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1. Introduction 
In the chapter limit properties of genetic algorithms and theproblem of their classification 
are elaborated. Recently one can observe an increasing interest in properties of genetic 
algorithms modelled by Markov chains (Vose, Rowe). However, the known results are 
mainly limited to existence theorems. They say that there exists a limit distribution for a 
Markov chain describing a simple genetic algorithm. In the chapter we perform the next 
step on this way and present a formula for this limit distribution for a Markov chain. 
Moreover, we claim that our convergence theorems can be extended to algorithms which 
admit the change in the mutation rate and others parameters. 
The formula for a limit distribution requires some knowledge about the distribution of the 
fitness function on the whole solution space. However, it suggests the methods to control 
the algorithm parameters to get better convergence rate. The formula can play an important 
role in deriving new classification tools for genetic algorithms that use methods of the 
theory of dynamical systems. That tools will exploit real dynamics of the search and be 
independent of the taxonomic methods of classification that are used nowadays. 
On the base of the knowledge of the limit distribution we construct an optimal genetic 
algorithm in the probabilistic sense. Generally this algorithm is impossible to describe. This 
is an open problem at the moment, however, its existence and its form suggest an 
improvement of the original algorithm by changing its parameters. Constructed in this way 
the optimal genetic algorithm is an answer to one of the questions stayed by famous No Free 
Lunch Theorem. Moreover, it is a complementary result to this theorem. On the base of this 
theoretical result we perform a classification of algorithms and show empirical 
(computational) results in getting which the entropy, fractal dimension, or its 
approximations: the box-counting dimension or information dimension, are used. 
One of the most difficult, however, of practical importance, problems is the choice of an 
algorithm to given optimisation problem. 
The distinguishing between an optimisation problem and the algorithm and its choice 
creates to the main difficulty. Consequently, the distinguishing is an artificial operation 
because it abstains from the idea of genetic algorithm (GA), since the fitness function, arises 
from the cost function (i.e. the function to be optimised) is the main object of the genetic 
algorithm and it emerges from the formulation of the optimisation problem and it is difficult 
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to speak about genetic algorithm as an operator without the fitness function. However, in 
our consideration we will simultaneously use both notions of the genetic algorithms. The 
first notion as an operator acting on the cost (fitness) function, the second - as a specific 
(real) algorithm for which the fitness is the main component being the algorithm's 
parameter. 
This dual meaning of the genetic algorithm is crucial for ou consideration, because our main 
aim is to try to classify genetic algorithms. The classification should lead to a specific choice 
of methodology of genetic algorithms understood as operators. It is expected that in terms of 
this methodology one will be able to choose the appropriate algorithm to given optimisation 
problem. We claim that using this classification one could improve existing heuristic 
methods of assortment of genetic algorithms that are based mainly on experiences and 
programmer intuition. 
There is the so-called "No-free lunch theorem" [12] according to which it does not exist a 
best evolutionary algorithm and moreover, one cannot find most suitable operator between 
all possible mechanisms of crossover, mutation and selection without referring to the 
particular class of optimisation problems under investigation. Evolutionary algorithms are 
the methods of optimizations which use a limited knowledge about investigated problem. 
On the other hand, our knowledge about the algorithm in use is often limited as well [13, 
14]. 
The "no free lunch" results indicate that matching algorithms to problems give higher 
average performance than those applying a fixed algorithm to all problems. In the view of 
these facts, the choice of the best algorithm may be correctly stated only in the context of the 
optimisation problem. 
These facts imply the necessity of searching particular genetic algorithms suitable to the 
problem at hand. 
The present paper is an attempt to introduce an enlarged investigation method to the theory 
of genetic (evolutionary) algorithms. We aim at 
1. the investigation of convergence properties of genetic algorithms, 
2. the formulation of a new method of analysis of evolutionary algorithms regarded as 

dynamical processes, and 
3. the development of some tools suitable for characterization of evolutionary algorithms 

based on the notions of the symbolic dynamics. 
Genetic algorithm (GA) performs a multi-directional search by maintaining a population of 
potential solutions and encourages information formation and exchange between these 
directions. A population undergoes a simulated evolution due to the iterative action with 
some probability distributions of a composition of mutation, crossover and selection 
operators. The action of that composition is a random operation on populations. 
If we imagine that a population is a point in the space Z of (encoded) potential solutions 
then the efect of one iteration of this composition is to move that population to another 
point. In this way the action of GA is a discrete (stochastic) dynamical system. We claim that 
by implementing the methods and the results of the theory of dynamical systems, especially 
those known from the analysis of dynamics of 1D mappings, one can move towards the goal 
of the theory of GA, which is the explanation of the foundations of genetic algorithm's 
operations and their features. 
In GA with the known fitness function the proportional selection can be treated as a 
multiplication of each component of the frequency vector by the quotient of the fitness of the 
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corresponding element to the average fitness of the population. This allows to write the 
probability distribution for the next population in the form of the multiplication of the 
diagonal matrix times the population (frequency) vector. Moreover, results of the mutation 
can also be written as a product of another matrix with the population (probability) vector. 
Finally the composition of both operations is a matrix, which leads to the general form of the 
transition operator (cf.(17)) acting on a new probability vector representing a probability 
distribution of appearance of all populations of the same PopSize. The matrix appearing 
there turns to be Markovian and each subsequent application of SGA is the same as the 
subsequent composition of that matrix with itself. (cf.(19)). Thanks to the well-developed 
theory of Markov operators ([18, 22, 26, 27]) new conditions for the asymptotic stability of 
the transition operator are formulated. 

2. Genetic algorithms 
In the paper we use the term population in two meanings; in the first it is a finite multi-set (a 
set with elements that can repeat) of solutions, in the second it is a frequency vector 
composed of fractions, i.e. the ratio of the number of copies of each element zk ∈Z to the total 
population size PopSize. 
In our analysis we are concerned with probability distributions of each population for a 
particular case of the simple genetic algorithm (SGA) in which the crossover follows the 
mutation and the proportional selection. In the case of a binary genetic algorithm (BGA) the 
mutation can be characterized by the bitwise mutation rate μ - the probability of the 
mutation of one bit of a chromosome. In the paper, however, we are not confined to binary 
operators; the present discussion and results are valid under very week assumptions 
concerning the mutation and selection operators. 

2.1 Population and frequency vector 
Let 

 
be the set of individuals called chromosomes. 1By a population we understand any multi-set of 
r chromosomes from Z, then r is the population size: PopSize. 
Definition 1. By a frequency vector of population we understand the vector 

 
(1) 

where ak is a number of copies of the element zk. 
The set of all possible populations (frequency vectors) is 

 
() 

                                                 
1 If one considers all binary l-element sequences then after ordering them one can compose 
the set Z with s = 2l elements. 
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When a genetic algorithm is realized, then we act on populations, and new populations are 
generated. The transition between two subsequent populations is random and is realized by 
a probabilistic operator. Hence, if one starts with a frequency vector, a probabilistic vector 
can be obtained. It means that in some cases pi cannot be rational any more. Hence the 
closure of the set Λ, namely 

 
(3) 

is more suitable for our analysis of such random processes acting on probabilistic vectors; 
they are in the setΛ . 

2.2 Selection operator 
Let a fitness function f : Z →R+ and population p be given. If we assume the main genetic 

operator is the fitness proportional selection, then the probability that the element zk will 
appear in the next population equals 

 
(4) 

where f (p) is the average population fitness denoted by 

 
(5) 

We can create the matrix S of the size s, where its values on the main diagonal are 

 (6) 

Then the transition from the population p into the new one, say q is given by 

 
(7) 

and the matrix S describes the selection operator [21, 23, 24]. 

2.3 Mutation operator 
Let us define a matrix 

U = [Uij ] , 

with Uij as the probability of mutation of the element zj into the element zi, and Uii - the 
probability of the surviving of the element (individual) zi. One requires that 
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1.                                                                        Uij ≥ 0 ; 
 

2.                                                        
    

                                                 (8) 

 

In the case of the binary uniform mutation with parameter μ as the probability of changing 
bits 0 into 1 or vice versa, if the chromosome zi differs from zj at c positions then 

 (9) 

describes the probability of mutation of the element zj into the element zi. 

2.4 Crossover operation 
In order to define the operator of crossover C one needs to introduce additional denotation. 

Let matrices C0,…,Cs-1 be such that the element (i, j) of the matrix Ck denotes the probablity 

that an element zi crossovered with an element zj will generate an element zk. 
For the presentation simplicity let us consider the case of chromosoms of the lenght l = 2. 
Then elements of the space B will be of the form 

z0 = 00, z1 = 01, z2 = 10, z3 = 11. (10)

For the uniform crossover operation when all elements may take part, the matrix C0 has the 
form 

 

(11)

One can define the remaining matrices; all matrices C k are symmetric. Finally, the operator 
C in the action on a population p gives 

 (12)

where the dot · denotes the formal scalar product of two vectors from s-dimentional space. 
Hence, from a given population (say, p) to the next population (say, q) the action of the 
simple genetic algorithm (SGA) [21, 23, 24] is described by the operator G being a 
composition of three operators: selection, mutation and crossover: 

 (13)

The reader interested in the detailed descrition of the operators is referred to the positions 
[21, 23]. In what follows the crossover is not present. However, most of the results of 
subsequent sections hold if the crossover is present. 
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3. Transition operator 

Let p = (p0,…,ps-1) be a probabilistic vector. If we consider p ∈Λ , then transition operators 
should transform set Λ  into itself. The action of the genetic algorithm at the first and at all 
subsequent steps is the following: if we have a given population p then we sample with 
returning r-elements from the set Z, and the probability of sampling the elements z0,…, zs-1 is 
described by the vector G(p), where 

 
(14)

This r-element vector is our new population q. 
Let us denote by W the set of all possible r-element populations composed of elements 
selected from the set Z, where elements in the population could be repeated. This set is finite 
and let its cardinality be M: It can be proven that the number M is given by some 
combinatoric formula 

 
(15)

Let us order all populations, then we identify the set W with the list W = {w1,…,wM}. Every 
wk, k = 1, 2,…,M, is some population for which we used the notation p in the previous 
section. According to what we wrote, the population will be identified with its frequency 
vector or probabilistic vector. This means that for the population 

, the number k
iw , for i ∈ {0,…,s – 1}, denotes the probability of 

sampling from the population wk the individual zi (or the fraction of the individual zi in the 
population wk). 
Let us assume that we begin our implementation of SGA from an arbitrary population  
p = wk. In the next stage each population w1,…,wM can appear with the probability  
β1k, β lk,…, β Mk which can be determined from our analysis. In particular, if in the next stage 
the population has to be q, with the position l on our list W, then this probability [23, 28, 31] 
is equal 

 
(16)

Notice that  for every k = 1, 2,…,M. After two steps, every population 
w1,…,wM will appear with some probability, which is a double composition of this formula2. 
It will be analogously in the third step and so on. Then it is well founded to analyze the 

                                                 
2 With our choice of denotations for the populations p and q in (16), the element βlk of the 
matrix will give transition probability from the population with the number k into the 
population with the number l. 
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probability distribution of the population's realization in the next steps. This formula gives a 
possibility of determining all elements of a matrix T which defines the probability 
distribution of appearance of populations in the next steps, if we have current probability 
distribution of the populations. 
It is important that elements of the matrix are determined once forever, independently of the 
number of steps. The transition between elements of different pairs of populations is 
described by different probabilities (16) represented by different elements of the matrix. 
Let us denote by 

 
where  the set of new M-dimensional probabilistic vectors. A 
particular component of the vector y represents the probability of the appearance of this 
population from the list W of all M populations. The set Γ is composed of all the possible 
probability distributions for M populations. Described implementation transforms at every 
step the set Γ into the same. 
On the set Γ the basic, fundamental transition operator, 

 (17)

is defined. If u ∈Γ, then  is the probability distribution 
for M populations in the step number t, if we have begun our implementation of SGA given 
by G ( (14)) from the probability distribution u = (u1,…,uM) ∈ Γ, by t – application of this 
method. The number denotes the probability of appearance 
of the population wk in the step of number t. By the definition G(p) in (14),(16) and the 
remarks made at the end of the previous section the transition operator T(t) is linear for all 
natural t.  
Let us compose a nonnegative, square matrix T of dimension M, with elements βlk, l, k = 1, 
2,…,M, i.e 

T = [βlk]. (18)

We will call it the transition matrix. Then the probability distribution of all M populations in 
the step t is given by the formula  

T t u, t = 0, 1, 2, … 

Elements are independent from the number of steps of the algorithm. The above introduced 
transition operator T(t) is linked with the transition matrix by the dependence 

T(t) = T t .  (19)

Notice that though the formula (16) determining individual entries (components) of the 
matrix T are population dependent, and hence nonlinear, the transition operator T(t) is 
linear thanks to the order relation introduced in the set W of all M populations. The multi-
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index (l, k) of the component βlk kills, in some sense, this nonlinearity, since it is responsible 
for a pair of populations between which the transition takes place. The matrix T in (18) is a 
Markovian matrix. This fact permits us to apply the theory of Markov operators to analyze 
the convergence of genetic algorithms [18, 22, 26, 27]. 
Let ek ∈ Γ be a vector which at the k-th position has one and zeroes at the other positions. 
Then ek describes the probability distribution in which the population wk is attained with the 
probability 1. 
By the notation T(t)wk we will understand 

 (20)

which means that we begin the GA at the specific population wk . Further on we will assume 
Ujj > 0 for j ∈ {0,…,s – 1}. 
For a given probability distribution u = (u1,…,uM) ∈ Γ it is easy to compute that the 
probability of sampling the individual zi, for i∈{0,…,s – 1}, is equal to 

 
(21)

where k
iw  is the probability of sampling from k-th population the chromosome z i, and uk - 

the probability of appearance of the k-th population. By an expected population we call the 
vector from Rs of which i-th coordinate is given by (21). Since  for k 
∈{1,…,M}, i ∈ {0,…, s – 1} and 

 
the vector belongs to Λ . From (21) we obtain that the expected population is given by 

 
(22)

Obviously, it is possible that the expected population could not be any possible population 
with r-elements. 
For every u ∈ Γ and for every t certain probability distribution for M populations  
T(t)u is given. Consequently the expected population in this step is known. By 

 we denote the expected population at the step t, if we 
begun our experiment from the distribution u ∈ Γ; of course we have R(t)u ∈ Λ . 

3.1 Asymptotic stability 
Definition 2. We will say that the model is asymptotically stable if there exist u* ∈ Γ such that: 

 (23)
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 (24) 

Since for k ∈{1,…, M} we have 

 (25)

then (24) will give 

 (26)

It means that probability of appearance of the population wk in the step number t converges 
to a certain fixed number *

ku independently of the initial distribution u. It is realized in some 
special case, when our implementation began at one specific population p = w j . 
Theorem 1. If the model is asymptotically stable, then 

 (27)

where p* ∈Λ  is the expected population adequate to the distribution u*. Particularly, we have also 

 (28)

Proof. From (22) we have 

 
and 

 
Then 

 

 
On the basis of (24) the equality follows (27). Taking into account our notation, given in (20), 
the formula (28) is the particular case of (27).                                                                          
Theorem 1 states that for the asymptotically stable case the expected population stabilizes, 
converging to p* ∈Λ  independently of initial conditions. This result has a fundamental 
meaning for the analysis of the convergence of genetic algorithms. This generalization will 
be the subject of our next paper. Moreover, this theorem is an extension of Th.4.2.2.4 4 from 
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[24] for the case when it is possible to attain any population in a finite number of steps, (not 
only in one step). It means that the transition operator does not need to be positively 
defined, but there exists such k, that the k-th power of the transition matrix possesses a 
column which is strongly positive. The same concerns Th.4.2.2 1 of [24, 25] which is true 
only for a positively defined transition matrix. 
We shall say that from the chromosome za it is possible to obtain zb in one mutation step with 
a positive probability if Uba > 0. We shall say that from the chromosome za it is possible to 
get the chromosome zb with positive probability in n-step mutation if there exists a sequence 
of chromosomes 

0l
z ,…, 

nl
z , such that 

0l
z = za, nl

z = zb, and for any k = 1,…, n it is possible 

to attain the chromosome 
kl

z from 
1kl −

z in one step with a positive probability. 
Definition 3. Model is pointwise asymptotically stable if there exists such a population w j that 

 (29)

Condition (29) denotes that in successive steps the probability of appearance of a population 
other than w j tends to zero. It is a special case of the asymptotic stability for which 

u*= e j . 

Theorem 2. Model is pointwise asymptotically stable if and only if there exists exactly one 
chromosome za with such a property that it is possible to attain it from any chromosome in a finite 
number of steps with a positive probability. In this situation the population wj is exclusively composed 
of the chromosomes za and 

 (30)

holds. Moreover, the probability of appearance of population other than wj tends to zero in 
the step number t with a geometrical rate, i.e. there exists λ ∈ (0, 1), D∈ R+ such that 

 
(31)

 
The proofs of our theorems and auxiliary lemmas are stated in other articles [29-31, 33]. 
From the formula (30) it follows, that from a population wj we receive wj with the probability 
equal 1. Moreover, if wj becomes once, then from this moment on we shall permanently have 
populations wj . Numbers λ and D could be determined for a specific model. It will be the 
subject of the next articles. 
Theorem 2 states that the convergence to one population could occur only under specific 
assumptions. This justifies the investigation of the asymptotic stability which is different 
from that in Definition 3. 
Definition 4. By an attainable chromosome we denote za ∈ Z such that it is possible to attain it from 
any other chromosome in a finite number of steps with a positive probability. Let us denote by Z* the 
set of all za with this property. 
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Theorem 3. Model is asymptotically stable if and only if Z* ≠ 0. 
 

Theorem 4. Let us assume that the model is asymptotically stable. Then the next relationship holds: 
 

            (war) *
ku > 0 if and only if the population wk is exclusively composed of chromosomes 

belonging to the set Z*.                                                                                                                            

Corollary 1. If Z*= Z then *
ku  > 0 for all k ∈ {1,…,M}.                                                                       

Here we set the summary of our results: 
1. Z*= 0 ⇒ lack of asymptotic stability; 

2. Z*≠ 0 ⇒asymptotic stability but: 

3. cardinality (Z*) = 1 ⇒ pointwise asymptotic stability (in some sense convergence to one 
population); 

4. cardinality (Z*) > 1 ⇒ asymptotic stability, but there is no pointwise asymptotic 
stability. 

If one restricts to a binary simple genetic algorithm with a positive mutation probability, 
then it is possible to attain any individual (chromosome) from any other individual. Then 
there is more than one binary chromosome which is possible to attain from any other in a 
finite number of steps with a positive probability, and by Corollary 1, it is impossible to get 
the population composed exclusively of one type of chromosome. It could be interesting to 
consider non-binary cases for which the above observation does not hold. 

3.2 Genetic algorithms with parameters adaptation 
Genetic algorithm is realized as an adaptation process, hence it is natural to expect, that 
during its action its parameters are adapted on the base of some internal dynamics of the 
algorithm. It follows from the conjecture, that at different states, i.e. at different steps of the 
algorithm, values of algorithm parameters could be changed in the optimal way to 
accelerate the process convergence. 
Till now the problem of algorithm parameters fitting is complex and not well defined, and it 
has an undefined structure. However, there exist many arguments for parameters 
adaptations that can improve action of actual genetic algorithm. There exists an opinion that 
by adding individual algorithm or metha-algorithm related to the actual one one can 
improve the solution of the problem. Such situation may be realized by an adaptation of 
genetic algorithms parameters on the base of the present state of the process (i.e. the actual 
population). It is conducted, for example, by introducing the methodology of parameters 
changing, which uses information on populations and values of the fitness function. The 
same can be proposed by a modification of the fitness function only. 
In most case such adaptation is realised by increasing not only the dimension of 
chromosoms but also the search space, and consequently the population vector. Then, there 
appears an extra meta-algorithm, which runs parallel to the actual genetic one. 
Even in such situations our algorithm model is conserved (16), and then the search space is 
enlarged (the arguments set) and in consequence the number of possible populations grow. 
The dimension of the Markovian matrix describing new, composed algorithm 18 grows. 
However, the transition operator (19) has the same properties as in the classical simple 
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genetic algorithm. Consequently, all theorems on convergence of genetic algorithms from 
the previous sections are conserved, as well as the results concerning the limit algorithm of 
the next Section 4.2 and the form of the optimal algorithm in probabilistic sense. 

4. Classification of algorithms and its invariants 
The convergence of GAs is one of the main issues of the theoretical foundations of GAs, and 
has been investigated by means of Markov's chains. The model of GA as a Markov's chain is 
relatively close to the methods known in the theory of dynamical systems. 
In the analysis of GAs regarded as (stochastic) dynamical systems one can use the fact, 
(proven by Ornstein and Friedman [4, 10]) which states that mixing Markov's chains are 
Bernoulli's systems and consequently, the entropy of the systems is a complete metric 
invariant. 
Those facts enable us to classify GAs using the entropy. The systems for which the entropies 
have the same value are isomorphic. Hence the entropy makes it possible to classify GAs by 
splitting them into equivalence classes. 

4.1 Isomorphism of algorithms 
The domain of research of the ergodic theory is a space with measure and mappings which 
preserve it. The measure space is the point set X with a measure m (when normalised to one, 
it is called the probability) defined on  - algebra of its subsets B, called measureable. To use 
results of the theory some defintions [16, 15] must be introduced. 
Definition 5. Let (X1, B1, m1), (X2, B2, m2) be measure spaces. We say that a mapping φ : X1 →X2 is 
measure preserving if: i) it is measurable, i.e. φ -1(A) ∈ B1 for every A ∈ B2, and ii) m1(φ -1(A)) = 
m2(A). If X1 = X2 and m1 = m2 =: m and φ preserves a measure m then we say that m is φ-invariant 
(or invariant under φ). 
In the example below we will say that so-called 1D backer's transformation3preserves 
Lebesgue measure of the line. Let X = [0; 1) and consider φ1(x) = 2x (mod 1). Notice that even 
though the mapping doubles the length of an interval I, its inverse image has two pieces in 
general, each of which has the length of I, and when we add them, the sum equals the 
original lenght of I. So φ1 preserves Lebesgue measure. 
The generalization of the above mapping to 2D is the backer' transformation defined4 on the 
square X = [0, 1] × [0, 1] as 

 
(32)

which presereves the 2D Lebesgue measure on the unit square. 
Definition 6. Probability spaces (X1, B1, m1), (X2, B2, m2) are said to be isomorphic if there exist 
M1 ∈ B1, M2 ∈ B2 with m1(M1) = 1 = m2(M2) and an invertible measure preservimg 
transformation φ : M1 → M2. 

                                                 
3  It is also called 1D Bernoulli shift. 
4 The transformation is the composition of three transformations of the unit square first, 
press down the square, cut in the midle and move the right half to the top of the left half. 
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In [16] the defintion is more general and requires the mapping φ  to be defined on whole X1 

and be almost everywhere bijective from X1 onto X2, i.e. it must be bijective except for the 
sets of measure zero. However, in view of Definition 6 the sets X1\M1 and X2\M2 have zero 
measure. 
In order to investigate genetic algorithms and their similarity (or even more - isomorphism) 
we need to consider mappings defined on probability space. 
Definition 7. Suppose probability spaces (X1, B1, m1), (X2, B2, m2) together with measure preserving 
transformations T1 : X1→ X1; T2 : X2 → X2. We say that T1 is isomorphic to T2 if there exist M1 ∈ 
B1, M2 ∈ B2 with m1(M1) = m2(M2) = 1 such that: i) T1(M1) ⊆ M1, T2(M2) ⊆M2, and ii) there is an 
invertible measure-preserving transformation 

 
Consider infinite strings made of k symbols from [1,…, k]. Put   An 
element x of X is denoted by (x1 x2 x3…).5 Let a finite sequence p1, p2,…, pk, where for each i 

the number pi ∈ [0, 1] be such that 
 
For t ≥ 1 define a cylinder set (or a block) of 

length n by 

 (33)

With this denotation let us introduce the main definition of the Bernoulli shift which plays 
the main role in our approach [15, 16]. 
Definition 8. Define a measure μ on cylinder sets by 

 (34)

A probability measure on X, again denoted by μ, is uniquely defined on the  - algebra generated by 
cylinder sets. We call μ the (p1,…,pk)-Bernoulli measure and X is the Bernoulli shift space. The one-
sided Bernoulli shift transformation T on X defined by 

 (35)

 
Similarly, we may define the two-sided Bernoulli shift transformation by 

 
on  where * denotes the 0-th coordinate in a sequence. Let us notice that the 
shift preserves the measure μ. 
In the case of a binary sequence when we have two symbols only and if each symbol has 
probablity  the space X identified with  is ( , )-Bernoulli shift space. 
Moreover, the space X is somorphic to [0, 1] with Lebesgue measure if each element x = (b1, 
b2,…) ∈ X and the transformation is defined by 

                                                 
5 If k = 2 then x is said to be a binary sequence. 
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To see why, notice that not every y ∈ [0, 1] has unique binary expansion, but the set of such 
points has measure zero, and we ignore them. Hence the transformation (36) is almost 
everywhere bijective (cf. remark below Def. 6) and measure preserving. 
The next notions are related to Markov measure and Markov shift. As previously consider 
the space  and let P = (Pij) be a k×k stochastic matrix with the right hand 
operation6. Suppose that π = (πi) be the right probability eigenvector of P, i.e. it satisfies 

 and Pπ = π. Define ν  on the cylinder sets by 

 (37)

Notice that the sequence of appearance is a1, a2,…, an. 
Definition 9. A unique shift invariant probability measure, again denoted by ν, on the -algebra 
generated by the cylinder sets, we call the Markov measure and then X is called the Markov shift 
space. 
Notice that the matrix P defines the transition probabilty 

 
which is the conditional probabilty (of an event xn+1 = j given that an event xn = i has 
occured). Notice that Markov shifts are Bernoulli shifts if the columns of the matrix B are 
identical. Moreover, the numbers  satisfy 

 
for any a ∈ {1, 2,…,k}. 
We can identify a Bernoulli measure or a Markov measure with a measure on the interval [0, 
1] through the binary expansion (36) (i.e. each binary sequence x = (b1, b2,…) is identified 
with the sum of R.H.S. of (36)). If the probability p ∉ {0,1/2, 1}, then the (p, 1-p)- Bernoulli 
measure represented on [0, 1] is singular continuous [16]. 

4.2 Limit distribution 
Now, after [16] we are ready to formualate main facts concerning the limit distribution of 
the Markov matrix. 
Theorem 5. Let T = (Tij) be a M×M stochastic matrix. Suppose that π = (πi) be a right probability 

eigenvector of T , i.e. it satisfies
 

 and 

 Tπ = π. (38) 

Then the following relationship hold: 

                                                 
6 Choe in [16] considers the left hand operation. 
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i. there exists  . 

ii. Q is stochastic (i.e. Markovian) matrix , 

iii. QT = TQ = Q , 

iv. If Tv = v then Qv = v. 

 

Theorem 6. All columns of Q are identical and equal to the column vector π.                                     

Since each Markov shift is a Bernoulli shift if columns of the Markov matrix are identical, 
the limit distribution may be regarded as a Bernoulli shift. Hence the isomorphism of the 
limit distribution may be treated in the same way as for Bernoulli shifts, i.e. with the help of 
the entropy, cf. Theorem 9. 
Theorem 7. The convergence Tn - Q  is of exponential type, when n→ ∞.                                       

One may ask whether it is possible to find a convergence bound in terms of the second 
eigenvalue of the matrix T and how it is related to the eigenvalues of the matrix Q? 

Moreover, the limit operator Q is a projection operator QQ = Q. Its eigenspace is composed 
of one eigenvector π and its properties will help in finding relations to NFL. It will be the 
subject of the next publication [32]. 
Theorem 8. If a genetic algorithm (14) is described by a transition matrix (18) that possesses the 
eigenvector π as a probability vector corresponding to the unit eigenvalue, i.e. the matrix satisfies Eq. 
(38), then there exists an optimal algorithm in the probabilistic sense. It means that the algorithm 
starting at an arbitrary initial distribution of populations in one step generates the limit distribution. 
This limit distribution is desrcibed by the matrix Q appearing in Theorem 5. 

Proof. Let a vector c = (ci) describe the initial distribution of populations, with . 

Let us take an arbitrary row of the matrix Q, say j. Then in view of Theorem 6 all elements of 

this row are the same and equal to πj . Then making the product Qc we will get for this row 

 
This means that Qc = π. 
The recent theorem is in some sense complementary to the No Free Lunch Theorem. NFL 
Theorem describes the whole universe of optimization problems and algorithms used to 
solve them. The present theorem, on the other side, concernes on an individual algorithm 
dedicated to an individual optimization problem. The former theorem tells that in the mean 
all algorithms behave in similar way as far as all problems are concerned. The latter 
theorem, however, states that for allmost every genetic (evolutionary) algorithm and every 
single optimization problem there exists not only the better algorithm but also the best 
(optimal) in the probabilistic sense. This algorithm cannot be, in general, deterministic, since 
the assumptions concerning the pointwise asymptotic stability may not hold (cf. Definition 3 
and Theorem 2). The problem of determining, even in the approximate form, the best 
algoritm is still open. It is hope that the pointwise asymptotic stability can be helpful here. 
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There is of course the question of uniquenss: two different genetic algoritms may lead to 
two different limit distributions. Moreover, to two different algorithms may correspond one 
optimal algorithm. This remark may be used in formulation new methods of classification of 
genetic algorithms, additional to the entropy and the fractal dimension. 

5. Trajectory of BGA 

Let X be a space of solutions of an optimisation problem characterized by a fitness function  
f : X → R ;X ⊂ Rm for which a binary genetic algorithm (BGA) will be invented. Each 

element x ∈ X will be encoded in the form of a binary chromosome of the length l (cf. 
Section 2.1). The coding function ϕ: X → {0, 1}l = B maps elements of X into chromosome 
from the B space. 
Let us assume that the genetic algorithm acts on r-element populations. Each population 
forms a multiset [Pr] in the product space Br. For the i-th generation we will use the 
denotation [ r

iP ], for the population and each element of this multiset can be identified with 
a vector 

 (39)

rembering that a population is an equivalent class of points from the vector space Br. The 
equivalent relation is defined by the class of all possible permutations of the set of r-th 
numbers {1, 2,…, r}. Notice that in view of our denotation from Sec.2.1 each i

jx , j = 1, 2,…, r 
is one of elements of the set Z. 
Let us notice that we can identify points from X with their encoded targets in B under the 
action of space Xr. By a trajectory of the genetic algorithm of the duration N we mean a set 

 
(40)

where N is the number of steps (generations) of the genetic algorithm which is realized. 
Let pm and pc be the probabilities of the mutation and crossover, respectively, while ps is the 
probability of selection, all independent from the generation. 
Then, for such a genetic algorithm the probability of the appearance of the population [ 1

r
iP+ ] 

at the generation i + 1 after the population [ r
iP ] at the generation i, is the conditional 

probability 

 (41)

Here by f( r
iP ) we understand the vector{valued function of the form [f( 1

ix ), f( 2
ix ),…, f( i

rx )]. 

The initial population [ 1
rP ] is generated by the use of a uniform probability distribution 

over the set B, i.e. each point from B has the same probability of being selected as a member 
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(component) of [ 1
rP ]. Next populations following that one, i.e. chosen in next generations, 

are results of the action of the GA and, hence, may have a non-uniform probability 
distribution. 
Let us notice that in view of our assumptions it follows from (41) that the probability of the 
appearance of each population depends on the previous population and does not depend on 
the history (i.e. on earlier population; the probabilities pm, pc and ps can be regarded as 
parameters of the function P). 
Now, if we look at the trajectory of the GA defined by (40), we can see that its generation is 
an ergodic (mixing) process and Markov's one. Subsequent populations (i.e. points of the 
trajectory) are states of the process about which we can say that each state is accessible with 
the probability 1. 

6. Entropy 
Let us denote by Ti the operator which maps i-th generation (point of the trajectory) into the 
next one. Having the probability distribution (41) characterizing the mapping Ti from one 
population to another, we can define the entropy of the mapping 

 

(42)

where [ 1,
r

i jP+ ] is a possible population from the coding space B, j = 1, 2,…, 2 rN ,…,M: 

According to our previous proposition the initial population is generated by the use of a 
uniform probability, and the entropy may attain the maximal value generated by the GA. In 
the next step the probabilities of populations are not uniform and differ at each generation; 
this is the essence of the action of GA. Consequently the entropy of the mapping Ti 

decreases. In the limit case when the number of steps tends to infinity one could expect that 
the terminal population will be composed of r copies (exactly speaking, according to (39) { a 
cartesian product) of the same element (an optimal solution). However, this case will be 
possible only in the case of the pointwise asymptotic stability of GA. In general, the entropy 
will tend to minimum. 
Entropy as a function of the probability of mutation and selectio grows with the growing 
mutation probability and decreases when the selection pressure grows. Then the entropy 
could realize a measure of interactions between mutations and selection operators. Entropy 
also depends on the number of elements in population and it is decreasing when the 
population grows. The entropy value of the trajectory could be linked with computational 
complexity of the evolutionary algorithms. 
Now several questions arise. Does an optimal form of the entrop change exist? What is its 
limit value, if it is different from zero for the optimisation process performed by GA ? Does 
an optimal process of the entropy change exist along which an optimal value of the solution 
can be reached? 
Since the determination of the probability of the mapping Ti, as well as the entropy Hi, in an 
analytical way is rather difficult to be performed, we are proposing to substitute them with 
a fractal dimension which is related to the entropy [10] and can characterize non-
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deterministic features of GA. It should be mentioned that in [8] general statistical and 
topological methods of analysis of GAs have been introduced from another viewpoint. 
Theorem 9. (Ornstein [10]) Every two Bernoulli shifts with the same entropy are isomorphic.         

Lemma 1. (Choe [16])) Let  be the (p, 1- p) Bernoulli shift space that is regarded 
as the unit interval [0, 1) endowed with the Euclidean metric. Let Xp denote the set of all binary 
sequences x ∈ X such that 

 
then Hausdorff dimension of the set Xp is equal to the entropy -p log2 p- (1 - p) log2(1 - p) of the 
Bernoulli shift transformation. Similar results can be obtained for a Markov shift space.                      

Moreover one can use the Hausdorff dimension or its approximation as an invariant of 
equivalence of algorithms. 

7. Fractal dimensions 

To be more evident, let us recall the notion of the s-dimensional7 Hausdorff measure ([5]) of 
the subset E ⊂ Rl, where s ≥ 0. If E ⊂ Ui Ui and the diameter of Ui, denoted by (Ui), is less 

than ε for each i, we say that {Ui} is an ε - cover of E. For ε > 0, let us define 

 
(43)

where the in_mum is over all ε-covers {Ui} of E. The limit of as ε → 0 denoted by Hs(E), 
is the s-dimensional Hausdorff measure of E. 
Let us notice that in the space Rl one can prove that Hl(E)= klLl(E), where Ll is the l-

dimensional Lebesgue measure and kl is a ratio of volume of the l - dimensional cube to  

l - dimensional ball inscribed in the cube. 

It is evident that (E) increases as the maximal diameter ε of the sets Ui tends to zero, 
therefore, it requires to take finer and finer details, that might not be apparent in the larger 
scale into account. On the other hand for the Hausdorff measure the value Hs(E) decreases as 
s increases, and for large s this value becomes 0. Then the Hausdorff dimension of E is 
defined by 

 (44)

and it can be verified that . 
Working with compact subsets of a metric space (X, d) new dimension is introduced. This 
dimension is also less accurate than the Hausdorff dimension. To calculate this dimension 

                                                 
7 This s has nothing to do with s introduced in Section 2. 

Limit Properties of Evolutionary Algorithms 

 

19 

for a set S ⊂ X imagine this set lying on an evenly-spaced grid. Let us count how many 
boxes are required to cover the set. The box-counting dimension is calculated by observing 
how this number changes as we make the grid finer. Suppose that N(ε ) is the number of 
boxes of the side length ε required to cover the set. Then the box-counting dimension is 
defined as: 

 
(45)

In Appendix more detailed presentation of properties of the Hausdorff and box-counting 
dimensions is included. Harrison in [5] recommends the box-counting dimension to be used 
only for closed sets, although even for compact sets it can differ from Hausdorff dimension 
and, moreover, the box dimension gives the most natural result than the measure Hs. 

8. Dimension of trajectory 
By inventing the fractal (Hausdorff) dimension the trajectory of GA's or its attractor can be 
investigated. Algorithms could be regarded as equivalent if they have the same 
computational complexity while solving the same problem. As the measure of 
computational complexity of genetic algorithm, we propose a product of population's size 
and the number of steps after which an optimal solution is reached. This measure of 
computational complexity of genetic algorithms joins the memory and the temporal 
complexity. 
During the execution of genetic algorithms, a trajectory is realized and should "converge" to 
some attraction set. It is expected that an ideal genetic algorithm produces an optimal 
solution which, in the term of its trajectory, leads to an attractor which is one{ element set. 
On the other hand, for an algorithm without selection the attractor is the whole space. Then, 
we could say that algorithms are equivalent when they produce similar attractors [6]. 
Our proposal is to use fractal dimensions to measure the similarity of attractors on the base 
of Lemma 1. 
Definition 10. Two genetic algorithms are equivalent if they realize trajectories with the same 
fractal dimension. 
Hence, instead of the entropy, the fractal dimension will be use as an indicator, or better to 
say - a measure of the classifications of GAs. 
The transfer from the entropy to the new indicator can be made with the help of particular 
gauges. The first gauge could be the so-called ρ-entropy based dimension introduced by 
Pontrjagin and Schnirelman in 1932 (and repeated by Kolmogorov and Tihomirov in 1959), 
in the following way: among all collections of balls of radius ρ that cover a set E in Rl ( or in 
more general case, in some metric space) is by definition one that requires the smallest 
number of balls. When E is bounded, this smallest number is finite and can be denoted by 
N(ρ) and called ρ - entropy. Their dimension, called the lower entropy dimension, was 
defined by 

 
(46)
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The second gauge is the so-called information dimension of the trajectory defined by: 

 
(47)

where W(ε) is the number of elements of the trajectory which are contained in a l - 
dimensional cube with the edge length equal to ε, and  is the probability of finding 
of i - th element, and Ni - number of points in i-th hypercube, N - number of trajectory points. 
In further analysis we are going to replace (47) and (45) with its approximation, namely the 
box or capacity dimension. 
In [6] the box counting dimension de_ned in [3] has been introduced with its approximated 
formula (cf. (2) in [6]). 
Here we use another approach to the approximation. Let N(T, ε) be the minimum number of 
r-dimensional cubes with the edge length equal to ε , that covers the trajectory T ⊂ X , and X 
is a l- dimensional search space. To be more evident let us consider the case when ε = 2-k and 
diminish the length of cube edges by half. Then the following ratio will approximate the box 
counting dimension of trajectory T 

 
(48)

due to the fact that log2 x = log2 e ln x. The approximated expression (48) of the box 
dimension counts the increase in the number of cubes when the length of their edges is 
diminished by half. 

8.1 Compression ratio 
It is our conjecture that some characteristic feature of the trajectory of GA can be obtained by 
analysing the ration of the compressed trajectory to itself. We decided to investigate 
Lempel-Ziv compression algorithm [17] applied to populations executed by various genetic 
algorithms. We implemented five De Jong's functions with 10 different parameters sets. 
Each experiment was run 10 times. All together we obtained 500 different trajectories. The 
following settings of algorithms were considered 
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where EXP is the experiment number; CROS is type of crossover operator (one point, two 
point, uniform); PC and PM are probabilities of crossover and mutation, respectively; and 
SEL is type of selection operator (tournament, rank, and proportional). In each experiment 
the population consisted of 25 points and the genetic algorithm was realized on 100 
generations (points). 
We have performed numerous experiments on compressing particula generations with 
Lempel-Ziv algorithm of various bit resolution. We have measured number of prefixes 
resulting from compression process and corresponding compression ratio in scenarios of 
two types. The first one has considered single generations, and for each trajectory we have 
obtained corresponding trajectory of number of prefixes used. In the second scenario, each 
next generation was added to all past generations forming an ascending family of sets of 
generations. Compressing elements of such family gave an overall picture how number of 
prefixes used in the compression stabilizes over time. 

8.2 Experiments with dimensions 
The first experiments with attractors generated by GAs and the expression (48) have been 
performed by our co-worker in [6]. His results allow us to claim that the present approach 
can be useful in the GA's dynamics research. 
In our paper we include new calculation results. 12 benchmark functions were used (cf. [13, 
7]) in the analysis. Experiments were performed for different dimension: 10, 15, 20 bits with 
operator parameters and Popsize. Then the box counting dimension was used to calculate 
the trajectory dimension. 
 

 
Fig. 1. Final joint results of fractal dimension 

As far as the analytical approach and the formal definitions of dimensions (43) and (47) are 
concerned their computer implementation needs additional investigations. Computer 
accuracy is finite, hence all limits with e tending to zero will give unrealistic results. For 
example, if in (47) the calculation drops below the computing accuracy the expression value 
becomes zero or undefined. It means that we have to stop taking limit values in early stage. 
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Hence, the questions arise: to which minimal value of e the calculation should be performed 
and whether and how the relations with limits should be substituted with finite, non-
asymptotic, expression? This, however, will be the subject of our further research. 
The main idea of our experiments was the verification and confrontation of our theoretical 
considerations and conjectures with real genetic algorithms. 
 

 
Fig. 2. Average results of fractal dimension 

 
Fig. 3. Joint results of fractal dimension 

On the basis of our experiments we can conclude that: 
1. Selection. 
Change of the selection methods while preserving the other parameters does not effect the 
values of fractal dimension. 
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2. Crossover. 
When the number of crossover positions is changing the fractal dimension is growing with 
roulette selection method and is decreasing when selection is a tournament. 
3. Populations. 
Fractal dimension is growing with the number of individuals in population. 
4. Mutation probability changes have small implication on the value of fractal dimension. 
The analysis of the experimental result. 
The value of box-counting dimension of the trajectory of genetic algorithms is not random. 
When we use the same fitness function and the same configurations, then the box 
dimensions become clustered near the same value. Whole trials of the independent running 
attains the same values. Moreover with the different functions but the same configuration 
we deal with the conservation of box-counting dimension clustering. 
Average values of the box-counting dimension for the united trajectories of the algorithms 
from the same trial were similar to these which were calculated by averaging of the 
dimension of individual trajectories. This fact acknowledges the conjectures that box-
counting dimension could characterize the complexity of algorithms. Box-counting 
dimension describes the way of evolution during search. Algorithms which attain the 
maximum in a wide loose set have bigger dimension than others which trajectories were 
narrow, with small differences between individuals. 
One can say that bigger box dimension characterizes more random algorithms. The main 
result of the experiments states that fractal dimension is the same in the case when some 
boxes contains one individual as well as when these boxes contain many elements 
(individuals). Box dimension does not distinguish the fact that two or more elements are in 
the same place. They undergo counting as one element. The value of dimension should 
depend on the number of elements placed in each box. Our main conclusion is that good 
characterization is the information dimension. 

9. Conclusions 
One of the main results reported in this Chapter is the limiting algorithm and populations' 
distribution at the end of infinite steps. Theorem 5 does not tell about the form of the next 
population when actual population is known; it gives rather the limit distribution of all 
possible populations of the algorithm considered. The limiting algorithm describes globally 
the action of the genetic algorithm. It plays the role of the law of big numbers, known from 
the probability theory, however, for genetic algorithms. Knowledge the limiting algorithm 
could help in standard calculations: just in one step one could obtain the limit distribution. It 
could accelerate calculations and gives chance to omit the infinite numbers of calculation 
steps. 
If the limiting algorithm is known an extra classification tool is for our disposal, and new 
hierarchial classification method can be suggested. It will base not only on entropy, fractal 
and dimensions of trajectory, but on transition matrix T, its eigenvalues, eigenvectors and 
limiting matrix Q. This hierarchie could be as follows: 
• Two genetic algorithms are equivalent if their transition matrices are the same. 
• Two genetic algorithms are equivalent if they have the same limit distribution π. 
• Two genetic algorithms are equivalent if their limiting algorithm, described by the 

matrix Q is the same. 
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• Two genetic algorithms are equivalent if the entropy of their trajectories is the same. 
• Two genetic algorithms are equivalent if the fractal (box-counting, information, 

Hausdorff) dimensions of their trajectories are the same. 
• Two genetic algorithms are equivalent if they generate the same order in populations. 
We can see that the proposed scheme of classification referes to concepts known in the 
probability theory and the theory of dynamical systems. The open question is the role of 
different concepts and their importance. Is it possible to introduce the order relations in the 
proposed scheme? This will be investigated in the next publications. 

10. Acknowledgement 
The research work on the paper was partially done by W.K and S.K. in the framework of the 
KBN Project (State Committee for Scientific Research) No. 3 T11 C007 28. Authors thanks 
Professor Zbigniew Michalewicz and Dr. Jolanta Soca la for the inspiration and valuable 
discussions. 

11. Appendix 
Fractal and box - counting dimensions 
To make the definitions more evident let us notice that for the graph Γf of a smooth, i.e. C1, 
real function f of one variable we have dimH(Γf ) = 1, while if the function f is Cε (i.e. Hölder 
continuous of class ε) then dimH(Γf ) ≤ 2 - ε. The Hausdorff dimension of the Peano curve has 
dimension 2 while the Hausdorff dimension of the Cantor middle set is log2=log3, while its 
topological dimension DT is zero. In most cases Hausdorff dimension ≥ the topological one. 
In its classical form a fractal is by definition a set for which the Hausdorff dimension strictly 
exceeds the topological dimension. 
Topological dimension takes non-negative integer values and is invariant under 
homeomorphism, while the Hausdorff dimension is invariant under bi-Lipschitz maps 
(sometimes called quasi-isometries). For self-similar sets ([5, 3]) that are built from pieces 
similar to the entire set but on a finer and finer scale, and can be regarded as an invariant set 
for a finite set of contraction maps on Rl, the Hausdorff dimension is the same as its 
similarity dimension8  It is the theory of fractal and its main object of interest, namely 
iterated function systems where fractal dimensions are commonly in use [2]. Deterministic 
and random algorithms are constructed for computing fractals from iterated function 
systems. However, such procedure are mostly implemented for 2D case, i.e. for fractals in 
R2. For genetic algorithm applications such tools are of small importance. More 
investigations on the similarities between genetic algorithms and iterated function systems 
with probabilities ([2]) are needed. 
In fractal geometry, the Minkowski dimension is a way of determining the fractal dimension 
of a set S in a Euclidean space Rn, or more generally of a metric space (X, d). This dimension 
is also, less accurately, sometimes known as the packing dimension or the box-counting 
                                                 
8 Let frig be the contraction ratios of the family of contraction maps (S1, S2,…,Sm) and E be 
the invariant set for this family, then the unique positive number s such that  is 
the similarity dimension of E ([5]). 
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dimension. To calculate this dimension for a fractal S, imagine this fractal lying on an 
evenly-spaced grid, and count how many boxes are required to cover the set. The box-
counting dimension is calculated by seeing how this number changes as we make the grid 
finer. Suppose that N(ε) is the number of boxes of side length ε required to cover the set. 
Then the box-counting dimension is defined as: 

 
(49)

If the limit does not exist then one must talk about the upper box dimension and the lower 
box dimension which correspon to the upper limit and lower limit respectively in the 
expression above. In other words, the box-counting dimension is well defined only if the 
upper and lower box dimensions are equal. The upper box dimension is sometimes called 
the entropy dimension, Kolmogorov dimension, Kolmogorov capacity or upper Minkowski 
dimension, while the lower box dimension is also called the lower Minkowski dimension. 
Both are strongly related to the more popular Hausdorff dimension. Only in very 
specialized applications is it important to distinguish between the three. See below for more 
details. Also, another measure of fractal dimension is the correlation dimension. 
Both box dimensions are finitely additive, i.e. if a finite collection of sets {A1,A2,…,An} is 
given then 

 
However, they are not countably additive, i.e. this equality does not hold for an infinite 
sequence of sets. For example, the box dimension of a single point is 0, but the box 
dimension of the collection of rational numbers in the interval [0, 1] has dimension 1. The 
Hausdorff dimension by comparison, is countably additive. An interesting property of the 
upper box dimension not shared with either the lower box dimension or the Hausdorff 
dimension is the connection to set addition. If A and B are two sets in a Euclidean space then 
A + B is formed by taking all the couples of points a, b where a is from A and b is from B and 
adding a + b. One has 

 
Relations to the Hausdorff dimension The box-counting dimension is one of a number of 
definitions for dimension that can be applied to fractals. For many well behaved fractals all 
these dimensions are equal. For example, the Hausdorff dimension, lower box dimension, 
and upper box dimension of the Cantor set are all equal to log(2)/ log(3). However, the 
definitions are not equivalent. The box dimensions and the Hausdorff dimension are related 
by the inequality 

 (50)

In general both inequalities may be strict. The upper box dimension may be bigger than the 
lower box dimension if the fractal has different behaviour in different scales. For example, 
examine the interval [0, 1], and examine the set of numbers satisfying the condition for any 
n, all the digits between the 22n-th digit and the 22n+1-1-th digit are zero. The digits in the 
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"odd places", i.e. between 22n + 1 and 22n+2 -1 are not restricted and may take any value. This 
fractal has upper box dimension 2/3 and lower box dimension 1/3, a fact which may be 
easily verified by calculating N(ε) for ε = 210

n
− and noting that their values behaves 

differently for n even and odd. To see that the Hausdorff dimension may be smaller than the 
lower box dimension, return to the example of the rational numbers in [0, 1] discussed 
above. The Hausdorff dimension of this set is 0. 
Box counting dimension also lacks certain stability properties one would expect of a 
dimension. For instance, one might expect that adding a countable set would have no effect 
on the dimension of set. This property fails for box dimension. In fact 

 
It is possible to define the box dimensions using balls, with either the covering number or 
the packing number. The covering number Ncovering(ε) is the minimal number of open balls of 
radius ε required to cover the fractal, or in other words, such that their union contains the 

fractal. We can also consider the intrinsic covering number '
coveringN (ε), which is defined the 

same way but with the additional requirement that the centers of the open balls lie inside 
the set S. The packing number Npacking(ε) is the maximal number of disjoint balls of radius ε 
one can situate such that their centers would be inside the fractal. While N, Ncovering, 

'
coveringN and Npacking are not exactly identical, they are closely related, and give rise to identical 

definitions of the upper and lower box dimensions. This is easy to prove once the following 
inequalities are proven: 

 (51)

The logarithm of the packing and covering numbers are sometimes referred to as entropy 
numbers, and are somewhat analogous (though not identical) to the concepts of 
thermodynamic entropy and information-theoretic entropy, in that they measure the 
amount of "disorder" in the metric space or fractal at scale ε, and also measure how many 
"bits" one would need to describe an element of the metric space or fractal to accuracy ε. 
Sometimes it is just too hard to find the Hausdorff dimension of a set E, but possible for 
other definitions that have some restriction on the ε -covers considered in the definition. We 
recall here the most common alternative. It is the box dimension, introduced by 
Kolmogorov in 1961 (cf.[5]), and which is defined in the same way as Hausdorff dimension 
except that in the definition of measure only balls (discs) in Rl of the same radius ε are 
considered for covers of E. It follows that box dimension of E is always ≥ dim(E). Moreover 
the box dimension of the closure of E is the same as for the set E itself. Since the box-
counting dimension is so often used to calculate the dimensions of fractal sets, it is 
sometimes referred to as “fractal dimension”. We prefer the term box dimension, however, 
because sometimes the term “fractal dimension” might refer to box dimension, Hausdorff 
dimension, or even other measures of dimension such as the information dimension or 
capacity dimension. 
Sometimes box counting dimension is referred to as “similarity dimension” in the context of 
self-similar sets. If a set is self-similar, there is an expansion factor r by which one can blow 
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up a small copy to get the whole set. If there are exactly N such small copies that make up 
the entire set, the box dimension is easily seen to be lnN/ ln r . 
Let us consider the  be the set of rational numbers in the interval 
[0, 1], that is p ≤ q are relatively prime integers. Since the rationals are dense in [0, 1], any 
interval we choose contains some. This means for every ε we need  boxes to cover 

the whole Q. Consequently . Thus the box dimension of the 

rational numbers is 1. 
The last example will be given by the new set P = {x ∈ [0, 1]} x has a decimal expansion 
which does not contain 4 nor 5. Notice that 0.4 has the two representations, namely .4 and 
.39999(9). The set P is disconnected: it does not contain the open interval (0.4, 0.6). We shall 
see that the set is closed and also self-similar: any small piece of it can be scaled up to look 
like the whole thing just by multiplying by an appropriate power of 10. It can be proven that 

 
At the same time the topological dimension of P is zero. 
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fractal has upper box dimension 2/3 and lower box dimension 1/3, a fact which may be 
easily verified by calculating N(ε) for ε = 210

n
− and noting that their values behaves 

differently for n even and odd. To see that the Hausdorff dimension may be smaller than the 
lower box dimension, return to the example of the rational numbers in [0, 1] discussed 
above. The Hausdorff dimension of this set is 0. 
Box counting dimension also lacks certain stability properties one would expect of a 
dimension. For instance, one might expect that adding a countable set would have no effect 
on the dimension of set. This property fails for box dimension. In fact 

 
It is possible to define the box dimensions using balls, with either the covering number or 
the packing number. The covering number Ncovering(ε) is the minimal number of open balls of 
radius ε required to cover the fractal, or in other words, such that their union contains the 

fractal. We can also consider the intrinsic covering number '
coveringN (ε), which is defined the 

same way but with the additional requirement that the centers of the open balls lie inside 
the set S. The packing number Npacking(ε) is the maximal number of disjoint balls of radius ε 
one can situate such that their centers would be inside the fractal. While N, Ncovering, 

'
coveringN and Npacking are not exactly identical, they are closely related, and give rise to identical 

definitions of the upper and lower box dimensions. This is easy to prove once the following 
inequalities are proven: 

 (51)

The logarithm of the packing and covering numbers are sometimes referred to as entropy 
numbers, and are somewhat analogous (though not identical) to the concepts of 
thermodynamic entropy and information-theoretic entropy, in that they measure the 
amount of "disorder" in the metric space or fractal at scale ε, and also measure how many 
"bits" one would need to describe an element of the metric space or fractal to accuracy ε. 
Sometimes it is just too hard to find the Hausdorff dimension of a set E, but possible for 
other definitions that have some restriction on the ε -covers considered in the definition. We 
recall here the most common alternative. It is the box dimension, introduced by 
Kolmogorov in 1961 (cf.[5]), and which is defined in the same way as Hausdorff dimension 
except that in the definition of measure only balls (discs) in Rl of the same radius ε are 
considered for covers of E. It follows that box dimension of E is always ≥ dim(E). Moreover 
the box dimension of the closure of E is the same as for the set E itself. Since the box-
counting dimension is so often used to calculate the dimensions of fractal sets, it is 
sometimes referred to as “fractal dimension”. We prefer the term box dimension, however, 
because sometimes the term “fractal dimension” might refer to box dimension, Hausdorff 
dimension, or even other measures of dimension such as the information dimension or 
capacity dimension. 
Sometimes box counting dimension is referred to as “similarity dimension” in the context of 
self-similar sets. If a set is self-similar, there is an expansion factor r by which one can blow 
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up a small copy to get the whole set. If there are exactly N such small copies that make up 
the entire set, the box dimension is easily seen to be lnN/ ln r . 
Let us consider the  be the set of rational numbers in the interval 
[0, 1], that is p ≤ q are relatively prime integers. Since the rationals are dense in [0, 1], any 
interval we choose contains some. This means for every ε we need  boxes to cover 

the whole Q. Consequently . Thus the box dimension of the 

rational numbers is 1. 
The last example will be given by the new set P = {x ∈ [0, 1]} x has a decimal expansion 
which does not contain 4 nor 5. Notice that 0.4 has the two representations, namely .4 and 
.39999(9). The set P is disconnected: it does not contain the open interval (0.4, 0.6). We shall 
see that the set is closed and also self-similar: any small piece of it can be scaled up to look 
like the whole thing just by multiplying by an appropriate power of 10. It can be proven that 

 
At the same time the topological dimension of P is zero. 
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1. Introduction  
There are many problems in various theoretical and practical disciplines that require robust 
structure identification techniques with as few restricting assumptions in terms of model 
structure and potentially relevant input variables (features) as possible. Due to its implicit 
variable selection and the possibility to identify also nonlinear model structures, the basic 
concept of Genetic Programming (GP) has the required descriptive potential and provides 
results in form of easily interpretable formulae as an additional benefit. However, when 
using standard GP techniques, the potential of GP is still rather limited and restricted to 
special applications. 
This chapter presents further developed algorithmic concepts which can be combined with a 
Genetic Algorithm (GA) as well as with Genetic Programming (GP). Especially the latter 
combination provides a very powerful, generic and stable algorithm for the identification of 
nonlinear systems, no matter if the application at hand is in the context of regression, 
classification or time-series analysis. 
After a general introduction in heuristic optimization and Evolutionary Algorithms, the 
further developed algorithmic concepts are explained. Furthermore, some exemplary 
applications of Genetic Programming to data based system identification problems are 
illustrated. 

2. Heuristic optimization 
Many practical and theoretical optimization problems are characterized by their highly 
multimodal search spaces. These problems include NP-hard problems of combinatorial 
optimization, the identification of complex structures, or multimodal function optimization. 
In the area of production planning and logistics such problems occur especially frequently 
(as for example task allocation, routing, machine sequencing, container charging). The 
application of conventional methods of Operations Research (OR) like dynamic 
programming, the simplex method, or gradient techniques, often fails for these kinds of 
problems, because the computation effort grows exponentially with the problem dimension. 
Therefore, heuristic methods with much lower computational costs are applied quite 
frequently, even if they can no longer assure the achievement of a global optimal solution. 
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1. Introduction  
There are many problems in various theoretical and practical disciplines that require robust 
structure identification techniques with as few restricting assumptions in terms of model 
structure and potentially relevant input variables (features) as possible. Due to its implicit 
variable selection and the possibility to identify also nonlinear model structures, the basic 
concept of Genetic Programming (GP) has the required descriptive potential and provides 
results in form of easily interpretable formulae as an additional benefit. However, when 
using standard GP techniques, the potential of GP is still rather limited and restricted to 
special applications. 
This chapter presents further developed algorithmic concepts which can be combined with a 
Genetic Algorithm (GA) as well as with Genetic Programming (GP). Especially the latter 
combination provides a very powerful, generic and stable algorithm for the identification of 
nonlinear systems, no matter if the application at hand is in the context of regression, 
classification or time-series analysis. 
After a general introduction in heuristic optimization and Evolutionary Algorithms, the 
further developed algorithmic concepts are explained. Furthermore, some exemplary 
applications of Genetic Programming to data based system identification problems are 
illustrated. 

2. Heuristic optimization 
Many practical and theoretical optimization problems are characterized by their highly 
multimodal search spaces. These problems include NP-hard problems of combinatorial 
optimization, the identification of complex structures, or multimodal function optimization. 
In the area of production planning and logistics such problems occur especially frequently 
(as for example task allocation, routing, machine sequencing, container charging). The 
application of conventional methods of Operations Research (OR) like dynamic 
programming, the simplex method, or gradient techniques, often fails for these kinds of 
problems, because the computation effort grows exponentially with the problem dimension. 
Therefore, heuristic methods with much lower computational costs are applied quite 
frequently, even if they can no longer assure the achievement of a global optimal solution. 
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About three decades ago, inspired by nature, literature started to discuss generic heuristic 
methods which often surpass problem specific heuristics and are moreover much more 
flexible concerning modifications in the problem definition. 
These optimization techniques derived from nature include Simulated Annealing (SA) 
which draws an analogy between the annealing of material to its lowest energetic state and 
an optimization problem, or Evolutionary Algorithms (EAs) which are basically inspired by 
biological evolution. Further recent approaches like Tabu Search (TS), Ant-Colony 
Optimization (ACO), or Particle Swarm Optimization (PSO) are also mentionable in the 
context of bionically inspired optimization techniques. Agent theory is also on the verge of 
achieving greater importance in the field of heuristic optimization. 
 

 
Fig. 1. Taxonomy of optimization techniques 
A well-established taxonomy of optimization techniques is given in Fig. 1 whereby our 
classification describes those classes of methodologies in more detail which are more 
relevant in the context of the present contribution. This has especially been done for the 
class of Evolutionary Algorithms which is described in further detail in the following 
section. The detailed analysis of variants of Genetic Algorithms as shown in Fig. 1 can in 
principle also be applied to Genetic Programming since it is based on the same algorithmic 
and methodological concepts. 

3. Evolutionary computation 
3.1 Evolutionary algorithms: genetic algorithms, evolution strategies and genetic 
programming 
Literature generally distinguishes Evolutionary Algorithms into Genetic Algorithms (GAs), 
Evolution Strategies (ES), and Genetic Programming (GP). 
Genetic Algorithms, possibly the most prevalent representative of Evolutionary 
Computation, were first presented by Holland (Holland, 1975). Based upon Holland's ideas 
the concept of the Standard Genetic Algorithm (SGA), which is still very much influenced 
by the biological archetype, became accepted (described e.g. in (Tomassini, 1995). Due to the 
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enormous increase of computational power since 1975, the potential of GAs has been tapped 
more and more. Consequently the popularity of GA-concepts increased steadily and many 
groups around the world started to solve various problems with GAs. However, it soon 
became clear that for most practical tasks the binary encoding originally used by Holland 
was not at all sufficient. Accordingly many different encodings, and also necessary new 
crossover and mutation operators, were introduced which showed qualitatively very 
diverse behavior. An overview of different encodings and operators developed for various 
applications can for instance be found in (Dumitrescu et al., 2000). Since then GAs have been 
successfully applied to a wide range of problems including many combinatorial 
optimization problems, multimodal function optimization, machine learning, and the 
evolution of complex structures such as neural networks. An overview of GAs and their 
implementation in various fields is given by Goldberg (Goldberg, 1989) and Michalewicz 
(Michalewicz, 1996). 
Evolution Strategies, the second major representative of Evolutionary Algorithms, were 
introduced by Rechenberg (Rechenberg, 1973) and Schwefel (Schwefel, 1994). Evolution 
Strategies tend to find local optima quite efficiently. Though, in the case of multimodal 
solution spaces, Evolution Strategies tend to detect a global optimum hardly, if none of the 
starting values is located in the absorbing region of such a global optimum. Nevertheless, ES 
have lead the way in the implementation of self-adaptive concepts in the area of 
Evolutionary Computation and are considered one of the most powerful and efficient 
concepts for the optimization of real-valued parameter vectors. 
Genetic Programming (GP) has been established as an independent branch in the field of 
Evolutionary Computation even if this technique could also be interpreted as a special class 
of GAs. Based on the basic considerations of Koza (Koza, 1992) to interpret the underlying 
problem representation in a more general and dynamic way than a usual GA, the basic 
mechanisms of selection, recombination, and mutation are adapted and applied in a similar 
manner as found within GAs. The more general problem representation of GP allows the 
definition of individuals of a population as structures, formulas, or even more generally as 
programs. This allows the consideration of new applications of EAs like data based systems 
identification, for example; however, it still seems to be a very ambitious goal to generate 
more complex programs by means of Genetic Programming. 
 

 
Fig. 2. The GP Lifecycle (Langdon & Poli, 2002) 
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Computation, were first presented by Holland (Holland, 1975). Based upon Holland's ideas 
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by the biological archetype, became accepted (described e.g. in (Tomassini, 1995). Due to the 
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enormous increase of computational power since 1975, the potential of GAs has been tapped 
more and more. Consequently the popularity of GA-concepts increased steadily and many 
groups around the world started to solve various problems with GAs. However, it soon 
became clear that for most practical tasks the binary encoding originally used by Holland 
was not at all sufficient. Accordingly many different encodings, and also necessary new 
crossover and mutation operators, were introduced which showed qualitatively very 
diverse behavior. An overview of different encodings and operators developed for various 
applications can for instance be found in (Dumitrescu et al., 2000). Since then GAs have been 
successfully applied to a wide range of problems including many combinatorial 
optimization problems, multimodal function optimization, machine learning, and the 
evolution of complex structures such as neural networks. An overview of GAs and their 
implementation in various fields is given by Goldberg (Goldberg, 1989) and Michalewicz 
(Michalewicz, 1996). 
Evolution Strategies, the second major representative of Evolutionary Algorithms, were 
introduced by Rechenberg (Rechenberg, 1973) and Schwefel (Schwefel, 1994). Evolution 
Strategies tend to find local optima quite efficiently. Though, in the case of multimodal 
solution spaces, Evolution Strategies tend to detect a global optimum hardly, if none of the 
starting values is located in the absorbing region of such a global optimum. Nevertheless, ES 
have lead the way in the implementation of self-adaptive concepts in the area of 
Evolutionary Computation and are considered one of the most powerful and efficient 
concepts for the optimization of real-valued parameter vectors. 
Genetic Programming (GP) has been established as an independent branch in the field of 
Evolutionary Computation even if this technique could also be interpreted as a special class 
of GAs. Based on the basic considerations of Koza (Koza, 1992) to interpret the underlying 
problem representation in a more general and dynamic way than a usual GA, the basic 
mechanisms of selection, recombination, and mutation are adapted and applied in a similar 
manner as found within GAs. The more general problem representation of GP allows the 
definition of individuals of a population as structures, formulas, or even more generally as 
programs. This allows the consideration of new applications of EAs like data based systems 
identification, for example; however, it still seems to be a very ambitious goal to generate 
more complex programs by means of Genetic Programming. 
 

 
Fig. 2. The GP Lifecycle (Langdon & Poli, 2002) 



 Advances in Evolutionary Algorithms 

 

32 

In (Koza, 1992) it has been pointed out that virtually all problems in artificial intelligence, 
machine learning, adaptive systems, and automated learning can be recast as a search for a 
computer program, and that genetic programming provides a way to successfully conduct 
the search for a computer program in the space of computer programs. Similar to GAs, GP 
works by imitating aspects of natural evolution: A population of solution candidates evolves 
through many generations towards a solution using evolutionary operators (crossover and 
mutation) and a "survival-of-the-fittest" selection scheme. Whereas GAs are intended to find 
an array of characters or integers representing the solution of a given problem, the goal of a 
GP process is to produce a computer program solving the optimization problem at hand. As 
in every evolutionary process, new individuals (in GP's case, new programs) are created. 
They are tested, and the fitter ones in the population succeed in creating children of their 
own. Unfit ones die and are removed from the population (Langdon & Poli, 2002). This 
procedure is graphically illustrated in Fig. 2. 

3.2 Considerations about selected theoretical aspects of evolutionary computation 
techniques 
Fig. 1 indicates that this classification - especially of the bionic methods - is mainly inspired 
by the natural role-model. For a more directed consideration of algorithmic concepts of the 
different methods, it is reasonable to differentiate these methods by their basic idea. One 
possible (and especially in the context of further considerations drawn in this paper) well-
suited classification is the distinction between neighbourhood-based and non-
neighbourhood-based search techniques as illustrated in Fig. 3. 

 
Fig. 3. Classification of heuristic optimization techniques due to their mode of operation 

As some kind of approximation for the gradient information which is not available for 
problems of combinatorial optimization, a conventional neighbourhood search aims to 
obtain information about the descent/increase of the objective function in the local 
neighbourhood at a certain point. Conventional neighbourhood searches start from an 
arbitrary point in the solution space and iteratively move to more and more promising 
points along a given neighbourhood structure (with respect to the objective function) as 
long as no better solution can be detected in the local neighbourhood. The self-evident 
drawback of this method is that for more complex functions the algorithm converges and 
gets stuck in the next attracting local optimum which is often far away of a global optimum. 
It is a common feature of all methods based upon neighbourhood searches to counteract this 
essential handicap. Simulated Annealing, on the one hand, also allows moves to worse 
neighbourhood solutions with a certain probability which decreases as the search process 
progresses in order to scan the solution space broader at the beginning, and to become more 
and more goal-oriented as the search process goes on. A Tabu Search on the other hand 
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introduces some kind of memory in terms of a so-called tabu list which stores moves that 
are considered to lead to already visited areas of the search space. However, Evolution 
Strategies (ES), a well-known representative of Evolutionary Computation, also have to be 
considered as some kind of parallel neighbourhood search, as asexual mutation (a local 
operator) is the only way to create new individuals (solution candidates) in the standard ES-
versions. Therefore, in the case of multimodal test functions, global optima can be detected 
by Evolution Strategies only if one of the starting values is located in the absorbing region of 
a global optimum. 
Genetic Algorithms (and certainly also GP), the non-neighbourhood-based search 
techniques in our classification of heuristic methods, take a fundamentally different 
approach to optimization, by considering recombination (crossover) as their main operator, 
whereas the essential difference to neighbourhood-based techniques is given by the fact that 
recombination is a sexual operator, i.e. properties of individuals from different regions of 
the search space are combined in new individuals. Therefore, provided that the used 
problem representation and the operators are adequate, the advantage of applying GAs to 
hard optimization problems lies in their ability to search broader regions of the solution 
space than heuristic methods based upon neighbourhood search do. Nevertheless, GAs are 
also frequently faced with a problem which, at least in its impact, is quite similar to the 
problem of stagnating in a local but not global optimum. This drawback, called premature 
convergence in the terminology of GAs, occurs when the population of a GA reaches such  
suboptimal state that the genetic operators can no longer produce offspring which 
outperform their parents (Fogel, 1994). 
A very essential question about the general performance of a GA is, whether or not good 
parents are able to produce children of comparable or even better fitness (the building block 
hypothesis implicitly relies on this). In natural evolution, this is almost always true. For 
Genetic Algorithms this property is not so easy to guarantee. The disillusioning fact is that 
the user has to take care of an appropriate coding in order to make this fundamental 
property hold. In order to overcome this strong requirement we have developed an 
advanced selection mechanism (Affenzeller & Wagner 2004) which is based on the idea to 
consider not only the fitness of the parents, in order to produce a child for the ongoing 
evolutionary process. Additionally, the fitness value of the evenly produced offspring is 
compared with the fitness values of its own parents. The offspring is accepted as a candidate 
for the further evolutionary process if and only if the reproduction operator was able to 
produce an offspring that could outperform the fitness of its own parents. This strategy 
guarantees that evolution is presumed mainly with crossover results that were able to mix 
the properties of their parents in an advantageous way. Via these means we are already in a 
position to attack one of the reasons for premature convergence. Furthermore, this strategy 
has proven to act as a precise mechanism for self-adaptive selection pressure steering, which 
is of major importance in the migration phases of parallel Evolutionary Algorithms. All 
these new generic concepts are very promisingly combined in the SASEGASA-algorithm 
(Affenzeller & Wagner, 2004). Even if the aspect of parallelization is mainly used to improve 
global convergence in our research so far, the next obvious step is to transform these 
massively parallel concepts to parallel computing environments. Furthermore, already 
established parallel GAs should benefit from the recently developed new theoretical 
concepts as the essential genetic information can be assembled much more precisely in the 
migration phases. 
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In (Koza, 1992) it has been pointed out that virtually all problems in artificial intelligence, 
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Fig. 3. Classification of heuristic optimization techniques due to their mode of operation 
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introduces some kind of memory in terms of a so-called tabu list which stores moves that 
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4. Advanced algorithmic concepts for genetic algorithms 
4.1 General remarks on variable selection pressure within genetic algorithms 
Our first attempt for adjustable selection pressure handling was the so-called Segregative 
Genetic Algorithm (SEGA) (Affenzeller, 2001) which introduces birth surplus in the sense of 
a (μ, λ)-Evolution Strategy (Beyer, 1998) into the general concept of a GA and uses this 
enhanced flexibility primary for adaptive selection pressure steering in the migration phases 
of the parallel GA in order to improve achievable global solution quality. The SASEGASA, 
which stands for Self Adaptive Segregative Genetic Algorithm with aspects of Simulated 
Annealing, is a further development of SEGA and distinguishes itself mainly in its ability to 
self-adaptively adjust selection pressure in order to achieve progress in solution quality 
without loosing essential genetic information which would lead to unwanted premature 
convergence. The SASEGASA is generic in that sense that all algorithmic extensions are 
problem-independent so that they do not depend on a certain problem representation and 
the corresponding operators. 
Therefore we have decided to combine the further deloped algorithmic concepts of 
SASEGASA with Genetic Programming (GP). However, we have observed two major 
differences when combining SASEGASA and Genetic Programming compared to the 
experience in the application of SASEGASA in other domains like combinatorial 
optimization or real-valued optimization (Affenzeller,  2005): 
• The potential in terms of achievable solution quality in comparison with the standard 

algorithms seems to be considerably higher in the field of GP than in standard 
applications of GAs. 

