually happens
when the number of observations in a node is lower than a previously-specified minimum
number necessary for splitting, as well as when the same observations belong to the same
class or have the same response class.

2.2 FAST splitting algorithm
The goodness of split criterion based on (6) expresses in different way some equivalent
criteria which are present in most of the tree-growing procedures implemented in
specialized software; such as, for instance, CART (Breiman et al., 1984), ID3 and C4.5
(Quinlan, 1993).
In many situations the computational time required by a recursive partitioning algorithm is
an important issue that can not be neglected. In this respect, a fast algorithm is required to
speed up the procedure. In view of that, it is worth considering a two-stage splitting
criterion which takes into account of the global role played by a splitting predictor in the
partitioning step. A global impurity reduction factor of any predictor xi is defined as:

 () () ()| | |
s

s

y x y g
g G

t t p g tε
∈

Ε = ∑ (7)

where εy|g(t) is the impurity of the conditional distribution of y given the s-th attribute of xs
and G is the number of attributes of xs (g ε G). The two-stage criterion finds the best splitting
predictor(s) as the one (or those) minimizing (7) and, consequently, the best split point
among the candidate splits induced by the best predictor(s) minimizing the (6) by taking
account only the partitions or splits generated by the best predictor. This criterion can be
applied either sic et simpliciter or by considering alternative modelling strategies in the
predictor selection (an overview of the two-stage methodology can be found in Siciliano &
Mola, 2000).
The FAST splitting algorithm (Mola & Siciliano, 1997) can be applied when the following
property holds for the impurity measure:

 () ()| | ;
sy x y ht t h g h GΕ ≤ Ε ∀ ≠ ∈ (8)

and it consists of two basic rules:
• iterate the two-stage partitioning criterion by using (7) and (6): select one splitting

predictor at a time and consider, at each time, the previously unselected splitting
predictors;

Evolutionary Algorithms in Decision Tree Induction

447

• stop the iterations when the current best predictor in the order x(k) at iteration k does
not satisfy the condition ()

()
()*

1
| |k k

y x y ht t
−

Ε ≤ Ε , where s*(k−1) is the best partition at the

iteration (k − 1).
The algorithm finds the optimal split with substantial time savings in terms of the reduced
number of partitions or splits to be tried out at each node of the tree. Simulation studies
show that the relative reduction in the average number of splits analyzed by the FAST
algorithm with respect to the standard approaches in binary trees increases as a function of
both the number of attributes of the splitting predictor and of the number of observations at
a given node. Further theoretical results about the computational efficiency of FAST-like
algorithms can be found in Klaschka et al. (1998).

2.3 Tree pruning
As for the pruning step, it is usually required in DTI in order to control for the size of the
induced model and to avoid in this way data overfitting. Typically, data is partitioned into a
training set (containing two-third of the data) and a test set (with the remaining one-third).
Training set contains labelled observations and it is used for the tree growing. It is assumed
that the test set contains unlabelled observations and it is used for selecting the final
decision tree: to check whether a decision tree, say T, is generalizable, it is necessary to
evaluate its performance on the test set in terms of misclassification error by comparing the
true class labels of the test data against those predicted by T. Reduced-size trees perform
poorly on both training and test sets causing underfitting. Instead, increasing the size of T
improves both the training and test errors up to a “critical size” from which the test errors
increase even though the corresponding training errors decrease. This means that T overfits
the data and cannot be generalized to class prediction of unseen observations. In the
machine learning framework, the training error is named resubstitution error and the test
error is known as the generalization error.
It is possible to prevent overfitting by haltering the tree growing before it becomes too
complex (pre-pruning). In this framework, one can assume the training data is a good
representation of the overall data and use the resubstitution error as an optimistic estimate
of the error of the final DTI model (optimistic approach). Alternatively, Quinlan (1987)
proposed a pessimistic approach that penalizes complicated models by assigning a cost
penalty to each terminal node of the decision tree: for C4.5, the generalization error is
R(t)/nt+ε, where, for a node t, nt is the number of observations and R(t) is the
misclassification error. It is assumed that R(t) follows a Binomial distribution and that ε is
the upper bound for R(t) computed from such a distribution (Quinlan, 1993).
An alternative pruning strategy is based on the growing of the entire tree and the
subsequent retrospective trimming of some of its internal nodes (post-pruning): the subtree
departing from each internal node is replaced with a new terminal node whose class label
derives from the majority class of observations belonging to that subtree. The latter is
definitively replaced by the terminal node if such a replacement induces an improvement of
the generalization error. Pruning stops when no further improvements can be achieved. The
generalization error can be estimated through either the optimistic or pessimistic
approaches.
Other post-pruning algorithms, such as CART, use a complexity measure that accounts for
both the tree size and the generalization error. Once the entire tree is grown using training

 Advances in Evolutionary Algorithms

448

observations, a penalty parameter expressing the gain/cost trade off for trimming each
subtree is used to generate a sequence of pruned trees, and the tree in the sequence
presenting the lowest generalization error (0-SE rule) or the one with a generalization error
within one standard error of its minimum (1-SE rule) is selected. Let α be a number in
[0,+∞], called complexity parameter, measuring the “cost” of adding another variable to the
model. Let R(T0) be the risk for the zero split tree. Define:

 () ()R T R T Tα α= + (9)

to be the cost for the tree, and define Tα to be that subtree of the entire tree having the
minimal cost. Obviously, T0 is the entire tree and T∞ is the zero splits model. The idea is to
find, for each α, the subtree Tα ⊆ T0 minimizing Rα(T). The tuning parameter α ≥ 0 governs
the trade off between the tree size and its goodness of fit to the data. Large values of α result
in small trees, and conversely for smaller values of α. Of course, with α=0 the solution is the
full tree T0. It is worth noticing that, by adaptively choosing αI, it exists a unique smallest
subtree Tα minimizing Rα(T). A weakest link pruning approach is used to find Tα: it consists
in successively collapsing the internal node producing the smallest per-node increase in
R(T), continuing this way until the single-node (root) tree is produced. This gives a (finite)
sequence of subtrees, and it is easy to show that this sequence must contains Tα (see Breiman
et al (1984) for details).
Usually, pruning algorithms can be combined with V-fold cross-validation when few
observations are available. Training data is divided into V disjoint blocks and a tree is
grown V times on V-1 blocks estimating the error by testing the model on the remaining
block. In this case, the generalization error is the average error made for the V runs. The
estimation of αI is achieved by V-fold cross-validation: the final choice is the α̂ minimizing
the cross-validated R(T) and the final tree is ˆTα .
Cappelli et al. (2002) improved this approach introducing a statistical testing pruning to
achieve the most reliable decision rule from a sequence of pruned trees.

2.4 Regression tree
In the case the response variable is numeric, the outcome of a recursive partitioning
algorithm is regression tree. Here, the splitting criterion is SSt- (SSl - SSr), where SSt is the
residual sum of squares for the parent node, and SSl and SSr are the residual sum of squares
for the left and right son, respectively. This is equivalent to choosing the splits maximizing
the between-groups sum-of-squares in a simple analysis of variance. In each terminal node,
the mean value of the response variable μy of cases belonging to that node is considered as
the fitted value whereas the variance is considered as an indicator of the error of a node. For
a new observation ynew the prediction error is (ynew - μy). In the regression tree case, cost-
complexity pruning is applied with the sum of squares replacing the misclassification error.

2.5 DTI enhancements
A consolidated literature about the incorporation of parametric and nonparametric models
into trees appeared in recent years. Several algorithms have been introduced as hybrid or
functional trees (Gama, 2004), among the machine learning community. As an example, DTI
is used for regression smoothing purposes in Conversano (2002): a novel class of

Evolutionary Algorithms in Decision Tree Induction

449

semiparametric models named Generalized Additive Multi-Mixture Models (GAM-MM).
Other hybrid approaches are presented in Chan and Loh (2004), Su et al. (2004), Choi et al.
(2005) and Hothorn et al. (2006). Nevertheless, relatively simple procedures combining DTI
models in different ways have been proposed in the last decade in the statistics and machine
learning literature and their effectiveness in improving the predictive ability of the
traditional DTI method has been proven in different fields of application.
The first, rather intuitive, approach is Tree Averaging. It is based on the generation of a set
of candidate trees and on their subsequent aggregation in order to improve their
generalization ability. It requires the definition of a suitable set of trees and their associated
weights and classifies a new observation by averaging over the set of weighted trees (Oliver
and Hand, 1995). Either a compromise rule or a consensus rule can be used for averaging.
An alternative method consists in summarizing the information of each tree in a table cross-
classifying terminal nodes outcomes with the response classes in order to assess the
generalization ability through a statistical index and select the tree providing the maximum
value of such index (Siciliano, 1998).
Tree Averaging is very similar to Ensemble methods. These are based on a weighted or non
weighted aggregation of single trees (the so called weak learners) in order to improve the
overall generalization error induced by each single tree. They are more accurate than a
single tree if they have a generalization error that is lower than random guessing and if the
generalization errors of the different trees are uncorrelated (Dietterich, 2000).
A first example of Ensemble method is Bootstrap Aggregating, which is also called Bagging
(Breiman, 1996). It works by randomly replicating the training observations in order to
induce single trees whose aggregation by majority voting provides the final classification.
Bagging is able to improve the performance of unstable classifiers (i.e. trees with high
variance). Thus, bagging is said to be a reduction variance method.
Adaptive Boosting, also called AdaBoost (Freud & Schapire, 1996) is an Ensemble method
that uses iteratively bootstrap replication of the training instances. At each iteration,
previously-misclassified observations receive higher probability of being sampled. The final
classification is obtained by majority voting. Boosting forces the decision tree to learn by its
error, and is able to improve the performance of trees with both high bias (such as single-
split trees) and variance.
Finally, Random Forest (Breiman, 2001) is an ensemble of unpruned trees obtained by
randomly resampling training observations and variables. The overall performance of the
method derives from averaging the generalization errors obtained in each run.
Simultaneously, suitable measures of variables importance are obtained to enrich the
interpretation of the model.

3. Combinatorial optimization
Combinatorial Optimization can be defined as the analysis and solution of problems that
can be mathematically modelled as the minimization (or maximization) of an objective
function over a feasible space involving mutually exclusive, logical constraints. Such logical
constraints can be seen as the arrangement of a bunch of given elements into sets. In a
mathematical form:

 (){ }min
T F

Tα
∈

 or (){ }max
T F

Tα
∈

 (10)

 Advances in Evolutionary Algorithms

448

observations, a penalty parameter expressing the gain/cost trade off for trimming each
subtree is used to generate a sequence of pruned trees, and the tree in the sequence
presenting the lowest generalization error (0-SE rule) or the one with a generalization error
within one standard error of its minimum (1-SE rule) is selected. Let α be a number in
[0,+∞], called complexity parameter, measuring the “cost” of adding another variable to the
model. Let R(T0) be the risk for the zero split tree. Define:

 () ()R T R T Tα α= + (9)

to be the cost for the tree, and define Tα to be that subtree of the entire tree having the
minimal cost. Obviously, T0 is the entire tree and T∞ is the zero splits model. The idea is to
find, for each α, the subtree Tα ⊆ T0 minimizing Rα(T). The tuning parameter α ≥ 0 governs
the trade off between the tree size and its goodness of fit to the data. Large values of α result
in small trees, and conversely for smaller values of α. Of course, with α=0 the solution is the
full tree T0. It is worth noticing that, by adaptively choosing αI, it exists a unique smallest
subtree Tα minimizing Rα(T). A weakest link pruning approach is used to find Tα: it consists
in successively collapsing the internal node producing the smallest per-node increase in
R(T), continuing this way until the single-node (root) tree is produced. This gives a (finite)
sequence of subtrees, and it is easy to show that this sequence must contains Tα (see Breiman
et al (1984) for details).
Usually, pruning algorithms can be combined with V-fold cross-validation when few
observations are available. Training data is divided into V disjoint blocks and a tree is
grown V times on V-1 blocks estimating the error by testing the model on the remaining
block. In this case, the generalization error is the average error made for the V runs. The
estimation of αI is achieved by V-fold cross-validation: the final choice is the α̂ minimizing
the cross-validated R(T) and the final tree is ˆTα .
Cappelli et al. (2002) improved this approach introducing a statistical testing pruning to
achieve the most reliable decision rule from a sequence of pruned trees.

2.4 Regression tree
In the case the response variable is numeric, the outcome of a recursive partitioning
algorithm is regression tree. Here, the splitting criterion is SSt- (SSl - SSr), where SSt is the
residual sum of squares for the parent node, and SSl and SSr are the residual sum of squares
for the left and right son, respectively. This is equivalent to choosing the splits maximizing
the between-groups sum-of-squares in a simple analysis of variance. In each terminal node,
the mean value of the response variable μy of cases belonging to that node is considered as
the fitted value whereas the variance is considered as an indicator of the error of a node. For
a new observation ynew the prediction error is (ynew - μy). In the regression tree case, cost-
complexity pruning is applied with the sum of squares replacing the misclassification error.

2.5 DTI enhancements
A consolidated literature about the incorporation of parametric and nonparametric models
into trees appeared in recent years. Several algorithms have been introduced as hybrid or
functional trees (Gama, 2004), among the machine learning community. As an example, DTI
is used for regression smoothing purposes in Conversano (2002): a novel class of

Evolutionary Algorithms in Decision Tree Induction

449

semiparametric models named Generalized Additive Multi-Mixture Models (GAM-MM).
Other hybrid approaches are presented in Chan and Loh (2004), Su et al. (2004), Choi et al.
(2005) and Hothorn et al. (2006). Nevertheless, relatively simple procedures combining DTI
models in different ways have been proposed in the last decade in the statistics and machine
learning literature and their effectiveness in improving the predictive ability of the
traditional DTI method has been proven in different fields of application.
The first, rather intuitive, approach is Tree Averaging. It is based on the generation of a set
of candidate trees and on their subsequent aggregation in order to improve their
generalization ability. It requires the definition of a suitable set of trees and their associated
weights and classifies a new observation by averaging over the set of weighted trees (Oliver
and Hand, 1995). Either a compromise rule or a consensus rule can be used for averaging.
An alternative method consists in summarizing the information of each tree in a table cross-
classifying terminal nodes outcomes with the response classes in order to assess the
generalization ability through a statistical index and select the tree providing the maximum
value of such index (Siciliano, 1998).
Tree Averaging is very similar to Ensemble methods. These are based on a weighted or non
weighted aggregation of single trees (the so called weak learners) in order to improve the
overall generalization error induced by each single tree. They are more accurate than a
single tree if they have a generalization error that is lower than random guessing and if the
generalization errors of the different trees are uncorrelated (Dietterich, 2000).
A first example of Ensemble method is Bootstrap Aggregating, which is also called Bagging
(Breiman, 1996). It works by randomly replicating the training observations in order to
induce single trees whose aggregation by majority voting provides the final classification.
Bagging is able to improve the performance of unstable classifiers (i.e. trees with high
variance). Thus, bagging is said to be a reduction variance method.
Adaptive Boosting, also called AdaBoost (Freud & Schapire, 1996) is an Ensemble method
that uses iteratively bootstrap replication of the training instances. At each iteration,
previously-misclassified observations receive higher probability of being sampled. The final
classification is obtained by majority voting. Boosting forces the decision tree to learn by its
error, and is able to improve the performance of trees with both high bias (such as single-
split trees) and variance.
Finally, Random Forest (Breiman, 2001) is an ensemble of unpruned trees obtained by
randomly resampling training observations and variables. The overall performance of the
method derives from averaging the generalization errors obtained in each run.
Simultaneously, suitable measures of variables importance are obtained to enrich the
interpretation of the model.

3. Combinatorial optimization
Combinatorial Optimization can be defined as the analysis and solution of problems that
can be mathematically modelled as the minimization (or maximization) of an objective
function over a feasible space involving mutually exclusive, logical constraints. Such logical
constraints can be seen as the arrangement of a bunch of given elements into sets. In a
mathematical form:

 (){ }min
T F

Tα
∈

 or (){ }max
T F

Tα
∈

 (10)

 Advances in Evolutionary Algorithms

450

where T can be seen as an arrangement, F is the collection of feasible arrangements and α(T)
measures the value of the members of F.
Combinatorial Optimization problems are of great interest because many real life decision-
making situations force people to choose over a set of possible alternatives with the aim of
maximizing some utility function. On the one hand, the discreteness of the solutions space
offers the great advantage of concreteness and, indeed, elementary graphs or similar
illustrations can often naturally be used to represent the meaning of a particular solution to
a problem. On the other end, those problems carry a heavy burden in terms of
dimensionality. If more than few choices are to be made, the decision-making process has to
face with the evaluation of a terribly big expanse of cases. This dualism (intuitive simplicity
of presentation of a solution versus complexity of solutions search) has made this area of
combinatorics attractive for researchers from many fields, ranging from engineering to
management sciences.
Elegant procedures to find optimal solutions have been found for some problems, but for
most of them only a bunch of properties and algorithms have been developed that still do
not allow to reach a complete resolution. This is the case of Computational Statistics, in
which computationally-intensive methods are used to “mine“ large, heterogeneous, multi-
dimensional datasets in order to discover knowledge in the data.
To give an example, the objective of Cluster Analysis is to find the “best” partition of the
dataset according to some criterion, which is always expressed as an objective function. This
means that all possible and coherent partitions of the dataset should be generated and the
objective function has to be calculated for each of them. In many cases, the number of
possible partitions grows too rapidly with respect to the number of units, making such
strategy practically unfeasible. Another example is the apparently simple problem of
calculating the variance for interval data, for which the maximum and the minimum of the
variance function have to be searched over the multidimensional cube defined by all the
intervals in which the statistical units are defined.
These are examples of statistical problems that cannot be faced with the total enumeration
and evaluation of the solutions. In order to try to tackle with this kind of problems, a lot of
theory has been developed. One case is when some properties about the objective function
are available. These allow to calculate some kind of upper (or lower) bound that a set of
possible solutions could admit. In this case, the search could be performed just on the set of
possible solutions whose upper bound is higher. If one solution whose effective value is
higher than the bounds of all the other sets is found, it would not be necessary to continue
the search, being all the other subsets not able to provide better solutions. This is the case of
the aforementioned problem of finding the upper bound of variance for interval data,
because it can be verified that the maximum is necessarily reached in one of the vertices of
the multidimensional cube, so that exploring the whole cube is not necessary. Such a
situation allows to restrict the solutions space to a set of 2n possible solutions, where n is the
number of statistical units. Unfortunately, this does not solve the problem because the
solutions space becomes enormous even in presence of small datasets (with just 30 units the
number of solutions to evaluate is greater than one thousand millions).
The FAST algorithm is another example of a partial enumeration approach, in which a
measure of the upper bound of the predictive power of a solutions set is defined and
exploited in order to get the same results of the CART greedy approach by using a reduced
amount of computations.

Evolutionary Algorithms in Decision Tree Induction

451

Another way to proceed is to make use of non exact procedures, often called heuristics.
Those algorithms do not claim to find the global optimum, but are able to converge rapidly
towards a local one. Non exact algorithms (that will be called heuristics in the rest of this
chapter) are certainly not recent. What has changed, in time, is the respectability associated
to them, due to the fact that many heuristics have been proved to rival their counterparts in
elegance, sophistication and, particularly, usefulness. Many heuristics have been proposed
in the literature, but only two kinds of them will be briefly described in this context due to
their role in the problems that will be faced in the next sections. These are: Greedy
procedures and Nature Inspired optimization algorithms. In Greedy procedures the
optimization process selects, at each stage, an alternative that is the best among all the
feasible alternatives without taking into account the impact that such choice will have on the
subsequent decisions. The CART algorithm makes use of a greedy procedure to grow a tree
in which the optimality criterion is maximised just locally, that is, for each node of the tree
but not considering the tree as a whole. This approach clearly results in a suboptimal tree
but allows, at least, to obtain a tree in a reasonable amount of time. Whereas, the so-called
Nature Inspired heuristics, which are also called “Heuristics from Nature” (Colorni et al.,
1993), are Inspired by natural phenomena or behaviour such as Evolution, Ants, Honey-
Bees, Immune systems, Forests, etc. Some important Nature Inspired heuristics are:
Simulated Annealing (SA), TABU Search (TS) algorithms, Ant Colony Optimization (ACO)
and Evolutionary Computation (EC). ACO and EC are described in the following since they
are used throughout the chapter.
Ant Colony Optimization represents a class of algorithms that were inspired by the
observation of real ant colonies. Observation shows that a single ant only applies simple
rules, has no knowledge and it is unable to succeed in anything when it is alone. However,
an ant colony benefits from the coordinated interaction of each ant. Its structured behaviour,
described as a “social life”, leads to a cooperation of independent searches with high
probability of success. ACO were initially proposed by Dorigo (1992) to attack the Traveling
Salesman Problem. A real ant colony is capable of finding the shortest path from a food
source to its nest by using pheromone information: when walking, each ant deposits a
chemical substance called pheromone and follows, in probability, a pheromone trail already
deposited by previous ants. Assuming that each ant has the same speed, the path which
ends up with the maximum quantity of pheromone is the shortest one.
Evolutionary computation (Fogel and Fogel, 1993) incorporates algorithms that are inspired
from evolution principles in nature. The methods of evolutionary computation algorithms
are stochastic and their search methods imitate and model some natural phenomena,
namely:
1. the survival of the fittest
2. genetic inheritance
Evolutionary computing can be applied to problems when it is difficult to apply traditional
methods (e.g., when gradients are not available) or when traditional methods lead to
unsatisfactory solutions like local optima (Fogel, 1997). Evolutionary algorithms work with a
population of potential solutions (i.e. individuals). Each individual is a potential solution to
the problem under consideration and it is encoded into a data structure suitable to the
problem. Each encoded solution is evaluated by an objective function (environment) in
order to measure its fitness. The bias on selecting high-fitness individuals exploits the
acquired fitness information. The individuals will change and evolve to form a new

 Advances in Evolutionary Algorithms

450

where T can be seen as an arrangement, F is the collection of feasible arrangements and α(T)
measures the value of the members of F.
Combinatorial Optimization problems are of great interest because many real life decision-
making situations force people to choose over a set of possible alternatives with the aim of
maximizing some utility function. On the one hand, the discreteness of the solutions space
offers the great advantage of concreteness and, indeed, elementary graphs or similar
illustrations can often naturally be used to represent the meaning of a particular solution to
a problem. On the other end, those problems carry a heavy burden in terms of
dimensionality. If more than few choices are to be made, the decision-making process has to
face with the evaluation of a terribly big expanse of cases. This dualism (intuitive simplicity
of presentation of a solution versus complexity of solutions search) has made this area of
combinatorics attractive for researchers from many fields, ranging from engineering to
management sciences.
Elegant procedures to find optimal solutions have been found for some problems, but for
most of them only a bunch of properties and algorithms have been developed that still do
not allow to reach a complete resolution. This is the case of Computational Statistics, in
which computationally-intensive methods are used to “mine“ large, heterogeneous, multi-
dimensional datasets in order to discover knowledge in the data.
To give an example, the objective of Cluster Analysis is to find the “best” partition of the
dataset according to some criterion, which is always expressed as an objective function. This
means that all possible and coherent partitions of the dataset should be generated and the
objective function has to be calculated for each of them. In many cases, the number of
possible partitions grows too rapidly with respect to the number of units, making such
strategy practically unfeasible. Another example is the apparently simple problem of
calculating the variance for interval data, for which the maximum and the minimum of the
variance function have to be searched over the multidimensional cube defined by all the
intervals in which the statistical units are defined.
These are examples of statistical problems that cannot be faced with the total enumeration
and evaluation of the solutions. In order to try to tackle with this kind of problems, a lot of
theory has been developed. One case is when some properties about the objective function
are available. These allow to calculate some kind of upper (or lower) bound that a set of
possible solutions could admit. In this case, the search could be performed just on the set of
possible solutions whose upper bound is higher. If one solution whose effective value is
higher than the bounds of all the other sets is found, it would not be necessary to continue
the search, being all the other subsets not able to provide better solutions. This is the case of
the aforementioned problem of finding the upper bound of variance for interval data,
because it can be verified that the maximum is necessarily reached in one of the vertices of
the multidimensional cube, so that exploring the whole cube is not necessary. Such a
situation allows to restrict the solutions space to a set of 2n possible solutions, where n is the
number of statistical units. Unfortunately, this does not solve the problem because the
solutions space becomes enormous even in presence of small datasets (with just 30 units the
number of solutions to evaluate is greater than one thousand millions).
The FAST algorithm is another example of a partial enumeration approach, in which a
measure of the upper bound of the predictive power of a solutions set is defined and
exploited in order to get the same results of the CART greedy approach by using a reduced
amount of computations.

Evolutionary Algorithms in Decision Tree Induction

451

Another way to proceed is to make use of non exact procedures, often called heuristics.
Those algorithms do not claim to find the global optimum, but are able to converge rapidly
towards a local one. Non exact algorithms (that will be called heuristics in the rest of this
chapter) are certainly not recent. What has changed, in time, is the respectability associated
to them, due to the fact that many heuristics have been proved to rival their counterparts in
elegance, sophistication and, particularly, usefulness. Many heuristics have been proposed
in the literature, but only two kinds of them will be briefly described in this context due to
their role in the problems that will be faced in the next sections. These are: Greedy
procedures and Nature Inspired optimization algorithms. In Greedy procedures the
optimization process selects, at each stage, an alternative that is the best among all the
feasible alternatives without taking into account the impact that such choice will have on the
subsequent decisions. The CART algorithm makes use of a greedy procedure to grow a tree
in which the optimality criterion is maximised just locally, that is, for each node of the tree
but not considering the tree as a whole. This approach clearly results in a suboptimal tree
but allows, at least, to obtain a tree in a reasonable amount of time. Whereas, the so-called
Nature Inspired heuristics, which are also called “Heuristics from Nature” (Colorni et al.,
1993), are Inspired by natural phenomena or behaviour such as Evolution, Ants, Honey-
Bees, Immune systems, Forests, etc. Some important Nature Inspired heuristics are:
Simulated Annealing (SA), TABU Search (TS) algorithms, Ant Colony Optimization (ACO)
and Evolutionary Computation (EC). ACO and EC are described in the following since they
are used throughout the chapter.
Ant Colony Optimization represents a class of algorithms that were inspired by the
observation of real ant colonies. Observation shows that a single ant only applies simple
rules, has no knowledge and it is unable to succeed in anything when it is alone. However,
an ant colony benefits from the coordinated interaction of each ant. Its structured behaviour,
described as a “social life”, leads to a cooperation of independent searches with high
probability of success. ACO were initially proposed by Dorigo (1992) to attack the Traveling
Salesman Problem. A real ant colony is capable of finding the shortest path from a food
source to its nest by using pheromone information: when walking, each ant deposits a
chemical substance called pheromone and follows, in probability, a pheromone trail already
deposited by previous ants. Assuming that each ant has the same speed, the path which
ends up with the maximum quantity of pheromone is the shortest one.
Evolutionary computation (Fogel and Fogel, 1993) incorporates algorithms that are inspired
from evolution principles in nature. The methods of evolutionary computation algorithms
are stochastic and their search methods imitate and model some natural phenomena,
namely:
1. the survival of the fittest
2. genetic inheritance
Evolutionary computing can be applied to problems when it is difficult to apply traditional
methods (e.g., when gradients are not available) or when traditional methods lead to
unsatisfactory solutions like local optima (Fogel, 1997). Evolutionary algorithms work with a
population of potential solutions (i.e. individuals). Each individual is a potential solution to
the problem under consideration and it is encoded into a data structure suitable to the
problem. Each encoded solution is evaluated by an objective function (environment) in
order to measure its fitness. The bias on selecting high-fitness individuals exploits the
acquired fitness information. The individuals will change and evolve to form a new

 Advances in Evolutionary Algorithms

452

population by applying genetic operators. Genetic operators perturb those individuals in
order to explore the search space. There are two main types of genetic operators: Mutation
and Crossover. Mutation type operators are asexual (unary) operators, which create new
individuals by a small change in a single individual. On the other hand, Crossover type
operators are multi-sexual (multary) operators, which create new individuals by combining
parts from two or more individuals. As soon as a number of generations have evolved, the
process is terminated according to a termination criterion. The best individual in the final
step of the process is then proposed as a (hopefully suboptimal or optimal) solution for the
problem.
Evolutionary computing are further classified into four groups: Genetic Algorithms (GA),
Evolutionary Programming, Evolution Strategies and Genetic Programming. Although there
are many relevant similarities between these evolutionary computing paradigms, profound
differences among them also emerge (Michalewicz, 1996). These differences generally
involve the level in the hierarchy of the evolution being modelled, that is: the chromosome,
the individual or the species. There are also many hybrid methods that combine various
features from two or more of the methods described in this section.
Genetic Algorithms (GAs), that will be used in the follwing, are part of a collection of
stochastic optimization algorithms inspired by the natural genetics and the theory of the
biological evolution. The idea behind genetic algorithms is to simulate the natural evolution
when optimizing a particular objective function. GAs have emerged as practical, robust
optimization and search methods in the last three decades. In the literature, Hollands’
genetic algorithm is called Simple Genetic Algorithm (Vose, 1999). It works with a
population of individuals (chromosomes), which are encoded as binary strings (genes).