• By far not all algorithmic extensions of SASEGASA are relevant in GP. Only some 
algorithmic aspects of the rather complex SASEGASA concept are really relevant in the 
GP domain which makes the handling and especially parameter adjustment easier and 
more robust. 

Therefore,  the discussion in this article will focus on the algorithmic parts of SASEGASA 
which are really relevant for GP. In doing so, this section is structured as follows: The first 
subsection describes the general idea of SASEGASA in a quite compact way, whereas the 
second subsection focusses on that parts of SASEGASA in further detail which are really 
relevant for the present contribution and discusses the reasons for that. 
For a more detailed description of all involved algorithmic aspects the interested reader is 
referred to the book (Affenzeller, 2005). 
In principle, the SASEGASA introduces two enhancements to the basic concept of Genetic 
Algorithms. Firstly, it brings in a variable and self-adaptive selection pressure in order to 
control the diversity of the evolving population in a goal-oriented way w.r.t. the objective 
function. The second concept introduces a separation of the population to increase the 
broadness of the search process and joins the subpopulation after their evolution in order to 
end up with a population including all genetic information sufficient for locating a global 
optimum. 
At the beginning of the evolutionary process the whole population is divided into a certain 
number of subpopulations. These subpopulations evolve independently from each other 
until the fitness increase stagnates in all subpopulations because of too similar individuals 
within the subpopulations, i.e. local premature convergence. Thanks to offspring selection 
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this can be triggered exactly when an upper limit of selection pressure is exceeded (cf. 
Subsection 4.2). Then a reunification from n to (n-1) subpopulations is performed by joining 
an appropriate number of adjacent subpopulation members. 
Metaphorically speaking this means, that the villages (subpopulations) at the beginning of 
the evolutionary process are slowly growing together to bigger towns, ending up with one 
big city containing the whole population at the end of evolution. By this approach of width-
search essential building blocks can evolve independently in different regions of the search 
space at the beginning and during the evolutionary process. 

4.2 Offspring selection in SASEGASA 
In (Affenzeller & Wagner, 2004) it has been shown that the aspect of segregation and 
reunification is highly relevant in order to systematically improve the achievable global 
solution quality of combinatorial optimization problems as for example the travelling 
salesman problem (TSP). Still, we have not used this parallel approach for our GP-based 
modelling studies. On the one hand, this would lead to a high increase of runtime 
consumption; on the other hand, anyway, we do not expect any significant increase of 
solution quality using this concept for GP-based modelling as results summarized in 
(Affenzeller, 2005) indicate that this parallel approach does not remarkably effect the 
solution quality of optimization problems others than combinatorial problems. 
A very essential question about the general performance of GAs or GP is, whether or not 
good parents are able to produce children of comparable or even better fitness (the building 
block hypothesis implicitly relies on this). In natural evolution, this is almost always true. 
For artificial evolution and exceptionally for Genetic Programming this property is not so 
easy to guarantee. Offspring selection assures exactly that property. 
Offspring selection considers not only the fitness of the parents, in order to produce a child 
for the ongoing evolutionary process. Additionally, the fitness value of the evenly produced 
offspring is compared with the fitness values of its own parents. The offspring is accepted as 
a candidate for the further evolutionary process if and only if the reproduction operator was 
able to produce an offspring that could outperform the fitness of its own parents. This 
strategy guarantees that evolution is presumed mainly with crossover results that were able 
to mix the properties of their parents in an advantageous way. 
As in the case of conventional GAs, or GP, offspring are generated by parent selection, 
crossover, and mutation. In a second (offspring) selection step, the number of offspring to be 
generated is defined to depend on a predefined ratio-parameter giving the quotient of next 
generation members that have to outperform their own(!) parents (success ratio, SuccRatio). 
As long as this ratio is not fulfilled, further children are created and only the successful 
offspring will definitely become members of the next generation; this procedure is 
illustrated in Fig. 4. When the postulated ratio is reached, the rest of the next generation 
members are randomly chosen from the children that did not reach the success criterion. 
Within our new selection model, selection pressure is defined as the ratio of generated 
candidates to the population size. An upper limit for selection pressure gives a quite 
intuitive termination heuristics: If it is no more possible to find a sufficient number of 
offspring that outperform their parents, the algorithm terminates in the simple version as 
being used here or new genetic information is brought in by reunification in the more 
general formulation of the parallel SASEGASA. 
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Fig. 4. Flowchart for embedding offspring selection into a Genetic Algorithm. 

5. Data based systems identification 
Data mining is understood as the practice of automatically searching large stores of data for 
patterns. Incredibly large (and quickly growing) amounts of data are collected not only in 
commercial, administrative, and scientific, but also in medical databases; this is the reason 
why intelligent computer systems that can extract useful information (such as general rules 
or interesting patterns) from large amounts of observations are needed. In short, "data 
mining is the non-trivial process of identifying valid, novel, potentially useful, and 
ultimately understandable patterns in data" (Fayyad et al. 1996). This is why data based 
machine learning algorithms have to be applied in order to retrieve additional insights into 
human biological processes, how environment factors influence human health or how 
certain human parameters are related. The following three classes of data analysis problems 
are relevant within medical data analysis: Regression, classification and time series analysis. 
In any of these cases, statistical algorithms are supposed to "learn" functions by analyzing a 
set of input-output examples ("training samples"). 
In statistics, regression analysis is understood as the act of modelling the relationship 
between variables, namely between one or more target ("dependent") variables and other 
variables (also called input or explanatory variables). I.e., the goal is to find a mathematical 
function f which can be used for calculating the target variable Y using the input variables 
X1..p: 

Y = f(X1, ..., Xp) 
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Classification is understood as the act of placing an object into a set of categories, based on 
the object's properties. Objects are classified according to an (in most cases hierarchical) 
classification scheme also called taxonomy. A statistical classification algorithm is supposed 
to take feature representations of objects and map them to a special, predefined 
classification label. Such a classification algorithm is designed to learn a function f which 
maps a vector of object features X1,…,Xp into one of several classes. A given sample xi can so 
be classified using f and X1,…,Xp: 

Class(xi) = f(X1(i), ..., Xp(i)) 
There are several approaches which are nowadays used for solving classification problems; 
the most common ones are (as described in (Mitchell, 2000), e.g.) decision tree learning, 
instance-based learning, inductive logic programming (such as in Prolog, e.g.) and 
reinforcement learning. 
Finally, there are two main goals of time series analysis: On the one hand one tries to 
identify the cause of a phenomenon represented by a sequence of observations and its 
relationships with other sequences of observations, and on the other hand the goal is to 
predicting future values of time series variables. Both of these goals require that the pattern 
of observed time series data is identified and more or less formally described. I.e., for the 
target variable Y one wants to identify a function f so that Y at time t can be calculated using 
values of other variables and (if available) also information about the history of Y: 

Y(t) = f(X1(t-{0..z}), ….. , Xp(t-{0..z}), Y(t-{0..z}))  
where z is the maximum time offset for variables used in f. Detailed discussions of time 
series and methods applicable can for example be found in (Box & Jenkins, 1976) or Kendall 
& Ord, 1990). 

6. GP-Based structure identification 
6.1 Introduction, general remarks 
The concept of structure identification is not very common in the literature. Indeed, it is well 
known that every model consists of an equation set (the structure) and of values 
(parameters). System identification actually implies both, but usually the definition of the 
structure is considered either obvious or as the less critical issue, while the consistent 
estimation of the parameters especially in presence of noise receives the largest part of the 
attention. By its very general problem statement, GP allows to approach the problem of 
structure identification and the problem of parameter identification simultaneously. As a 
consequence, GP techniques are used for identifying various kinds of technical systems; 
some approaches use genetic programming to identify the structure in addition to standard 
parameter estimation techniques, many other ones use GP for determining both the 
structure and the parameters of the model of a nonlinear system as for example described in 
(Rodriguez et al., 2000) and (Beligiannis et al., 2005). 
GP-based, data driven systems identification works on a set of training examples with 
known properties (X1...Xn). One of these properties (Xt) has to represent the system's target 
values. On the basis of the training examples, the algorithm tries to evolve (or, as one could 
also say, to "learn") a solution, i.e. a formula, that represents the function that maps a vector 
of input values to the respective target values. In other words, each presented instance of the 
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structure identification problem is interpreted as an instance of an optimization problem; a 
solution is found by a heuristic optimization algorithm. Further details about the operators 
used are given for example in (Winkler et al., 2006a). The goal of the implemented GP 
identification process is to produce an algebraic expression from a database containing the 
measured results of the experiments to be analyzed. Thus, the GP algorithm works with 
solution candidates that are tree structure representations of symbolic expressions. These 
tree representations consist of nodes and are of variable length; the nodes can either be 
nonterminal or terminal ones: 
• Nonterminal nodes represent functions performing some actions on one or more 

property values within the structure to produce the values of the target property (which 
should be the property which indicates which class the objects belong to); 

• A terminal node represents an input variable (i.e., a pointer to one of the objects' 
properties) or a constant. 

The nonterminal nodes have to be selected from a library of possible functions, a pool of 
potential nonlinear model structural components; as with every GP modeling process, the 
selection of the library functions is an important part since this library should be able to 
represent a wide range of systems. When the evolutionary algorithm is executed, each 
individual of the population represents one structure tree. 
Since the tree structures have to be usable by the evolutionary algorithm, mutation and 
crossover operators for the tree structures have to be designed. Both crossover and mutation 
processes are applied to randomly chosen branches (in this context a branch is the part of a 
structure lying below a given point in the tree). Crossing two trees means randomly 
choosing a branch in each parent tree and replacing the branch of the tree, that will serve as 
the root of the new child (randomly chosen, too), by the branch of the other tree. 
Mutation in the context of genetic algorithms means modifying a solution candidate 
randomly and so creating a new individual. In the case of identifying structures, mutation 
works by choosing a node and changing it: A function symbol could become another 
function symbol or be deleted, the value of a constant node or the index of a variable could 
be modified. This procedure is less likely to improve a specific structure but it can help the 
optimization algorithm to reintroduce genetic diversity in order to re-stimulate genetic 
search. 
Examples of genetic operations on tree structures are shown in Fig. 5: The crossover of 
parent1 (representing the expression “5/x1(t-5)+ln(x2(t-2))” and parent2 (“x3(t) * x2(t-1)-1.5”) 
yields child1 (“5/x1(t-5)+x3(t)*x2(t-1)”), child2 and child3 are possible mutants of child1 
representing “5/x1(t-5)+x3(t)” and “5-x1(t-5)+x3(t-1)*x2(t)”. 
Since the GP algorithm tries to maximize or minimize some objectiv fitness function (better 
model structures evolve as the GP algorithm minimizes the fitness function), every solution 
candidate has to be evaluated. In the context of data based modeling, this function should be 
an appropriate measure of the level of agreement between the original target variable's 
values and those calculated using the model to be evaluated. Calculating the sum of squared 
errors J between original values oi and calculated values ci is a simple as well as robust 
measurement of the quality of the formula at hand: 
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Fig. 5. Genetic Operations on Tree Structures. 

6.2 GP Based structure identification: the HeuristicModeler 
On the basis of preliminary work on the identification of nonlinear structures in dynamic 
technical systems (Winkler et al, 2005a), (Winkler et al, 2005b), (Del Re et al, 2005) as well as 
several other enhanced algorithmic and problem specific mechanisms we have implemented 
the HeuristicModeler (Winkler et al, 2006c), a multi-purpose machine learning algorithm 
that is able to evolve models for various different machine learning problem classes. The 
framework used for the implementation of the HeuristicModeler is the HeuristicLab 
(Wagner & Affenzeller, 2005), a framework for prototyping and analyzing optimization 
techniques for which both generic concepts of evolutionary algorithms and many functions 
for analyzing them are available. 
The algorithmic basis for the HeuristicModeler is the SASEGASA (for an explanation see 
Section 4. There are several new hybrid evolutionary concepts combined in this algorithmic 
basis, the most important ones being on the one hand the self-adaptive selection pressure 
steering and on the other hand the so-called Offspring Selection concept. 
The selection pressure measures how hard it is to produce individuals out of the current 
population that improve the overall fitness. As soon as this internal selection pressure 
reaches a pre-defined maximum value, the algorithm is terminated and presents the best 
actual model as the result of the training process. Details can be found in (Affenzeller & 
Wagner, 2004) and (Affenzeller, 2005). 
As already explained in further detail in Section 4, the basic idea of Offspring Selection is 
that individuals are first compared to their own parent solution candidates and accepted as 
members of the new generation's population if they meet certain criteria. In the context of 
structure identification and machine learning we have realized that the use of very rigid 
settings yields best results (Winkler et al., 2006b). 
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structure identification problem is interpreted as an instance of an optimization problem; a 
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Research results obtained within the last two years have lead to the conclusion that a 
simplified version of offspring selection together with a slightly modified parent selection 
shows the best and most robust results in the context of GP-applications. Thus, SuccRatio 
should be set to 1.0, i.e. every offspring for the next generation is forced to pass the success 
criterion. Furthermore, it is beneficial in GP applications to state that a child is better than its 
parents if and only if it is better than the better of the two parents. In the context of 
combinatorial optimization problems where some intermediate value of the parents fitness 
values is used as a threshold value for the success criterion, such settings would massively 
tend to support premature convergence. But in the field of Genetic Programming 
applications these parameter settings lead to high-quality results quite robustly. 
However, there is one aspect concerning parent selection that is to considered  in this 
application domain. It is - applying the parameter settings of offspring selection mentioned 
above – most effective to use different selection methods for the selection of the two parents 
which are chosen for crossover. In the present context this gender specific selection aspect 
(Wagner & Affenzeller, 2005) is implemented most effectively by selecting one parent 
conventionally by roulette-wheel selection and the other parent randomly. 
All together, this especial variant of adapted sexual selection combined with a simplified 
version of offspring selection aims to cross one above-average parent with a randomly 
selected parent (which brings in diversity) as long as a whole new population could be filled 
up with children that were better than their better parent. An upper limit for selection 
pressure acts as termination criterion in that sense that the algorithm stops, if too many 
trials (|POP| * maxSelPress) were already taken and still no new population consisting of 
successful offspring could be generated. In other words, this indicates that it is not possible 
to generate a sufficient amount of children that outperform their parents out of the current 
gene pool; obviously, this seems to be a reasonable termination criterion for an Evolutionary 
Algorithm. This special version of SASEGASA or offspring selection respectively is 
schematically shown in Fig. 6. 
The GP-based structure identification methods described in the previous section have been 
implemented as plug-ins for the HeuristicLab forming the problem specific basis of the 
HeuristicModeler. The following modeling specific extensions have been integrated into the 
general GP workflow: 
• During the execution of a structure identification algorithm it can easily happen that a 

model showing a very suitable structure is assigned a very bad fitness value only due to 
inadequate parameter settings. Therefore we have implemented an additional local 
parameter optimization stage based on real-values encoded Evolution Strategies and 
integrated it into the execution of the Genetic Programming algorithm. 

• As the GP-based model training algorithm tries to evolve better models, it can easily 
happen that models become more and more complex; the more complex models are, the 
better they can fit given training data, but they are also negative effects, namely 
increasing runtime consumption as well as the danger of overfitting. Therefore a 
heuristic tree pruning algorithm has also been integrated into the HeuristicModeler; in 
certain intervals, selected models included in the actual models pool are selected and 
pruned systematically, i.e. formula parts that do not seem to have a measurable 
influence on the model's evaluation are deleted in order to retrieve simpler models 
without significantly losing quality. 
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Fig. 6. Flowchart for embedding a simplified version of offspring selection into the GP 
process. 

Due to its flexible and wide functional basis and the extended concepts described above, the 
GP-based modelling concept implemented in the HeuristicModeler is less exposed to the 
danger of overfitting than other machine learning algorithms; recent results and 
comparisons to other data-based modelling techniques are for example summarized in 
(DelRe et al., 2005), (Winkler et al, 2006f) and (Winkler et al., 2006a). Furthermore, as we will 
show in the following section, the results generated using the HeuristicModeler can easily 
be analyzed and interpreted using the HeuristicModelAnalyzer, a tool for analyzing 
solutions for data analysis problems that includes several enhanced evolutionary modelling 
aspects. 

7. Examples and applications of GP in data based structure identification 
7.1 Regression 
For demonstrating the use of our evolutionary machine learning approach for attacking 
regression problems we have generated a synthetic data set including 5 variables and 400 
samples. This data was analyzed using the HeuristicModeler and a model was trained; this 
model is graphically shown in Fig. 7. There are several possibilities how to evaluate a 
regression model using the HeuristicModelAnalyzer: Apart from drawing the (original and 
estimated) values and a graphical representation of the formula as a structure tree, the 
average squared error can be calculated as well as an overview of the errors distribution (as 
exemplarily shown later in Fig. 11. 
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Fig. 7. A solution to a regression problem, analyzed using the HeuristicModelAnalyzer. 

7.2 Classification 
Several widely used benchmark classification datasets storing medical data (mainly survey 
records and diagnosis information) have already been analyzed using HeuristicModeler and 
HeuristicModelAnalyzer. In (Winkler et al., 2006b), (Winkler et al., 2006a) and (Winkler et 
al., 2006e) we have documented the results achieved for several medical classification 
benchmark problems, for example for the Wisconsin and the Thyroid datasets, which are 
parts of the UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/). 
Summarizing the results documented in the publications mentioned above, GP-based 
training of classifiers is able to outperform other training methods (kNN classification, linear 
modeling and ANNs) especially on test data. There are several possibilities how to evaluate 
a classification model using the HeuristicModelAnalyzer: 
Apart from drawing the (original and estimated) values and a graphical representation of 
the formula as a structure tree and calculating the average squared error, confusion matrices 
and (enhanced) receiver operating characteristics (ROC) curves can be generated. 
Furthermore, optimal thresholds are also identified automatically on the basis of a 
misclassification matrix storing information about how to weight misclassification 
dependent on the respective classes involved. This matrix is initially set so that all 
misclassifications are weighted equally; in various different applications it can be necessary 
to manipulate this weighting as it is, for example in the context of medical data analysis, 
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more critical misclassifying a diseased patient as not diseased than vice versa. In Fig. 8 we 
show a graphical representation of a solution for the Wisconsin classification problem that 
was generated using the HeuristicModeler and analyzed using the HeuristicModelAnalyzer. 
As confusion matrices are also frequently used for evaluating classifiers, these are also 
automatically displayed when analyzing a model using the HeuristicModelAnalyzer. 
 

 
Fig. 8. A solution for the Wisconsin classification problem, generated by the 
HeuristicModeler and analyzed using the HeuristicModelAnalyzer. 

Of course, classification problems occur not only in medical data analysis, but for example 
also in the context of data based quality pre-assessment in steel production. In (Winkler et 
al., 2006f) we report on an analysis done within an enhanced data processing process in 
cooperation with a large-scale industrial partner in steel industry. It was shown successfully 
that GP based structure identification is able to identify relationships between process 
parameters and the quality of steel products; on the basis of these results, high quality 
classification pre-estimators for the quality of the final results were formed. 
Last, but not least the HeuristicModelAnalyzer enables the evaluation of classifiers for 
multi-class classification problems on the basis of a multi-class extension of ROC curves. 
Basic ROC analysis provides a convenient graphical display of the trade-off between true 
and false positive classification rates for two class problems (Zweig & Vampell, 1993). In the 
context of two class classification, ROC curves are calculated as follows: For each possible 
threshold value discriminating two given classes, the numbers of true and false 
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classifications for one of the classes are calculated. For example, if the two classes "true" and 
"false" are to be discriminated using a given classifier, a fixed set of equidistant thresholds is 
tested and the true positives (TP) and the false positives (FP) are counted for each of them. 
Each pair of TP and FP values produces a point of the ROC curve. The main idea of Multi-
ROC charts as presented in (Winkler et al., 2006d) is that for each given class ci the numbers 
of true and false classifications are calculated for each possible pair of thresholds between 
the classes ci-1 and ci as well as between ci and ci+1 (assuming that the n classes can be 
represented as real numbers and that ci < ci+1 holds for every i ∈ [1,(n-1)]). The resulting 
tuples of (FP,TP) values are stored in a matrix which can be plotted easily. This obviously 
yields a set of points which can be interpreted analog to the interpretation of "normal" ROC 
curves: the closer the point are located to the left upper corner, the higher is the quality of 
the classifier at hand. For getting sets of ROC curves instead of ROC points, an arbitrary 
threshold ta between the classes ci-1 and ci is fixed and the FP and TP values for all possible 
thresholds tb between ci and ci+1 are calculated. This produces one single ROC curve; it is 
executed for all possible values of ta. An example showing 10 ROC curves is given in Fig. 9; 
this MROC chart was generated for a classifier learned for a synthetical data set storing 2000 
samples divided into 6 classes and is taken from (Winkler et al., 2006d). 
 

 
Fig. 9. An exemplary Multi-ROC chart. 

7.3 Timeseries analysis 
There is a lot of experience using the HeuristicModeler for solving time series problems on 
data recorded in the context of mechatronical systems. For example, in (Del Re et al., 2005) 
and (Winkler et al., 2005b) we report on models trained for the NOx emissions of Diesel 
engines using the GP-based identification method incorporated in the HeuristicModeler. 
Fig. 10 and 11 show the evaluation of one of these models using the 
HeuristicModelAnalyzer: Apart from drawing the (original and estimated) values and a 
graphical representation of the formula as a structure tree, an overview of the errors 
distribution is given. 
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Fig. 10. A model for the NOx emissions of a BMW Diesel engine, generated using the 
HeuristicModeler. 
 

 
Fig. 11. Evaluation of the model shown in Figure 10. 

8. Conclusion 
In this paper we have described a multi-purpose machine learning approach based on 
various evolutionary computation concepts that is applicable for several data mining 
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aspects in data driven systems identification. We have exemplarily shown how regression, 
classification and time series problems can be attacked using this algorithm. Especially in 
the context of analyzing time series problems of mechatronical systems as well as medical 
data sets we have already achieved very good results. Furthermore, we have also 
demonstrated how to analyze the results for data mining problems as well as selected 
aspects of the underlying enhanced evolutionary algorithm. 
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1. Introduction 
The purpose of this chapter is to describe a new algorithm named FPBIL (parameter-Free 
PBIL), an evolution of PBIL (Population-Based Incremental Learning). FPBIL, as well as 
PBIL (Baluja, 1994), Genetic Algorithms (GAs) (Holland, 1992) and others are general 
purpose population-based evolutionary algorithms. The success of GAs is unquestionable 
(Goldberg, 1989). Despite that, PBIL has shown to be superior in many aspects. 
PBIL is a evolutionary algorithm developed as an attempt to mimic the behavior of the 
Genetic Algorithms in an advanced stage of its execution, “in equilibrium”. The result 
shows unexpectedly that the PBIL surpasses (Baluja, 1995) the genetic algorithms in almost 
all aspects. The PBIL is faster and finds better results (Machado, 1999). However, PBIL 
depends on five parameters which need to be adjusted before each application. For example, 
variations in the learning rate produce completely different behaviors (Baluja, 1994). 
Up to today, every evolutionary algorithm, like PBIL, just mentioned, depends on at least 
one parameter which, if not adjusted properly, can cause the algorithm to be very inefficient. 
Consequently, the less parameters an algorithm has, the minor the risk of it not reaching all 
its potential in some particular application; and the less the time spent in finding the 
appropriate parameter’s values. 
One of the benefits of FPBIL—perhaps the most important—is that it is a parameter free 
algorithm (the origin of the F in FPBIL), which means that a parameter optimization, an 
application-dependent procedure required by other algorithms in order to achieve better 
results, is not necessary in FPBIL. Parameter optimization demands intense computational 
effort, a precious time often not taken into account when somebody claims that an algorithm 
finds a better result in a shorter amount of time. 
Based on PBIL, FPBIL is built with the guarantee of a better performance than that of PBIL, 
which also means (whenever the PBIL has a good outcome) a better performance in 
comparison to other algorithms, besides the advantage of none additional computational 
cost in adjusting parameters. 
We begin this chapter by describing the PBIL algorithm and, then, we present the main 
steps to the FPBIL algorithm it self. Afterwards, we compare the performance of FPBIL 
against other algorithms in typical benchmark problems and finally we propose some 
concluding remarks. 

2. PBIL algorithm 
The PBILwas created in 1994, by Shumeet Baluja. It was inspired in its previous work with 
Ari Juels (Juels et al., 1993) in an attempt to simulate the behavior of the genetic algorithms 
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(Holland, 1992; Goldberg, 1989) in “equilibrium state”, after repeated applications of the 
crossover operator. The algorithm referenced here by “PBIL” had its publication later, in 
1995 (Baluja, 1995), in which 27 problems, commonly explored in the literature of genetic 
algorithms, were examined by seven different optimization techniques, PBIL having 
achieved optimum performance in more than 80% of the cases. PBIL algorithm is shown in 
figure 1. 
 

 
Fig. 1. PBIL Algorithm. 

In PBIL, a subset BS of the search space B of some optimization problem is explored from 
one hypercube Hn ≡ [0, 1]n, in such a way that each vertex of Hn, that is, each point of 
  ≡{0, 1}n corresponds to a point of BS . This correspondence is made by the mapping 
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with Ik ≡ [k] ∈ {0, 1}, meaning that n

BS
M maps a bit vector with n bits into a point of BS —

a candidate solution to the problem. 
After the vertices of Hn are duly mapped into BS , the PBIL works exactly in the same way, 
independently of the current application and this is what makes the PBIL algorithm1 
versatile, meaning that the necessary and sufficient condition in order that an optimization 
problemcan be boarded by PBIL is the existence of n

BS
M . 

A point  ∈ Hn is called probability vector and it plays a central role in PBIL-like 
algorithms. Its n components pk ≡  [k] ∈ [0, 1] are suitable for representing the probability 
of choosing by chance the number 1 in a set Ω= {0, 1}. From  is possible to construct an 
army of  objects. All we have to do is to pick Ik to be 1 or 0, probabilistically, according to 
pk—the more pk is close to 1, the more is Ik likely to be 1. 
At the beginning of PBIL each point of BS  must be treated as potential best solution and P 
vertices of Hn are, therefore, chosen randomly from a uniform probability distribution. This 
uniform probability distribution is nothing but 0 = (0.5, 0.5, . . . , 0.5), the center of Hn. 
In PBIL’s terminology, the P vertices k of Hn selected from  forma “population”—the 
“generation” G—and each k  is called an “individual”. The PBIL algorithm consists in, once 
established the individuals of generation 0, constructing 1, which will generate the next 
population—generation 1. The process is repeated until an individual of some generation is 
considered to be good enough. In this sense, the PBIL algorithm may be viewed as the 
motion of  inside Hn until  gets close enough to some point of  corresponding to a 
satisfactory solution; the laws of motion being the PBIL rules by which  is updated from 
generation to generation. 
The measure of how good an individual is, is given by the fitness function 

 
(2) 

whose form depends explicitly on the application. 
The construction of +1 from the individuals of the generation G is the main process in a 
PBIL-like algorithm. Any point +1 of Hn different from 0 generates a non-uniform 
probability distribution on . The strategy is to modify, generation after generation, this 
probability distribution trying to turn ever more likely the sprouting of †, the optimum 
solution. In PBIL, +1 is constructed in two steps. 
In the first step, the following operations are carried through: 

 (3) 

                                                 
1 This is also true for other algorithms working with bitstrings, such as Genetic Algorithms. 
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where + and -  are respectively the best and worst individuals of generation G. That is,  

initially is dislocated towards + and then, away from -, with the intention to favor the 
occurrence of better individuals in the following generation. 
In the second step   suffers mutation, whose objective is to allow that some component 
of  reaching the value 1 (or 0) has the possibility to evolve again—since, once pk = 1 (or pk = 
0), it can not change by means of equation (4). Such mutation consists of moving the 
components of  in the direction of DM (randomly 0 or 1). This means that each 

component [j] will suffer, or not, a displacement (according to the “mutation 
probability”) in the form of: 

 (5) 

As can be verified in figure 1, the PBIL algorithm needs five parameters to work, whose 
values were determined experimentally in order to maximize the average performance of 
the algorithm in a set of different applications. In the next section, we will show how to 
extend PBIL to be parameter-free. 

3. FPBIL: parameter-Free PBIL 
FPBIL is a variation of PBIL which basically tries to eliminate the necessity of the PBIL’s 
parameter by modifying some of its fundamental principles. The result is a more efficient 
algorithm, with a superior search power and without parameters. 
As in PBIL, the FPBIL algorithm presents a probability vector , with n components  
pk ∈ [0, 1], from which P individuals k of some generation are created. The characteristic 
that differentiates them is that FPBIL uses generic mechanisms to become free of 
parameters, especially in the way  is updated and the mutation is implemented. The 
FPBIL Algorithm is presented in figure 2. 

3.1  update: eliminating the parameters α and β 
In the algorithm PBIL, the probability vector is updated by suffering a small displacement 
approaching to the best individual and another displacement moving away from the worst 
individual. In some variants of the PBIL (Baluja & Caruana, 1995; Baluja & Davies, 1998; 
Machado, 2005), only the best individual is used, or only the worst individual, or also, the 
average of the first best individuals. The fact is that, in order to evaluate who are the best 
and worst individuals, all the individuals must be evaluated, which means that all PBIL 
algorithms waste almost all the information available about the search space. 
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Fig. 2. FPBIL Algorithm. 

The rule according to which the FPBIL updates its probability vector is 

 
(6) 

which reflects exactly an average in which all P individuals are used. The difference is that 
this average is weighed by the fitness Fi ≡ F( i) of each individual. In order to appreciate 
better the change caused by this detail, it can be deduced that 
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and worst individuals, all the individuals must be evaluated, which means that all PBIL 
algorithms waste almost all the information available about the search space. 
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Fig. 2. FPBIL Algorithm. 

The rule according to which the FPBIL updates its probability vector is 

 
(6) 

which reflects exactly an average in which all P individuals are used. The difference is that 
this average is weighed by the fitness Fi ≡ F( i) of each individual. In order to appreciate 
better the change caused by this detail, it can be deduced that 
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with 
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and 

 
(9) 

Note that 1i=∑ P
i /P is approximately   so that equation (7) resembles the structure of 

equations (3) and (4) corresponding to PBIL. 
The advantage in using  is that the direction of the displacement is not based only on the 
best and worst individuals, but in all the available information about the search space at 
some generation (P evaluated individuals). Another detail about   is that the averages are 
not simple, but weighed by the differences between the fitness of each individual and the 
average fitness, so that very bad or very good individuals exert more influence than others 
with fitness next to the average. 
It is worth noting that each point  of Hn can be associated to an average fitness F  
through 

 

(10)

The reason is that from , each individual i has a probability  ( i) of being picked. After 
P tries, the individual i is picked Pi times. In the limit when P becomes sufficiently big, we 
have 

 
(11)

 
(12)

Since F is such an average, it is continuous, differentiable and it doesn’t have any local 

maximum or minimum in Hn - , which means that the extreme points of F in Hn 

occurs for † and ┴ in , with † F = F( †) and ┴ F  = F( ┴)—where ┴ 
represents the worst individual in . And that is just interesting. 
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In each generation of FPBIL, we have F  ≈ F  and the P individuals k are divided 

into two groups: those with F( k) > F  and those with F( k) < F . If we represent each 
of these groups respectively by the points 

 
(13)

and 

 
(14)

we see from equation (9) that FPBIL works in such a way that  moves in the direction that 
F grows, leading, theorically at least, to +. Just to compare, in PBIL, + and -  are 

used instead of > and <, which means that PBIL is much easier to get caught by local 
optimums. 
Obviously we can only bet that the approximation F ≈ F is good enough. Only in the 

limit P → ∞ can we be sure. The same limit when we would have already evaluated every 
element of , so that we would no longer need a search algorithm. Fortunately, the FPBIL 
algorithm also have proper mechanisms that compensate for the finiteness of P. ξ can be 
considered to be one of those. 
It can be verified that ξ plays a similar role just like α or β, related to the intensity of the 

displacement suffered by . While α and β are constants, ξ varies in accordance to the 

fitness distribution of each generation. More precisely, ξ is the half of the mean absolute 
deviation, relative to the average, of the fitness: 

 
(15)

 
(16)

 
(17)

The mean absolute deviation (δ) is a measure of dispersion of a distribution, just like the 

standard deviation. δr is only another way to express the same dispersion relative to the 
average. 
At the beginning of an execution of the FPBIL, the individuals generally possess a very bad 
fitness. While no individual detaches, ξ is small—the algorithm does not take risks by 
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making a decision on which direction to follow. When the first good individuals appear, ξ 

increases considerably. As the average fitness goes up, ξ diminishes gradualy—preventing 

itself from premature convergence. Finally, when the optimum solution is near, ξ becomes 
very small, making sure that  will not have great oscillations around it but, instead, it 
might be reached. 

3.2 Mutation: eliminating the parameters  and γ 
The role of mutation is to give “second chances” to the components of  that reach the 
values 0 or 1 when they were not supposed to do so. In the limit P →∞, FPBIL would not 
need mutation at all, as we have already discussed. But in a real situation, mutation is 
another mechanism that compensates for finite P, and it is essential to FPBIL. 
The PBIL carries mutation probabilistically (in accordance to ) through random 
displacements (proportional to γ) in the components of . The FPBIL algorithm follows a 
more direct strategy, exploring the meaning of the probability vector. First, the algorithm 
hinders any component of  from reaching the values 0 or 1. This way the emergence of any 
individual in  is always possible. That is accomplished by restricting every component pk 

of  to the interval [d, 1 — d]. As a consequence, the probability of choosing by chance any 
individual from  will always be between dn and (1 — d)n. 
Given any value d, the number c of components of  with pk ≤ d or pk ≥ 1 — d is considere to 
be the number of components which are in the correct position. Then it is possible to find 
the optimum value of d, so that it maximizes the probability of choosing from  an 
individual with the corresponding c correct components and so that is also capable of 
inverting the trend of some component going toward the wrong direction. The probability 
which must be maximized is, therefore, 

 (18)

giving 

 
(19)

The FPBIL algorithm takes d to be initially (in generation 0) d2 = 1/3—the biggest value of dc 

different from 0.5. After  is updated to , we count how many (c) components of  
 satisfy pk ≤ d2 (or pk ≥ 1 — d2). If c ≥ 3, d becomes d3 = 1/4. If d = d3 and c ≥ 4 (the number 

of components of   that satisfy pk ≤ d3 (or pk ≥ 1 — d3)), d becomes d4 = 1/5, and so on. 
Thus, it is possible to diminish d gradually as P gets close to some point in — +, 
expectedly. 
But there is also a mechanism that allows d to grow. If, for example, d = d5 = 1/6 but c  6, 

we count how many (c′) components of  satisfy pk ≤ d4 (or pk ≥ 1—d4). If c’ < 5, d 
becomes d4 = 1/5. If d = d4, c  5 and c′< 4 (the number of  components that satisfy  
pk ≤ d3 (or pk ≥ 1 — d3)), d becomes d3 = 1/4, and so on, until d hits the value d2 = 1/3, the 
biggest allowed. 
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After we count c and c′and update d, mutation do its real job: it brings back to d (or to  
1—d) any  component smaller than d (or bigger than 1—d), transforming  into 

. FPBIL’s mutation is illustrated in figure 3, where each point  represents a 
component of . As we can see, d values work as “gates” that open or close depending on 
the values of c and c′. 
 

 
Fig. 3. Two examples of mutation: in the first, d diminishes; in the second, it grows. 

3.3 Variable population size and reinitializations: eliminating the parameter P 
The size of  is 2n, which is usually very large. The population sizes commonly used in 
PBIL are very small fractions of this value. Therefore, it is reasonable to use the relation 

 2=P
n
w  (20) 

for some w. 
Perhaps the most remarkable aspect of FPBIL (and PBIL) is that the population size does not 
have to be a constant—sheer nonsense for GA users. Since every population is generated 
from  instantly after  is created, it does not matter whether we generate only one or a 
thousand individuals. There is no higher complexity involved than choosing how many 
individuals we want. 
As the number c of correct components of  increases, we must, therefore, need only 
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(21)

individuals, where the factor k/(1—d)c only appears to assure that the correct component are 
reproduced with 99.9% of probability (for k = 7) (Caldas, 2006). Using equation (19), it can be 
written as 

 
(22)

where P0 is the initial population, corresponding c = 0. FPBIL is initiated with P0 = Pn and 

every time c suffers a fluctuation, P0 is increased by 1. That occurs because, when the time 

average Gc of c stops varying, the algorithm must be imprisoned in a local optimum, so it 

must be reinitiated. The difference is that in each reinitialization P0 will be each time bigger 
(due to the fluctuations of c), increasing gradually the power of search of the FPBIL. A 
fluctuation in c will be computed whenever c does not grow or decrease directly, that is, 
whenever c, as a function of G, reaches a minimum, a maximum or simply remains constant; 

and Gc stands for the time average of c between reinitializations. 

3.4 About the fitness function 
Although FPBIL is parameters-free, it still depends on the form of the fitness function. There 
are several functional forms for F capable of determining the same order F( -) ≤ F( i) ≤ 

F( j) ≤ ・ ・ ・≤ F( +) and each one of them can generate different  and ξ values, which 
would result in equally different behaviors. Consider the analysis of equations (8) and (9) in 
two simple examples: 
1. With the transformation F '

i = f ・Fi ( f ∈ R), one has ′ =  e ξ′ = ξ, that is, the 

multiplication of the fitness by a constant factor, does not modify anything in the 
behavior of FPBIL. 

2. With the transformation F '
i  = t + Fi (t ∈ R), however, ′ = , but 

 
(23)

meaning that if t >> F  then ξ′ ≈ 0, that is, the addition of the fitness to a constant term 
modifies the intensity of the steps of the FPBIL, making the FPBIL impracticable for big 
values of t. 

Item 2 suggests that one good practice may be the use of the fitness F '
i = Fi—F( -), 

guaranteeing that ξ will never be smaller than necessary. Following such recommendation, a 
generic procedure was adopted to construct the fitness—based on the procedure used by 
Koza in the genetic programming algorithm (Koza, 1992)—described as follows. 
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The raw fitness Fr is the natural amount of the problem that one desires to maximize or 
minimize, also called objective function. From the raw fitness, the standard fitness Fs is 
constructed, which possesses the characteristic of having 0 ≤ Fs( a) < Fs( b) whenever a is 

better than b, and, preferentially, with Fs( +) = 0. From the standard fitness, the adjusted 
fitness Fa is calculated from 

 
(24)

Finally, following the recommendation of having F '
i = Fi—F( -), the fitness function used 

everywhere in this work (excep when expressly told) will be 

 
(25)

where Fa( 1
−

−G ) it is the adjusted fitness of the worse individual of the previous generation. 

The excuse for using Fa( 1
−

−G ) is that, to find F( -), it is necessary to evaluate all the 

individuals of a generation, which implies that, in order to calculate F '
i = Fi —F( -), all the 

individualsmust be evaluated twice every generation or all the individuals of a generation 
must be stored in some data structure. The adopted solution, besides economical, does not 
harm too much the original recommendation since generally Fa( 1

−

−G ) ≈Fa ( -). 

Next, we will see how to put all this into practice. 

4. Problems 
This section is intended to show how PBIL and FPBIL behave in different problems of 
growing complexity. These problems belong to specific classes, which are, ultimately, 
numerical or combinatorial, so we can learn how to proceed in both cases. Besides the 
opportunity to see how these two algorithms works in practice, we will use the results then 
achieved to quantitatively compare them and, whenever interesting, compare their results to 
those of other techniques. Let us begin with the simplest. 

4.1 A simple problem in 2H  
In order to visualize better the differences between FPBIL and PBIL, we will use them in a 
very simple problem: to find the greatest number in B = N4 ≡ {1, 2, 3, 4}. We can chose 

BS = B, so that we need only n = 2 bits to cover all BS (because 22 = 4 = number of elements 
in BS )—FPBIL and PBIL will work in H2, which is nothing but a simple (easy to visualize) 
square. That means that we can correspond each point of  to a member of BS . We may 

choose, for example, n

BSM to be the following map: 
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 (26)

Given the simplicity of this problem and the fact that we are, in this first moment, more 
interested in seeing what happens inside the hypercube, a few simplifications will be done: 
we will fix the population size; there will be no reinitializations; and the fitness will be the 
raw fitness, which we choose to be: 

 (27)

We make two experiments. In the first, we fix the population size to be P= 1, 000, 000, which 
compared to the size of BS can be considered to be infinite. The result is shown in figure 4. 

The contour lines represent constant values of F , according to equation (10) for the 
fitness defined in equation (27). The lines describe the movement of FPBIL’s and PBIL’s 
probability vectors. 
 

 
Fig. 4. Comparison between FPBIL and PBIL in H2; P=1,000,000. 

We see clearly that PBIL certainly finds the result to be “4”, but FPBIL’s line ends 
mysteriously. This is FPBIL’s mutation in action. Since n = 2, the minimum value of d 
allowed is dn = d2 = 1/3—FPBIL’s   can move only inside [1/3, 2/3]2. This doesn’t mean 
FPBIL can’t find the result “4”. In fact, from point (2/3, 1/3), the probability of getting the 
result “4” is 4/9, 2 times higher than the probability of getting “1” or “2” and 4 times higher 
than that of getting the result “3”.The mutation in PBIL is more subtle and can be observed 
in the two sudden breaks suffered by PBIL’s line. 
We also highlight, in the same figure, the blue arrows which represent the gradient of 
F . Note that before the FPBIL’s line reach the limits of [1/3, 2/3]2, it (differently from 

PBIL’s line) follows a direction very near from that of the gradient, which is just excellent, 
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considering the discussion in section 3.1, meaning that in the limit of big values of P, 

FPBIL’s line can follow the gradient of F to the optimum solution. 
From this first experiment we are tempted to think PBIL is much better. But let us not forget 
this was an “almost infinite” population size experiment. In real applications we generally 
cannot span completely (whenever we can, we surely will not need FPBIL). Hence, in the 
second experiment, we fix P = 2 (at maximum, half the elements of BS ). The results are in 
figure 5. This time we see what generally happens in a real world problem. Both PBIL and 
FPBIL get more confused, but while FPBIL’s mechanisms keep it doing its search inside 
[1/3, 2/3]2, PBIL converges prematurely to a local optimum. 
The next problem is, in a sense, a tougher version of this first. 
 

 
Fig. 5. Comparison between FPBIL and PBIL in H2; P=2. 

4.2 Banana 
The banana problem consists in minimizing the Rosenbrocks function (Gill et al., 1981): 

 (28)

From a simple observation of the expression of this equation, we may conclude, without 
trouble, that a minimum of B(x, y) occurs for (x, y) = (1, 1). Also it is not difficult to show 
analytically that this is the only point where B(x, y) becomes stationary. However, looking at 
the graph of B(x, y) it is impossible to come to the same conclusion. 
It is quite obvious the existence of a valley located at y = x2, but finding the exact point of the 
valley where B(x, y) is minimal is not simple at all. The difficulty in having such a view is 
due to the factor 100 that multiplies only (y—x2)2 , leaving out the term (1—x)2. Only when 
observed in a logarithmic scale, such as in figure 6, does the region where the minimum is 
located become apparent. The white line is a contour line that shows the banana shape, 
which names the problem. 
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considering the discussion in section 3.1, meaning that in the limit of big values of P, 

FPBIL’s line can follow the gradient of F to the optimum solution. 
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FPBIL get more confused, but while FPBIL’s mechanisms keep it doing its search inside 
[1/3, 2/3]2, PBIL converges prematurely to a local optimum. 
The next problem is, in a sense, a tougher version of this first. 
 

 
Fig. 5. Comparison between FPBIL and PBIL in H2; P=2. 

4.2 Banana 
The banana problem consists in minimizing the Rosenbrocks function (Gill et al., 1981): 

 (28)

From a simple observation of the expression of this equation, we may conclude, without 
trouble, that a minimum of B(x, y) occurs for (x, y) = (1, 1). Also it is not difficult to show 
analytically that this is the only point where B(x, y) becomes stationary. However, looking at 
the graph of B(x, y) it is impossible to come to the same conclusion. 
It is quite obvious the existence of a valley located at y = x2, but finding the exact point of the 
valley where B(x, y) is minimal is not simple at all. The difficulty in having such a view is 
due to the factor 100 that multiplies only (y—x2)2 , leaving out the term (1—x)2. Only when 
observed in a logarithmic scale, such as in figure 6, does the region where the minimum is 
located become apparent. The white line is a contour line that shows the banana shape, 
which names the problem. 
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The Rosenbrocks function have been classically used to test optimization algorithms, exactly 
because of the difficulty that this function imposes, especially for gradient-based search 
algorithms. 
The set BS ⊂ R to be codified into binary vectors, for the use of PBIL and FPBIL algorithms 

will be [- 4.194304; 4.194304)2, with a granularity of 0.000001 in both variables x and y. This 
means that each variable needs 23 bits to represent BS , resulting in a total of 246 = 70, 368, 
744, 177, 664 possibilities. 
More formally we have, with n = 2 ・23 = 46, 

 (29)

With 

 
(30)

 
(31)

 
Fig. 6. Contour lines of log10 B(x, y). The white curve, in a banana shape, highlights the blue 
area where the minimum occurs. 

Where G1( ) is the decoding of the first half of  and G2( ), of the second, both using Gra 
code2 (Knuth, 2002). The fitness function of the banana problem used in this work is simply 
B(x, y): 

 (32)

                                                 
2 The use of Gray code may improve results considerably (Baluja, 1995). 
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Since we are dealing with a minimization problem and Fp( +) = 0, the standard fitness we 
use will be the raw fitness itself: 

 (33)

In order to compare FPBIL to PBIL, we executed each algorithm 100 times and computed the 
average of the corresponding best individuals after a number of fitness evaluations. The 
result is shown in figure 7. We can see that the initial advantage of PBIL is amply overcome 
in the last fitness evaluations (approximately by a factor of 106). PBIL stagnates after 2, 000 
fitness evaluations while FPBIL keeps finding better results in a constant rate until the end. 
The next problem is a classical one concerning evolutionary search algorithms based on bit 
vectors. 
 

 
Fig. 7. Comparison between FPBIL and PBIL. 

4.3 The four peaks problem 
Consider the two functions defined on  100: 

 O( ) = number of contiguous 1’s of  starting in position 1; (34) 

 Z( ) = number of contiguous 0’s of  ending in position 100; (35) 

where, for example, O(011 ⋅ ⋅ ⋅ 111) = 0, O(111 ⋅ ⋅ ⋅ 111) = 100, Z(111 ⋅ ⋅ ⋅ 110) = 1 and  

Z(000 ⋅ ⋅ ⋅  010) = 1. Consider also the reward function 

 
(36)

defined on {0, 1, 2, . . . , 100}2 ×{0, 1, 2, . . . , 50}. In the four peaks problem, the objective is to 
maximize the function 
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 (37)

Observing FT’s plot in figure 8, one perceives that the four peaks problem is highly 
deceptive. There are two regions. One rewarded, corresponding to the upper surface, and 
another one, not rewarded, corresponding to the lower one. No point of the not-rewarded 
region (which increases with T) supplies us with any indication of the existence of the 
reward, giving the wrong impression of the existence of just peaks P1 and P2—
corresponding to FT( ) = 100—while there still are the peaks P3 and P4—corresponding to 
FT( ) = 200, the global optimums. 
 

 
Fig. 8. Plot of FT( ), the objective function of the four peaks problem. 

All the tests of the four peaks problem , carried through in this work have had T = 30 
corresponding to a great bigger difficulty than the maximum difficulty used in (Baluja & 
Caruana, 1995), when, amongst a 25 total executions, the PBIL prematurely converged 20 
times (the best result) and the genetic algorithms, between 22 and 25 times. 
The raw fitness used in the four peaks problem was simply the value of FT( ): Fr( i) = 

FT( i). Since one is dealing with a maximization problem and Fs( +) = 200, the standard 

fitness was Fs( i) = 200—FT( i). Figure 9 shows the comparison between FPBIL and PBIL, 
where the averages of the best fitness, after a number of fitness evaluations, are plotted for 
each algorithm. In 100 runs, PBIL was not able to reach the rewarded region, while the 
FPBIL did it every time, having as worst result Fr( i) = 178. 
In the four peaks problem, the observation of the probability vector’s evolution gives avery 
interesting insight into the algorithms. Figure 10, for example, illustrates a typical FPBIL 
run. It can be very clearly seen that during the first 1, 000, 000 fitness evaluations there were 
4 reinitializations. After the second reinitialization, around the 2000th generation, FPBIL 
clearly reaches the global optimum. The PBIL, on the other hand, as shown in figure 11, 
converges, by the 2000th generation, to P2. It is also worth noting the occurrence of mutation 
in PBIL. The white region corresponds to the probability vector’s component equal to 1. The 
many red spots are the effects of mutation on the several components, making them change 
toward the value 0.5. 
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Fig. 9. Comparison between FPBIL and PBIL. 

 
Fig. 10. Typical evolution of the probability vector in FPBIL. 

4.4 TSP Rykel48 
A traveling salesman must visit N cities, returning, in the end, to the city of origin, so that no 
city is visited twice. There are several possible routes (for N > 2). In fact, the number of 
routes is (N—1)!. The traveling salesman problem (TSP) consists in finding the shortest 
route. 
The TSP is a NP problem, meaning that there is not yet an algorithm of polynomial order 
that can solve it. TheNP class can be considered as an intermediary computational 
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complexity class, between classes P and EXP; as only a great amount of combinations is 
responsible for the demand of time (Lewis & Papadimitriou, 2000), the evaluation of each 
combination is usually the easy part. 
 

 
Fig. 11. Typical evolution of the probability vector in PBIL. 

Rykel48 (TSPLIB, 2006) is a asymmetrical TSP with 48 cities resulting in a total of 258,623, 
241,511,168,180,642,964,355,153,611,979,969,197,632,389,120,000,000,000 possible routes. In an 
asymmetric TSP the distance from one city A to another city B may be different from the 
distance from B to A, modeling, perhaps, single handed roads. Although the symmetric and 
asymmetric TSPs share the same number of routes (for the same amount of N), the 
asymmetry mixes up the search space topology, resulting in more complexes TSPs. 
An important difference between Rykel48 TSP and the former problems is that the 
restriction that no city can be visited more than once prevents the direct codification of 
routes into bit vectors. The routes must be represented in an indirect way. In this work, we 
used the random keys representation (Bean, 1994; Caldas, 2006). 
The Rykel48 TSP’s raw fitness used in this work was simply the length of each route Ci 

corresponding to individual i : 

 (38)

Since it is a minimization problem, we could have Fp( i) = Fb( i). But since Fp( +) = 14, 422 
≠ 0, the standard fitness used will be 

 (39)

Figure 12 shows the result. As it can be seen, FPBIL keeps the lead formost of its execution, 
especially in the latest 500,000 fitness evaluations. 
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Figure 13 shows the minimum and maximum values found after a number of the algorithms 
execution. The shortest route found by FPBIL was 14, 674, only 1.75% higher than the global 
optimum. Note that the PBIL presented a greater dispersion around the average. 
At this point, it must be emphasized that the route length 14, 422 is not easily reached by 
any general purpose search algorithm. For example, the genetic algorithms only reach 
values close to 16, 500 (Machado, 1999) and the algorithms based on ant colonies—designed 
specifically to find smaller routes—achieve the optimum value only when processed in 
parallel, even so, only when assisted with heuristics (de Lima, 2005). Fig. 13 shows that PBIL 
is capable of reaching values just below 15, 000. The fact that FPBIL finds routes with the 
length of 14, 674 is a remarkable achievement. 
 

 
Fig. 12. Comparison between FPBIL and PBIL. 
 

 
Fig. 13. Maximum and minimum values after a number of executions. 
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5. Conclusion 
It can be affirmed, in conclusion to this chapter, that the FPBIL is an evolutionary algorithm, 
competitive with the best current optimization techniques, compact, relatively modest in the 
use of computational resources—like PBIL—, well founded, efficient, robust, self-adaptable, 
simple and parameterless. 
Furthermore, the examples show that the FPBIL is efficient at both numerical and 
combinatorial problems. Here we should highlight the Four Peaks Problem, a highly 
deceptive problem handled very well by FPBIL. 
FPBIL is conceptually simple and intuitive, since it does not require much sophisticated 
knowledge; it is compact, in the sense that it can be programmed with a few lines of code; 
and uses little amount of memory, since there is no need to store individuals of a population 
in some data structure. 
The radically different way the mutation is handled in FPBIL is based on the probabilitie 
distribution inherent of the probability vector itself. This is updated using all the available 
information in each generation. These modifications enable the FPBIL to acquire self-
adjustable features—such as the mechanism of variable population size—making the 
algorithm more efficient and more robust. Efficient in the sense that it finds solutions in less 
time; robust, meaning it has more resources to escape from local optimums. 
With the proposition of FPBIL, we expect to have added relevant theoretical and practical 
tools, presenting feasible improvements with a considerable economic return, in both cost 
and benefit. 
There still are, however, improvements which might be incorporated into FPBIL. After 
escaping from a local optimum, the FPBIL tends to approach the global optimum more 
slowly than other algorithms—PBIL, for example. Considering the process as a whole, the 
FPBIL takes advantage (since PBIL get caught more easily), but maybe it is possible to 
combine FPBIL with some other fast search algorithm, resulting in an even more efficient 
algorithm. 
Other improvements can appear by constructing a multi-objective FPBIL— adapting the 
techniques from (Machado, 2005)—or even a parallel FPBIL—based on the techniques of (de 
Lima, 2005). One can still try to incorporate some kind of heuristic to the FPBIL perhaps 
some described in (de Lima, 2005). Works in these directions prove that these 
complementary techniques tends to produce better solutions. 
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1. Introduction 
A common practice in modern engineering is that of simulation-driven optimization. This 
implies replacing costly and lengthy laboratory experiments with computer experiments, 
i.e. computationally-intensive simulations which model real world physics with high 
fidelity. Due to the complexity of such simulations a single simulation run can require up to 
several hours of CPU time of a high-performance computer [45, 56, 61]. 
With computer experiments the simulation-driven optimization process is cast as a 
nonlinear optimization problem having three distinct features: 
- There is typically no analytic expression for the relation between inputs (candidate 

designs) and outputs, i.e. it is a black-box function. 
- Each simulation run is expensive so only a small number (∼ 200) of runs can be made. 
- The underlying real-world physics and/or numerical solution often yield an inputs–

output landscape which is multimodal and nonsmooth. 
A promising approach to tackle such problems is the surrogate-assisted memetic 
optimization. A memetic algorithm combines an evolutionary algorithm (EA) with an 
efficient local search so as to obtain both efficient exploration and exploitation during the 
optimization search [21, 65]. A surrogate-model is a computationally cheaper mathematical 
approximation of the expensive objective function and is used during the optimization 
search in lieu of the expensive function [2, 45] (in some references the term metamodel is 
used synonymously while ‘surrogate-model’ is reserved for a lower-fidelity simulation [42, 
87]). Thus, using surrogate-models circumvents the problem of simulation cost and allows 
evaluation of many candidate designs. 
In this study we propose a surrogate-assisted memetic algorithm which builds upon recent 
advances in computational intelligence and optimization [9, 53, 60, 83–85, 94]. The proposed 
algorithm aims to address four open issues:  
- Obtaining a global model with a small generalization error is too expensive: analysis 

has shown the number of sites required to achieve a fixed generalization error grows 
exponentially with the problem dimension [79]. To avoid allocating all function 
evaluations to the global model we employ a combination of global and local 
surrogate-models to achieve an efficient optimization search.  
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- The accuracy of a global Lagrangian model can degrade due to over-fitting: a 
Lagrangian model learns the exact features of the data which can lead to over-fitting 
and degrades its generalization ability. To address this we use as a global surrogate-
model an artificial neural network based on a RBF network (RBFN) with an adaptive 
network topology. We describe an efficient method for adapting and training the 
network. 

- Convergence to a false optimum: the local search relies on local models, hence if these 
are badly inaccurate the local search may converge to a false optimum. To address this 
we employ a trust-region framework applied to general nonlinear local models. Such 
models can describe a complicated landscape better than the quadratic models of the 
classical trust-region approach. We propose a framework for safeguarding and 
improving the models’ accuracy. 

- Difficulty in selecting an optimal model: different models can be used during the local 
search, e.g. RBF and Kriging. Due to lack of information the user typically chooses an 
inoptimal model which degrades the local search performance. To address this we 
describe a method for model selection based on an approximate generalization error. 
The method results in local models which vary during the local search. 

Accordingly, in this chapter we propose a framework of memetic optimization using 
variable global and local surrogate-models for expensive optimization problems. To obtain a 
global model with good generalization ability it uses an RBFN artificial neural network. 
During the local search it makes an extensive use of accuracy assessment to select the local 
models and to improve them if necessary. It also employs the trust-region approach but 
replaces the quadratic models with the more general RBF and Kriging models. Rigorous 
performance analysis shows the proposed algorithm outperforms several variants of a 
reference surrogate-assisted EA. 
This chapter is organized as follows: Sect. 2 reviews related work and Sect. 3 describes in 
detail the proposed algorithm. This is followed by Sect. 4 which provides the performance 
analysis and lastly Sect. 5 summarizes this chapter. 

2. Related work 
2.1 Expensive optimization problems 
Since EAs require many function evaluations to converge several approaches have been 
studied so as to make them applicable to expensive optimization problems. 
One such approach is fitness inheritance, where only a fraction of the offspring are 
evaluated with the computationally expensive objective function and the rest inherit their 
fitness from their parents [32, 75]. 
A second approach is that of hierarchical or variable-fidelity optimization which uses 
several computer simulations of varying computational cost (fidelity); promising candidate 
solutions migrate from low- to high-fidelity simulations and vice versa [15, 68, 71]. 
A third approach, which we adapt in this study, is that of surrogate-assisted optimization 
[2, 20, 26, 30, 53, 63, 77, 83, 85, 94]. As mentioned, a surrogate-model is a mathematically-
cheaper approximation of the expensive function (typically an interpolant). A least-squares 
quadratic model (originally designed for real-world experiments which are noisy) are used 
in the Response Surface Methodology [5, 48]. Recent studies have used neural-networks [29, 
61], Kriging [63, 72] and radial basis functions [85, 94]. The framework of surrogate-assisted 
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optimization also involves the design of computer experiments [25, 73] and accuracy 
assessment of surrogate-models [42, 74]. 

2.2 Memetic optimization 
Heuristics using random processes, such as EAs, are efficient in exploring the objective 
function landscape and can escape non-global optima. However, in late stages the 
optimization search focuses on a small subset of the search space so exploiting the local 
function behavior is preferred. This motivates the hybridization of random-based heuristics 
with efficient local search algorithms to balance exploration–exploitation, i.e. an efficient 
global and local search [88]. Within the framework of evolutionary optimization such 
algorithms are termed hybrid algorithms or memetic algorithms. 
Examples include hybridization of an EA with a quasi-Newton and conjugate directions 
algorithms [21, 62, 66] and various direct search methods [33, 65, 91, 92]. Multiobjective 
memetic algorithms were studied in [19, 61] and a parallel algorithm was studied in [10]. An 
algorithm for selection among candidate local searchs was studied in [52]. Memetic 
algorithms aimed for expensive optimization problems were studied in [53, 54, 83, 84, 93, 
94]. 

3. The proposed algorithm 
3.1 Initialization and main loop 
Analysis shows the number of sites required to achieve a fixed interpolation error grows 
exponentially with problem dimension [79]. This implies it is inefficient to allocate most or 
even all function evaluations to a single model as this may still result in an inaccurate 
model. Accordingly, we use a sequential approach where we only aim for a coarse global 
model and then use the remaining function evaluations to converge to an optimum [87]. As 
such, the algorithm begins by generating a Latin Hypercube sample (LHS) of N0 = 0.2femax 

where femax is the prescribed limit on evaluations of the expensive function. This provides a 
space-filling sample which improves the model accuracy [41, 73]. The sites are evaluated 
with the true objective function to obtain their corresponding responses and both are copied 
into a cache which is initially empty. Next, a global model is generated based on all cached 
sites using the procedure described in Sect. 3.2. We then search for an optimum of this 
model using a memetic algorithm. Lastly in the optimization iteration, a local search is 
initiated from the predicted optimum so as to converge to an optimum of the expensive 
function, as described in Sect. 3.4. The main loop terminates when the number of function 
evaluations reaches the prescribed limit femax (femax = 100, 150 and 200 were used for 
performance analysis). A pseudocode of the main algorithm is given in Algorithm 1. 
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3.2 A variable-topology RBFN global model 
A global model which is a Lagrangian interpolant, i.e. satisfying the conditions of exact 
interpolation 

 (1) 

can suffer from two demerits: a) it can generalize poorly due to over-fitting to the given data 
[4, 7, 34] and b) it can become computationally-expensive (since it accounts for all sites) and 
numerically unstable (due to ill-conditioning) [6, 11, 28]. 
To circumvent these issues we use for the global model an artificial neural network with 
radial basis functions neurons (processing units), a design termed an RBF network (RBFN). 
Such networks have two merits: a) both theoretical analysis and real-world experience have 
shown they generalize well [22, 43, 59, 81] and b) they have a simpler topology compared to 
other networks and hence are more easily implemented and trained [46, 57, 58]. 
 

 
Fig. 1. An RBFN with three neurons (processing units). 

Figure 1 shows a diagram of a typical RBFN. It comprises of three layers: the input layer, the 
processing layer comprised of neurons and the output layer which is a weighted sum of the 
neuron responses. An RBFN generalizes well and avoids over-fitting since it generates an 
abstraction of the data set. This is achieved by using fewer neurons than sample sites (so the 
centres of the neuron RBFs typically do not coincide with any of the data sites) and careful 
training of the network parameters. The response of an RBFN is given as 

 
(2) 

where N is the number of neurons, λ j  is a coefficient, jt  is a basis-function (or kernel) 

centre and jc  is a shape parameter (or hyper-parameter). The neurons are RBF Gaussian 
functions which assist in modelling nonlinear functions [22, 43, 49, 57]. 
To avoid ill-conditioning and expensive calculation the network needs to be compact 
(minimizing the number of neurons N) while still be capable of generalizing well. Also, it is 
difficult to prescribe an optimal topology so the network should be self-adaptive [18, 30, 31, 
39, 58]. Accordingly, we implement such a self-adaptive network which operates as follows. 
Initially, the data set is split into a training set (Xtra) and a testing set (Xtra) which are disjoint 
(we use a 80–20 training–testing ratio). Starting from a single neuron, the network is trained 
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with Xtra and is tested with Xtes , an approach termed holdout [23, 82]. The generalization 
error is measured by the normalized root mean square error (NRMSE) over Xtes , i.e. 

 
(3) 

where xi is the ith site in the testing set Xtes and the numerator is the sum of the Gaussian 
loss-function (or discrepancy) 

 (4) 

over then training set [34]. The denominator is the variance of the responses in the testing 
set. Besides the NRMSE the loss-function values over the training and testing set are also 
calculated, i.e. 

 
(5) 

and similarly for the training set yielding Ltra . If NRMSE > NRMSE
⋆
 where NRMSE

⋆
 is 

prescribed than 0.1|Xtra| neurons are added to the network and the new network is trained 

as explained below. The network stops growing if NRMSE ≤ NRMSE
⋆
 or if the number of 

neurons equals the number of training sites (N =|Xtra|) . After the network stopped 
growing the chosen topology is that which had the lowest weighted error 

 (6) 

where a larger weight is given to the testing error over the training error. 
For each number of neurons the network parameters (RBF centres, coefficients, shape 
parameters) need to be trained to achieve good generalization. While it is possible to train 
the network in a fully supervised manner by minimization of the generalization error 
convergence is slow [46]. Accordingly, we implement a fully unsupervised learning where 
the RBF centres are obtained by a k-means clustering algorithm [31, 46], the shape 
parameters are obtained from 

 (7) 

whered is the mean l2 distance between all sites in the data set X (related to the Gaussian 

rate of decay) [57, 58]), and the coefficients λ are obtained from the normal least-squares 
equations 

, (8) 
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where f  is the vector of responses and Φ is the interpolation matrix 

 
(9) 

Figure 2 shows an example of a model training with the variations in Ltra and Ltes . When the 
network is over-trained the testing error begins to grow. The parameters are taken from the 
cycle which minimized ew before over-training. Figure 3 shows an example of the adaptation 
of the proposed RBFN. Algorithm 2 gives a pseudocode of the proposed algorithm for the 
adaptive RBFN. 
 

 
 

 

Fig. 2. An example of the RBFN training with the Rastrigin-5D objective function. As the 
number of neurons increases both training error and testing error decrease until 
overtraining commences at 9 neurons (indicated by an increase in the testing error). The 
chosen topology has the minimal weighted error. 

 

 
 

                                        (a) 4 neurons                                           (b) 9 neurons 
 

Fig. 3. An example of the RBFN topology adaptation with the Rastrigin-2D function. A 
sample of 20 sites was split into training (■) and testing (▲) sites. We show each topology 
by its RBFN centres (  ) and the corresponding shape parameters (the radius of the circles). 
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3.3 Memetic search for an optimum of the global model 
After generating the global model S( x ) we use a memetic algorithm to search for an 
optimum of it. The memetic algorithm first employs a real-coded EA [8] for efficient 
exploration. The EA uses a population size spop = 50 , linear ranking, stochastic universal 

sampling (SUS), intermediate recombination, elitism with a generation gap ggap = 0.9 and the 
breeder-genetic-algorithm mutation operator with probability pm = 0.05 [47]. The 
evolutionary search is stopped when no improvement is observed after gn.i. = 10 generations; 
the small setting for gn.i. is since we do not require the EA to converge to a very accurate 
solution, as this is accomplished by the following step. The optimum found by the EA is 
then used as the initial solution for an SQP solver which uses the finite-differences quasi-
Newton BFGS algorithm. This yields  an improved predicted optimum of the global 
model. During the memetic optimization stage approximate function values are obtained 
from the surrogate-model (the objective function is not used). 

3.4 The local search 
Since the global model is coarse  may be a bad approximation to a true optimum of the 
expensive function. Accordingly, we use   as an initial guess for a local search to search 
for a true optimum. Two considerations with the local search are efficiency (which suggests 
using local models requiring fewer sites than the global model) and accuracy (which 
suggests using a procedure to safeguard against convergence to a false optimum). Both of 
these goals are accomplished by using a trust-region approach, as described below. To 
further improve the local search we propose a method for selecting the model type (as either 
RBF or Kriging) and to improve the models, if necessary; this results in local models which 
vary during the local search. 

3.4.1 A trust-region approach 
The classical trust-region approach generates at each iteration a quadratic model and obtains 
its constrained optimum (a truncated Newton step) as a quadratic programming problem. 
However, such models cannot adequately describe a complicated or multimodal landscape 
so instead we generate more flexible local models (either RBF or Kriging) and obtain their 
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network is over-trained the testing error begins to grow. The parameters are taken from the 
cycle which minimized ew before over-training. Figure 3 shows an example of the adaptation 
of the proposed RBFN. Algorithm 2 gives a pseudocode of the proposed algorithm for the 
adaptive RBFN. 
 

 
 

 

Fig. 2. An example of the RBFN training with the Rastrigin-5D objective function. As the 
number of neurons increases both training error and testing error decrease until 
overtraining commences at 9 neurons (indicated by an increase in the testing error). The 
chosen topology has the minimal weighted error. 

 

 
 

                                        (a) 4 neurons                                           (b) 9 neurons 
 

Fig. 3. An example of the RBFN topology adaptation with the Rastrigin-2D function. A 
sample of 20 sites was split into training (■) and testing (▲) sites. We show each topology 
by its RBFN centres (  ) and the corresponding shape parameters (the radius of the circles). 
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3.3 Memetic search for an optimum of the global model 
After generating the global model S( x ) we use a memetic algorithm to search for an 
optimum of it. The memetic algorithm first employs a real-coded EA [8] for efficient 
exploration. The EA uses a population size spop = 50 , linear ranking, stochastic universal 

sampling (SUS), intermediate recombination, elitism with a generation gap ggap = 0.9 and the 
breeder-genetic-algorithm mutation operator with probability pm = 0.05 [47]. The 
evolutionary search is stopped when no improvement is observed after gn.i. = 10 generations; 
the small setting for gn.i. is since we do not require the EA to converge to a very accurate 
solution, as this is accomplished by the following step. The optimum found by the EA is 
then used as the initial solution for an SQP solver which uses the finite-differences quasi-
Newton BFGS algorithm. This yields  an improved predicted optimum of the global 
model. During the memetic optimization stage approximate function values are obtained 
from the surrogate-model (the objective function is not used). 

3.4 The local search 
Since the global model is coarse  may be a bad approximation to a true optimum of the 
expensive function. Accordingly, we use   as an initial guess for a local search to search 
for a true optimum. Two considerations with the local search are efficiency (which suggests 
using local models requiring fewer sites than the global model) and accuracy (which 
suggests using a procedure to safeguard against convergence to a false optimum). Both of 
these goals are accomplished by using a trust-region approach, as described below. To 
further improve the local search we propose a method for selecting the model type (as either 
RBF or Kriging) and to improve the models, if necessary; this results in local models which 
vary during the local search. 

3.4.1 A trust-region approach 
The classical trust-region approach generates at each iteration a quadratic model and obtains 
its constrained optimum (a truncated Newton step) as a quadratic programming problem. 
However, such models cannot adequately describe a complicated or multimodal landscape 
so instead we generate more flexible local models (either RBF or Kriging) and obtain their 
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constrained optimum (in the trust-region) using a memetic search. The trust-region 
framework safeguards the model accuracy and ensures convergence to an optimum of the 
expensive objective function, i.e. it is a framework for managing models [1, 12, 68]. 
The initial trust-region is taken as a cuboid centred at xc the predicted optimum of the global 
model and is of size Δ (with an initial size Δ 0 = 0.1), i.e. 

 (10)

All cached sites which are in the trust-region are used to generate the local surrogate-model. 
We exclude remote sites to emphasize only the local function behaviour. 
The model type is selected using the algorithm described in Sect. 3.2 and the constrained 
optimum of the local model in T , , is obtained by the memetic search described in Sect. 
3.3. 
Following the classical trust-region approach the predicted optimum is evaluated with the 
true objective function and a merit value is calculated 

 
(11)

where S( ) now denotes the current local surrogate-model. 
A main difference to the classical trust-region framework is that the latter assumes the 
quadratic model is accurate (i.e. based on an exact gradient and Hessian) while here we also 
need to account for model inaccuracy due to the interpolation on a finite set. As such, the 
model may be inaccurate due to an insufficient number of sites in the trust-region. Reducing 
the trust-region size too quickly due to model inaccuracy can lead to premature termination 
of the local search [9]. To avoid this we relate the model accuracy to the number of sites in 
the trust-region, denoted as . A reasonable criterion to consider the model accurate is when 
 ≥ d + 1 (d being the problem dimension). This threshold is based on the number of sites 

required to model the gradient of the objective function (and hence to identify a descent 
direction) by well-established methods like quasi-Newton finite-differences or polynomial 
interpolation [9]. However, if the allowed number of function evaluations femax is small and 
the problem dimension is high too many sites are needed to consider the model accurate. 
Accordingly, we use the threshold value s⋆ = min{d + 1 , 0.1femax}. 
Based on ρ, s and s⋆ the proposed algorithm performs one of the following updates: 
- if ρ > 0: then the surrogate-model is accurate since a better solution has been found. 

Following the classical trust-region framework we centre the trust-region at the new 
optimum xm and increase the trust-region size by a factor δ+ . 

- if ρ ≤ 0 and s < s⋆: the local model is inaccurate but this is attributed to an insufficient 
number of sites in the trust-region. Thus we improve the accuracy of the local model in 
the trust-region by adding a site using the model improvement algorithm (Sect. 3.4.3). 

- if ρ ≤ 0 and s ≥ s⋆: the local model is based on a sufficient number of sites but fails to 
predict an improvement due to the trust-region size. Following the classical trust-region 
framework we decrease the trust-region size by a factor δ_. 
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After the model and trust-region have been updated the current local search iteration is 
finished. The local search is stopped if the trust-region is small enough Δ < Δmin (we use  
Δmin = Δ0 · δ 2

_ ) or if the number of evaluations of the true objective function exceeds femax. 