4. Genetic algorithms and heuristics in DTI
4.1 Genetic algorithm for complex predictors
The CART methodology looks for the best split by making use of a brute-force
(enumerative) procedure. All the possible splits from all the possible variables are generated
and evaluated. Such a procedure must be performed anytime a node has to be split and can
lead to computational problems when the number of modalities grows.
Let us first consider how a segmentation procedure generates and evaluates all possible
splits. Nominal unordered predictors (Nup) are more complicated to handle than ordered
ones because the number of possible splits that can be generated grows exponentially with
the number of attributes m. The number of possible splits is (2m-1-1). The computational
complexity of a procedure that generates and evaluates all the splits from a nominal
unordered predictor is O(2n). In this respect, it is evident that such enumerative algorithm
becomes prohibitive when the number of attributes is high. This is one of the reasons why
some software do not accept Nups with a number of attributes higher than a certain
threshold (usually between 12 and 15).
One of the possible way to proceed is to make use of a heuristic procedure, like the one
proposed in this section. In order to design a Genetic Algorithm to solve such a
combinatorial problem, it is necessary to identify:
• a meaningful representation (coding) for the candidate solutions (the possible splits)
• a way to generate the initial population
• a fitness function to evaluate any candidate solution

Evolutionary Algorithms in Decision Tree Induction

453

• a set of useful genetic operators that can efficiently recombine and mutate the candidate
solutions

• the values of the parameters used by the GA (population size, genetic operators
parameters values, selective pressure, etc.);

• a stopping rule for the algorithm.
The aforementioned points have been tackled as follows. As for the coding, it has been
chosen the following representation: a solution is coded in a string of bits (chromosomes)
called x, where each bit (gene) is associated to an attribute of the predictor according to the
following rule:

0
1i

if i goes to left
x

if i goes to right
⎧

= ⎨
⎩

 (11)

The choice of the fitness function is straightforward: the split evaluation function of the
standard recursive partitioning algorithm is used (i.e. the maximum decrease in node
impurity). Since the canonical (binary) coding is chosen, the corresponding two parents
single-point crossover and mutation operators and, as a stopping rule can be used. In
addition, a maximum number of iterations is chosen on the basis of empirical investigations.
The rest of the GA features are similar to the classic ones: elitism is used (at each iteration
the best solution is kept in memory) and the initial population is chosen randomly.

4.2 An ACO algorithm for exploratory DTI
When growing a Classification or a Regression Tree, CART first grows the so-called
exploratory tree. Such tree is grown using data of the training set. Then, it is validated by
using the test set or by cross-validation.
In this section, the attention is focused on the exploratory tree-growing procedure. In this
phase, in theory, the best possible tree should be built, which is the tree having the lowest
global impurity measure among all the generable trees. It has been shown (Hyafil and
Rivest, 1976) that constructing the optimal tree is a NP-Complete problem. In other words,
in order to use a polynomial algorithm, it is only possible to get suboptimal trees. For such a
reason, the recursive partitioning algorithms make use of greedy heuristics to reach a
compromise between the tree quality and the computational effort. In particular, most of the
existing methods for DTI use a greedy heuristic, which is based on a top-down recursive
partitioning approach in which, any time, the split that maximizes the one step impurity
decrease is chosen. This kind of greedy approach, that splits the data locally (i.e., in a given
node) and only once for each node, allows to grow a tree in a reasonable amount of time. On
the other hand, this rule is able to generate only a suboptimal tree because anytime a split is
chosen a certain subspace of possible trees is not investigated anymore by the algorithm. If
the optimal tree is included in one of those subspaces there is no chance for the algorithm of
finding it.
Taking these considerations into account, we propose an Ant Colony Optimization
algorithm to try to find best exploratory tree. In order to attack a problem with ACO the
following design task must be performed:
1. Represent the problem in the form of sets of components and transitions or by means of

a weighted graph, on which ants build solutions

 Advances in Evolutionary Algorithms

452

population by applying genetic operators. Genetic operators perturb those individuals in
order to explore the search space. There are two main types of genetic operators: Mutation
and Crossover. Mutation type operators are asexual (unary) operators, which create new
individuals by a small change in a single individual. On the other hand, Crossover type
operators are multi-sexual (multary) operators, which create new individuals by combining
parts from two or more individuals. As soon as a number of generations have evolved, the
process is terminated according to a termination criterion. The best individual in the final
step of the process is then proposed as a (hopefully suboptimal or optimal) solution for the
problem.
Evolutionary computing are further classified into four groups: Genetic Algorithms (GA),
Evolutionary Programming, Evolution Strategies and Genetic Programming. Although there
are many relevant similarities between these evolutionary computing paradigms, profound
differences among them also emerge (Michalewicz, 1996). These differences generally
involve the level in the hierarchy of the evolution being modelled, that is: the chromosome,
the individual or the species. There are also many hybrid methods that combine various
features from two or more of the methods described in this section.
Genetic Algorithms (GAs), that will be used in the follwing, are part of a collection of
stochastic optimization algorithms inspired by the natural genetics and the theory of the
biological evolution. The idea behind genetic algorithms is to simulate the natural evolution
when optimizing a particular objective function. GAs have emerged as practical, robust
optimization and search methods in the last three decades. In the literature, Hollands’
genetic algorithm is called Simple Genetic Algorithm (Vose, 1999). It works with a
population of individuals (chromosomes), which are encoded as binary strings (genes).

4. Genetic algorithms and heuristics in DTI
4.1 Genetic algorithm for complex predictors
The CART methodology looks for the best split by making use of a brute-force
(enumerative) procedure. All the possible splits from all the possible variables are generated
and evaluated. Such a procedure must be performed anytime a node has to be split and can
lead to computational problems when the number of modalities grows.
Let us first consider how a segmentation procedure generates and evaluates all possible
splits. Nominal unordered predictors (Nup) are more complicated to handle than ordered
ones because the number of possible splits that can be generated grows exponentially with
the number of attributes m. The number of possible splits is (2m-1-1). The computational
complexity of a procedure that generates and evaluates all the splits from a nominal
unordered predictor is O(2n). In this respect, it is evident that such enumerative algorithm
becomes prohibitive when the number of attributes is high. This is one of the reasons why
some software do not accept Nups with a number of attributes higher than a certain
threshold (usually between 12 and 15).
One of the possible way to proceed is to make use of a heuristic procedure, like the one
proposed in this section. In order to design a Genetic Algorithm to solve such a
combinatorial problem, it is necessary to identify:
• a meaningful representation (coding) for the candidate solutions (the possible splits)
• a way to generate the initial population
• a fitness function to evaluate any candidate solution

Evolutionary Algorithms in Decision Tree Induction

453

• a set of useful genetic operators that can efficiently recombine and mutate the candidate
solutions

• the values of the parameters used by the GA (population size, genetic operators
parameters values, selective pressure, etc.);

• a stopping rule for the algorithm.
The aforementioned points have been tackled as follows. As for the coding, it has been
chosen the following representation: a solution is coded in a string of bits (chromosomes)
called x, where each bit (gene) is associated to an attribute of the predictor according to the
following rule:

0
1i

if i goes to left
x

if i goes to right
⎧

= ⎨
⎩

 (11)

The choice of the fitness function is straightforward: the split evaluation function of the
standard recursive partitioning algorithm is used (i.e. the maximum decrease in node
impurity). Since the canonical (binary) coding is chosen, the corresponding two parents
single-point crossover and mutation operators and, as a stopping rule can be used. In
addition, a maximum number of iterations is chosen on the basis of empirical investigations.
The rest of the GA features are similar to the classic ones: elitism is used (at each iteration
the best solution is kept in memory) and the initial population is chosen randomly.

4.2 An ACO algorithm for exploratory DTI
When growing a Classification or a Regression Tree, CART first grows the so-called
exploratory tree. Such tree is grown using data of the training set. Then, it is validated by
using the test set or by cross-validation.
In this section, the attention is focused on the exploratory tree-growing procedure. In this
phase, in theory, the best possible tree should be built, which is the tree having the lowest
global impurity measure among all the generable trees. It has been shown (Hyafil and
Rivest, 1976) that constructing the optimal tree is a NP-Complete problem. In other words,
in order to use a polynomial algorithm, it is only possible to get suboptimal trees. For such a
reason, the recursive partitioning algorithms make use of greedy heuristics to reach a
compromise between the tree quality and the computational effort. In particular, most of the
existing methods for DTI use a greedy heuristic, which is based on a top-down recursive
partitioning approach in which, any time, the split that maximizes the one step impurity
decrease is chosen. This kind of greedy approach, that splits the data locally (i.e., in a given
node) and only once for each node, allows to grow a tree in a reasonable amount of time. On
the other hand, this rule is able to generate only a suboptimal tree because anytime a split is
chosen a certain subspace of possible trees is not investigated anymore by the algorithm. If
the optimal tree is included in one of those subspaces there is no chance for the algorithm of
finding it.
Taking these considerations into account, we propose an Ant Colony Optimization
algorithm to try to find best exploratory tree. In order to attack a problem with ACO the
following design task must be performed:
1. Represent the problem in the form of sets of components and transitions or by means of

a weighted graph, on which ants build solutions

 Advances in Evolutionary Algorithms

454

2. Appropriately define the meaning of the pheromone trails: that is, the type of decision
they bias.

3. Appropriately define the heuristic reference for each decision an ant has to take while
constructing a solution.

4. If possible, implement an efficient local search algorithm for the problem to be solved.
The best results from the application of the ACO algorithms to NP-hard combinatorial
optimization problems are achieved by coupling ACO with local optimizers (Dorigo
and Stutzle, 2004)

5. Choose a specific ACO algorithm and apply it to the problem to be solved, taking the
previous issues into account

6. Tune the parameters of the ACO algorithm. A good starting point is to use parameter
settings that were found to be good when applying the same ACO algorithm to similar
problems or to a variety of other problems

The most complex task is probably the first one, in which a way to represent the problem in
the form of a weighted graph must be found. We use a representation based on the
following idea: let us imagine having two nominal predictors P1 = {a1, b1, c1} and P2 = {a2, b2}
with, respectively, two and three attributes. Such simple predictors are considered only to
explain the idea, because of the combinatorial explosion of the phenomenon. In this case, the
set of all possible splits, at a root node, is the following:
• S1 = [a1] − [b1, c1]
• S2 = [a1, b1] − [c1]
• S3 = [a1, c1] − [b1]
• S4 = [a2] − [b2]
Any time a split is chosen, it generates two child nodes. For such nodes, the set of possible
splits is, in the worst case, equal to 3 (the same as the parent node except the one that was
chosen for splitting). This consideration leads to the representation shown in Figure 1 in
which, for simplicity, only the first two levels of the possible trees are considered.
It is easy to imagine how the complexity grows when we deal with predictors that generate
hundreds or even thousands of splits (which is a common case).
In Figure 1, the space of all possible trees is represented by a connected graph. Moving from
a level to another one corresponds to split a variable. The arcs of such a graph have the same
meaning of the arcs of the TSP graph (transition from a state to another one or, even better,
addition of a component to a partial solution). In this view, it would be correct to deposit
pheromone on them. The pheromone trails meaning, in this case, corresponds to the
desirability to choose the corresponding split from a certain node.
As for the heuristic information, it is possible to refer to the decrease in impurity deriving
from adding the corresponding node to the tree. Such a measure has a meaning which is
similar, in some way, to the one that visibility has in the TSP . An arc is much more desirable
as higher the impurity decrease is. As a result, to make analogies with the TSP, such
impurity decrease can be seen as an inverse measure of the distance between two nodes.
Once the construction graph has been built, and pheromone trails meaning and heuristic
function have been defined, it is possible to attack that problem using an ACO algorithm. It
is important to note that, because of the specificity of the problem to be modelled (ants can
move into a connected graph and there is a measure of “visibility”), the search of the best
tree can be seen as a shortest path research, like in TSP. In the latter, ants are forced to pass
only one time for each city while, in our case, ants are forced to choose paths that

Evolutionary Algorithms in Decision Tree Induction

455

correspond to binary trees, since the solutions to build must be in the form of tree structures.
All the ants will start from the root node and will be forced to move from one node to
another in order to build a tour that corresponds to a tree.