Some additional comments on the local search: 
- At most only two evaluations of the true function are performed at each local search 

iteration. 
- All sites evaluated during the local search are added to the cache for later use. 
Figure 4 shows an example of a local search with the proposed trust-region approach used 
with the Branin function. A pseudocode of the proposed trust-region local search is given in 
Algorithm 3. 
 

 
 
                                    (a) Iteration 2                                                         (b) Iteration 5 
 

Fig. 4. An example of the trust-region local search using local models (RBF or Kriging). The 
objective function is Branin. For iterations 2 and 5 the chosen model (Kriging) and the 
corresponding trust-region are shown. 
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Fig. 4. An example of the trust-region local search using local models (RBF or Kriging). The 
objective function is Branin. For iterations 2 and 5 the chosen model (Kriging) and the 
corresponding trust-region are shown. 
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3.4.2 Model selection 
To assist the optimization search we wish to generate a surrogate-model which is optimal, 
i.e. as accurate as possible. We select among two candidate models, namely radial basis 
functions (RBFs) or Kriging, as these have performed well in benchmark tests against other 
models [17, 25, 73, 74]. 
The RBF surrogate-model is a Lagrangian interpolant which is a linear combination of basis 
functions. To ensure the non-singularity of the interpolation matrix we consider an RBF 
model which uses linear basis functions [44] such that 

 
(12)

where n is the number of sites, φi(x) are the linear radial basis functions and the coefficients 

λi are obtained from the linear system 

 (13)

A Kriging (or a spatial-correlation) model uses a global ‘drift’ function o which a stationary 
Gaussian process is overlaid; the former captures the global trend while the latter provides 
local adjustments [40, 45, 69]. We adapt the common approach where the drift function is 
taken as constant (e.g. set to 1) so the model is given by 

 (14)

where β is the drift function coefficient and Z(x) is the Gaussian process function [45, 69]. 
The Gaussian process is assumed to have a mean zero and variance σ. Deviating from the 
random error approach of the Response Surface Methodology, the response at any site is 
considered correlated with other sites. The correlation between two sites x1 and x2 is defined 
by a covariance function 

 (15)

where R(x1, x2) is a prescribed spatial correlation function (SCF). Following [45] we consider 
the exponential SCF 

 
(16)

The Kriging model is defined once β and θ have been fixed. For a given data set the value of 
θ is obtained by maximum likelihood estimation [37]. Having found the optimal θ and 
assuming a constant drift function then the Kriging model is 

 (17)
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where R is the correlation matrix for data set X, r is the correlation vector between x and 

X and β̂ is the least-squares estimate of β 

 (18)

Details of the Kriging code implementation are given in [78]. 
The two different possible models, namely linear RBF and Kriging, introduces the issue of 
model selection. To assist the local search we wish to select the most accurate model, i.e. 
having the least generalization error. Similarly to Section 3.2 we approximate the 
generalization error based on the available data set. While it is possible to use the holdout 
method for approximating the generalization error a better estimate is obtained if repeated 
models are generated and all sites are used both for training and for testing, an approach 
known as the leave-one-out cross-validation (LOOCV) [42, 80]. The estimate is obtained as 
follows: given a candidate model (in our case a linear RBF or Kriging) then for each site xi ,  
i = 1…n a surrogate-model is generated using all sites except xi and the Gaussian loss-
function of this surrogate-model is calculated at xi . The estimated generalization error is 
then the mean of all observed errors. The model corresponding to the smallest LOOCV error 
is assumed to be the most accurate. In this basic form the LOOCV procedure requires 
generating n surrogate-models, which is expensive. To circumvent this, for the RBF we use 
an efficient procedure proposed in [67] while for the Kriging we use a procedure proposed 
in [45]. 
 

 
                               (a) Rosenbrock-10D                                             (b) Rastrigin-20D 
 

Fig. 5. Examples of the model selection algorithms. The solid line (—) indicates which model 
was more accurate based on a large sample of 250 sites while the dot (•) indicates which 
model was selected by the proposed method based on a small sample. 
 

Figure 5 shows two examples of the proposed model selection algorithm. The following 
procedure was repeated 30 times to obtain statistically significant results. We used the 
Rosenbrock-10D and Rastrigin-20D test functions and 50 sites generated by LHS. The 
proposed method was used to select between an RBF model and a Kriging model. A 
separate testing sample of 250 LHS sites was used to obtain a more accurate estimate of the 
true generalization error of the models. It follows the proposed method selects (in the large 
majority of cases) the model whose true generalization error is indeed smaller. 
The outcome of the model selection is that the proposed memetic algorithm uses variable 
surrogate-models (either linear RBF or Kriging) during the local search. A pseudocode of 
the model selection algorithm is given in Algorithm 4. 



 Advances in Evolutionary Algorithms 

 

80 

3.4.2 Model selection 
To assist the optimization search we wish to generate a surrogate-model which is optimal, 
i.e. as accurate as possible. We select among two candidate models, namely radial basis 
functions (RBFs) or Kriging, as these have performed well in benchmark tests against other 
models [17, 25, 73, 74]. 
The RBF surrogate-model is a Lagrangian interpolant which is a linear combination of basis 
functions. To ensure the non-singularity of the interpolation matrix we consider an RBF 
model which uses linear basis functions [44] such that 

 
(12)

where n is the number of sites, φi(x) are the linear radial basis functions and the coefficients 

λi are obtained from the linear system 

 (13)

A Kriging (or a spatial-correlation) model uses a global ‘drift’ function o which a stationary 
Gaussian process is overlaid; the former captures the global trend while the latter provides 
local adjustments [40, 45, 69]. We adapt the common approach where the drift function is 
taken as constant (e.g. set to 1) so the model is given by 

 (14)

where β is the drift function coefficient and Z(x) is the Gaussian process function [45, 69]. 
The Gaussian process is assumed to have a mean zero and variance σ. Deviating from the 
random error approach of the Response Surface Methodology, the response at any site is 
considered correlated with other sites. The correlation between two sites x1 and x2 is defined 
by a covariance function 

 (15)

where R(x1, x2) is a prescribed spatial correlation function (SCF). Following [45] we consider 
the exponential SCF 

 
(16)

The Kriging model is defined once β and θ have been fixed. For a given data set the value of 
θ is obtained by maximum likelihood estimation [37]. Having found the optimal θ and 
assuming a constant drift function then the Kriging model is 

 (17)

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and  
Variable Local Models for Expensive Optimization Problems 

 

81 

where R is the correlation matrix for data set X, r is the correlation vector between x and 
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Figure 5 shows two examples of the proposed model selection algorithm. The following 
procedure was repeated 30 times to obtain statistically significant results. We used the 
Rosenbrock-10D and Rastrigin-20D test functions and 50 sites generated by LHS. The 
proposed method was used to select between an RBF model and a Kriging model. A 
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the model selection algorithm is given in Algorithm 4. 
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3.4.3 Model improvement 
If the local model is deemed inaccurate, i.e. there is an insufficient number of sites in the 
trust-region then a new site is generated to improve the model accuracy (reduce its 
generalization error). Analysis of various surrogate-models (polynomial, RBF and Kriging) 
relates their generalization error to the distribution of sites [9, 28, 70]. Clustered sites do not 
provide sufficient information on the objective function and lead to an ill-conditioned 
interpolation matrix which further degrades the model accuracy. The distribution of sites is 
measured by the fill distance 

 (19)

i.e. the radius of the largest ball in the feasible domain F which does not contain any sites in 
its interior [36, 70]. To improve the model accuracy (increase h) new sites should be added 
such that they are remote from existing sites. Thus, to improve the model in the trust-region 
we seek a site which maximizes the fill distance for the augmented set { TX ∪ xi } where TX  

is the set of sites in the trust-region. To obtain the model-improving site xi we formulate the 
nonlinear optimization problem 

 
(20)

We solve (20) by generating an initial sample of candidate sites and starting an SQP solver 
from the best one (having the maximum separation distance). This results in sites 
distributed similarly to the maximin design [27]. After xi has been found it is evaluated with 
the true objective function and is added to the cache. A pseudocode of the model 
improvement iteration is given in Algorithm 5. 
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3.5 Additional remarks 
In this section we provide additional remarks on the complete algorithm. 
-    The local search is initiated only if the distance of the predicted optimum xc from all 
       cached sites is larger than Δmin 

- As the cache grows the interpolation matrix Φ becomes ill-conditioned and this 
degrades the solution accuracy of (8) [28]. To circumvent this we solve (13) by the 
numerically stable truncated singular value decomposition (TSVD) such that 

 (21)

where Σ is the diagonal matrix of singular values σi of Φ. Given the responses vector f 
and defining 

 (22)

and a vector y such that 

 
(23)

the solution vector is 

 (24)

Thus the solution vector is generated by the span of the vectors corresponding to a 
sufficiently large singular value. We use εSVD = 10ε, where ε is the machine precision. 

4. Performance analysis 
We assessed the performance of the proposed algorithm using both mathematical test 
functions and a real-world problem of airfoil shape optimization. In these tests the proposed 
algorithm was also benchmarked against two variants of a reference surrogate-assisted EA 
which is representative of many others [64]; Algorithm 6 gives its pseudocode. 
 

 
The two variants differ by the surrogate-model they use, namely either a linear RBF model 
or a Kriging model with an exponential spatial correlation function. 
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Table 1. Parameter Settings for the Proposed Memetic Algorithm 

All relevant parameters (e.g. initial surrogate-model sample and evolutionary parameters) 
were the same as in the proposed algorithm. Parameter settings are given in Table 1. To 
obtain statistically-significant results 30 runs were repeated for each test with the proposed 
algorithm and the two variants. 

4.1 Mathematical test functions 
For the mathematical tests functions we used the well-known Branin, Hartman 3 and 
Hartman 6 functions with a maximum evaluations limit of femax = 100 [13]. To asses the 
impact of the ‘curse of dimensionality’ [3] we also used the well-known chained Rosenbrock 
(high epistasis) and Rastrigin function (high multimodality) functions with femax = 200 [86, 
90]. We set these small values for femax to measure performance under a constraint of 
resources (as function evaluations are considered expensive) [89]. Details of the test 
functions are given in Table 2. Test statistics are given in Table 3 which indicate the 
proposed algorithm outperformed the two surrogate-assisted EAs. 
To determine in a rigorous manner if there is a statistically-significant difference between 
the results of the proposed algorithm and the two variants we applied the nonparametric 
one-tailed Mann–Whitney (or Wilcoxon) test which provides a test statistic U [35]. The null 
and alternative hypothesis are: 

 (25a)
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 (25b) 

where P(xi < xp) is the probability that a score of the proposed algorithm is larger (worse) 
than a score of one of the variants (i = 1, 2). Table 4 provides the test statistics for 
comparisons with the two variants over the five test functions and the decision rules. For the  
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Table 3. Results for Mathematical Tests Functions 
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Table 4. Mann–Whitney Test Statistics 

Branin function and the RBF variant we cannot reject the null hypothesis at the 0.01 
significance level, which is attributed to the relative low difficulty of the problem (d = 2) so 
the difference between the proposed algorithm and the variant is not statistically-significant. 
For all other tests we reject H0 at both significance levels α = 0.05 and 0.01 and accept there is 
a statistically significant difference between the results obtained by the proposed algorithm 
and by each of the variants for both test functions, i.e. the proposed algorithm outperforms 
the two variants of the reference algorithm. 

4.2 A real-world application 
We have also applied the proposed algorithm to a real-world application of airfoil shape 
optimization. The goal is to find an airfoil shape which maximizes the lift-to-drag ratio 
(equivalently minimizes the drag-to-lift ratio) at the prescribed cruise conditions [51, 56], i.e. 

 

(26)

where the thickness constraint is based on [55] and the cruise conditions are based on [16, 
p.484–487] (modified from M = 0.57 , h = 25, 000[ft]) . 
Accordingly, to normalize the objectives cD  / cL and the thickness to the interval [0,1] we 
defined the objective function 

 
(27)

where cL,min = −0.5 , cD,max = 0.2 are the assumed minimum cL and maximal cD, respectively. 
For the latter two only reasonable estimates are needed as they are only used to normalize 
the objectives. 
Candidate airfoils were generated using the PARSEC parameterization [50, 76] which 
involves 11 design variables as shown in Figure 6. Bounds for these design variables were 
set according to previous studies [24, 56] and are given in Table 5. To ensure a closed airfoil 
shape the leading edge gap was set as Δz TE = 0. Candidate airfoils were evaluated with 
XFoil, an analysis code for subsonic isolated airfoils based on the panel method [14]. Each 
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airfoil evaluation required approximately 30 seconds on a desktop computer. We set the 
limit of function evaluations to femax = 150. 
 

 
Fig. 6. PARSEC design variables. 
 

 
Table 5. PARSEC design variables bounds. 

Figure 7 shows an airfoil found by the proposed algorithm and the distribution of the 
pressure coefficient along its upper and lower surfaces. The airfoil yields a lift to drag ratio 
of cL/cD = 4.557 and satisfies the minimum thickness requirement (minimum thickness at 
0.2–0.8 of chord is t = 0.120). 
We benchmarked the proposed algorithm against the two reference algorithms from the 
previous subsection and test statistics are given in Table 6. A nonparametric analysis similar 
to that of the previous section gives a Mann–Whitney test statistic of U = 3.918 and 4.110 for 
the RBF and Kriging variants respectively. 
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Table 4. Mann–Whitney Test Statistics 
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                             (c) Airfoil geometry                                   (d) Pressure distribution 

Fig. 7. Obtained airfoil. 

We thus reject the null hypothesis at both α = 0.05 and 0.01 and accept there are statistically-
significant differences between the results. This shows that also in this real-world 
application the proposed algorithm outperformed the surrogate-assisted variants. 

5. Summary 
We have proposed a surrogate-assisted memetic algorithm for expensive optimization 
problems. The algorithm combines global and local models and makes extensive use of 
model selection to assist the optimization search. The global model is an RBF artificial neural 
network (RBFN) whose topology is adapted incrementally to achieve both a compact 
network and good generalization. For the local models the proposed algorithm selects 
between an RBF and a Kriging model based on an accuracy assessment of the models. To 
ensure convergence to a true optimum of the expensive function these models are used in a 
trust-region framework, i.e. they replace the quadratic models; the proposed trust-region 
framework safeguards the accuracy of the local models and improves them, if necessary. 
Extensive performance analysis shows the proposed algorithm outperforms variants of a 
reference surrogate-assisted EA. 
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1. Introduction  
The research of power system stabilizer (PSS) for improving the stability of power system 
has been conducted from the late 1960's. Conventionally lead-lag controller has been widely 
used as PSS. Root locus and Bode plot to determine the coefficient of lead-lag controller (Yu, 
1983; Larsen and Swann, 1981; Kanniah et al., 1984), pole-placement and eigenvalue control 
(Chow & Sanchez-Gasca, 1989; Ostojic & Kovacevic, 1990) and a linear optimal controller 
theory (Fleming & Jun Sun, 1990; Mao et al., 1990) have been used. These methods, using a 
model linearlized in the specific operating point, show a good control performance in the 
specific operating point. But these approaches are difficult to obtain a good control 
performance in case of operating conditions such as change of load or three phase fault, etc. 
Therefore, several methods based on adaptive control theory (Chen et al., 1993; Park & Kim, 
1996) have been proposed to give an adaptive capability to PSS for nonlinear characteristic 
of power system. These methods can improve the dynamic characteristic of power system, 
but these approaches cannot be applied for the real time control because of long execution 
time. 
Recently the research for intelligence control method such as fuzzy logic controller (FLC) 
and neural network for PSS has greatly improved the dynamic characteristic of power 
system (Hassan et al., 1991;  Hassan & Malik, 1993). Fuzzy rules and membership functions 
shape should be adjusted to obtain the best control performance in FLC. Conventionally the 
adjustment is done by the experience of experts or trial and error methods. Therefore it is 
difficult to determine the suitable membership functions without the knowledge of the 
system. Recently, evolutionary computations (EC) that is a kind of a probabilistic optimal 
algorithm is employed to adjust the membership functions and fuzzy rules of FLC. 
The EC is based on the natural genetics and evolutionary theory. The results of this 
approach show a good performance (Abido and Abdel-Magid, 1998, 1999). 
EC is based on the principles of genetics and natural selection. There are three broadly 
similar avenues of investigation in EC: genetic algorithm (GA), evolution strategy (ES), and 
evolutionary programming (EP) (] Fogel, 1995). GA simulates the crossover and mutation of 
natural systems, having a global search capability (Goldberg, 1989), whereas ES simulates 
the evolution of an asexually reproducing organism. ES can find a global minimum, and by 
combining another EC it also could be efficient local search technique (Gong et al., 1996 ).  
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The performance of EC is influenced by parameters such as size of population, fitness, 
probability of crossover, and mutation, etc. If these parameters are not adequately selected, 
execution time will be longer and premature convergence to local minimum can occur. To 
solve problems above, several approaches have been proposed. To enhance the performance 
of GA, the population size, the probability of crossover, mutation and operation method 
should be adaptively modified in each generation (Arabas et al., 1994; Schlierkamp-Voosen 
& Muhlenbein, 1996). To enhance the performances of ES and EP, the mutation parameters 
should be adapted while running ES and EP (Goldberg, 1989; Fogel et al., 1991). 
In conventional ES, parameter values and operator probabilities for the GA and ES are 
adapted to find a solution efficiently. In this paper, however, we propose adaptive 
evolutionary algorithm (AEA). The ratio of population to which GA and ES will apply is 
adaptively modified in reproducing according to the fitness. We use ES to optimize locally, 
while the GA optimizes globally. The resulting hybrid scheme produces improved and 
reliable results by using the “global” nature of the GA as well as the “local” improvement 
capability of the ES.  
AEA was applied to search the optimal parameters of the membership functions and the 
suitable gains of the inputs and outputs for fuzzy power system stabilizer (FPSS). The 
effectiveness of FPSS is demonstrated by computer simulation for single-machine infinite 
bus system (SIBS) and multi-machine power system (MPS). To show the superiority of FPSS, 
its performances are compared with those of conventional power system stabilizer (CPSS). 
The proposed FPSS shows the better control performances than the CPSS in three-phase 
fault under a heavy load, which is system condition in tuning FPSS. To show the robustness 
of the proposed FPSS, it is applied to the system with disturbances such as change of the 
mechanical torque and three-phase fault under nominal and heavy load conditions. 

2. Adaptive evolutionary algorithm 
2.1 Motivation 
GA, one of the probabilistic optimization methods, is robust and is able to solve complex 
and global optimization problem. But GA can suffer from the long computation time before 
providing an accurate solution because it uses prior knowledge minimally and does not 
exploit local information (Renders & Flasse, 1996). ES, which simulates the evolution of 
asexually reproducing organisms, has efficient local search capability. To solve complex 
problem, however, it better to a hybrid EC (Gong et al., 1996). 
In this paper, to reach the global optimum accurately and reliably in a short execution time, 
we designed an AEA by using GA and ES together. In AEA, GA operators and ES operators 
are applied simultaneously to the individuals of the present generation to create the next 
generation. Individual with higher fitness value has the higher probability of contributing 
one or more chromosomes to the next generation. This mechanism gives greater rewards to 
either GA or ES operation depending on what produces superior offspring. 

2.2 Adaptive evolutionary algorithm 
In AEA, the number of individuals created by GA and ES operations is changed adaptively. 
An individual is represented as a real-valued chromosome that makes it possible to 
hybridize GA and ES operations. 
ES forms a class of optimization technique motivated by the reproduction of biological 
system and the population of individuals evolves toward the better solutions by means of 
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the mutation and selection operation. In this paper, we adopted a (μ, λ)-ES. That is, only the 
λ offspring generated by mutation competes for survival and the μ parents are completely 
replaced in each generation. Also, self-adaptive mutation step sizes are used in ES. 
For AEA to self-adapt its use of GA and ES operators, each individual has an operator code 
for determining which operator to use. Suppose a ‘0’ refers to GA, and a ‘1’ to ES. At each 
generation, if it is more beneficial to use the GA, ‘0’s should appear at the end of 
individuals. If it is more beneficial to use the ES, ‘1’s should appear. After reproduction by 
roulette wheel selection according to the fitness, GA operations (crossover and mutation) are 
performed on the individuals that have the operator code of ‘0’ and the ES operation 
(mutation) is performed on the individuals that have an operator code of ‘1’. Elitism is also 
used. The best individual in the population reproduces both the GA population and ES 
population in the next generation. The major procedures of AEA are as follows: 
1)  Initialization: The initial population is randomly generated. Operator code is randomly 

initialized for each individual. According to the operator code, GA operations are 
performed on the individuals with operator code ‘0’, while ES operations are applied 
where the operator code is ‘1’. 

2)  Evaluation and Reproduction: Using the selection operator, individual chromosomes 
are selected in proportional to their fitness, which is evaluated by the defined objective 
function. After reproduction, GA operations are performed on the individuals having 
an operator code of ‘0’ and the ES operations are performed on the individuals having 
an operator code ‘1’. At each generation, the percentages of ‘1’s and ‘0’s in the operator 
code indicate the performance of GA and ES operators.  

3)  Preservation of Minimum Number of Individuals: At each generation, AEA may fall 
into a situation where the percentage of the offspring by one operation is nearly 100% 
and the offspring by other operation dies off. Therefore, it is necessary for AEA to 
preserve certain amount of individuals for each EC operation. In this paper, we 
randomly changed the operator code of the individuals with a higher percentage until 
the numbers of individuals for each EC operation become higher than a certain amount 
of individuals to be preserved. The predetermined minimum number of individuals to 
be preserved is set to 20% of the population size. 

4)  Genetic Algorithm and Evolution Strategy: The real-valued coding is used to represent 
a solution (Michalewicz, 1992; Mitsuo Gen and Cheng, 1997). Modified simple 
crossover and uniform mutation are used as genetic operators. The modified simple 
crossover operator is a way to generate offstrings population, selecting two strings 
randomly in parent population, as shown in Fig. 1. If crossover occurs in k-th variable, 
selecting randomly two strings in t-th generation, offstrings of t+1-th generation are 
shown in Fig. 1.  

In uniform mutation, we selected a random k-th gene in an individual. If an individual and 
the k-th component of the individual is the selected gene, the resulting individual is as 
shown in Fig. 2. 
Only the λ offspring generated by mutation operation competes for survival and the μ 
parents are completely replaced in each generation. Mutation is then performed 
independently on each vector element by adding a normally distributed Gaussian random 
variable with mean zero and standard deviation (σ), as shown in Eq. (1). After adapting the 
mutation operator for ES population, if the improved ratio of individual number is lesser 
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should be adaptively modified in each generation (Arabas et al., 1994; Schlierkamp-Voosen 
& Muhlenbein, 1996). To enhance the performances of ES and EP, the mutation parameters 
should be adapted while running ES and EP (Goldberg, 1989; Fogel et al., 1991). 
In conventional ES, parameter values and operator probabilities for the GA and ES are 
adapted to find a solution efficiently. In this paper, however, we propose adaptive 
evolutionary algorithm (AEA). The ratio of population to which GA and ES will apply is 
adaptively modified in reproducing according to the fitness. We use ES to optimize locally, 
while the GA optimizes globally. The resulting hybrid scheme produces improved and 
reliable results by using the “global” nature of the GA as well as the “local” improvement 
capability of the ES.  
AEA was applied to search the optimal parameters of the membership functions and the 
suitable gains of the inputs and outputs for fuzzy power system stabilizer (FPSS). The 
effectiveness of FPSS is demonstrated by computer simulation for single-machine infinite 
bus system (SIBS) and multi-machine power system (MPS). To show the superiority of FPSS, 
its performances are compared with those of conventional power system stabilizer (CPSS). 
The proposed FPSS shows the better control performances than the CPSS in three-phase 
fault under a heavy load, which is system condition in tuning FPSS. To show the robustness 
of the proposed FPSS, it is applied to the system with disturbances such as change of the 
mechanical torque and three-phase fault under nominal and heavy load conditions. 

2. Adaptive evolutionary algorithm 
2.1 Motivation 
GA, one of the probabilistic optimization methods, is robust and is able to solve complex 
and global optimization problem. But GA can suffer from the long computation time before 
providing an accurate solution because it uses prior knowledge minimally and does not 
exploit local information (Renders & Flasse, 1996). ES, which simulates the evolution of 
asexually reproducing organisms, has efficient local search capability. To solve complex 
problem, however, it better to a hybrid EC (Gong et al., 1996). 
In this paper, to reach the global optimum accurately and reliably in a short execution time, 
we designed an AEA by using GA and ES together. In AEA, GA operators and ES operators 
are applied simultaneously to the individuals of the present generation to create the next 
generation. Individual with higher fitness value has the higher probability of contributing 
one or more chromosomes to the next generation. This mechanism gives greater rewards to 
either GA or ES operation depending on what produces superior offspring. 

2.2 Adaptive evolutionary algorithm 
In AEA, the number of individuals created by GA and ES operations is changed adaptively. 
An individual is represented as a real-valued chromosome that makes it possible to 
hybridize GA and ES operations. 
ES forms a class of optimization technique motivated by the reproduction of biological 
system and the population of individuals evolves toward the better solutions by means of 
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the mutation and selection operation. In this paper, we adopted a (μ, λ)-ES. That is, only the 
λ offspring generated by mutation competes for survival and the μ parents are completely 
replaced in each generation. Also, self-adaptive mutation step sizes are used in ES. 
For AEA to self-adapt its use of GA and ES operators, each individual has an operator code 
for determining which operator to use. Suppose a ‘0’ refers to GA, and a ‘1’ to ES. At each 
generation, if it is more beneficial to use the GA, ‘0’s should appear at the end of 
individuals. If it is more beneficial to use the ES, ‘1’s should appear. After reproduction by 
roulette wheel selection according to the fitness, GA operations (crossover and mutation) are 
performed on the individuals that have the operator code of ‘0’ and the ES operation 
(mutation) is performed on the individuals that have an operator code of ‘1’. Elitism is also 
used. The best individual in the population reproduces both the GA population and ES 
population in the next generation. The major procedures of AEA are as follows: 
1)  Initialization: The initial population is randomly generated. Operator code is randomly 

initialized for each individual. According to the operator code, GA operations are 
performed on the individuals with operator code ‘0’, while ES operations are applied 
where the operator code is ‘1’. 

2)  Evaluation and Reproduction: Using the selection operator, individual chromosomes 
are selected in proportional to their fitness, which is evaluated by the defined objective 
function. After reproduction, GA operations are performed on the individuals having 
an operator code of ‘0’ and the ES operations are performed on the individuals having 
an operator code ‘1’. At each generation, the percentages of ‘1’s and ‘0’s in the operator 
code indicate the performance of GA and ES operators.  

3)  Preservation of Minimum Number of Individuals: At each generation, AEA may fall 
into a situation where the percentage of the offspring by one operation is nearly 100% 
and the offspring by other operation dies off. Therefore, it is necessary for AEA to 
preserve certain amount of individuals for each EC operation. In this paper, we 
randomly changed the operator code of the individuals with a higher percentage until 
the numbers of individuals for each EC operation become higher than a certain amount 
of individuals to be preserved. The predetermined minimum number of individuals to 
be preserved is set to 20% of the population size. 

4)  Genetic Algorithm and Evolution Strategy: The real-valued coding is used to represent 
a solution (Michalewicz, 1992; Mitsuo Gen and Cheng, 1997). Modified simple 
crossover and uniform mutation are used as genetic operators. The modified simple 
crossover operator is a way to generate offstrings population, selecting two strings 
randomly in parent population, as shown in Fig. 1. If crossover occurs in k-th variable, 
selecting randomly two strings in t-th generation, offstrings of t+1-th generation are 
shown in Fig. 1.  

In uniform mutation, we selected a random k-th gene in an individual. If an individual and 
the k-th component of the individual is the selected gene, the resulting individual is as 
shown in Fig. 2. 
Only the λ offspring generated by mutation operation competes for survival and the μ 
parents are completely replaced in each generation. Mutation is then performed 
independently on each vector element by adding a normally distributed Gaussian random 
variable with mean zero and standard deviation (σ), as shown in Eq. (1). After adapting the 
mutation operator for ES population, if the improved ratio of individual number is lesser 
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than δ, standard deviation for the next generation is decreased in proportion to decreased 
rates of standard deviation (cd), Otherwise, standard deviation of the next generation is 
increased in proportion to increased rates of standard deviation  (ci,), as shown in Eq. (2) 
(Fogel, 1995). 
 

<  Before Crossover > <  After Crossover >

Sv = [V1,  ... , Vk,  ... , Vn ]t

Sw = [W1, ... , Wk, ... , Wn]
t

Sv    = [V1,   ... ,  Vk, Vk+1 ... ,  Vn ]' ' '

Sw   = [W1,  ... , Wk, Wk+1 ... , Wn ]' ' '

t+1

t+1

Crossover point

Vj = a1  Vj  +  a2  Wj

Wj = a1  Wj  +  a2  Vj

where, '

'

a1, a2 : Random numbers from [0, 1]
Vj : j-th gene of the vector Sv

Wj : j-th gene of the vector Sw
'

n : Number of parameters

'

 
Fig. 1.  Modified simple crossover method 
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Sv = [V1,  ... , Vk,  ... , Vn ]

<  After Mutation >
t

Sv    = [V1,   ... ,  Vk, Vk+1 ... ,  Vn ]
't+1

Mutation point

where,
'Vk : Random value between upper bound and lower bound  

Fig. 2.  Uniform mutation method 
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where, N(0,σt ) : Vector of independent Gaussian random variable with mean of zero and 
standard deviations σ 

                     Vkt : k-th  variable at t-th generation 
                   φ(t) : Improved ratio of individual number after adapting mutation operator for 

population of ES in t-th generation  
                      δ : Constants 
5) Elitism: The best individual in a population is preserved to perform GA and ES 

operation in the next generation. This mechanism not only forces GA not to deteriorate 
temporarily, but also forces ES to exploit information to guide subsequent local search 
in the most promising subspace. 
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3. Design of fuzzy power system stabilizer using AEA 
Conventionally, we have used the knowledge of experts and trial and error methods to tune 
FLC’s for a good control performance, but recently many other ways using EC are proposed 
to modify fuzzy rule and shape of fuzzy membership function (Abido and Abdel-Magid, 
1998, 1999). Scaling factors of input/output and parameters of membership function of FPSS 
are optimized by means of AEA using GA and ES adaptively, as described in chapter 2. 
Fig. 3 shows the architecture for tuning scaling factors of input/output and membership 
function shape of FPSS using AEA. As shown in Fig. 3, the rotor speed deviation of 
generator and the change rate for rotor speed deviation are used as inputs of FPSS. The 
control signals of the FPSS are used for enhancing power system damping by 
supplementary control signals of generators. 
 

G

FPSS de(t)
dt

AEA

Excitor
and AVR

Vt

Umax

Umin

e(t)

(t)

ref

Vt θ V00 0

Generator

ω

ω

 
Fig. 3.  Configuration for tuning of FPSS using AEA. 

The FPSS parameters used in this paper are given below. 
- Number of input/output variables : 2/1 
- Number of input/output membership functions : 7/7 
- Fuzzy inference method : max-min method 
- Defuzzification method : center of gravity 
Because deviation and change-of-deviation are used as input variables of the FPSS, 
proportional-derivative (PD)-like FPSS is used. Rule base for the PD-like FPSS from the two-
dimensional phase plane of the system in terms of deviation (e) and change-of-deviation 
(de) is shown in Table 1. As shown in Table 1, the phase plane is divided into two semi-
planes by means of switching-line. Within the semi-planes, positive and negative control 
signals are produced, respectively. The magnitude of the control signals depends on the 
distance of the state vector from the switching line. 
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When AEA is tuning the membership functions, fuzzy rules are used for PD-type, as shown 
in Table 1, where, linguistic variable NB means “Negative Big”, NM means “Negative 
Medium”, NS means “Negative Small”, etc. Fig. 4 shows triangular membership function 
used in this paper. Because we use 7 fuzzy variables (PB, PM, … ,NM, NB) respectively, for 
input/output of FPSS, the total membership functions will be 21, so 63 variables that include 
the center and width of all the membership function will be adjusted, but it takes a long 
calculation time to tune 63 variables using AEA, and suffers from undesirable converging 
characteristic. In this paper, we fixed center of ZE to 0 and positive and negative 
membership functions are constructed symmetrical for the 0. So the number of parameters 
of FPSS will be reduced to 21, which means 3 centers and 4 widths for each variable as 
shown in Fig. 4.  
 

      de
  e NB NM NS ZE PS PM PB 

NB NB NB NB NM NM NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NM NS ZE PS PM 

ZE NM NM NS ZE PS PM PM 

PS NM NS ZE PS PM PM PB 

PM NS ZE PS PM PM PB PB 

PB ZE PS PM PM PB PB PB 

Table 1. Fuzzy rules of proportional-differential type 
 

 
Fig. 4.  Symmetrical membership functions 

The flowchart for the design of FPSS using the proposed AEA is shown in Fig. 5. The 
procedure for the design of FPSS using AEA is as follows: 
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ES 
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END 
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where, P : Number of population 
G : Specified generation 
Fig. 5.  Flowchart for the design of FPSS using AEA 
Step1) Initialize population 
Strings are randomly generated between upper bounds and lower bounds of the 
membership function parameters and scaling factors of FPSS. The operator code is 
randomly set to decide if each string is individual of GA or ES. The configuration of 
population is described in Fig. 6. Also scaling factors of the FPSS are tuned by the AEA. 
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Step1) Initialize population 
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membership function parameters and scaling factors of FPSS. The operator code is 
randomly set to decide if each string is individual of GA or ES. The configuration of 
population is described in Fig. 6. Also scaling factors of the FPSS are tuned by the AEA. 
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S1 P11 • • • P19 W11 • • • W112 SF11 SF12 SF13 * 
S2 P21 • • • P29 W21 • • • W212 SF21 SF22 SF23 * 
 • 

• 

Sn Pn1 • • • Pn9 Wn1 • • • Wn12 SFn1 SFn2 SFn3 * 
       

where,      n : population size 
Pij : Center of the membership functions 

Wij : Width of the membership functions 
SFij : Scaling factors 

* : Operator code 
Fig. 6.  String architecture for tuning membership functions and scaling factors. 
Step 2) Evaluation 
Each string generated in Step 1 is evaluated using the fitness function in Eq. (3). As shown in 
Eq. (3), the absolute deviation between the rotor speed and the reference rotor speed of 
generator is used. The flowchart for evaluation part is shown in Fig. 7. 
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where,  ωref   : Reference rotor speed of generator  
              ω(t) : Rotor speed of generator 
                 T  : No. of data acquired during specified time 

Step 3) Reproduction 
We used roulette wheel to reproduce in proportion to fitness. After reproduction, the 
individual operator code of ‘0’ is inserted in the population of GA, the individual operator 
code of ‘1’ is inserted in the population of ES. 
Step 4) Preservation of Minimum Number of Individuals 
Among GA and ES, depending on which is stronger, we guarantee minimum number of 
individuals to offsprings being disappearing by the remaining iterations. 
Step 5) GA and ES operation 
The individual with operator code of ‘0’ applied crossover and mutation in GA operators 
and generates offsprings. The individual with operator code of ‘1’ apply mutation in ES 
operator and generates offsprings. 
Step 6) Elitism 
We use elitism reproducing the best individual of fitness to GA and ES population by each 
one. 
Step 7) Convergence criterion 
We iterate Step 2 – Step 6 until being satisfied of the specified generation. 

4. Simulation  studies 
4.1 Simulation cases of single-machine infinite bus system 
We performed nonlinear simulation for SIBS in Fig. 8 to demonstrate the performance of the 
proposed FPSS. A machine has been represented by third order one-axis nonlinear model, as  
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Calculation of Deviation Absolute Value 
 λ e(t) =  |  ωref - ω(t) |  
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Fig. 7 Flowchart for evaluation part 

shown in appendix. Details of the system data are given in Yu, 1983. Table 2 shows the 
simulation coefficients of AEA used in nonlinear simulation. The execution time in PC 586 
(300 MHz) takes about 30 minutes to tune the parameters of FPSS under the condition in 
Table 2. Fig. 9 shows membership functions shape of FPSS tuned by AEA, where scaling 
constant of deviation is 0.24, scaling constant of deviation rate is 3.50 and scaling constant of 
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shown in appendix. Details of the system data are given in Yu, 1983. Table 2 shows the 
simulation coefficients of AEA used in nonlinear simulation. The execution time in PC 586 
(300 MHz) takes about 30 minutes to tune the parameters of FPSS under the condition in 
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constant of deviation is 0.24, scaling constant of deviation rate is 3.50 and scaling constant of 



 Advances in Evolutionary Algorithms 

 

104 

output part is 2.75. We reviewed the performance of FPSS proposed in this paper and 
compared it with CPSS (Yu, 1983). In CPSS, time constants (T1, T2) were designed based on 
phase compensation as in Eq. (4), where washout filter (Tw) is 3 sec, stabilization gain (Kpss) 
is 7.09, and T1, T2 are 0.1 sec, 0.065 sec respectively. 

 w 1

w 2

sT 1 sT
1 sT 1 sTpssV Ks

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

 (4) 

where, Vs : Output of PSS 
 

~

Vt e θj

R jX

Voo 0

G

jB

 
Fig. 8.  Single-machine infinite system used in performance evaluation  
 

AEA 
Methods 

SIBS MPS 

Size of population 50 100 

Crossover probability 0.95 0.95 

Mutation probability 0.005 0.005 

δ 0.5 0.5 

Cd 0.95 0.95 

CI 1.05 1.05 

Number of Generation 100 200 

Table 2. Coefficients for simulation using AEA 
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(a) Membership function of deviation 
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(b) Membership function of change-of-deviation 
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(c) Membership function of output part 

Fig. 9.  Tuned membership function of FPSS 

Fig. 10 (a) shows the fitness values by AEA in each generation. Fig. 10 (b) shows the number 
of individuals for GA and ES in the AEA. As shown in Fig. 10, the number of individuals of 
GA is higher than that of individuals of ES in early generation. But, from generation to 
generation, the number of individuals of ES goes higher than that of individuals of GA. The 
AEA produces the improved reliability by exploiting the “global” nature of the GA initially 
as well as the “local” improvement capabilities of the ES from generation to generation. 
Analysis conditions used for comparing control performance of CPSS with FPSS optimized 
by AEA are summarized in Table 3. Table 3 is classified into four cases according to the 
power system simulation cases used in designing FPSS and in evaluating the robustness of 
FPSS. As shown in Table 3, Case-1 is used to design FPSS and tune scaling constant of 
input/output variable and membership functions of FPSS by AEA. We used Case-2 and 
Case-4 in evaluating the robustness of FPSS. 
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output part is 2.75. We reviewed the performance of FPSS proposed in this paper and 
compared it with CPSS (Yu, 1983). In CPSS, time constants (T1, T2) were designed based on 
phase compensation as in Eq. (4), where washout filter (Tw) is 3 sec, stabilization gain (Kpss) 
is 7.09, and T1, T2 are 0.1 sec, 0.065 sec respectively. 

 w 1
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sT 1 sT
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where, Vs : Output of PSS 
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Fig. 8.  Single-machine infinite system used in performance evaluation  
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Table 2. Coefficients for simulation using AEA 
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(c) Membership function of output part 

Fig. 9.  Tuned membership function of FPSS 

Fig. 10 (a) shows the fitness values by AEA in each generation. Fig. 10 (b) shows the number 
of individuals for GA and ES in the AEA. As shown in Fig. 10, the number of individuals of 
GA is higher than that of individuals of ES in early generation. But, from generation to 
generation, the number of individuals of ES goes higher than that of individuals of GA. The 
AEA produces the improved reliability by exploiting the “global” nature of the GA initially 
as well as the “local” improvement capabilities of the ES from generation to generation. 
Analysis conditions used for comparing control performance of CPSS with FPSS optimized 
by AEA are summarized in Table 3. Table 3 is classified into four cases according to the 
power system simulation cases used in designing FPSS and in evaluating the robustness of 
FPSS. As shown in Table 3, Case-1 is used to design FPSS and tune scaling constant of 
input/output variable and membership functions of FPSS by AEA. We used Case-2 and 
Case-4 in evaluating the robustness of FPSS. 
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1) Heavy load condition 
Fig. 11 shows generator angular velocity and the phase angle both without PSS and with 
CPSS and FPSS under Case-1 in Table 3. As shown Fig. 11, the FPSS shows the better control 
performance than CPSS in terms of settling time and damping effect. To evaluate the 
robustness of FPSS, Fig. 12 shows generator response characteristic in case that PSS is not 
applied. In this case, CPSS and proposed FPSS are applied under Case-2 of Table 3. As 
shown in Fig. 12, FPSS shows the better control performance than CPSS in terms of settling 
time and damping effect. 
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(b) Number of individuals of GA and ES in AEA 

Fig. 10.  Fitness and number of individuals of GA and ES in each generation 

 
Simulation 

cases 
Operating 
conditions 

Disturbanc
e 

Fault time
[msec] 

Case-1 A 40 

Case-2 

Heavy load 
Pe = 1.3 [pu] 

Qe = 0.015 [pu] B - 

Case-3 A 40 

Case-4 

Nominal load 
Pe = 1.0 [pu] 

Qe = 0.015 [pu] B - 

A: Three phase fault 
B:  Mechanical torque was changed as 0.1 [pu] 

Table 3. Simulation cases used in evaluation of controller performance 
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(a) Angle velocity of generator 

 
(b) Angle of generator 

Fig. 11.  Responses of generator when three-phase fault was occurred in heavy load 

 
(a) Angle velocity of generator 

 
(b) Angle of generator 

Fig. 12.  Responses of generator when mechanical torque was changed into 0.1[pu] in heavy 
load 
2) Nominal load condition 
    To evaluate the robustness of FPSS, Fig. 13-14 show generator response characteristic in 
case that PSS is not applied, and CPSS and proposed FPSS are applied under Case-3 and 4 of 
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Table 3. As shown in Fig. 13-14, the FPSS shows the better control performance than CPSS in 
terms of settling time and damping effect. 
 

 
(a) Angle velocity of generator 

 
(b) Angle of generator 

Fig. 13.  Responses of generator when three-phase fault was occurred in nominal load 
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(b) Angle of generator 

Fig. 14.  Responses of generator when mechanical torque was changed into 0.1[pu] in 
nominal load 
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3) Dynamic stability margin 
To evaluate the dynamic stability margin (He & Malik, 1997) of CPSS and FPSS, a simulation 
study is conducted with the initial operating condition of light, nominal and heavy load as 
given in Table 3. The mechanical torque is increased gradually. The dynamic stability 
margin is described by the maximum active power in which the system losses synchronism. 
Table 4 shows the dynamic stability margin. In Table 4, we can find FPSS increases the 
dynamic stability of generator. 
 

                                     Methods 
              Conditions CPSS FPSS 

Maximum active power [pu] 1.02 1.06 Light 
load Maximum generator phase angle 

[rad] 2.44 2.46 

Maximum active power [pu] 1.22 1.27 Nominal 
load Maximum generator phase angle 

[rad] 2.35 2.45 

Table 4. Dynamic stability margin (SIBS) 

4.2 Simulation cases of multi-machine power system 
To demonstrate the performance of the proposed FPSS, we performed nonlinear simulation 
for WSCC 3-machine, 9-bus system (Anderson & Found, 1977) as in Fig. 15. Constants of 
generator and exciter, load admittance, and load condition used in generator dynamic 
characteristic analysis are shown in Appendix (Abido & Abdel-Magid, 1999). Coefficients 
for simulation of AEA are shown in Table 2. We compared the proposed FPSS with the 
conventional power system stabilizer, CPSS, for multi-machine power system. In CPSS, time 
constants (T1, T2) were designed based on phase compensation as in Eq. (5), where washout 
filter (Tw) is 1.5 sec, stabilization gain (Kpss) is 15, and T1, T2 are 0.29 sec, 0.029 sec 
respectively. 
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w 1

w 2

sT 1 sT
1 sT 1 sTpssV Ks

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

 (5) 

As shown in Table 5, simulation cases used in comparing control performance of FPSS with 
CPSS are classified into Case-1 to Case-4. Case-1 was for the power operating condition used 
in designing FPSS. Case-2 and Case-4 were for evaluating the robustness of FPSS 
 

Simulation 
cases 

Operating 
conditions 

Disturbanc
e 

Fault time
[msec] 

Case-1 A 70 
Case-2 

Heavy load 
B 70 

Case-3 A 70 
Case-4 

Nominal load 
B 70 

 

A: Three phase fault in bus-7 
B: Three phase fault between  bus-5 and bus-7 
Table 5. Simulation cases used in evaluation of controller performance 
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Table 3. As shown in Fig. 13-14, the FPSS shows the better control performance than CPSS in 
terms of settling time and damping effect. 
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Fig. 13.  Responses of generator when three-phase fault was occurred in nominal load 
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Fig. 14.  Responses of generator when mechanical torque was changed into 0.1[pu] in 
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Fig. 15.  WSCC 3-machine, 9-bus system 
1) Heavy load condition 
Fig. 16 shows generator phase angles (G1, G2) both without PSS and with CPSS and FPSS 
under Case-1 in Table 5. As shown Fig. 16, the FPSS shows the better control performance 
than CPSS in terms of settling time and damping effect. To evaluate the robustness of FPSS, 
Fig. 17 shows generator phase angles (G1, G2) both without PSS and with CPSS and FPSS 
under Case-2 in Table 5. As shown in Fig. 17, FPSS shows the better control performance 
than CPSS in terms of settling time and damping effect. 

 
(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 16.  Responses of generator when three-phase ground fault was occurred at bus-7 under 
heavy load condition 
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(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 17.  Responses of generator when three-phase ground fault was occurred at bus-5 and 
bus-7 under heavy load condition 
2) Nominal load condition 
To evaluate the robustness of FPSS, Fig. 18-19 shows generator response characteristic in 
case that PSS is not applied, and CPSS and proposed FPSS are applied under Case-3 and 4 in 
Table 3. As shown in Fig. 18-19, the FPSS shows the better control performance than CPSS in 
terms of settling time and damping effect. 

 
(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 18.  Responses of generator when three-phase ground fault was occurred at bus-7 under 
nominal load condition 



 Advances in Evolutionary Algorithms 

 

110 

2 3

4

5 6

7

G1 G2

8 9

Load A Load B

Load C

1     ~      : Bus ,     Load A ~ Load C : Load,     G 1, G2 : Generator9

1

 
Fig. 15.  WSCC 3-machine, 9-bus system 
1) Heavy load condition 
Fig. 16 shows generator phase angles (G1, G2) both without PSS and with CPSS and FPSS 
under Case-1 in Table 5. As shown Fig. 16, the FPSS shows the better control performance 
than CPSS in terms of settling time and damping effect. To evaluate the robustness of FPSS, 
Fig. 17 shows generator phase angles (G1, G2) both without PSS and with CPSS and FPSS 
under Case-2 in Table 5. As shown in Fig. 17, FPSS shows the better control performance 
than CPSS in terms of settling time and damping effect. 

 
(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 16.  Responses of generator when three-phase ground fault was occurred at bus-7 under 
heavy load condition 

An Adaptive Evolutionary Algorithm Combining Evolution Strategy and Genetic Algorithm  
(Application of Fuzzy Power System Stabilizer) 

 

111 

 
(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 17.  Responses of generator when three-phase ground fault was occurred at bus-5 and 
bus-7 under heavy load condition 
2) Nominal load condition 
To evaluate the robustness of FPSS, Fig. 18-19 shows generator response characteristic in 
case that PSS is not applied, and CPSS and proposed FPSS are applied under Case-3 and 4 in 
Table 3. As shown in Fig. 18-19, the FPSS shows the better control performance than CPSS in 
terms of settling time and damping effect. 

 
(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 18.  Responses of generator when three-phase ground fault was occurred at bus-7 under 
nominal load condition 
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(a) Angle of generator (G1) 

 
(b) Angle of generator (G2) 

Fig. 19.  Responses of generator when three-phase ground fault was occurred at bus-5 and 
bus-7 under nominal load condition 
3) Dynamic stability margin 
Table 6 shows the dynamic stability margin (He and Malik, 1997) of CPSS and FPSS when 
the mechanical torque was increased gradually. In Table 6, we can find FPSS increases the 
dynamic stability of generator. 
 

CPSS FPSS                 Methods 
Conditions G1 G2 G1 G2 

A 3.04 2.44 3.11 2.51 Heavy 
load B 2.25 1.39 2.25 1.46 

A 2.84 2.29 2.91 2.36 Nominal 
load B 2.52 1.58 2.52 1.63 

A : Maximum active power [pu] 
B : Maximum generator phase angle [rad] 

Table 6. Dynamic stability margin (MPS) 

5. Conclusions 
In this paper, we tuned membership functions shape and input/output gain of FPSS using 
AEA that is algorithm that ratio of population to which GA and ES will adapt is adaptively 
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modified in reproduction according to the fitness. In the SIBS and MPS, we analyzed 
simulation results of FPSS and CPSS. The results are as following:  
① As a result of applying AEA to the design of FPSS, in the early generation, it is shown 

the number of population of GA is higher than that of population of ES, also the 
number of population of ES grows as the number of generation increases. This shows 
that the global search is executed through GA in the early generation and the local 
search is executed adaptively by means of ES as the number of generation increases. 

②  FPSS showed the better control performance than CPSS in terms of settling time and 
damping effect when three- phase fault under heavy load that is used in tuning FPSS 
occurs. To evaluate the robustness of FPSS, we analyzed dynamic characteristic of 
generator for changeable mechanical torque in heavy load, and change of mechanical 
torque and three-phase fault in nominal. FPSS showed the better damping effect than 
CPSS. 

③  As result of finding dynamic stability margin and successive peak damping ratio, FPSS 
more increased dynamic stability margin and showed the better result than CPSS in 
terms of successive peak damping ratio.  
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B. Nomenclature 

δ    : Rotor angle of generator 
ω    : Rotor speed of generator 
ωref : Reference rotor speed of generator  
H   : Inertia constant of generator 
Tm  : Mechanical input of generator 
Xd  : d-axis synchronous reactance of generator 
Xd ’ : d-axis transient reactance of generator 
Xq  : q-axis synchronous reactance of generator 
Eq’  : q-axis voltage of generator 
Efd  : Generator field voltage 
Tdo‘ : d-axis transient time constant of generator 
Id      : d-axis current of generator 
Iq      : q-axis current of generator 
Vt   : Terminal voltage 
Vref : Reference  voltage 
Vs    : PSS signal 
Voo  : Voltage of infinite bus 
 Ka  : AVR gain    
Ta    : Exciter time constant 
Re   : Equivalent resistance of transmission line 
Xe   : Equivalent reactance of transmission line 

C. Multi-machine Power System 

1. Constants of generator and exciter 

       Parameters
 

Generators 

H 
[sec] 

Xd 
[pu] 

X’d 

[pu] 
Xq 

[pu] 
T’do 

[pu] 
T’qo 
[pu] 

G1 6.4 0.8958 0.1198 0.8645 6.0 0.535 
G2 5.4 1.3125 0.1813 1.2578 5.89 0.6 

2. Load admittance 

Load Nominal load Heavy load 

Load A 1.261 - j0.504 2.314 – j0.925 
Load B 0.878 – j0.293 2.032 – j0.677 
Load C 0.969 – j0.339 1.584 – j0.634 
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3. Loading conditions 

                            Generators 
Loading condition G1 G2 

P [pu] 1.35 0.80 Nominal load 
Q [pu] 0.02 - 0.12 
P [pu] 1.65 1.05 Heavy 

load Q [pu] 0.53 0.35 
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B. Nomenclature 

δ    : Rotor angle of generator 
ω    : Rotor speed of generator 
ωref : Reference rotor speed of generator  
H   : Inertia constant of generator 
Tm  : Mechanical input of generator 
Xd  : d-axis synchronous reactance of generator 
Xd ’ : d-axis transient reactance of generator 
Xq  : q-axis synchronous reactance of generator 
Eq’  : q-axis voltage of generator 
Efd  : Generator field voltage 
Tdo‘ : d-axis transient time constant of generator 
Id      : d-axis current of generator 
Iq      : q-axis current of generator 
Vt   : Terminal voltage 
Vref : Reference  voltage 
Vs    : PSS signal 
Voo  : Voltage of infinite bus 
 Ka  : AVR gain    
Ta    : Exciter time constant 
Re   : Equivalent resistance of transmission line 
Xe   : Equivalent reactance of transmission line 

C. Multi-machine Power System 

1. Constants of generator and exciter 

       Parameters
 

Generators 

H 
[sec] 

Xd 
[pu] 

X’d 

[pu] 
Xq 

[pu] 
T’do 

[pu] 
T’qo 
[pu] 

G1 6.4 0.8958 0.1198 0.8645 6.0 0.535 
G2 5.4 1.3125 0.1813 1.2578 5.89 0.6 

2. Load admittance 

Load Nominal load Heavy load 

Load A 1.261 - j0.504 2.314 – j0.925 
Load B 0.878 – j0.293 2.032 – j0.677 
Load C 0.969 – j0.339 1.584 – j0.634 
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3. Loading conditions 

                            Generators 
Loading condition G1 G2 

P [pu] 1.35 0.80 Nominal load 
Q [pu] 0.02 - 0.12 
P [pu] 1.65 1.05 Heavy 

load Q [pu] 0.53 0.35 
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1. Introduction      
As a novel stochastic optimization technique, the Particle Swarm Optimization technique 
(PSO) has gained much attention towards several applications during the past decade for 
solving the global optimization problem or to set up a good approximate solution to the 
given problem with a high probability. PSO was first introduced by Eberhart and Kennedy 
[Kennedy and Eberhart, 1997]. It belongs to the category of Swarm Intelligence methods 
inspired by the metaphor of social interaction and communication such as bird ocking and 
sh schooling. It is also associated with wide categories of evolutionary algorithms through 
individual improvement along with population cooperation and competition. Since PSO 
was rst introduced to optimize various continuous nonlinear functions, it has been 
successfully applied to a wide range of applications owing to the inherent simplicity of the 
concept, easy implementation and quick convergence [Trelea 2003]. 
PSO is initialized with a population of random solutions. Each individual is assigned with a 
randomized velocity based to its own and the companions ying experiences, and the 
individuals, called particles, are then own through hyperspace. PSO leads to an effective 
combination of partial solutions in other particles and speedens the search procedure at an 
early stage in the generation. To apply PSO, several parameters including the population 
(N), cognition learning factor (cp), social learning factor (cg), inertia weight (w), and the 
number of iterations (T) or CPU time should be properly determined. Updating the velocity 
and positions are the most important parts of PSO as they play a vital role in exchanging 
information among particles. The details will be given in the following sections. 
The simple PSO often suffers from the problem of being trapped in local optima. So, in this 
this paper, the PSO is revised with a simple adaptive inertia weight factor, proposed to 
efficiently control the global search and convergence to the global best solution. Moreover, a 
local search method is incorporated into PSO to construct a hybrid PSO (HPSO), where the 
parallel population-based evolutionary searching ability of PSO and local searching 
behavior are reasonably combined. Simulation results and comparisons demonstrate the 
effectiveness and efficiency of the proposed HPSO. 
The paper is organized as follows. Section 2 describes the acronyms and notations. Section 3 
outlines the proposed method in detail. In Section 4, the methodology of the proposed 
HPSO is discussed. Numerical simulations and comparisons are provided in Section 5. 
Finally, Concluding remarks and directions for future work are given in in Section 6. 
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1. Introduction      
As a novel stochastic optimization technique, the Particle Swarm Optimization technique 
(PSO) has gained much attention towards several applications during the past decade for 
solving the global optimization problem or to set up a good approximate solution to the 
given problem with a high probability. PSO was first introduced by Eberhart and Kennedy 
[Kennedy and Eberhart, 1997]. It belongs to the category of Swarm Intelligence methods 
inspired by the metaphor of social interaction and communication such as bird ocking and 
sh schooling. It is also associated with wide categories of evolutionary algorithms through 
individual improvement along with population cooperation and competition. Since PSO 
was rst introduced to optimize various continuous nonlinear functions, it has been 
successfully applied to a wide range of applications owing to the inherent simplicity of the 
concept, easy implementation and quick convergence [Trelea 2003]. 
PSO is initialized with a population of random solutions. Each individual is assigned with a 
randomized velocity based to its own and the companions ying experiences, and the 
individuals, called particles, are then own through hyperspace. PSO leads to an effective 
combination of partial solutions in other particles and speedens the search procedure at an 
early stage in the generation. To apply PSO, several parameters including the population 
(N), cognition learning factor (cp), social learning factor (cg), inertia weight (w), and the 
number of iterations (T) or CPU time should be properly determined. Updating the velocity 
and positions are the most important parts of PSO as they play a vital role in exchanging 
information among particles. The details will be given in the following sections. 
The simple PSO often suffers from the problem of being trapped in local optima. So, in this 
this paper, the PSO is revised with a simple adaptive inertia weight factor, proposed to 
efficiently control the global search and convergence to the global best solution. Moreover, a 
local search method is incorporated into PSO to construct a hybrid PSO (HPSO), where the 
parallel population-based evolutionary searching ability of PSO and local searching 
behavior are reasonably combined. Simulation results and comparisons demonstrate the 
effectiveness and efficiency of the proposed HPSO. 
The paper is organized as follows. Section 2 describes the acronyms and notations. Section 3 
outlines the proposed method in detail. In Section 4, the methodology of the proposed 
HPSO is discussed. Numerical simulations and comparisons are provided in Section 5. 
Finally, Concluding remarks and directions for future work are given in in Section 6. 
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2. Acronym and notations 
Acronym: 

PSO : Particle Swarm Optimization Algorithm 
SPSO : Traditional PSO 
IPSO : An improved PSO proposed in [Jiang et. al. 2007] 

HPSO : The proposed Hybrid PSO 
Notations: 

D : The number of dimensions. 
N : The number of particles in each replication. 
T : The number of generations in each replication. 
R : The total number of independent replications. 
r• : The random number uniformly distributed in [0, 1]. 

cp, cg : The cognition learning factor and the social learning factor, respectively. 
w : The inertia weight. 

xt,i,j : The dimension of the position of particle i at iteration t, where t=1,2,…,T, 
i=1,2,…,N, and j=1,2,…,D. 

Xt,i : Xt,i=(xt,i,1,…,xt,i,D) is the position of particle i at iteration t, where t=1,2,…,T, 
i=1,2,…,N, and j=1,2,…,D. 

vt,i,j : the dimension of the velocity of particle i at iteration t, where t=1,2,…,T, 
i=1,2,…,N, and j=1,2,…,D. 

Vt,i : Vt,i=(vt,i,1,…,vt,i,D) is the velocity of particle i at iteration t, where t=1,2,…,T, 
i=1,2,…,N, and j=1,2,…,D. 

Pt,i : Pt,i=(pt,i,1,…,pt,i,D) is the best solution of particle i so far until iteration t, i.e., the 
pBest, where t=1,2,…,T,  i=1,2,…,N, and j=1,2,…,D. 

Gt : Gt=(gt,1,…,gt,D) the best solution among Pt,1,Pt,2,…,Pt,N at iteration t, i.e., the gBest, 
where t=1,2,…,T. 

F(•) : The fitness function value of •. 
U(•),L(•) : The upper and lower bounds for •, respectively.  

3. The PSO 
In PSO, a solution is encoded as a finite-length string called a particle. All of the particles 
have tness values which are evaluated by the tness function to be optimized, and have 
velocities which direct the ying of the particles [Parsopoulos et. al. 2001]. PSO is initialized 
with a population of random particles with random positions and velocities inside the 
problem space, and then searches for optima by updating generations. It combines the local 
and global search resulting in high search efficiency. Each particle moves towards its best 
previous position and towards the best particle in the whole swarm in every iteration. The 
former is a local best and its value is called pBest, and the latter is a global best and its value 
is called gBest in the literature. After nding the two best values, the particle updates its 
velocity and position with the following equation in continuous PSO: 

 vt,i,j = wvt-1,i,j+cprp,i,j(pt-1,i,j-xt-1,i,j)+cprp,i,j(gt-1,j-xt-1,i,j), (1) 

 xt,i,j=xt-1,i,j+vt,i,j. (2) 
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The values cprp,i,j and cgrg,i,j determine the weights of the two parts, and cp+cg is usually 
limited to 4 [Trelea 2003]. Generally, the value of each component in Xt,i and Vt,i can be 
clamped to the range [L(X), U(X)] and [L(V), U(V)], respectively, to limit each particle to 
ensure its feasibility. 
For example, let  

 X3,4=(1.5, 3.6, 3.7, -3.4, -1.9), (3) 

 V2,4=(0.4, 0.1, 0.7, -2.7, -3.5), (4) 

 P3,4=(1.6, 3.7, 3.5, -2.1, -1.9), (5) 

 G3=(1.7, 3.7, 2.2, -3.5, -2.5), (6) 

 Rp=(0.21, 0.58, 0.73, 0.9, 0.16), (7) 

 Rg=(0.47, 0.45, 0.28, 0.05, 0.77), (8) 

 L(X)= (0, 0, 0, -3.6, -3), (9) 

 U(X)=(2, 4, 4, 0, 0), (10) 

 L(V)=( -4, -4, -4, -4, -4), (11) 

 U(V)=( 4, 4, 4, 4, 4), (12) 

 w=.9, (13) 

 cp=cg=2. (14) 

Then, from Eq.(1), we have 

 V3,4=(0.59, 0.296, -0.502, -0.1, -4.074). (15) 

Since -4.074<-4, V3,4 needs to be adjustmented in the following: 

 V3,4=(0.59, 0.296, -0.502, -0.1, -4). (16) 

Under the guidance of Eq.(2),  

 X4,4=(2.09, 3.896, 3.198, -3.5, -5.974), (17) 

and  

 X4,4=(2.0, 3.896, 3.198, -3.5, -3.0) (18) 

after the adjustment according to the upper/lower-bounds of X. 
We conducted the preliminary experiments, and the complete computational procedure of 
the PSO algorithm can be summarized as follows. 
STEP 1: Initialize: Initialize parameters and population with random positions and 

velocities. 
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Acronym: 
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SPSO : Traditional PSO 
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3. The PSO 
In PSO, a solution is encoded as a finite-length string called a particle. All of the particles 
have tness values which are evaluated by the tness function to be optimized, and have 
velocities which direct the ying of the particles [Parsopoulos et. al. 2001]. PSO is initialized 
with a population of random particles with random positions and velocities inside the 
problem space, and then searches for optima by updating generations. It combines the local 
and global search resulting in high search efficiency. Each particle moves towards its best 
previous position and towards the best particle in the whole swarm in every iteration. The 
former is a local best and its value is called pBest, and the latter is a global best and its value 
is called gBest in the literature. After nding the two best values, the particle updates its 
velocity and position with the following equation in continuous PSO: 

 vt,i,j = wvt-1,i,j+cprp,i,j(pt-1,i,j-xt-1,i,j)+cprp,i,j(gt-1,j-xt-1,i,j), (1) 
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The values cprp,i,j and cgrg,i,j determine the weights of the two parts, and cp+cg is usually 
limited to 4 [Trelea 2003]. Generally, the value of each component in Xt,i and Vt,i can be 
clamped to the range [L(X), U(X)] and [L(V), U(V)], respectively, to limit each particle to 
ensure its feasibility. 
For example, let  

 X3,4=(1.5, 3.6, 3.7, -3.4, -1.9), (3) 
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Then, from Eq.(1), we have 

 V3,4=(0.59, 0.296, -0.502, -0.1, -4.074). (15) 

Since -4.074<-4, V3,4 needs to be adjustmented in the following: 
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and  
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after the adjustment according to the upper/lower-bounds of X. 
We conducted the preliminary experiments, and the complete computational procedure of 
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velocities. 
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STEP 2: Evaluation: Evaluate the fitness value (the desired objective function) for each 
particle. 

STEP 3: Find the pBest: If the fitness value of particle i is better than its best fitness value 
(pBest) in history, then set current fitness value as the new pBest to particle i. 

STEP 4: Find the gBest: If any pBest is updated and is better than the current gBest, then set 
gBest to the current value. 

STEP 5: Update and adjustment velocity: Update velocity according to Eq.(1). Adjust the 
velocity to meet its range if necessary. 

STEP 6: Update and adjustment position: Update velocity and move to the next position 
according to Eq.(2). Adjust the position to meet their range if necessary. 

STEP 7: Stopping criterion: If the number of iterations or CPU time are met, then stop; 
otherwise go back to STEP 2. 

4. The proposed HPSO 
To overcome the weakness of PSO for local searches, this paper aims at creating HPSO by 
combining PSO, local search (LS), and vector based (VB) with a linearly varying inertia 
weight. The PSO part in the proposed HPSO is similar to the SPSO proposed in section 3. 
Hence, only the differences, i.e. the linearly varying inertia weight, LS and VB, are 
elaborated in this section. 

4.1 Initial population 
The initial population is generated randomly in the feasible space such that its lower-
/upper-bounds are satisfied. To construct a direct relationship between the problem domain 
and the PSO particles in this study, the ith dimension in the pariticle stands for the value of 
the ith variable in the solution. 

4.2 The linearly varying inertia weight 
One of the most important issues to nd the optimum solution effectively and efficiently 
while designing the PSO algorithm is its parameters. The inertia weight represents the 
inuence of previous velocity which provides the necessary momentum for particles to 
move across the search space. Hence, the inertia weight dictates the balance between 
exploration and exploitation in PSO [Jiang et. al. 2007]. Shi and Eberhart (2001) made a 
signicant improvement in the performance of the PSO with a linearly varying inertia 
weight over the generations, which linearly varies from 0.9 at the beginning of the search to 
0.4 at the end. Thus the linearly varying inertia weight is adapted in the proposed HPSO to 
achieve trade-off between exploration and exploitation, i.e. the inertia weight of the ith 
generation is  

 wi=U(w)-(i-1)[U(w)-L(w)]/N. (19) 

4.3 Vector based PSO 
The underlying principle of the traditional PSO is that the next position of each particle is a 
compromise of its current position, the best position in its history so far, and the best 
position among all existing particles. The vector synthesis is the original mathematical 
foundation of PSO, as shown in the following figure. 
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Fig. 1. The vector synthesis of PSO. 

Eqs.(1) and (2) are more complicated than the concept of the vector synthesis in increasing 
the diversity of the dimensions of each particle. Hence, the following equations are 
implemented in the proposed HPSO instead of Eqs.(1) and (2): 

 Vt,i=wiVt-1,i+cprp(Pt-1,i-Xt-1,i)+cgrg(Gt-1-Xt-1,i), (20) 

 Xt,i=Xt-1,i+Vt,i. (21) 

In the traditional PSO, each particle needs to use two random number vectors (e.g., Rp and 
Rq) to move to its next position. However, only two random number (e.g., rp and rq) are 
needed in the proposed HPSO. Besides, Eqs(20) and (21) are very easy and efficient in 
deciding the next positions for the problems with continuous variables. For example, let P3,4, 
X3,4, P3,4, G3, L(X), U(X) are the same as defined in the example in Section 1. Assume rp=0.34 
and rg=0.79. From Eq.(19),  

 wi=0.9-(4-1)[0.9-0.4]/1000=0.8985. (22) 

Plug wi, rp, rg and the other required value into Eq.(20), we have  

 V3,4=(0.6974, 0.28985, -1.56505, -1.75795, -3.97275), (23) 

 V3,4=(0.6974, 0.28985, -1.56505, -1.75795, -3.97275), (24) 

where X4,4 is adjustmented from 

 (2.1974, 3.88985, 2.13495, -5.15795, -5.87275). (25) 

4.4 Local search method 
One of the major drawbacks of PSO is is its very slow convergence. To surmount this 
drawback, to guide the search towards unexplored regions in the solution space and to 
avoid being trapped into local optimum, LS is implemented for constructing the proposed 
HPSO. 
In PSO, proper control of global exploration and local exploitation is crucial in nding the 
optimum solution efficiently [Liu 2005]. A local optimizer is applied to the best particle (i.e. 
gBest) for each run in order to push it to climb the local optimum [Liu 2005]. With the hybrid 
method, PSOs are used to perform global exploration around particles except the gBest to 
maintain population diversity, while the local optimizer is used to perform local 
exploitation to the best particle. Since the properties of PSOs and conventional local 
optimizers are complementary, HPSOs are often better than either method operating alone 
from the computation exprements shown in Section 5. 
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STEP 2: Evaluation: Evaluate the fitness value (the desired objective function) for each 
particle. 
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Hence, only the differences, i.e. the linearly varying inertia weight, LS and VB, are 
elaborated in this section. 
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 wi=U(w)-(i-1)[U(w)-L(w)]/N. (19) 

4.3 Vector based PSO 
The underlying principle of the traditional PSO is that the next position of each particle is a 
compromise of its current position, the best position in its history so far, and the best 
position among all existing particles. The vector synthesis is the original mathematical 
foundation of PSO, as shown in the following figure. 
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Eqs.(1) and (2) are more complicated than the concept of the vector synthesis in increasing 
the diversity of the dimensions of each particle. Hence, the following equations are 
implemented in the proposed HPSO instead of Eqs.(1) and (2): 

 Vt,i=wiVt-1,i+cprp(Pt-1,i-Xt-1,i)+cgrg(Gt-1-Xt-1,i), (20) 

 Xt,i=Xt-1,i+Vt,i. (21) 

In the traditional PSO, each particle needs to use two random number vectors (e.g., Rp and 
Rq) to move to its next position. However, only two random number (e.g., rp and rq) are 
needed in the proposed HPSO. Besides, Eqs(20) and (21) are very easy and efficient in 
deciding the next positions for the problems with continuous variables. For example, let P3,4, 
X3,4, P3,4, G3, L(X), U(X) are the same as defined in the example in Section 1. Assume rp=0.34 
and rg=0.79. From Eq.(19),  

 wi=0.9-(4-1)[0.9-0.4]/1000=0.8985. (22) 

Plug wi, rp, rg and the other required value into Eq.(20), we have  

 V3,4=(0.6974, 0.28985, -1.56505, -1.75795, -3.97275), (23) 

 V3,4=(0.6974, 0.28985, -1.56505, -1.75795, -3.97275), (24) 

where X4,4 is adjustmented from 

 (2.1974, 3.88985, 2.13495, -5.15795, -5.87275). (25) 

4.4 Local search method 
One of the major drawbacks of PSO is is its very slow convergence. To surmount this 
drawback, to guide the search towards unexplored regions in the solution space and to 
avoid being trapped into local optimum, LS is implemented for constructing the proposed 
HPSO. 
In PSO, proper control of global exploration and local exploitation is crucial in nding the 
optimum solution efficiently [Liu 2005]. A local optimizer is applied to the best particle (i.e. 
gBest) for each run in order to push it to climb the local optimum [Liu 2005]. With the hybrid 
method, PSOs are used to perform global exploration around particles except the gBest to 
maintain population diversity, while the local optimizer is used to perform local 
exploitation to the best particle. Since the properties of PSOs and conventional local 
optimizers are complementary, HPSOs are often better than either method operating alone 
from the computation exprements shown in Section 5. 



 Advances in Evolutionary Algorithms 

 

122 

The proposed LS is very simple and similar to the famous local improvement method the 
pairwise exchange procedure. In LS, the ith dimension of both the current best particle of all 
population (i.e., gBest) are replaced by the current best particle of the jth particle (i.e., pBest). 
If the fitness function value is improved, the the current gBest is updated accordingly. 
Otherwise, there is no need to change the current gBest. The above procedure in the 
proposed HPSO is repeated until all dimensions in the gBest are performed. 
To minimize the number of duplicated computations of the same fitness function in LS, only 
one non-gBest is randomly selected to each dimension of gBest in the local search. The 
complete procedure of the local search part of the proposed HPSO can be summarized as in 
the following: 
STEP 0. Let d=1. 
STEP 1. Let n=1. 
STEP 2. If Gd=Pt,n or gt,d=pt,n,d, go to STEP 4. Otherwise, let F*=F(Gd), Gd=Pt,n, and gt,d=pt,n,d. 
STEP 3. If F(Gd) is better than F*, then let F*=F(Gd). Otherwise, let gt,d=g. 
STEP 4. If n<N, let n=n+1 and go to STEP 2. 
STEP 5. If d<D, let d=d+1 and go to STEP 1. 