Fig. 1. An example of ACO algorithm for exploratory DTI: each path corresponds to a 2-
levels tree.

It is important to notice the basics of the ant moves in the graph shown in Figure 1. At each
step, the ant looks for the heuristic information (impurity decrease) and the pheromone trail
of any possible direction and decides for the one to choose (and, therefore, the associated
split) on the basis of the selected ACO algorithm. Once the ant arrives to a terminal node, it
recursively starts to move back to the other unexplored nodes.
In different ACO algorithms, pheromone trails are initialized to a value obtained by
manipulating the quality measure (the path’s length for the TSP case) of a solution obtained
with another heuristic (Dorigo suggests the nearest-neighbour heuristic). In our case, the
greedy tree induction rule solution quality is used. Elitism will also be implemented and the
chosen parameters (due to the strong similarity with TSP) are the same that have been used
successfully for the TSP problem.

4.3 Identification of a parsimonious set of decision trees in multi-class classification
In many situations, the response variable used in classification tree modelling rarely
presents a number of attributes that allow to apply the recursive partitioning algorithm in
the most accurate manner.
It is well known that:
a) a multi-class response, namely a nominal variables with several classes, usually causes

prediction inaccuracy;

 Advances in Evolutionary Algorithms

454

2. Appropriately define the meaning of the pheromone trails: that is, the type of decision
they bias.

3. Appropriately define the heuristic reference for each decision an ant has to take while
constructing a solution.

4. If possible, implement an efficient local search algorithm for the problem to be solved.
The best results from the application of the ACO algorithms to NP-hard combinatorial
optimization problems are achieved by coupling ACO with local optimizers (Dorigo
and Stutzle, 2004)

5. Choose a specific ACO algorithm and apply it to the problem to be solved, taking the
previous issues into account

6. Tune the parameters of the ACO algorithm. A good starting point is to use parameter
settings that were found to be good when applying the same ACO algorithm to similar
problems or to a variety of other problems

The most complex task is probably the first one, in which a way to represent the problem in
the form of a weighted graph must be found. We use a representation based on the
following idea: let us imagine having two nominal predictors P1 = {a1, b1, c1} and P2 = {a2, b2}
with, respectively, two and three attributes. Such simple predictors are considered only to
explain the idea, because of the combinatorial explosion of the phenomenon. In this case, the
set of all possible splits, at a root node, is the following:
• S1 = [a1] − [b1, c1]
• S2 = [a1, b1] − [c1]
• S3 = [a1, c1] − [b1]
• S4 = [a2] − [b2]
Any time a split is chosen, it generates two child nodes. For such nodes, the set of possible
splits is, in the worst case, equal to 3 (the same as the parent node except the one that was
chosen for splitting). This consideration leads to the representation shown in Figure 1 in
which, for simplicity, only the first two levels of the possible trees are considered.
It is easy to imagine how the complexity grows when we deal with predictors that generate
hundreds or even thousands of splits (which is a common case).
In Figure 1, the space of all possible trees is represented by a connected graph. Moving from
a level to another one corresponds to split a variable. The arcs of such a graph have the same
meaning of the arcs of the TSP graph (transition from a state to another one or, even better,
addition of a component to a partial solution). In this view, it would be correct to deposit
pheromone on them. The pheromone trails meaning, in this case, corresponds to the
desirability to choose the corresponding split from a certain node.
As for the heuristic information, it is possible to refer to the decrease in impurity deriving
from adding the corresponding node to the tree. Such a measure has a meaning which is
similar, in some way, to the one that visibility has in the TSP . An arc is much more desirable
as higher the impurity decrease is. As a result, to make analogies with the TSP, such
impurity decrease can be seen as an inverse measure of the distance between two nodes.
Once the construction graph has been built, and pheromone trails meaning and heuristic
function have been defined, it is possible to attack that problem using an ACO algorithm. It
is important to note that, because of the specificity of the problem to be modelled (ants can
move into a connected graph and there is a measure of “visibility”), the search of the best
tree can be seen as a shortest path research, like in TSP. In the latter, ants are forced to pass
only one time for each city while, in our case, ants are forced to choose paths that

Evolutionary Algorithms in Decision Tree Induction

455

correspond to binary trees, since the solutions to build must be in the form of tree structures.
All the ants will start from the root node and will be forced to move from one node to
another in order to build a tour that corresponds to a tree.

Fig. 1. An example of ACO algorithm for exploratory DTI: each path corresponds to a 2-
levels tree.

It is important to notice the basics of the ant moves in the graph shown in Figure 1. At each
step, the ant looks for the heuristic information (impurity decrease) and the pheromone trail
of any possible direction and decides for the one to choose (and, therefore, the associated
split) on the basis of the selected ACO algorithm. Once the ant arrives to a terminal node, it
recursively starts to move back to the other unexplored nodes.
In different ACO algorithms, pheromone trails are initialized to a value obtained by
manipulating the quality measure (the path’s length for the TSP case) of a solution obtained
with another heuristic (Dorigo suggests the nearest-neighbour heuristic). In our case, the
greedy tree induction rule solution quality is used. Elitism will also be implemented and the
chosen parameters (due to the strong similarity with TSP) are the same that have been used
successfully for the TSP problem.

4.3 Identification of a parsimonious set of decision trees in multi-class classification
In many situations, the response variable used in classification tree modelling rarely
presents a number of attributes that allow to apply the recursive partitioning algorithm in
the most accurate manner.
It is well known that:
a) a multi-class response, namely a nominal variables with several classes, usually causes

prediction inaccuracy;

 Advances in Evolutionary Algorithms

456

b) multi-class and numeric predictors play often the role of splitting variables in the tree
growing process in disadvantage of two-classes ones, causing selection bias.

To account for the problems deriving from the prediction inaccuracy of tree-based classifiers
grown for multi-class response, as well as to reduce the drawback of the loss of
interpretability induced by ensemble methods in these situations, Mola and Conversano
(2008) introduced an algorithm based on a Sequential Automatic Search of a Subset of Classifiers
(SASSC). It produces a partition of the set of the response classes into a reduced number of
disjoint subgroups and introduces a parameter in the final classification model that
improves its prediction accuracy, since it allows to assign each new observation to the most
appropriate classifier in a previously-identified reduced set of classifiers. It uses a data-
driven heuristic based on cross-validated classification trees as a tool to induce the set of
classifiers in the final classification model.
SASSC produces a partition of the set of the response classes into a reduced number of
super-classes. It is applicable to a dataset X composed of N observations characterized by a
set of J (numeric or nominal) splitting variables xj (j=1,…..,J) and a response variable y
presenting K classes. Such response classes identify the initial set of classes C(0) =(c1,c2,….,cK).
Partitioning X with respect to C(0) allows to identify K disjoint subsets X(0)k, such that: X(0)k =
{xs : ys ∈ ck}, with s=1,…..,N. In practice, X(0)k is the set of observations presenting the k-th
class of y. The algorithms works by aggregating the K classes in pairs and learns a classifier
to each subset of corresponding observations. The “best” aggregation (super-class) is chosen
as the one minimizing the generalization error estimated using V-fold cross-validation.
Suppose that, in the -th iteration of the algorithm such a best aggregation is found for the
pair of classes ci* and cj* (with i*≠ j and i*, j* ∈ (1,….,K)) that allows to aggregate the subsets
Xi* and Xj*. Denoting with T(i*,j*) the decision tree minimizing the cross-validated
generalization error δ()cv, the heuristic for selecting the “best” decision tree can be formalized
as follows:

 () ()
()(){ },

(,)
*, * arg min |cv i ji j

i j
i j Tδ= ∩X X (12)

The SACCS algorithm is analytically described in Table 1. It proceeds by learning all the
possible decision trees obtainable by joining in pairs the K subgroups, and by retaining the
one satisfying the selection criteria introduced in (12). After the -th aggregation, the

number of subgroups is reduced to K(-1) - 1, since the subgroups of observations presenting
the response classes ci* and cj* are discarded from the original partition and replaced by the
subset X()(i*,j*) = X(i*) ∩ X(j*) identified by the super-class c() = (c(i*) ∩ c(j*)). The initial set of

classes C is replaced by C(), the latter being composed of a reduced number of classes since

some of the original classes form the superclasses coming out from the aggregations.

Likewise, also X()k is formed by a lower number of subsets as a consequence of the
aggregations.
The algorithm proceeds sequentially in the iteration +1 by searching for the most accurate

decision tree over all the possible ones obtainable by joining in pairs the K() subgroups. The
sequential search is repeated until the number of subgroups reduces to one in the K-th

Evolutionary Algorithms in Decision Tree Induction

457

iteration. The decision tree learned on the last subgroup corresponds to the one obtainable
applying the recursive partitioning algorithm on the original dataset.
The output of the procedure is a sequence of sets of response classes C(1),….,C(K−1) with the
associated sets of decision trees T(1) ,…..,T(K−1). The latter are derived by learning K − k trees
(k = 1, ….., K − 1) on disjoint subgroups of observations whose response classes complete the
initial set of classes C(0): these response classes identify the super-classes relating to the sets
of classifiers T(k). An overall generalization error is associated to each T(k): such an error is
also based on V-fold cross-validation and it is computed as a weighted average of the
generalization errors obtained from each of the K − k decision trees composing the set. In
accordance to the previously introduced notation, the overall generalization errors can be
denoted as Θ(1)cv, ……, Θ(k)cv,……., Θ(K-1)cv . Of course, by decreasing the number of trees
composing a sequence T(k) (that is, when moving k from 1 to K−1) the corresponding Θ(k)cv
increases since the number of super-classes associated to T(k) is also decreasing. This means
that a lower number of trees are learned on more heterogeneous subsets of observations,
since each of those subsets pertain to a relatively large number of response classes.

{ } ()
() () () { }

() { } ()
()()

() ()

()
()

(){ }
() { } ()

()

1 ; ; , 1, ,

00 0
1, , ; 1, ,

* * * **, *

1

1 2 1

1, , 1

1

, ,

; ; :

1

: | min

1

, ,

:

,

i j
K c c i j i j K

s s kk s N k K

i j cv i ji j

K

s s kk k K

C c c

C C K K y c

K

c c c T

K K

C c c c

y c

C

θ

∩ =∅ ≠ ∈

= =

−

− +

= −

=

= = = ∈

= ∩ ∩ =

= −

= =

= ∈

Input:

Set: X x

For: in to

X X

X x

end For

Output:

�

�

…

… …

� �

� �

� �

�
…

…

�

…

… ()
() ()

() ()1 1 1
1 1, ; , , ; , ,K K

cv cvKC T T− −
− Θ Θ … …

Table 1. The SASSC algorithm

Taking this inverse relationship into account, the analyst can be aware of the overall
prediction accuracy of the final model on the basis of the relative increase in Θ(k)cv when
moving from 1 to K−1. In this respect, he can select the suitable number of decision trees to
be included in the final classification model accordingly. Supposing that a final subset of g
decision trees has been selected (g<<K−1), the estimated classification model can be
represented as:

 () ()()
1

, 1
1 1

ˆ ˆ ˆ , ,
i

i

i

Mg

i k i p m
i m

f c I x x Rψ
−

= =

= ∈∑∑x … (13)

The parameter ψ is called “vehicle parameter”. It allows to assign a new observation to the
most suitable decision tree in the subset g. It is defined by a set of g−1 dummy variables.
Each of them equals 1 if the object belongs to the i-th decision tree (i = 1,…, g−1) and zero
otherwise. The Mi regions, corresponding to the number of terminal nodes of the decision

 Advances in Evolutionary Algorithms

456

b) multi-class and numeric predictors play often the role of splitting variables in the tree
growing process in disadvantage of two-classes ones, causing selection bias.

To account for the problems deriving from the prediction inaccuracy of tree-based classifiers
grown for multi-class response, as well as to reduce the drawback of the loss of
interpretability induced by ensemble methods in these situations, Mola and Conversano
(2008) introduced an algorithm based on a Sequential Automatic Search of a Subset of Classifiers
(SASSC). It produces a partition of the set of the response classes into a reduced number of
disjoint subgroups and introduces a parameter in the final classification model that
improves its prediction accuracy, since it allows to assign each new observation to the most
appropriate classifier in a previously-identified reduced set of classifiers. It uses a data-
driven heuristic based on cross-validated classification trees as a tool to induce the set of
classifiers in the final classification model.
SASSC produces a partition of the set of the response classes into a reduced number of
super-classes. It is applicable to a dataset X composed of N observations characterized by a
set of J (numeric or nominal) splitting variables xj (j=1,…..,J) and a response variable y
presenting K classes. Such response classes identify the initial set of classes C(0) =(c1,c2,….,cK).
Partitioning X with respect to C(0) allows to identify K disjoint subsets X(0)k, such that: X(0)k =
{xs : ys ∈ ck}, with s=1,…..,N. In practice, X(0)k is the set of observations presenting the k-th
class of y. The algorithms works by aggregating the K classes in pairs and learns a classifier
to each subset of corresponding observations. The “best” aggregation (super-class) is chosen
as the one minimizing the generalization error estimated using V-fold cross-validation.
Suppose that, in the -th iteration of the algorithm such a best aggregation is found for the
pair of classes ci* and cj* (with i*≠ j and i*, j* ∈ (1,….,K)) that allows to aggregate the subsets
Xi* and Xj*. Denoting with T(i*,j*) the decision tree minimizing the cross-validated
generalization error δ()cv, the heuristic for selecting the “best” decision tree can be formalized
as follows:

 () ()
()(){ },

(,)
*, * arg min |cv i ji j

i j
i j Tδ= ∩X X (12)

The SACCS algorithm is analytically described in Table 1. It proceeds by learning all the
possible decision trees obtainable by joining in pairs the K subgroups, and by retaining the
one satisfying the selection criteria introduced in (12). After the -th aggregation, the

number of subgroups is reduced to K(-1) - 1, since the subgroups of observations presenting
the response classes ci* and cj* are discarded from the original partition and replaced by the
subset X()(i*,j*) = X(i*) ∩ X(j*) identified by the super-class c() = (c(i*) ∩ c(j*)). The initial set of

classes C is replaced by C(), the latter being composed of a reduced number of classes since

some of the original classes form the superclasses coming out from the aggregations.

Likewise, also X()k is formed by a lower number of subsets as a consequence of the
aggregations.
The algorithm proceeds sequentially in the iteration +1 by searching for the most accurate

decision tree over all the possible ones obtainable by joining in pairs the K() subgroups. The
sequential search is repeated until the number of subgroups reduces to one in the K-th

Evolutionary Algorithms in Decision Tree Induction

457

iteration. The decision tree learned on the last subgroup corresponds to the one obtainable
applying the recursive partitioning algorithm on the original dataset.
The output of the procedure is a sequence of sets of response classes C(1),….,C(K−1) with the
associated sets of decision trees T(1) ,…..,T(K−1). The latter are derived by learning K − k trees
(k = 1, ….., K − 1) on disjoint subgroups of observations whose response classes complete the
initial set of classes C(0): these response classes identify the super-classes relating to the sets
of classifiers T(k). An overall generalization error is associated to each T(k): such an error is
also based on V-fold cross-validation and it is computed as a weighted average of the
generalization errors obtained from each of the K − k decision trees composing the set. In
accordance to the previously introduced notation, the overall generalization errors can be
denoted as Θ(1)cv, ……, Θ(k)cv,……., Θ(K-1)cv . Of course, by decreasing the number of trees
composing a sequence T(k) (that is, when moving k from 1 to K−1) the corresponding Θ(k)cv
increases since the number of super-classes associated to T(k) is also decreasing. This means
that a lower number of trees are learned on more heterogeneous subsets of observations,
since each of those subsets pertain to a relatively large number of response classes.

{ } ()
() () () { }

() { } ()
()()

() ()

()
()

(){ }
() { } ()

()

1 ; ; , 1, ,

00 0
1, , ; 1, ,

* * * **, *

1

1 2 1

1, , 1

1

, ,

; ; :

1

: | min

1

, ,

:

,

i j
K c c i j i j K

s s kk s N k K

i j cv i ji j

K

s s kk k K

C c c

C C K K y c

K

c c c T

K K

C c c c

y c

C

θ

∩ =∅ ≠ ∈

= =

−

− +

= −

=

= = = ∈

= ∩ ∩ =

= −

= =

= ∈

Input:

Set: X x

For: in to

X X

X x

end For

Output:

�

�

…

… …

� �

� �

� �

�
…

…

�

…

… ()
() ()

() ()1 1 1
1 1, ; , , ; , ,K K

cv cvKC T T− −
− Θ Θ … …

Table 1. The SASSC algorithm

Taking this inverse relationship into account, the analyst can be aware of the overall
prediction accuracy of the final model on the basis of the relative increase in Θ(k)cv when
moving from 1 to K−1. In this respect, he can select the suitable number of decision trees to
be included in the final classification model accordingly. Supposing that a final subset of g
decision trees has been selected (g<<K−1), the estimated classification model can be
represented as:

 () ()()
1

, 1
1 1

ˆ ˆ ˆ , ,
i

i

i

Mg

i k i p m
i m

f c I x x Rψ
−

= =

= ∈∑∑x … (13)

The parameter ψ is called “vehicle parameter”. It allows to assign a new observation to the
most suitable decision tree in the subset g. It is defined by a set of g−1 dummy variables.
Each of them equals 1 if the object belongs to the i-th decision tree (i = 1,…, g−1) and zero
otherwise. The Mi regions, corresponding to the number of terminal nodes of the decision

 Advances in Evolutionary Algorithms

458

tree i, are created by splits on predictors (x1,….,xp). The classification tree i assigns a new
observation to the class ,ˆk ic of y according to the region

imR . I is an indicator function with

value 1 if an observation belongs to
imR and value 0 if not.

imR is defined by the inputs

used in the splits leading to that terminal node. The modal class of the observations in a
region

imR (also called the m-th terminal node of the i-th decision tree) is usually taken as an

estimate for ,ˆk ic . This notation is consistent with that used in Hastie et al. (2001).
The estimation of τi is based on the prediction accuracy of each decision tree in the final
subset g. A new observation is slipped into each of the g trees. The assigned class ,ˆk ic is
found with respect to the tree whose terminal node better classifies the new observation. In
other words, a new observation is assigned to the purest terminal node among all the g
decision trees.
Another option of the algorithm is the possibility to learn decision trees to select the suitable
pair of response classes satisfying (12) using alternative splitting criteria. As for CART, it is
possible to refer to both the Gini index and Twoing as alternative splitting rules. It is known
that, unlike Gini rule, Twoing searches for the two classes that make up together more than
50% of the data and allows us to build more balanced trees even if the resulting recursive
partitioning algorithm works slower. As an example, if the total number of classes is equal
to K, Twoing uses 2K−1 possible splits. Since it has been proved (Breiman et al., 1984, pag.95)
that the decision tree is insensitive to the choice of the splitting rule, it can be interesting to
see how it works in a framework characterized by the search of the most accurate decision
treers like the one introduced in SASSC.

5. Application on real and simulated datasets
Genetic Algorithm. The proposed GA has been applied on two datasets for which the
optimal best split could be calculated and for a more complex one, for which it is not
possible to proceed with such a brute force strategy.
The first test has been done on the “Mushroom” dataset, available from the UCI Machine
Learning Repository (source http://archive.ics.uci.edu/ml/). This dataset has a two-class
response variable (“is the mushroom poisonous?”) and set of categorical and numerical
predictors. One of them (gill colour) has 12 categories (attributes), which can be evaluated
exhaustively. The GA algorithm could find the global best solution (which was extracted by
using the Rpart package of the R software) in less than 10 iterations. The algorithm has then
been tested on a simulated dataset which was obtained by uniformly generating a response
variable with 26 modalities and a nominal unordered predictor with 16 modalities for 20,000
observations. By letting be 16 the number of modalities of the splitting predictor it was
possible, also in this case, to find the (global) best split by making use of the exhaustive
enumeration. Such experimental studies showed that the most efficient configuration of the
GA was the following:
• By randomly selecting the initial population (no other solutions have been tried, in fact).
• By setting the number of solutions building the population to be equal to the number of

necessary genes (the number of categories of the predictor).
• By setting a crossover proportion of 0.80.
• By setting a mutation probability equal to 0.10.
• By selecting the rank for choosing the solutions to be recombined.

Evolutionary Algorithms in Decision Tree Induction

459

For this kind of problem (20,000 units, 16 categories for the response variable and 26
categories for the splitting predictor) the global optimum was reached in less than 30
iterations.
When the complexity of the problem grows many iterations seems to be required, though
such number never appeared to grow exponentially.
The GA has been tested also on the “Adult” dataset available from the UCI Machine
Learning website. This dataset has been extracted from the US Census Bureau Database
(source: http://www.census.gov/) with the aim of predicting whether a person earns more
than 50,000 dollars per year. Such dataset has 325,614 observations and some categorical
unordered splitting predictors with many attributes. In particular, the native-country
predictor has 42 attributes.

State Goes to State Goes to
United-States Left Cuba Left
Jamaica Right India Left
Unknown Country Left Mexico Right
South Left Puerto-Rico Right
Honduras Right England Left
Canada Left Germany Left
Iran Left Philippines Left
Italy Left Poland Left
Columbia Right Cambodia Left
Thailand Left Ecuador Right
Laos Right Taiwan Left
Haiti Right Portugal Right
Dominican-Republic Right El-Salvador Right
France Left Guatemala Right
China Left Japan Left
Yugoslavia Left Peru Right
Outlying-US Right Scotland Left
Trinadad-Tobago Right Greece Left
Nicaragua Right Vietnam Right
Hong Left Ireland Left
Hungary Left Holland-Netherlands Right

Table 2. The split provided by the GA for the native-country in the Adult dataset

The GA has been run with the aim of trying to find a good split by making use of the native-
country splitting predictor that both R and SPSS, for instance, refused to process. As
previously mentioned, 30 iterations seemed to be not enough because, in many runs of the
algorithm, the “probably best” solution appeared after iteration 80. The solution provided
by the algorithm is shown in Table 2. It gives an idea of the complexity of the problem.
The corresponding decrease in the node impurity is 0.3628465. The algorithm has been
tested over many simulated dataset and the number of required iterations for the algorithm
to reach convergence has been shown to linearly grow as a function of the number of
attributes of the splitting predictor (the number of observations in the dataset appeared to
be uninfluential).

 Advances in Evolutionary Algorithms

458

tree i, are created by splits on predictors (x1,….,xp). The classification tree i assigns a new
observation to the class ,ˆk ic of y according to the region

imR . I is an indicator function with

value 1 if an observation belongs to
imR and value 0 if not.

imR is defined by the inputs

used in the splits leading to that terminal node. The modal class of the observations in a
region

imR (also called the m-th terminal node of the i-th decision tree) is usually taken as an

estimate for ,ˆk ic . This notation is consistent with that used in Hastie et al. (2001).
The estimation of τi is based on the prediction accuracy of each decision tree in the final
subset g. A new observation is slipped into each of the g trees. The assigned class ,ˆk ic is
found with respect to the tree whose terminal node better classifies the new observation. In
other words, a new observation is assigned to the purest terminal node among all the g
decision trees.
Another option of the algorithm is the possibility to learn decision trees to select the suitable
pair of response classes satisfying (12) using alternative splitting criteria. As for CART, it is
possible to refer to both the Gini index and Twoing as alternative splitting rules. It is known
that, unlike Gini rule, Twoing searches for the two classes that make up together more than
50% of the data and allows us to build more balanced trees even if the resulting recursive
partitioning algorithm works slower. As an example, if the total number of classes is equal
to K, Twoing uses 2K−1 possible splits. Since it has been proved (Breiman et al., 1984, pag.95)
that the decision tree is insensitive to the choice of the splitting rule, it can be interesting to
see how it works in a framework characterized by the search of the most accurate decision
treers like the one introduced in SASSC.

5. Application on real and simulated datasets
Genetic Algorithm. The proposed GA has been applied on two datasets for which the
optimal best split could be calculated and for a more complex one, for which it is not
possible to proceed with such a brute force strategy.
The first test has been done on the “Mushroom” dataset, available from the UCI Machine
Learning Repository (source http://archive.ics.uci.edu/ml/). This dataset has a two-class
response variable (“is the mushroom poisonous?”) and set of categorical and numerical
predictors. One of them (gill colour) has 12 categories (attributes), which can be evaluated
exhaustively. The GA algorithm could find the global best solution (which was extracted by
using the Rpart package of the R software) in less than 10 iterations. The algorithm has then
been tested on a simulated dataset which was obtained by uniformly generating a response
variable with 26 modalities and a nominal unordered predictor with 16 modalities for 20,000
observations. By letting be 16 the number of modalities of the splitting predictor it was
possible, also in this case, to find the (global) best split by making use of the exhaustive
enumeration. Such experimental studies showed that the most efficient configuration of the
GA was the following:
• By randomly selecting the initial population (no other solutions have been tried, in fact).
• By setting the number of solutions building the population to be equal to the number of

necessary genes (the number of categories of the predictor).
• By setting a crossover proportion of 0.80.
• By setting a mutation probability equal to 0.10.
• By selecting the rank for choosing the solutions to be recombined.

Evolutionary Algorithms in Decision Tree Induction

459

For this kind of problem (20,000 units, 16 categories for the response variable and 26
categories for the splitting predictor) the global optimum was reached in less than 30
iterations.
When the complexity of the problem grows many iterations seems to be required, though
such number never appeared to grow exponentially.
The GA has been tested also on the “Adult” dataset available from the UCI Machine
Learning website. This dataset has been extracted from the US Census Bureau Database
(source: http://www.census.gov/) with the aim of predicting whether a person earns more
than 50,000 dollars per year. Such dataset has 325,614 observations and some categorical
unordered splitting predictors with many attributes. In particular, the native-country
predictor has 42 attributes.

State Goes to State Goes to
United-States Left Cuba Left
Jamaica Right India Left
Unknown Country Left Mexico Right
South Left Puerto-Rico Right
Honduras Right England Left
Canada Left Germany Left
Iran Left Philippines Left
Italy Left Poland Left
Columbia Right Cambodia Left
Thailand Left Ecuador Right
Laos Right Taiwan Left
Haiti Right Portugal Right
Dominican-Republic Right El-Salvador Right
France Left Guatemala Right
China Left Japan Left
Yugoslavia Left Peru Right
Outlying-US Right Scotland Left
Trinadad-Tobago Right Greece Left
Nicaragua Right Vietnam Right
Hong Left Ireland Left
Hungary Left Holland-Netherlands Right

Table 2. The split provided by the GA for the native-country in the Adult dataset

The GA has been run with the aim of trying to find a good split by making use of the native-
country splitting predictor that both R and SPSS, for instance, refused to process. As
previously mentioned, 30 iterations seemed to be not enough because, in many runs of the
algorithm, the “probably best” solution appeared after iteration 80. The solution provided
by the algorithm is shown in Table 2. It gives an idea of the complexity of the problem.
The corresponding decrease in the node impurity is 0.3628465. The algorithm has been
tested over many simulated dataset and the number of required iterations for the algorithm
to reach convergence has been shown to linearly grow as a function of the number of
attributes of the splitting predictor (the number of observations in the dataset appeared to
be uninfluential).