5. Numerical examples 
To evaluate the performance of the proposed algorithms, four famous benchmark 
optimization problems [Jiang et. al. 2007] are used, which are described as follows. 
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Table 1. Benchmark functions. 
Features of the above three functions are the following: Rosenbrock is an unimodal function 
and its variables are strongly dependent and gradient information often misleads 
algorithms; Rastrigin is ultimodal function with many local optima; Griewank is strongly 
multi-modal with significant interactions between its variables (caused by the product term) 
and the number of local minima increases with dimensionality [Jiang et. al. 2007].  
These problems are implemented using the proposed HPSO, SPSO, and the best-known 
PSO (IPSO) proposed in  by Jiang et. al. (2007) with regard to these three benchmark 
problems and the results of the experiments were compared. The proposed HPSO, SPSO 
and IPSO were implemented in C programming language on an Intel Pentium 2.6 GHz PC 
with 2G memory. To facilitate fair comparison, the number of iterations, the number of runs, 
and the populations for the proposed HPSO, SPSO and IPSO are taken directly from Jiang 
et. al. (2007). All these methods use a linearly varying inertia weight over the generations, 
varying from 0.9 at the beginning of the search to 0.4 at the end. In addition, cg=cp=2, 
Xmax=Vmax=UB and Xmin=Vmin=LB are used. 
As in Jiang et. al. (2007), the proposed HPSO, SPSO and IPSO were tested on four group 
problems (population sizes of 20, 40, 80, and 160). The population sizes of each group are 
equal and each group problem contains 3 data sets. Each data set was first run with 3 sets of 
dimensions: 10, 20, and 30 and the corresponding maximum number of generations are set 
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as 1000, 1500 and 2000, respectively. Hence, there are 12 different test sets to each 
benchmark problem as follows: 
 

Set A1: N=20, D=10, T=1000; 
Set A2: N=20, D=20, T=1500; 
Set A3: N=20, D=30, T=2000; 
Set B1: N=40, D=10, T=1000; 
Set B2: N=40, D=20, T=1500; 
Set B3: N=40, D=30, T=2000; 
Set C1: N=80, D=10, T=1000; 
Set C2: N=80, D=20, T=1500; 
Set C3: N=80, D=30, T=2000; 

Set D1: N=160, D=10, T=1000; 
Set D2: N=160, D=20, T=1500; 
Set D3: N=160, D=30, T=2000; 

Each algorithm with each set of parameter is executed in 50 independent runs. The average 
tness values of the best particle found for the 50 runs for the three functions are listed in 
Table 2. The shaded number shows the best result with respect to the corresponding 
function and the set. From the Table 2, it can be seen that IPSO outperforms the HPSO in 
Rosenbrock functions for POP=20 and 80. However, the remaining cases of Rosenbrock 
functions and for the Griewark function, the proposed HPSO has almost achieved better 
results than SPSO and IPSO. Furthermore HPSO is superior to SPSO and IPSO at all 
instances of the Rastrigrin function. 
 

Rosenbrock Rastrigrin Griewark SET 
PSO IPSO HPSO PSO IPSO HPSO PSO IPSO HPSO 

A1 42.6162 10.5172 3.3025 5.2062 3.2928 0 0.0920 0.0784 0.0071 
A2 87.2870 75.7246 124.3305 22.7724 16.4137 0.4975 0.0317 0.0236 0.0168 
A3 132.5973 99.8039 122.7829 49.2942 35.0189 1.0760 0.0482 0.0165 0.0190 
B1 24.3512 1.2446 0 3.5697 2.6162 0 0.0762 0.0648 0.0002 
B2 47.7243 8.7328 0.0797 17.2975 14.8894 0 0.0227 0.0182 0.0026 
B3 66.6341 14.7301 120.7434 38.9142 27.7637 0 0.0153 0.0151 0.0012 
C1 15.3883 0.1922 0.0797 2.3835 1.7054 0 0.0658 0.0594 0 
C2 40.6403 1.5824 60.3717 12.9020 7.6689 0 0.0222 0.0091 0 
C3 63.4453 1.5364 4.7461 30.0375 13.8827 0 0.0121 0.0004 0 
D1 11.6283 0.0598 0 1.4418 0.8001 0 0.0577 0.0507 0 
D2 28.9142 0.4771 0 10.0438 4.2799 0 0.0215 0.0048 0 
D3 56.6689 0.4491 0 24.5105 11.9521 0 0.0121 0.0010 0 

Average 39.48832 3.22272 20.66896 15.67783 9.50649 0 0.03396 0.02483 0.00044 

Table 2. Mean Fitness function values 50 independent runs. 
The final statistical result including the Success Rate, the fitness function values, CPU times 
and convergence iterations of all 50 runs related to Rosenbrock function, Rastrigrin function, 
and Griewark function are listed in Tables 3-5. The Success Rate is defined to be the 
percentage of the number of nal searching solution that is equal to the global optimal value 
in 50 independent runs. Convergence iterations denote the number of iterations required for 
convergence. These data are divided into three categories: maximum, minimum, average, 
and standard deviations (denoted by max, min, mean, and std., respectively). 
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and its variables are strongly dependent and gradient information often misleads 
algorithms; Rastrigin is ultimodal function with many local optima; Griewank is strongly 
multi-modal with significant interactions between its variables (caused by the product term) 
and the number of local minima increases with dimensionality [Jiang et. al. 2007].  
These problems are implemented using the proposed HPSO, SPSO, and the best-known 
PSO (IPSO) proposed in  by Jiang et. al. (2007) with regard to these three benchmark 
problems and the results of the experiments were compared. The proposed HPSO, SPSO 
and IPSO were implemented in C programming language on an Intel Pentium 2.6 GHz PC 
with 2G memory. To facilitate fair comparison, the number of iterations, the number of runs, 
and the populations for the proposed HPSO, SPSO and IPSO are taken directly from Jiang 
et. al. (2007). All these methods use a linearly varying inertia weight over the generations, 
varying from 0.9 at the beginning of the search to 0.4 at the end. In addition, cg=cp=2, 
Xmax=Vmax=UB and Xmin=Vmin=LB are used. 
As in Jiang et. al. (2007), the proposed HPSO, SPSO and IPSO were tested on four group 
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equal and each group problem contains 3 data sets. Each data set was first run with 3 sets of 
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as 1000, 1500 and 2000, respectively. Hence, there are 12 different test sets to each 
benchmark problem as follows: 
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Each algorithm with each set of parameter is executed in 50 independent runs. The average 
tness values of the best particle found for the 50 runs for the three functions are listed in 
Table 2. The shaded number shows the best result with respect to the corresponding 
function and the set. From the Table 2, it can be seen that IPSO outperforms the HPSO in 
Rosenbrock functions for POP=20 and 80. However, the remaining cases of Rosenbrock 
functions and for the Griewark function, the proposed HPSO has almost achieved better 
results than SPSO and IPSO. Furthermore HPSO is superior to SPSO and IPSO at all 
instances of the Rastrigrin function. 
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Table 2. Mean Fitness function values 50 independent runs. 
The final statistical result including the Success Rate, the fitness function values, CPU times 
and convergence iterations of all 50 runs related to Rosenbrock function, Rastrigrin function, 
and Griewark function are listed in Tables 3-5. The Success Rate is defined to be the 
percentage of the number of nal searching solution that is equal to the global optimal value 
in 50 independent runs. Convergence iterations denote the number of iterations required for 
convergence. These data are divided into three categories: maximum, minimum, average, 
and standard deviations (denoted by max, min, mean, and std., respectively). 
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 Success Fitness Function Value Running Time (sec.) Convergence Iterations 
SET Rate max min mean std max min Mean std max min mean std 
A1 92% 153.17 0 3.3025 21.65 0.03 0.02 0.02 0.00 962 520 720.3 73.77 
A2 90% 3018.59 0 124.3305 597.18 0.12 0.05 0.06 0.01 1264 520 1130.3 141.50 
A3 82% 3018.59 0 122.7829 597.14 0.29 0.09 0.11 0.04 1987 914 1603.5 268.45 
B1 100% 0 0 0 0 0.05 0.04 0.05 0.00 787 607 660.1 39.34 
B2 98% 3.99 0 0.0797 0.56 0.25 0.09 0.14 0.03 1129 813 1024.7 64.66 
B3 96% 3018.59 0 120.7434 597.52 0.47 0.19 0.23 0.07 1635 1176 1477.9 114.45 
C1 98% 3.99 0 0.0797 0.56 0.13 0.07 0.11 0.01 782 556 602.7 37.37 
C2 98% 3018.59 0 60.3717 426.89 0.46 0.24 0.37 0.04 1089 649 946.9 60.43 
C3 98% 237.31 0 4.7461 33.56 0.91 0.44 0.66 0.10 1457 1217 1346.7 56.36 
D1 100% 0 0 0 0 0.27 0.21 0.25 0.02 681 533 567.4 28.35 
D2 100% 0 0 0 0 1.00 0.78 0.89 0.05 1048 818 887.3 47.31 
D3 100% 0 0 0 0 2.41 1.52 1.78 0.17 1452 1073 1232.0 73.77 

Table 3. Experimental results on Rosenbrock function of 50 independent runs. 
 

 Success Fitness Function Value Running Time (sec.) Convergence Iterations 
SET Rate max min mean std max min mean std max min mean std 
A1 100% 0 0 0 0 0.05 0.04 0.05 0.00 112 5 30.3 20.52 
A2 98% 24.87 0 0.4975 3.52 0.16 0.15 0.16 0.00 329 11 56.1 49.95 
A3 96% 28.92 0 1.0760 5.34 0.37 0.33 0.34 0.01 357 19 86.4 74.91 
B1 100% 0 0 0 0 0.09 0.08 0.08 0.00 58 7 25.4 12.34 
B2 100% 0 0 0 0 0.27 0.25 0.25 0.00 104 11 36.4 20.96 
B3 100% 0 0 0 0 0.58 0.53 0.55 0.01 196 20 47.7 28.55 
C1 100% 0 0 0 0 0.17 0.15 0.16 0.00 56 5 19.3 11.02 
C2 100% 0 0 0 0 0.49 0.45 0.47 0.01 106 9 32.9 17.43 
C3 100% 0 0 0 0 1.01 0.92 0.96 0.02 127 18 45.2 25.74 
D1 100% 0 0 0 0 0.32 0.30 0.31 0.00 38 5 15.6 7.43 
D2 100% 0 0 0 0 0.92 0.86 0.89 0.01 63 9 26.4 10.87 
D3 100% 0 0 0 0 1.91 1.74 1.79 0.03 97 9 34.7 15.96 

Table 4. Experimental results on Rastrigrin function of 50 independent runs. 
 

 Success Fitness Function Value Running Time (sec.) Convergence Iterations 
SET Rate max min mean std max min mean std max min mean std 
A1 86% 0.10 0 0.0071 0.02 0.08 0.08 0.08 0.00 711 6 110.7 169.22 
A2 74% 0.13 0 0.0186 0.04 0.30 0.27 0.28 0.01 1401 18 262.1 303.67 
A3 76% 0.21 0 0.0190 0.04 0.72 0.64 0.67 0.03 812 15 275.0 272.40 
B1 98% 0.01 0 0.0002 0.00 0.14 0.13 0.14 0.00 518 4 53.1 74.79 
B2 96% 0.07 0 0.0026 0.01 0.49 0.44 0.45 0.01 823 10 90.7 151.76 
B3 96% 0.03 0 0.0012 0.01 1.06 0.99 1.00 0.01 738 10 95.7 140.38 
C1 100% 0 0 0 0 0.26 0.25 0.26 0.00 124 2 20.5 23.07 
C2 100% 0 0 0 0 0.81 0.78 0.80 0.01 120 10 40.8 26.87 
C3 100% 0 0 0 0 1.74 1.67 1.70 0.02 131 8 48.1 28.07 
D1 100% 0 0 0 0 0.51 0.49 0.50 0.00 30 6 14.8 6.09 
D2 100% 0 0 0 0 1.53 1.46 1.49 0.01 104 9 29.0 16.99 
D3 100% 0 0 0 0 3.18 3.04 3.10 0.03 77 9 32.9 14.44 

Table 5. Experimental results on Griewark function of 50 independent runs. 
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As the dimension increases, the solution space get more complex, and PSO algorithm is 
more likely to be trapped into local optima. Experimental data shown in Table 2 does not 
clearly indicate that the HPSO outperforms the other PSOs in the measures of average 
fitness function values. However, the Success Rates are all over 74%. Therefore, the 
proposed HPSO can nd global optima with very high probability, and it is concluded that 
HPSO has the strongest exploration ability and it is not easy to be trapped into local optima. 
Table 3 shows that the proposed HPSO uses only 3.18 seconds in worst case and 0.6 seconds 
in average. Thus, HPSO is very effective, efficient, robust, and reliable for complex 
numerical optimization.  

6. Conclusions 
A successful evolutionary algorithm is one with a proper balance between exploration 
(searching for good solutions), and exploitation (refining the solutions by combining 
information gathered during the exploration phase). In this study, a new hybrid version of 
PSO called HPSO is proposed. The HPSO constitutes a vector based PSO method with the 
linearly varying inertia weight, along with a local search. 
A novel, simpler, and efficient mechanism is employed to move the gBest to its next position 
in the proposed HPSO. The HPSO combines the population-based evolutionary searching 
ability of PSO and local searching behavior to effciently balance the exploration and 
exploitation abilities. The result obtained by HPSO has been compared with those obtained 
from traditional simple PSO (SPSO) and improved PSO (IPSO) proposed recently. 
Computational results show that the proposed HPSO shows an enhancement in searching 
efficiency and improve the searching quality. In summary, the results presented in this work 
are encouraging and promising for the application of the proposed HPSO to other complex 
problems.  
Further analysis is necessary to see how other soft computing method (e.g., the genetic 
algorithm, the taboo search, etc.) react to local searches for future researchers who may want 
to develop their own heuristics and to make further improvements. Our research is still very 
active and under progress, and it opens the avenues for future efforts in this directions such 
as: how to adjust parameters, increase success rates, reduce running times, using other local 
search, and the aggregation of different and new concepts to PSO. 
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 Success Fitness Function Value Running Time (sec.) Convergence Iterations 
SET Rate max min mean std max min Mean std max min mean std 
A1 92% 153.17 0 3.3025 21.65 0.03 0.02 0.02 0.00 962 520 720.3 73.77 
A2 90% 3018.59 0 124.3305 597.18 0.12 0.05 0.06 0.01 1264 520 1130.3 141.50 
A3 82% 3018.59 0 122.7829 597.14 0.29 0.09 0.11 0.04 1987 914 1603.5 268.45 
B1 100% 0 0 0 0 0.05 0.04 0.05 0.00 787 607 660.1 39.34 
B2 98% 3.99 0 0.0797 0.56 0.25 0.09 0.14 0.03 1129 813 1024.7 64.66 
B3 96% 3018.59 0 120.7434 597.52 0.47 0.19 0.23 0.07 1635 1176 1477.9 114.45 
C1 98% 3.99 0 0.0797 0.56 0.13 0.07 0.11 0.01 782 556 602.7 37.37 
C2 98% 3018.59 0 60.3717 426.89 0.46 0.24 0.37 0.04 1089 649 946.9 60.43 
C3 98% 237.31 0 4.7461 33.56 0.91 0.44 0.66 0.10 1457 1217 1346.7 56.36 
D1 100% 0 0 0 0 0.27 0.21 0.25 0.02 681 533 567.4 28.35 
D2 100% 0 0 0 0 1.00 0.78 0.89 0.05 1048 818 887.3 47.31 
D3 100% 0 0 0 0 2.41 1.52 1.78 0.17 1452 1073 1232.0 73.77 

Table 3. Experimental results on Rosenbrock function of 50 independent runs. 
 

 Success Fitness Function Value Running Time (sec.) Convergence Iterations 
SET Rate max min mean std max min mean std max min mean std 
A1 100% 0 0 0 0 0.05 0.04 0.05 0.00 112 5 30.3 20.52 
A2 98% 24.87 0 0.4975 3.52 0.16 0.15 0.16 0.00 329 11 56.1 49.95 
A3 96% 28.92 0 1.0760 5.34 0.37 0.33 0.34 0.01 357 19 86.4 74.91 
B1 100% 0 0 0 0 0.09 0.08 0.08 0.00 58 7 25.4 12.34 
B2 100% 0 0 0 0 0.27 0.25 0.25 0.00 104 11 36.4 20.96 
B3 100% 0 0 0 0 0.58 0.53 0.55 0.01 196 20 47.7 28.55 
C1 100% 0 0 0 0 0.17 0.15 0.16 0.00 56 5 19.3 11.02 
C2 100% 0 0 0 0 0.49 0.45 0.47 0.01 106 9 32.9 17.43 
C3 100% 0 0 0 0 1.01 0.92 0.96 0.02 127 18 45.2 25.74 
D1 100% 0 0 0 0 0.32 0.30 0.31 0.00 38 5 15.6 7.43 
D2 100% 0 0 0 0 0.92 0.86 0.89 0.01 63 9 26.4 10.87 
D3 100% 0 0 0 0 1.91 1.74 1.79 0.03 97 9 34.7 15.96 

Table 4. Experimental results on Rastrigrin function of 50 independent runs. 
 

 Success Fitness Function Value Running Time (sec.) Convergence Iterations 
SET Rate max min mean std max min mean std max min mean std 
A1 86% 0.10 0 0.0071 0.02 0.08 0.08 0.08 0.00 711 6 110.7 169.22 
A2 74% 0.13 0 0.0186 0.04 0.30 0.27 0.28 0.01 1401 18 262.1 303.67 
A3 76% 0.21 0 0.0190 0.04 0.72 0.64 0.67 0.03 812 15 275.0 272.40 
B1 98% 0.01 0 0.0002 0.00 0.14 0.13 0.14 0.00 518 4 53.1 74.79 
B2 96% 0.07 0 0.0026 0.01 0.49 0.44 0.45 0.01 823 10 90.7 151.76 
B3 96% 0.03 0 0.0012 0.01 1.06 0.99 1.00 0.01 738 10 95.7 140.38 
C1 100% 0 0 0 0 0.26 0.25 0.26 0.00 124 2 20.5 23.07 
C2 100% 0 0 0 0 0.81 0.78 0.80 0.01 120 10 40.8 26.87 
C3 100% 0 0 0 0 1.74 1.67 1.70 0.02 131 8 48.1 28.07 
D1 100% 0 0 0 0 0.51 0.49 0.50 0.00 30 6 14.8 6.09 
D2 100% 0 0 0 0 1.53 1.46 1.49 0.01 104 9 29.0 16.99 
D3 100% 0 0 0 0 3.18 3.04 3.10 0.03 77 9 32.9 14.44 

Table 5. Experimental results on Griewark function of 50 independent runs. 
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As the dimension increases, the solution space get more complex, and PSO algorithm is 
more likely to be trapped into local optima. Experimental data shown in Table 2 does not 
clearly indicate that the HPSO outperforms the other PSOs in the measures of average 
fitness function values. However, the Success Rates are all over 74%. Therefore, the 
proposed HPSO can nd global optima with very high probability, and it is concluded that 
HPSO has the strongest exploration ability and it is not easy to be trapped into local optima. 
Table 3 shows that the proposed HPSO uses only 3.18 seconds in worst case and 0.6 seconds 
in average. Thus, HPSO is very effective, efficient, robust, and reliable for complex 
numerical optimization.  

6. Conclusions 
A successful evolutionary algorithm is one with a proper balance between exploration 
(searching for good solutions), and exploitation (refining the solutions by combining 
information gathered during the exploration phase). In this study, a new hybrid version of 
PSO called HPSO is proposed. The HPSO constitutes a vector based PSO method with the 
linearly varying inertia weight, along with a local search. 
A novel, simpler, and efficient mechanism is employed to move the gBest to its next position 
in the proposed HPSO. The HPSO combines the population-based evolutionary searching 
ability of PSO and local searching behavior to effciently balance the exploration and 
exploitation abilities. The result obtained by HPSO has been compared with those obtained 
from traditional simple PSO (SPSO) and improved PSO (IPSO) proposed recently. 
Computational results show that the proposed HPSO shows an enhancement in searching 
efficiency and improve the searching quality. In summary, the results presented in this work 
are encouraging and promising for the application of the proposed HPSO to other complex 
problems.  
Further analysis is necessary to see how other soft computing method (e.g., the genetic 
algorithm, the taboo search, etc.) react to local searches for future researchers who may want 
to develop their own heuristics and to make further improvements. Our research is still very 
active and under progress, and it opens the avenues for future efforts in this directions such 
as: how to adjust parameters, increase success rates, reduce running times, using other local 
search, and the aggregation of different and new concepts to PSO. 
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1. Introduction 
The harmony search (HS) is a music-inspired evolutionary algorithm, mimicking the 
improvisation process of music players (Geem et al., 2001). The HS is simple in concept, few 
in parameters, and easy in implementation, with theoretical background of stochastic 
derivative (Geem, 2007a). The algorithm was originally developed for discrete optimization 
and later expanded for continuous optimization (Lee & Geem, 2005). 
The following pseudo code describes how the HS algorithm works: 
 
procedure HS 
 

  // initialize 
  initiate parameters 
  initialize the harmony memory 
 

  //main loop 
  while (not_termination) 
    for I = 1 to number of decision variables (N) do 
      R1 = uniform random number between 0 and 1 
      if (R1 < P

HMCR
)  (memory consideration) 

        X[I] will be randomly chosen from harmony memory 
        R2 = uniform random number 
        if (R2 < P

PAR
)  (pitch adjustment) 

          X[I] = X[I] ± ∆ 
        end if 
      else  (random selection) 
        X[I] = X ∈ Φ  (Φ = Value Set) 
      end if 
    end do 
 

  // evaluate the fitness of each vector 
  fitness_X = evaluate_fitness(X) 
 

  // update harmony memory 
  update_memory(X, fitness_X) % if applicable 
 
  end while 
 

end procedure 
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The following pseudo code describes how the HS algorithm works: 
 
procedure HS 
 

  // initialize 
  initiate parameters 
  initialize the harmony memory 
 

  //main loop 
  while (not_termination) 
    for I = 1 to number of decision variables (N) do 
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  end while 
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Ensemble harmony search (EHS) is another variant of the HS where ensemble consideration 
is added to the original algorithm structure (Geem, 2006a). The new operation considers the 
relationship among decision variables. The EHS could overcome the drawback of genetic 
algorithm's building block theory which does not work well if less-correlated variables 
locate closely in a chromosome. 
Mahdavi et al. (2007) proposed an improved harmony search (IHS), in which dynamic 
parameter adjusting is used in improvisation step. As the search progresses, PPAR is 
increased linearly while adjusting amount is decreased exponentially. This modification 
improves the local exploitation capability of the HS algorithm. 
Recently, Omran & Mahdavi (2007) proposed a new variant of harmony search, called the 
global-best harmony search (GHS), in which the concepts from swarm intelligence are 
borrowed to enhance the performance of HS such that the new harmony can mimic the best 
harmony in the harmony memory (HM). 
The HS algorithm has been successfully applied to various artificial intelligence and 
engineering problems including music composition (Geem & Choi, 2007), Sudoku puzzle 
solving (Geem, 2007b), structural design (Lee & Geem, 2004; Saka, 2007), ecological 
conservation (Geem & Williams, 2008), aquifer parameter identification (Ayvaz, 2007), soil 
slip determination (Cheng et al., 2008), offshore structure mooring (Ryu et al., 2007), power 
economic dispatch (Vasebi et al., 2007), pipeline network design (Geem, 2006b), and dam 
operation (Geem, 2007c). 
The goal of this chapter is to review various recent applications of the HS algorithm, helping 
other researchers to draw a big picture of the HS ability and to apply it to their own 
problems. 

2. Recent applications 
2.1 Music composition 
The HS algorithm composed music pieces (Geem & Choi, 2007). When HS was applied to 
the organum (an early form of polyphonic music) composition, it was able to successfully 
compose harmony lines based on original Gregorian chant lines. 
Gregorian chant is a monophonic religious song in the middle ages, and organum is an early 
form of harmonized music which accompanies the Gregorian chant melody. HS generates 
the harmony line (vox organalis) to accompany the original Gregorian chant (vox 
principalis). 
The organum has the following composing rules: the harmony line progresses in parallel; 
for the parallel motion, the interval of perfect fourth is preferred; and, in order to distinguish 
the vox principalis from vox organalis, the former should always be located above the latter. 
The above-mentioned rules were formulated as a optimization problem. Then, HS solved 
the problem, obtaining  aesthetically pleasing organum as shown in Figure 1. 
Figure 1 shows a Gregorian chant “Rex caeli Domine” and its organum composed by HS. 
The upper line in the figure is the Gregorian chant melody and the lower line is the 
organum line. 
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Fig. 1. Organum Composed by HS algorithm 

2.2 Sudoku puzzle solving 
HS was applied to a Sudoku puzzle (Geem, 2007b), which is formulated as an optimization 
problem with number-uniqueness penalties. 
Sudoku means “singular number" in Japanese, and consists of 9 × 9 grid and 3 × 3 blocks for 
all the 81 cells. Each puzzle starts with some cells that already have numbers as shown in 
Figure 2 (the numbers in white cells are originally given). The goal of the puzzle is to find 
numbers for the remaining cells with three rules: (1) Each horizontal row should contain the 
numbers 1 - 9, without repeating any; (2) Each vertical column should contain the numbers 1 
- 9, without repeating any; and (3) Each 3 × 3 block should contain the numbers 1 - 9, 
without repeating any. 
 

 

 
  
Fig. 2. Sudoku Puzzle Solved by HS algorithm 

 
The HS model found the optimal solution without any violation of three rules after 285 
function evaluations as shown in Figure 2. 

2.3 Structural design 
Structural design involves in decision making about cross sectional dimensions of the 
members that constitute the structure and sometimes the geometry and topology of the 
structure itself. In the design of a steel frame, the decision making process necessitates 
selecting W or any other type of steel sections from practically available set of steel section 
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The HS model found the optimal solution without any violation of three rules after 285 
function evaluations as shown in Figure 2. 

2.3 Structural design 
Structural design involves in decision making about cross sectional dimensions of the 
members that constitute the structure and sometimes the geometry and topology of the 
structure itself. In the design of a steel frame, the decision making process necessitates 
selecting W or any other type of steel sections from practically available set of steel section 



 Advances in Evolutionary Algorithms 

 

130 

tables for the members of the frame such that the response of the frame to external loads is 
within the limitations described in the steel design codes. It is not very difficult to imagine 
that one can come up with large number of different combinations selected from the 
available steel section set which may satisfy these requirements. However, the designer is 
interested in finding the combination which not only satisfies design code limitations but 
also minimizes the material weight or the overall cost. This is the optimal design. HS 
method is quite effective in finding the optimum solution of such combinatorial 
optimization problems. In this section the HS algorithm is applied to determine the solution 
of optimum design of grillage system, optimum geometry design of a steel dome and the 
optimum design of reinforced concrete continuous beam. 
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Fig. 3. 40-Member Grillage System 

Optimum Design of 40-Member Grillage System: The grillage system shown in Figure 3 
has 40 members which are collected in four groups such that the outer and inner 
longitudinal beams are considered to belong to groups 1 and 2 while the outer and inner 
transverse beams are taken as groups 3 and 4 respectively. This system is originally 
designed using HS (Erdal, 2007). The displacement and stress constraints are considered in 
the formulation of this design problem. The external loading that the grillage system is 
subjected to also shown in the figure. Under this loading it is required that the vertical 
displacements of joints 6, 7, 10 and 11 should not exceed 25mm. Furthermore it is the 
condition of the design criteria that nowhere in the longitudinal and transverse beams the 
bending stress should exceed the allowable bending stress of 250MPa. The 272 W-sections 
starting from W100X19.3 to W1100X499 are selected from LRFD-AISC (Manual of Steel 
Construction) as an available discrete design set for the optimum design procedure to select 
from. The task of the optimum design algorithm is to decide the appropriate W sections 
from this list for longitudinal and transverse beams of the grillage system such that the 
displacement and stress constraints described above are satisfied while the weight of the 
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grillage system is the minimum. The solution of this problem is obtained by using HS as 
well as genetic algorithm (GA). The GA algorithm utilized in the solution of this design 
problem is a simple genetic algorithm where the initial population size is taken as 50 and 
two-point crossover is used to swap the genetic information between mating parents.  While 
GA obtained the optimum solution after 40,000 structural analyses (function evaluations), 
HS required only 10,000 structural analyses to reach the optimum result. The optimum 
design (minimum weight = 7,075.84 kg) obtained by the HS method is 14% lighter than the 
one (8,087.91kg) determined by the GA in this particular design problem.  
 

 

 

 

Fig. 4. Geodesic dome 

Optimum Geometry Design of Geodesic Domes: Domes are economical structures in 
terms of materials that are used to cover large areas such as exhibition halls and stadiums 
where they provide a completely unobstructed inner space. Domes are given different 
names depending upon the way their surface is formed. Geodesic dome shown in Figure 4 
is a typical example of a braced dome which is widely used in the construction of exhibition 
halls all over the world. A geodesic dome is comprised of a complex network of triangles 
that form a roughly spherical surface. Generally the area that is to be covered by the dome is 
provided by a client and the structural designer is required to come up with dimensions of 
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tables for the members of the frame such that the response of the frame to external loads is 
within the limitations described in the steel design codes. It is not very difficult to imagine 
that one can come up with large number of different combinations selected from the 
available steel section set which may satisfy these requirements. However, the designer is 
interested in finding the combination which not only satisfies design code limitations but 
also minimizes the material weight or the overall cost. This is the optimal design. HS 
method is quite effective in finding the optimum solution of such combinatorial 
optimization problems. In this section the HS algorithm is applied to determine the solution 
of optimum design of grillage system, optimum geometry design of a steel dome and the 
optimum design of reinforced concrete continuous beam. 
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Optimum Design of 40-Member Grillage System: The grillage system shown in Figure 3 
has 40 members which are collected in four groups such that the outer and inner 
longitudinal beams are considered to belong to groups 1 and 2 while the outer and inner 
transverse beams are taken as groups 3 and 4 respectively. This system is originally 
designed using HS (Erdal, 2007). The displacement and stress constraints are considered in 
the formulation of this design problem. The external loading that the grillage system is 
subjected to also shown in the figure. Under this loading it is required that the vertical 
displacements of joints 6, 7, 10 and 11 should not exceed 25mm. Furthermore it is the 
condition of the design criteria that nowhere in the longitudinal and transverse beams the 
bending stress should exceed the allowable bending stress of 250MPa. The 272 W-sections 
starting from W100X19.3 to W1100X499 are selected from LRFD-AISC (Manual of Steel 
Construction) as an available discrete design set for the optimum design procedure to select 
from. The task of the optimum design algorithm is to decide the appropriate W sections 
from this list for longitudinal and transverse beams of the grillage system such that the 
displacement and stress constraints described above are satisfied while the weight of the 
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grillage system is the minimum. The solution of this problem is obtained by using HS as 
well as genetic algorithm (GA). The GA algorithm utilized in the solution of this design 
problem is a simple genetic algorithm where the initial population size is taken as 50 and 
two-point crossover is used to swap the genetic information between mating parents.  While 
GA obtained the optimum solution after 40,000 structural analyses (function evaluations), 
HS required only 10,000 structural analyses to reach the optimum result. The optimum 
design (minimum weight = 7,075.84 kg) obtained by the HS method is 14% lighter than the 
one (8,087.91kg) determined by the GA in this particular design problem.  
 

 

 

 

Fig. 4. Geodesic dome 

Optimum Geometry Design of Geodesic Domes: Domes are economical structures in 
terms of materials that are used to cover large areas such as exhibition halls and stadiums 
where they provide a completely unobstructed inner space. Domes are given different 
names depending upon the way their surface is formed. Geodesic dome shown in Figure 4 
is a typical example of a braced dome which is widely used in the construction of exhibition 
halls all over the world. A geodesic dome is comprised of a complex network of triangles 
that form a roughly spherical surface. Generally the area that is to be covered by the dome is 
provided by a client and the structural designer is required to come up with dimensions of 
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pipe sections that are usually adopted for the dome members and also specify the height of 
the crown.  
The design problem considered here is to determine the optimum height and circular steel 
hollow section designations for the geodesic dome that is suppose to cover the circular area 
of 20m as shown in Figure 4. The modulus of elasticity of the material is taken as 
205kN/mm2. The grade of steel adopted is grade 43. The dome is considered to be subjected 
to equipment loading of 1000kN at its crown. The formulation of the design problem and 
the construction of these constraints are explained in detail by Saka (2007). The solution of 
the design problem is obtained by HS. There are altogether 32 values for the HS algorithm to 
choose from. 
It is apparent from Figure 4 that there are 3 rings in the dome. This number can also be 
treated as design variable. However for the simplicity here it is not taken as design variable. 
Two design problems are considered. In the first one all the members are decided to be 
made out of the same pipe section which means all the members are belong to the same 
group. In this case HS obtains the optimum height of the dome as 1.75m and PIP886 is 
adopted for the dome members. The minimum weight for this dome is 3750.6kg. It is 
noticed that while the displacements of the restricted joints are much smaller than their 
upper limits the strength ratios of some members are at their upper bound. This indicates 
that in the optimum design problem the strength constraints were dominant. Later, it is 
decided that those members between each ring are to be made one group and the members 
on each ring are another group. For example, if grouping is carried out such a way that the 
diagonal members between the crown and the first ring are group 1, the members on the 
first ring are group 2, the members between ring 1 and 2 are group3 and the group number 
of members on the ring 2 is 4 and so forth, then the total number of groups in the dome 
becomes twice the number of rings in the dome. In this case HS method determines the 
optimum height of the crown as 2m while the sectional designations for six groups of the 
dome members were PIP1143, PIP603.6, PIP483.2, PIP423.2 and PIP213.2. The minimum 
weight of the dome was 1244.42kg. Once more it is noticed that the strength constraints 
were dominant in the design problem 
Optimum Design of Reinforced Concrete Continuous Beams: In the formulation of the 
optimum design problem of reinforced concrete continuous beams, design variables are 
selected as the width and height of beams and the reinforcement areas of longitudinal bars. 
These longitudinal bars are tensile reinforcements at each mid-span and supports and the 
shear reinforcement bar diameters for each beam. The general description of the design 
variables for four span continuous beams is given in Figure 5.  The objective function is the 
total cost of the continuous beams which consists of cost of concrete, formwork and 
reinforcement steel. The design constraints consist of the ultimate strength requirements in 
bending and shear and minimum and maximum percentage of tensile and shear 
reinforcements. The details of these constraints are given by Akin (2007). The optimum 
design determined by the HS algorithm has the minimum cost of $11,406 while GA obtained 
$11,836. 
Three different structural design problems are considered to demonstrate the robustness 
and effectiveness of the HS algorithm. The first problem is a size optimization problem 
where the HS method has selected optimum W sectional designations for longitudinal and 
transverse beams of grillage systems out of 272 discrete set of W steel sections. The solution 
obtained by HS is better than the one determined by simple genetic algorithm. The second 
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design example is optimum geometry design of a geodesic dome where the HS algorithm 
has also effectively determined the optimum height of the crown as well as the optimum 
pipe designations for the dome members. Finally in the third design example, it is shown 
that HS can be successfully employed to determine the optimum cross sectional dimensions 
for beams as well as required reinforcement diameters and their total number in the design 
of reinforced concrete continuous beams. 
 

 

 
 

Fig. 5. Design Variables for Four Span Symmetrical Reinforced Concrete Continuous Beam 

2.4 Ecological conservation 
In today’s industrialized life, to conserve ecosystem and its species becomes very important. 
In order to achieve the goal, quantitative techniques have been so far developed and utilized 
for the problem. HS was also applied to a natural reserve selection problem for preserving 
species and their habitats (Geem & Williams, 2008). The problem was formulated as an 
optimization problem (maximal covering species problem) to maximize the number of 
species protected within the reserve system given a specified number of sites that can be 
selected (ReVelle et al., 2002). The HS model developed for this problem was tested with 
real-world problem in the state of Oregon, USA, which consists of 426 species and 441 
candidate sites as shown in Figure 6. 
Harmony Search was applied to 24 cases, each involving a different limit on number of 
parcels that could be selected. HS found 15 global optimum solutions and 9 near-optimal 
solutions. When compared with simulated annealing (SA), the HS algorithm found better 
solutions than those of SA in 14 cases while the former found worse solution only once 
(Csuti et al., 1997). 
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Fig. 6. Hex Map of Oregon 

Another advantage of the HS algorithm is that it gives many alternative solutions because it 
handles multiple solutions as a time. For example, the HS found 25 alternative solutions for 
the case of 24 selected sites. 

2.5 Aquifer parameter identification 
Mathematical simulation models are widely used in the management of aquifer systems. 
These models require the spatial distributions of some hydrologic and hydro-geologic 
parameters for the solution process. However, aquifers are heterogeneous geological 
structures and usually distribution of their parameters is unknown. Thus, the determination 
of both aquifer parameters and their corresponding parameter structures based on field 
observations becomes an important step. The main goal of this study is to propose an S/O 
approach for simultaneously identification of transmissivity values and associated zone 
structures of a heterogeneous aquifer system. In the simulation model, the governing 
equation of groundwater flow is numerically solved using a block-centered finite difference 
solution scheme. The zone structure identification problem is solved through fuzzy c-means 
clustering (FCM) algorithm, and the HS algorithm is used as an optimization model to 
determine the optimum locations of cluster centroids and the associated transmissivity 
values within each zone (Ayvaz , 2007). 
The main reason for applying FCM and HS to the groundwater inverse problem is to 
determine the zone structure and associated transmissivity values within each zone. The 
parameter zone structure of the aquifer is initiated using random cluster centroids and 
random transmissivity values are assigned to each cluster. Cluster centroids and 
transmissivity values are then optimized using HS by minimizing the residual error (RE) 
between the simulated and observed hydraulic heads at several observation wells. 
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The performance of the proposed S/O approach is tested on a hypothetical example. Figure 
7 (Left) shows the plain view of two-dimensional confined aquifer.  
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Fig. 7. (Left) Plain View of Confined Aquifer and (Right) True Transmissivity Field 

As can be seen in Figure 7 (Left), the boundary conditions of the aquifer are 100 m constant 
head in the BD side and the no-flow in the other sides. The storage coefficient of the aquifer 
is the 0.0002. There are five pumping wells having the pumping rates of 4,000 cmd for Wells 
1 to 4 and 2,000 cmd for Well 5. All the pumping wells are continuously operated for 10 
days. There are seven observation wells and head observations are collected at the end of 
each day. The Gaussian noise of zero mean and 0.1 m standard deviation is added to the 
head observations. The true transmissivity field of the aquifer is shown in Figure 7 (Right). 
The main goal is to determine the best zonation pattern to satisfy the true transmissivity 
field. For the optimization process, five cases with different algorithm parameters are taken 
into account. Maximum number of improvisations (iteration) is set as 50,000 and the search 
process ends when the RE value remains unchanged through 1,000 improvisations. Note 
that, for comparison, the number of zones is fixed as 4 and the bounds of transmissivity 
values are set as 20 ~ 600 smd. 
HS obtained the minimum RE (2.33) after 29,370 of function evaluations. Note that, GA (Tsai 
et al., 2003) solved the same problem, obtaining RE of 2.62 after 40,000 function evaluations. 
Although there are some differences, the identified transmissivity structures well capture 
the true transmissivity field. 

2.6 Soil slip determination 
Soil slopes are general in civil engineering and their stability assessment is of great 
importance to engineers. Up to now, limit equilibrium method is widely used by engineers 
and researchers for slope stability analysis. By using limit equilibrium method, a value Fs, 
also named the factor of safety can be estimated without the knowledge of the initial stress 
conditions and a problem can be defined and solved within a relatively short time. Limit 
equilibrium method is a statically indeterminate problem and different assumptions on the 
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internal forces distributions are adopted for different methods of analyses. At present, the 
famous method proposed by Morgenstern and Price (1965) is used to give the factor of 
safety for specified slip surface. 
The minimum factor of safety of a slope and the corresponding critical failure surface are 
critical for the proper design of slope stabilization measures. The HS algorithm is employed 
to locate the critical failure surface in slope stability analysis. The generation of slip surfaces 
is as follows. 
Consider the Cartesian system of reference Oxy as shown in Figure 8. 
 

 

 
 

Fig. 8. Slip Surface and the Cross Section of a Slope 

Function ( )xyy 1=   describes the ground profile while the water table is represented by 

( )xwy = . The bed rock surface is represented by the function ( )xRy =  and function 

( )xly i=  can be introduced to represent boundary between different soils. The trial failure 

surface is described by using the function ( )xsy = . 

To obtain the values of sF  requires the failure soil mass to be divided into n vertical slices 
and the slip surface is represented by n+1 vertices. Each slice can be identified by two 
adjacent vertices. Generally speaking, the potential slip surfaces are concave upward 
(kinematically acceptable requirement) with only few exceptions. The concave upward 
requirement can be formulated as follows: 

 nααα ≤≤≤ ...21  (1) 

where iα  is the base inclination of slice i as shown in Figure 8. Every slip surface can be 

mathematically identified by the control variable vector X  as follows: 

 [ ]Tnnnn yxyxyxyx 112211 ,,,,...,,,, ++=X  (2) 

The vector X  is analogous to the harmony in music, and the HS algorithm can be 
performed to determine the critical slip surface with the minimum factor of safety. 
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The example is the one proposed by Zolfaghari (2005), where a slope in layered soil is 
analyzed using the GA and the Morgenstern and Price method. The number of slices n used 
in this study is assumed to be 20, 25, and 30. While GA (Zolfaghari, 2005) found minimum 
safety factor of 1.24, HS found 1.20 with 30 slices. 

2.7 Mooring design of offshore floating structures 
The mooring design of offshore platforms requires relatively significant amount of design 
cycles since a desired solution must satisfy the complex design constraints and be 
economically competitive. The complexity of these mooring design constraints may result 
from coupling between platform motion and mooring/riser system, maximum offset 
constraint of the riser system, multiple numbers of design parameters defining anchor leg 
system components, and uniqueness of site-dependent environmental conditions including 
water depth, wave/current/wind condition, seabed condition, etc. When the optimal cost is 
sought for this complex mooring design, the design process becomes even more complex. 
Mooring design is to find an appropriate stiffness which is stiff enough and soft enough at 
the same time since the mooring system needs to satisfy mainly two design constraints: (1) 
required maximum horizontal offset and (2) reduction of extreme forces acting on the 
platform caused by interactions between environmental forces and platform responses. To 
reduce the trial and error effort in mooring design, Fylling (1997) addresses an application 
of mooring optimization of deepwater mooring systems. A nonlinear optimization program 
with frequency-domain analysis of mooring systems was presented, and the results showed 
that the suggested optimization could be a powerful tool for concept development and 
finding a feasible solution (Fylling, 1997). Fylling and Kleiven (2000) presented the 
simultaneous optimization of mooring lines and risers. 
A single point mooring of a Floating, Production, Storage, and Offloading (FPSO) system 
was adopted for a case study. Deepwater and ultra-deepwater application of FPSOs 
becomes more attractive since they have advantages in early production and relatively big 
storage capacity compared to other types of offshore platforms. As we target for deeper 
water oil/gas fields, more technical challenges are confronted. For instance, prediction of 
deepwater oil offloading buoy motion becomes more difficult (Duggal and Ryu, 2005; Ryu, 
et al., 2006). Technical challenges due to deepwater and ultra-deepwater oil fields and 
project execution challenges due to the fast track schedule become a trend in FPSO projects. 
This deeper water and fast track trend naturally suggests a way of fast finding of a site and 
requirement specific feasible mooring design. 
This section addresses a HS-based mooring optimization determining the length and 
diameter of each mooring component. In this design, only three design constraints were 
applied: (1) maximum platform offset, (2) factor of safety (FS) for intact case top tension, and 
(3) no uplift of the bottom chain. The objective function is the total cost of mooring system. 
A total of 2,000 iterations were performed to find optimal mooring designs. Figure 9 
presents the search history of optimal mooring cost as a function of iteration, and Figure 10 
shows one final solution the HS algorithm found. 
A mooring optimization design tool using the HS algorithm and a frequency domain global 
analysis tool was proposed to minimize the cost of the mooring system. This proposed cost-
optimal mooring design tool successfully finds feasible mooring systems. A case study on a 
permanent turret mooring system for an FPSO in deepwater was conducted. The results 
show that the objective function (i.e. mooring system cost) converges well and HS provides 



 Advances in Evolutionary Algorithms 

 

136 

internal forces distributions are adopted for different methods of analyses. At present, the 
famous method proposed by Morgenstern and Price (1965) is used to give the factor of 
safety for specified slip surface. 
The minimum factor of safety of a slope and the corresponding critical failure surface are 
critical for the proper design of slope stabilization measures. The HS algorithm is employed 
to locate the critical failure surface in slope stability analysis. The generation of slip surfaces 
is as follows. 
Consider the Cartesian system of reference Oxy as shown in Figure 8. 
 

 

 
 

Fig. 8. Slip Surface and the Cross Section of a Slope 

Function ( )xyy 1=   describes the ground profile while the water table is represented by 

( )xwy = . The bed rock surface is represented by the function ( )xRy =  and function 

( )xly i=  can be introduced to represent boundary between different soils. The trial failure 

surface is described by using the function ( )xsy = . 

To obtain the values of sF  requires the failure soil mass to be divided into n vertical slices 
and the slip surface is represented by n+1 vertices. Each slice can be identified by two 
adjacent vertices. Generally speaking, the potential slip surfaces are concave upward 
(kinematically acceptable requirement) with only few exceptions. The concave upward 
requirement can be formulated as follows: 

 nααα ≤≤≤ ...21  (1) 

where iα  is the base inclination of slice i as shown in Figure 8. Every slip surface can be 

mathematically identified by the control variable vector X  as follows: 

 [ ]Tnnnn yxyxyxyx 112211 ,,,,...,,,, ++=X  (2) 

The vector X  is analogous to the harmony in music, and the HS algorithm can be 
performed to determine the critical slip surface with the minimum factor of safety. 

Recent Advances in Harmony Search 

 

137 

The example is the one proposed by Zolfaghari (2005), where a slope in layered soil is 
analyzed using the GA and the Morgenstern and Price method. The number of slices n used 
in this study is assumed to be 20, 25, and 30. While GA (Zolfaghari, 2005) found minimum 
safety factor of 1.24, HS found 1.20 with 30 slices. 

2.7 Mooring design of offshore floating structures 
The mooring design of offshore platforms requires relatively significant amount of design 
cycles since a desired solution must satisfy the complex design constraints and be 
economically competitive. The complexity of these mooring design constraints may result 
from coupling between platform motion and mooring/riser system, maximum offset 
constraint of the riser system, multiple numbers of design parameters defining anchor leg 
system components, and uniqueness of site-dependent environmental conditions including 
water depth, wave/current/wind condition, seabed condition, etc. When the optimal cost is 
sought for this complex mooring design, the design process becomes even more complex. 
Mooring design is to find an appropriate stiffness which is stiff enough and soft enough at 
the same time since the mooring system needs to satisfy mainly two design constraints: (1) 
required maximum horizontal offset and (2) reduction of extreme forces acting on the 
platform caused by interactions between environmental forces and platform responses. To 
reduce the trial and error effort in mooring design, Fylling (1997) addresses an application 
of mooring optimization of deepwater mooring systems. A nonlinear optimization program 
with frequency-domain analysis of mooring systems was presented, and the results showed 
that the suggested optimization could be a powerful tool for concept development and 
finding a feasible solution (Fylling, 1997). Fylling and Kleiven (2000) presented the 
simultaneous optimization of mooring lines and risers. 
A single point mooring of a Floating, Production, Storage, and Offloading (FPSO) system 
was adopted for a case study. Deepwater and ultra-deepwater application of FPSOs 
becomes more attractive since they have advantages in early production and relatively big 
storage capacity compared to other types of offshore platforms. As we target for deeper 
water oil/gas fields, more technical challenges are confronted. For instance, prediction of 
deepwater oil offloading buoy motion becomes more difficult (Duggal and Ryu, 2005; Ryu, 
et al., 2006). Technical challenges due to deepwater and ultra-deepwater oil fields and 
project execution challenges due to the fast track schedule become a trend in FPSO projects. 
This deeper water and fast track trend naturally suggests a way of fast finding of a site and 
requirement specific feasible mooring design. 
This section addresses a HS-based mooring optimization determining the length and 
diameter of each mooring component. In this design, only three design constraints were 
applied: (1) maximum platform offset, (2) factor of safety (FS) for intact case top tension, and 
(3) no uplift of the bottom chain. The objective function is the total cost of mooring system. 
A total of 2,000 iterations were performed to find optimal mooring designs. Figure 9 
presents the search history of optimal mooring cost as a function of iteration, and Figure 10 
shows one final solution the HS algorithm found. 
A mooring optimization design tool using the HS algorithm and a frequency domain global 
analysis tool was proposed to minimize the cost of the mooring system. This proposed cost-
optimal mooring design tool successfully finds feasible mooring systems. A case study on a 
permanent turret mooring system for an FPSO in deepwater was conducted. The results 
show that the objective function (i.e. mooring system cost) converges well and HS provides 



 Advances in Evolutionary Algorithms 

 

138 

several feasible mooring systems. In conclusion, a new HS-based mooring optimization tool, 
has a potential for fast finding the cost-optimal mooring system. 
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Fig. 9. Max, Min, and Mean Costs in Harmony Memory 
 

 

 
 

Fig. 10. Mooring Configurations 

2.8 Heat & power generation 
The conversion of primary fossil fuels, such as coal and gas, to electricity is a relatively 
inefficient process. Even the most modern combined cycle plants can only achieve 
efficiencies of between 50–60%. Most of the energy that is wasted in this conversion process 
is released to the environment as waste heat. The principle of combined heat and power 
(CHP), also known as cogeneration, is to recover and make beneficial use of this heat, 
significantly raising the overall efficiency of the conversion process. The best CHP schemes 
can achieve fuel conversion efficiencies of the order of 90%. In order to obtain the optimal 
utilization of CHP units, economic dispatch must be applied. The primary objective of 
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economic dispatch is to minimize the total cost of generation while honoring the operational 
constraints of the available generation resources. Complication arises if one or more units 
produce both electricity and heat. In this case, both of heat and power demands must be met 
concurrently. This section will show the application of the HS algorithm to solve the CHPED 
problem. 
Figure 11 shows the heat-power Feasible Operation Region (FOR) of a combined cycle 
cogeneration unit. The feasible operation region is enclosed by the boundary curve 
ABCDEF. 
  

 

 
 

Fig. 11. Feasible Operation Region for a Cogeneration Unit 

An example which is taken from the literature is used to show the validity and effectiveness 
of the HS algorithm. This example has been previously solved using a variety of other 
techniques (both evolutionary and traditional mathematical programming methods) after 
originally proposed by Guo et al. (1996). The problem consists of a conventional power unit, 
two cogeneration units and a heat-only unit. The objective is to find the minimum overall 
cost of units subject to constraints on heat and power production and demands. 
After 25,000 function evaluations, the best solution is obtained with corresponding function 
value equal to $9257.07 (Vasebi et al., 2007). No constraints are active for this solution. The 
best solution of this problem obtained using the HS algorithm is compared with solutions 
reported by other researchers, showing that the result of HS is the same as the best known 
solution in the literature: $9257.07 by Lagrangian Relaxation (Guo et al., 1996); $9267.20 by 
GA (Song & Xuan, 1998); $9452.20 by ant colony search algorithm (Song et al., 1999); 
$9257.07 by improved GA (Su & Chiang, 2004). 
Comparison between the results obtained by the HS method and those generated with other 
(evolutionary and mathematical programming) techniques reported in the literature clearly 
demonstrate that the HS method is practical and valid for CHPED applications. 

3. Conclusions 
This study reviews recent applications of the music-inspired HS algorithm, such as music 
composition, Sudoku puzzle solving, structural design, ecological conservation, aquifer 
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several feasible mooring systems. In conclusion, a new HS-based mooring optimization tool, 
has a potential for fast finding the cost-optimal mooring system. 
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parameter identification, soil slip determination, offshore structure mooring, and power 
economic dispatch. 
As observed in most applications, the HS algorithm possesses a potential for obtaining good 
solutions in various optimization problems. Thus, the authors expect to see more successful 
applications in other scientific and engineering fields in near future. Also, theoretical 
progress in finding better solutions is expected. 

4. Acknowledgements 
The first author would like to thank many people who have helped in development of the 
HS algorithm, including Joel Donahue, Jack Galuardi, Teresa Giral, Kang Seok Lee, Audrey 
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1. Introduction    
Genetic algorithms (GAs) are powerful stochastic search techniques and are the most widely 
known types of evolutionary algorithms (EAs). This method performs a search by evolving 
a population of candidate solutions through the use of non-deterministic operators and by 
improving incrementally the individuals forming the population by mechanisms inspired 
from those of genetics (e.g. crossover and mutation). They are known to offer significant 
advantages over traditional methods by using simultaneously several search principles and 
heuristics, of which the most important ones are: population-wide search, continuous 
balance between exploitation (convergence) and exploration (maintained diversity) and the 
principle of building-block combination. However, GA can suffer from excessively slow 
convergence before providing an accurate solution. This is because of its fundamental 
requirement of using minimal prior knowledge without exploiting local information. Since 
the introduction of global search algorithms in engineering applications, many modified 
versions of GA have been reported to reduce the searching time and to raise the global 
search capability. Many researchers have proposed improved versions of GA which GA 
operator works adaptively (Wu et al., 1999; He et al., 2001; Fung et al., 2002). A local search 
or meta-heuristic algorithm has been incorporated into GA to improve the algorithm 
(Renders & Flasse, 1996; Berger et al., 1999; Lee et al., 2001; Hsiao et al., 2001; Hagenman et 
al., 2003; Jiang et al., 2003). The combined GA-SA algorithm has been introduced to improve 
the efficiency of the global search (Roach & Nagi, 1996; Yu et al., 2000; Ong et al., 2002; Liu et 
al., 2002; Ponnambalam et al., 2003). 
In the first half of this chapter, a new hybrid evolutionary algorithm known as clustering-
based hybrid evolutionary algorithm (CHEA) is introduced (Kim et al., 2006). This 
algorithm utilizes the GA’s grouping property which involves gathering a number of 
individuals around the global candidate according to the generation. Clustering of 
individuals using artificial neural network (ANN) is incorporated into the GA to evaluate 
the stage of maturity of genetic evolution and to deal with statistical data of each cluster. 
After clustering, a local search is carried out for each cluster to accelerate the convergence 
process and to judge the convexity of each cluster. Finally, an efficient random search is 
adapted for searching the potential global candidate which may be missed in GA and local 
search. The efficiency of the proposed algorithm is then verified by applying it to three well-
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known benchmark functions namely banana function, multi-modal function and Rastrigin 
function. 
The dynamic behavior of a rotating shaft is significantly influenced by the stiffness and 
damping characteristics of the bearings. The precise values of stiffness and damping 
coefficients are difficult to predict. In the past decade, many works have dealt with 
identification of bearing coefficients using impulse or synchronous/non-synchronous 
excitation techniques (Burrows & Stanway, 1977; Kraus et al., 1987), and using mathematical 
formulations using an out-of-unbalance response (Lee & Hong, 1988; Chen & Lee, 1995, 
1997). Other researches used the least square method as an optimizer to minimize the error 
between the measured unbalance response and the estimated one after they have 
formulated the minimization problem (Edwards et al., 2000; Reddy et al., 2002 and Tiwari et 
al., 2002). Least square method with sensitivity-based approach is a very effective algorithm 
that can be used for parameter identification of machinery characteristics. However, the 
application of least square optimizer cannot guarantee a global minimum, which means the 
identified parameters may not be the optimum ones for the real rotor-bearing systems 
which are often influenced by noises or non-linear effects. 
Recently, global optimization schemes such as GA and simulated annealing (SA) (Kirpatrick 
et al., 1983) have been used in the area of parameter identification. These schemes do not 
involve gradient information and mathematical formulation but require only forward 
analysis procedure. Unfortunately identification approach based on global optimization 
algorithms is a highly time consuming task because it is based on the iterative strategy 
which updates unknown parameters systematically using an analytical output. Therefore, a 
fast and more efficient search algorithm is required for parameter identification in line with 
the rapid progress of computer technology.  
In the latter half of this chapter, we introduce a method of using a hybrid evolutionary 
algorithm for parameter identification of ball bearings (Kim et al., 2007). The identification 
method utilises the hybrid evolutionary algorithm. The capability of the technique is 
verified using a numerical example and a series of  experimentation on a tests. The results 
reveal that the proposed method can identify not only unknown bearing parameters but 
also unbalance information of disks. In contrast to other traditional identification 
techniques, the method can be applied with simple formulation of an optimisation problem 
using the existing dynamic analysis procedure without any complex mathematical 
approach. 

2. Clustering-based hybrid evolutionary algorithm (CHEA) 
The CHEA is a hybrid GA which is combined with neural-network, local search and 
random search. The flowchart of CHEA process is shown in Fig. 1. The first task is GA-
clustering, in which GA is combined with the clustering process by using neural network. In 
this task, all individuals after each generation of GA are classified into several clusters until 
all individuals are well classified. After GA-clustering, the local search (LS) is carried out for 
each cluster with their best individuals. If all final points of the local search converged close 
to one point, this point implies a global candidate. This means that, graphically, the 
objective function is a kind of convex, which has only one global/local minimum in the 
search space. If all final points do not converged to one point, the objective function is 
considered to be a multi-modal function, which has many local minima. In this case, 
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additional local searches are carried out which starts at several random points within each 
group to determine whether each cluster has only one local minimum or not. Similarly, 
considering one cluster, if the final points by the local search are nearly the same point, this 
cluster has one local minimum, which implies the objective function is a convex for the 
region of this cluster. Otherwise the clusters have many local minima in their regions. In this 
case, GA is run again with reduced bounds as those of each cluster. The classification and 
the local search procedure are executed until each cluster has only one local minimum. 
Finally, an efficient random search is adopted for extra-searching to find the potential global 
candidate which may be missed in GA and local search.  
Adaptive resonance theory-Kohonen neural network (ART-KNN) developed by (Yang et al., 
2004) is incorporated for clustering of individuals after each generation in GA. Sequential 
quadratic programming (SQP) is adopted for the task of local search in this algorithm. 
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2.1 GA-clustering task 
GA improves the genes of individuals based on evolutionary operation. Geometrically, the 
evolution of GA is that increasing individuals are gathered together around the global or 
local minimum with respect to the increase of generation as shown in Fig. 2. Generally GA is 
not efficient for improving the precision of best individuals to global minimum after 
gathering around the global minimum. However, the ability to gather individuals to a 
global or local minimum in the first several generations is excellent. Therefore, the proposed 
hybrid algorithm intends to use the merit of GA and to prevent inefficient calculations after 
the individuals have gathered around the global or local minimum. 
If the objective function is a multi-modal function which has more than two local 
minimums, clustering or classification of individuals are necessary to divide them into 
several clusters as shown in Fig. 2(b) and requires a stop criterion for GA.. The clustering 
evaluation function (CEF) is introduced to evaluate the stage of maturity of individuals in 
each generation. CEF is defined by eq (1) using statistical data of each classified cluster:  
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known benchmark functions namely banana function, multi-modal function and Rastrigin 
function. 
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Adaptive resonance theory-Kohonen neural network (ART-KNN) developed by (Yang et al., 
2004) is incorporated for clustering of individuals after each generation in GA. Sequential 
quadratic programming (SQP) is adopted for the task of local search in this algorithm. 
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where, vij denotes the ith vector for the jth cluster and v0j is the center of the jth cluster. wg, 
wm, wr are weight factors for cluster, distance of each group and similarity by ART-KNN, 
respectively.   denotes Euclidian distance between two vectors. M denotes the number of 
cluster and Nj is the number of individual for the jth cluster. 
In this study, well matured is defined when the average distance from the mid point of each 
cluster approaches a small value and the average distance among mid points approaches a 
large value. CEF value for stop criterion is very important because it is directly related to the 
efficiency of the search algorithm. GA stopped with a too high CEF implies that the GA 
evolution is not matured yet and individuals may be classified into too many clusters. On 
the contrast, with a too small CEF, most individuals will migrate to only one cluster which 
contains the best individual. This may lead to lose of useful information about local 
minimum. Furthermore, if the number of individuals is not sufficient to find all the local 
minima, most individuals will move to a local minimum. In our study with trying many 
kind of test functions, the best stop criterion is selected as 0.2.  
As shown in the flowchart of GA-clustering task in Fig. 1, ART-KNN algorithm was adapted 
as the traditional GA procedure to classify individuals into several clusters after the 
evaluation of fitness. After clustering, it is judged whether all individuals are well matured 
by using the CEF. If the CEF is smaller than the stop criterion, subroutine GA-clustering is 
terminated and returns to the final individuals and provides cluster information to the main 
program. Otherwise, the general procedure of GA, such as selection, crossover and 
mutation, is preceded again.  

Individuals

Global minima

Individuals

Global minima ClustersClusters

 
(a) 2nd generation                             (b) 4th generation 

Fig. 2. Distribution of individuals according to generations 

2.2 ART-KNN algorithm 
The adaptive resonance theory (ART) network (Carpenter & Grossberg, 1988) is a neural 
network that self-organizes stable recognition codes in real time in response to arbitrary 
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sequences of input patterns. It is also a vector classifier based on mathematical model for the 
description of fundamental behavioral functions of the biological brain such as the learning, 
parallel and distributed information storage, short and long-term memory and pattern 
recognition. The Kohonen neural network (KNN) (Kohonen, 1995) is also called self-
organizing feature map network (SOFM). It defines a feed forward two-layer neural 
network that implements a characteristic non-linear projection from the high dimensional 
space of sensory or other input signals onto a low-dimensional array of neurons.  
Recently, Yang et al. proposed a new algorithm using the adaptive resonance theory-
Kohonen neural network (ART-KNN) (Yang et al., 2004), which does not affect the initial 
training and can adapt with additional training data. The structure of ART-KNN is shown 
in Fig. 3. It is similar to ART’s but excluding the adaptive filter. ART-KNN is formed by two 
major subsystems: the attentional subsystem and the orienting subsystem. There are two 
interconnected layers, discernment layer and comparison layer, which are fully connected 
with both bottom-up and top-down processes and comprise of the attentional subsystem. 
The application of a single input vector leads to several patterns of neural activity in both 
layers. The activity in discernment nodes reinforces the activity in comparison nodes due to 
top-down connections. The interchange of bottom-up and top-down information leads to a 
resonance in neural activity. As a result, critical features comparison is reinforced with those 
having the greatest activity. The orienting subsystem is responsible for generating a reset 
signal to discernment when the bottom-up input pattern and top-down template pattern do 
not match during comparison process according to a similarity law. In other words, once it 
has detected that the input pattern is novel, the orienting subsystem must prevent the 
previously organized category neurons in discernment from learning this pattern (via a 
reset signal). Otherwise, the category will become increasingly non-specific. When a 
mismatch is detected, the network adapts its structure by immediately storing the novelty 
with additional weights. The similarity criterion is set by the value of the similarity 
parameter. A high value of the similarity parameter means than only a slight mismatch will 
be tolerated before a reset signal is emitted. On the other hand, a small value means that 
large mismatches will be tolerated. After the resonance check, if a pattern match is detected 
according to the similarity parameter, the network changes the weights of the winning node.  
 

 
Fig. 3. Structure of ART-KNN 
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where, vij denotes the ith vector for the jth cluster and v0j is the center of the jth cluster. wg, 
wm, wr are weight factors for cluster, distance of each group and similarity by ART-KNN, 
respectively.   denotes Euclidian distance between two vectors. M denotes the number of 
cluster and Nj is the number of individual for the jth cluster. 
In this study, well matured is defined when the average distance from the mid point of each 
cluster approaches a small value and the average distance among mid points approaches a 
large value. CEF value for stop criterion is very important because it is directly related to the 
efficiency of the search algorithm. GA stopped with a too high CEF implies that the GA 
evolution is not matured yet and individuals may be classified into too many clusters. On 
the contrast, with a too small CEF, most individuals will migrate to only one cluster which 
contains the best individual. This may lead to lose of useful information about local 
minimum. Furthermore, if the number of individuals is not sufficient to find all the local 
minima, most individuals will move to a local minimum. In our study with trying many 
kind of test functions, the best stop criterion is selected as 0.2.  
As shown in the flowchart of GA-clustering task in Fig. 1, ART-KNN algorithm was adapted 
as the traditional GA procedure to classify individuals into several clusters after the 
evaluation of fitness. After clustering, it is judged whether all individuals are well matured 
by using the CEF. If the CEF is smaller than the stop criterion, subroutine GA-clustering is 
terminated and returns to the final individuals and provides cluster information to the main 
program. Otherwise, the general procedure of GA, such as selection, crossover and 
mutation, is preceded again.  
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sequences of input patterns. It is also a vector classifier based on mathematical model for the 
description of fundamental behavioral functions of the biological brain such as the learning, 
parallel and distributed information storage, short and long-term memory and pattern 
recognition. The Kohonen neural network (KNN) (Kohonen, 1995) is also called self-
organizing feature map network (SOFM). It defines a feed forward two-layer neural 
network that implements a characteristic non-linear projection from the high dimensional 
space of sensory or other input signals onto a low-dimensional array of neurons.  
Recently, Yang et al. proposed a new algorithm using the adaptive resonance theory-
Kohonen neural network (ART-KNN) (Yang et al., 2004), which does not affect the initial 
training and can adapt with additional training data. The structure of ART-KNN is shown 
in Fig. 3. It is similar to ART’s but excluding the adaptive filter. ART-KNN is formed by two 
major subsystems: the attentional subsystem and the orienting subsystem. There are two 
interconnected layers, discernment layer and comparison layer, which are fully connected 
with both bottom-up and top-down processes and comprise of the attentional subsystem. 
The application of a single input vector leads to several patterns of neural activity in both 
layers. The activity in discernment nodes reinforces the activity in comparison nodes due to 
top-down connections. The interchange of bottom-up and top-down information leads to a 
resonance in neural activity. As a result, critical features comparison is reinforced with those 
having the greatest activity. The orienting subsystem is responsible for generating a reset 
signal to discernment when the bottom-up input pattern and top-down template pattern do 
not match during comparison process according to a similarity law. In other words, once it 
has detected that the input pattern is novel, the orienting subsystem must prevent the 
previously organized category neurons in discernment from learning this pattern (via a 
reset signal). Otherwise, the category will become increasingly non-specific. When a 
mismatch is detected, the network adapts its structure by immediately storing the novelty 
with additional weights. The similarity criterion is set by the value of the similarity 
parameter. A high value of the similarity parameter means than only a slight mismatch will 
be tolerated before a reset signal is emitted. On the other hand, a small value means that 
large mismatches will be tolerated. After the resonance check, if a pattern match is detected 
according to the similarity parameter, the network changes the weights of the winning node.  
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2.3 Clustering by ART-KNN 
In the ART-KNN, the determination of a limiting value of similarity (ρ) is important in  the 
optimization problem because the classification result is dependent on ρ. CEF detailed in the 
previous section is used to evaluate the superiority of the classified results based on average 
distance from mid point of each cluster and the variance of each cluster.  
ART-KNN is modified and incorporated into GA procedure for the clustering process 
according to following sequence: 

Step 1: Normalize every individuals of GA from 0 ~ 1.0.  
Step 2: Change similarity ρ  from 0.4~1.0.  

                   • Classify into clusters using ART-KNN for each ρ. 
                   • Calculate the CEF for each ρ. 

Step 3: Choose clustering results which correspond to minimum CEF.  

2.4 Sequential quadratic programming (SQP) 
SQP method represents the state of the art in nonlinear programming methods. 
Schittkowski (Schittkowski, 1985) has implemented and tested a version that outperforms 
every other tested methods in terms of efficiency, accuracy and percentage of successful 
solutions over a large number of test problems. Based on the work of Powell (Powell, 1978), 
the method allows it to closely mimic Newton's method for constrained optimization similar 
to an unconstrained optimization. At each major iteration, an approximation is made of the 
Hessian of the Lagrangian function using a quasi-Newton updating method. This is then 
used to generate a QP sub-problem whose solution is used to form a search direction for a 
line search procedure. An overview of SQP can be seen in Fletcher (Fletcher, 1980). The 
general method is not listed here, but MATLAB program provides a full implementation 
together with the SQP algorithm.  

2.5 Efficient random search 
The last procedure of CHEA is a complementary random search to find a global minimum 
candidate, which may be missed in GA and LS procedure. Considering the valley of global 
minimum is highly narrow and deep as shown in Fig. 4, general stochastic global search 
algorithms, such as GA and SA, often fail to find the global minimum. This is because not 
only we use limited number of trials to find the global minimum but heuristics reduce the 
searching area toward the global candidate which has a relatively wide valley. The mutation 
operator in GA gives a part of this random search by changing the genes randomly, but it 
doesn't use previous search history at all. Therefore, this paper proposes an efficient random 
search method, which uses all previous search points. It works by generating a new search 
point as far as possible from all previous search points. In the stochastic viewpoint, this 
random search increases the probability of finding the global minimum.  
The steps of the proposed efficient random search are as follows:  

Step 1: Generate 5 search points randomly. 
Step 2: Calculate Euclidean distance of the nearest point among previous search points.  
Step 3: Select one point which has the largest Euclidean distance. 
Step 4: Calculate fitness from the objective function. 

         If the calculated fitness is smaller than the best local minimums from GA-LS, 
Step 5: Apply local search using the SQP. 
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Step 6: Else, go to step 1, repeat the above procedure until the maximum number of 
             iterations is reached. 

 

 
Fig. 4. An objective function which has narrow and deep global minimum 

3. Application to test functions 
The new optimization algorithm was tested by using several benchmark functions to 
evaluate its capability and to compare it with other algorithms. Many types of test functions 
have been used to this subject, however in this study, the three well-known test functions 
were used to evaluate the algorithm. 

• Test function 1: Banana function which has one global minimum and converges 
                                   slowly to the global minimum. 
•  Test function 2: Multi-modal function which has several global minima and several 
                                  local minima 
• Test function 3: Rastrigin function which contains one global minimum and many  
                                  local minima 
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Test function 1, known as a Banana function, has the shape shown in Fig. 5 (a). In general, 
the convergence speed of an evolution program for this function is very slow and the 
accuracy of the searched solution is low as well. The objective of this example is to find the 
variable x, which minimizes the objective function. This function has only one optimum 
solution (x1 = 1.0, x2 = 1.0) at f(x) = 0. It is difficult to find the optimum solution because of a 
valley phenomenon. In general, an objective function which has several global minima 
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2.3 Clustering by ART-KNN 
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optimization problem because the classification result is dependent on ρ. CEF detailed in the 
previous section is used to evaluate the superiority of the classified results based on average 
distance from mid point of each cluster and the variance of each cluster.  
ART-KNN is modified and incorporated into GA procedure for the clustering process 
according to following sequence: 

Step 1: Normalize every individuals of GA from 0 ~ 1.0.  
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                   • Classify into clusters using ART-KNN for each ρ. 
                   • Calculate the CEF for each ρ. 

Step 3: Choose clustering results which correspond to minimum CEF.  
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Schittkowski (Schittkowski, 1985) has implemented and tested a version that outperforms 
every other tested methods in terms of efficiency, accuracy and percentage of successful 
solutions over a large number of test problems. Based on the work of Powell (Powell, 1978), 
the method allows it to closely mimic Newton's method for constrained optimization similar 
to an unconstrained optimization. At each major iteration, an approximation is made of the 
Hessian of the Lagrangian function using a quasi-Newton updating method. This is then 
used to generate a QP sub-problem whose solution is used to form a search direction for a 
line search procedure. An overview of SQP can be seen in Fletcher (Fletcher, 1980). The 
general method is not listed here, but MATLAB program provides a full implementation 
together with the SQP algorithm.  