 Advances in Evolutionary Algorithms

460

Ant System. The strong complexity of the decision tree growing procedure (Hyafil & Rivest,
1976) does not allow to exhaustively enumerate and evaluate all the possible generable
trees, even from very small datasets. In this respect, it is not possible to check whether the
chosen heuristic is able to find the global optimum (in the same manner as it has been
previously done for the genetic algorithm).
In the first experiment the algorithm has been tested on a simulated dataset of 500
observations with 11 nominal unordered predictors (with a number of attributes that ranges
between 2 and 9) and 2 numeric (continuous) predictors. It could be seen that, when the
required tree depth increases, the differences between the global impurity of the tree
obtained by the CART greedy heuristic and the one obtained by the Ant System tend to
increase. Table 3 reports such results.

Tree Depth CART Ant System
4 0.158119 0.153846
5 0.147435 0.121794
6 0.100427 0.085477
7 0.079059 0.059829
8 0.044871 0.029911

Table 3.Global impurity of the decision trees extracted by the proposed algorithm on a
simulated dataset

Figure 2 shows the result obtained on the “Credit” dataset that can be found in the SPAD
software (source: www.spadsoft.com). This dataset has 468 observations on which 11
nominal variables have been observed together with a two-class response variable. The aim
would be to predict such response variable (“is a customer good or bad?).
The first decision tree is the one found by the CART heuristic and the second one has been
extracted after 200 iterations of the Ant System algorithm.
Table 4 shows the global impurity of the trees extracted by the CART and Ant heuristics.

Fig. 2. Decision Trees for the Credit dataset obtained using the CART heuristic (left panel)
and after 200 iterations of the Ant System algorithm (right panel).

The algorithms presented here are in an early stage of development. In these examples, an
Ant System has been proposed to attack the problem of finding the best exploratory
decision tree and it came out that the Ant System-based decision trees performed better than
the ones found by the CART greedy heuristic. Even if the improvements weren’t too large

Evolutionary Algorithms in Decision Tree Induction

461

(from 2% to 5% in all of the simulation studies) such algorithm could be still useful for the
situations in which high accuracy is required from the decision tree would. Ant System, on
the other hand, is the simplest (yet less efficient) ACO technique, so that the use of more
powerful ACO algorithms (which is currently under development) would reasonably bring
better results. It is well known that ACO algorithms reach their maximum efficiency when
coupled with local search techniques or can improve their efficiency by making use of
candidate lists.

Tree Depth CART Ant System
2 0.2948 0.2734
3 0.2435 0.2301
4 0.2029 0.1816
5 0.1773 0.1517
6 0.1645 0.1539

Table 4. Global impurity of the decision trees extracted by the proposed algorithm on the
Credit dataset

SASSC algorithm. In the following, the SASSC algorithm is applied on the “Letter
Recognition” dataset from the UCI Machine Learning Repository (source
http://archive.ics.uci.edu/ml/). This dataset is originally analyzed in Frey & Slate (1991),
who did not achieve a good performance since the correct classified observations did never
exceed 85%. Later on, the same dataset is analyzed in Fogarty(1992) using nearest
neighbours classification. Obtained results give over 95.4% accuracy compared to the best
result of 82.7% reached in Frey & Slate(1991). Nevertheless, no information about the
interpretability of the nearest neighbour classification model is provided and the
computational inefficiency of such a procedure is deliberately admitted by the authors.
In the Letter Recognition analysis, the task is to classify 20, 000 black-and-white rectangular
pixel displays into one of the 26 letters in the English alphabet. The character images are
based on 20 different fonts and each letter within these 20 fonts was randomly distorted to
produce a file of 20,000 unique stimuli. Each stimulus was converted into 16 numerical
attributes that have to be submitted to a decision tree. Dealing with K = 26 response classes,
SASSC provides 25 sequential aggregations. Classification trees aggregated at each single
step were chosen according to 10-fold cross validation. A tree was aggregated to the
sequence if it provided the lowest cross validated generalization error with respect to the
other trees obtainable from different aggregations of (subgroups of) response classes.
The results of the SASSC algorithm are summarized in Figure 3. It compares the
performance of the SASSC model formed by g=2 up to g=6 superclasses with that of CART
using, in all cases, either Gini or Twoing as splitting rules. Bagging (Brieman, 1996) and
Random Forest (Breiman, 2001) are used as benchmarking methods as well. Computations
have been carried out using the R software for statistical computing.
The SASSC model using 2 superclasses consistently improves the results of CART using the
Gini (Twoing) splitting rule since the generalization error reduces to 0.49 (0.34) from 0.52
(0.49). As expected, the choice of the splitting rule (Gini or Twoing) is relevant when the
number of superclasses g is relatively small (2 ≤ g ≤ 4), whereas it becomes negligible for
higher values of g (results for g ≥ 5 are almost identical). Focusing on the Gini splitting
criterion, the SASSC’s generalization error further reduces to 0.11 when the number of
subsets increases to 6. For comparative purposes, Bagging and Random Forest have been

 Advances in Evolutionary Algorithms

460

Ant System. The strong complexity of the decision tree growing procedure (Hyafil & Rivest,
1976) does not allow to exhaustively enumerate and evaluate all the possible generable
trees, even from very small datasets. In this respect, it is not possible to check whether the
chosen heuristic is able to find the global optimum (in the same manner as it has been
previously done for the genetic algorithm).
In the first experiment the algorithm has been tested on a simulated dataset of 500
observations with 11 nominal unordered predictors (with a number of attributes that ranges
between 2 and 9) and 2 numeric (continuous) predictors. It could be seen that, when the
required tree depth increases, the differences between the global impurity of the tree
obtained by the CART greedy heuristic and the one obtained by the Ant System tend to
increase. Table 3 reports such results.

Tree Depth CART Ant System
4 0.158119 0.153846
5 0.147435 0.121794
6 0.100427 0.085477
7 0.079059 0.059829
8 0.044871 0.029911

Table 3.Global impurity of the decision trees extracted by the proposed algorithm on a
simulated dataset

Figure 2 shows the result obtained on the “Credit” dataset that can be found in the SPAD
software (source: www.spadsoft.com). This dataset has 468 observations on which 11
nominal variables have been observed together with a two-class response variable. The aim
would be to predict such response variable (“is a customer good or bad?).
The first decision tree is the one found by the CART heuristic and the second one has been
extracted after 200 iterations of the Ant System algorithm.
Table 4 shows the global impurity of the trees extracted by the CART and Ant heuristics.

Fig. 2. Decision Trees for the Credit dataset obtained using the CART heuristic (left panel)
and after 200 iterations of the Ant System algorithm (right panel).

The algorithms presented here are in an early stage of development. In these examples, an
Ant System has been proposed to attack the problem of finding the best exploratory
decision tree and it came out that the Ant System-based decision trees performed better than
the ones found by the CART greedy heuristic. Even if the improvements weren’t too large

Evolutionary Algorithms in Decision Tree Induction

461

(from 2% to 5% in all of the simulation studies) such algorithm could be still useful for the
situations in which high accuracy is required from the decision tree would. Ant System, on
the other hand, is the simplest (yet less efficient) ACO technique, so that the use of more
powerful ACO algorithms (which is currently under development) would reasonably bring
better results. It is well known that ACO algorithms reach their maximum efficiency when
coupled with local search techniques or can improve their efficiency by making use of
candidate lists.

Tree Depth CART Ant System
2 0.2948 0.2734
3 0.2435 0.2301
4 0.2029 0.1816
5 0.1773 0.1517
6 0.1645 0.1539

Table 4. Global impurity of the decision trees extracted by the proposed algorithm on the
Credit dataset

SASSC algorithm. In the following, the SASSC algorithm is applied on the “Letter
Recognition” dataset from the UCI Machine Learning Repository (source
http://archive.ics.uci.edu/ml/). This dataset is originally analyzed in Frey & Slate (1991),
who did not achieve a good performance since the correct classified observations did never
exceed 85%. Later on, the same dataset is analyzed in Fogarty(1992) using nearest
neighbours classification. Obtained results give over 95.4% accuracy compared to the best
result of 82.7% reached in Frey & Slate(1991). Nevertheless, no information about the
interpretability of the nearest neighbour classification model is provided and the
computational inefficiency of such a procedure is deliberately admitted by the authors.
In the Letter Recognition analysis, the task is to classify 20, 000 black-and-white rectangular
pixel displays into one of the 26 letters in the English alphabet. The character images are
based on 20 different fonts and each letter within these 20 fonts was randomly distorted to
produce a file of 20,000 unique stimuli. Each stimulus was converted into 16 numerical
attributes that have to be submitted to a decision tree. Dealing with K = 26 response classes,
SASSC provides 25 sequential aggregations. Classification trees aggregated at each single
step were chosen according to 10-fold cross validation. A tree was aggregated to the
sequence if it provided the lowest cross validated generalization error with respect to the
other trees obtainable from different aggregations of (subgroups of) response classes.
The results of the SASSC algorithm are summarized in Figure 3. It compares the
performance of the SASSC model formed by g=2 up to g=6 superclasses with that of CART
using, in all cases, either Gini or Twoing as splitting rules. Bagging (Brieman, 1996) and
Random Forest (Breiman, 2001) are used as benchmarking methods as well. Computations
have been carried out using the R software for statistical computing.
The SASSC model using 2 superclasses consistently improves the results of CART using the
Gini (Twoing) splitting rule since the generalization error reduces to 0.49 (0.34) from 0.52
(0.49). As expected, the choice of the splitting rule (Gini or Twoing) is relevant when the
number of superclasses g is relatively small (2 ≤ g ≤ 4), whereas it becomes negligible for
higher values of g (results for g ≥ 5 are almost identical). Focusing on the Gini splitting
criterion, the SASSC’s generalization error further reduces to 0.11 when the number of
subsets increases to 6. For comparative purposes, Bagging and Random Forest have been

 Advances in Evolutionary Algorithms

462

trained using 6 and 10 classifiers respectively and, in these cases, obtained generalization
errors are worse than those deriving from SASSC with g = 6. As for Bagging and Random
Forest, increasing the number of trees used to classify each subset of randomly drawn
objects improves the performance of these two methods in terms of prediction accuracy. The
reason is that their predictions derive form (“in-sample”) independent bootstrap
replications. Instead, cross-validation predictions in SASSC derives from aggregations of
classifications made on “out-of-sample” observations that are excluded from the tree
growing procedure. Thus, it is natural to expect that cross-validation predictions are more
inaccurate than bagged ones. Of course, increasing the number of subsets of the response
classes in SASSC reduces the cross-validated generalization error but, at the same time,
increases the complexity of the final classification model. In spite of a relatively lower
accuracy, interpretability of the results in SASSC with g = 6 is strictly preserved.

Figure 3. The generalization errors for the Letter Recognition dataset provided by
alternative approaches: as for SASSC, subscript G(T) indicates the Gini (Twoing) splitting
rule, whereas apex g indicates the number of superclasses (i.e., decision trees) identified by
the algorithm. The subscript for Bagging and Random Forest indicates the number of trees
used to obtain the classification by majority voting.

6. Discussion and conclusions
In the last two decades, computational enhancements highly contributed to the increase in
popularity of DTI algorithms. This cause the successful use of Decision Tree Induction (DTI)
using recursive partitioning algorithms in many diverse areas such as radar signal
classification, character recognition, remote sensing, medical diagnosis, expert systems, and
speech recognition, to name only a few. But recursive partitioning and DTI are two faces of

Evolutionary Algorithms in Decision Tree Induction

463

the same medal. While the computational time has been rapidly reducing, the statistician is
making more use of computationally intensive methods to find out unbiased and accurate
classification rules for unlabelled objects. Nevertheless, DTI cannot result in finding out
simply a number (the misclassification error), but also an accurate and interpretable model.
Software enhancements based on interactive user interface and customized routines should
empower the effectiveness of trees with respect to interpretability, identification and
robustness. The latter considerations have been the inspiration for the algorithms presented
in this chapter aimed at the improvement of DTI effectiveness. They lead to easily
interpretable solutions for rather complicated data analysis problems and can be fruitfully
used in different fields of Knowledge Discovery from Databases (KDD) and data mining
such as, for example, web mining and Customer Relationship Management (CRM).
A Genetic Algorithm for multi-attribute predictor splitting is proposed in this chapter. It can
be said that the proposed GA works very well in presence of treatable splitting predictors,
for which the exhaustive enumeration is affordable. The algorithm always reaches the global
optimum very quickly. This makes possible to think positively, even if nothing can be said,
of course, about the case in which the number of attributes gets too large for the exhaustive
enumeration and evaluation. Obtained results can be considered definitely useful in those
cases where there are no other ways to attack the problem. Future research directions will
include exhaustive enumerations on bigger datasets on a grid computing infrastructure.
In addition an Ant Colony Optimization algorithm is also proposed for exploratory tree
growing. Such algorithm could be useful for the situations in which high accuracy is
required from the decision tree would. Ant System, on the other hand, is the simplest (yet
less efficient) ACO technique, so that the use of more powerful ACO algorithms (which is
currently under development) would reasonably bring better results. It is well known that
ACO algorithms reach their maximum efficiency when coupled with local search techniques
or can improve their efficiency by making use of candidate lists.
Finally, a sequential search algorithm for modelling multi-attribute response through DTI
has also been introduced. The motivation underlying the formalization of the SASSC
algorithm derives from the following intuition: basically, since standard classification trees
unavoidably lead to prediction inaccuracy in the presence of multi-class response, it would
be favourable to look for a relatively reduced number of decision trees each one relating to a
subset of classes of the response variable, the so called super-classes. Reducing the number
of response classes for each of those trees naturally leads to improve the overall prediction
accuracy. To further enforce this guess, an appropriate criterion to derive the correct number
of super-classes and the most parsimonious tree structure for each of them has to be found.
In this respect, a sequential approach that automatically proceeds through subsequent
aggregations of the response classes might be a natural starting point.
The analysis of the Letter Recognition dataset demonstrated that the SASSC algorithm can
be applied pursuing two complementary goals: 1) a content-related goal, resulting in the
specification of a classification model that provides a good interpretation of the results
without disregarding accuracy; 2) a performance-related goal, dealing with the development
of a model resulting effective in terms of predictive accuracy without neglecting
interpretability. Taking these considerations into account, SASSC appears as a valuable
alternative to evaluate whether a restricted number of independent classifiers improves the
generalization error of a classification model.