2.5 Efficient random search 
The last procedure of CHEA is a complementary random search to find a global minimum 
candidate, which may be missed in GA and LS procedure. Considering the valley of global 
minimum is highly narrow and deep as shown in Fig. 4, general stochastic global search 
algorithms, such as GA and SA, often fail to find the global minimum. This is because not 
only we use limited number of trials to find the global minimum but heuristics reduce the 
searching area toward the global candidate which has a relatively wide valley. The mutation 
operator in GA gives a part of this random search by changing the genes randomly, but it 
doesn't use previous search history at all. Therefore, this paper proposes an efficient random 
search method, which uses all previous search points. It works by generating a new search 
point as far as possible from all previous search points. In the stochastic viewpoint, this 
random search increases the probability of finding the global minimum.  
The steps of the proposed efficient random search are as follows:  

Step 1: Generate 5 search points randomly. 
Step 2: Calculate Euclidean distance of the nearest point among previous search points.  
Step 3: Select one point which has the largest Euclidean distance. 
Step 4: Calculate fitness from the objective function. 

         If the calculated fitness is smaller than the best local minimums from GA-LS, 
Step 5: Apply local search using the SQP. 
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Step 6: Else, go to step 1, repeat the above procedure until the maximum number of 
             iterations is reached. 
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and/or local optimum points is called the multi-modal function as shown in Fig. 5 (b). The 
objective of this test function is to maximize the objective function. This function has four 
local minima of f(x)=14.333087 and four global minima of f(x)=16.09172. The Rastrigin 
function defined in eq. (4) is often used to evaluate the global search capability because there 
are many local minima around the global minimum as shown in Fig. 5 (c). It is very difficult 
to find a global minimum within the limited function in this test function. The objective of 
this test function is to minimize a function. This function has 220 local minima and one 
global minimum f(x)=0 at (0,0). 

 
(a) Banana function           (b) Multi-modal function        (c) Rastrigin function 

Fig. 5. Benchmark test functions 

The convergence speed of the optimization algorithm is evaluated by using test function 1. 
The ability of searching several global minima simultaneously is evaluated by using test 
function 2. The global search capability among many local minima is finally evaluated by 
using test function 3. Table 1 shows the parameters of CHEA used in this paper. 
 

Length of chromosome 12 
Number of population 200 
Crossover probability 40% 

GA 

Mutation probability  0.8exp( / 2)Gi− , iG : ith generation 
CEF  0.2 
wg 0.9 
wm 1.5 

Clustering 

wr 0.9 
Random search Max iteration 400 

 Table 1. Parameters for CHEA 

To observe the searching procedure of CHEA, the gradual process of CHEA for Rastrigin 
function is shown in Fig. 6. GA was terminated in one cluster after six generations as shown 
in Fig. 6 (a). After GA-clustering process, local search was carried out with four randomly 
selected individuals from each cluster. Since the results of the local search did not converge 
to a point, CHEA considered this cluster to have many local minima as shown in Fig. 6 (b). 
Therefore, GA-clustering task was repeated with reduced search bounds. After five 
generations, all individuals were well clustered as shown in Fig. 6(c) where the GA was 
terminated. After a local search for each cluster, CHEA produced a global minimum and 
three local minima as shown in Fig. 6(d). No better global candidate was found during 
random search. 
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 (a) Distribution of individuals after 4th generation of GA 
 (b) Local search by SQP with individuals randomly selected 
 

   
(c) Distribution of individuals after 5th generation of re-GA with reduced search area 
(d) Final results by CHEA 

Fig. 6. Optimization procedure by CHEA for test function 3 

4. Comparison of performance of CHEA 
Optimization results by CHEA are compared with EGA (Kim, 2003) and ASA (Ingber & 
Rosen, 1992) which are known as the advanced version of GA and SA. Table 2 shows the 
comparison for test function 1. The second column indicates the total number of function 
call which also represents computation time. Third to fifth columns show the mean 
optimum values of the design variables and the final value of the objective function, 
respectively. The result using ASA did not converge well to an optimum value though it 
spent more computation times than those of CHEA. EGA gave the exact optimum value but 
took 3183 number of function calls as compared to CHEA which took 1120 functional calls.  
The results for test function 2 are shown in Table 3. All algorithms showed the results 
having similar resolution, but ASA produced only one global minimum as compared with 
the others which found four global minima. EGA was slower than ASA but found all the 
global minima. The table shows that CHEA found all global minima and with the smallest 
number of function call. 
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and/or local optimum points is called the multi-modal function as shown in Fig. 5 (b). The 
objective of this test function is to maximize the objective function. This function has four 
local minima of f(x)=14.333087 and four global minima of f(x)=16.09172. The Rastrigin 
function defined in eq. (4) is often used to evaluate the global search capability because there 
are many local minima around the global minimum as shown in Fig. 5 (c). It is very difficult 
to find a global minimum within the limited function in this test function. The objective of 
this test function is to minimize a function. This function has 220 local minima and one 
global minimum f(x)=0 at (0,0). 

 
(a) Banana function           (b) Multi-modal function        (c) Rastrigin function 

Fig. 5. Benchmark test functions 

The convergence speed of the optimization algorithm is evaluated by using test function 1. 
The ability of searching several global minima simultaneously is evaluated by using test 
function 2. The global search capability among many local minima is finally evaluated by 
using test function 3. Table 1 shows the parameters of CHEA used in this paper. 
 

Length of chromosome 12 
Number of population 200 
Crossover probability 40% 

GA 

Mutation probability  0.8exp( / 2)Gi− , iG : ith generation 
CEF  0.2 
wg 0.9 
wm 1.5 

Clustering 

wr 0.9 
Random search Max iteration 400 

 Table 1. Parameters for CHEA 

To observe the searching procedure of CHEA, the gradual process of CHEA for Rastrigin 
function is shown in Fig. 6. GA was terminated in one cluster after six generations as shown 
in Fig. 6 (a). After GA-clustering process, local search was carried out with four randomly 
selected individuals from each cluster. Since the results of the local search did not converge 
to a point, CHEA considered this cluster to have many local minima as shown in Fig. 6 (b). 
Therefore, GA-clustering task was repeated with reduced search bounds. After five 
generations, all individuals were well clustered as shown in Fig. 6(c) where the GA was 
terminated. After a local search for each cluster, CHEA produced a global minimum and 
three local minima as shown in Fig. 6(d). No better global candidate was found during 
random search. 
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 (a) Distribution of individuals after 4th generation of GA 
 (b) Local search by SQP with individuals randomly selected 
 

   
(c) Distribution of individuals after 5th generation of re-GA with reduced search area 
(d) Final results by CHEA 

Fig. 6. Optimization procedure by CHEA for test function 3 

4. Comparison of performance of CHEA 
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The results for test function 2 are shown in Table 3. All algorithms showed the results 
having similar resolution, but ASA produced only one global minimum as compared with 
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Finally, the test results for test function 3 are summarized in Table 4. All algorithms found 
the local minima, but they often failed to find the global minimum. The last column shows 
the percentage of success in finding the global minimum. EGA produced the worst results in 
terms of computation time and success ratio. CHEA although is slower than ASA but the 
success ratio to global minimum is more superior. Considering the convergence speed, 
accuracy of results and global search capability, CHEA is found to be the most efficient 
algorithm among the considered algorithms which are known to be efficient and fast.  
 

 No. of function call x1 x2 f(x) 

ASA 1414 0.6995 0.4878 0.0905 
EGA 3183 0.9999 1.0000 6.06e-19 
CHEA 1120 1.0000 1.0000 9.94e-13 

Table 2. Comparison of the results for the test function 1 
 

 No. of function call x1 x2 f(x) 
ASA 1391 0.43881 −0.30585 16.09172 
EGA 3014 −0.43880 

−0.43880 
−0.43880 
  0.43880 

−0.30585 
−0.30585 
−0.30585 
  0.30585 

16.09172 
16.09172 
16.09172 
16.09172 

CHEA 1131 −0.43880 
−0.43880 
−0.43881 
  0.43881 

−0.30585 
−0.30585 
−0.30585 
  0.30585 

16.09172 
16.09172 
16.09172 
16.09172 

Table 3. Comparison of the results for the test function 2 
 

 No. of function call x1 x2 f(x) Success to 
global (%) 

ASA 1336 1.82e-5 −2.55e-6 −2.55e-7 83 

EGA 3131 1.00e-20 1.00e-20 3.16e-13 85 
CHEA 2100 −5.72e-9 

  0.994 
−0.994 
  8.69e-7 

−2.81e-7 
  4.63e-8 
  9.23e-9 
  0.994 

1.57e-11 
0.994 
0.994 
0.994 

99 

Table 4. Comparison of the results for the test function 3 

5. Unbalance response analysis of rotating shaft 
In this study, the vibrations are calculated using general finite element procedures. Since the 
finite element discretization procedure is well documented in many literatures (Nelson, 
1980; Pilkey, 1994; Choi & Yang, 2000), the details are omitted here and only the equations of 
motions are presented below. 
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5.1 Disk element  
The rigid disk is modeled as a four degrees of freedom rigid body with the generalized 
coordinates defined as two translations V, W of the mass center in the X and Y directions 
and two rotations B and Γ of the plane of the disk about the X and Y axes. The rigid disk 
needs to be located at a finite element station. If the spin speed Ω is assumed to be constant 
then the coordinates qd are governed by the following equation. 

( )d d d d d d
T R Ω+ − =M M q G q F

 (5) 

where ,d d
T RM M  are the translational and rotational mass matrices respectively, Gd is the 

gyroscopic matrix and Fd is the force vector acting on the disk. 

5.2 Shaft element  
The shaft element is considered to be initially straight and modeled as an eight degrees of 
freedom element: two translations and two rotations at each station of the element. The 
cross-section of the element is taken to be circular and uniform. Continuous shaft mass with 
a constant density is taken as equivalent lumped mass. The inertia of each element is 
divided into two parts and applied at both ends of an element.  
The equation of motion, in fixed frame and for a shaft element rotating with a constant 
speed Ω are given by, 

( )e e e e e e e e
T R Ω+ − + =M M q G q K q F

 (6) 

Here qe is a (8×1) displacement vector, corresponding to the translational and rotational 
displacements (V, W, B, Γ) at both ends of the element. e

TM , 
e
RM  are the translational and 

rotational mass matrices respectively, Ge is the gyroscopic matrix, Ke is the stiffness matrix 
and Fe is the force vector acting on the shaft element. 

5.3 Bearing elements 
The nonlinear characteristics of the bearings can be linearized at the static equilibrium 
position using the assumption of a small vibration. The dynamic characteristics of the 
bearings are represented by eight stiffness and damping coefficients. The force acting on the 
shaft can be expressed as 

b b b b b+ =C q K q F  (7) 

where Cb and Kb are the damping and stiffness matrices of the bearing elements, 
respectively. 

5.4 Assembly and system equation 
Once equations (5) - (7) are established for a typical element, these equations are repeatedly 
used to generate other equations recursively for other elements. Then they are assembled to 
find the global equation, which describes the behavior of the entire system. The assembled 
damped system equation of motion in the fixed frame is of the form 
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cross-section of the element is taken to be circular and uniform. Continuous shaft mass with 
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rotational mass matrices respectively, Ge is the gyroscopic matrix, Ke is the stiffness matrix 
and Fe is the force vector acting on the shaft element. 

5.3 Bearing elements 
The nonlinear characteristics of the bearings can be linearized at the static equilibrium 
position using the assumption of a small vibration. The dynamic characteristics of the 
bearings are represented by eight stiffness and damping coefficients. The force acting on the 
shaft can be expressed as 

b b b b b+ =C q K q F  (7) 

where Cb and Kb are the damping and stiffness matrices of the bearing elements, 
respectively. 

5.4 Assembly and system equation 
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used to generate other equations recursively for other elements. Then they are assembled to 
find the global equation, which describes the behavior of the entire system. The assembled 
damped system equation of motion in the fixed frame is of the form 
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+ + =Mq Cq Kq F  (8) 

where, M = Md + Me, K = Ke + Kb, C = Cb − ΩGe − ΩGd. M, C and K are total mass matrix, 
damping matrix and stiffness matrix, respectively. F is the external force vector acting on the 
entire system. 

5.5 Steady-state unbalance response 
In fixed frame coordinates, the unbalance force in eqn. (8) is of the form 

cos sinC St tΩ Ω= +F F F  (9) 

The steady state solution is given by, 

cos sinC St tΩ Ω= +q q q  (10) 

Substituted eqns. (9) and (10) into (8) yields 

12

2
C C

S S

Ω Ω
Ω Ω

−
⎡ ⎤− −⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

q FK M C
q FC K M

 

 
(11) 

The solution of eqn. (11) and substituting back into eqn. (10) provides the system unbalance 
response. 

6. Optimization formulation for identification 
6.1 General identification procedure 
Fig. 6 shows the general identification procedure for determining the unknown system 
parameters, such as bearing parameters, position, magnitude and phase of unbalance of 
rotor-bearing system. It consists of different tasks as shown in Fig. 6. At first, a linear 
analytical model which is generally described by a differential equation is formulated by 
including unknown parameters. And then, steady-state unbalance response can be 
calculated by using the equations described in previous section. Such a response can also be 
obtained from the measurements of output signals in rotor-bearing system. Finally, in the 
comparison task, the analytical response is compared with the measured response at the 
same nodes. If their correlation is poor, the system unknown parameters are renewed and 
sent to the analytical model. This iterative procedure for improving the system unknown 
parameters is set if the correlation of model and measurement is good enough. The key 
issue of this procedure is how much variations of parameters have to be given to the new 
analytical model. It is very time consuming to do this manually. Thus many optimization 
techniques have been developed to solve this kind of problem which can be formulated as 
minimization problem. 

6.2 Formulation of optimization problem 
The classical nonlinear constrained optimization problem can be written mathematically as: 

 Minimize f(x)  (12) 
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 Subject to gl(x) ≤ 0 (l=1, m), hk(x) = 0 (k = 1, n), xil ≤ xi ≤ xiu (i = 1, p)  (13) 

In general, the objective function f(x) as well as the constraint functions gl(x) and hk(x) are 
nonlinear implicit functions with respect to the design variables. Classical optimization 
algorithms require these functions to be unimodal and continuous, and their first 
derivatives have to be available. Otherwise, various numerical difficulties and convergence 
problems may arise. The global optimization algorithms, such as GA and SA, have been 
developed in order to overcome the above restrictions and difficulties. 
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Fig. 6. General identification procedure using optimization technique 
It is important to choose the form of the objective function, f(x), in engineering application of 
optimization algorithms. Three different types of objective functions are considered as 
shown in equations (14) to (16). The sum-squared difference between the magnitude of the 
experimental and analytical unbalance responses, as shown in equation (14), is a common 
choice, but this function performs rather badly in certain practical applications, especially in 
low damping system. The reasons for this failure are due to the function being dominated 
by the contributions made at the critical speed and resonant peaks. Another possible 
approach is to consider the difference of the natural logarithm of the unbalance responses to 
reduce the weighting of the natural frequencies defined in equation (15). A simple difference 
function, shown in equation (16), can also be used as an objective function. 
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where, U denotes the unbalance response and superscripts X and A represent measured and 
analytical responses, respectively. Ω  is the rotating speed of the shaft, j is the measuring 
node and x is the identifying parameter vector. 
The optimization problem for parameters identification of rotor-bearing system is 
formulated as follows:  

Minimize f(x)  

 subject to: l u
i i ix x x≤ ≤ ,  xi∈x, xi= 1, 2, …, 5   (17) 

and the design variables:  x = (kxx, kxy, kyx, kyy, cxx, cxy, cyx, cyy, u) 
 

where, xi is the design variable and superscripts l and u represent the lower and upper 
bounds of the design variables, respectively. kij, cij (i, j = x, y) are the stiffness coefficients and 
damping coefficients of bearing respectively. Subscript x and y denote horizontal and 
vertical direction, respectively. u denotes the residual unbalance of the disk.  
In this study, only the diagonal terms of the stiffness and damping coefficients (kxx, kyy, cxx, 
cyy) are considered and does not consider inequality or equality constraints. When a journal 
bearing is used in the rotor-bearing system, cross-coupled terms of stiffness and damping 
coefficients (kxy, kyx, cxy, cyx) need to be selected as design variables.  

7. Numerical application 
The proposed methodology is first verified by a simulation study. A simple rotor-bearing 
model is shown in Fig. 7 and detail specifications of the rotor bearing model are shown in 
Table 5. The rotor system consists of a shaft of 1.3m in length and 0.1m in diameter, and has 
three disks. Two bearings support the shaft at the each ends. The dynamic coefficients of the 
two bearings are of the same values, and hence only the diagonal terms are considered. An 
unbalance mass was added on disk 2 (6th node) with a magnitude of 200 g⋅mm and an angle 
of 0o. The unbalance responses at the 2nd and the 12th nodes were selected as simulated 
measured responses. To consider the uncertainty of the analytical model and to examine the 
robustness of identification, 10% of Gaussian noise was applied to the simulated responses.  
The stiffness and damping coefficients of the bearing and the magnitude of unbalance mass 
on disk were chosen as identifying parameters. The formulation of optimization is described 
in the following section. 

1.3 m

Disk 1
Disk 2

Disk 3

Bearing 1 Bearing 2
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Disk 1
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Disk 3

Bearing 1 Bearing 2

 
Fig. 7. Rotor bearing model (Lalanne and Ferraris, 1998) 
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Shaft length (m) 1.3 
Shaft diameter (m) 0.1 

Young’s modulus (GPa) 200 
Density (kg/m3) 7,800 

Shaft 

Poisson ratio 0.3 
kxx, kyy (MN/m) 50, 70 
cxx, cyy (kN⋅s/m) 0.5, 0.7 Bearing 
kxy, kyx, cxy, cyx 0 

Table 5. Model parameters in Lalanne’s rotor model  

7.1 Formulation of optimization 
Objective function 
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where, Uj is vertical and horizontal responses at 2nd and 12th nodes, respectively and Ω is 
rotating speed ranging from 200 to 15000 rpm with a step of 200 rpm. 
 

Design variables (Identifying parameters) 

 ( , , , , )xx yy xx yyk k c c u=x   (19) 
where, kxx and kyy are the horizontal and vertical stiffness coefficients, cxx and cyy are the 
horizontal and vertical damping coefficients, respectively. u is the magnitude of mass 
unbalance of disk.  
 

Side constraints 

 102 ≤ kxx, kyy ≤ 109 (N/m), 100 ≤ cxx , cyy ≤ 107 (N⋅s/m), 10-7 ≤ u ≤ 10-2 (kg⋅m)  (20) 

The control parameters for this algorithm are listed in Table 6. These parameters are 
determined by considering the global search capability and the computation time.  
 

Length of chromosome 12 
Number of population 200 
Crossover probability 40% GA 

Mutation probability 0.8exp( / 2)Gi− , iG : ith generation 
CEF 0.2 
wg 0.9 
wm 1.5 

Clustering 

wr 0.9 
Random search Max iteration 500 

Table 6. Control parameters for optimization algorithm (CHEA) 
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where, U denotes the unbalance response and superscripts X and A represent measured and 
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Fig. 7. Rotor bearing model (Lalanne and Ferraris, 1998) 
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7.2 Identification results 
Table 7 shows the identification results using the simulated unbalance response without 
noise. With the objective functions of all cases, all identified parameters have exactly the 
same reference values and the total call number of the objective function is about 3000. Fig. 8 
shows the history of the objective function values. It can be seen that, after 6th generation, 
GA-clustering task was terminated and yielding the classification to one cluster. In a local 
search, three points converged to one point and consumed 1300 times of function 
evaluations. With a total of 500 trials of random searches the algorithms were unable to 
locate the lower local minimum candidate and the program had to be terminated. The result 
clearly shows that the shape of objective function needs to be a wide concave type.  
 

Identified values Design 
variables 

Reference 
values f1(x) f2(x) f3(x) 

kxx (MN/m) 50 50 50 50 
kyy (MN/m) 70 70 70 70 
cxx (kN⋅s/m) 0.5 0.5 0.5 0.5 
cyy (kN⋅s/m) 0.7 0.7 0.7 0.7 

u (g⋅mm) 200 200 200 200 
No. of function call 2,993 2,768 3,150 

Table 7. Identification results using the unbalance response without noise 
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Fig. 8. History of objective function values 

The identification results using a simulated response with 10% Gaussian noise added are 
summarized in Table 8, taking into consideration the three kinds of objective functions. In 
the case of function f1(x), the errors of stiffness coefficients varied from 2.4% to 8.1% and are 
less than 10%. However, the errors due to damping coefficients fluctuate significantly. The 
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results by using function f3(x) are not acceptable due to the high errors encountered in 
stiffness coefficients, ranging from 14.8% to 160%. In the case of function f2(x), which is 
considered to be the best choice, the stiffness coefficients and magnitude of mass unbalance 
(u) are well identified with error less than 1% with respect to the reference values. This is 
obtained by excluding the relative higher errors of damping coefficients. The reasons for the 
poor results with respect to the damping coefficients are  
• The damping coefficients of the bearing strongly affect the magnitude of the unbalance 

response near the resonant peaks in a low damping system. 
• The peak value of the response fluctuates to the higher values than other responses due 

to the Gaussian noise. 
 

Objective function (% error) Design 
variables 

Reference 
value f1(x) f2(x) f3(x) 

kxx (MN/m) 50 45.94 (8.1) 50.16 (0.3) 112.1 (124) 
kyy (MN/m) 70 71.67 (2.4) 69.94 (0.1) 80.38 (14.8) 
cxx (kN⋅s/m) 0.5 2.570 (414) 0.434 (13.8) 0.852 (160) 
cyy (kN⋅s/m) 0.7 0.0015 (99) 0.684 (4.1) 0.834 (19) 

u (g⋅mm) 200 210.4 (5.2) 200.8 (0.3) 115.8 (42) 

Table 8. Comparison of identification results for different objective functions in the case 10% 
Gaussian noise added to unbalance response 
From these results, the objective function needs to be selected carefully by considering the 
shape of the measured response function. Fig. 9 shows the simulated unbalance responses 
with 10% Gaussian noise added and the calculated unbalance responses using the identified 
parameters for the case function f2(x). The identified response is in good agreement with the 
simulated measured ones. 
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Fig. 9. Original and identified unbalance response 
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8. Experimental validation 
The experimental validation was performed to verify the effectiveness of proposed 
identification approach. By using a Rotor-Kit system, the stiffness coefficients and unbalance 
mass of disk are identified simultaneously. The identified results are compared with those 
obtained by measurement. 

8.1 Test rig and measured response 
The test rig for experimental validation is shown in Fig. 10. The rotor-system is the RK4 
model manufactured by Bently-Nevada. A flexible coupling connects a controllable DC 
motor to the shaft. Spring-bearing, which has four springs for driving a ball bearing in all 
directions as shown in Fig. 10, was used to identify the stiffness and damping coefficients. 
The adjoined two ball bearings in the coupling side are used to prevent slight angular 
movements which usually occurred in single ball bearing setup. Two proximity probes are 
incorporated to measure the shaft vibration in the vertical and horizontal directions. 
 

 
Fig. 10. Experimental test rig 

Fig. 11 shows the schematic of the test setup with the spring-bearing. The measured signal 
was processed by using the DAI-108 and ADRE software. The stiffness of the two adjoined 
ball bearings in the left side was considered to be rigid because it was significantly greater 
than the identifying stiffness of the spring-bearing at the right side. The parameters of the 
shaft, disk and spring-bearing are listed in Table 9. To identify the unknown parameters in a 
real system, all the other parameters need to be defined. Therefore, Young’s modulus and 
density of shaft listed in Table 5 were updated by using the model updating technique. 
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Fig. 11. Schematic of an experimental setup with a spring-bearing 
 

Length (mm) 560 
Diameter (mm) 10 
Density (kg/m3) 7,801 
Young’s modulus (MPa) 208.11 

Shaft 

Poisson ratio  0.3 
Mass (kg) 0.809 
Polar moment of inertia (kg·m2) 568.46×10-6 
Trans. moment of inertia (kg·m2) 327.60×10-6 

Disk 

Magnitude of unbalance (g·mm) 15 
Bearing span (mm) 401 
Horizontal stiffness (kN/m) 33.9 

Bearing 

Vertical stiffness (kN/m) 33.6 

Table 9. Parameters of test setup 

Fig. 12 shows a 1X filtered measured response of horizontal vibration according to speed-up 
and speed-down of the motor. Slow roll vector at 500 rpm was used to compensate the 
original signal. The response below the critical speed was used in the identification process 
because they increased sharply near the critical speed. In actual fact, many rotating systems 
operate below the first critical speed. The reason why the measured signal is not smooth 
enough is because this system has no damping mechanism except internal material 
damping or friction. Fig. 13 shows, for example, an instantaneous measured signal in the 
vertical direction at a shaft speed of 1350 rpm. The first peak in the spectrum plot indicates 
the rotating speed and the second peak is the first natural frequency of the system. This 
appearance is frequently shown in low damping systems supported by ball bearings. 
Furthermore, traditional deterministic identification approaches (Lee & Hong, 1988; Chen & 
Lee, 1995, 1997; Tiwari et al., 2002) often failed to identify the exact parameters.  
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Fig. 12. 1X filtered measured horizontal response 
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(a) Time base signal   (b) Spectrum 

Fig. 13 Instantaneous vibration signal and its spectrum at 1350 rpm 

8.2 Optimization formulation and results 
The same control parameters for optimization algorithm listed in Table 2 are used this case. 
By using the above measured responses in the vertical and horizontal directions, 
optimization for identifying the bearing parameters and unbalance is formulated as follows:  
 

Objective function: 
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where, Uj is response at the position of sensors and Ω is the rotating speed from 480 to 2140 
rpm with a step of 20 rpm. 
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Design variables (Identifying parameters): 

 ( , , , , )xx yy xx yyk k c c u=x   (21) 
where, kxx and kyy are the horizontal and vertical stiffness coefficients, cxx and cyy are the 
horizontal and vertical damping coefficients, respectively. u is the magnitude of mass 
unbalance of disk. 
 

Side constraints: 

102 ≤ kxx, kyy ≤ 106 (N/m), 100 ≤ cxx, cyy ≤ 103 (N⋅s/m), 10-7 ≤ u ≤ 10-3 (kg⋅m) 
The identification results for the spring-bearing system are summarized in Table 10. The 
results show an average function call number of 4327 which corresponds to a computation 
CPU time of 3519 second on the P-IV 3.0 GHz PC. The reference values for the stiffness 
coefficients were obtained from static deflection tests. The percent error of identified 
parameters to reference values is given in terms of percentage error (% error).  
 

Identified values (% error) Design 
variables 

Experimental 
value f1(x) f2(x) f3(x) 

kxx`(kN/m) 33.900 30.884 (8.9) 30.796 (9.1) 33.491 (1.2) 
kyy`(kN/m) 34.600 34.203 (1.1) 34.001 (1.7) 36.390 (5.2) 
cxx (N⋅s/m) − 13.42 11.96 15.44 
cyy (N⋅s/m) − 16.06 14.11 3.16 
u (g·mm) 15 13.82 (7.8) 12.86 (14.3) 16.13 (7.5) 
No. of total function call  4,334 4,360 4,288 

Table 10. Identification results for the spring-bearing system 
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Fig. 14. Measured and Identified horizontal unbalance response for f3(x) 
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Fig. 14. Measured and Identified horizontal unbalance response for f3(x) 
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Although the 1X amplitude of the measured signal had significant fluctuation, all the 
identified parameters fitted well with the reference values. Considering the percentage error 
to reference values, as shown in the Table 10, the best choice of the objective function is f3(x), 
which is the sum of differences between measured and analytical responses. Fig. 14 shows 
the identified horizontal unbalance response and 1X filtered measured response at the 
sensor positions. From this result, it is verified that the proposed methodology could be 
effectively used to identify bearing coefficients with the magnitude of unbalance using the 
measured unbalance responses.  

9. Conclusions 
A new hybrid evolutionary algorithm using clustering-based hybrid evolutionary algorithm 
(CHEA), is proposed in this chapter. The main feature of CHEA is the clustering of 
individuals introduced for evaluating the degree of maturity of genetic evolution. After the 
clustering-based genetic algorithm, local search is carried for each cluster in this algorithm. 
CHEA attempts to find each local minimum from each cluster or continues with GA 
focusing on the regions of each cluster until all significant local minima are found. Therefore 
CHEA can lead to local minima as well as global minimum. ART-Kohonen neural network 
(ART-KNN) is used in the clustering of individuals in GA. Sequential quadratic 
programming (SQP) is adopted as local search. An efficient random search is introduced for 
improving the probability of finding the global minimum which may be missed by GA or 
local search task. The effectiveness of the proposed algorithm was evaluated using three 
well-known benchmark functions. The results showed that the CHEA reached the global 
minimum faster than EGA and ASA. It has the ability to find the global minimum as well as 
the local minima and having higher global search capability than other algorithms. 
When using CHEA for parameter identification of bearings, it optimizes the formulation 
process to achieve an optimum solution. It minimizes the differences between analytical 
unbalance responses and measured ones by considering the unknown bearing parameters 
as design variables. Three types of feasible objective functions were applied in evaluation 
process, namely, sum-squared differences, logarithmic differences and simple differences to 
find the most competent formulation of the objective function. The magnitude of mass 
unbalance was also chosen as identifying parameters. Numerical and experimental 
applications were presented to confirm the effectiveness of this methodology. In the 
numerical application, 10% of Gaussian noise was added to simulate measured response 
and to examine the robustness of the methodology. The results showed that the unknown 
parameters were correctly identified and the logarithmic differences function was concluded 
as the best objective function in the numerical simulation. When applied to an experimental 
rotor-bearing system the measured synchronous response fluctuates according to the 
rotating speeds but the identified parameters fitted well with the reference values. This new 
algorithm has the potential for use in real life applications. However, further investigations 
using industrial data are required to test the robustness of the technique before applying the 
method to industrial rotating machinery.  
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1. Introduction     
The Simple Genetic Algorithm (SGA) is applied more and more extensively since it was 
proposed by J. H. Holland [1]  in 1970’s. SGA is an optimization method based on 
population by emulating the evolvement disciplinarian of the nature. It has showed the 
great advantage of quick search for optimal solutions while applied in the optimization of 
single-modal functions. But as we all know many problems in reality belong to the 
optimization of multi-modal function, and if SGA is applied to solve this kind of problems, 
it has the confliction between the search space and convergence speed: the expansion of 
search space will slow down the convergence speed and the acceleration of convergence 
speed will reduce the search space, lead to early convergence and as a result stop research at 
some local optimal solutions.  
Evolutionary algorithms have been used regularly to solve multi-modal function 
optimization problems, due to their population-based approach and their inherent 
parallelism, e.g. a crowding factor model proposed by De Jong[2], a shared-function model 
proposed by Goldberg and Richardson[3], an artificial immune system method, a split ring 
parallel evolutionary algorithm, etc., all of which have attempted to maintain the diversity 
of the population during the process of evolution. In this chapter, we introduce a new 
‘Domain Decomposition Evolutionary algorithm (called DDEA) which can solve not only 
simple nonlinear programming problems effectively and efficiently, but can also find the 
multiple solutions of multi-modal problems in a single run. The DDEA employs dual 
strategy approach that searches at two levels of detail (namely global then local). In the first 
(global) step, a Self-adaptive Mutations with Multi-parent  Crossover Evolutionary 
Algorithm (SMMCEA)[4] is employed to perform a global search to divide the 
(chromosome) population into several subpopulations or niches in subdomains, which is 
domain decomposition. In the second (local) step, an evolutionary strategy-like algorithm is 
employed to perform a local search on each isolated niche independently. Then the best 
solutions of the multi-modal problem are exploited. 
The remainder of the chapter is organized as follows. Section 2 introduces a Self-adaptive 
Mutations with Multi-parent  Crossover Evolutionary Algorithm (SMMCEA); Section 3 
introduces Domain Decomposition evolutionary algorithm (DDEA); Section 4 presents the 
successful results of applying DDEA to several challenging numerical multi-modal 
optimization problems; Section 5 concludes. 
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some local optimal solutions.  
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optimization problems, due to their population-based approach and their inherent 
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proposed by Goldberg and Richardson[3], an artificial immune system method, a split ring 
parallel evolutionary algorithm, etc., all of which have attempted to maintain the diversity 
of the population during the process of evolution. In this chapter, we introduce a new 
‘Domain Decomposition Evolutionary algorithm (called DDEA) which can solve not only 
simple nonlinear programming problems effectively and efficiently, but can also find the 
multiple solutions of multi-modal problems in a single run. The DDEA employs dual 
strategy approach that searches at two levels of detail (namely global then local). In the first 
(global) step, a Self-adaptive Mutations with Multi-parent  Crossover Evolutionary 
Algorithm (SMMCEA)[4] is employed to perform a global search to divide the 
(chromosome) population into several subpopulations or niches in subdomains, which is 
domain decomposition. In the second (local) step, an evolutionary strategy-like algorithm is 
employed to perform a local search on each isolated niche independently. Then the best 
solutions of the multi-modal problem are exploited. 
The remainder of the chapter is organized as follows. Section 2 introduces a Self-adaptive 
Mutations with Multi-parent  Crossover Evolutionary Algorithm (SMMCEA); Section 3 
introduces Domain Decomposition evolutionary algorithm (DDEA); Section 4 presents the 
successful results of applying DDEA to several challenging numerical multi-modal 
optimization problems; Section 5 concludes. 
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2. Introduction of SMMCEA 
2.1 The Problem to Solve  
The general non-linear programming (NLP) problem can be expressed in the following 
form: 

Minimize  f(X,Y) 
s.t.    hi(X,Y)= 0   i = 1,2,...,k1 ， gj(X,Y) ≤0      j=k1+1, k1+2,...,k 

Xlower ≤ X ≤ Xupper  ，  Ylower ≤ Y ≤ Yupper 
(1) 

where X∈Rp, Y∈Nq, and the objective function f (X,Y), the equality constraints hi(X,Y) and 
the inequality constraints gj(X ,Y) are usually nonlinear functions which include both real 
variable vector X and integer variable vector Y. 
Denoting the domain D = {(X,Y) | Xlower ≤ X ≤ Xupper，Ylower ≤ Y ≤ Yupper }, we introduce the 
concept of a subspace V of the domain D. m points (Xj,Yj), j＝1,2,…,m in D are used to 
construct the subspace V, defined as : 

V ＝{(Xv,Yv)∈D|(Xv,Yv)= ∑ =

m
i iii YXa1 ),( } 

where ai is subject to ∑ =

m
i ia1 = 1, -0.5≤ ai  ≤1.5. 

Because we deal mainly with optimization problems which have real variables and 
INequality constraints, we assume k1 = 0 and q = 0 in the expression (1). 
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Then problem (1) can be expressed as follows: 

                              Minimize f(X)            X∈D  (2) 

Subject to 

W(X)=0                                 X∈D  
We define a Boolean function “better” as: 
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If better (X1, X2) is TRUE，this means that the individual X1 is “better” than the individual 
X2. 

2.2 Related Work 
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In 1999, Guo Tao proposed a multi-parent combinatorial search algorithm (GTA) for solving 
non-linear optimization problems in his PhD thesis [5]. Later it was developed as a kind of 
subspace stochastic search algorithm [6], that can be described as follows: 
Guo Tao’s Algorithm (GTA) 
Begin 
         initialize popln P ＝ {X1, X2,…, XN };  Xi ∈D since (q = 0 implies no integer variables) 
                    generation count t := 0; 
                    X best  ＝arg )( 

1
XfMin i

Ni≤≤
; 

                    X worst ＝ arg ) ( 
1

XMax i
Ni

f
≤≤

; 

         while abs(f (X best)-f (X worst)) >ε do 
                              select randomly m points X 1′, X 2′,…, X m′ from P to form the subspace V; 
                              select randomly one point X′ from V; 
                                  If  better (X′, X worst) then  Xworst: = X′; 
                                  t := t + 1; 
                                 Xbest = arg )( 

1
XfMin i

Ni≤≤
; 

                                 Xworst ＝ arg )( 
1

XfMax i
Ni≤≤

 

         end do 
                      output  t , P ; 
End 
where N is the size of population P, (m –1) is the dimension of the subspace V (if the m 
points (vectors) that construct the subspace V are linearly independent)，t is the number of 
generations, ε is the accuracy of solution. Xbest = arg )( 

1
XfMin i

Ni≤≤
 means that Xbest is the 

variable (individual) in Xi (i=1, 2,…, N) that makes the function f (X) have the smallest value. 
The sub-population in GTA is families which reproduce sexually through the number of m 
individuals randomly selected from P. The best individual in the sub-population takes part 
in competition to replace the worst individual in P, therefore the pressure of elimination 
through selection is minimum. There is no mutation operator, only using multi-parents 
crossover in GTA. 

2.3 A self-adaptive evolutionary algorithm 
Since Guo’s algorithm deals mainly with continuous NLP problems with Inequality 
constraints, to make it a truly universal and robust algorithm for solving general NLP 
problems, we extend Guo’s algorithm by adding to it the following improvements: 
(1) Guo selected randomly only one candidate solution from the current subspace V. 
Although he used the concept of a subspace to describe his algorithm, he did not really use a 
subspace search, but rather a multi-parent crossover. Because he selected randomly only one 
individual in the subspace, this action would tend to ignore better solutions in the subspace, 
and hence influence negatively the quality of the result and the efficiency of the search. If 
however, we select randomly several individuals from the subspace, and substitute the best 
one for the worst one in the current population, the search should be better. So we replace 
the instruction line in Guo’s algorithm: 
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2. Introduction of SMMCEA 
2.1 The Problem to Solve  
The general non-linear programming (NLP) problem can be expressed in the following 
form: 

Minimize  f(X,Y) 
s.t.    hi(X,Y)= 0   i = 1,2,...,k1 ， gj(X,Y) ≤0      j=k1+1, k1+2,...,k 

Xlower ≤ X ≤ Xupper  ，  Ylower ≤ Y ≤ Yupper 
(1) 

where X∈Rp, Y∈Nq, and the objective function f (X,Y), the equality constraints hi(X,Y) and 
the inequality constraints gj(X ,Y) are usually nonlinear functions which include both real 
variable vector X and integer variable vector Y. 
Denoting the domain D = {(X,Y) | Xlower ≤ X ≤ Xupper，Ylower ≤ Y ≤ Yupper }, we introduce the 
concept of a subspace V of the domain D. m points (Xj,Yj), j＝1,2,…,m in D are used to 
construct the subspace V, defined as : 

V ＝{(Xv,Yv)∈D|(Xv,Yv)= ∑ =

m
i iii YXa1 ),( } 

where ai is subject to ∑ =

m
i ia1 = 1, -0.5≤ ai  ≤1.5. 

Because we deal mainly with optimization problems which have real variables and 
INequality constraints, we assume k1 = 0 and q = 0 in the expression (1). 
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Then problem (1) can be expressed as follows: 
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If better (X1, X2) is TRUE，this means that the individual X1 is “better” than the individual 
X2. 

2.2 Related Work 
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In 1999, Guo Tao proposed a multi-parent combinatorial search algorithm (GTA) for solving 
non-linear optimization problems in his PhD thesis [5]. Later it was developed as a kind of 
subspace stochastic search algorithm [6], that can be described as follows: 
Guo Tao’s Algorithm (GTA) 
Begin 
         initialize popln P ＝ {X1, X2,…, XN };  Xi ∈D since (q = 0 implies no integer variables) 
                    generation count t := 0; 
                    X best  ＝arg )( 

1
XfMin i

Ni≤≤
; 

                    X worst ＝ arg ) ( 
1

XMax i
Ni

f
≤≤

; 

         while abs(f (X best)-f (X worst)) >ε do 
                              select randomly m points X 1′, X 2′,…, X m′ from P to form the subspace V; 
                              select randomly one point X′ from V; 
                                  If  better (X′, X worst) then  Xworst: = X′; 
                                  t := t + 1; 
                                 Xbest = arg )( 

1
XfMin i

Ni≤≤
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                                 Xworst ＝ arg )( 
1

XfMax i
Ni≤≤

 

         end do 
                      output  t , P ; 
End 
where N is the size of population P, (m –1) is the dimension of the subspace V (if the m 
points (vectors) that construct the subspace V are linearly independent)，t is the number of 
generations, ε is the accuracy of solution. Xbest = arg )( 

1
XfMin i

Ni≤≤
 means that Xbest is the 

variable (individual) in Xi (i=1, 2,…, N) that makes the function f (X) have the smallest value. 
The sub-population in GTA is families which reproduce sexually through the number of m 
individuals randomly selected from P. The best individual in the sub-population takes part 
in competition to replace the worst individual in P, therefore the pressure of elimination 
through selection is minimum. There is no mutation operator, only using multi-parents 
crossover in GTA. 

2.3 A self-adaptive evolutionary algorithm 
Since Guo’s algorithm deals mainly with continuous NLP problems with Inequality 
constraints, to make it a truly universal and robust algorithm for solving general NLP 
problems, we extend Guo’s algorithm by adding to it the following improvements: 
(1) Guo selected randomly only one candidate solution from the current subspace V. 
Although he used the concept of a subspace to describe his algorithm, he did not really use a 
subspace search, but rather a multi-parent crossover. Because he selected randomly only one 
individual in the subspace, this action would tend to ignore better solutions in the subspace, 
and hence influence negatively the quality of the result and the efficiency of the search. If 
however, we select randomly several individuals from the subspace, and substitute the best 
one for the worst one in the current population, the search should be better. So we replace 
the instruction line in Guo’s algorithm: 
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“select randomly one point X′from V; ” 

with the two instruction lines: 

              “ select randomly s points *
1X ， *

2X ，…， *
sX  from V; 

      X′= arg ( )
1

if XMin
i s

∗

≤ ≤
;” 

(2)The dimension m of the subspace in Guo’s algorithm is fixed (i.e. m parents reproduce). 
The algorithm always selects a substitute solution in subspaces which have the same 
dimension, regardless of the characteristics of the solutions in the current population. Thus, 
when the population is close to the optimal value, the searching range is still large. This 
would apparently result in unnecessary computation, and affect the efficiency of the search. 
We can in fact reduce the search range, that is to say, the dimension of the subspaces. We 
therefore use subspaces with variable dimensions in the new algorithm, by adding the 
following instruction line to Guo’s algorithm: 

if abs ( f (Xbest) – f (Xworst)) ≤ η .and.  m ≥3  then   m := m – 1; 

where η depends on the computation accuracy ε, and η > ε. For example, if the computation 
accuracy ε = 10-14, then we can set η = 10-2 or 10-3. 

(3) We know in principle that Guo’s algorithm can deal with problems containing EQuality 
constraints. For example, we can use the device of setting two INequality constraints  
0≤hi(X ,Y) and hi(X ,Y)≤0 to replace the equality constraint hi(X ,Y) = 0, but the experimental 
results when employing this device are not ideal. However, equality constraints are likely to 
exist in real-world problems, so we should find methods to deal with them. One such 
method is to define a new function W(X, Y) 
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(4) The penalty factor r is usually fixed. However, some people use it as a variable, such as 
Cello[7], who employed a self-adaptive penalty function, but his procedure was rather 
complex (using two populations). We also make r a variable namely r = r (t), where t is the 
iteration count. It can self-adjust according to the reflection information, so we label it a 
“self-adaptive penalty operator”. Since the constraints have been normalized, r is relative 
only to the range of the objective function, which ensures a balance between the errors of the 
fitness function and the objective function, in order of magnitude.  
(5) Guo’s algorithm can deal only with continuous optimization problems. It cannot deal 
directly with integer or mixed integer NLP problems. In our algorithm, when we are 
confronted with such problems, we need only replace the integer variables derived from the 
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range of the float of the fitness function with “integer function” int(Y*), where int(Y*) is 
defined as the integer part of Y*. No other changes to the algorithm are needed.  
 (6) The only genetic operator used in Guo’s algorithm was crossover. However, we can add 
self –adaptive mutations in it, we introduce a better of Gaussian and Cauchy mutation 
operator into the subspace search. For Gaussian density function fG with expectation 0; and 
variance σ 2 is 

Gf =
2

2

2

2
1 σ

πσ

x

e
−

  ,       －∞ < x <  +∞ 

For Cauchy density function  fC with scale parameter t>0 is, 

Cf = 22
11

xt +π
  ,       －∞ < x <  +∞ 

2.4 A Self-adaptive mutations with multi-parent crossover evolutionary algorithm 
Considering the above points, we introduce a new algorithm as follows: 
Denoting Z = (X, Y*), where Z∈D*, and 
D* = {(X, Y*)|Xlower≤X≤Xupper, Ylower≤Y*≤Yu,  X ∈Rp, Y*∈Rq},  we define integer vector 
Y=int(Y*), where Yu = Yupper+0.999…9I 
Denoting    W(Z)＝W(X, int(Y*)), 
we define the Boolean function “better” as follows: 

           better(Z1 ,Z2) ＝
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The general NLP problem (1) can be expressed as follows: 

 Minimize f(X,int(Y*))    in D*      S.t.    (3) 

W(Z)=0 ,        Z∈D* 

The new algorithm can now be described as follows: 
SMMCEA : 
          Begin 

                 initialize P ＝ {Z1,Z2,…,ZN };   Zi∈ *D ; 
                 t := 0; 
                Zbest  ＝  )(arg

1 iZfMin
Ni≤≤

; 



 Advances in Evolutionary Algorithms 

 

170 

“select randomly one point X′from V; ” 

with the two instruction lines: 
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(2)The dimension m of the subspace in Guo’s algorithm is fixed (i.e. m parents reproduce). 
The algorithm always selects a substitute solution in subspaces which have the same 
dimension, regardless of the characteristics of the solutions in the current population. Thus, 
when the population is close to the optimal value, the searching range is still large. This 
would apparently result in unnecessary computation, and affect the efficiency of the search. 
We can in fact reduce the search range, that is to say, the dimension of the subspaces. We 
therefore use subspaces with variable dimensions in the new algorithm, by adding the 
following instruction line to Guo’s algorithm: 

if abs ( f (Xbest) – f (Xworst)) ≤ η .and.  m ≥3  then   m := m – 1; 

where η depends on the computation accuracy ε, and η > ε. For example, if the computation 
accuracy ε = 10-14, then we can set η = 10-2 or 10-3. 

(3) We know in principle that Guo’s algorithm can deal with problems containing EQuality 
constraints. For example, we can use the device of setting two INequality constraints  
0≤hi(X ,Y) and hi(X ,Y)≤0 to replace the equality constraint hi(X ,Y) = 0, but the experimental 
results when employing this device are not ideal. However, equality constraints are likely to 
exist in real-world problems, so we should find methods to deal with them. One such 
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(4) The penalty factor r is usually fixed. However, some people use it as a variable, such as 
Cello[7], who employed a self-adaptive penalty function, but his procedure was rather 
complex (using two populations). We also make r a variable namely r = r (t), where t is the 
iteration count. It can self-adjust according to the reflection information, so we label it a 
“self-adaptive penalty operator”. Since the constraints have been normalized, r is relative 
only to the range of the objective function, which ensures a balance between the errors of the 
fitness function and the objective function, in order of magnitude.  
(5) Guo’s algorithm can deal only with continuous optimization problems. It cannot deal 
directly with integer or mixed integer NLP problems. In our algorithm, when we are 
confronted with such problems, we need only replace the integer variables derived from the 
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range of the float of the fitness function with “integer function” int(Y*), where int(Y*) is 
defined as the integer part of Y*. No other changes to the algorithm are needed.  
 (6) The only genetic operator used in Guo’s algorithm was crossover. However, we can add 
self –adaptive mutations in it, we introduce a better of Gaussian and Cauchy mutation 
operator into the subspace search. For Gaussian density function fG with expectation 0; and 
variance σ 2 is 
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For Cauchy density function  fC with scale parameter t>0 is, 
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2.4 A Self-adaptive mutations with multi-parent crossover evolutionary algorithm 
Considering the above points, we introduce a new algorithm as follows: 
Denoting Z = (X, Y*), where Z∈D*, and 
D* = {(X, Y*)|Xlower≤X≤Xupper, Ylower≤Y*≤Yu,  X ∈Rp, Y*∈Rq},  we define integer vector 
Y=int(Y*), where Yu = Yupper+0.999…9I 
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The general NLP problem (1) can be expressed as follows: 

 Minimize f(X,int(Y*))    in D*      S.t.    (3) 

W(Z)=0 ,        Z∈D* 

The new algorithm can now be described as follows: 
SMMCEA : 
          Begin 

                 initialize P ＝ {Z1,Z2,…,ZN };   Zi∈ *D ; 
                 t := 0; 
                Zbest  ＝  )(arg

1 iZfMin
Ni≤≤

; 
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                Zworst ＝ )(arg
1 iZfMax

Ni≤≤
; 

                while not abs ( F (Zbest) – F (Zworst)) ≤ε do 
                      select randomly M  points Z1′, Z2′,…, ZM′from P to form the subspace V; 

                      select s points randomly *
1Z , *

2Z … *
sZ  from V; 

                      for i=1,…s  do 
                            for j=1,…p+q  do 

                           *
GiZ (j) := *

iZ (j)+ iσ (j)N j (0, 1) 

                           *
CiZ (j) := *

iZ (j)+ iσ (j)C j (1) 

                           iσ (j) := iσ (j)exp( ))1,0(')1,0( jNN ττ +  

                     endfor 

               if  better( *
GiZ , *

CiZ ) then   :   else   : *'**'*
CiiGii ZZZZ == ; 

               endfor 
               Z′= )(arg

1 iZfMin
Ni≤≤

; 

               if  better (Z′, Z worst)   then  Zworst  := Z′; 
               t := t + 1;  
               Zbest  ＝ )(arg

1 iZfMin
Ni≤≤

; 

               Zworst ＝ )(arg
1 iZfMax

Ni≤≤
; 

               if abs (f (Zbest)- f (Zworst)) ≤η .and.  M ≥3  then 
                       M := M -1; 
   endwhile 
   output t , Zbest , f(Zbest) ; 
end 

Where *
GiZ (j), *

CiZ (j) and iσ (j) denote the j-th component of the vectors *
GiZ , *

CiZ  and iσ , 
respectively. N(0,1) denotes a normally distributed one-dimensional random number with 
mean zero and standard deviation one. N j (0, 1) indicates that the Gaussian random 

number  is generated anew for each value of j. C j (1) denotes a Cauchy distributed one-

dimensional random number with t=1. 

The factors τ  and 'τ  have commonly set to 
1

)(2
−

⎟
⎠
⎞⎜

⎝
⎛ + qp  and ( ) 1

)(2
−

+ qp . 

The new algorithm has the two important features: 
1. This algorithm is an ergodicity search. During the random search of the subspace, we 

employ a “non-convex combination” approach, that is, the coefficients ai of Z’=∑
=

m

i
ii Za

1

' are 

random numbers in the interval [-0.5，1.5] This ensures a non-zero probability that any 
point in the solution space is searched. This ergodicity of the algorithm ensures that the 
optimum is not ignored. 
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2. The monotonic fitness decrease of the population (when the minimum is required). Each 
iteration (t→t+1) of the algorithm discards only the individual having the worst fitness in 
the population. This ensures a monotonically decreasing trend of the values of objective 
function of the population, which ensures that each individual of the population will reach 
the optimum. 
When we consider the population P(0), P(1), P(2),…, P(t),… as a Markov chain, we can prove 
the convergence of our new algorithm. See [12]. 

3. Introduction of DDEA 
Experiments indicate that if  SMMCEA is directly applied to the optimization of multi-
modal function, it is easy to encounter the following two conditions: 
1.  If keep searching with relatively large population size and crossover size, the 

individuals of the population will spread around near different modals, but it’s difficult 
for population to get any more improvement and to reach all the modals exactly. 

2.  If keep searching with relatively small population size and crossover size, the 
individuals of the population will converge rapidly and reach a few modals, but lose 
many other modals. 

To adopt it to the optimization of multi-modal functions, we combine the above two 
conditions together and forms two-phase evolutionary algorithm. we divide the 
optimization procedure into two phases: the first phase is called global optimization, which 
keeps searching with relatively large population size and crossover size in order to 
determine the neighborhood of all modals; the second phase is called local optimization, 
which begins search from each of the neighborhoods which is determined by the global 
optimization and then keep searching with relatively small subpopulation size and 
crossover size in order to converge rapidly and reach the modals respectively. 
In addition, we introduce the following strategies to make the algorithm suitable to the 
different tasks of the two phases: 
1.  During the phase of global optimization, in order to avoid the loss of some obtained 

modals we introduce the strategy of good individuals isolation: before each evolvement 
all the individuals in the current population are sorted by their fitness value and then 
some of the good individuals are limited not to be parents in the next multi-parent 
crossover. 

2.  During the phase of local optimization, in order to make all the subpopulations 
converge to their modals respectively more quickly, we introduce the strategy of best 
individual exemplar: the best individual of the current population will be compelled to 
be one of the parents in the next multi-parent crossover. 

3.  During the phase of local optimization, in order to begin search based on the result of 
the global optimization and to keep the search around the neighborhood of all the 
modals, to each modal we will construct a local feasible area η, which is to be modified 
during the evolvement. 

The detailed procedures of the optimization DDEA are as the following: 
Phase 1: Global optimization (using SMMCEA) 
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                Zworst ＝ )(arg
1 iZfMax

Ni≤≤
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2. The monotonic fitness decrease of the population (when the minimum is required). Each 
iteration (t→t+1) of the algorithm discards only the individual having the worst fitness in 
the population. This ensures a monotonically decreasing trend of the values of objective 
function of the population, which ensures that each individual of the population will reach 
the optimum. 
When we consider the population P(0), P(1), P(2),…, P(t),… as a Markov chain, we can prove 
the convergence of our new algorithm. See [12]. 

3. Introduction of DDEA 
Experiments indicate that if  SMMCEA is directly applied to the optimization of multi-
modal function, it is easy to encounter the following two conditions: 
1.  If keep searching with relatively large population size and crossover size, the 

individuals of the population will spread around near different modals, but it’s difficult 
for population to get any more improvement and to reach all the modals exactly. 

2.  If keep searching with relatively small population size and crossover size, the 
individuals of the population will converge rapidly and reach a few modals, but lose 
many other modals. 

To adopt it to the optimization of multi-modal functions, we combine the above two 
conditions together and forms two-phase evolutionary algorithm. we divide the 
optimization procedure into two phases: the first phase is called global optimization, which 
keeps searching with relatively large population size and crossover size in order to 
determine the neighborhood of all modals; the second phase is called local optimization, 
which begins search from each of the neighborhoods which is determined by the global 
optimization and then keep searching with relatively small subpopulation size and 
crossover size in order to converge rapidly and reach the modals respectively. 
In addition, we introduce the following strategies to make the algorithm suitable to the 
different tasks of the two phases: 
1.  During the phase of global optimization, in order to avoid the loss of some obtained 

modals we introduce the strategy of good individuals isolation: before each evolvement 
all the individuals in the current population are sorted by their fitness value and then 
some of the good individuals are limited not to be parents in the next multi-parent 
crossover. 

2.  During the phase of local optimization, in order to make all the subpopulations 
converge to their modals respectively more quickly, we introduce the strategy of best 
individual exemplar: the best individual of the current population will be compelled to 
be one of the parents in the next multi-parent crossover. 

3.  During the phase of local optimization, in order to begin search based on the result of 
the global optimization and to keep the search around the neighborhood of all the 
modals, to each modal we will construct a local feasible area η, which is to be modified 
during the evolvement. 

The detailed procedures of the optimization DDEA are as the following: 
Phase 1: Global optimization (using SMMCEA) 
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Phase 2: Local optimization 
 

 
The new algorithm employs a zoomed (global to local) dual strategy (two steps) approach. 
The first (global) step employs a global search, i.e. it divides the (chromosome) population 
into L (L ≤ k) niches, each of which includes at least one of the k optimal solutions (if the 
objective function is continuous in D*). This step uses a SMMCEA [4]. If the number of 
parents M in the multi-parent recombination operator is large enough, for example, M ≥ 8, 

Randomly initialize population P(0)= {P1,P2,…, PN1},Evaluate P(0),t1=0 
while t1< MAXT1 do 
randomly select m1 parents from P(t1) with the strategy of good individuals isolation 
produce a child by multi-parent crossover and self-adaptive Gaussian and Cauchy  

  mutation 
    if the child is better than the worst individual of P(t1) then 
     replace the worst individual of P(t1) with the child  
 end if 
 t1= t1+1 
end while 

for k= 1 to N1  do  

initialize local feasible area η, which is the rectangle area around Pk with the 
    radium r  

Randomly initialize subpopulation SUBP(0) within the area of η  

SUBP(0)={ SUBP 1, SUBP 2,…, SUBP N2 } 

t2=0 

while (t2< MAXT2  and  individuals of SUBP(t2) are different )do 

         randomly select m2 parents from SUBP(t2) with the strategy of the best  
individual exemplar  

  produce a child by multi-parent crossover 
if the child∈η and it is better than the worst individual of SUBP(t2)    
then replace the worst individual of SUBP(t2) with the child  

  end if 
   evaluate the best individual of SUBP(t2), which is named as  
                                           SUBPbest 

  modify local feasible area η, make it as the rectangle area around  
                    SUBPbest  

with the radium r 
      t2= t2+1 

end while 
output the best individual of SUBP(t2) 

end for 

Domain Decomposition Evolutionary Algorithm for Multi-Modal Function Optimization 

 

175 

then after sufficient large generations the population is decomposed into subpopulations 
(each of which approaches to an optimal solution), else it will converge to only one solution 
[11]. 
The second (local) step employs an evolution strategy [13] to search for the local optima in 
the chosen L subspaces determined by the subpopulations. Since the L optimal solutions are 
located in separate subspaces, the local strategy consists of two sub-steps: 
a). Rank the individuals of the population obtained from the first (global) step according to 
their fitness values. Then choose the best L individuals from the population, ensuring that 
they are not close to each other like hedgehogs. 
b). Generate L subspaces with the chosen individual at the center of each. Search these 
niches locally until each subspace converges to an optimal solution. If one does not know 
how many optimal solutions a given problem has, one can predict the number k, for 
example, by using the number of individuals whose fitness values are larger than the 
average fitness value. 
The algorithm has different limiting behaviors for different problems, namely: 
a). When the problem has only k = 1 solution, i.e. the only globally optimal solution. 
Following the nature of population descent, all of the individuals will descend together to 
the bottom of the valley.  
b). When the problem has k > 1 solutions, i.e. if k ≤ N, where N is the size of the population, k 
solutions may be generated in the population. The algorithm will then find multi-solutions 
in a single run. 

4. Numerical experiments and analysis 
Example 1 Humpback function (the function has six local optimal solutions, two of which 
are global optimal solutions) 
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Fig. 1. Shubert function 
All the examples mentioned above are representatives of different kinds of functions. 
Example 1, Example 2 and Example 4 are cited from [9]. Example 1 is the representative of 
glossy function with only a few modals, Example 2 is the representative of glossy function 
with many modals, Example 3 is the representative of non-glossy function, and example 4 is 
the representative of high-dimension function. Generally we can get satisfying optimal 
solutions when we set the parameters according to the following principle: 
The phase of global optimization: N1≈ 10*the number of actual optimal solutions 

2000 < MAXT1< 100*N1 

6 ≤ m1 ≤ 10 

The phase of local optimization:     10 < N2 < 20, r = 2.0 

2000 < MAXT2 < 5000 

3 ≤ m2 ≤ 5 
The following figures show population distribution in different phases for each example, 
which indicate the optimization procedures of different examples. Each figure has three 
parts: (a) is the distribution of population after randomly initialization; (b) is the distribution 
of population after global optimization; (c) is the distribution of the found modals after local 
optimization. The horizontal coordinate is the value of x1 and the vertical coordinate is the 
value of x2. 
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(a) after randomly initialization   (b) after global optimization      (c) after local optimization 
Fig. 2.   Population distribution for example 1  
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(a) after randomly initialization    (b) after global optimization    (c) after local optimization  
Fig. 3.   Population distribution for example 2 when j=5 
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(a) after randomly initialization      (b) after global optimization   (c) after local optimization  
Fig. 4.   Population distribution for example 3 
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(a) after randomly initialization    (b) after global optimization     (c) after local optimization  
Fig. 5.   Population distribution for example 4 when n=2 
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The following figures show population distribution in different phases for each example, 
which indicate the optimization procedures of different examples. Each figure has three 
parts: (a) is the distribution of population after randomly initialization; (b) is the distribution 
of population after global optimization; (c) is the distribution of the found modals after local 
optimization. The horizontal coordinate is the value of x1 and the vertical coordinate is the 
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(a) after randomly initialization   (b) after global optimization      (c) after local optimization 
Fig. 2.   Population distribution for example 1  
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(a) after randomly initialization    (b) after global optimization    (c) after local optimization  
Fig. 3.   Population distribution for example 2 when j=5 
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(a) after randomly initialization      (b) after global optimization   (c) after local optimization  
Fig. 4.   Population distribution for example 3 
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(a) after randomly initialization    (b) after global optimization     (c) after local optimization  
Fig. 5.   Population distribution for example 4 when n=2 

Additionally, the following tables list parameters and results for different experiments: 
 

Parameters results  
Example No. N1 MAXT1 Actual modals Found modals fitness of 
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 all modals 
Example 1 20 2000 2[9] 2 -1.031628 
Example 2（j=5） 600 60000 100[9] 100 1.000000 
Example 3 200 20000 16 16 0.000000 
Example 4（n=2） 100 10000 18[9] 18 -186.730909 

Table 1.  Experiment parameters and results for each example (other parameters are: 
m1=7,m2=5,N2=10,MAXT2=2000) 

The value of j 2 3 4 5 6 7 8 9 10 
Actual modals 16 36 64 100 121 169 225 289 361 
Found modals 16 36 64 100 121 169 225 289 361 

Table 2.  Experiment results for example 2 with different value of j (The fitness of all modals 
is 1.000000) 

Parameters Results  
Example No. N1 MAXT1 

Found 
modals 

fitness of 
all modals 

Example 4（n=3） 800 500000~1000000 81 -2709.09350 

Table 3. Parameters and experiment results for example 4 when n=3 (other parameters are: 
m1=7,m2=5,N2=10,MAXT2=10000). 

From population distribution of the optimization procedures showed in Fig2, Fig3, Fig4 and 
Fig5, as well as the experiment results showed in Tables 1 and Table 2, we can see that 
DDEA is very efficient for the optimization of low- dimension multi-modal function, usually 
we can reach all the modals exactly. But Table 3 indicates that when the dimension of the 
function is increased to higher than two, the efficiency is decreased because of the search 
space is expanded sharply. 

5. Conclusion  
We here proposed some self-adaptive methods to choose the results of Gaussian and 
Cauchy mutation, and the dimension of subspace. We used the better of Gaussian and 
Cauchy mutation to do local search in subspace, and used multi-parents crossover to 
exchange their information to do global search, and used the worst individual eliminated 
selection strategy to keep population more diversity. 
Judging by the results obtained from the above numerical experiments, we conclude that 
our new algorithm is both universal and robust. It can be used to solve function 
optimization problems with complex constraints, such as NLP problems with inequality and 
(or) equality constraints, or without constraints. It can solve 0-1 NLP problems, integer NLP 
problems and mixed integer NLP problems. When confronted with different types of 
problems, we don’t need to change our algorithm. All that is needed is to input the fitness 
function, the constraint expressions, and the upper and lower limits of the variables of the 
problem. Our algorithm usually finds the global optimal value. 
In the paper we analyze the character of the multi-parent genetic algorithm, when applied to 
solve the optimization of multi-modal function, MPGA works in different forms during 
different phases and then forms two-phase genetic algorithm. The experiments indicate that 
DDEA is effective to solve the optimization of multi-modal function whose dimension is no 
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higher than two, but to high-dimension function, the efficiency is not eminent and it needs 
to be improved much more. 
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1. Introduction 
Evolutionary Algorithms (EAs) (Bäck, 1996) mimic the process of natural selection by 
recombining the most promising solutions to a problem from a population of individuals, 
each one representing a possible solution. There are several methods to select the 
individuals, but all of them follow the same general rule: good (or partially good) solutions 
must be chosen more often for recombination events than poorer solutions. In traditional 
Genetic Algorithms (GAs), for instance, the chromosomes are recombined via a crossover 
operator over a certain number of generations until a stop criterion is reached. The parents 
are selected according to their fitness values, that is, better solutions have larger probability 
to be chosen to generate offspring. By considering merely the quality of solutions 
represented in the chromosomes when selecting individuals for mating purposes, the 
traditional GAs emulate what, in nature, is called random mating (Roughgarden, 1979; 
Russel, 1998), that is, mating chance is independent of genotypic or phenotypic distance 
between individuals.  
However, random mating is not the sole mechanism of sexual reproduction observed in 
nature. Non-random mating, which encloses different kinds of strategies based on parenthood 
or likeness of the agents involved in the reproduction game, is frequently found in natural 
species, and it is believed to be predominant among vertebrates. Humans, for instance, mate 
preferentially outside their family tree: this non-random mating scheme is called outbreeding 
and has its opposite in inbreeding, a selection strategy where individuals mate preferentially 
with their relatives (Roughgarden, 1979; Russel, 1998). It is often stated that inbreeding 
decreases the genetic diversity in a population while outbreeding increases that same 
diversity (Russel, 1998). In addition, inbreeding will increase the normal rate of a harmful 
allele present in the family. If inbreeding is extensive and intensive, homozygosity will 
increase in frequency and the family experiences a growth in the genetic load (measure of all 
of the harmful recessive alleles in a population or family line) of the harmful allele.  
Assortative mating is another non-random mating mechanism, in which individuals choose 
their mates according to phenotypic similarities (Roughgarden, 1979; Russel, 1998). When 
similar individuals mate more often than expected by chance, we are in presence of positive 
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mate more often, the scheme is called negative assortative mating (or dissortative mating). In 
humans, assortative mating is well exemplified by the correlation between heights or 
intelligence in partners. On the other hand, humans do not mate assortatively with respect 
to blood groups. This kind of behavior, which selects assortatively for some traits and not 
others, makes it difficult to unmask the effects of assortative mating in the population. In 
fact, human assortative mating is not completely positive except for some small and isolated 
communities (the Old Order Amish, for instance). 
Positive assortative mating results in an average increase in homozygosity and in an 
increase in population variance. However, this does not mean that genetic diversity is 
increasing. In fact, this type of mating may result in highly distinct cluster of similar 
genotypes, thus playing a crucial role when speciation without geographic barriers occurs 
(sympatric speciation) (Todd & Miller, 1991). Dissortative mating, on the other hand, has the 
primary consequence of a progressive increase in the frequency of heterozygous genotypes; 
the increase in the diversity of the population is a direct consequence of these changes in the 
genotype frequencies. Evidences show that mating is very unlikely to be random in nature 
and may have the potential to act as an evolutionary agent, although its effects are very 
complex and hard to model and analyze (Jaffe, 1999). Even so, artificial life models 
presented by Jaffe (1999) and Ochoa et al. (1999) shed some light into the subject, and gave 
empirical support to the hypothesis that mating is not likely to be random in nature and that 
assortative and dissortative mating may produce higher survival rates among individuals 
evolving in, static and dynamic environment, respectively. While in dynamic landscapes 
genetic variability is fundamental to a quick and effective response to changes, in static 
environments diversity is not so important. In fact, natural organisms move towards an 
optimal degree of genetic variability that depends on the environment, via some mating 
scheme. Environment itself appears to guide the evolution of mating strategies. 
In Evolutionary Computation (Bäck, 1996), selective pressure and genetic diversity are two 
major topics, probably those of primary importance (Whitley, 1988). Pressure and diversity 
are closely related to the delicate equilibrium between exploration and exploitation needed 
in order to have “safe” search in EAs. Therefore, non-random mating naturally came out in 
EAs research field in order to deal with the problem of genetic diversity and premature 
convergence: some efficient algorithms appeared, especially when applied to problems 
where the genetic diversity is needed in order to maintain exploration high and avoid local 
optima traps. In addition, diverse search stages usually call for different balance between 
exploration and exploitation mechanisms. To an initial strong explorative stage, the 
algorithm gradually must enter a more exploitive phase, where the neighborhood of good 
solutions found so far is inspected in order to reach the global optimum. When the 
problem’s environment change over time, that is, when dealing with dynamic optimization, 
genetic diversity becomes even more important, since full convergence must be avoided: the 
algorithm must maintain sufficient diversity to readapt itself to a change in the fitness 
function, even if it has converged to the current optimum. In dynamic environments, it is 
often more important to track the best solution than to converge, that is, it may be sufficient 
to keep the population near the optimum, even if returning only near-optimal solution, thus 
avoiding the risk of a full convergence in a specific period of the search, which would 
reduce the possibilities of readaptation after a change.  
Very often recombination is associated with exploitation while mutation is said to play a 
determinant role in exploration by preventing alleles becoming extinct. While this appears 
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to be true, it may have misled some researches towards assortative mating instead of 
dissortative, because of the higher exploitation performed by the first strategy. If similar 
individuals tend to mate, it is more likely that their neighboring space is closely inspected. 
On the other hand, several studies on dissortative mating showed empirical evidence that 
this scheme is more adapted to a wide range of problems, both static and dynamic 
(Craighurst & Martin, 1995; Eschelman, 1991; Eschelman & Schaffer, 1991; Fernandes et al., 
2000, 2001; Fernandes & Rosa 2001; Fernandes, 2002; García-Martínez et al., 2007; Matsui, 
1999; Ochoa et al., 2005) − see next section for a state-of-the-art review.  
This chapter proposes a review and an empirical study on EAs with dissortative mating 
strategies and their application to static and dynamic problems. Dissortative mating will be 
discussed within a biological framework and some Artificial Life models will be analyzed; a 
detailed description of several methods found in EAs literature will be also given. The 
empirical study will be centered on the Variable Dissortative Mating GA (VDMGA), which 
was recently presented in (Fernandes & Rosa, 2008) by the authors of this chapter. VDMGA 
holds a mechanism that varies GA’s mating restrictions during the run, by means of a 
simple rule based on the number of chromosomes created in each generation and indirectly 
influenced by the genetic diversity of the population. The empirical study presented in 
(Fernandes & Rosa, 2008) shows that VDMGA performs well when applied to a wide range 
of problems: it consistently outperforms traditional GAs and assortative mating GAs, and it 
is faster and more robust than some previously proposed dissortative mating GAs. Results 
suggest that VDMGA’s ability to escape local optima and converge more often to the global 
solution may come from maintaining the genetic diversity at a higher level when compared 
with traditional GAs. VDMGA’s genetic diversity naturally leads the research towards the 
application of the algorithm on Dynamic Optimization Problems (DOPs). Due to their 
specific characteristics, DOPs require additional tools, many of them different from those 
widely studied by EAs researchers on static problems. Memory schemes and niching 
(Branke & Schmeck, 2002) are some of the techniques used to tackle DOPs. Strategies for 
maintaining genetic diversity and/or introducing novelty in the EAs populations are also 
very efficient strategies when solving dynamic problems (Branke & Schmeck, 2002). In this 
chapter, the original VDMGA is subject to minor modifications, and then applied to DOPs 
benchmarks and compared to other GAs. The results confirm the predictions and show that 
VDMGA may improve other GAs’ performance on changing environments. As already been 
observed when tackling static fitness functions (Fernandes & Rosa, 2008), dissortative 
mating, via a simple and easily tunable algorithm with diversity preservation, reveals 
interesting skills when evolving in dynamic environments. 

2. Non-random mating evolutionary algorithms 
This section describes some EAs with outbreeding, assortative and dissortative mating 
strategies found in the literature. A special emphasis is given to the ones that, to the extent 
of the authors of this chapter knowledge, were seminal in their line of work, and to those 
that preceded (or are, at some level, related to) VDMGA. 
In the GA with outbreeding described in (Craighurst, 1995), individuals with a certain 
degree of parenthood are not allowed to recombine and generate offspring. An incest 
prevention degree is defined in the beginning of the run and remains unchanged until the 
convergence criterion is fulfilled. This degree defines how far back in the family tree of an 
individual the GA must inspect in order to prevent the recombination events. This policy 
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does not completely restrict mating between similar individuals, but it sure decreases its 
frequency since related individuals tend to share a large amount of common alleles. Tests 
(Craighurst, 1995) compare the outbreeding GA with a standard GA when applied to the 
Traveling Salesman Problem. The non-random mating algorithm outperformed the 
standard GA but the differences in the algorithms’ performances were noticed mainly with 
low mutation rates. This is not surprising since incest prohibition is supposed to maintain 
the genetic diversity of the population at a higher level for longer periods, thus reducing the 
need for mutation to introduce genetic novelty into converging populations. Fernandes et al. 
(2000) combined the outbreeding strategy proposed in (Craighurst, 1995) with a varying 
population size GA (Arabas, 1994) to create the non-incest Genetic Algorithm with Varying 
Population Size (niGAVaPS). The results showed that the two mechanisms worked together 
well in order to find the optimum of Four Peaks and Royal Road R4 functions. Tests made 
with the algorithm ranging through different degrees of incest prohibition showed 
improvements in the capability of escaping local optima when the individuals are not 
allowed to mate with their parents and siblings.  
There are several studies indicating that dissortative mating may improve EAs performance 
by maintaining the genetic diversity of the population at a higher level during the search 
process. For instance, CHC (Eschelman, 1991; Eschelman & Schaffer, 1991) which stands for 
Cross generational elitist selection, Heterogeneous Recombination and Cataclysmic Mutation, is a 
variation of the standard GA that holds a simple mechanism of dissortative mating which 
has given proofs of being rather effective in a wide range of problems. Although the title in 
(Eschelman & Schaffer, 1991) may suggest that CHC is an outbreeding GA, a closer look 
reveal that the algorithm uses a dissortative mating strategy in order to prevent premature 
convergence. CHC uses no mutation in the classical sense of the concept, but instead it goes 
through a process of macro-mutation (or hyper-mutation) when the best fitness of the 
population does not change after a certain number of generations. The genetic diversity is 
assured by a highly disruptive crossover operator, the Half Uniform Crossover (HUX) 
(Eschelman & Schaffer, 1991), and a reproduction restriction that assures that selected pairs 
of chromosomes will not generate offspring unless their Hamming Distance is above a 
certain threshold. CHC search process goes as follows. In each generation, p/2 pairs of 
chromosomes are randomly selected from the population with size p. All pairs are 
submitted to the reproduction process. First, their Hamming distance is computed. If the 
value is found to be above the threshold then the chromosomes generate two children with 
the HUX operator. When the process is concluded, the newly generated population of p’ 
offspring replaces the worst chromosomes in the main population, therefore maintaining the 
size of the population. The threshold is usually set in the beginning of the runs to ¼ of the 
chromosome length, and decremented when no offspring is generated. When the algorithm 
is stuck in local optima, a cataclysmic mutation is applied by replacing the entire 
population, except the best chromosome, with mutated copies of that individual.  
The Assortative Mating GA (AMGA) was introduced in (Fernandes et al., 2001). The only 
difference between AMGA and a standard GA is the way parents are selected for 
recombination. In each recombination event one parent (first parent) is select by any 
traditional method. Then, a set of n individuals is selected by the same method. After 
computing the similarity between the first parent and all the n individuals in the set, the 
second parent is chosen according to the type of assortative mating in progress. If the 
algorithm is the positive Assortative Mating GA (pAMGA) the individual more similar to the 
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first parent is chosen. With the negative Assortative Mating GA (nAMGA) the individual less 
similar is chosen as the second parent (please remember that negative assortative is the 
same as dissortative). The intensity of the non-random mating scheme may be controlled by 
the size of the set of candidates to the second parent position. Increasing n increases the 
frequency of mating between dissimilar (if negative assortative) or similar (if positive) 
individuals. Experiments with the algorithm solving a vector quantization problem showed 
pAMGA and standard GA performed similarly, while nAMGA outperformed both 
(Fernandes et al., 2001). Increasing the size of the candidates set resulted in higher success 
rates (number of runs in which the global optima was found) of nAMGA. In (Fernandes & 
Rosa, 2001), the algorithm was combined with a varying population size mechanism, tested 
with a Royal Road (R4) function (Mitchell, 1994) and compared with a standard GA and the 
niGAVaPS (Fernandes et al., 2000). The negative assortative mating (or dissortative mating) 
strategy has proven to be more able in escaping Royal Road’s local optima traps. pAMGA 
was also tested under the same conditions but its performance was clearly inferior to 
standard GA. 
A similar idea was tested by Ochoa et al. (2005) on dynamic environments. The authors 
tested haploid and diploid GAs with assortative mating (where parents are selected as in 
AMGA) on a knapsack problem with moving extrema, and nAMGA was more able to track 
dynamic optima. Standard GA often failed to track the optima but the worst performance 
was attained by pAMGA. In general, the haploid algorithms produced better results than 
the diploid ones. The authors also discuss the optimal mutation rate for different strategies. 
By means of exhaustive tests, they concluded that the optimal mutation rate increases when 
the mating strategy goes from negative (dissortative) to positive assortative. These results 
were predictable: dissortative mating is supposed to maintain the population diversity at a 
higher level, reducing the amount of mutation needed in order to prevent the premature 
convergence of the population. In this line of work, the same authors proposed a study on 
the error threshold of replication in GAs with different mating strategies (Ochoa, 2006; 
Ochoa & Jaffe, 2006). The error threshold is a critical mutation rate beyond which structures 
obtained by an evolutionary process are destroyed more frequently than selection can 
reproduce them. By evolving a GA on four different fitness landscapes, the authors first 
conclude that recombination shifts the error threshold toward lower values. Then, the tests 
show that assortative mating overcomes this effect by increasing the error threshold, while 
the dissortative strategy pushes the error into lower values. The authors argue that this 
study may have effects on both natural and artificial systems since it supports the 
hypothesis that assortative mating overcomes some of the disadvantages inherent to sex. 
They also intend to shed some light into the relation between mutation rates and mating 
strategies in EAs. This last issue is directly related with the idea that assortative mating 
increases the optimal mutation rate of an EA, while dissortative strategies decreases it. This 
behavior has already been observed in (Fernandes, 2002) and (Ochoa et al., 2005). 
Fernandes & Rosa (2006) proposed the Self-Regulated Evolutionary Algorithm (SRPEA). 
SRPEA is an algorithm with a dynamic on-the-fly variation of the population size. Selected 
individuals are recombined to generate offspring only if their Hamming distance is above a 
threshold value. That value changes over time, depending on the number of newborn 
individuals and deaths in each generation. Individuals die (that is, are removed from the 
population) only when their lifetime (which is set to specific value in the beginning of the 
search depending on the individual’s fitness) reaches zero, which means that parents and 
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strategies in EAs. This last issue is directly related with the idea that assortative mating 
increases the optimal mutation rate of an EA, while dissortative strategies decreases it. This 
behavior has already been observed in (Fernandes, 2002) and (Ochoa et al., 2005). 
Fernandes & Rosa (2006) proposed the Self-Regulated Evolutionary Algorithm (SRPEA). 
SRPEA is an algorithm with a dynamic on-the-fly variation of the population size. Selected 
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children may belong to the same population. An empirical study demonstrated that the 
algorithm self-regulates its population size: there are neither uncontrolled demographic 
explosions nor quasi-extinction long stages, as it is observed in the dynamics of other 
varying population EAs (Arabas, 1994). VDMGA, the main algorithm in this chapter’s 
study, is directly related to SRPEA. 
In (García-Martinez et al., 2006), an assortative mating strategy is used to implement a local 
search genetic algorithm. The approach is consistent with the fact that crossover is the main 
mechanism of a GA generating local search, and assortative mating, by its own 
characteristics, tends to increase the strength of exploitation, thus leading to a more 
intensive local search. On the other hand, Gárcia-Martinez et al. (2007) introduced a real-
coded genetic algorithm with dissortative mating. The authors show that the inclusion of 
that mating strategy increases the performance of the GA on a set of proposed problems. In 
addition, empirical analysis indicates that the merits of dissortative mating are clearer with 
lower values of α parameter of the PBX-α crossover (Lozano et al., 2004). This observation is 
closely related with the optimal mutation rate issue described above, since α determines the 
spread of the probability distribution used to create offspring with PBX-α. This way, 
parameter α acts as genetic diversity controller, with higher values leading to GAs with 
higher exploratory capabilities, as it happens with mutation rate values. Therefore, if 
dissortative mating is expected to decrease optimal mutation rates, optimal values of α may 
also be dependent on the mating strategy chosen for the GA, being lower when dissimilar 
individuals have more chance to generate offspring. 
A large number of other GAs with non-random mating may be found in Evolutionary 
Computation literature. A few are briefly described in the following paragraph. 
Mauldin (1984) proposed a method to avoid similar individuals in the population based on 
a Hamming distance restriction. CHC is in some way a descendent of Mauldin’s method, 
and, as a result, so is VDMGA. Hillis (1992) described a co-evolutionary computation 
paradigm with assortative mating applied to a sorting network problem. The author does 
not provide results comparing the proposed strategy and random mating but it states that 
the choice on assortative mating was inspired by some problem characteristics rather than 
genetic diversity concerns. Ronald (1995) introduced the concept of seduction in GAs, which 
consists in selecting the second parent according to the preferences of the first parent. After 
the first chromosome involved in a recombination event is selected, all other individuals in 
the population are provided with a secondary fitness according to certain rules that reflects 
the preferences of the first parent. Then, the second parent is chosen according to the 
secondary fitness. Petrowski proposes (1997) speciation in order to restrict mating. De et al. 
(1998) proposed genotypic and phenotypic assortative mating. The new approaches are 
compared with standard GA and CHC on some well-known test functions and on the 
problem of selecting the optimal set of weights in a multilayer perceptron. Phenotypic 
assortative mating revealed to be the best strategy, outperforming standard GA and CHC on 
the range of proposed problems. Matsui (1999) incorporated dissortative mating within the 
tournament selection strategy. After the first parent is selected, the second parent is chosen 
according to a function that depends on the individual fitness and the Hamming distance to 
the first parent (all individuals in the population are inspected in order to determine the 
distance to the first parent). In addition, the author incorporates a family-based selection 
mechanism that, by applying selection and replacement at family level (two parents and two 
offspring), maintains the genetic diversity of the population. Ting et al. (2003) introduced 
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the Tabu Genetic Algorithm (TGA). TGA combines the characteristics of GAs and Tabu 
Search (Glover, 1986), by incorporating a taboo list in a traditional GA that prevents 
inbreeding and maintains genetic diversity. An aspiration criterion is also used by TGA in 
order to allow some crossovers even if they violate the taboo. Since incest prevention 
efficiency is sensitive to mutation rate, the authors include a self-adaptive mutation in TGA. 
The process is somehow similar to the cataclysmic mutation that occurs in CHC, since 
mutation in TGA occurs in presence of a deadlock situation, that is, when the genetic 
diversity of the population as decreased down to a level were allowed recombination is 
almost or even impossible to occur. Finally, Wagner & Affenzeller (2005) introduced the 
SexualGA, which simulates sexual selection within the frame of a GA and uses two different 
selection schemes in the same population. 

3. Dynamic optimization problems 
A problem is said to be a Dynamic Optimization Problem (DOP) when there is a change in 
the fitness function, problem instance or restrictions, thus making the optimum change as 
well. When changes occur, solutions already found may be no longer valuable and the 
process must engage in a new search effort. Traditional EAs, for instance, may encounter 
some difficulties while solving dynamic problems: if the first convergence stage reduces 
population diversity, then the algorithm may not be able to react to sudden changes. The 
crucial and delicate equilibrium needed between exploration and exploitation in static 
environments becomes even more important and complex when dealing with DOPs. In 
addition, if the change is detectable (which not always possible), it is hard to decide if it is 
better to continue the search with same population, after a shift in the environment, or if a 
restart is more efficient. The extent of the change is of crucial importance in that decision. 
This problem was stated by Branke & Schmek (2002), which suggested a classification of 
DOPs and a classification of the most widespread EAs that deal with changing 
environments. One standard approach to deal with DOPs is to regard each change as the 
arrival of a new optimization problem that has to be solved from scratch. However, this 
simple approach is often impractical since solving a problem from scratch without reusing 
information from the past might be time consuming, a change might not be identifiable 
directly, or the solution to the new problem should not differ too much from the solution of 
the old problem. Thus, as in the on-line tracking process suggested in (Angeline, 1997), it 
has been recommended in (Branke, 1999; Branke, 2002; Branke & Schmeck 2002) to have an 
optimization algorithm that is capable of continuously adapting the solution to a changing 
environment, reusing the information gained in the past. Since natural adaptation is a 
continuous and continuing process and EAs have much in common with natural evolution, 
they seem to be a suitable candidate for this task. However, evolutionary approaches 
typically converge to an optimum and thereby lose the diversity necessary for efficiently 
exploring the search space and consequently also the ability to adapt to a change in the 
environment (Branke, 2002; Branke & Schmeck 2002). The problem here can be stated as 
seeking an appropriate balance between two contradictory characters of the search 
procedure, those between the exploring (ideal for gathering new solutions) and exploiting 
(making the best use of past solutions) nature of the algorithm. Over the past few years, a 
number of authors have addressed the problem of convergence and subsequent loss of 
adaptability in many different ways. According to (Branke e Schmeck 2002), most of these 
approaches could be grouped into one of the following three categories established by them: 
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1. React on Changes: The EA is run in standard fashion, but as soon as a change in the 
environment is detected, explicit actions are taken to increase diversity and thus 
facilitating the shift to the new optimum. 

2. Maintaining Diversity throughout the run: Convergence is avoided all the time and it is 
hoped that a spread-out population can adapt to changes more easily. 

3. Memory-based Approaches: The EA is supplied with a memory to recall useful 
information from past generations, which seems especially useful when the optimum 
repeatedly returns to previous locations. 

Techniques such as Hypermutation (Cobb, 1990) pursue the first category, keeping the whole 
population after a change but increasing population diversity by drastically increasing the 
mutation rate for some number of generations. Please note that reacting to changes assumes 
that changes are detectable, a condition, as already stated, that is not always fulfilled 
(Branke, 2002). 
The Random Immigrants Genetic Algorithm (RIGA) (Grefenstette, 1992) is an example of a 
strategy that falls in the second category. In RIGA the population is partly replaced by rr 
randomly generated individuals in every generation. This guarantees the introduction of 
new genetic material in every time step and avoids the convergence of the whole population 
to a narrow region of the search space. The performance is affected by the parameter rr. 
RIGA is used in the following sections to evaluate VDMGA’s performance on DOPs; 
therefore, its pseudo-code is presented here: 
 

Algorithm 1: Random Immigrants Genetic Algorithm 
 

initialize Population(P) 
evaluate Population(P) 
while (not termination condition) do 
       P ← Replace Fraction of Population (P, rr) 
       create P.new by selection, crossover and mutation of P 
       P ← P.new 
end while 
 

The following algorithms may also be classified in category 2. As described in the previous 
section, the negative Assortative Mating Genetic Algorithm (nAMGA) (Fernandes & Rosa 2001) 
is used in (Ochoa et al., 2005) to solve a knapsack DOP. Negative assortative mating (or 
dissortative mating), by preventing the recombination of similar individuals, slows down 
the expected diversity loss of traditional GAs thus having the proper characteristics to be 
classified whitin category 2. The co-evolutionary agent based model of genotype editing (ABMGE) 
(Huang et al., 2007) use several genetic editing characteristics that are gleaned from the 
RNA editing system as observed in several organisms. Their results outperformed 
traditional EAs via obtaining greater phenotypic plasticity. In (Tinós & Yang, 2007), a RIGA 
associated with the Bak-Sneppen model is presented and tested on DOPs: the Self-Organized 
Random Immigrants Genetic Algorithm (SORIGA). Bak-Sneppen (Bak & Sneppen, 1993) is 
known as a Self-Organized Critically model, a phenomenon that was detected in 1987 by 
Bak, Tang and Wiesenfield (Bak et al., 1987), and which characterized by displaying scale 
invariant behavior. When associated with EAs it may periodically insert large amounts of 
new material in the population or completely reorganize a solution to a problem. For those 
reasons, it soon was adopted by EA researchers in order to provide new means to control 
parameter values or maintain population diversity, thus avoiding premature convergence to 
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local optima. DOPs research field was a logical following step. Besides SORIGA, another 
approach has been recently proposed by Fernandes et al. (2008a), in which the Sandpile 
model (Bak et al., 1987) is attached to a GA is order to solve DOPs.   
Another kind of approach is to supply the algorithm with some sort of memory, storing 
good partial solutions in order to reuse them later (category 3). This can be advantageous in 
cases where the environment is changing periodically, and repeated situations occur. 
However, they also could be counterproductive if the environment changes dramatically 
with open-ended novelty. Memory may be provided in two general ways: implicitly by 
using redundant representations, or explicitly by introducing an extra memory and 
formulating strategies to deposit and retrieve solutions later. Generally, the most prominent 
approach to implicit memory and redundant representation is multiploidy (Goldberg & 
Smith, 1987). On the other hand, while redundant representations allow the EA to implicitly 
store some useful information during the run, it is not clear that the algorithm actually uses 
this memory in an efficient way. As an alternative, some approaches use an explicit memory 
in which specific information is stored and reintroduced into the population at later 
generations, as in (Louis & Xu, 1996). Branke (1999) compared a number of replacement 
strategies for inserting new individuals into a memory stressing the importance of diversity 
for memory-based approaches.  
Estimation of Distribution Algorithms (EDAs) (Pelikan, Goldberg & Lobo, 1999; Lorrañga & 
Lozano, 2002) is a class of EAs where a probability model replaces an explicit representation 
of the population. In the last decade, research on EDAs has experienced a continuous and 
consistent growth. However, only recently the DOP issue has started to raise a strong 
interest on EDAs’ researchers. For instance, the Population Based Incremental Learning 
(PBIL) (Baluja, 1994) - one of the first EDAs - is used in (Yang & Xao, 2005) to solve DOPs 
created by a problem generator proposed by the same authors. The authors compare several 
versions of PBIL with GAs and RIGAs. In (Yang, 2005), the author proposes the Univariate 
Marginal Distribution Algorithm (UMDA) with enhanced memory and the results of the 
experiments show that the memory is efficient in dynamic environments. In addition, a 
combination of memory and random immigrants for the UMDA is studied. Lima et al. 
(2008) investigates the incorporation of restricted tournament replacement (RTR) in the 
extended compact genetic algorithm (ECGA) (Harik et al., 1999) for solving problems with 
non-stationary optima. (RTR is a simple yet efficient niching method used to maintain 
diversity in a population of individuals.) Finally, Fernandes et al. (2008) proposed a new 
update strategy for UMDA based on Swarm Intelligence.   
Some recent proposals have been made using a Swarm Intelligence (Bonabeau, Dorigo & 
Threraulaz, 1999) approach to attempt to solve dynamic problems. Swarm Intelligence is the 
property of a system whereby the collective behaviors of simple entities interacting locally 
with their environment cause global patterns to emerge. In (Guntsch & Middendorf, 2002) 
the authors applied population based ACO algorithms for tracking extrema in dynamic 
environments. Others, like (Ramos et al., 2005) developed distributed pheromone layering 
over the dynamic environment itself, in order to track different peaks. Finally, Fernandes et 
al. (2007) developed the Binary Ant Algorithm (BAA), based on the ACO framework, to take 
advantage of ACO’s ability to solve combinatorial DOPs and generalize it to binary DOPs. 
However, BAA may also be regarded as a kind of EDA, since, like this class of algorithms, 
BAA creates the possible solutions to a problem via a transition probability model. Actually, 
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there have been recent attempts to unify ACO and EDAs into the same framework (Zlochin, 
et al., 2004). 

4. The variable dissortative mating genetic algorithm 
To model dissortative mating in EAs, some kind of relaxation policy may be needed in order 
to avoid a freezing population, since evolution eventually leads the search process into a 
stage of low diversity, where all the individuals are almost identical. In addition, the 
population usually searches for an optimal degree of genetic variability according to the 
landscape were it evolves. It is possible that the population movement towards the optimal 
regions of the landscape also requires different levels of genetic diversity along the way, in 
order to maintain a robust search. Therefore, the degree of assortative or dissortative mating 
should vary along the run in order to deal with the inevitable decrease in diversity and to 
follow the search path of the population. Some methods try to maintain the diversity in a 
permanent high level, but that may be incompatible with the desirable convergence of the 
algorithm. For instance, a constant macro-mutation certainly maintains the diversity of the 
population, but the expected success of an EA based on such premises is not high. Diversity 
by itself is not a guarantee of a successful search through the landscape.  
The Variable Dissortative Mating Genetic Algorithm (VDMGA) (Fernandes & Rosa, 2008) is a 
non-random mating GA, which incorporates an adaptive Hamming distance mating 
restriction that tends to relax as the search process advances, but may be occasionally 
reinforced. The algorithm works in the following way. When the first population is 
randomly created, a threshold value is set to an initial level equal to L-1, where L is the 
chromosome length. Then, offspring may be created by selecting pairs of parents (by any 
method), followed by recombination and mutation. However, recombination only occurs if 
the genetic distance (Hamming distance in implementation made for this chapter) between 
the two parents is found to be above the threshold. If not, the recombination event is 
considered as “failed” and another pair of chromosomes is selected until N/2 pairs have 
tried to recombine (where N is the size of the population). When this process ends, the 
amount of successful and failed recombination events is compared, and the threshold is 
incremented if successful mating exceeds failed mating. Otherwise, threshold is 
decremented (the process repeats if no mating succeeded). This way, the threshold is 
indirectly controlled by the diversity of the population. After the reproduction cycle is 
completed, a new population is created by selecting the N best members from the parents’ 
population and newly generated offspring (if a parent and a child have the same fitness then 
the child is chosen). Parents and children compete together for survival, conducing to a 
highly selective algorithm (VDMGA belongs to the class of steady-state GAs). The process 
repeats until a stop criterion is reached.  
VDMGA’s threshold value evolves in conformity with the genetic diversity of the 
population. When diversity decreases, threshold tends to be decremented since the 
frequency of unsuccessful mating will necessarily increase. However, the mutation operator 
introduces some variability in the population which may result in occasional increments of 
the threshold that moves it away from zero (if threshold reaches zero, all individuals are 
allowed to crossover, like in random mating GAs). Tests performed on several functions 
confirmed this predicted behavior (Fernandes & Rosa, 2008). 
Two changes must be made on the original VDMGA presented in (Fernandes & Rosa, 2008) 
in order to solve DOPs with an enhanced performance. 
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Algorithm 2: Variable Dissortative Mating Genetic Algorithm 
 

initialize Population(P) with size(P) = N  
evaluate Population(P) 
set initial threshold(iT)                         /* iT ← L-1 for static problems; iT ← L/4 for DOPs*/   
threshold(T) ← iT            
      while (not termination condition)  
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               P ← P+P.new 
           remove worst individuals from population(P) until size(P) reaches initial size N 
          end if 
          if (DOP) 
          replace size(P.new) worst individuals from population(P) by P.new 
          end if 
      end while  
  

Procedure: create new individuals 
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    while (successfulMatings < 1) do 
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                    successfulMatings ← successfulMatings+1 
              end if 
              if (H(c1, c2) < T) 
                    failedMatings ← failedMatings +1 
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         end for 
         if (failedMatings > successfulMatings)  T ← T-1 
         else                                                    T ← T+1 
     end while 
 

(1) In each time step, VDMGA builds an auxiliary pool of chromosomes, with parents and 
offspring, and then creates the new population by selecting the best chromosomes from the 
pool. This means that all newly created (and evaluated) individuals may be excluded from 
the population (considering the “worst” case scenario). Since the study on DOPs performed 
for this chapter assumes that changes not are detectable − and this is the most general 
assumption, since changes are not always detectable (Branke, 2002) −, all individuals in the 
population must be (re)evaluated in each generation, even if they have been created in a 
previous generation. Individuals with fitness values corresponding to previous shapes of 
the search space will mislead the search and modify performance metrics in a wrong 
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there have been recent attempts to unify ACO and EDAs into the same framework (Zlochin, 
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manner. (If changes were detectable, reevaluations would only be necessary when detecting 
a change.) Therefore, when dealing with DOPs, it is better to introduce a larger number of 
new individuals in VDMGA’s population, not only to diminish reevaluations, but also to 
bring a larger amount of genetic material into the population. For that purpose, original 
VDMGA replacement strategy is substituted by the following process: all new individuals 
N’ are introduced in the new population, replacing the worst N’ old chromosomes − see 
pseudo-code for details. 
(2) The original initial threshold value was set to L-1, such that a strong exploratory 
behavior is guaranteed to take place in the beginning of the search. Starting with L-1, results 
showed that VDMGA self-regulates the threshold in the first generation according to the 
conditions of the problem. The adaptive characteristic of the threshold and the robustness of 
VDMGA to its initial value suggested that it might be convenient to treat threshold’s initial 
value as a constant and let the algorithm self-tune the parameter, thus reducing the 
complexity of the parameter’s space. Since the expected ratio of dissimilar alleles in two 
random binary chromosomes is equal to 0.5 (considering infinite strings) it is likely that 
during the first generation (t = 1) the threshold decreases to values around 0.5×L. On the 
other hand, experimental results showed that the threshold value in the following 
generations depends on population size (N) and length of the chromosome (L): tests 
performed in (Fernandes & Rosa, 2008) show that the threshold value at the end of the first 
generation varies from 49.4% and 67.5% of the chromosome length L depending on N and L. 
As stated before, VDMGA needs to (re)evaluate all the old chromosomes in the population 
in order to deal with DOPs. If the algorithm passes through an initial stage, during which 
few new chromosomes are created, until it reaches a more stable threshold value, then a 
prohibitive number of reevaluations are performed, delaying the algorithm and 
compromising the first stage of optimization, especially when the changes occur fast. For 
that reason, initial threshold value is set to a lower value when the problem is dynamic. A 
value bellow 0.5×L is sufficient. In the tests performed for this study and described in the 
following sections, initial threshold was set to 0.25×L. 

5. Performance and scalability on static environments 
In (Fernandes & Rosa, 2008), VDMGA was subject to a wide range of experiments on some 
optimization functions frequently found in EAs literature. The test suite included unimodal 
and multimodal functions (with and without regular arrangement of local optima), a step 
function without local gradient information, scalable functions, high dimensional functions 
and complex combinatorial functions. VDMGA was compared with traditional GAs, CHC 
(Eschelman, 1991) and nAMGA (Fernandes et al., 2000). pAMGA (Fernandes et al., 2000) 
was also included in the tests in order to compare analogous dissortative and assortative 
mating strategies and demonstrate that the former are more efficient in solving the proposed 
optimization problems. Overall results displayed VDMGA’s superior performance when 
compared to other GAs (while statistically equivalent to nAMGA in some functions, 
VDMGA proved to be more efficient when facing the harder problems). Please refer to 
(Fernandes & Rosa, 2008) for a detailed description of the test set and results.  
A simple scalability test is also provided in (Fernandes & Rosa, 2008). Using the 4-bit fully 
deceptive function (Whitley, 1991), results confirm the assumption that VDMGA’s optimal 
population sizes are smaller than standard GA’s. Consequently, the slope of the scalability 
log-log curve is reduced in VDMGA when compared with a generational GA and a steady-
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state GA, even if only by a small amount. For this chapter, VDMGA’s scalability is 
investigated in l-trap function. The main interest is to perceive how VDMGA reacts to 
increasing the number of l-traps that are juxtaposed and summed together.  

5.1 Trap functions and VDMGA’s scalability 
To investigate how VDMGA’s scales on landscapes with different characteristics, 
experiments were conducted with trap functions, which were used as subproblems to 
construct larger problems. A trap function is a piecewise-linear function defined on 
unitation (the number of ones in a binary string). There are two distinct regions in search 
space, one leading to a global optimum and the other leading to the local optimum (see 
figure 2). In general, a trap function is defined as in equation 1. 
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and a is the local optimum, b is the global optimum, l is the problem size (l-bit trap function) 
and z is slope-change location separating the attraction basin of the two optima as depicted 
in figure 1.  
 

 
Fig. 1. Generalized l-trap function.  

Depending on the parameter setting, trap functions may be deceptive or not. Deceptive 
problems are functions where low-order building-blocks do not combine to form higher 
order building-blocks. Instead, low-order building-blocks may mislead the search towards 
local optima, thus challenging GA’s search mechanisms. For a trap function to be deceptive, 
the ratio r between the local (a) and global (b) optimum must be so that:  
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In the experiments, 2-bit, 3-bit and 4-bit trap functions were defined with the following 
parameters: a = l-1; b = l; z = l-1. This way, equation 1 may be simplified: 
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manner. (If changes were detectable, reevaluations would only be necessary when detecting 
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random binary chromosomes is equal to 0.5 (considering infinite strings) it is likely that 
during the first generation (t = 1) the threshold decreases to values around 0.5×L. On the 
other hand, experimental results showed that the threshold value in the following 
generations depends on population size (N) and length of the chromosome (L): tests 
performed in (Fernandes & Rosa, 2008) show that the threshold value at the end of the first 
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in order to deal with DOPs. If the algorithm passes through an initial stage, during which 
few new chromosomes are created, until it reaches a more stable threshold value, then a 
prohibitive number of reevaluations are performed, delaying the algorithm and 
compromising the first stage of optimization, especially when the changes occur fast. For 
that reason, initial threshold value is set to a lower value when the problem is dynamic. A 
value bellow 0.5×L is sufficient. In the tests performed for this study and described in the 
following sections, initial threshold was set to 0.25×L. 
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In (Fernandes & Rosa, 2008), VDMGA was subject to a wide range of experiments on some 
optimization functions frequently found in EAs literature. The test suite included unimodal 
and multimodal functions (with and without regular arrangement of local optima), a step 
function without local gradient information, scalable functions, high dimensional functions 
and complex combinatorial functions. VDMGA was compared with traditional GAs, CHC 
(Eschelman, 1991) and nAMGA (Fernandes et al., 2000). pAMGA (Fernandes et al., 2000) 
was also included in the tests in order to compare analogous dissortative and assortative 
mating strategies and demonstrate that the former are more efficient in solving the proposed 
optimization problems. Overall results displayed VDMGA’s superior performance when 
compared to other GAs (while statistically equivalent to nAMGA in some functions, 
VDMGA proved to be more efficient when facing the harder problems). Please refer to 
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A simple scalability test is also provided in (Fernandes & Rosa, 2008). Using the 4-bit fully 
deceptive function (Whitley, 1991), results confirm the assumption that VDMGA’s optimal 
population sizes are smaller than standard GA’s. Consequently, the slope of the scalability 
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experiments were conducted with trap functions, which were used as subproblems to 
construct larger problems. A trap function is a piecewise-linear function defined on 
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Please note that with these settings, the ratio r of the 2-trap function is bellow the deception 
threshold, while 4-trap is fully deceptive since the condition of equation 3 is satisfied. The 
ratio of the 3-trap function is equal to the threshold, which means that the function lies in 
the region between deceptive and non-deceptive. Under these conditions, it is possible to 
investigate not only how standard GAs and VDMGA scale on l-trap functions, but also to 
observe how that scaling varies when moving from non-deceptive to fully deceptive search 
spaces. For that purpose, L-bit decomposable functions were constructed by juxtaposing m 
trap functions and summing the fitness of each sub-function to obtain the total fitness: 

 
(5) 

For each trap and each size m, a standard generational GA (GGA) and VDMGA were run 
with several values of population size N. Starting from N = 4, optimal population size was 
determined by the bisection method (Sastry, 2001). The success rate (percentage of runs in 
which the global optimum was attained) and the average evaluations needed to find the 
solution (Average Evaluations to a Solution - AES) were measured. Each configuration was 
executed for 50 times and the results are averaged over those runs. The best configuration 
was defined as the one with 98% success rate and lower AES. Then, AES optimal population 
size values corresponding to the best run were plotted and the resulting log-log graphics are 
depicted in figure 2. The algorithms were tested with uniform crossover and no mutation. 
Crossover probability, pc, was set to 1.0. Selection method is binary tournament (kts = 1.0). 
(Please note that without mutation it is simply required that one bit is set to 0 or 1 in the 
entire population for the run to be declared not successful.) 
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Fig. 2. Scalability with trap functions. Optimal population size and AES values for different 
problem size L = l×m. 
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When solving 2-trap functions the algorithms behave similarly, but when the trap 
dimension increases to 3 and 4, the differences in the scalability is much more noticeable. 
The difficulty that deceptive trap functions pose to GAs is rather clear when noticing that 
GGA optimal population size values are close to search space size, that is, 2L, when solving 
4-trap functions. VDMGA significantly reduces the slope of the scalability curve, revealing a 
good ability to maintain diversity and recombine information in order to achieve the higher 
order building-blocks. Since VDMGA maintains genetic diversity at a higher level, smaller 
populations are sufficient to find the global optimum, and thus fewer evaluations are 
required to converge to that same optimal solution. 
VDMGA is a steady-state algorithm, and due to its structure, most of the generations keep 
the best solutions in the population. When compared to a GGA, which holds no elitism and 
the offspring completely replaces the parents’ population, it is expected that it scales better. 
To avoid any misinterpretation of the results provided by VDMGA, another scalability test 
was performed to compare the algorithm with a GGA with 2-elitism (2-e), and a steady-state 
GA (SSGA) in which half of the population is replaced by the offspring (the worst 
chromosomes in the current population are replaced by N/2 newly generated 
chromosomes). Results, presented in figure 3, show that both SSGA and GGA 2-e maintain a 
better scalability than GGA when raising the size of the trap from 2 to 4. In addition, SSGA 
keeps its performance very close to VDMGA when solving not only 2-traps, but also 3-traps. 
 

2-trap 3-trap 4-trap 

  
Fig. 3. Scalability with trap functions. Comparing VDMGA with an elitist generational GA 
(GGA 2-e) and a steady-state GA (SSGA). 

However, when reaching 4-trap functions, it is clear that VDMGA scales better than elitist 
GGA and SSGA. It may be assumed now that this improved scalability is to a great extent 
due to the fact that VDMGA maintains a higher diversity during the run (Fernandes & Rosa, 
2008), and not to its steady-state nature. Scalability tests are very important and useful 
because when tackling real-world problems, the algorithm may be requested to codify 
solutions in extremely large binary strings. If the GA does not scale well, optimization 
becomes practically impossible above a certain problem size. Scalability issues have been 
increasingly raising the interest of EAs research community, especially amongst EDAs 
(Pelikan, Goldberg & Lobo, 1999; Lorrañga & Lozano, 2002) researchers. 

6. VDMGA on dynamic optimization problems 
The test environment proposed in (Yang & Xao, 2005) was used to create an experimental 

setup for VDMGA on DOPs. Given a stationary problem ( ) }{( )0,1
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chromosome length, the dynamic environments may be constructed by applying a binary 

mask  }{M 0,1
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∈ to each solution before its evaluation in the following manner: 
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( ) ( )( ), XOR Mf x t f x k=  (6) 

Where t is the generation index, 
tk
τ

=  is the period index and f(x,t) is the fitness of solution 

x.  M(k) can be incremently generated as follows:  

M(k)= M(k-1) XOR T(k)  (7) 

where T(k) is an intermediate binary mask for every period k. This mask T(k) has ρ× L ones, 
where ρ is a value between 0 and 1.0 which controls the intensity or severity of change. 
Notice that ρ = 0 corresponds to a stationary problem since T vectors will carry only 0’s and 
no change will occur in the environment. On the other hand, ρ = 1 will guarantee the highest 
degree of change, that is, for instance, if a solution to a problem is a vector of 1’s, then the 
dynamic solution will oscillate between a vector of 1’s and a vector of 0’s. Therefore, by 
changing  ρ and τ  in the previous set of equations it is possible to control two of the most 
important features when testing algorithms on DOPs: severity (ρ ) and speed (τ ) of change 
(Angeline, 1997).  
The generator was applied to trap functions. GGA 2-e and SSGA were tested in order to 
compare them with VDMGA. It is not the aim of this study to compare VDMGA with the 
best GAs in solving DOPs, even because there is hardly any evidence of a GA that 
consistently outperforms any other in a wide range of problems and dynamics. Instead, the 
study of the effects of VDMGA’s diversity maintenance on its behavior on dynamic 
environments is the main aim of this section: the way dissortative mating may be used in 
order to improve GAs performance and on which kind of DOPs that improvement is more 
noticeable. Nevertheless, a commonly used algorithm on dynamic optimization studies was 
added to the test bench: RIGA (see section 3). Two variations were tested. In RIGA 1, the 
immigrants replace randomly selected individuals from the population, while in RIGA 2 the 
rr immigrants replace the worst rr individuals in the population. (Both RIGA were 
implemented with 2-elitism. Non-elitist GAs were tested but the performance on trap DOPs 
was very poor. VDMGA outperformed non-elitist GAs on every problem and (ρ, τ) 
configuration, but such a test is clearly unfair to standard and Random Immigrants GAs.     
All the algorithms were tested with N = 240, pc = 1.0, uniform crossover and binary 
tournament (kts = 1). Performance was measured by comparing the mean best_of_generation: 

 

(8) 

where T is the number of generations and R is the number of runs (30 in all the 
experiments). Several tests were conducted by varying severity (ρ ) and speed (τ ) of change: 
ρ was set to 0.05, 0.6 and 0.95; speed of change τ was set to 10, 100 and 200 generations. This 
means that 9 kinds of environmental changes were tested for each function and algorithm. 
Every environment was tested with 10 periods of change, thus making  
T = 100 for  τ = 10, T = 1000 for τ  = 100 and T = 2000 for  τ  = 200. Since it is expected that the 

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments 

 

197 

optimal mutation rate is not equal for every GA in the test bench, it is of extreme importance 
to test the algorithms with different pm. Values ranged from 0.5/L to 5/L and the results 
displayed on tables 1-3 correspond to best configurations (best configurations were 
determined by averaging the nine performance values). In order to properly compare the 
algorithms it is imperative that each GA performs the same number of function evaluations 
in each generation. Otherwise, during each period between changes, different GAs may be 
requiring different computation effort. For that reason, RIGAs population size must be set to 
N-rr, because RIGA performs extra rr evaluation in each time step. For RIGA’s tests in this 
section, rr was set to 24, therefore, N is equal to 216. In addition, since this study assumes 
that changes in the environment are not detectable, all chromosomes must be evaluated in 
each generation, even those that have already been evaluated in a previous generation, as in 
VDMGA (please remember that VDMGA is a steady-state algorithm, that is, parents and 
children may belong to the same population). For the same reason, SSGA also reevaluates 
the fraction (half) of the population that has not been replaced by children. (GGA, due to its 
2-elitism, must also reevaluate, in each generation, the two best chromosomes in the 
population.) This way, VDMGA always performs N fitness calculations in each generation 
but only a fraction of those evaluations are performed on new individuals. This feature is 
expected to penalize VDMGA’s performance on DOPs with very fast changes (low τ ), since 
it may happen that for some periods of time only a small amount of new genetic material 
(new individuals) are inserted in the population in each generation. Actually, this outcome 
is confirmed on the first test, performed on 3-trap functions.    
Table 1 shows the results obtained by the various GAs on a function constructed by 
juxtaposing ten 3-trap subfunctions (L = 30). A statistical comparison was carried out by t-
tests with 58 degrees of freedom at a 0.05 level of significance. The (+) signs means that the 
corresponding algorithm is significantly better than VDMGA on that particular 
configuration of  ρ and τ. A (~) sign means that the performance is statistically equivalent 
and (−) sign means that the GA performs worst than VDMGA. A general observation of 
table 1 shows that only when τ  = 10 the GAs consistently outperform VDMGA. With lower 
speed, VDMGA has always a better performance than the other algorithms in the test bench 
when ρ = 0.6 and ρ = 0.95, being statistically equivalent when ρ = 0.05. This was an expected 
outcome, due to what was stated above about VDMGA’s ration between function 
evaluations in each time step and new chromosomes inserted in the population.  
Table 2 shows the results with 4-trap functions (L = 12). Values appear to be more balanced 
in this case: all the algorithms perform similarly, but when increasing the size of the 
problem to L = 24 – see table 3 −, VDMGA improves its performance when compared to 
other GAs when τ = 100 and τ = 200 (please remember that VDMGA is expected to face 
some difficulties when facing fast changing environments. However, the algorithm 
performs well in 12-bit and 24-bit 4-trap function when ρ = 0.05 and τ = 10.) 
An unexpected result occurs when speed of change is slow and ρ = 0.95. For instance, when 
τ = 200, RIGAs outperforms VDMGA. But when looking at the dynamic behavior of the 
algorithms, in figure 4, a possible explanation arises for this particular result. Figure 4 shows 
the dynamics of VDMGA, SSGA and RIGA 2 when tracking the extrema of 4-trap functions 
(L = 24) by plotting the best_of_generation values over all generations. When ρ = 0.6 and τ  = 
200 the graphs shows that VDMGA becomes closer to the optimum (and results on table 3 
confirm that VDMGA outperforms other algorithms). However, when increasing ρ to 0.95, 
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( ) ( )( ), XOR Mf x t f x k=  (6) 

Where t is the generation index, 
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x.  M(k) can be incremently generated as follows:  
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changing  ρ and τ  in the previous set of equations it is possible to control two of the most 
important features when testing algorithms on DOPs: severity (ρ ) and speed (τ ) of change 
(Angeline, 1997).  
The generator was applied to trap functions. GGA 2-e and SSGA were tested in order to 
compare them with VDMGA. It is not the aim of this study to compare VDMGA with the 
best GAs in solving DOPs, even because there is hardly any evidence of a GA that 
consistently outperforms any other in a wide range of problems and dynamics. Instead, the 
study of the effects of VDMGA’s diversity maintenance on its behavior on dynamic 
environments is the main aim of this section: the way dissortative mating may be used in 
order to improve GAs performance and on which kind of DOPs that improvement is more 
noticeable. Nevertheless, a commonly used algorithm on dynamic optimization studies was 
added to the test bench: RIGA (see section 3). Two variations were tested. In RIGA 1, the 
immigrants replace randomly selected individuals from the population, while in RIGA 2 the 
rr immigrants replace the worst rr individuals in the population. (Both RIGA were 
implemented with 2-elitism. Non-elitist GAs were tested but the performance on trap DOPs 
was very poor. VDMGA outperformed non-elitist GAs on every problem and (ρ, τ) 
configuration, but such a test is clearly unfair to standard and Random Immigrants GAs.     
All the algorithms were tested with N = 240, pc = 1.0, uniform crossover and binary 
tournament (kts = 1). Performance was measured by comparing the mean best_of_generation: 
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where T is the number of generations and R is the number of runs (30 in all the 
experiments). Several tests were conducted by varying severity (ρ ) and speed (τ ) of change: 
ρ was set to 0.05, 0.6 and 0.95; speed of change τ was set to 10, 100 and 200 generations. This 
means that 9 kinds of environmental changes were tested for each function and algorithm. 
Every environment was tested with 10 periods of change, thus making  
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optimal mutation rate is not equal for every GA in the test bench, it is of extreme importance 
to test the algorithms with different pm. Values ranged from 0.5/L to 5/L and the results 
displayed on tables 1-3 correspond to best configurations (best configurations were 
determined by averaging the nine performance values). In order to properly compare the 
algorithms it is imperative that each GA performs the same number of function evaluations 
in each generation. Otherwise, during each period between changes, different GAs may be 
requiring different computation effort. For that reason, RIGAs population size must be set to 
N-rr, because RIGA performs extra rr evaluation in each time step. For RIGA’s tests in this 
section, rr was set to 24, therefore, N is equal to 216. In addition, since this study assumes 
that changes in the environment are not detectable, all chromosomes must be evaluated in 
each generation, even those that have already been evaluated in a previous generation, as in 
VDMGA (please remember that VDMGA is a steady-state algorithm, that is, parents and 
children may belong to the same population). For the same reason, SSGA also reevaluates 
the fraction (half) of the population that has not been replaced by children. (GGA, due to its 
2-elitism, must also reevaluate, in each generation, the two best chromosomes in the 
population.) This way, VDMGA always performs N fitness calculations in each generation 
but only a fraction of those evaluations are performed on new individuals. This feature is 
expected to penalize VDMGA’s performance on DOPs with very fast changes (low τ ), since 
it may happen that for some periods of time only a small amount of new genetic material 
(new individuals) are inserted in the population in each generation. Actually, this outcome 
is confirmed on the first test, performed on 3-trap functions.    
Table 1 shows the results obtained by the various GAs on a function constructed by 
juxtaposing ten 3-trap subfunctions (L = 30). A statistical comparison was carried out by t-
tests with 58 degrees of freedom at a 0.05 level of significance. The (+) signs means that the 
corresponding algorithm is significantly better than VDMGA on that particular 
configuration of  ρ and τ. A (~) sign means that the performance is statistically equivalent 
and (−) sign means that the GA performs worst than VDMGA. A general observation of 
table 1 shows that only when τ  = 10 the GAs consistently outperform VDMGA. With lower 
speed, VDMGA has always a better performance than the other algorithms in the test bench 
when ρ = 0.6 and ρ = 0.95, being statistically equivalent when ρ = 0.05. This was an expected 
outcome, due to what was stated above about VDMGA’s ration between function 
evaluations in each time step and new chromosomes inserted in the population.  
Table 2 shows the results with 4-trap functions (L = 12). Values appear to be more balanced 
in this case: all the algorithms perform similarly, but when increasing the size of the 
problem to L = 24 – see table 3 −, VDMGA improves its performance when compared to 
other GAs when τ = 100 and τ = 200 (please remember that VDMGA is expected to face 
some difficulties when facing fast changing environments. However, the algorithm 
performs well in 12-bit and 24-bit 4-trap function when ρ = 0.05 and τ = 10.) 
An unexpected result occurs when speed of change is slow and ρ = 0.95. For instance, when 
τ = 200, RIGAs outperforms VDMGA. But when looking at the dynamic behavior of the 
algorithms, in figure 4, a possible explanation arises for this particular result. Figure 4 shows 
the dynamics of VDMGA, SSGA and RIGA 2 when tracking the extrema of 4-trap functions 
(L = 24) by plotting the best_of_generation values over all generations. When ρ = 0.6 and τ  = 
200 the graphs shows that VDMGA becomes closer to the optimum (and results on table 3 
confirm that VDMGA outperforms other algorithms). However, when increasing ρ to 0.95, 
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3-trap (L = 30) τ 
ρ GGA 

(pm = 1/L) 
SSGA 

(pm = 1/2L) 
RIGA 1 

(pm = 1/L) 
RIGA 2 

(pm = 1/L) 
VDMGA 
(pm = 1/L) 

10 
0.05 

26.06 
±0.978 (+) 

26.020 
±0.506 (+) 

25.938 
±0.661 (+) 

26.144 
±0.819 (+) 

25.319 
±0.556 

10 
0.60 

22.078 
±0.266 (+) 

21.467 
±0.289 (+) 

21.934 
±0.305 (+) 

21.952 
±0.362 (+) 

21.227 
±0.280 

10 
0.95 

23.937 
±0.278 (+) 

23.638 
±0.326 (+) 

23.832 
±0.221 (+) 

23.978 
±0.237 (+) 

22.877 
±0.404 

100 
0.05 

29.712 
±0.090 (~) 

29.656 
±0.082 (~) 

29.674 
±0.145 (~) 

29.664 
±0.175 (~) 

29.622 
±0.103 

100 
0.60 

26.293 
±0.186 (−) 

26.095 
±0.257 (−) 

26.322 
±0.292 (−) 

26.258 
±0.300 (−) 

26.444 
±0.250 

100 
0.95 

25.605 
±0.137 (−) 

25.730 
±0.098 (−) 

25.628 
±0.163 (−) 

25.597 
±0.121 (−) 

25.999 
±0.242 

200 
0.05 

29.851 
±0.051 (~) 

29.822 
±0.075 (~) 

29.849 
±0.526 (~) 

29.852 
±0.056 (~) 

29.821 
±0.050 

200 
0.60 

27.120 
±0.200 (−) 

26.972 
±0.261 (−) 

27.350 
±0.225 (−) 

27.314 
±0.272 (−) 

27.826 
±0.170 

200 
0.95 

25.838 
±0.129 (−) 

25.978 
±0.096 (−) 

25.802 
±0.122 (−) 

25.818 
±0.180 (−) 

26.211 
±0.185 

Table 1. Results on 3-traps (L = 30). Mean best_of_generation and corresponding standard 
deviation values (results averaged over 30 runs). 
 

4-trap (L = 12) τ 
ρ GGA 

(pm = 3/L) 
SSGA 

(pm = 3/L) 
RIGA 1 

(pm = 4/L) 
RIGA 2 

(pm = 4/L) 
VDMGA 
(pm = 2/L) 

10 
0.05 

10.712 
±0.215 (−) 

11.307 
±0.271 (~) 

10.800 
±0.171 (−) 

10.782 
±0.162 (−) 

11.283 
±0.254 

10 
0.60 

10.800 
±0.177 (+) 

10.484 
±0.176 (~) 

10.783 
±0.178 (+) 

10.833 
±0.179 (+) 

10.585 
±0.175 

10 
0.95 

10.914 
±0.213 (−) 

11.360 
±0.193 (~) 

10.798 
±0.174 (+) 

10.825 
±0.191 (+) 

11.436 
±0.204 

100 
0.05 

11.653 
±0.109 (−) 

11.948 
±0.031 (~) 

11.700 
±0.010 (−) 

11.705 
±0.088 (−) 

11.957 
±0.020 

100 
0.60 

11.687 
±0.089 (~) 

11.661 
±0.074 (~) 

11.713 
±0.020 (~) 

11.725 
±0.075 (~) 

11.672 
±0.060 

100 
0.95 

11.710 
±0.080 (~) 

11.622 
±0.076 (−) 

11.735 
±0.016 (~) 

11.688 
±0.068 (~) 

11.696 
±0.062 

200 
0.05 

11.823 
±0.066 (−) 

11.981 
±0.010 (~) 

11.842 
±0.012 (−) 

11.843 
±0.034 (−) 

11.981 
±0.012 

200 
0.60 

11.842 
±0.051 (~) 

11.823 
±0.027 (~) 

11.847 
±0.017 (~) 

11.873 
±0.035 (+) 

11.831 
±0.036 

200 
0.95 

11.852 
±0.049 (+) 

11.691 
±0.055 (−) 

11.863 
±0.014 (+) 

11.864 
±0.037 (+) 

11.742 
±0.028 

Table 2. Results on 4-traps (L = 12). Mean best_of_generation and standard deviation values, 
averaged over 30 runs. 
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4-trap (L = 24) τ 
ρ SGA 

(pm = 1/L) 
SSGA 

(pm = 2/L) 
RIGA 1 

(pm = 1/L) 
RIGA 2 

(pm = 1/L) 
VDMGA 
(pm = 3/L) 

10 
0.05 

18.394 
±0.355 (−) 

19.710 
±0.648 (~) 

18.301 
±0.340 (−) 

18.417 
±0.391 (−) 

19.544 
±0.345 

10 
0.60 

18.270 
±0.185 (+) 

17.777 
±0.311 (~) 

18.142 
±0.282 (+) 

18.066 
±0.282 (+) 

17.703 
±0.289 

10 
0.95 

20.807 
±0.200 (+) 

20.489 
±0.347 (+) 

20.682 
±0.230 (+) 

20.747 
±0.161 (+) 

19.724 
±0.284 

100 
0.05 

19.136 
±0.408 (−) 

22.370 
±0.629 (−) 

19.091 
±0.434 (−) 

19.125 
±0.583 (−) 

23.421 
±0.141 

100 
0.60 

20.570 
±0.242 (~) 

20.630 
±0.293 (~) 

20.474 
±0.233 (~) 

20.593 
±0.274 (~) 

20.518 
±0.323 

100 
0.95 

21.465 
±0.099 (~) 

21.308 
±0.103 (−) 

21.418 
±0.116 (~) 

21.452 
±0.076 (~) 

21.472 
±0.176 

200 
0.05 

19.065 
±0.140 (−) 

23.385 
±0.347 (−) 

19.220 
±0.760 (−) 

19.430 
±0.895 (−) 

23.746 
±0.0726 

200 
0.60 

20.947 
±0.267 (−) 

21.058 
±0.228 (−) 

20.851 
±0.294 (−) 

20.800 
±0.231 (−) 

21.670 
±0.175 

200 
0.95 

21.509 
±0.065 (+) 

21.332 
±0.136 (~) 

21.503 
±0.087 (+) 

21.495 
±0.082 (+) 

21.354 
±0.166 

Table 3. Results on 4-traps. Mean best_of_generation and standard deviation values, averaged 
over 30 runs. 

the curves become much different. The shape of RIGA’s curve may be easily explained by 
the characteristics of the trap functions used in this study: the global optimum of the 
functions is the string with all 1’s and the local optimum is the string with all 0’s. RIGA is 
stuck in a region of the search space and, when the environment changes dramatically (ρ = 
0.95), what were once chromosomes near the global optimum local then become (nearly) 
local optimum solutions. With 4-trap functions and L = 24, global optimum is 24 and local 
optimum value is 18. Please note how RIGA oscillates between values near 24 and 18. The 
algorithm is not able to track the optimum; it just “waits”, for the global optimum to pass by 
every other period of change. Exclusively looking at mean best_of_generation values may 
conduce to a misinterpretation of GAs abilities to solve DOPs. 
Another aspect is worth notice. It is clear that RIGA 2 is not able to track the optima when 
changes are small (ρ = 0.05), at least not as able as VDMGA and SSGA. Random material 
inserted in the population is not an appropriate strategy to deal with an environment that 
shifts only by a small amount. For ρ = 0.05 and low speed of change (τ = 100 and τ = 200) 
VDMGA tracks the optima with much more ability than SSGA, even if it is slower in the 
first stage of search: only three periods of τ generations are needed for VDMGA to track the 
optima and remain close to it in the following periods. RIGA 2 appeared to perform well on 
24-bit 4-trap when compared to other algorithms (table 3). However, a closer inspection, by 
plotting the evolution of the tracking process, reveals that the algorithm fails when changes 
are both small (ρ = 0.05) and severe (ρ = 0.95). VDMGA, on the other hand, maintains a 
more stable performance trough all the different combinations of speed and severity of 
change, being particular able to track the optimum when ρ = 0.05. 
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3-trap (L = 30) τ 
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SSGA 

(pm = 1/2L) 
RIGA 1 

(pm = 1/L) 
RIGA 2 

(pm = 1/L) 
VDMGA 
(pm = 1/L) 
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26.06 
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26.020 
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26.144 
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25.319 
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22.078 
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Table 1. Results on 3-traps (L = 30). Mean best_of_generation and corresponding standard 
deviation values (results averaged over 30 runs). 
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Table 2. Results on 4-traps (L = 12). Mean best_of_generation and standard deviation values, 
averaged over 30 runs. 
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4-trap (L = 24) τ 
ρ SGA 

(pm = 1/L) 
SSGA 

(pm = 2/L) 
RIGA 1 

(pm = 1/L) 
RIGA 2 

(pm = 1/L) 
VDMGA 
(pm = 3/L) 

10 
0.05 

18.394 
±0.355 (−) 

19.710 
±0.648 (~) 

18.301 
±0.340 (−) 

18.417 
±0.391 (−) 

19.544 
±0.345 

10 
0.60 

18.270 
±0.185 (+) 

17.777 
±0.311 (~) 

18.142 
±0.282 (+) 

18.066 
±0.282 (+) 

17.703 
±0.289 

10 
0.95 

20.807 
±0.200 (+) 

20.489 
±0.347 (+) 

20.682 
±0.230 (+) 

20.747 
±0.161 (+) 

19.724 
±0.284 

100 
0.05 

19.136 
±0.408 (−) 

22.370 
±0.629 (−) 

19.091 
±0.434 (−) 

19.125 
±0.583 (−) 

23.421 
±0.141 

100 
0.60 

20.570 
±0.242 (~) 

20.630 
±0.293 (~) 

20.474 
±0.233 (~) 

20.593 
±0.274 (~) 

20.518 
±0.323 

100 
0.95 

21.465 
±0.099 (~) 

21.308 
±0.103 (−) 

21.418 
±0.116 (~) 

21.452 
±0.076 (~) 

21.472 
±0.176 

200 
0.05 

19.065 
±0.140 (−) 

23.385 
±0.347 (−) 

19.220 
±0.760 (−) 

19.430 
±0.895 (−) 

23.746 
±0.0726 

200 
0.60 

20.947 
±0.267 (−) 

21.058 
±0.228 (−) 

20.851 
±0.294 (−) 

20.800 
±0.231 (−) 

21.670 
±0.175 

200 
0.95 

21.509 
±0.065 (+) 

21.332 
±0.136 (~) 

21.503 
±0.087 (+) 

21.495 
±0.082 (+) 

21.354 
±0.166 

Table 3. Results on 4-traps. Mean best_of_generation and standard deviation values, averaged 
over 30 runs. 

the curves become much different. The shape of RIGA’s curve may be easily explained by 
the characteristics of the trap functions used in this study: the global optimum of the 
functions is the string with all 1’s and the local optimum is the string with all 0’s. RIGA is 
stuck in a region of the search space and, when the environment changes dramatically (ρ = 
0.95), what were once chromosomes near the global optimum local then become (nearly) 
local optimum solutions. With 4-trap functions and L = 24, global optimum is 24 and local 
optimum value is 18. Please note how RIGA oscillates between values near 24 and 18. The 
algorithm is not able to track the optimum; it just “waits”, for the global optimum to pass by 
every other period of change. Exclusively looking at mean best_of_generation values may 
conduce to a misinterpretation of GAs abilities to solve DOPs. 
Another aspect is worth notice. It is clear that RIGA 2 is not able to track the optima when 
changes are small (ρ = 0.05), at least not as able as VDMGA and SSGA. Random material 
inserted in the population is not an appropriate strategy to deal with an environment that 
shifts only by a small amount. For ρ = 0.05 and low speed of change (τ = 100 and τ = 200) 
VDMGA tracks the optima with much more ability than SSGA, even if it is slower in the 
first stage of search: only three periods of τ generations are needed for VDMGA to track the 
optima and remain close to it in the following periods. RIGA 2 appeared to perform well on 
24-bit 4-trap when compared to other algorithms (table 3). However, a closer inspection, by 
plotting the evolution of the tracking process, reveals that the algorithm fails when changes 
are both small (ρ = 0.05) and severe (ρ = 0.95). VDMGA, on the other hand, maintains a 
more stable performance trough all the different combinations of speed and severity of 
change, being particular able to track the optimum when ρ = 0.05. 



 Advances in Evolutionary Algorithms 

 

200 

7. Genetic diversity and threshold dynamics 
As described above, assortative and dissortative mating have effects on the frequency of 
heterozygous and homozygous genotypes. Consequently, population diversity may also be 
affected: dissortative tends to increase genetic diversity while assortative decreases it. This 
may also be true when dealing with artificial systems such as GAs. Previous reports 
 

 ρ = 0.05 ρ = 0.6 ρ = 0.95 

τ= 10 

τ=100 

τ=200 

Fig. 4. Dynamics when tracking 4-trap functions (L = 24). Best_of_generation curves. 

(Fernandes & Rosa, 2001; Fernandes, 2002) show that the variation of diversity in GAs 
populations is influenced by the chosen mating strategy. In (Fernandes & Rosa, 2008), a 
study on genetic diversity also confirmed this assumption. To measure diversity, the 
following equation was used: 
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Diversity was inspected on VDMGA, SSGA and RIGA 2. For that purpose, a problem with 
ten 4-trap subfunctions was used (L = l×m = 4×10 = 40). Population size was set to 100, pc 
was set to 1.0 (binary tournament selection and uniform crossover) and different mutation 
rates pm were tested. The algorithms were run for 100 generations. Each run was repeated 
for 30 times and the results are the average over those runs. 
 

  
Fig. 5. Genetic diversity. 

Graphics in figure 5 show similar results as in previous reports: VDMGA maintains a higher 
diversity than SSGA, even when comparing different mutation rates. RIGA gets closer to 
VDMGA’s diversity but, as depicted in figure 6, performance is much lower. By observing 
the growth of the best fitness in the population, it is clear that RIGA 2 is outperformed by 
SSGA, converging to a lower local optimum. On the other hand, VDMGA, although being 
slower in a first stage of search, attains higher fitness values, which are still growing when t 
= 100. These results illustrate how important are the genetic diversity maintenance schemes, 
and not diversity maintenance itself. RIGA, although maintaining the diversity for a longer 
period, is outperformed by SSGA on this particular test. 
 

Fig. 6. Best fitness on 4-traps (L = 24). 

A final test was conducted with the aim of investigating diversity when the environment 
changes. For that purpose, a 4-trap DOP with L = 4 was used. GAs parameters were set as in 
previous experiment. VDMGA’s diversity is compared with SSGA in figure 7 (only five 
periods of change are shown in the graphs), for two configurations of (ρ, τ). As expected, 
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VDMGA maintains a higher diversity throughout the successive search periods, even with 
lower mutation rates. 
VDMGA’s threshold values during a run of each one of the previous experiments (ρ = 0.05 
and τ = 100; ρ = 0.6 and τ = 200) may be seen in figure 8 (with pm = 1/L). The graphics 
indicate that the threshold reacts to the changes in the environment when it is close to 0: 
when the environment shifts, the threshold tends to increase. The explanation for this 
outcome is simple and resides in the fact that after a change occurs, new genetic material 
enters in a previously converged population, allowing the threshold to increase because 
successful matings have also increase. An amplified threshold will then prevent mating 
between similar individuals and continue to guarantee higher genetic diversity. 
 

 VDMGA SSGA 

ρ=0.05 
τ = 100 

 

ρ = 0.6 
τ = 200 

 
 

Fig. 7. SSGA and VDMGA’s diversity on dynamic 4-trap functions. 
 

ρ = 0.05, τ = 100 ρ = 0.6, τ = 200 

 
 

 Fig. 8. VDMGA’s threshold value. Mutation rate, pm = 1/L 
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8. Conclusions 
This chapter presented a study on Genetic Algorithms (GA) with dissortative mating. A 
survey on non-random mating was given, in which the most prominent techniques in 
Evolutionary Computation literature were presented and described. In addition, a survey on 
Bio-inspired Computation applied to Dynamic Optimization Problems (DOPs) was also 
given, since DOPs was one of the main aims of the experimental study performed for this 
chapter. The experiments were performed with the aim of checking the ability of Variable 
Dissortative Mating GA (VDMGA) on tracking the extrema in dynamic problems. VDMGA, 
presented in a recent work (Fernandes & Rosa, 2008), inhibits crossover when the Hamming 
distance between the chromosomes is below a threshold value. The threshold is updated 
(incremented or decremented) by a simple rule which is indirectly influenced by the genetic 
diversity of the population: it tends to decrease when the amount of successful crossovers is 
superior to the number of failed attempts in a generation; when the ratio of successful 
recombination events rises, the threshold will have a tendency to increase. VDMGA holds 
this mechanism without the need for further parameters than traditional GAs. In fact, the 
parameters that need to be tuned are reduced to population size and mutation rate. In 
addition, no replacement strategy has to be chosen: VDMGA is a steady-state GA in which 
the number of new chromosomes entering the population in each generation is controlled 
by the threshold value, genetic diversity and population’s stage of convergence.  
Scalability tests were performed in order to investigate how VDMGA reacts to growing 
problem size. Deceptive and non-deceptive trap functions were used for that purpose. The 
algorithm was tested and compared with traditional GAs. Results showed that VDMGA 
scales clearly better than other traditional GAs when the trap function is deceptive. 
DOPs experiments demonstrated that in most of the cases, VDMGA is able to perform 
equally or better than other GAs, except when the speed of change is high. In particular, 
VDMGA outperformed, in general, the Random Immigrants GA, which a typical algorithm 
used in DOPs studies to compare other methods performance. Statistical t-tests were 
performed, giving stronger reliability to the conclusions. 
A study on the genetic diversity was also performed. As expected, VDMGA maintains a 
higher diversity throughout the run. The speed of the algorithm may be reduced in a first 
stage of search (and that is one of the reasons VDMGA is not so able to solve fast DOPs), but 
the diversity of its population gives it the ability to converge more often to the global 
optimum. 
VDMGA is a simple yet effective algorithm to deal with static and dynamic environments. It 
holds no more parameters than a standard GA. When regarding DOPs, VDMGA may be 
classified in the category of methods that preserve diversity in order to tackle DOPs (see 
section 3). Thus, it avoids the complexity of methods that hold memory schemes (which in 
general need rules and parameters to determine how to deal with memory), and the lower 
range of problems in which algorithms that react to changes may be applied. Changes in 
DOPs are not always detectable and a reaction to changes assumes that it is possible to 
detect when the environment shifts. 
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1. Introduction 
Combinatorial optimization problems (COPs) have a wide range of applications in 
engineering, operation research, and social sciences. Moreover, as real-time information and 
communication systems become increasingly available and the processing of real-time data 
becomes increasingly affordable, new versions of highly dynamic real-world applications 
are created. In such applications, information on the problem is not completely known a 
priori, but instead is revealed to the decision maker progressively with time. Consequently, 
solutions to different instances of a typical dynamic problem have to be found as time 
proceeds, concurrently with the incoming information. 
Given that the overwhelming majority of COPs are NP-hard, the presence of time and the 
associated uncertainty in their dynamic versions increases their complexity, making their 
dynamic versions even harder to solve than its static counterpart. However, environmental 
changes in real life typically do not alter the problem completely but affect only some part of 
the problem at a time. For example, not all vehicles break down at once, not all pre-made 
assignments are cancelled, weather changes affect only parts of roads, any other events like 
sickness of employees and machine breakdown do not happen concurrently. Thus, after an 
environmental change, there remains some information from the past that can be used for 
the future. Such problems call for a methodology to track their optimal solutions through 
time. The required algorithm should not only be capable of tackling combinatorial problems 
but should also be adaptive to changes in the environment. 
Evolutionary Algorithms (EAs) have been successfully applied to most COPs. Moreover, the 
ability of EAs to sample the search space, their ability to simultaneously manipulate a group 
of solutions, and their potential for adaptability increase their potential for dynamic 
problems. However, their tendency to converge prematurely in static problems and their 
lack of diversity in tracking optima that shift in dynamic environments are deficiencies that 
need to be addressed. 
Although many real world problems can be viewed as dynamic we are interested only in 
those problems where the decision maker does not have prior knowledge of the complete 
problem, and hence the problem can not be solved in advance. This article presents 
strategies to improve the ability of an algorithm to adapt to environmental changes, and 
more importantly to improve its efficiency at finding quality solutions. The first constructed 
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model controls genetic parameters during static and dynamic phases of the environment; 
and a second model uses multiple populations to improve the performance of the first 
model and increases its potential for parallel implementation. Experimental results on 
dynamic versions of flexible manufacturing systems (FMS) and the travelling salesman problem 
(TSP) are presented to demonstrate the effectiveness of these models in improving solution 
quality with limited increase in computation time. 
The remainder of this article is organized as follows: Section 2 defines the dynamic problems 
of interest, and gives the mathematical formulation of the TSP and FMS problems. Section 3 
contains a survey of how dynamic environments are tackled by EAs. Section 4 presents 
adaptive dynamic solvers that include a diversity controlling EA model and an island-based 
model. The main goal of Section 5 is to demonstrate that the adaptive models presented in 
this article can be applied to realistic problems by comparing the developed dynamic 
solvers on the TSP and FMS benchmarks respectively. 

2. Background 
Dynamism in real-world problems can be attributed to several factors: Some are natural like 
wear and weather conditions; some can be related to human behaviour like variation in 
aptitude of different individuals, inefficiency, absence and sickness; and others are business 
related, such as the addition of new orders and the cancellation of old ones. 
However, the mere existence of a time dimension in a problem does not mean that the 
problem is dynamic. Problems that can be solved in advance are not dynamic and not 
considered in this article even though they might be time dependent. 
If future demands are either known in advance or predictable with sufficient accuracy, then 
the whole problem can be solved in advance. 
According to Psaraftis (1995), Bianchi (1990), and Branke (2001), the following features can 
be found in most real-world dynamic problems: 
• Time dependency: the problem can change with time in such a way that future 

instances are not completely known, yet the problem is completely known up to the 
current moment without any ambiguity about past information. 

• A solution that is optimal or near optimal at a certain instance may lose its quality in the 
next instance, or may even become infeasible. 

• The goal of the optimization algorithm is to track the shifting optima through time as 
closely as possible. 

• Solutions cannot be determined in advance but should be computed to the incoming 
information. 

• Solving the problem entails setting up a strategy that specifies how the algorithm 
should react to environmental changes, e.g. to resolve the problem from scratch at every 
change or to adapt some parameters of the algorithm to the changes. 

• The problem is often associated with advances in information systems and 
communication technologies which enable the processing of information as soon as 
received. In fact, many dynamic problems have come to exist as a direct result of 
advances in communication and real-time systems. 

Techniques that work for static problems may therefore not be effective for dynamic 
problems which require algorithms that make use of old information to find new optima 
quickly. 
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2.1 Representative dynamic combinatorial problems 
Combinatorial problems typically assume distinct structures (for example vehicle routing 
versus job shop scheduling). Consequently, benchmark problems for COPs tend to be very 
specific to the application at hand. The test problems used for dynamic scheduling and 
sequencing with evolutionary algorithms are typical examples (Bierwirth & Kopfer 1994; 
Bierwirth et al. 1995; Bierwirth & Mattfeld 1999; Lin et al. 1997; Reeves & Karatza 1993). 
However, the travelling salesman problem has often been considered representative of various 
combinatorial problems. In this article, we use the dynamic TSP and a dynamic FMS to 
compare the performance of several dynamic solvers. 

2.2 Travelling salesman problem 
Although the TSP problem finds applications in science and engineering, its real importance 
stems from the fact that it is typical of many COPs. Furthermore, it has often been the case 
that progress on the TSP has led to progress on other COPs. The TSP is modelled to answer 
the following question: if a travelling salesman wishes to visit exactly once each of a list of 
cities and then return to the city from which he started his tour, what is the shortest route 
the travelling salesman should take? 
As an easy to describe but a hard to solve problem, the TSP has fascinated many researchers, 
and some have developed time-dependent variants as dynamic benchmarks. For example, 
Guntsch et al. (2001) introduced a dynamic TSP where environmental change takes place by 
exchanging a number of cities from the actual problem with the same number from a spare 
pool of cities. They use this problem to test an adaptive ant colony algorithm. Eyckelhof and 
Snoek (2002) tested a new ants system approach on another version of the dynamic problem. 
In their benchmark, they vary edge length by a constant increment/decrement to imitate the 
appearance and the removal of traffic jams on roads. Younes et al. (2005) introduced a 
scheme to generate a dynamic TSP in a more comprehensive way. In their benchmarks, 
environmental changes take place in the form of variations in the edge length, number of 
cities, and city-swap changes. 

2.2.1 Mathematical formulation 
There are many different formulations for the travelling salesman problem. One common 
formulation is the integer programming formulation, which is given in (Rardin 1998) as 
follows: 

 
(1) 

 
where xij= 1 if link (i; j) is part of the solution, and dij

 
is the distance from point i to point j. 

The first set of constraints ensures that each city is visited once, and the second set of 
constraints ensures that no sub-tours are formed. 
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2.2.2 Solution representation 
In this article a possible TSP solution is represented in a straight forward manner by a 
chromosome; where values of the genes are the city numbers, and the relative position of 
the genes represent city order in the tour. An example of a chromosome that represents a 10 
city tour is shown in Figure 1. With this simple representation, however, individuals cannot 
undergo standard mutation and crossover operators. 

 
(a) (b) 

Fig. 1. Chromosome representation (a) of a 10 city tour (b) that starts and ends at city 5. 

2.3 Flexible manufacturing systems 
The large number of combinatorial problems associated with manufacturing optimization 
(Dimopoulos & Zalzala 2000) is behind the growth in the use of intelligent techniques, such 
as flexible manufacturing systems (FMS), in the manufacturing field during the last decade. 
An FMS produces a variety of part types that are flexibly routed through machines instead 
of the conventional straight assembly-line routing (Chen & Ho 2002). The flexibility 
associated with this system enables it to cope with unforeseen events such as machine 
failures, erratic demands, and changes in product mix. 
A typical FMS is a production system that consists of a heterogeneous group of numerically 
controlled machines (machines, robots, and computers) connected through an automated 
guided vehicle system. Each machine can perform a specific set of operations that may 
intersect with operation sets of the other machines. Production planning and scheduling is 
more complicated in an FMS than it is in traditional manufacturing (Wang et al. 2005). One 
source of additional complexity is associated with machine-operation versatility, since each 
machine can perform different operations and an operation can be performed on different 
alternative machines. Another source of complexity is associated with unexpected events, 
such as machine breakdown, change of demand, or introduction of new products. A 
fundamental goal that is gaining importance is the ability to handle such unforeseen events. 
To illustrate the kind of FMS we are focusing on, we give the following example. 