 Advances in Evolutionary Algorithms

462

trained using 6 and 10 classifiers respectively and, in these cases, obtained generalization
errors are worse than those deriving from SASSC with g = 6. As for Bagging and Random
Forest, increasing the number of trees used to classify each subset of randomly drawn
objects improves the performance of these two methods in terms of prediction accuracy. The
reason is that their predictions derive form (“in-sample”) independent bootstrap
replications. Instead, cross-validation predictions in SASSC derives from aggregations of
classifications made on “out-of-sample” observations that are excluded from the tree
growing procedure. Thus, it is natural to expect that cross-validation predictions are more
inaccurate than bagged ones. Of course, increasing the number of subsets of the response
classes in SASSC reduces the cross-validated generalization error but, at the same time,
increases the complexity of the final classification model. In spite of a relatively lower
accuracy, interpretability of the results in SASSC with g = 6 is strictly preserved.

Figure 3. The generalization errors for the Letter Recognition dataset provided by
alternative approaches: as for SASSC, subscript G(T) indicates the Gini (Twoing) splitting
rule, whereas apex g indicates the number of superclasses (i.e., decision trees) identified by
the algorithm. The subscript for Bagging and Random Forest indicates the number of trees
used to obtain the classification by majority voting.

6. Discussion and conclusions
In the last two decades, computational enhancements highly contributed to the increase in
popularity of DTI algorithms. This cause the successful use of Decision Tree Induction (DTI)
using recursive partitioning algorithms in many diverse areas such as radar signal
classification, character recognition, remote sensing, medical diagnosis, expert systems, and
speech recognition, to name only a few. But recursive partitioning and DTI are two faces of

Evolutionary Algorithms in Decision Tree Induction

463

the same medal. While the computational time has been rapidly reducing, the statistician is
making more use of computationally intensive methods to find out unbiased and accurate
classification rules for unlabelled objects. Nevertheless, DTI cannot result in finding out
simply a number (the misclassification error), but also an accurate and interpretable model.
Software enhancements based on interactive user interface and customized routines should
empower the effectiveness of trees with respect to interpretability, identification and
robustness. The latter considerations have been the inspiration for the algorithms presented
in this chapter aimed at the improvement of DTI effectiveness. They lead to easily
interpretable solutions for rather complicated data analysis problems and can be fruitfully
used in different fields of Knowledge Discovery from Databases (KDD) and data mining
such as, for example, web mining and Customer Relationship Management (CRM).
A Genetic Algorithm for multi-attribute predictor splitting is proposed in this chapter. It can
be said that the proposed GA works very well in presence of treatable splitting predictors,
for which the exhaustive enumeration is affordable. The algorithm always reaches the global
optimum very quickly. This makes possible to think positively, even if nothing can be said,
of course, about the case in which the number of attributes gets too large for the exhaustive
enumeration and evaluation. Obtained results can be considered definitely useful in those
cases where there are no other ways to attack the problem. Future research directions will
include exhaustive enumerations on bigger datasets on a grid computing infrastructure.
In addition an Ant Colony Optimization algorithm is also proposed for exploratory tree
growing. Such algorithm could be useful for the situations in which high accuracy is
required from the decision tree would. Ant System, on the other hand, is the simplest (yet
less efficient) ACO technique, so that the use of more powerful ACO algorithms (which is
currently under development) would reasonably bring better results. It is well known that
ACO algorithms reach their maximum efficiency when coupled with local search techniques
or can improve their efficiency by making use of candidate lists.
Finally, a sequential search algorithm for modelling multi-attribute response through DTI
has also been introduced. The motivation underlying the formalization of the SASSC
algorithm derives from the following intuition: basically, since standard classification trees
unavoidably lead to prediction inaccuracy in the presence of multi-class response, it would
be favourable to look for a relatively reduced number of decision trees each one relating to a
subset of classes of the response variable, the so called super-classes. Reducing the number
of response classes for each of those trees naturally leads to improve the overall prediction
accuracy. To further enforce this guess, an appropriate criterion to derive the correct number
of super-classes and the most parsimonious tree structure for each of them has to be found.
In this respect, a sequential approach that automatically proceeds through subsequent
aggregations of the response classes might be a natural starting point.
The analysis of the Letter Recognition dataset demonstrated that the SASSC algorithm can
be applied pursuing two complementary goals: 1) a content-related goal, resulting in the
specification of a classification model that provides a good interpretation of the results
without disregarding accuracy; 2) a performance-related goal, dealing with the development
of a model resulting effective in terms of predictive accuracy without neglecting
interpretability. Taking these considerations into account, SASSC appears as a valuable
alternative to evaluate whether a restricted number of independent classifiers improves the
generalization error of a classification model.

 Advances in Evolutionary Algorithms

464

7. References
Breiman, L., Friedman, J.H., Olshen, R.A., & Stone C.J. (1984) Classification and Regression

Trees, Wadsworth, Belmont CA.
Breiman, L. (1996) Bagging Predictors, Machine Learning, 24, 123-140.
Breiman,, L. (2001). Random Forests, Machine Learning, 45, 5-32.
Cappelli, C., Mola, F., & Siciliano, R. (2002), A Statistical Approach to Growing a Reliable

Honest Tree, Computational Statistics and Data Analysis, 38, 285-299.
Chan, K. Y. & Loh, W. Y. (2004). LOTUS: An algorithm for building accurate and

comprehensible logistic regression trees. Journal of Computational and Graphical
Statistics, 13, 826–852.

Choi, Y., Ahn, H. & Chen, J.J. (2005). Regression trees for analysis of count data with extra
Poisson variation. Computational Statistics and Data Analysis, 49, 893–915.

Colorni, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., & Trubian, M. (1996).
Heuristics from nature for hard combinatorial problems. International Transactions
in Operational Research, March, 1-21.

Conversano, C. (2002) Bagged mixture of classifiers using Model Scoring Criteria. Patterns
Analysis & Applications, 5, 4, 351-362.

Dietterich, T.G. (2000) Ensemble methods in machine learning. In J.Kittler and F.Roli, (Eds.),
Multiple Classifier System. First International Workshop, MCS 2000, Cagliari, vol.
1857 of Lecture notes in computer science. Springer-Verlag.

Dorigo, M. & Stutzle, T. (2004). Ant Colony Optimization. The MIT Press, London. 1-15
Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di

Milano, Italy.
Fogarty, T. (1992) First Nearest Neighbor Classification on Frey and Slate’s Letter

Recognition Problem (Technical Note). Machine Learning, 9, 387-388 .
Fogel, L. J. (1997). A retrospective view and outlook on evolutionary algorithms. In Fuzzy

Days, 337–342.
Fogel, D. B. & Fogel, L. (1993). Evolutionary computation. IEEE Transactions on Neural

Networks, 5(1):1–2.
Freund, Y., & Schapire, R. (1996), Experiments with a new boosting algorithm, Machine

Learning: Proceedings of the Thirteenth International Conference, 148-156.
Frey, P.W. & Slate, D.J. Letter Recognition Using Holland-style Adaptive Classifiers. Machine

Learning, 6, 161-182.
Gama, J. (2004), Functional trees, Machine Learning, 55, 219–250.
Hastie, T., Friedman, J. H., & Tibshirani, R., (2001). The Elements of Statistical Learning: Data

Mining, Inference and Prediction, Springer.
Hothorn, T., Hornik, K. & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional

inference framework, Journal of Computational and Graphical Statistics, 15, 651–674.
Hyafil & Rivest (1976). Constructing optimal binary decision trees is NPcomplete. IPL:

Information Processing Letters, 15-17.
Klaschka, J., Siciliano, R., & Antoch, J. (1998): Computational Enhancements in Tree-

Growing Methods, in: Rizzi, A., Vichi, M. & Bock, H.H. (Eds.), Advances in Data
Science and Classification: Proceedings of the 6th Conference of the International
Federation of Classification Society, Springer-Verlag, Berlin Heidelberg. 295-302

Loh, W.Y. (2002). Regression trees with unbiased variable selection and interaction
detection. Statistica Sinica, 12, 361-386.

Evolutionary Algorithms in Decision Tree Induction

465

Mehta, M., Agrawal, R. & Rissanen J. (1996). SLIQ. A Fast Scalable Classifier for Data
Mining. In Proceedings of the International Conference on Extending Database
Technology EDBT, 18-32.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag, third edition.

Miele, R., Mola, F., Siciliano, R. (2005). J-Fast: An Interactive Software for Classification and
Regression Trees. In Proceedings of the Classification and Data Analysis Group
(CLADAG) of the Italian Statistical Society. Parma, Italy, 437-440

Miele, R. (2007). Nature Inspired Optimization Algorithms for Classification and Regression
Trees. Ph.D. Thesis. Univeristy of Naples “Federico II”.

Mola, F., & Conversano, C. (2008) Sequential Automatic Search of a Subset of Classifiers in
Multiclass Learning, in: Brito P. & Aluja-Banet T. (Eds.) COMPSTAT 2008
Proceedings in Computational Statistics, Physica-Verlag, to appear.

Mola, F., & Siciliano, R. (1997). A fast splitting algorithm for classification trees. Statistics and
Computing, 7, 209–216.

Oliver, J.J., & Hand, D. J. (1995). On Pruning and Averaging Decision Trees, in Machine
Learning: Proceedings of the 12th International Workshop,430-437.

Quinlan, J.R., (1983). Learning Efficient Classification Procedures and Their Application to
Chess and Games. In Michalski R.S., Carbonell J.G. & Mitchell T.M. (ed.): Machine
Learning: An Artificial Intelligence Approach, 1, Tioga Publishing, 463-482.

Quinlan, J.R., (1987). Simplifying decision tree. International Journal of Man-Machine Studies,
27, 221–234.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann.
Siciliano, R., (1998). Exploratory versus decision trees. In: Payne, R., Green, P. (Eds.),

COMPSTAT 1998 Proceedings in Computational Statistics. Physica-Verlag, 113–124.
Siciliano, R. & Mola, F. (2000). Multivariate Data Analysis through Classification and

Regression Trees, Computational Statistics and Data Analysis, 32, 285-301, Elsevier
Science, 2000.

Su, X., Wang, M. & Fan, J. (2004). Maximum likelihood regression trees. Journal of
Computational and Graphical Statistics, 13, 586–598.

Vose, M. D. (1999). The simple genetic algorithm: foundations and theory. MIT Press,
Cambridge, MA.

Appendix: The J-FAST software
The algorithms presented in this chapter have been implemented in the Java language. In
order to make it possible to test them on real datasets a Java segmentation framework, called
J-FAST, has been developed. The first aim of this software is to take care of all the necessary
operations to perform before and after running the recursive partitioning algorithm. These
can be summarized as follows: reading data from text files and spreadsheets; processing
data before carrying out the tree growing process; specifying the type of recursive
partitioning algorithm to be applied (i.e., classification or regression tree) ; interpretation of
the results.
The J-FAST program is a Java-based recursive partitioning software, which is particularly
research oriented. It mainly consists of a flexible, efficient and transparent cross-platform
application for building classification and regression trees using any kind of heuristic in the
tree growing process (like the CART greedy algorithm or the FAST branch and bound

 Advances in Evolutionary Algorithms

464

7. References
Breiman, L., Friedman, J.H., Olshen, R.A., & Stone C.J. (1984) Classification and Regression

Trees, Wadsworth, Belmont CA.
Breiman, L. (1996) Bagging Predictors, Machine Learning, 24, 123-140.
Breiman,, L. (2001). Random Forests, Machine Learning, 45, 5-32.
Cappelli, C., Mola, F., & Siciliano, R. (2002), A Statistical Approach to Growing a Reliable

Honest Tree, Computational Statistics and Data Analysis, 38, 285-299.
Chan, K. Y. & Loh, W. Y. (2004). LOTUS: An algorithm for building accurate and

comprehensible logistic regression trees. Journal of Computational and Graphical
Statistics, 13, 826–852.

Choi, Y., Ahn, H. & Chen, J.J. (2005). Regression trees for analysis of count data with extra
Poisson variation. Computational Statistics and Data Analysis, 49, 893–915.

Colorni, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., & Trubian, M. (1996).
Heuristics from nature for hard combinatorial problems. International Transactions
in Operational Research, March, 1-21.

Conversano, C. (2002) Bagged mixture of classifiers using Model Scoring Criteria. Patterns
Analysis & Applications, 5, 4, 351-362.

Dietterich, T.G. (2000) Ensemble methods in machine learning. In J.Kittler and F.Roli, (Eds.),
Multiple Classifier System. First International Workshop, MCS 2000, Cagliari, vol.
1857 of Lecture notes in computer science. Springer-Verlag.

Dorigo, M. & Stutzle, T. (2004). Ant Colony Optimization. The MIT Press, London. 1-15
Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di

Milano, Italy.
Fogarty, T. (1992) First Nearest Neighbor Classification on Frey and Slate’s Letter

Recognition Problem (Technical Note). Machine Learning, 9, 387-388 .
Fogel, L. J. (1997). A retrospective view and outlook on evolutionary algorithms. In Fuzzy

Days, 337–342.
Fogel, D. B. & Fogel, L. (1993). Evolutionary computation. IEEE Transactions on Neural

Networks, 5(1):1–2.
Freund, Y., & Schapire, R. (1996), Experiments with a new boosting algorithm, Machine

Learning: Proceedings of the Thirteenth International Conference, 148-156.
Frey, P.W. & Slate, D.J. Letter Recognition Using Holland-style Adaptive Classifiers. Machine

Learning, 6, 161-182.
Gama, J. (2004), Functional trees, Machine Learning, 55, 219–250.
Hastie, T., Friedman, J. H., & Tibshirani, R., (2001). The Elements of Statistical Learning: Data

Mining, Inference and Prediction, Springer.
Hothorn, T., Hornik, K. & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional

inference framework, Journal of Computational and Graphical Statistics, 15, 651–674.
Hyafil & Rivest (1976). Constructing optimal binary decision trees is NPcomplete. IPL:

Information Processing Letters, 15-17.
Klaschka, J., Siciliano, R., & Antoch, J. (1998): Computational Enhancements in Tree-

Growing Methods, in: Rizzi, A., Vichi, M. & Bock, H.H. (Eds.), Advances in Data
Science and Classification: Proceedings of the 6th Conference of the International
Federation of Classification Society, Springer-Verlag, Berlin Heidelberg. 295-302

Loh, W.Y. (2002). Regression trees with unbiased variable selection and interaction
detection. Statistica Sinica, 12, 361-386.

Evolutionary Algorithms in Decision Tree Induction

465

Mehta, M., Agrawal, R. & Rissanen J. (1996). SLIQ. A Fast Scalable Classifier for Data
Mining. In Proceedings of the International Conference on Extending Database
Technology EDBT, 18-32.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag, third edition.

Miele, R., Mola, F., Siciliano, R. (2005). J-Fast: An Interactive Software for Classification and
Regression Trees. In Proceedings of the Classification and Data Analysis Group
(CLADAG) of the Italian Statistical Society. Parma, Italy, 437-440

Miele, R. (2007). Nature Inspired Optimization Algorithms for Classification and Regression
Trees. Ph.D. Thesis. Univeristy of Naples “Federico II”.

Mola, F., & Conversano, C. (2008) Sequential Automatic Search of a Subset of Classifiers in
Multiclass Learning, in: Brito P. & Aluja-Banet T. (Eds.) COMPSTAT 2008
Proceedings in Computational Statistics, Physica-Verlag, to appear.

Mola, F., & Siciliano, R. (1997). A fast splitting algorithm for classification trees. Statistics and
Computing, 7, 209–216.

Oliver, J.J., & Hand, D. J. (1995). On Pruning and Averaging Decision Trees, in Machine
Learning: Proceedings of the 12th International Workshop,430-437.

Quinlan, J.R., (1983). Learning Efficient Classification Procedures and Their Application to
Chess and Games. In Michalski R.S., Carbonell J.G. & Mitchell T.M. (ed.): Machine
Learning: An Artificial Intelligence Approach, 1, Tioga Publishing, 463-482.

Quinlan, J.R., (1987). Simplifying decision tree. International Journal of Man-Machine Studies,
27, 221–234.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann.
Siciliano, R., (1998). Exploratory versus decision trees. In: Payne, R., Green, P. (Eds.),

COMPSTAT 1998 Proceedings in Computational Statistics. Physica-Verlag, 113–124.
Siciliano, R. & Mola, F. (2000). Multivariate Data Analysis through Classification and

Regression Trees, Computational Statistics and Data Analysis, 32, 285-301, Elsevier
Science, 2000.

Su, X., Wang, M. & Fan, J. (2004). Maximum likelihood regression trees. Journal of
Computational and Graphical Statistics, 13, 586–598.

Vose, M. D. (1999). The simple genetic algorithm: foundations and theory. MIT Press,
Cambridge, MA.

Appendix: The J-FAST software
The algorithms presented in this chapter have been implemented in the Java language. In
order to make it possible to test them on real datasets a Java segmentation framework, called
J-FAST, has been developed. The first aim of this software is to take care of all the necessary
operations to perform before and after running the recursive partitioning algorithm. These
can be summarized as follows: reading data from text files and spreadsheets; processing
data before carrying out the tree growing process; specifying the type of recursive
partitioning algorithm to be applied (i.e., classification or regression tree) ; interpretation of
the results.
The J-FAST program is a Java-based recursive partitioning software, which is particularly
research oriented. It mainly consists of a flexible, efficient and transparent cross-platform
application for building classification and regression trees using any kind of heuristic in the
tree growing process (like the CART greedy algorithm or the FAST branch and bound

 Advances in Evolutionary Algorithms

466

heuristic or any other one written by the user). It also allows to interactively visualize and
compare the results. J-FAST divides the recursive partitioning procedure into three main
sections. The data-importing Graphical User Interface (see Figure 4) allows to read data
from Excel-like spreadsheets and plain text files and automatically recognises the nature of
the variables by distinguishing the categorical, numerical or alphanumerical columns of a
data matrix. J-Fast also allows the user to specify the Decision Tree Induction model by
choosing the response variable, as well as which predictor(s) should be treated as ordinal,
nominal or as excluded from the analysis.

Fig. 4. J-Fast data importing Graphical User Interface

A second GUI visualizes some information about the chosen DTI model and provides some
descriptive statistics about the analyzing data. It also allows the user to specify which are
the features of the DTI model under specification, such as the learning sample rate, the
stopping conditions, the possibility of obtaining a verbose output. It also asks the user to
choose between all the recursive partitioning heuristics that are present into the class path.
Then, the software starts the tree growing procedure.
The third component of the J-FAST software is the results navigator. It allows the user to
interactively display and navigate into the results of the analysis.
The results navigator GUI (see Figure 5) consists of two windows. The first one is the main
results window. It visualises the obtained decision tree, charts the misclassification rates and
the selected node’s information panel (there is a button for visualizing the splitting rule to
reach the node, the misclassification rate for the node, etc.). The second component is the
Tree Console Window (Figure 6). It contains buttons that allow the user to navigate through
the pruning sequence and access directly the best, the trivial and the maximal tree. For each
tree in the pruning sequence, the node that is going to be pruned is highlighted. By clicking

Evolutionary Algorithms in Decision Tree Induction

467

on the node, the interface allows to get the data units which fall in that node and to write
them into a file in order to continue the analysis of such units using another software. It is
also possible, from the second step GUI, to simultaneously start more than one analysis in
order to obtain different tree navigators simultaneously on the screen. This feature is
particularly useful for comparing trees grown from different datasets or on the same dataset
but with using different DTI specifications.

Fig. 5. J-Fast data results navigator Graphical User Interface

J-FAST is more than a simple recursive partitioning software. Because of the fact that it has
been mainly designed to support the research activity, it offers many useful functions like
the possibility of saving created objects (trees, datasets, nodes, etc.) via the Java serialization
mechanism in order to better analyze using other ad-hoc written Java programs (some of
them have already been implemented, like a different tree interface called “TreeSurfer”).
Interactivity with the R statistical software is also provided: by right-clicking on a node it is
possible to send the corresponding data to R in order to continue the analysis. This is
particularly useful if another statistical analysis (i.e. a logit model) has to be made on a
particular segment (node) extracted from the obtained decision tree.
J-FAST has to be also considered as a Java objects Library (or API - Application Program
Interface), for building Classification and Regression Trees. Any researcher which is able to
program in Java could use the classes from the J-FAST API in order to get trees without
having to write all the necessary code. In addition, the J-FAST platform offers many useful
objects. The most important ones are:
• Statistics: it provides univariate and bivariate descriptive statistics.
• DataSet: it stores data for recursive partitioning purposes (response variable, predictors,

etc.).
• Split: it specifies the type of split (binary, ternary,etc.)

 Advances in Evolutionary Algorithms

466

heuristic or any other one written by the user). It also allows to interactively visualize and
compare the results. J-FAST divides the recursive partitioning procedure into three main
sections. The data-importing Graphical User Interface (see Figure 4) allows to read data
from Excel-like spreadsheets and plain text files and automatically recognises the nature of
the variables by distinguishing the categorical, numerical or alphanumerical columns of a
data matrix. J-Fast also allows the user to specify the Decision Tree Induction model by
choosing the response variable, as well as which predictor(s) should be treated as ordinal,
nominal or as excluded from the analysis.

Fig. 4. J-Fast data importing Graphical User Interface

A second GUI visualizes some information about the chosen DTI model and provides some
descriptive statistics about the analyzing data. It also allows the user to specify which are
the features of the DTI model under specification, such as the learning sample rate, the
stopping conditions, the possibility of obtaining a verbose output. It also asks the user to
choose between all the recursive partitioning heuristics that are present into the class path.
Then, the software starts the tree growing procedure.
The third component of the J-FAST software is the results navigator. It allows the user to
interactively display and navigate into the results of the analysis.
The results navigator GUI (see Figure 5) consists of two windows. The first one is the main
results window. It visualises the obtained decision tree, charts the misclassification rates and
the selected node’s information panel (there is a button for visualizing the splitting rule to
reach the node, the misclassification rate for the node, etc.). The second component is the
Tree Console Window (Figure 6). It contains buttons that allow the user to navigate through
the pruning sequence and access directly the best, the trivial and the maximal tree. For each
tree in the pruning sequence, the node that is going to be pruned is highlighted. By clicking

Evolutionary Algorithms in Decision Tree Induction

467

on the node, the interface allows to get the data units which fall in that node and to write
them into a file in order to continue the analysis of such units using another software. It is
also possible, from the second step GUI, to simultaneously start more than one analysis in
order to obtain different tree navigators simultaneously on the screen. This feature is
particularly useful for comparing trees grown from different datasets or on the same dataset
but with using different DTI specifications.

Fig. 5. J-Fast data results navigator Graphical User Interface

J-FAST is more than a simple recursive partitioning software. Because of the fact that it has
been mainly designed to support the research activity, it offers many useful functions like
the possibility of saving created objects (trees, datasets, nodes, etc.) via the Java serialization
mechanism in order to better analyze using other ad-hoc written Java programs (some of
them have already been implemented, like a different tree interface called “TreeSurfer”).
Interactivity with the R statistical software is also provided: by right-clicking on a node it is
possible to send the corresponding data to R in order to continue the analysis. This is
particularly useful if another statistical analysis (i.e. a logit model) has to be made on a
particular segment (node) extracted from the obtained decision tree.
J-FAST has to be also considered as a Java objects Library (or API - Application Program
Interface), for building Classification and Regression Trees. Any researcher which is able to
program in Java could use the classes from the J-FAST API in order to get trees without
having to write all the necessary code. In addition, the J-FAST platform offers many useful
objects. The most important ones are:
• Statistics: it provides univariate and bivariate descriptive statistics.
• DataSet: it stores data for recursive partitioning purposes (response variable, predictors,

etc.).
• Split: it specifies the type of split (binary, ternary,etc.)

 Advances in Evolutionary Algorithms

468

• TreeGrower: it is a class for growing decision trees
• Pruner: it is class that for decision tree pruning
• TreeViewer: it is a interactive interface class
• Utility: it encompasses many useful function like reading data from plain text files,

Excel-like spreadsheets, etc.
• TreeBuild interface: it defines all the rules to follow for the programmer to write his

own heuristic.

Fig. 6. J-Fast tree console window Graphical User Interface

 Advances in Evolutionary Algorithms

468

• TreeGrower: it is a class for growing decision trees
• Pruner: it is class that for decision tree pruning
• TreeViewer: it is a interactive interface class
• Utility: it encompasses many useful function like reading data from plain text files,

Excel-like spreadsheets, etc.
• TreeBuild interface: it defines all the rules to follow for the programmer to write his

own heuristic.

Fig. 6. J-Fast tree console window Graphical User Interface

Advances in
Evolutionary Algorithms

Edited by Witold Kosinski

Edited by Witold Kosinski

With the recent trends towards massive data sets and significant computational
power, combined with evolutionary algorithmic advances evolutionary computation

is becoming much more relevant to practice. Aim of the book is to present recent
improvements, innovative ideas and concepts in a part of a huge EA field.

Photo by baronvsp / iStock

ISBN 978-953-7619-11-4

A
dvances in Evolutionary A

lgorithm
s

ISBN 978-953-51-5796-0

	Advances in Evolutionary Algorithms
	1. Limit Properties of Evolutionary Algorithms
	2. Evolutionary Systems Identification:New Algorithmic Concepts and Applications
	3. FPBIL: A Parameter-free Evolutionary Algorithm
	4. A Memetic Algorithm Assisted by an AdaptiveTopology RBF Network and Variable LocalModels for Expensive Optimization Problems
	5. An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm (Application of Fuzzy Power System Stabilizer)
	6. A Simple Hybrid Particle Swarm Optimization
	7. Recent Advances in Harmony Search
	8. A Hybrid Evolutionary Algorithm and itsApplication to Parameter Identification ofRolling Elements Bearings
	9. Domain Decomposition Evolutionary Algorithmfor Multi-Modal Function Optimization
	10. Evolutionary Algorithms with DissortativeMating on Static and Dynamic Environments
	11. Adapting Genetic Algorithms for Combinatorial Optimization Problems inDynamic Environments
	12. Agent-Based Co-Evolutionary Techniques forSolving Multi-Objective Optimization Problems
	13. Evolutionary Multi-Objective Robust Optimization
	14. Improving Interpretability of Fuzzy ModelsUsing Multi-ObjectiveNeuro-Evolutionary Algorithms
	15. Multi-objective Uniform-diversityGenetic Algorithm (MUGA)
	16. EA-based Problem Solving Environment over the GRID
	17. Evolutionary Methods for Learning BayesianNetwork Structures
	18. Design of Phased Antenna Arrays using Evolutionary Optimization Techniques
	19. Design of an Efficient Genetic Algorithm toSolve the Industrial Car Sequencing Problem
	20. Symbiotic Evolution Genetic Algorithms forReinforcement Fuzzy Systems Design
	21. Evolutionary Computation Applied to Urban Traffic Optimization
	22. Evolutionary Algorithms in Decision Tree Induction