2.3.1 Example 
A simple flexible manufacturing system consists of three machines, M1, M2 and M3. The 
three respective sets of operations for these machines are {O1, O6}, {O1, O2, O5}, and {O4,O6}, 
where Oi denotes operation i. This system is to be used to process three part types P1, P2, and 
P3, each of which requires a set of operations, respectively, given as {O1, O4, O6}, {O1, O2, O5, 
O6}, and {O4, O6}. There are several processing choices for this setting; here are two of them: 
Choice (a) For part P1: (O1 →M2; O4 →M3; O6 →M3); i.e, assign machine M2 to perform 
operation O1, and assign M3 to process O4 and O6. For part P2: (O1 →M1; O2 →M2; O5 →M2; O6 

→M1). For part P3: (O4 →M3; O6 →M3). 
Choice (b) For part P1: (O1 →M2; O4 →M3; O6 →M1). For part P2: (O1 →M1; O2 →M2; O5 →M2; 
O6 →M3). For part P3: (O4 →M3; O6 →M1). 
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By comparing both choices, one notices that the first solution tends to minimize the transfer 
of parts between machines. On the other hand the second solution is biased towards 
balancing the operations on the machines. However, we need to consider both objectives at 
the same time, which may not be easy since the objectives are conflicting. 

2.3.2 Mathematical formulation 
The assignment problem considered in this section is given in Younes et al. (2002) using the 
following notations: 
i,l are machine indices (i,l = 1,2,3,...,nm); 
j is part index (j = 1,2,3,...,np); 
k̂ j is processing choice for part j (j = 1,2,3,....,np); 
kj is the number of processing choices of Pj ; 
n i j ˆ

jk is the number of necessary operations required by Pj on Mi in processing choice k̂ j,  

1 ≤ k̂ j ≤ kj  
t i j ˆ

jk is the work-load of machine Mi to process part Pj in processing choice k̂ j; 

 

 
Using this notation, the three objective functions of the problem (f1, f2, and f3) are given as 
follows:  
1. Minimization of part transfer (by minimizing the number of machines required to 

process each part): 

 
(2) 

2. Load Balancing by minimizing the cardinality distance (measured in number of 
operations) between the workload of any pair of machines: 

 
(3) 

3. Minimization of the number of necessary operations required from each machine over 
the possible processing choices: 

 
(4) 

An overall multi-objective mathematical model of FMS can then be formulated as follows: 

Optimize(f1, f2, f3) 
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2.2.2 Solution representation 
In this article a possible TSP solution is represented in a straight forward manner by a 
chromosome; where values of the genes are the city numbers, and the relative position of 
the genes represent city order in the tour. An example of a chromosome that represents a 10 
city tour is shown in Figure 1. With this simple representation, however, individuals cannot 
undergo standard mutation and crossover operators. 

 
(a) (b) 

Fig. 1. Chromosome representation (a) of a 10 city tour (b) that starts and ends at city 5. 
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s.t. 

 
The first set of constraints ensures that only one processing choice can be selected for each 
part. The complexity and the specifics of the problem require revising several components 
of the conventional evolutionary algorithm to obtain an effective implementation on the 
FMS problem. In particular, we need to devise problem-oriented methods for encoding 
solutions, crossover, fitness assignment, and constraint handling. 

2.3.3 Solution representation 
An individual solution is represented by a series of operations for all parts involved. Each 
gene in the chromosome represents a machine type that can possibly process a specific 
operation. Figure 2 illustrates a chromosome representation of a possible solution to the 
example given in Section 2.3.1. The advantages of this representation scheme are the 
simplicity and the capability of undergoing standard operators without producing infeasible 
solutions (as long as parent solutions are feasible). 
 

 
(a) (b) 

Fig. 2. Chromosome representation. A schematic diagram of the possible choice of part 
routing in (a) is represented by the chromosome in (b) 

3. Techniques for dynamic environments 
The limitation on computation time imposed on dynamic problems calls for algorithms that 
adapt quickly to environmental changes. We discuss some of the techniques that have been 
used to enhance the performance of the standard genetic algorithm (GA) in dynamic 
environments in the following paragraphs (we direct the interested reader to Jin and Branke 
(2005) for an extensive survey). 
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3.1 Restart 
The most straightforward approach to increase diversity of a GA search is to restart the 
algorithm completely by reinitializing the population after each environmental change. 
However, any information gained in the past search will be discarded with the old 
population after every environmental change. Thus, if changes in the problem are frequent, 
this time consuming method will likely produce results of low quality. Furthermore, 
successive instances in the typical dynamic problem do not differ completely from each 
other. Hence, some researchers use partial restart: Rather than reinitializing the entire 
population randomly, a fraction of the new population is seeded with old solutions (Louis 
and Xu 1996; Louis and Johnson 1997). It should be noted here that for environmental 
changes that affect the problem constraints, old solutions may become infeasible and hence 
not be directly reusable. However, repairing infeasible solutions can be an effective 
approach that leads to suboptimal solutions. 

3.2 Adapting genetic parameters 
Many researchers have explored the use of adaptive genetic operators in stationary 
environments (see Eiben et al. (1999) for an extensive survey of parameter control in 
evolutionary algorithms). In fact, the general view today is that there is no fixed set of 
parameters that remain optimal throughout the search process even for a static problem. 
With variable parameters (self adapting or otherwise) finding some success on static 
problems, it would be natural to investigate them on dynamic problems. 
Cobb (1990) proposed hyper-mutation to track optima in continuously-changing 
environments, by increasing the mutation rate drastically when the quality of the best 
individuals deteriorates. Grefenstette (1992) proposed random immigrants to increase the 
population diversity by replacing a fraction of the population at every generation. 
Grefenstette (1999) compared genetically-controlled mutation with fixed mutation and hyper-
mutation, and reported that genetically controlled mutation performed slightly worse than 
the hypermutation whereas fixed mutation produced the worst results. 

3.3 Memory 
When the problem exhibits periodic behaviour, old solutions might be used to bias the 
search in their vicinity and reduce computational time. Ng & Wong (1995) and Lewis et al. 
(1998) are among the first who used memory-based approaches in dynamic problems. 
However, if used at all, memory should be used with care as it may have the negative effect 
of misleading the GA and preventing it from exploring new promising regions (Branke 
1999). This should be expected in dynamic environments where information stored in 
memory becomes more and more obsolete as time proceeds. 

3.4 Multiple population genetic algorithms 
The inherent parallel structure of GAs makes them ideal candidates for parallelization. Since 
the GA modules work on the individuals of the population independently, it is 
straightforward to parallelize several aspects of a GA including the creation of initial 
populations, individual evaluation, crossover, and mutation. Communication between the 
processors will be needed only in the selection module since individuals are selected 
according to global information distributed among all the processors. 
Island genetic algorithms (IGA) (Tanese 1989; Whitley & Starkweather 1990) alleviate the 
communication load, and lead to better solution quality at the expense of slightly slower 



 Advances in Evolutionary Algorithms 

 

212 
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convergence. They have showed a speedup in computation time. Even when an IGA was 
implemented in a serial manner (i.e., using a single processor), it was faster than the 
standard GA in reaching the same solutions. 
Several multi-population implementations were specifically developed for dynamic 
environments, for example the shifting balance genetic algorithm (SBGA) by Wineberg and 
Oppacher (2000); the multinational genetic algorithm (MGA) by Ursem (2000); and the self-
organizing scouts (SOS) by Branke et al. (2000). 
In SBGA there is a single large core population that contains the best found individual, and 
several small colony populations that keep searching for new optima. The main function of 
the core population is to track the shifting optimal solution. The colonies update the core 
population by sending immigrants from time to time. 
The SOS approach adopts an opposite approach to SBGA by allocating the task of searching 
for new optima to the base (main) population and the tracking to the scout (satellite) 
populations. The idea in SOS is that once a peak is discovered there is no need to have many 
individuals around it; a fraction of the base population is sufficient to perform the task of 
tracking that particular peak over time. By keeping one large base population, SOS behaves 
more like a standard GA—rather than an IGA—since the main search is allocated to one 
population. This suggests that the method will be more effective when the environment is 
dynamic (many different optima arise through time) and hence the use of scouts will be 
warranted. SOS is more adaptive than SBGA, which basically maintains only one good 
solution in its base. 
MGA uses several populations of comparable sizes, each containing one good individual 
(the peak of the neighbourhood). MGA is also self-organizing since it structures the 
population into subpopulations using an interesting procedure called hill-valley detection, 
which causes the immigration of an individual that is not located on the same peak with the 
rest of its population and the merging of two populations that represent the same peak. The 
main disadvantage of MGA is the frequent evaluations done for valley detection. 

3.5 Adapting search to population diversity 
There is a growing trend of using population diversity to guide evolutionary algorithms. 
Zhu (2003) presents a diversity-controlling adaptive genetic algorithm (DCAGA) for the vehicle 
routing problem. In this model, the population diversity is maintained at pre-defined levels 
by adapting rates of GA operators to the problem dynamics. However, it may be difficult to 
set a single value as a target as there is no agreed upon accurate measure for diversity 
(Burke et al. 2004). Moreover, the contemporary notion that the best set of genetic 
parameters changes during the run can be used to reason that the value of the best (target) 
diversity also changes during the run. 
Ursem (2002) proposes diversity-guided evolutionary algorithms (DGEA) which measures 
population diversity as the sum of distances to an average point and uses it to alter the 
search between an exploration phase and an exploitation phase. Riget & Vesterstroem (2002) 
use a similar approach but with particle swarm optimization. However, the limitation on 
runtime in dynamic problems may not permit alternate phases. 

4. Efficient solvers for dynamic COPs 
From the foregoing discussion, techniques based on parameter adaptation and multiple 
populations seem to be the most promising for tackling dynamic optimization problems. 
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These techniques, however, were designed for either static problems or dynamic continuous 
optimization problems, thus none can be used without modification for dynamic COPs. This 
section introduces two models that are specifically designed for dynamic COPs: the first 
model uses measured population diversity to control the search process, and the second 
model extends the first model using multiple populations. 

4.1 Adaptive diversity model 
The adaptive diversity model (ADM) is comparable in many ways to other diversity controlled 
models. ADM, like DCAGA, controls the genetic parameters. However, unlike DCAGA 
ADM controls the parameter during environmental changes, and without specifying a 
single target for diversity. ADM, like DGEA, uses two diversity limits to control the search 
process, however, it does not reduce the search to the distinct pure exploitation and pure 
exploration phases, and it does not rely on the continuity of chromosome representation. 
In deciding on the best measure for population diversity, it is important to keep in mind that 
the purpose of measuring diversity is to assess the explorative state of the search process to 
update the algorithm parameters, rather than precisely determining variety in the 
population as a goal in itself. For this goal, diversity measures that are based on genotopic 
distances are convenient since genetic operators act directly on genotype. 
Costs of computing diversity of a population of size n can be reduced by a factor of n by 
using an average point to represent the whole population. However, arithmetic averages 
can be used only with real-valued representations. Moreover, an arithmetic average does 
not reflect the convergence point of a population, since evolutionary algorithms are 
designed to converge around the population-best. Hence, it is more appropriate to measure 
the population diversity in terms of distances from the population-best rather than distances 
from an average point. By reserving individual vn for the population-best, the aggregated 
genotypic measure (d) of the population can be expressed as 

 
(5) 

Considering the mutation operator for a start, ADM can be described as follows. When an 
environmental change is detected (at t = tm), the mutation rate is set to an upper limit μ . 
While the environment is static (tm ≤ t < tm+1), population diversity d(t) is continually 
measured and compared to two reference values, an upper limit dh and a lower limit dl, and 
the mutation rate μ (t) is adjusted using the following scheme: 

 

(6) 

 
The formula for adaptive crossover rate Â(t) is similar to that of mutation. However, since 
high selection pressures reduce population diversity the selection probability s(t) is adapted 
in an opposite manner to that used for mutation in Equation 6, as follows: 
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(7) 

where s and s  are the lower and the upper limits of selection probability respectively; and 
Zl, and Zh are as given earlier in the mutation formula 6. 
Figure 3 illustrates the general principle of the ADM, and how it drives genetic parameters 
toward exploration or exploiting in response to measured diversity. In this figure, P can be 
the value of any of the controlled genetic parameters μ, χ or s. Pr corresponds to maximum 

exploration values; i.e., μ , χ or s, whereas Pt corresponds to maximum exploitation values 
( μ , χ , or s ). 
The pseudo code for a dynamic solver using ADM can be obtained from Figure 5, by setting 
the number of islands to one and cancelling the call to PerformMigration(). 
 

 
Fig. 3. Diversity range is divided into five regions.  
Low diversity maps the genetic parameter into a more explorative value (e.g., P1) and high 
diversity maps it into a less explorative value (e.g., P2). Diversity values between dl and dh do 
not change the current values of the genetic parameters (the parameter is mapped into its 
original value P0). The farther the diversity is from the unbiased range, the more change to 
the genetic parameter. Diversity in the asymptotic regions maps the parameter into one of 
its extreme values (Pmax.exploration or Pmax.exploitation) . 

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments 

 

217 

4.2 Adaptive island model 
The adaptive island model (AIM) shares many features with other multiple population 
evolutionary algorithms that have been mentioned previously. However, unlike SBGA and 
SOS, AIM uses a fixed number of equal-size islands. In addition, no specific island is given 
the role of base or core island in AIM: the island that contains population-best is considered 
the current base island. AIM maintains several good solutions at any time, each of which is 
the center of an island. Accordingly, all islands participate in exploring the search space and 
at the same time exploit good individuals. AIM is more like MGA, but still does not rely on 
the continuity nature of the variables to guide the search process. As well, AIM uses 
diversity-controlled genetic operators, in a way similar to that of ADM. 
AIM extends the function of ADM to control a number of islands. Thus, two measures of 
diversity are used to guide the search: an island diversity measure and a population 
diversity measure. Island diversity is measured as the sum of distances from individuals in 
the island to the island-best, and population diversity is measured as the sum of the 
distances from each island best to the best individual in all islands. 
Each island is basically a small population of individuals close to each other. It evolves 
under the control of its own diversity independently from other islands. The best individual 
in the island is used as an aggregate point for measuring island diversity and as a 
representative of the island in measuring inter-island diversity (or simply population 
diversity). 
With the islands charged with maintaining population diversity, the algorithm becomes less 
reliant on the usual (destructive) high rates of mutation. Furthermore, mutation now is 
required to maintain diversity within individual islands (not within entire population), thus 
lower rates of mutation are needed. Therefore, mutation rate in AIM, though still diversity 
dependent, has a lower upper limit. 
In order to avoid premature convergence due to islands being isolated from each other, 
individuals are forced to migrate from one island to another at pre-defined intervals in a 
ring-like scheme, as illustrated in Figure 4. This scheme helps impart new genetic material to 
destination islands and increase survival probability of high fitness individuals. 
 

 
Fig. 4. Ring migration scheme, with the best individuals migrating among islands 

On the global level, AIM is required to keep islands in different parts of the search space. 
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4.2 Adaptive island model 
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considered a duplicate, and consequently its individuals are mutated to cover a different 
region of the search space. Elite solutions consisting of the best individual from each island 
are retained throughout the isolation period. During migration, elite solutions are not lost 
since best individuals are forced to migrate to new islands. 
At environmental changes, each island is re-evaluated and its genetic parameters are reset to 
their respective maximum exploration limits. During quiescent phases of the environment, 
genetic parameters are changed in response to individual island diversity measures. A 
pseudo code for AIM is given in Figure 5. 
 

 
Fig. 5. Pseudo code for AIM. The model can be reduced to ADM by setting the number of 
islands to one, and cancelling the call to PerformMigration(). 
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5. Empirical study and analysis 
The main purpose of this section is to demonstrate the applicability of the adaptive models 
to realistic problems. First, this section describes the performance measure and the strategies 
under comparison. Benchmarks and modes of dynamics are then given for each problem 
together with the results of comparison. Statistical analysis of the significance of the 
comparisons is given in an appendix at the end of this article. 

5.1 Standard strategies and measures of performance 
The dynamic test problems are used to compare the proposed techniques against three 
standard models: a fixed model (FM) that uses a GA with fixed operator rates and does not 
apply any specific measures to tackle dynamism in the problem, a restart model (RM) that 
randomly re-generates the population at each environmental change, and a random 
immigrants model (RIM) that replaces a fraction (10%) of the population with random 
immigrants (randomly generated individuals) at each environmental change. 
Since the problems considered in this article are minimization of cost functions, the related 
performance measures are directly based on the solution cost rather than on the fitness. 
First, a mean best of generation (MBG) is defined after G generations of the rth run as: 

 
(8) 

where e θ
r  is the cost associated with the individual evaluated at time step θ and run r, tg is 

the time step at which generation g started, and ˆgc  is the optimal cost (or the best known 
cost) to the problem instance at generation g. The algorithm’s performance on the 
benchmark over R runs can then be abstracted as 

 
(9) 

With these definitions, smaller values of the performance measure indicate improved 
performance. Moreover, since MBG is measured relative to the value of the best solutions 
found during benchmark construction, it will in general exceed unity. Less than unity 
values, if encountered, indicate superior performance of the corresponding model in that the 
dynamic solver with limited (time per instance) budget outperforms a static solver with 
virtually unlimited budget. 

5.2 Algorithm parameter settings 
In all tested models, the underlying GA is generational with tournament selection in which 
selection pressure can be altered by changing a selection probability parameter. A 
population of fifty individuals is used throughout. The population is divided into five 
islands in the AIM model (i.e., ten individuals per island). 
The FM, RM and RIM models use a crossover rate of 0.9 and a selection probability of 1.0. 
The mutation rate is set to the inverse of the chromosome length (Reeves & Rowe 2002). For 
the ADM and AIM models, the previous values represent the exploitation limits of their 
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corresponding operators, with the exploration limits being 1.0 for crossover, 0.9 for 
selection, and twice the exploitation limit for mutation. 
For TSP, edge crossover (Whitley et al. 1991) and pair-wise node swap mutation are used 
throughout. The mutation operator sweeps down the list of bits in the chromosome, 
swapping each with a randomly selected bit if a probability test is passed. 
For FMS, a simple single-point crossover operator and a standard mutation operator are 
used throughout (Younes et al. 2002). 

5.3 TSP experimentation 
5.3.1 TSP benchmark problems 
Static problems of sizes comparable to those reported in the literature (Guntsch et al. 2001; 
Eyckelhof & Snoek 2002) are used in the comparative experiments of this section. These 
problems are given in the TSP library (Reinelt 1991) as berlin52, kroA100, and pcb442. In this 
article they are referred to as be52, k100, and p442 respectively. Dynamic versions are 
constructed from these problems in three ways (modes): an edge change mode (ECM), an 
insert/delete mode (IDM) and a vertex swap mode (VSM). 
Edge change mode The ECM mode reflects one of the real-world scenarios, a traffic jam. 

Here, the distance between the cities is viewed as a time period or cost that may 
change over time, hence the introduction and the removal of a traffic jam, 
respectively, can be simulated by the increase or decrease in the distance between 
cities. The change step of the traffic jam is the increase in the cost of a single edge. 
The strategy is as follows: If the edge cost is to be increased then that edge should 
be selected from the best tour. However, if the cost were to be reduced then the 
selected edge should not be part of the best tour.  
The BG starts from one known instance and solves it to find the best or the near 
best tour. An edge is then selected randomly from the best tour, and its cost is 
increased by a user defined factor creating a new instance which will likely have a 
different best tour. 

Insert/delete mode The IDM mode reflects the addition and deletion of new assignments 
(cities). This mode works in a manner similar to the ECM mode. The step of the 
change in this mode is the addition or the deletion of a single city. This mode 
generates the most difficult problems to solve dynamically since they require 
variable chromosome length to reflect the increase or decrease in the number of 
cities from one instance to the next. 

Vertex swap mode The VSM mode is another way to create a dynamic TSP by 
interchanging city locations. This mode offers a simple, quick and easy way to test 
and analyze the dynamic algorithm. The locations of two randomly selected cities 
are interchanged; this does not change the length of the optimal tour but does 
change the solution (this is analogous to shifting the independent variable(s) of a 
continuous function by a predetermined amount). The change step (the smallest 
possible change) in this mode is an interchange of costs between a pair of cities; this 
can be very large in comparison with the change steps of the previous two modes. 

In the experiments conducted, each benchmark problem is created from an initial sequence 
of 1000 static problems inter-separated by single elementary steps. Depending on the 
specified severity, a number of intermediate static problems will be skipped to construct one 
test problem. 
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Each sequence of static problems is translated into 21 dynamic test problems by combining 
seven degrees of severity (1, 5, 10, 15, 20, 25 steps per shift, and random) and three periods 
of change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50, and 100 
generations per shift based on a population of 50 individuals). 

5.3.2 TSP results 
Experimental results on the dynamic k100 problem in the VSM mode under three different 
periods of change are given in Figure 6, where the mean best of generation (averaged over 
ten runs) is plotted against severity of change. The ADM and AIM models outperform the 
other models in almost all cases. The other three models give comparable results to each 
other in general, with differences in solution quality tending to decrease as the severity of 
change increases. Only when the change severity is 10 steps per shift or more, may the other 
models give slightly better performance than ADM and AIM. Keep in mind that in this 100 
vertex problem, a severity of 10 in the VSM mode amounts to changing (4 × 10) edges; that 
is, about 40% of the edges in an individual are replaced, which constitutes a substantial 
amount of change. As we are interested in small environmental changes (which are the 
norm in practice), we can safely conclude that the experiments attest to the superiority of the 
ADM and AIM over the other three models in the range of change of interest. 
 

 
Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 6. Comparison of evolutionary models (k100 VSM) 
 

 
Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 7. Comparison of evolutionary models (k100 ECM) 

Running the benchmark generator in either the ECM mode or the IDM mode gives similar 
results as illustrated in Figure 7 and Figure 8 respectively. It can be seen that ADM and AIM 
outperform the other models in most considered dynamics. 
The RM model produces the worst results in all conducted experiments (even though this 
model has been modified to retain the best solution in the hope of obtaining better results 
than those obtainable using a conventional restart). 
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Fig. 8. Comparison of evolutionary models (k100 IDM) 

It is not easy to conclude from previous results the superiority of either model (ADM or 
AIM), since both give very comparable results in almost all cases. However, when more 
than one processor can be used, AIM is the best of the two models since it can be easily 
parallelized by allocating different islands to different processors and consequently reduce 
computation time drastically. 

5.4 FMS experimentation 
5.4.1 FMS benchmark problems 
Four instances of sizes comparable to those used in the literature (Younes et al. 2002) are 
used in the comparative experiments of this section. 
Three of these instances (20 agents, 200 jobs), (20 agents, 100 jobs) and (10 agents, 100 jobs) 
were used in Chu and Beasley (1997). The data describing these problems can be found in 
the gapd file in the OR-library (Beasley 1990). In this article they are referred to as gap1, gap2, 
and gap3 respectively. As described in Chen & Ho (2002), agents are considered as 
machines, jobs are considered as operations, and each part is assumed to consist of five 
operations. In these instances, a machine is assumed capable of performing all the required 
operations. However, in general machines may have limited capabilities; that is, each 
machine can perform a specific set of operations that may or may not overlap with those of 
the other machines. To enable this feature, a machine-operation incidence matrix is 
generated for each instance as follows: If the cost of allocating a job to an agent is below a 
certain level, the corresponding entry in the new incidence matrix is equal to one to indicate 
that the machine is capable of performing the corresponding operation. Alternatively, if the 
cost is above this level, the corresponding entry in the incidence matrix is zero to indicate 
that the job is not applicable to the machine. The final lists that associate parts with 
operations and machines with operations are used to construct the dynamic problems. 
The fourth problem instance is randomly generated. It was specifically designed and used to 
test FMS systems with overlapping capabilities in Younes et al. (2002). This instance consists 
of 11 machines, 20 parts, and 9 operations. In this article, it is referred to as rnd1. 
In terms of the number of part operations (chromosome length) and the number of machines 
(alleles), the dimensions of these problems are 200×20, 100×20, 100×10,and 62×11 for gap1, 
gap2, gap3, and rnd1 respectively. 
Dynamic problems are constructed from these instances in three ways (modes): a machine 
delete mode (MDM), a part add mode (PAM), and a machine swap mode (MSM). 
Machine delete mode The MDM mode reflects the real-world scenarios in which a machine 

suddenly breaks down. The change step of this mode is the deletion of a single 
machine. 
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Part add mode The PAM mode reflects the addition and deletion of new assignments 
(parts). The step of change in this mode is the addition or the deletion of a single 
part. This mode requires variable representation to reflect the increase or decrease 
in the number of operations associated with the changing parts. 

 
Machine swap mode The MSM mode is a direct application of the mapping-based 

benchmark generation scheme (Younes et al. 2005). By interchanging machine 
labels, a dynamic FMS can be generated easily and quickly. The change step in this 
mode is an interchange of a single pair of machines. As a mapping change scheme, 
this mode does not require computing a new solution after each change. We only 
need to swap the machines of the current optimal solution to determine the 
optimum of the next instance. 

In the current experimentation, each benchmark problem is created from an initial sequence 
of 100 static problems inter-separated by single elementary steps. Depending on the 
specified severity, a number of intermediate static problems will be skipped to construct one 
test problem. 
Each sequence of static problems is translated into 18 dynamic test problems by combining 
seven degrees of severity (1, 2, 3, 5, 10 steps per shift, and random) and three periods of 
change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50, and 100 
generations per shift based on a population of 50 individuals). 

5.4.2 FMS results 
Experiments were conducted on the rnd1, gap1, gap2, and gap3 problems in the three 
modes of environmental change. In this section, we focus on the gap1 problem, the largest 
and presumably the hardest, and on the rnd1 problem, the most distinct. Results of 
comparisons in the MSM mode are shown in Figure 9, where the average MBG (over ten 
runs) is plotted against different values of severity. First, we notice that results of the RM 
model are inferior to those of the other models when the change severity is small. As 
severity increases, RM results become comparatively better, and at extreme severities RM 
outperforms the other models. This trend is consistent over different periods of 
environmental change confirming our notion that restart strategies are best used when the 
problem changes completely; i.e., when no benefits are expected from re-using old 
information. 
 

 
Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 9. Comparison of evolutionary models (rnd1 MSM) 

Starting with the ten generation period, we notice that models that reuse old information (all 
models except for RM) give comparable performance. However, as the period of change 
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increases, differences between their performance become more apparent. This trend can be 
explained as follows: when the environmental change is fast, the models do not have 
sufficient time to converge, and hence they give nearly the same results. When allowed 
more time, the models start to converge, and those using the best approach to persevere 
after obsolete convergence produce the best results. The AIM model clearly stands out as the 
best model. 
Comparing the five models on the PAM and MDM modes confirms the results obtained on 
the MSM mode. The inferiority of the RM model and the superiority of the AIM model 
persist, as can be seen in Figure 10 and Figure 11. 
 

  
Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 10. Comparison of evolutionary models (rnd1 PAM) 
 

   
Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 11. Comparison of evolutionary models (rnd1 MDM) 

The inferior performance of the RM model is more apparent in the other, large, test 
problems: the performance of the RM model is consistently poor across the problem 
dynamics whereas the performance of the other models deteriorates as the severity of 
environmental change increases. Figure 12 shows the case of gap1 in the MSM mode (other 
modes show similar behaviour). Comparing the gap1 results to those of rnd1, the apparent 
deterioration of RM (relative to the other models) in the case of gap1 can be explained by 
examining change severity. Although values of severity are numerically the same in both 
cases, relative to problem size they are different, since gap1 is larger than rnd1. In other 
words, the severity range used in the experiments on gap1 is virtually less than that used on 
rnd1. 
In summary, we can conclude that AIM is the best of the five models, as illustrated clearly in 
the rnd1 experiments. For other problems in which AIM seems to produce comparable 
results to those of the other models, we can still opt for the AIM model as it offers the 
additional advantage of being easy to parallelize, as mentioned in the TSP results section. 
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Period = 10 generations Period = 50 generations Period = 100 generations 

Fig. 12. Comparison of evolutionary models (gap1 MSM) 

6. Conclusions and future work 
The island based model proves to be effective under different dynamics. Although statistical 
analysis suggest that these benefits are not significant under some problem dynamics, this 
model can be more rewarding if several processors are employed. With each island 
allocated to a different processor, the per processor computational costs are reduced 
significantly. 
The problem of parameter tuning is aggravated with dynamic environments, as a result of 
the increased problem complexity and the increased number of algorithm parameters; 
however, by using diversity to control the EA parameters, the models developed in this 
article had significantly reduced tuning efforts. 
There are several ways in which the developed models can be applied and improved: 
• The effectiveness of the developed methods on the TSP and FMS problems encourages 

their application to other problems, such as intelligent transportation systems, engine 
parameter control, scheduling of airline maintenance, and dynamic network routing. 

• Diversity controlled models can use operator-specific diversity measures so that each 
operator is controlled by its respective diversity measure, i.e., based on algorithmic 
distance. Future work that is worth exploring involves using adaptive limits of 
diversity for the models presented in this article. 

7. Appendix. Statistical analysis 
Statistical t-tests that are used to compare the means of two samples can be used to compare 
the performance of two algorithms. The typical t-test is performed to build a confidence 
interval that is used to either accept or reject a null hypothesis that both sample means are 
equal. In applying this test to compare the performance of two algorithms, the measures of 
performance are treated as sample means, the required replicates of each sample mean are 
obtained by performing several independent runs of each algorithm, and the null 
hypothesis is that there is no significant difference in the performance of both algorithms. 
However, when more than two samples are compared, the probability of multiple t-tests 
incorrectly finding a significant difference between a pair of samples increases with the 
number of comparisons. Analysis of variance (ANOVA) overcomes this problem by testing 
the samples as a whole for significant differences. Therefore, in this article, ANOVA is 
performed to test the hypothesis that measures of performance of all the models under 
considerations are equal. Then, a multiple post ANOVA comparison test, known as Tukey’s 
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test, is carried out to produce 95% confidence intervals for the difference in the mean best of 
generation of each pair of models. 
Statistical results reported here are obtained using a significance level of 5% to construct 
95% confidence intervals on the difference in the mean best of generation. Tables in this 
section summarize the statistical computations of the results reported in Section 5: Table 1, 
Table 2, and Table 3 are for TSP K100 problem in the three modes of change (respectively, 
ECM, IDM, and VSM); Table 4 and Table 5 are for the FMS rnd1 and gap1 problems in the 
MSM mode. 
 

 
Table 1. Multiple comparison test of evolutionary models (k100-VSM) 
 

 
 

Table 2. Multiple comparison test of evolutionary models (k100-ECM) 

 
Table 3. Multiple comparison test of evolutionary models (k100-IDM) 

Each table covers the combinations of problem dynamics (periods of change and levels of 
severity of change) described earlier, and an additional column for a random severity) The 
entries in these tables are interpreted as follows. An entry of 1 signifies that the confidence 
interval for the difference in performance measures of the corresponding pair consists 
entirely of positive values, which indicates that the first model is inferior to the second 
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model. Conversely, an entry of -1 signifies that the confidence interval for the corresponding 
pair consists entirely of negative values, which indicates that the first model is superior to 
the second one. An entry of 0 indicates that there is no significant difference between the 
two models. 
 

 
Table 4. Multiple comparison test of evolutionary models (rnd1-MSM) 

Statistical analysis confirms the arguments made on the graphical comparisons in the 
previous section. As can be seen in Table 1, 2, and 3, there are significant differences 
between the performance of the adaptive models (ADM and AIM) and the other three 
models (FM, RM, and RIM), while there is no significant difference between ADM and AIM. 
Collectively, the statistical tables confirm the graphical comparisons presented in the 
previous section. As can be seen in Table 4, and 5, there are significant differences between 
the performance of the RM model and all others. 
 

 
Table 5. Multiple comparison test of evolutionary models (gap1-MSM) 
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1. Introduction 
Evolutionary algorithms (EAs) are optimization and search techniques inspired by the 
Darwinian model of biological evolutionary processes (Bäck et al., 1997). EAs are robust and 
efficient techniques, which find approximate solutions to many problems which are difficult 
or even impossible to solve with the use of “classical” techniques. There are many different 
types of evolutionary algorithms developed during over 40 years of research. 
One of the branches of EAs are co-evolutionary algorithms (CEAs) (Paredis, 1998). The main 
difference between EAs and CEAs is the way in which the fitness of an individual is 
evaluated in each approach. In the case of evolutionary algorithms each individual has the 
solution of the given problem encoded within its genotype and its fitness depends only on 
how “good” is that solution. In the case of co-evolutionary algorithms of course there is also 
obviously solution to the given problem encoded within the individual’s genotype but the 
fitness is estimated on the basis of interactions of the given individual with other 
individuals present in the population. Thus co-evolutionary algorithms are applicable in the 
case of problems for which it is difficult or even impossible to formulate explicit fitness 
function—in such cases we can just encode the solutions within the individuals’ genotypes 
and individuals compete—or co-operate—with each other, and such process of interactions 
leads to the fitness estimation. Co-evolutionary interactions between individuals have also 
other positive effects. One of them is maintaining the population diversity, another one are 
“arms races”—continuous “progress” toward better and better solutions to the given 
problem via competition between species. 
Co-evolutionary algorithms are classified into two general categories: competitive and 
cooperative (Paredis, 1998). The main difference between these two types of co-evolutionary 
algorithms is the way in which the individuals interact during the fitness estimation. In the 
case of competitive co-evolutionary algorithms the value of fitness is estimated as a result of 
the series of tournaments, in which the individual for which the fitness is estimated and 
some other individuals from the population are engaged. The way of choosing the 
competitors for tournaments may vary in different versions of algorithms—for example it 
may be the competition with the best individual from the other species or competition with 
several randomly chosen individuals, etc. 
On the other hand, co-operative co-evolutionary algorithms (CCEAs) are CEAs in which 
there exist several sub-populations (species) (Potter & De Jong, 2000). Each of them solves 



 Advances in Evolutionary Algorithms 

 

230 

Younes, A., Calamai, P., and Basir, O. 2005. Generalized benchmark generation for dynamic 
combinatorial problems. In Genetic and Evolutionary Computation Conference 
(GECCO2005) workshop program. ACM Press,Washington, D.C., USA, 25–31. 

Younes, A., Ghenniwa, H., and Areibi, S. 2002. An adaptive genetic algorithm for multi 
objective flexible manufacturing systems. In Proceedings of the Genetic and 
Evolutionary Computation Conference (GECCO2002). Morgan Koffman, New York, 
New York, 1241–1249. 

Zhu, K. Q. 2003. A diversity-controlling adaptive genetic algorithm for the vehicle routing 
problem with time windows. In ICTAI. 176–183. 

12 

Agent-Based Co-Evolutionary Techniques for 
Solving Multi-Objective Optimization Problems 

Rafał Dreżewski and Leszek Siwik 
AGH University of Science and Technology 

Poland 

1. Introduction 
Evolutionary algorithms (EAs) are optimization and search techniques inspired by the 
Darwinian model of biological evolutionary processes (Bäck et al., 1997). EAs are robust and 
efficient techniques, which find approximate solutions to many problems which are difficult 
or even impossible to solve with the use of “classical” techniques. There are many different 
types of evolutionary algorithms developed during over 40 years of research. 
One of the branches of EAs are co-evolutionary algorithms (CEAs) (Paredis, 1998). The main 
difference between EAs and CEAs is the way in which the fitness of an individual is 
evaluated in each approach. In the case of evolutionary algorithms each individual has the 
solution of the given problem encoded within its genotype and its fitness depends only on 
how “good” is that solution. In the case of co-evolutionary algorithms of course there is also 
obviously solution to the given problem encoded within the individual’s genotype but the 
fitness is estimated on the basis of interactions of the given individual with other 
individuals present in the population. Thus co-evolutionary algorithms are applicable in the 
case of problems for which it is difficult or even impossible to formulate explicit fitness 
function—in such cases we can just encode the solutions within the individuals’ genotypes 
and individuals compete—or co-operate—with each other, and such process of interactions 
leads to the fitness estimation. Co-evolutionary interactions between individuals have also 
other positive effects. One of them is maintaining the population diversity, another one are 
“arms races”—continuous “progress” toward better and better solutions to the given 
problem via competition between species. 
Co-evolutionary algorithms are classified into two general categories: competitive and 
cooperative (Paredis, 1998). The main difference between these two types of co-evolutionary 
algorithms is the way in which the individuals interact during the fitness estimation. In the 
case of competitive co-evolutionary algorithms the value of fitness is estimated as a result of 
the series of tournaments, in which the individual for which the fitness is estimated and 
some other individuals from the population are engaged. The way of choosing the 
competitors for tournaments may vary in different versions of algorithms—for example it 
may be the competition with the best individual from the other species or competition with 
several randomly chosen individuals, etc. 
On the other hand, co-operative co-evolutionary algorithms (CCEAs) are CEAs in which 
there exist several sub-populations (species) (Potter & De Jong, 2000). Each of them solves 



 Advances in Evolutionary Algorithms 

 

232 

only one sub- problem of the given problem. In such a case the whole solution is the group 
of individuals composed of the representants of all sub-populations. Individuals interact 
only during the fitness estimation process. In order to evaluate the given individual, 
representants from the other sub-populations are chosen (different ways of choosing such 
representants may be found in (Potter & De Jong, 2000)). Within the group the given 
individual is evaluated in such a way that the fitness value of the whole solution (group) 
becomes the fitness value of the given individual. Individuals coming from the same species 
are evaluated within the group composed of the same representants of other species. 
Sexual selection is another mechanism used for maintaining population diversity in EAs. 
Sexual selection results from the co-evolution of female mate choice and male displayed trait 
(Gavrilets & Waxman, 2002). Sexual selection is considered to be one of the ecological 
mechanisms responsible for biodiversity and sympatric speciation (Gavrilets &Waxman, 
2002; Todd & Miller, 1997). The research on sexual selection mechanism generally 
concentrated on two aspects. The first one was modeling and simulation of sexual selection 
as speciation mechanism and population diversity mechanism (for example see (Gavrilets 
&Waxman, 2002; Todd & Miller, 1997)). The second one was the application of sexual 
selection in evolutionary algorithms as a mechanism for maintaining population diversity. 
The applications of sexual selection include multi-objective optimization (Allenson, 1992; Lis 
& Eiben, 1996) and multimodal optimization (Ratford et al., 1997). 
In the case of evolutionary multi-objective optimization (Deb, 1999), high quality 
approximation of Pareto frontier (basic ideas of multi-objective optimization are introduced 
in Section 2) should fulfill at least three distinguishing features. First of all, the population 
should be “located” as close to the ideal Pareto frontier as possible. Secondly it should 
include as many alternatives (individuals) as possible and, last but not least, all proposed 
non-dominated alternatives should be evenly distributed over the whole true Pareto set. In 
the case of multi-objective optimization maintaining of population diversity plays the 
crucial role. Premature loss of population diversity can result not only in lack of drifting to 
the true Pareto frontier but also in obtaining approximation of Pareto set that is focused 
around its selected area(s), what is very undesirable. In the case of multi-objective problems 
with many local Pareto frontiers (so called “multi-modal multi-objective problems” defined 
by Deb in (Deb, 1999)) the loss of population diversity may result in locating only a local 
Pareto frontier instead of a global one. 
Co-evolutionary multi-agent systems (CoEMAS) are the result of research on decentralized 
models of co-evolutionary computations. CoEMAS model is the extension of “basic” model 
of evolution in multi-agent system—evolutionary multi-agent systems (EMAS) (Cetnarowicz et 
al., 1996). The basic idea of such an approach is the realization of evolutionary processes in 
multi-agent system—the population of agents evolves, agents live within the environment, 
they can reproduce, die, compete for resources, observe the environment, communicate with 
other agents, and make autonomously all their decisions concerning reproduction, choosing 
partner for reproduction, and so on. Co-evolutionary multi-agent systems additionally 
allow us to define many species and sexes of agents and to introduce interactions between 
them (Dreżewski, 2003). 
All these features lead to completely decentralized evolutionary processes and to the class of 
systems that have very interesting features. It seems that the most important of them are the 
following: 
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• synchronization constraints of the computations are relaxed because the evolutionary 
processes are decentralized—individuals are agents, which act independently and do 
not need synchronization, 

• there exists the possibility of constructing hybrid systems using many different 
computational intelligence techniques within one single, coherent multi-agent 
architecture, 

• there are possibilities of introducing new evolutionary and social mechanisms, which 
were hard or even impossible to introduce in the case of classical evolutionary 
algorithms. 

The possible areas of application of CoEMAS include multi-modal optimization (for 
example see (Dreżewski, 2006)), multi-objective optimization (the review of selected results 
is presented in this chapter), and modeling and simulation of social and economical 
phenomena. 
This chapter starts with the overview of multi-objective optimization problems. Next, 
introduction to the basic ideas of CoEMAS systems—the general model of co-evolution in 
multi-agent system—is presented. In the following parts of the chapter the agent-based co-
evolutionary systems for multi-objective optimization are presented. Each system is 
described with the use of notions and formalisms introduced in the general model of 
coevolution in multi-agent system. Each of the presented systems uses different 
coevolutionary interactions and mechanisms: sexual selection mechanism, and host-parasite 
co-evolution. For all the systems results of experiments with commonly used multi-objective 
test problems are presented. The results obtained during the experiments are the basis for 
comparisons of agent-based co-evolutionary techniques with “classical” evolutionary 
approaches. 

2. An introduction to multi-objective optimization 
During most real-life decision processes many different (often contradictory) factors have to 
be considered, and the decision maker has to deal with an ambiguous situation: the 
solutions which optimize one criterion may prove insufficiently good considering the 
others. From the mathematical point of view such multi-objective (or multi-criteria) problem 
can be formulated as follows (Coello Coello et al., 2007; Abraham et al., 2005; Zitzler, 1999; 
Van Veldhuizen, 1999). 
Let the problem variables be represented by a real-valued vector: 

 (1) 

where m is the number of variables. Then a subset of Rm of all possible (feasible) decision 

alternatives (options) can be defined by a system of: 
• inequalities (constraints): gk( x ) ≥ 0 and k = 1, 2, . . . , K 
• equalities (bounds): hl( x ) = 0, l = 1, 2, . . . , L 
and denoted by D. The alternatives are evaluated by a system of n functions (objectives) 
denoted here by vector F = [ f1, f2, . . . , fn]T : 

 (2) 
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Because there are many criteria–to indicate which solution is better than the other–
specialized ordering relation has to be introduced. To avoid problems with converting 
minimization to maximization problems (and vice versa of course) additional operator � 
can be defined. Then, notation 1x � 2x  indicates that solution 1x  is simply better than 
solution 2x  for particular objective. Now, the crucial concept of Pareto optimality (what is 
the subject of our research) i.e. so called dominance relation can be defined. It is said that 
solution Ax  dominates solution Bx  ( Ax ≺ Bx ) if and only if: 

 
A solution in the Pareto sense of the multi-objective optimization problem means 
determination of all non-dominated alternatives from the set D. The Pareto-optimal set 
consists of globally optimal solutions and is defined as follows. The set P ⊆ D is global 
Pareto-optimal set if (Zitzler, 1999): 

 (3) 

There may also exist locally optimal solutions, which constitute locally non-dominated set 
(local Pareto-optimal set) (Deb, 2001). The set Plocal ⊆ D is local Pareto-optimal set if (Zitzler, 
1999): 

 
where �·� is a distance metric and ε > 0, δ > 0. 
These locally or globally non-dominated solutions define in the criteria space so-called local 
(PFlocal) or global (PF ) Pareto frontiers that can be defined as follows: 

 (4a)

 (4b) 

Multi-objective problems with one global and many local Pareto frontiers are called 
multimodal multi-objective problems (Deb, 2001). 

3. General model of co-evolution in multi-agent system 
As it was said, co-evolutionary multi-agent systems are the result of research on 
decentralized models of evolutionary computations which resulted in the realization of 
evolutionary processes in multi-agent system and the formulation of model of co-evolution 
in such system. The basic elements of CoEMAS are environment with some topography, 
agents (which are located and can migrate within the environment, which are able to 
reproduce, die, compete for limited resources, and communicate with each other), the 
selection mechanism based on competition for limited resources, and some agent-agent and 
agent-environment relations defined (see Fig. 1). 
The selection mechanism in such systems is based on the resources defined in the system. 
Agents collect such resources, which are given to them by the environment in such a way 
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that “better” agents (i.e. which have “better” solutions encoded within their genotypes) are 
given more resources and “worse” agents are given less resources. Agents then use such 
resources for every activity (like reproduction and migration) and base all their decisions on 
the possessed amount of resources. 
 

 
Fig. 1. The idea of co-evolutionary multi-agent system 
In this section the general model of co-evolution in multi-agent system (CoEMAS) is 
presented. We will formally describe the basic elements of such systems and present the 
algorithm of agent’s basic activities. 

3.1 The co-evolutionary multi-agent system 
The CoEMAS is described as 4-tuple: 

 (5) 

where E is the environment of the CoEMAS , S is the set of species (s ∈ S ) that co-evolve in 
CoEMAS, Γ is the set of resource types that exist in the system, the amount of type γ resource 
will be denoted by rγ, Ω is the set of information types that exist in the system, the 
information of type ω will be denoted by iω. 

3.2 The environment 
The environment of CoEMAS may be described as 3-tuple: 

 (6) 

where TE is the topography of environment E, ΓE is the set of resource types that exist in the 
environment, ΩE is the set of information types that exist in the environment. The 
topography of the environment is given by: 
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 (7) 

where H is directed graph with the cost function c defined: H = 〈V, B, c〉, V is the set of 
vertices, B is the set of arches. The distance between two nodes is defined as the length of 
the shortest path between them in graph H. 
The l function makes it possible to locate particular agent in the environment space: 

 (8) 

where A is the set of agents, that exist in CoEMAS . 
Vertice v is given by: 

 (9) 

Av is the set of agents that are located in the vertice v, Γv is the set of resource types that exist 
within the v (Γv ⊆ ΓE), Ωv is the set of information types that exist within the v (Ωv ⊆ ΩE), φ is 
the fitness function. 

3.3 The species 
Species s ∈ S is defined as follows: 

 (10)

where: 
• As is the set of agents of species s (by as we will denote the agent, which is of species s, as ∈As); 
• SXs is the set of sexes within the s; 
• Zs is the set of actions, which can be performed by the agents of species s (Zs = 

 
Za, 

where Za is the set of actions, which can be performed by the agent a); 
• Cs is the set of relations with other species that exist within CoEMAS. 
The set of relations of si with other species (C is ) is the sum of the following sets of relations: 

 (11)

where  and  are relations between species, based on some actions z ∈ Z is , which can 
be performed by the agents of species si: 

 
(12)

 
(13)

If si si then we are dealing with the intra-species competition, for example the 
competition for limited resources, and if si  si then there is some form of co-operation 
within the species si. 
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With the use of the above relations we can define many different co-evolutionary 
interactions e.g.: predator-prey, host-parasite, mutualism, etc. For example, host-parasite 
interactions between two species, si (parasites) and sj (hosts) (i ≠ j) take place if and only if 

i is s
k lz Z z Z∃ ∈ ∧ ∃ ∈ , such that si  sj and sj si, and parasite can only live in tight co-

existence with the host. 

3.4 The sex 
The sex sx∈SXs which is within the species s is defined as follows: 

 (14)

where Asx is the set of agents of sex sx and species s (Asx ⊆As): 

 (15)

With asx we will denote the agent of sex sx (asx∈ Asx). Zsx is the set of actions which can be 
performed by the agents of sex sx, 

SX

asx

a A

Z Z
∈

= ∪ , where Za is the set of actions which can be 

performed by the agent a. And finally Csx is the set of relations between the sx and other 
sexes of the species s. 
Analogically as in the case of species, we can define the relations between the sexes of the 
same species. The set of all relations of the sex sxi ∈S Xs with other sexes of species s (C isx ) is 
the sum of the following sets of relations: 

 
(16)

where  and  are the relations between sexes, in which some actions z∈Z isx are 
used: 

 
(17)

 
(18)

If performing the action zk ∈ Z isx (which permanently or temporally increases the fitness of 
the agent a jsx of sex sxj ∈SXs) by the agent a isx of sex sxi∈SXs

 results in performing the action 
zl ∈Z isx by the agent a isx and performing the action zm∈Z jsx by the agent a jsx , what results in 
decreasing of the fitness of agents a isx and a jsx then such relation will be defined in the 

following way: 
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within the species si. 

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems 

 

237 

With the use of the above relations we can define many different co-evolutionary 
interactions e.g.: predator-prey, host-parasite, mutualism, etc. For example, host-parasite 
interactions between two species, si (parasites) and sj (hosts) (i ≠ j) take place if and only if 

i is s
k lz Z z Z∃ ∈ ∧ ∃ ∈ , such that si  sj and sj si, and parasite can only live in tight co-

existence with the host. 

3.4 The sex 
The sex sx∈SXs which is within the species s is defined as follows: 

 (14)

where Asx is the set of agents of sex sx and species s (Asx ⊆As): 

 (15)

With asx we will denote the agent of sex sx (asx∈ Asx). Zsx is the set of actions which can be 
performed by the agents of sex sx, 
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Z Z
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= ∪ , where Za is the set of actions which can be 

performed by the agent a. And finally Csx is the set of relations between the sx and other 
sexes of the species s. 
Analogically as in the case of species, we can define the relations between the sexes of the 
same species. The set of all relations of the sex sxi ∈S Xs with other sexes of species s (C isx ) is 
the sum of the following sets of relations: 

 
(16)

where  and  are the relations between sexes, in which some actions z∈Z isx are 
used: 

 
(17)

 
(18)

If performing the action zk ∈ Z isx (which permanently or temporally increases the fitness of 
the agent a jsx of sex sxj ∈SXs) by the agent a isx of sex sxi∈SXs

 results in performing the action 
zl ∈Z isx by the agent a isx and performing the action zm∈Z jsx by the agent a jsx , what results in 
decreasing of the fitness of agents a isx and a jsx then such relation will be defined in the 

following way: 
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(19)

Such relation represents the sexual selection mechanism, where the action zk∈Z isx is the 
action of choosing the partner for reproduction, the action zl∈Z isx is the action of 
reproduction performed by the agent of sex sxi (with high costs associated with it) and the  
zm∈Z jsx is the action of reproduction performed by the agent of sex sxj (with lower costs than 
in the case of zi action). 

3.5 Agent 
Agent a (see Fig. 2) of sex sx and species s (in order to simplify the notation we assume that  
a ≡ asx,s) is defined as follows: 

 (20)

where: 
• gna is the genotype of agent a, which may be composed of any number of chromosomes 

(for example: gna = 〈(x1, x2, . . . , xk)〉, where xi ∈ R , gna ∈ Rk 

• Za is the set of actions, which agent a can perform; 
• Γa is the set of resource types, which are used by agent a (Γa ⊆ Γ); 
• Ωa is the set of informations, which agent a can possess and use (Ωa ⊆ Ω); 
• PRa is partially ordered set of profiles of agent a (PRa ≡ 〈PRa, 〉) with defined partial 

order relation . 
 

 
Fig. 2. Agent in the CoEMAS 
Relation  is defined in the following way: 

 
(21)
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The active goal (which is denoted as gl*) is the goal gl, which should be realized in the given 
time. The relation  is reflexive, transitive and antisymmetric and partially orders the set 
PRa: 

 (22a)

 (22b) 

 (22c)

The set of profiles PRa is defined in the following way: 

 (23a) 

 (23b) 

Profile pr1 is the basic profile—it means that the realization of its goals has the highest 
priority and they will be realized before the goals of other profiles. 
Profile pr of agent a (pr ∈PRa) can be the profile in which only resources are used: 

 (25)

in which only informations are used: 

 (26)

or resources and informations are used: 

 (27)

where: 
• Γpr is the set of resource types, which are used within the profile pr (Γpr ⊆ Γa); 
• Ωpr is the set of information types, which are used within the profile pr (Ωpr ⊆ Ωa); 
• Mpr is the set of informations, which represent the agent’s knowledge about the 

environment and other agents (it is the model of the environment of agent a); 
• STpr is the partially ordered set of strategies (STpr ≡ 〈STpr, 〉),which can be used by agent 

within the profile pr in order to realize an active goal of this profile; 
• RSTpr is the set of strategies that are realized within the profile pr—generally, not all of 

the strategies from the set STpr have to be realized within the profile pr, some of them 
may be realized within other profiles; 

• GLpr is partially ordered set of goals (GLpr ≡ 〈GLpr, 〉), which agent has to realize within 
the profile pr. 

The relation  is defined in the following way: 

 (27)
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This relation is reflexive, transitive and antisymmetric and partially orders the set STpr. 
Every single strategy st ∈STpr is consisted of actions, which ordered performance leads to the 
realization of some active goal of the profile pr: 

 (28)

The relation  is defined in the following way: 

 (29)

This relation is reflexive, transitive and antisymmetric and partially orders the set GLpr. 
The partially ordered sets of profiles PRa, goals GLpr and strategies STpr are used by the agent 
in order to make decisions about the realized goal and to choose the appropriate strategy in 
order to realize that goal. The basic activities of the agent a are shown in Algorithm 1. 
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In CoEMAS systems the set of profiles is usually composed of resource profile (pr1), 
reproduction profile (pr2), and migration profile (pr3): 

 (30a)

 (30b) 

The highest priority has the resource profile, then there is reproduction profile, and finally 
migration profile. 

4. Co-evolutionary multi-agent systems for multi-objective optimization 
In this section we will describe two co-evolutionary multi-agent systems used in the 
experiments. Each of these systems uses different co-evolutionary mechanism: sexual 
selection, and host-parasite interactions. All of the systems are based on general model of 
co-evolution in multi-agent system described in Section 3—in this section only such 
elements of the systems will be described that are specific for these instantiations of the 
general model. In all the systems presented below, real-valued vectors are used as agents’ 
genotypes. Mutation with self-adaptation and intermediate recombination are used as 
evolutionary operators (Bäck et al., 1997). 

4.1 Co-evolutionary multi-agent system with sexual selection mechanism (SCoEMAS) 
The co-evolutionary multi-agent system with sexual selection mechanism is described as 4- 
tuple (see Eq. (5)): 

 (31)

The informations of type ω1 represent all nodes connected with the given node. The 
informations of type ω2 represent all agents located within the given node. 

4.1.1 Species 
The set of species S = {s}. The only species s is defined as follows: 

 (32)

where SXs is the set of sexes which exist within the s species, Zs is the set of actions that 
agents of species s can perform, and Cs is the set of relations of s species with other species 
that exist in the SCoEMAS. 
Actions The set of actions Zs is defined as follows: 

 
(33)

where: 
• die is the action of death (agent dies when it is out of resources); 
• searchDominated finds the agents that are dominated by the given agent; 
• get is used to get the resources from a dominated agent; 
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This relation is reflexive, transitive and antisymmetric and partially orders the set STpr. 
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that exist in the SCoEMAS. 
Actions The set of actions Zs is defined as follows: 

 
(33)

where: 
• die is the action of death (agent dies when it is out of resources); 
• searchDominated finds the agents that are dominated by the given agent; 
• get is used to get the resources from a dominated agent; 
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• giveDominating gives some resources to the dominating agent; 
• searchPartner is used to find candidates for reproduction partners; 
• choose realizes the mechanism of sexual selection—the partner is chosen on the basis of 

individual preferences; 
• clone is used to make the new agent—offspring; 
• rec realizes the recombination (intermediate recombination is used (Bäck et al., 1997)); 
• mut realizes the mutation (mutation with self-adaptation is used (Bäck et al., 1997)); 
• give is used to give the offspring some amount of the parent’s resources; 
• accept action accepts the agent performing choose action as the partner for reproduction; 
• selNode chooses the node (from the nodes connected with the current node) to which the 

agent will migrate; 
• migr allows the agent to migrate from the given node to another node of the 

environment. The migration causes the lose of some amount of the agent’s resources. 
Relations The set of relations is defined as follows: 

 
(34)

The relation models intra species competition for limited resources (“-” denotes that as a 
result of performing get action the fitness of another agent of species s is decreased): 

 (35)

4.1.2 The sexes 
The number of sexes within the s species corresponds with the number of criteria (n) of the 
multi-objective problem being solved: 

 (36)

Actions The set of actions of sex sx is defined in the following way: Zsx = Zs. 
Relations The set of relations of sex sxi is defined as follows: 

 
(37)

The relation 
 
realizes the sexual selection mechanism (see Eq. (19)). Each agent has 

its own preferences, which are composed of the vector of weights (each weight for one of the 
criteria of the problem being solved). These individual preferences are used during the 
selection of partner for reproduction (choose action). 

4.1.3 The agent 
Agent a of sex sx and species s (in order to simplify the notation we assume that a ≡ asx,s) is 
defined as follows: 

 (38)
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In the case of SCoEMAS system the genotype of each agent is composed of three vectors 
(chromosomes): x of real-coded decision parameters’ values, σ of standard deviations’ 
values, which are used during mutation with self-adaptation, and w of weights used during 
selecting partner for reproduction (gna = 〈 x , σ , w 〉). Basic activities of agent a with the use 
of profiles are presented in Alg. 2. 
 

 
 

Profiles The set of profiles PRa = {pr1, pr2, pr3}, where pr1 is the resource profile, pr2 is the 
reproduction profile, and pr3 is the migration profile. The resource profile is defined in the 
following way: 

 (39)

The set of strategies includes two strategies: 

 (40)

The goal of the profile is to keep the amount of resource above the minimal level. 
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The reproduction profile is defined as follows: 

 (41)

The set of strategies includes two strategies: 

 (42)

The goal of the profile is to reproduce when the amount of resource is above the minimal 
level needed for reproduction. 
The migration profile is defined as follows: 

 
The goal of the profile is to migrate to another node when the amount of resource is above 
the minimal level needed for migration. 

4.2 Co-evolutionary multi-agent system with host-parasite interactions (HPCoEMAS) 
The co-evolutionary multi-agent system with host-parasite interactions is defined as follows 
(see Eq. (5)): 

 (44)

The set of species includes two species, hosts and parasites: S = {host, par}. One resource type 
exists within the system (Γ = {γ}). Three information types (Ω ={ω1, ω2, ω3}) are used. 
Information of type ω1 denotes nodes to which each agent can migrate when it is located 
within particular node. Information of type ω2 denotes such host-agents that are located 
within the particular node in time t. Information of type ω3 denotes the host of the given 
parasite. 

4.2.1 Host species 
The host species is defined as follows: 

 (45)

where SXhost is the set of sexes which exist within the host species, Zhost is the set of actions 
that agents of species host can perform, and Chost is the set of relations of host species with 
other species that exist in the HPCoEMAS. 
Actions The set of actions Zhost is defined as follows: 

 (46)

where: 
• die is the action of death (host dies when it is out of resources); 
• get action gets some resource from the environment; 
• give action gives some resource to the parasite; 
• accept action accepts other agent as a reproduction partner; 
• seek action seeks for another host agent that is able to reproduce; 
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• clone is the action of producing offspring (parents give some of their resources to the 
offspring during this action); 

• rec is the recombination operator (intermediate recombination is used (Bäck et al., 
1997)); 

• mut is the mutation operator (mutation with self-adaptation is used (Bäck et al., 1997)); 
• giveChild action gives some resource to the offspring; 
• migr is the action of migrating from one node to another. During this action agent loses 

some of its resource. 
Relations The set of relations of host species with other species that exist within the system 
is defined as follows: 

 (47)

The first relation models intra species competition for limited resources given by the 
environment: 

 (48)

The second one models host-parasite interactions: 

 (49)

4.2.2 Parasite species 
The parasite species is defined as follows: 

 (50)

Actions The set of actions Zpar is defined as follows: 

 (51)

where: 
• die is the action of death; 
• seekHost is the action used in order to find the host. Test that is being performed by 

parasite-agent on host-agent before infection consists in comparing—in the sense of 
Pareto domination relation—solutions represented by assaulting parasite-agent and 
host-agents that is being assaulted. The more solution represented by host-agent is 
dominated by parasite-agent the higher is the probability of infection. 

• get action gets some resource from the host; 
• clone is the action of producing two offspring; 
• mut is the mutation operator (mutation with self-adaptation is used (Bäck et al., 1997)); 
• giveChild action gives all the resources to the offspring—after the reproduction parasite 

agent dies; 
• migr is the action of migrating from one node to another. During this action agent loses 

some of its resource. 
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The reproduction profile is defined as follows: 

 (41)
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Relations The set of relations of par species with other species that exist within the system 
are defined as follows: 

 (52)

This relation models host-parasite interactions: 

 (53)

As a result of performing get action some amount of the resources is taken from the host. 

4.2.3 Host agent 
Agent a of species host (a ≡ ahost) is defined as follows: 

 (54)

Genotype of agent a is consisted of two vectors (chromosomes): x of real-coded decision 
parameters’ values and σ of standard deviations’ values, which are used during mutation 
with self-adaptation. Za = Zhost (see Eq. (46)) is the set of actions which agent a can perform. Γa 
is the set of resource types used by the agent, and Ωa is the set of information types. Basic 
activities of the agent a are presented in Alg. 3. 
Profiles The partially ordered set of profiles includes resource profile (pr1), reproduction 
profile (pr2), interaction profile (pr3), and migration profile (pr4): 

 (55a)

 (55b) 

The resource profile is defined in the following way: 

 (56)

The set of strategies includes two strategies: 

 (57)

The goal of the pr1 profile is to keep the amount of resources above the minimal level or to 
die when the amount of resources falls to zero. 
The reproduction profile is defined as follows: 

 (58)

The set of strategies includes two strategies: 

 (59)

The only goal of the pr2 profile is to reproduce. In order to realize this goal agent can use 
strategy of reproduction 〈seek, clone, rec, mut, giveChild〉 or can accept other agent as a 
reproduction partner 〈accept, giveChild〉. 
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The interaction profile is defined as follows: 

 (60)

The goal of the pr3 profile is to interact with parasites with the use of strategy 〈give〉, which 
gives some of the host’s resources to the parasite. 
The migration profile is defined as follows: 

 (61)

The goal of the pr4 profile is to migrate within the environment. In order to realize such a 
goal the migration strategy is used, which firstly chooses the node and then realizes the 
migration. Agent loses some of its resources in order to migrate. 
 

 

4.2.4 Parasite agent 
Agent a of species par (a ≡ apar) is defined as follows: 
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die when the amount of resources falls to zero. 
The reproduction profile is defined as follows: 

 (58)

The set of strategies includes two strategies: 

 (59)

The only goal of the pr2 profile is to reproduce. In order to realize this goal agent can use 
strategy of reproduction 〈seek, clone, rec, mut, giveChild〉 or can accept other agent as a 
reproduction partner 〈accept, giveChild〉. 
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The interaction profile is defined as follows: 

 (60)

The goal of the pr3 profile is to interact with parasites with the use of strategy 〈give〉, which 
gives some of the host’s resources to the parasite. 
The migration profile is defined as follows: 

 (61)

The goal of the pr4 profile is to migrate within the environment. In order to realize such a 
goal the migration strategy is used, which firstly chooses the node and then realizes the 
migration. Agent loses some of its resources in order to migrate. 
 

 

4.2.4 Parasite agent 
Agent a of species par (a ≡ apar) is defined as follows: 
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Genotype of agent a is consisted of two vectors (chromosomes): x of real-coded decision 
parameters’ values and σ of standard deviations’ values. Za = Zpar (see eq. (51)) is the set of 
actions which agent a can perform. Γa is the set of resource types used by the agent, and Ωa is 
the set of information types. Basic activities of the agent a are presented in Alg. 4. 
 

 
 

Profiles The partially ordered set of profiles includes resource profile (pr1), reproduction 
profile (pr2), and migration profile (pr3): 

 (63a)

 (63b) 

The resource profile is defined in the following way: 

 (64)

The set of strategies includes three strategies: 
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 (65)

The goal of the pr1 profile is to keep the amount of resources above the minimal level or to 
die when the amount of resources falls to zero. When the parasite has not infected any host 
(information i 3ω is used), it uses strategy 〈seekHost, get〉 in order to find and infect some host 
and get its resources. If the parasite has already infected a host it can use 〈get〉 strategy in 
order to take some resources. 
The reproduction profile is defined as follows: 

 (66)

The set of strategies includes one strategy: 

 (67)

The only goal of the pr2 profile is to reproduce. In order to realize this goal agent can use 
strategy of reproduction: 〈clone,mut, giveChild〉. Two offsprings are produced and the parent 
gives them all its resources and then dies. 
The migration profile is defined as follows: 

 (68)

The goal of the pr3 profile is to migrate within the environment. In order to realize such a 
goal the migration strategy is used, which firstly chooses the node and then realizes the 
migration. During this some amount of the resource is given back to the environment. 

5. Experimental results 
Presented formally in section 4 agent-based co-evolutionary approaches for multi-objective 
optimization have been tentatively assessed. Obtained during experiments preliminary 
results were presented in some of our previous papers and in this section they are shortly 
summarized. 

5.1 Performance metrics 
Using only one single measure during assessing the effectiveness of (evolutionary) 
algorithms for multi-objective optimization is not enough (Zitzler et al., 2003) however it is 
impossible to present all obtained results (metrics as well as obtained Pareto frontiers and 
Pareto sets) discussing simultaneously (a lot of) ideas and issues related to the proposed 
new approach for evolutionary multi-objective optimization in one single article especially 
that the main goal of this chapter is to present coherent formal models of innovative agent-
based co-evolutionary systems dedicated for multi-objective optimization rather than 
indepth results’ analysis. Since hypervolume (HV) or hypervolume ratio (HVR) metrics 
allow to estimate both: the convergence to the true Pareto frontier as well as distribution of 
solutions over the whole approximation of the Pareto frontier, despite of its shortcomings it 
is one of the most commonly and most frequently used measure as the main metric for 
comparing the quality of obtained result sets—that is why results and comparisons 
presented in this paper are based mainly on this very measure. 
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Hypervolume or hypervolume ratio (Zitzler & Thiele, 1998) describes the area covered by 
solutions of obtained approximation of the Pareto frontier (PF). For each found 
nondominated solution, hypercube is evaluated with respect to the fixed reference point. In 
order to evaluate hypervolume ratio, value of hypervolume for obtained set is normalized 
with hypervolume value computed for true Pareto frontier. HV and HVR are defined as 
follows: 

 
(69a)

 
(69b) 

where vi is hypercube computed for i−th found non-dominated solution, PF* represents 
obtained approximation of the Pareto frontier and PF is the true Pareto frontier. 
Assuming the following meaning of used below symbols: P—Pareto set, A, B ⊆ D—two sets 

of decision vectors,  ≥ 0—appropriately chosen neighborhood parameter and · —the 
given distance metric, then the following (used also in some of our experiments) measures 
can be defined (Zitzler, 1999): 
• (A, B)—the coverage of two sets maps the ordered pair (A, B) to the interval [0, 1] in 

the following way: 

 
(70)

• ξ(A, B)—the coverage difference of two sets (℘ denotes value of the size of dominated 
space measure): 

 (71)

• M1—the average distance to the Pareto optimal set P: 

 
(72)

• M2—the distribution in combination with the number of non-dominated solutions 
found: 

 
(73)

• M3—the spread of non-dominated solutions over the set A: 

 
(74)
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5.2 Test problems 
Firstly, Binh (Binh & Korn, 1996; Binh & Korn, 1997) as well as Schaffer (Schaffer, 1985) 
problems were used. Binh problem is defined as follows: 

 
(75)

whereas used modified Schaffer problem is defined as follows: 

 
(76)

Obviously during our experiments also well known and commonly used test suites were 
used. Inter alia such problems as ZDT test suite was used but because of its importance it is 
discussed wider in section 5.2.1. 

5.2.1 ZDT (Zitzler-Deb-Thiele) test suite 
One of test suites used during experiments presented and shortly discussed in the course of 
this section is Zitzler-Deb-Thiele test suite which in the literature it is known and identified 
as the set of test problems ZDT1-ZDT6 ((Zitzler, 1999, p. 57–63), (Zitzler et al., 2000), (Deb, 
2001, p. 356–362), (Coello Coello et al., 2007, p. 194–199)). K. Deb in his work (Deb, 1998) 
tried to identify and systematize factors that can heighten difficulties in identifying by 
optimizing algorithm the true (model) Pareto frontier of multi-objective optimization 
problem that is being solved. The two main issues regarding the quality of obtained 
approximation of the Pareto frontier are: closeness to the true Pareto frontier as well as even 
dispersion of found non-dominated solution over the whole (approximation) of the Pareto 
frontier. Drifting to the Pareto frontier can be disturbed by such features of the problem as 
its multi-modality or isolated optima, what is known and can be observed also in the case of 
single-objective optimization. The other features that can (negatively) influence the ability of 
optimization algorithm for obtaining the high-quality Pareto frontier approximation are 
convex or concave character of the frontier or its discontinuity as well. Taking such 
observations into consideration the set of six test functions (ZDT1-ZDT6) was proposed. 
Each of them addresses and makes it possible to assess if algorithm that is being tested is 
able to overcome difficulties caused by each of mentioned feature. The whole ZDT test suite 
is constructed according to the following schema: 

 
(77)

where: x = (x1, . . . , xn). Well, as one may see, ZDT1-ZDT6 problems are constructed on the 
basis of functions f1, g and h as well, where f1 is a function of one single (first) decision 
variable (x1), function g is a function of the rest n − 1 decision variables, and finally, function 
h is a function depending on values of functions f1 and g. Particular problems ZDT1-ZDT6 
assume different definitions of f1, g and h functions as well as the number of decision 
variables n and the range of values of decision variables. 
ZDT1 problem is the simplest (with continuous and convex true Pareto frontier) multi-
objective optimization problem within the ZDT test-suite. The visualization of the true 
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Pareto frontier for ZDT1 problem (with g(x) = 1) is presented in Fig. 3a. Definitions of f1, g 
and h functions in the case of ZDT1 problem are as follows: 

 

(78)

 

 
                              (a)                                               (b)                                                (c) 

Fig. 3. Visualization of objective space and the true Pareto frontiers for problems ZDT1 (a) 
ZDT2 (b) and ZDT3 (c) 
ZDT2 problem introduces the first potential difficulty for optimizing algorithm i.e. it is a 
problem with continuous but concave true Pareto frontier. The visualization of the true 
Pareto frontier for ZDT2 problem (with g(x) = 1) is presented in Fig. 3b. Definitions of f1, g 
and h in this case are as follows: 

 

(79)

ZDT3 problem introduces the next difficulty for optimization algorithm, this time it is 
discontinuity of the Pareto frontier. In the case of ZDT3 problem (defined obviously 
according to the (77) schema) the formulation of functions f1, g and h are as follows: 

 

(80)

Using sinus function in the case of ZDT3 problem in the definition of function h causes 
discontinuity in the Pareto frontier and simultaneously it does not cause discontinuity in the 
space of decision variables. The visualization of the true Pareto frontier for ZDT3 problem is 
presented in Fig. 3c. 
ZDT4 problem makes it possible to assess the optimization algorithm in the case of solving 
multi-objective but simultaneously multi-modal optimization problem. The visualization of 
the true Pareto frontier for ZDT4 problem obtained with g(x) = 1) is presented in Fig. 4a. 
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ZDT4 problem introduces 219  local Pareto frontiers and the formulations of f1, g and h in this 
case are as follows: 

 

(81)

 

 
                                                         (a)                                               (b) 

Fig. 4. Visualization of objective space and the true Pareto frontiers for problems ZDT4 (a) 
and ZDT6 (b) 
ZDT6 problem is a multi-objective optimization problem introducing several potential 
difficulties for optimization algorithm. It is a problem with non-convex Pareto frontier. 
Additionally, non-dominated solutions are dispersed not evenly. Next, in the space of 
decision variables, the “density” of solutions is less and less in the vicinity of the true Pareto 
frontier. 
The visualization of the true Pareto frontier for ZDT6 problem is presented in Fig. 4b. 
Functions f1, g and h defined obviously according to the schema (77) in the case of ZDT6 
problem are formulated as follows: 

 

(82)

5.3 A glance at assessing sexual-selection based approach (SCoEMAS) 
Sexual-selection co-evolutionary multi-agent system (SCoEMAS) presented in section 4.1 
was preliminary assessed using inter alia presented in section 5.2.1 ZDT test suite. Also this 
time, SCoEMAS approach was compared among others with the state-of-the-art 
evolutionary algorithms for multi-objective optimization i.e. NSGA-II (Deb et al., 2002; Deb 
et al., 2000) and SPEA2 (Zitzler et al., 2001; Zitzler et al., 2002). 
The size of population of SCoEMAS is 100, and the size of population of benchmarking 
algorithms are as follows: NSGA-II—300 and SPEA2—100. Selected parameters and their 
values assumed during presented experiments are as follows: r init

γ = 50 (it represents the 
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level of resources possessed initially by individual just after its creation), r get
γ = 30 (it 

represents resources transferred in the case of domination), r ,
min
rep γ = 30 (it represents the level 

of resources required for reproduction), pmut = 0.5 (mutation probability). 
In Figure 5, Figure 6 and Figure 7 there are presented values of HVR measure obtained with 
time by SCoEMAS for ZDT1 (Figure 5a), ZDT2 (Figure 5b), ZDT3 (Figure 6a), ZDT4 (Figure 
6b) and ZDT6 (Figure 7) problems. For comparison there are presented also results obtained 
by NSGA-II and SPEA2 algorithms. 
 

 
                                            (a)                                                                             (b) 

Fig. 5. HVR values obtained by SCoEMAS, NSGA-II and SPEA2 run against Zitzler’s 
problems ZDT1 (a), and ZDT2 (b) (Siwik & Dreżewski, 2008) 

 
                                            (a)                                                                             (b) 

Fig. 6. HVR values obtained by SCoEMAS, NSGA-II and SPEA2 run against Zitzler’s 
problems ZDT3 (a), and ZDT4 (b) (Siwik & Dreżewski, 2008) 

On the basis of presented characteristics it can be said that initially co-evolutionary multi-
agent system with sexual selection is faster than two other algorithms, it allows for 
obtaining better solutions—what can be observed as higher values of HVR(t) metrics but 
finally, the best results are obtained by NSGA-II algorithm. A little bit worse alternative 
than NSGA-II is SCoEMAS and finally SPEA2 is the third alternative—but obviously it 
depends on the problem that is being solved and differences between analyzed algorithms 
are not very distinctive. 
Deeper analysis of obtained results can be found in (Dreżewski & Siwik, 2007; Dreżewski & 
Siwik, 2006a; Siwik & Dreżewski, 2008). 

Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Optimization Problems 

 

255 

 
Fig. 7. HVR values obtained by SCoEMAS, NSGA-II and SPEA2 run against Zitzler’s ZDT6 
problem (Siwik & Dreżewski, 2008) 

5.4 A glance at assessing host-parasite based approach (HPCoEMAS) 
Discussed in section 4.2 co-evolutionary multi-agent system with host-parasite mechanism 
was tested using, inter alia, Binh and slightly modified Schaffer test functions that are defined 
as in equations (75) and (76). 
 

 
Table 1. Comparison of proposed HPCoEMAS approach with selected classical EMOAs 
according to the Coverage of two sets metrics (Dreżewski & Siwik, 2006b) 

 
Table 2. Comparison of proposed HPCoEMAS approach with selected classical EMOAs 
according to the Coverage difference of two sets metrics (Dreżewski & Siwik, 2006b) 

 
Table 3. Comparison of proposed HPCoEMAS approach with selected classical EMOAs 
according to other four metrics (Dreżewski & Siwik, 2006b) 
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This time, the following benchmarking algorithms were used: vector evaluated genetic 
algorithm (VEGA) (Schaffer, 1984; Schaffer, 1985), niched-pareto genetic algorithm (NPGA) 
(Horn et al., 1994) and strength Pareto evolutionary algorithm (SPEA) (Zitzler, 1999). 
To compare proposed approach with implemented classical algorithms metrics defined in 
equations (70), (71), (72), (73) and (74) have been used. Obtained values of these metrics are 
presented in Table 1, Table 2 and Table 3. 
Basing on defined above test functions and measures, some comparative studies of 
proposed co-evolutionary agent-based system with host-parasite interactions and well 
known and commonly used algorithms (i.e. VEGA, NPGA and SPEA) could be performed 
and the most important conclusion from such experiments can be formulated as follows: 
proposed HPCoEMAS system has turned out to be comparable to the classical algorithms 
according almost all considered metrics except for Average distance to the model Pareto set (see. 
Table 3). More conclusions and deeper analysis can be found in (Dreżewski & Siwik, 2006b). 

6. Summary and conclusions 
During last 25 years multi-objective optimization has been in the limelight of researchers. 
Because of practical importance and applications of multi-objective optimization as the most 
natural way of decision making and real-life optimizing method—growing interests of 
researchers in this very field of science was a natural consequence and extension of previous 
research on single-objective optimization techniques. Unfortunately, when searching for the 
approximation of the Pareto frontier, classical computational methods often prove 
ineffective for many (real) decision problems. The corresponding models are too complex or 
the formulas applied too complicated, or it can even occur that some formulations must be 
rejected in the face of numerical instability of available solvers. Also, because of such a 
specificity of multi-objective optimization (especially when—as in our case—we are 
considering multi-objective optimization in the Pareto sense) that we are looking for the 
whole set of nondominated solutions rather than one single solution—the special attention 
has been paid on population-based optimization techniques and if so, the most important 
techniques turned out here to be evolutionary-based methods. Research on applying 
evolutionary-based methods for solving multi-objective optimization tasks resulted in 
developing a completely new (and now commonly and very well known) science field: 
evolutionary multi-objective optimization (EMOO). To confirm above sentences, it is 
enough to mention statistics regarding at least the number of conference and journal articles, 
PhD thesis, conferences, books etc. devoted to EMOO and available at 
http://delta.cs.cinvestav.mx/~coello/EMOO. 
After the first stage of research on EMOO when plenty of algorithms were proposed1, 
simultaneously with introducing in early 2000s two the most important EMOO algorithms 

                                                 
1 It is enough to mention such algorithms as: Rudolph’s algorithm (Rudolph, 2001), distance-
based Pareto GA (Osyczka & Kundu, 1995), strength Pareto EA (Zitzler & Thiele, 1998), 
multi-objective micro GA (Coello Coello & Toscano, 2005), Pareto-archived evolution 
strategy (Knowles & Corne, 2000), multi-objective messy GA (Van Veldhuizen, 1999), 
vector-optimized evolution strategy (Kursawe, 1991), random weighted GA (Murata & 
Ishibuchi, 1995), weight-based GA (Hajela et al., 1993), niched-pareto GA (Horn et al., 1994), 
non-dominated sorting GA (Srinivas & Deb, 1994), multiple objective GA (Fonseca & 
Fleming, 1993), distributed sharing GA (Hiroyasu et al., 1999) 
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i.e. NSGA-II and SPEA2 it seemed that no further research regarding new optimization 
techniques is needed. Unfortunately, in the case of really challenging problems (for instance 
in the case of multi-objective optimization in noisy environments, in the case of solving 
constrained problems, in the case of modeling market-related interactions etc.) mentioned 
algorithm turned out to be not efficient enough. 
In this context, techniques with a kind of “soft selection” such as evolutionary multi-agent 
systems (EMAS), where in the population there can exist even not very strong individuals— 
seem to be very attractive alternatives. It turns out that “basic” EMAS model applied for 
multi-objective optimization can be improved significantly with the use of additional 
mechanisms and interactions among agents that can be introduced into such a system. In 
particular, as it is presented in the course of this chapter, some co-evolutionary interactions, 
mechanisms and techniques can be there successfully introduced. In section 5 there are 
presented results obtained with the use of two different co-evolutionary multi-agent 
systems. As one may see, presented results are not always significantly better than results 
obtained by “referenced” algorithms (in particular by state-of-the-art algorithms) but both, 
this chapter as well as presented results should be perceived as a kind of summary of the 
first stage of research on possibilities of developing co-evolutionary multi-agent systems for 
multi-objective optimization. 
The most important conclusion of this very first stage of our research is as follows: on the 
basis of CoEMAS approach it is possible to model a wide range of co-evolutionary 
interactions. It is possible to develop such models as a distributed, decentralized and 
autonomous agent system. All proposed approaches can be modeled in a coherent way and 
can be derived from a basic CoEMAS model in a smooth and elegant way. So, in spite of not 
so high-quality results presented in previous section—after mentioned first stage of our 
research we know that both formal modeling as well as implementation of co-evolutionary 
multi-agent systems is possible in general. Because of their potential possibilities for 
modeling of (extremely) complex environments, problems, interactions, markets—further 
research on CoEMASes should result in plenty of their successful applications for solving 
real-life multi-objective optimization problems. 
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1. Introduction 
Most practical engineering optimization problems are multi-objective, i.e., their solution 
must consider simultaneously various performance criteria, which are often conflicting. 
Multi-Objective Evolutionary Algorithms (MOEAs) are particularly adequate for solving 
these problems, as they work with a population (of vectors or solutions) rather than with a 
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criteria, simultaneously providing a link with the decision variables (Deb, 2001, Coello et al., 
2002). Moreover, since in real applications small changes of the design variables or of 
environmental parameters may frequently occur, the performance of the optimal solution 
(or solutions) should be only slightly affected by these, i.e., the solutions should also be 
robust (Ray, 2002; Jin & Branke, 2005). The optimization problems involving unmanageable 
stochastic factors can be typified as (Jin & Branke, 2005): i) those where the performance is 
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conflicting, it is important to know their interdependency for each optimization problem. A 
robustness analysis should be performed as the search proceeds and not after, by 
introducing a robustness measure during the optimization. Robustness can be studied either 
by replacing the original objective function by an expression measuring both the 
performance and the expectation of each criterion in the vicinity of a specific solution, or by 
inserting an additional optimization criterion assessing robustness in addition to the original 
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criteria. As will be demonstrated in the next sections, in the first situation the role of the 
optimization algorithm is to find the solution that optimizes the expectation (in the vicinity 
of the solutions considered) of the original criterion (or criteria), while in the second case a 
trade-off between the original criteria and the robustness measure is obtained (Jin & 
Sendhoff, 2003).  
In single objective (or criterion) optimization, the best solution is the one that satisfies 
simultaneously performance and robustness. Robust single objective optimization has been 
applied to various engineering fields and using different optimization methodologies 
(Ribeiro & Elsayed, 1995; Tsutsui & Ghosh, 1997; Das, 1997; Wiesmann et al., 1998; Du & 
Chen, 1998; Chen et al. 1999; Ray, 2002; Arnold & Beyer, 2003; Sorensen, 2004). However, 
only recently robustness analysis has been extended to Multi-Objective Optimization 
Problems (MOOP) (Kouvelis & Sayin 2002; Bagchi, 2003; Jin & Sendhoff, 2003; Kazancioglu 
et al., 2003; Gaspar-Cunha & Covas, 2005; Ölvander, 2005; Guanawan & Azarm, 2005; Deb & 
Gupta, 2006; Paenke et al., 2006; Barrico & Antunes, 2006; Moshaiov & Avigrad, 2006; 
Gaspar-Cunha & Covas, 2008). Depending on the type of Pareto frontier, the aim can be: i) 
to locate the optimal Pareto front’s most robust section (Deb & Gupta, 2006; Gaspar-Cunha 
& Covas, 2008) and/or ii) in the case of a multimodal problem, to find the most robust 
Pareto frontier, and not only the most robust region of the optimal Pareto frontier 
(Guanawan & Azarm, 2005; Deb & Gupta, 2006).  
An important question arising from MOOP is the choice of the (single) solution to be used 
on the real problem under study (Ferreira et al., 2008). Generally, to select a solution from 
the pool of the available ones, the Decision Maker (DM) characterizes the relative 
importance of the criteria and subsequently applies a decision methodology. The use of a 
weighted stress function approach (Ferreira et al., 2008) is advantageous, as it enables the 
DM to define the extension of the optimal Pareto frontier to be obtained, via the use of a 
dispersion parameter. This concept could be adapted by taking into account robustness and 
not the relative criteria importance. 
Consequently, this work aims to discuss robustness assessment during multi-objective 
optimization using a MOEA, namely in terms of the identification of the robust region (or 
regions) of the optimal Pareto frontier. The text is organized as follows. In section 2, 
robustness concepts will be presented and extended to multi-objective optimization. The 
multi-objective evolutionary algorithm used and the corresponding modifications required 
to take robustness into account will be described and discussed in section 3. The 
performance of the robustness measures will be evaluated in section 4 via their application 
to several benchmark multi-objective optimization problems. Finally, the main conclusions 
are summarized in section 5. 

2. Robustness concepts 
2.1 Single objective optimization 
A single objective optimization can be formulated as follows: 
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where xl are the L parameters (or design vectors) x1, x2, …, xL, gj and hk are the J equality (J≥0) 
and K inequality (K≥0) constraints, respectively, and xl,min and xl,max are the lower and upper 
limits of the parameters. 
The most robust solution is that for which the objective function f is less sensitive to 
variations of the design parameters xl.  Figure 1 shows the evolution of the objective 
function f(x1,x2) (to be maximized) against the design parameter x1, when another factor 
and/or the design parameter x2 changes slightly from x2’ to x2’’. Solution S2 is less sensitive 
than solution S1 to variations of x2, since the changes in the objective function are less 
significant (Δf2 and Δf1 for S2 and S1, respectively) and, consequently, it can be considered as 
the most robust solution (taking into consideration that  here robustness is measured only as 
a function of changes occurring in the objective function). On the other hand, since S1 is 
more performing than S2, a balance between performance (or fitness) of a solution and its 
robustness has to be done. In spite of its lower fitness, solution S2 is the most robust and 
would be the selected one by an optimization algorithm (Guanawan & Azarm, 2005; 
Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Paenke et al., 2006; Gaspar-Cunha & 
Covas, 2008). 
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takes this fact into account by replacing the original function by another such as that 
illustrated in Figure 2-B. Now, if a conventional optimization is performed using this new 
function, the peak selected (peak three) will be the most robust. Various types of expectation 
measures have been proposed in the literature (Tsutsui & Ghosh, 1997; Das, 1997; Wiesmann 
et al., 1998; Jin & Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Gaspar-
Cunha & Covas, 2008). 
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Fig. 2. Expectation measure for a single objective function 

- Variance measure: An additional criterion is appended to the objective function to 
measure the deviation of the latter around the vicinity of the design point. Variance 
measures take only into account function deviations, ignoring the associated performance. 
Thus, in the case of a single objective function, the optimization algorithm must perform a 
two-criterion optimization, one concerning performance and the other robustness (Jin & 
Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Gaspar-Cunha & Covas, 
2008).  
Deb & Gupta (2006) denoted the above two approaches as type I and II, respectively. The 
performance of selected expectation and variance measures was evaluated in terms of their 
capacity to detect robust peaks (Gaspar-Cunha & Covas, 2008), by assessing such features 
as:  i) easy application to problems where the shape of the objective function is not known a 
priori, ii) capacity to define robustness regardless of that shape, iii) independence of the 
algorithm parameters, iv) clear definition of the function maxima in the Fitness versus 
Robustness Pareto representation, and v) efficiency. The best performance was attained 
when the following variance measure was used:  
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representing the limits of its range of variation, N´ is the number of population individuals 
whose Euclidian distance between points i and j (di,j) is lower than dmax (i.e., di,j < dmax): 
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and M is the number of criteria. The smaller fRi, the more robust the solution is. 

2.2 Extending robustness to multiple objectives 
In a multi-objective optimization various objectives, often conflicting, co-exist: 
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where fm are the M objective functions of the L parameters (or design vectors) x1, x2, …, xL 
and gj and hk are the J equality (J≥0) and K inequality (K≥0) constraints, respectively. 
The application of a robustness analysis to MOOPs must consider all the criteria 
simultaneously. As for single objective, a multi-objective robust solution must be less 
sensitive to variations of the design parameters, as illustrated in Figure 3. The figure shows 
that the same local perturbation on the parameters space (x1, x2) causes different behaviours 
of solutions I and II. Solution I is more robust, as the same perturbations on the parameters 
space causes lower changes on the objective space. Each of the Pareto optimal solutions 
must be analysed in what concerns robustness, i.e., its sensitivity to changes on the design 
parameters. Since robustness must be assessed for every criterion, the combined effect of 
changes in all the objectives must be considered simultaneously and used as a measure of 
robustness. 
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Cunha & Covas, 2008). 
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In multi-objective robust optimization the aim is to obtain a set of Pareto solutions that are, 
at the same time, multi-objectively robust and Pareto optimal. As shown in Figure 4, 
different situations may arise (Guanawan & Azarm, 2005; Deb & Gupta, 2006): 
1. All the solutions on the Pareto-optimal frontier are robust (Figure 4-A); 
2. Only some of the solutions belonging to the Pareto-optimal frontier are robust (Figure 

4-B); 
3. The solutions belonging to the Pareto-optimal frontier are not robust, but a robust 

Pareto frontier exists (Figure 4-C); 
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All the above situations should be taken into consideration by a resourceful optimization 
algorithm.  When the DM is only interested in the most robust section of the optimal Pareto 
frontier (see Figure 5), this can be done by using, for example, the dispersion parameter 
referred above. 
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maintaining intact its characteristics (Gaspar-Cunha & Covas, 2004). Then, the individuals’ 
fitness is calculated through a ranking function. With the aim of incorporating this 
technique, the traditional GA was modified as follows (Gaspar-Cunha & Covas, 2004): 
 

1. Random initial population (internal) 
2. Empty external population 
3. while not Stop-Condition do 
 a- Evaluate internal population 
 b- Calculate expectation and/or robustness measures 
 c- Calculate niche count (mi) 
 d- Calculate the Ranking of the individuals using the RPSGAe 
 e- Calculate the global Fitness ( )i(F~ ) 
 f- Copy the best individuals to the external population 
 g- if the external population becomes full 
  Apply the RPSGAe to this population 
  Copy the best individuals to the internal population 
 end if 
 h- Select the individuals for reproduction 
 i- Crossover 
 j- Mutation 
end while 
 

As described above, the calculations start with the random definition of an internal 
population of size N and of an empty external population of size Ne. At each generation, a 
fixed number of the best individuals (that was obtained by reducing the internal population 
with the clustering algorithm), is copied to an external population (Gaspar-Cunha et al., 
1997). The process is repeated until the external population becomes complete. Then, the 
RPSGAe is applied to sort the individuals of this population, and a pre-defined number of 
the best individuals is incorporated in the internal population, by replacing the lowest 
fitness individuals. Detailed information on this algorithm can be found elsewhere (Gaspar-
Cunha & Covas, 2004; Gaspar-Cunha, 2000). 

3.2 Introducing robustness in MOEAs 
Three additional steps must be added on to the RPSGAe presented above, to comprise 
robustness estimation. They consist of a computation of robustness measures (taking into 
account the dispersion parameter), a niche count and the determination of the global fitness, 
yielding the general flowchart of Figure 7. The dispersion parameter (ε’) quantifies the 
extension of the robust section to be obtained (see Figure 5). This parameter can be defined 
by the DM and ranges between 0, when a single solution is to be obtained, and 1, when the 
entire optimal Pareto frontier is to be obtained. In order to consider the influence of the 
dispersion parameter (ε’), the way how the indifference limits (

jL~ ) and the distances 
between the solutions (

k,jD~ ) are defined in the RPSGAe algorithm was also changed (see 
Gaspar-Cunha & Covas, 2004), the following equations being used:  
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Here, max R and min R are the maximum and the minimum values of the robustness found 
for each generation, respectively, Li are the indifference limits for criterion i, Dj,k is the 
difference between the criterion value of solutions j and k, R(indk+1) is the robustness 
measure of the individual located in position k+1 after the population was ordered by 
criterion j. The robustness measure is calculated by Equation 2, thus when R increases the 
robustness of the solution decreases. In these equations, the dispersion parameter (ε’) plays 
an important role. If ε’=1, equations 5 and 6 are reduced to Li and Di,j, respectively, and the 
algorithm will converge for the entire robust Pareto frontier. Otherwise, when ε´ decreases, 
the size of the robust Pareto frontier decreases as well. In a limiting situation, i.e., when ε’ is 
approximately nil, a single point is obtained. Figure 8 shows curves of 

jj L/L~  and 
k,jk,j D/D~  

ratios against the dispersion parameter, for different values of R (2.0, 0.5 and 0.1).  
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Fig. 7. Flowchart of the robustness routine 
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Dj,k) on 
k,jD~  diminishes. Therefore, for small values of the dispersion parameter, the 

attribution of the fitness by the RPSGAe algorithm is made almost exclusively by the value 
of the robustness of the solutions and not by taking into account the distance between them. 
This procedure avoids that robust solutions are eliminated during the consecutive 
generations in case they are next to each other. An identical analysis can be made for 
different robustness values (R in Figure 8). When R increases (i.e., when the robustness 
decreases) the value of 

k,jk,j D/D~  must decreases in order to produce the same result. The 

same reasoning applies to the 
jj L/L~ ratio. 

 

 

Fig. 8.  Shape of the curves of 
jj L/L~  and 

k,jk,j D/D~  rates as a function of the dispersion 

parameter for different R values  

The niche count was considered using a sharing function (Goldberg & Richardson, 1987): 
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where sh(dij) is related to individual i and takes into account its distance to all its neighbours 
j (dij).  
Finally, the global fitness was calculated using the following equation: 
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In conclusion, the following calculation steps must be carried out (see Figure 7): 
1. The robustness routine starts with the definition of the number of ranks (Nranks), the 

span of the Pareto frontier to be obtained (ε ∈ [0,1]) and the maximum radial distance to 
each solution to be considered in the robustness calculation (dmax); 
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2. To reduce the sensitivity of the algorithm to small values of the objective functions, the 
dispersion parameter is changed as ε’ = ε2; 

3. For each individual, i, robustness , R(i), and niche count, m(i) , are determined using 
equations 2 and 7, respectively; 

4. The RPSGAe algorithm is applied, with the modifications introduced by equations 5 
and 6, to calculate Rank(i); 

5. For each solution, i, the new fitness is calculated using equation 8. 

4. Results and discussion 
4.1 Test problems 
The robustness methodology presented in the previous sections will be tested using the 7 
Test Problems (TP) listed below, each of different type and with distinctive Pareto frontier 
characteristics. Each TP is presented in terms of its creator, aim, number of decision 
parameters, criteria and range of variation of the decision parameter.  
TP 1 and 2 are simple one parameter problems, the first having one region with higher 
robustness, while the second contains three such regions. TP 3 to TP5 are complex MOOPs 
with 30 parameters each, and two criteria. TP3 and TP4 have a single region with higher 
robustness and the Pareto frontier is convex and concave, respectively. TP5 has a 
discontinuous Pareto frontier with a single region with higher robustness. TP 6 and TP7 are 
the three criteria version of TP1 and TP4, respectively.  
Three studies will be performed, to determine: i) the effect of the RPSGAe algorithm, i.e., 
Nranks, and dmax; ii) the effect of the value of the dispersion parameter and iii) the performance 
of the robustness methodology for different type of problems.  
The RPSGAe algorithm parameters utilized are the following: Nranks = 20 (the values of 10 
and 30 were also used for the first study), dmax = 0.008 (0.005 and 0.03 were also tried in the 
first study), indifference limits equal to 0.1 for all criteria, SBX real crossover operator with 
an index of 10 and real polynomial mutation operator with and index of 20. 
TP 1: x ∈[-2;6]; Minimize; L=1; M=2. 
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TP 3 (ZDT1): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002. 
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TP 4 (ZDT2): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002. 
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TP 5 (ZDT3): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002. 
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TP 6: x1 ∈[0;2π]; x2 ∈[0;5]; Minimize; L=2; M=3. 
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TP 7 (DTLZ2): xi ∈[0;1]; Minimize; L=12; M=3; Deb, Thiele et al., 2002. 
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4.2 Effect of the RPSGAe parameters 
Figure 9 compares the results obtained with the robustness procedure for TP 1 and TP4, 
using different values of the parameter. The line indicates the optimal Pareto frontier and 
the dots identify the solutions obtained with the new procedure. As shown, the algorithm is 
able to produce good results independently of the value of Nranks (hence, in the remaining of 
this study Nranks was set as 20).  
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Similar conclusions were obtained for dmax parameter - Figure 10, so dmax was kept equal to 
0.008. 
 

 

Fig. 9. Influence of Nranks parameter for TP1 and TP4 
 

 

Fig. 10. Influence of dmax parameter for TP1 and TP4 

4.3 Effect of the dispersion parameter 
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TP 4 (ZDT2): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002. 
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TP 5 (ZDT3): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002. 
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TP 6: x1 ∈[0;2π]; x2 ∈[0;5]; Minimize; L=2; M=3. 
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TP 7 (DTLZ2): xi ∈[0;1]; Minimize; L=12; M=3; Deb, Thiele et al., 2002. 
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4.2 Effect of the RPSGAe parameters 
Figure 9 compares the results obtained with the robustness procedure for TP 1 and TP4, 
using different values of the parameter. The line indicates the optimal Pareto frontier and 
the dots identify the solutions obtained with the new procedure. As shown, the algorithm is 
able to produce good results independently of the value of Nranks (hence, in the remaining of 
this study Nranks was set as 20).  
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4.4 Effect of the type of problem 
The results obtained for TP2 to TP7, using ε = 0.1, are presented in Figure 12. The algorithm 
is able to deal with the various types of test problems proposed. TP2 is a difficult test 
problem due to the need to converge to the three different sections with the same 
robustness. TP3 and TP4 show that the algorithm proposed can converge to the most robust 
region even for problems with 30 parameters or of discontinuous nature.  Finally, TP6 and 
TP7 show that the methodology proposed is able to deal with more than two dimensions 
with a good convergence, which is not generally the case for current optimization 
algorithms available. 

5. Conclusions 
This work presented and tested an optimization procedure that takes into account 
robustness in multi-objective optimization. It was shown that the method is able to deal 
with different types of problems and with different degrees of complexity.  
The extension of the robust Pareto frontier can be controlled by the Decision Maker by 
making use of a dispersion parameter. The effectiveness of this parameter was 
demonstrated in a number of test problems. 
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Fig. 12. Results for TP2 to TP7 (ε=0.1) 
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1. Introduction 
Evolutionary Algorithms (EA) (Goldberg, 1989) have been successfully applied to learn 
fuzzy models (Ishibuchi et al., 1999). EAs have been also combined with other techniques 
like fuzzy clustering (Gómez-Skarmeta & Jiménez 1999) and neural networks (Russo, 1998). 
This has resulted in many complex algorithms and, as recognized in (Valente de Oliveira, 
1999) and in (Setnes et al., 1998), often interpretability of the resulting rule base is not 
considered to be of importance. In such cases, the fuzzy model becomes a black-box, and 
one can question the rationale for applying fuzzy modeling instead of other techniques. 
On the other hand, EAs have been recognized as appropriate techniques for multi-objective 
optimization because they perform a search for multiple solutions in parallel (Coello et al., 
2002) (Deb, 2001). Current evolutionary approaches for multi-objective optimization consist 
of multi-objective EAs based on the Pareto optimality notion, in which all objective are 
simultaneously optimized to find multiple non-dominated solutions in a single run of the 
EA. The decision maker can then choose the most appropriate solution according to the 
current decision environment at the end of the EA run. Moreover, if the decision 
environment changes, it is not always necessary to run the EA again. Another solution may 
be chosen out of the set of non-dominated solutions that has already been obtained. 
The multi-objective evolutionary approach can also be considered from the fuzzy modeling 
perspective (Ishibuchi et al., 1997). Current research lines in fuzzy modeling mostly tackle 
improving accuracy in descriptive models, and improving interpretability in approximative 
models (Casillas et al., 2003). This chapter deals with the second issue approaching the 
problem by means of multi-objective optimization in which accuracy and interpretability 
criteria are simultaneously considered. 
In this chapter, we propose a multi-objective neuro-evolutionary optimization approach to 
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allows a linguistic approximation of the fuzzy models. The rule-based fuzzy model and 
criteria taken into account for fuzzy modeling are explained in the text, where a multi-
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approximation of a non linear system (studied by Wang & Yen, 1998, 1999). The results of 
the experiments performed for this standard test problem show a real ability and 
effectiveness of the proposed approach to find accurate and interpretable TSK fuzzy models. 

2. Improving interpretability in TSK fuzzy models 
2.1 Fuzzy models identification 
We consider Takagi-Sugeno-Kang (TSK) type rule-based models (Takagi & Sugeno, 1985) 
where rule consequents are taken to be linear functions of the inputs. The rules have, 
therefore, the following expression: 
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θij ∈[l, u] ⊂ ℜ are the consequent parameters ( 1,1,= +nj … ), 

iy is the output of the ith rule, and 

ijA are fuzzy sets defined in the antecedent space by membership functions [ ]0,1: →jijA Xμ , 

being jX the domain of the input variable jx ( nj ,1,= … ). 

The total output of the model is computed by aggregating the individual contributions of 
each rule: 
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where ( )xiμ  is the normalized firing strength of the ith rule: 
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and ( )xif  is the function defined in the consequent of the ith rule: 
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Each fuzzy set ijA  is described by a symmetric gaussian membership function: 
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[ ]jjij ulc ,∈  is the center, 

0>ijσ  is the variance, 

Mi ,1,= …  and 
nj ,1,= … . 

This fuzzy model can be defined by a radial basis function neural network. The number of 
neurons in the hidden layer of an RBF neural network is equal to the number of rules in the 
fuzzy model. The firing strength of the ith neuron in the hidden layer matches the firing 
strength of the ith rule in the fuzzy model. We apply a symmetric gaussian membership 
function defined by two parameters, the center c and the variance σ. Therefore, each neuron 
in the hidden layer has these two parameters that define its firing strength value. 
The neurons in the output layer perform the computations for the first order linear function 
described in the consequents of the fuzzy model, therefore, the ith neuron of the output 
layer has the parameters ( )1)(1 ,,= +niii θθ …θ  that correspond to the linear function defined in 

the ith rule of the fuzzy model. 

2.2 Criteria for fuzzy modeling 
We consider three main criteria: (i) accuracy, (ii) transparency, and (iii) compactness. It is 
necessary to define quantitative measures for these criteria by means of appropriate 
objective functions which define the complete fuzzy model identification. 
Accuracy. 
The accuracy of a model can be measured with the mean squared error: 
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where: 
ky  is the model output for the kth input vector, 

kt  is the desired output for the kth input vector, and 
N  is the number of data samples. 
Transparency. 
For the second criterion, transparency, there are many possible measures, however we 
consider one of the most used, the similarity (Setnes, 1995). The similarity S  among distinct 
fuzzy sets in each variable can be expressed as follows: 
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Similarity between two different fuzzy sets A  and B  can be measured using different 
criteria. In our case we use the following measure: 
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The value of S  is, therefore, an aggregated similarity measure for the fuzzy rule-based 
model with the objective to minimize the maximum similarity between the fuzzy sets in 
each input domain. 
Compactness. 
Finally, measures for the third criterion, the compactness, are the number of rules, ( M ) and 
the number of different fuzzy sets ( L ) of the fuzzy model. It is assumed that models with a 
small number of rules and fuzzy sets are compact. 
Table 1 summarizes the three criteria considered for the fuzzy models and the measures 
defined for each criterion. 

Criteria Measures
Accuracy MSE  

Transparency S  
Compactness M , L  

Table 1. Criteria for the fuzzy models and their measures 

2.3 An optimization model for fuzzy modeling 
According to the previous remarks, we propose the following multi-objective constrained 
optimization model: 
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where gs∈[0, 1] is a threshold for similarity defined by the decision maker (we use gs = 0,25). 
An “a posteriori” articulation of preferences applied to the non-dominated solutions of the 
problem is used to obtain the final compromise solution. 

3. Multi-objective neuro-evolutionary algorithms 
We propose a hybrid learning system to find multiple Pareto-optimal solutions 
simultaneously, considering accuracy, transparency and compactness criteria. We study 
different multi-objective evolutionary algorithms to evolve the structure and parameters of 
TSK-type rule sets, together with gradient-based learning to train rule consequents. 
Additionally, a rule set simplification operator is used to encourage rule base transparency 
and compactness. This method may be applied to a wide variety of classification and control 
problems. 
Considering the multi-objective constrained optimization model (8), we use three Pareto-
based multi-objective evolutionary algorithms: MONEA, ENORA-II and NSGA-II. MONEA 
and ENORA-II are algorithms proposed by authors in (Gómez-Skarmeta et al., 2007), and 
(Sánchez et al., 2007) respectively, while NSGA-II is the well-known multi-objective EA 
proposed by Deb in (Deb, 2001). 
The main common characteristics are the following: 
• The algorithms are Pareto-based multi-objective EAs for fuzzy modeling; that is, they 

have been designed to find, in a single run, multiple non-dominated solutions 
according to the Pareto decision strategy. There is no dependence between the objective 
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functions and the design of the EAs; thus, any objective function can easily be 
incorporated. 

• Constraints with respect to the fuzzy model structure are satisfied by incorporating 
specific knowledge about the problem. The initialization procedure and variation 
operators always generate individuals that satisfy these constraints. 

• The EAs have a variable-length, real-coded representation. Each individual of a 
population contains a variable number of rules between 1 and max, where max is 
defined by a decision maker. Fuzzy numbers in the antecedents and the parameters in 
the consequent are coded by floating-point numbers. 

• The initial population is generated randomly with a uniform distribution within the 
boundaries of the search space, defined by the learning data and model constraints. 

• The EAs search among rule sets treated with the technique described in Section 3.6 and 
trained as defined in Section 3.3, which is an added ad hoc technique for transparency, 
compactness, and accuracy. 

Table 2 summarizes common and specific characteristics of the algorithms MONEA, NSGA-
II and ENORA-II. 
 

Common characteristics 
Pittsburgh approach, real-coded representation. 
Training of the RBF network consequents. 
Constraint-handling technique. 
Variation operators. 
Rule-set simplification technique. 
Elitist generational replacement strategy. 
Specific characteristics 
MONEA:     Preselection over 10 children, 
                      steady-state replacement (n = 2). 
ENORA-II: Non-dominated radial slots sorting. 
NSGA-II:    Non-dominated crowded sorting. 

Table 2. Common and specific characteristics of MONEA, ENORA-II and NSGA-II. 

3.1 Representation of solutions 
The EAs have a variable-length, real-coded representation using a Pittsburgh approach. An 
individual I  for this problem is a rule set of M  (between 1 and max, where max is defined 
by a decision maker) rules defined by the weights of the RBF neural network. With n  input 
variables, we have for each individual the following parameters: 
• Parameters of the fuzzy sets ijA : 

centers ijc  and variances ijσ , Mi ,1,= … , nj ,1,= …  

• Coefficients for the linear function of the consequents: 

ijθ , Mi ,1,= … , 1,1,= +nj …  
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3.2 Initial population 
The population is initialized by generating individuals with different numbers of rules. Each 
individual is generated randomly with a uniform distribution within the boundaries of the 
search space, defined by the learning data and trained with the gradient technique described 
in subsection 3.3. 
An individual with M  rules is generated with the following procedure: 
1.  For each fuzzy set ijA  ( Mi ,1,= … , nj ,1,= … ), generate two real values:  ijc in the 

interval [ ]jj ul ,  and the parameter of the gaussian fuzzy set , ijσ . 

2.  Parameters ijθ  ( Mi ,1,= … , 1,1,= +nj … ) are random real values in the interval [ ]ul, . 

3.  The individual is treated with the technique to improve transparency and compactness 
describe in subsection 3.6. 

4.  The individual is trained using the gradient technique described in subsection 3.3. 

3.3 Training of the RBF neural networks 
In RBF neural networks, each neuron in the hidden layer can be associated with a fuzzy 
rule; therefore RBF neural networks are suitable to describe fuzzy models. The RBF neural 
networks associated with the fuzzy models can be trained with a gradient method to obtain 
more accuracy. However, in order to maintain the transparency and compactness of the 
fuzzy sets, only the consequent parameters are trained. The training algorithm 
incrementally updates the parameters based on the currently presented training pattern. The 
network parameters are updated by applying the gradient descent method to the MSE error 
function. The error function for the ith training pattern is given by the MSE function error 
defined in equation (5). The updating rule is the following: 
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where: 
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1,1,= +nj … , and 
η  is the learning rate. 
This rule is applied during a number of iterations (epochs). We use a value 0.01=η  and a 
number of 10  epochs. The negative gradients of MSE  with respect to each parameter are 
calculated in the following way:  
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( )xiμ  is the firing strength for the ith rule defined in equation (2), and 

( )xi
M

i
z μ∑ 1=

= . 

3.4 Constraint-handling 
The EAs use the following constraint handling rule proposed in (Jiménez et al., 2002). This 
rule considers that an individual I is better than an individual J if any of the following 
conditions is true: 
• I is feasible and J is not 
• I and J are both unfeasible, but SI < SJ 
        (SI and SJ are similarity of I and J) 
• I and J are feasible and I dominates J 

3.5 Variation operators 
As already said, an individual is a set of M  rules. A rule is a collection of n  fuzzy numbers 
(antecedent) plus 1+n  real parameters (consequent), and a fuzzy number is composed of 
two real numbers. In order to achieve an appropriate exploitation and exploration of the 
potential solutions in the search space, variation operators working in the different levels of 
the individuals are necessary. In this way, we consider three levels of variation operators: 
rule set level, rule level and parameter level. 
Rule Set Level Variation Operators 
Rule Set Crossover 
This operator exchanges a random number of rules. Given two parents ( )11

11 1
= MRRI … and 

( )22
12 2

= MRRI … generate two children:  
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with: 

 ( )1= Mrounda α  

 ( )( )21= Mroundb α−  
where α  is a random real number in [ ]0,1 . The number of rules of the children is therefore 
in [ ]21, MM . 
Rule Set Increase Crossover 
This operator increases the number of each child rules adding a random number of rules of 
the other parent. Given two parents ( )11

11 1
= MRRI …  and ( )22

12 2
= MRRI …  generate two 

children:  
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13 1
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As already said, an individual is a set of M  rules. A rule is a collection of n  fuzzy numbers 
(antecedent) plus 1+n  real parameters (consequent), and a fuzzy number is composed of 
two real numbers. In order to achieve an appropriate exploitation and exploration of the 
potential solutions in the search space, variation operators working in the different levels of 
the individuals are necessary. In this way, we consider three levels of variation operators: 
rule set level, rule level and parameter level. 
Rule Set Level Variation Operators 
Rule Set Crossover 
This operator exchanges a random number of rules. Given two parents ( )11

11 1
= MRRI … and 

( )22
12 2

= MRRI … generate two children:  

 ( )22
1

11
13 = ba RRRRI ……  

 ( )22
1

11
14 21

= MbMa RRRRI …… ++  

with: 

 ( )1= Mrounda α  

 ( )( )21= Mroundb α−  
where α  is a random real number in [ ]0,1 . The number of rules of the children is therefore 
in [ ]21, MM . 
Rule Set Increase Crossover 
This operator increases the number of each child rules adding a random number of rules of 
the other parent. Given two parents ( )11

11 1
= MRRI …  and ( )22

12 2
= MRRI …  generate two 

children:  

 ( )22
1

11
13 1

= aM RRRRI ……  
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 ( )11
1

22
14 2

= bM RRRRI ……  

with: 

 { }21,= MMa −maxmin  

 { }12 ,= MMb −maxmin  

Rule Set Mutation 
This operator adds or deletes, with the same probability, a rule. Given an individual 

( )MRRI …1=  generates other individual I ′ : 

 

( )
( ) caseotherinRRRI

ifRRRRI

MM

Maa
,,=

0.5,,=

11

111

+

+−
′

≤′

…
…… α

 
where: 
α  is a random real number in [ ]0,1 , 
a  a random index in [ ]M1,  , and 

1+MR  a new random rule generated with the initialization procedure. 
Rule Level Variation Operators 
Rule Arithmetic Crossover 
It performs an arithmetic crossover of two random rules. Given two parents ( )11

11 1
= MRRI …  

and ( )22
12 2

= MRRI …  generates two children:  

 ( )131
13 1

= Mi RRRI ……  

 ( )242
14 2

= Mj RRRI ……  

with 3
iR  and 4

jR  obtained by arithmetic crossover:  

 
( ) 213 1= jii RRR αα −+

 

 
( ) 124 1= ijj RRR αα −+

 
where: 
α  is a random real number in [ ]0,1 , 

ji,  are random index in [ ]11, M  and [ ]21, M , respectively. 
The product iRα  is defined as follows:  

 1)(11: +niiniinii AAR αθαθαθααα ……  
The fuzzy set ijAα  is defined as follows:  

{ }ijijijijij dcbaA ααααα ,,,=
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Rule Uniform Crossover 
It performs a uniform crossover of two random rules. Given two parents ( )11

11 1
= MRRI …  and 

( )22
12 2

= MRRI …  generates two children:  

 ( )131
13 1

= Mi RRRI ……  

 ( )242
14 2

= Mj RRRI ……  

where: 
3
iR  and 4

jR  are obtained by uniform crossover, 

ji,  are random index in [ ]11, M  and [ ]21, M . 
Parameter Level Variation Operators 
The operators considered at this level are arithmetic crossover, uniform crossover, non-
uniform mutation, uniform mutation and small mutation. These operators excluding the last 
one have been studied and described by other authors (Goldberg, 1989). The small mutation 
produces a small change in the individual and it is suitable for fine tuning of the real 
parameters. 

3.6 Rule set simplification technique 
Automated approaches to fuzzy modeling often introduce redundancy in terms of several 
similar fuzzy sets and fuzzy rules that describe almost the same region in the domain of 
some variable. According to some similarity measure, two similar fuzzy sets can be merged 
or separated. The merging-separation process is repeated until fuzzy sets for each model 
variable are not similar. This simplification may results in several identical rules, which 
must be removed from the rule set. The proposed algorithm is the following: 
1 While there be kji ,,  such that ( ) 2>, ηkjij AAS  

               If ( ) 1>, ηkjij AAS  then  

                             Calculate C  as the merging of ijA  and kjA  

                             Substitute ijA  and kjA  by C  

               in other case  
                             Split ijA  and kjA   

2 While there be ki,  such that the antecedents of rules iR  and kR  are the same 
               Calculate a new consequent with the average of the parameters of the consequents 
               of iR  and kR  
               Substitute the consequent of iR  by the new consequent  
               Eliminate kR   

Similarity between two fuzzy sets, ( ), ,S A B  is measured using the expression in equation 

(7). The values 1η  and 2η  are the threshold to perform the merging or the separation and 
must be 1<<<0 12 ηη . (we use 0.9=1η  and 0.6=2η ) 
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3.6 Rule set simplification technique 
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If ( ) 1>, ηBAS , fuzzy sets A and B are merged in a new fuzzy set C as follows:  

( ) BAC ccc αα −+ 1=  

}},max{},,min{max{ CBBAABBAAC cccccc −++−−−= σσσσσ  
 

where [ ]0,1∈α  determines the influence of A  and B  in the new fuzzy set C :  

 
l
B

r
B

l
A

r
A

l
A

r
A

cccc
cc

−+−
−=α

 
 

If ( ) 12 <,< ηη BAS , fuzzy sets A  and B  are splitted as follows:  

( )
( )βσσ

βσσσσ
−←

−←<

1
1

BB

AABA

caseotherin
thenIf  

where [ ]0,1∈β  indicates the amount of separation between A  and B  (we use 0.1=β ). 

3.7 Algorithm descriptions 
In order to describe the algorithms, we consider the following formulation as a general form 
of the multi-objective constrained optimization model (8): 

 1,..,
0 1,..,

k

i

Minimize f k n
Subject to g i m

=
≤ =

 (9) 

Where ik gf ,  are arbitrary functions.  
Multi-objective neuro-evolutionary algorithm (MONEA) 
The main characteristic of MONEA is that Chromosome selection and replacement are 
achieved by means of a variant of the Preselection scheme. This technique is, implicitly, a 
niche formation technique and an elitist strategy. Moreover, an explicit niche formation 
technique has been added to maintain diversity with respect to the number of rules of the 
individuals. 
 

Algorithm MONEA 
1.      t  0 
2.      Initialize P (t) 
4.      while t < T do 
5. parent1,parent2  Random selection from P(t) 
6. Generate a new individual best1  parent1 
7. Generate a new individual best2  parent2 
8.  Repeat nChildren times 
9.           child1,child2  Crossing and Mutation of parent1  and parent2 
10.           Improve transparency and compactness in child1 and child2 
11.           Train child1and child2 by the gradient technique 
12.           For i=1 to 2 
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13.  If childi is better than besti and  
  (the number of rules of childi is equal to the number of rules of parent i) or 
  (the niche count of parenti is greater than minNS and the niche count of the 
  childi is smaller than maxNS) then 
14.              besti  childi 
15. P (t + 1) P(t) – {parent1, parent2} ∪  {best1, best2} 
16. t  t + 1 
17.     end while 
The preselection scheme is an implicit niche formation technique to maintain diversity in the 
population because an offspring replaces an individual similar to itself (one of its parents). 
Implicit niche formation techniques are more appropriate for fuzzy modeling than explicit 
techniques, such as the sharing function, which can provoke excessive computational time. 
However, we need an additional mechanism for diversity with respect to the number of 
rules of the individuals in the population. The added explicit niche formation technique 
ensures that the number of individuals with M rules, for all M Є [1, max], is greater or equal 
to minNS and smaller or equal to maxNS. Moreover, the preselection scheme is also an elitist 
strategy because the best individual in the population is replaced only by a better one. 
The better function 
 

Given two individuals k and l,  k is better than l if: 
• k is feasible and l is unfeasible, or 
• k and l are unfeasible and { } { }l

j
mj

k
j

mj
gg

...1...1
maxmax
==

≤ , or 

• k and l are feasible and k dominates l, or 

(10) 

 

ENORA-II: An Elitist Pareto-Based Multi-Objective Evolutionary Algorithm 
ENORA-II uses a real-coded representation, uniform and arithmetical cross, and uniform 
and non-uniform mutation. Diversity among individuals is maintained by using an ad-hoc 
elitist generational replacement technique. 
ENORA-II has a population P of N individuals. The following algorithm shows the 
pseudocode of ENORA-II. 
 

Algorithm ENORA-II 
1.       t  0 
2.       Initialize P (t) 
3.       Evaluate P (t) 
4.       while t < T do 
5. Q (t)  Random Selection, Crossing and Mutation of N individuals from P (t) 
6. Improve transparency and compactness in Q(t) 
7. Train all individuals in Q(t) by the gradient technique 
8. Evaluate Q(t); 
9. P (t + 1)  Best individuals from P (t) ∪ Q(t); 
10. t  t + 1; 
11. end while; 
12.     return the non dominated individuals from P(t); 
Given a population P of N individuals, N children are generated by random selection, 
crossing and mutation. The new population is obtained selecting the N best individuals 
from the union of parents and children. 
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Better individuals 
The better individuals are obtained by using the ranking established by the operator best. It 
assumes that every individual i has two attributes: 
• a ranking in its slot (ri), and 
• a crowding distance (di). 
Based on these attributes, an individual i is better than an individual j if: 
• ri < rj or 
• ri = rj and di  > dj. 
Crowding distance 
Quantity di is a measure of the search space around individual i which is not occupied by 
any other individual in the population. This quantity di serves as an estimate of the 
perimeter of the cuboid formed by using the nearest neighbors as the vertices. 
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Where max
jf = { }ij
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, 
i
j

jf sup  is the value of the jth objective for the 

individual higher adjacent in the jth objective to individual i, and 
i
j

jf inf  is the value of the 
jth objective for the individual lower adjacent in the jth objective to individual i. 
Ranking of individuals in its slot 

Individuals are ordered in ⎣ ⎦( ) 11 1
−− +

nn N  slots. An individual i belongs to slot is  such that: 
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where maxr
jf and minr

jf are the maximum and minimum values for the jth objective if the 
objective space is bounded; if it is not, then these are bounding reference points so that 

i
j

r
j ff ≥max and i

j
r
j ff ≤min  for any individual i.  

The ranking inside slots is established as an adjustment of the better function (10): given two 
individuals k and l belonging to same slot, ranking of individual k is lower than ranking of 
individual l in the slot if: 
• k is feasible and l is unfeasible, or 
• k and l are unfeasible and { } { }l

j
mj

k
j

mj
gg

...1...1
maxmax
==

≤ , or 

• k and l are feasible and k dominates l, or 
• k and l are feasible and does not dominated each other and lk dd > . 

4. Experiments and results 
We consider the second order non-linear plant studied in (Wang & Yen, 1999) and (Yen & 
Wang, 1998): 
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The objective is the approximation of the non-linear component of the plant 

( ) ( )( )2,1 −− kykyg  using a fuzzy model. 200 training values and 200 evaluation values are 
obtained starting at the initial state (0,0) with a random input signal u(k) uniformly 
distributed in the interval [ ]1.5,1.5− . 
MONEA, ENORA-II and NSGA-II are executed 100 times for 10000 evaluations, with a 
population of 100 individuals, cross and mutation probabilities of 0.8 and 0.4 respectively. 
The different variation operators are applied with equal probability. We can compare our 
results with the results obtained by other approaches proposed in (Wang & Yen, 1999), (Yen 
& Wang, 1998) and (Roubos & Setnes, 2000) which are shown in Table 3. Table 4 shows the 
best non-dominated solutions in the last population over 100 runs. Solutions with 4 rules are 
chosen which are shown in Figure 1 and Table 5. 
 

Reference M L Train MSE Eval MSE 

Wang & Yen, 1999 40 (initial) 
28 (optimized) 

40 
28 

3.3 E-4 
3.3 E-4 

6.9 E-4 
6.0 E-4 

Yen & Wang, 1998 36 (initial) 
24 (optimized) 

12 
12 

1.9 E-6 
2.0 E-6 

2.9 E-3 
6.4 E-4 

Roubos & Setnes, 2000 7 (initial) 
5 (optimized) 

14 
5 

1.8 E-3 
5.0 E-4 

1.0 E-3 
4.2 E-4 

Table 3. Fuzzy models for the second order non-linear plant reported in literature. 
 

M L Train MSE Eval MSE S 
MONEA 

1 2 0.041882 0.043821 0.000000 
2 3 0.004779 0.005533 0.249887 
3 4 0.002262 0.002749 0.232016 
4 4 0.000216 0.000248 0.249021 

ENORA-II 
1 2 0.041882 0.043821 0.000000 
2 3 0.004951 0.005722 0.242090 
3 4 0.001906 0.002411 0.249391 
4 4 0.000161 0.000194 0.249746 

NSGA-II 
1 2 0.041882 0.043821 0.000000 
2 3 0.004870 0.005639 0.249998 
3 4 0.001885 0.002343 0.249999 
4 4 0.000249 0.000314 0.250000 

Table 4. Non-dominated solutions (best results over 100 runs) obtained in this paper for the 
second order non-linear plant. 
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MONEA, ENORA-II and NSGA-II are executed 100 times for 10000 evaluations, with a 
population of 100 individuals, cross and mutation probabilities of 0.8 and 0.4 respectively. 
The different variation operators are applied with equal probability. We can compare our 
results with the results obtained by other approaches proposed in (Wang & Yen, 1999), (Yen 
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Reference M L Train MSE Eval MSE 

Wang & Yen, 1999 40 (initial) 
28 (optimized) 

40 
28 

3.3 E-4 
3.3 E-4 

6.9 E-4 
6.0 E-4 

Yen & Wang, 1998 36 (initial) 
24 (optimized) 

12 
12 

1.9 E-6 
2.0 E-6 

2.9 E-3 
6.4 E-4 

Roubos & Setnes, 2000 7 (initial) 
5 (optimized) 

14 
5 

1.8 E-3 
5.0 E-4 

1.0 E-3 
4.2 E-4 

Table 3. Fuzzy models for the second order non-linear plant reported in literature. 
 

M L Train MSE Eval MSE S 
MONEA 

1 2 0.041882 0.043821 0.000000 
2 3 0.004779 0.005533 0.249887 
3 4 0.002262 0.002749 0.232016 
4 4 0.000216 0.000248 0.249021 

ENORA-II 
1 2 0.041882 0.043821 0.000000 
2 3 0.004951 0.005722 0.242090 
3 4 0.001906 0.002411 0.249391 
4 4 0.000161 0.000194 0.249746 

NSGA-II 
1 2 0.041882 0.043821 0.000000 
2 3 0.004870 0.005639 0.249998 
3 4 0.001885 0.002343 0.249999 
4 4 0.000249 0.000314 0.250000 

Table 4. Non-dominated solutions (best results over 100 runs) obtained in this paper for the 
second order non-linear plant. 
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R1 If y(k-1)  is LOW and y(k-2)  is LOW then g = 0.4327y(k-1) + 0.0007(k-2) – 0.2008 
R2 If y(k-1)  is LOW and y(k-2)  is HIGH then g = -0.4545y(k-1) – 0.0131(k-2) + 0.2368 
R3 If y(k-1)  is HIGH and y(k-2)  is LOW then g = -0.3968y(k-1) – 0.0044(k-2)+ 0.1859 
R4 If y(k-1)  is HIGH and y(k-2)  is HIGH then g = 0.43645y(k-1) – 0.0052(k-2)– 0.2110 

y(k-1) LOW = (-1.5966, 2.0662) HIGH = (1,7679, 2.6992) 
y(k-2) LOW = (-1.7940, 3.1816) HIGH = (1.5271, 2.1492) 

Table 5. Fuzzy model with 4 rules for the non-linear dynamic plant obtained by ENORA-II. 

  

 
Fuzzy Sets for y(k-2) 

Figure 1. Solutions with 4 rules obtained in this paper for the second order non-linear plant. 
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To compare the algorithms, we use the hypervolume indicator (ν) which calculates the 
fraction of the objective space which is non-dominated by any of the solutions obtained by 
the algorithm in (Deb, 2001), (Laumans et al., 2001) and (Zitzler et al., 2003). The aim is to 
minimize the value of ν. This indicator estimates both the distance of solutions to the real 
Pareto front and the spread. Whenever a set of solutions is preferable to other with respect 
to weak Pareto dominance, the indicator value for the first set of solution will be at least as 
good as the indicator value for the second; it is, therefore, a Pareto compliant quality 
indicator. Value ν can be calculated for a population P0 which is composed by the N0 non-
dominated solutions of P. 
Algorithms were executed 100 times, so we have obtained a 100 sample for each algorithm. 
The statistics showed in Table 6 indicate that MONEA and ENORA-II obtain lower 
localization values than NSGA-II while NSGA-II obtains the greatest dispersion values. 
Finally, the 90% confidence intervals for the mean obtained with t-test show that ENORA-II 
obtains lower values than MONEA and this obtains lower than NSGA-II. That is, the 
approximation sets obtained by ENORA-II are preferable to those of MONEA and those of 
NSGA-II under hypervolume indicator ν. t-test is robust with no normal samples which are 
greater than 30 individuals, so the results are significant and we can conclude that there is 
statistical difference between the hypervolume values obtained by the algorithms. The 
Boxplots showed in Figure 2 confirm the above conclusions. 
 
 

 MONEA ENORA-II NSGA-II

Minimum 0.3444 0.3337 0.3318 

Maximum 0.4944 0.4591 0.9590 

Mean 0.3919 0.3799 0.5333 

S.D 0.0378 0.0334 0.1430 

C.I. Low 0.3856 0.3743 0.5096 

C.I. High 0.3982 0.3854 0.5571 

S.D = Standard Deviation of Mean 

C.I. = Confidence Interval for the Mean (90%) 
 

Table 6. Statistics for the hypervolume obtained with 100 runs of MONEA, ENORA-II and 
NSGA-II for the second order non-linear plant. 

Taking all the above, we can conclude that the hypervolume values obtained with ENORA-
II are significantly better than the values obtained with MONEA and NSGA-II. The 
statistical analysis shows, therefore, that for the kind of multi-objective problems we are 
considering, Pareto search based on the space search partition in linear slots is most efficient 
than general search strategies exclusively based on diversity functions, as in NSGA-II. 
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Figure 2. Boxplots for the hypervolume obtained with 100 runs of MONEA, ENORA-II and 
NSGA-II for the second order non-linear plant. 

5. Conclusions 
This chapter remarks on some results in the combination of Pareto-based multi-objective 
evolutionary algorithms, neural networks and fuzzy modeling. A multi-objective 
constrained optimization model is proposed in which criteria such as accuracy, 
transparency and compactness have been taken into account. Three multi-objective 
evolutionary algorithms (MONEA, ENORA-II and NSGA-II) have been implemented in 
combination with neural network based and rule simplification techniques. The results 
obtained improve on other more complex techniques reported in literature, with the 
advantage that the proposed technique identifies a set of alternative solutions. Statistical 
tests have been performed over the hypervolume quality indicator to compare the 
algorithms and it has shown that, for the non linear plant problem, ENORA-II obtains better 
results than MONEA and NSGA-II algorithms. 
Future improvements of the algorithms will be the automatic parameter tuning, and a next 
application of these techniques will be on medicine data. 
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1. Introduction     
Optimization in engineering design has always been of great importance and interest 
particularly in solving complex real-world design problems. Basically, the optimization 
process is defined as finding a set of values for a vector of design variables so that it leads to 
an optimum value of an objective or cost function. In such single-objective optimization 
problems, there may or may not exist some constraint functions on the design variables and 
they are respectively referred to as constrained or unconstrained optimization problems. 
There are many calculus-based methods including gradient approaches to search for mostly 
local optimum solutions and these are well documented in (Arora, 1989; Rao, 1996). 
However, some basic difficulties in the gradient methods such as their strong dependence 
on the initial guess can cause them to find a local optimum rather than a global one. This has 
led to other heuristic optimization methods, particularly Genetic Algorithms (GAs) being 
used extensively during the last decade. Such nature-inspired evolutionary algorithms 
(Goldberg, 1989; Back et al., 1997) differ from other traditional calculus based techniques. 
The main difference is that GAs work with a population of candidate solutions, not a single 
point in search space. This helps significantly to avoid being trapped in local optima 
(Renner & Ekart, 2003) as long as the diversity of the population is well preserved.  
In multi-objective optimization problems, there are several objective or cost functions (a 
vector of objectives) to be optimized (minimized or maximized) simultaneously. These 
objectives often conflict with each other so that as one objective function improves, another 
deteriorates. Therefore, there is no single optimal solution that is best with respect to all the 
objective functions. Instead, there is a set of optimal solutions, well known as Pareto optimal 
solutions (Srinivas & Deb, 1994; Fonseca & Fleming, 1993; Coello Coello & Christiansen, 
2000; Coello Coello & Van Veldhuizen, 2002), which distinguishes significantly the inherent 
natures between single-objective and multi-objective optimization problems. V. Pareto 
(1848-1923) was the French-Italian economist who first developed the concept of multi-
objective optimization in economics (Pareto, 1896). The concept of a Pareto front in the space 
of objective functions in multi-objective optimization problems (MOPs) stands for a set of 
solutions that are non-dominated to each other but are superior to the rest of solutions in the 
search space. Evidently, changing the vector of design variables in such a Pareto optimal 
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solutions consisting of these non-dominated solutions would not lead to the improvement 
of all objectives simultaneously. Consequently, such change leads to a deterioration of at 
least one objective to an inferior one. Thus, each solution of the Pareto set includes at least 
one objective inferior to that of another solution in that Pareto set, although both are 
superior to others in the rest of search space.  
The inherent parallelism in evolutionary algorithms makes them suitably eligible for solving 
MOPs. The early use of evolutionary search is first reported in 1960s by Rosenberg 
(Rosenberg, 1967). Since then, there has been a growing interest in devising different 
evolutionary algorithms for MOPs. Basically, most of them are Pareto-based approaches and 
use the well-known non-dominated sorting procedure. In such Pareto-based approaches, the 
values of objective functions are used to distinguish the non-dominated solutions in the 
current population.  Among these methods, the Vector Evaluated Genetic Algorithm 
(VEGA) proposed by Schaffer (Schaffer, 1985), Fonseca and Fleming’s Genetic Algorithm 
(MOGA) (Fonseca & Fleming, 1993), Non-dominated Sorting Genetic Algorithm (NSGA) by 
Srinivas and Deb (Srinivas & Deb, 1994), and Strength Pareto Evolutionary Algorithm 
(SPEA) by Zitzler and Thiele (Zitzler & Thiele, 1998), and the Pareto Archived Evolution 
Strategy (PAES) by Knowles and Corne (Knowles & Corne, 1999) are the most important 
ones. A very good and comprehensive survey of these methods has been presented in 
(Coello Coello, 1999; Deb, 2001; Khare et al., 2003). Coello (Coello Coello, home page) has 
also presented an internet based collection of many papers as a very good and easily 
accessible literature resource. Basically, both NSGA and MOGA as Pareto-based approaches 
use the revolutionary non-dominated sorting procedure originally proposed by Goldberg 
(Goldberg, 1989). 
There are two important issues that have to be considered in such evolutionary multi-
objective optimization methods: driving the search towards the true Pareto-optimal set or 
front and preventing premature convergence or maintaining the genetic diversity within the 
population (Toffolo & Benini, 2003). The lack of elitism was also a motivation for 
modification of that algorithm to NSGA-II (Deb et al., 2002) in which a direct elitist 
mechanism, instead of a sharing mechanism, has been introduced to enhance the population 
diversity. This modified algorithm represents the state-of-the-art in evolutionary MOPs 
(Coello Coello & Becerra, 2003). A comparison study among SPEA and other evolutionary 
algorithms on several problems and test functions showed that SPEA clearly outperforms 
the other multi-objective EAs (Zitzler et al., 2000). Some further investigations reported in 
reference (Toffolo & Benini, 2003) demonstrated, however, that the elitist variant of NSGA 
(NSGA-II) equals the performance of SPEA. Despite its popularity and effectiveness, NSGA-
II is modified in this work to enhance its diversity preserving mechanism especially for 
problems with more than two objective functions. 
In this chapter, a new simple algorithm in conjunction with the original Pareto ranking of 
non-dominated optimal solutions is proposed and tested for MOPs including some test 
functions and engineering problems in power and energy conversion. In the Multi-objective 
Uniform-diversity Genetic Algorithm (MUGA), a є-elimination diversity approach is used 
such that all the clones and/or є-similar individuals based on normalized Euclidean norm of 
two vectors are recognized and simply eliminated from the current population. The 
superiority of MUGA is shown in comparison with NSGA-II in terms of diversity of 
population and Pareto fronts both for bi-objective and multi-objective optimization 
problems. 
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2. Multi-objective optimization 
Multi-objective optimization which is also called multicriteria optimization or vector 
optimization has been defined as finding a vector of decision variables satisfying constraints 
to give optimal values to all objective functions (Coello Coello & Christiansen, 2000; 
Homaifar et al., 1994) . In general, it can be mathematically defined as: 

find the vector TnxxxX
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where nX ℜ∈*  is the vector of decision or design variables, and kXF ℜ∈)(  is the vector of 
objective functions. Without loss of generality, it is assumed that all objective functions are 
to be minimized. Such multi-objective minimization based on the Pareto approach can be 
conducted using some definitions: 
Definition of Pareto dominance 
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corresponding v ’s. 
Definition of Pareto optimality 
A point Ω∈*X  ( Ω  is a feasible region in nℜ  satisfying equations (2) and (3)) is said to be 
Pareto optimal (minimal) with respect to all Ω∈X  if and only if )()*( XFXF ≺ . 
Alternatively, it can be readily restated as }{ ki ,...,2,1∈∀  , }*{XX −Ω∈∀  )()*( XifXif ≤  ∧ 
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(minimal) if no other solution can be found to dominate *X  using the definition of Pareto 
dominance. 
Definition of Pareto Set 
For a given MOP, a Pareto set Ƥ٭ is a set in the decision variable space consisting of all the 
Pareto optimal vectors, Ƥ٭ |{ Ω∈= X ∄ )}()(: XFXFX ≺′Ω∈′ . In other words, there is no 

other X ′  in Ω that dominates any X ∈Ƥ٭.  
Definition of Pareto front 
For a given MOP, the Pareto front ƤŦ٭ is a set of vectors of objective functions which are 
obtained using the vectors of decision variables in the Pareto set Ƥ٭, that is, 
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solutions consisting of these non-dominated solutions would not lead to the improvement 
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ƤŦ٭ ∈== XXkfXfXfXF :))(....,),(2),(1()({ Ƥ٭}. Therefore, the Pareto front ƤŦ٭ is a set of the 

vectors of objective functions mapped from Ƥ٭.  
Evolutionary algorithms have been widely used for multi-objective optimization because of 
their natural properties suited for these types of problems. This is mostly because of their 
parallel or population-based search approach. Therefore, most difficulties and deficiencies 
within the classical methods in solving multi-objective optimization problems are 
eliminated. For example, there is no need for either several runs to find the Pareto front or 
quantification of the importance of each objective using numerical weights. It is very 
important in evolutionary algorithms that the genetic diversity within the population be 
preserved sufficiently. This main issue in MOPs has been addressed by much related 
research work (Toffolo & Benini, 2003). Consequently, the premature convergence of 
MOEAs is prevented and the solutions are directed and distributed along the true Pareto 
front if such genetic diversity is well provided. The Pareto-based approach of NSGA-II (Deb 
et al., 2002) has been recently used in a wide range of engineering MOPs because of its 
simple yet efficient non-dominance ranking procedure in yielding different levels of Pareto 
frontiers. However, the crowding approach in such a state-of-the-art MOEA (Coello Coello 
& Becerra, 2003) works efficiently for two-objective optimization problems as a diversity-
preserving operator which is not the case for problems with more than two objective 
functions. The reason is that the sorting procedure of individuals based on each objective in 
this algorithm will cause different enclosing hyper-boxes. Thus, the overall crowding 
distance of an individual computed in this way may not exactly reflect the true measure of 
diversity or crowding property. In order to show this issue more clearly, some basics of 
NSGA-II are now represented. The entire population Rt is simply the current parent 
population Pt plus its offspring population Qt which is created from the parent population Pt 
by using usual genetic operators. The selection is based on non-dominated sorting 
procedure which is used to classify the entire population Rt according to increasing order of 
dominance (Deb et al., 2002). Thereafter, the best Pareto fronts from the top of the sorted list 
is transferred to create the new parent population Pt+1 which is half the size of the entire 
population Rt. Therefore, it should be noted that all the individuals of a certain front cannot 
be accommodated in the new parent population because of space. In order to choose exact 
number of individuals of that particular front, a crowded comparison operator is used in 
NSGA-II to find the best solutions to fill the rest of the new parent population slots. The 
crowded comparison procedure is based on density estimation of solutions surrounding a 
particular solution in a population or front. In this way, the solutions of a Pareto front are 
first sorted in each objective direction in the ascending order of that objective value. The 
crowding distance is then assigned equal to the half of the perimeter of the enclosing hyper-
box (a rectangular in bi-objective optimization problems). The sorting procedure is then 
repeated for other objectives and the overall crowding distance is calculated as the sum of 
the crowding distances from all objectives. The less crowded non-dominated individuals of 
that particular Pareto front are then selected to fill the new parent population. It must be 
noted that, in a two-objective Pareto optimization, if the solutions of a Pareto front are 
sorted in a decreasing order of importance to one objective, these solutions are then 
automatically ordered in an increasing order of importance to the second objective. Thus, 
the hyper-boxes surrounding an individual solution remain unchanged in the objective-wise 
sorting procedure of the crowding distance of NSGA-II in the two-objective Pareto 
optimization problem. However, in multi-objective Pareto optimization problems with more 
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than two objectives, such sorting procedure of individuals based on each objective in this 
algorithm will cause different enclosing hyper-boxes. Thus, the overall crowding distance of 
an individual computed in this way may not exactly reflect the true measure of diversity or 
crowding property for the multi-objective Pareto optimization problems with more than 
two objectives. 
In our work, a new method is presented to modify NSGA-II so that it can be safely used for 
any number of objective functions (particularly for more than two objectives) in MOPs. Such 
a modified MOEA is then used for four-objective thermodynamic optimization of subsonic 
turbojet engines. 

3. Multi-objective Uniform-diversity Genetic Algorithm (MUGA)  
The multi-objective uniform-diversity genetic algorithm (MUGA) uses non-dominated 
sorting mechanism together with a ε-elimination diversity preserving algorithm to get 
Pareto optimal solutions of MOPs more precisely and uniformly.  

3.1 The non-dominated sorting method 
The basic idea of sorting of non-dominated solutions originally proposed by Goldberg 
(Goldberg, 1989) used in different evolutionary multi-objective optimization algorithms 
such as in NSGA-II by Deb (Deb et al., 2002) has been adopted here. The algorithm simply 
compares each individual in the population with others to determine its non-dominancy. 
Once the first front has been found, all its non-dominated individuals are removed from the 
main population and the procedure is repeated for the subsequent fronts until the entire 
population is sorted and non-dominately divided into different fronts.  
A sorting procedure to constitute a front could be simply accomplished by comparing all the 
individuals of the population and including the non-dominated individuals in the front. 
Such procedure can be simply represented as following steps: 
 

 1-Get the population (pop) 
 2-Include the first individual {ind(1)} in the front P* as P*(1), let P*_size=1; 
               3-Compare other individuals {ind (j), j=2, Pop_size)} of the pop with { P*(K), K=1,  P*_size}  
               of the P*; 
 If ind(j)<P*(K) replace the P*(K) with ind(j) 
 If P*(K)<ind(K), j=j+1, continue comparison; 
 Else include ind(j) in P*, P*_size= P*_size+1, j=j+1, continue comparison; 
 4-End of front P*; 
 

It can be easily seen that the number of non-dominated solutions in P* grows until no 
further one is found. At this stage, all the non-dominated individuals so far  found in P* are 
removed from the main population and the whole procedure of finding another front may 
be accomplished again. This procedure is repeated until the whole population is divided 
into different ranked fronts. It should be noted that the first rank front of the final 
generation constitute the final Pareto optimal solution of the multi-objective optimization 
problem.  

3.2 The ε-elimination diversity preserving approach 
In the ε-elimination diversity approach that is used to replaced the crowding distance 
assignment approach in NSGA-II (Deb et al., 2002), all the clones and ε-similar individuals 
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than two objectives, such sorting procedure of individuals based on each objective in this 
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In the ε-elimination diversity approach that is used to replaced the crowding distance 
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are recognized and simply eliminated from the current population. Therefore, based on a 
value of ε as the elimination threshold, all the individuals in a front within this limit of a 
particular individual are eliminated. It should be noted that such ε-similarity must exist both 
in the space of objectives and in the space of the associated design variables. This will ensure 
that very different individuals in the space of design variables having ε-similarity in the 
space of objectives will not be eliminated from the population. The pseudo-code of the ε-
elimination approach is depicted in Fig. 1. Evidently, the clones and ε-similar individuals 
are replaced from the population by the same number of new randomly generated 
individuals. Meanwhile, this will additionally help to explore the search space of the given 
MOP more effectively. It is clear that such replacement does not appear when a front rather 
than the entire population is truncated for ε-similar individual.  
 

 
Fig. 1. The ε-elimination diversity preserving pseudo-code 

3.3 The main algorithm of MUGA 
It is now possible to present the main algorithm of MUGA which uses both non-dominated 
sorting procedure and ε-elimination diversity preserving approach which is given in Fig.2. It 
first initiates a population randomly. Using genetic operators, another same size population 
is then created. Based on the ε-elimination algorithm, the whole population is then reduced 
by removing ε-similar individuals. At this stage, the population is re-filled by randomly 
generated individuals which helps to explore the search space more effectively. The whole 
population is then sorted using non-dominated sorting procedure. The obtained fronts are 

ε-elim= ε-elimination(pop) // pop includes design variables and 
objective function 

i=1; j=1; 
get K (K=1 for the first front); 
While i,j <pop_size 

 e(i,j)= ║X(i,:),X(j,:) ║/║X(i,:) ║; X(i),X(j) ϵ P*k Ụ PF*k  //finding mean value of ε 

within pop.  
end 
ε=mean(e); 
i=1; 
until i+1<pop_size; 
j=i+1 
 until j<pop_size 
 if e(i,j)<ε 
 then {pop}={pop}/ {pop(j)} //remove the ε-similar individual 
 j=j+1 

end 
i=i+1 
end 
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then used to constitute the main population. It must be noted that the front which must be 
truncated to match the size of the population is also evaluated by ε-elimination procedure to 
identify the ε-similar individuals. Such procedure is only performed to match the size of 
population within ±10 percent deviation to prevent excessive computational effort to 
population size adjustment. Finally, unless the number of individuals in the first rank front 
is changing in certain number of generations, randomly created individuals are inserted in 
the main population occasionally (e.g. every 20 generations of having non-varying first rank 
front). 
 

 
Fig. 2. The pseudo-code of the main algorithm of MUGA 

4. Numerical results of MUGA using test functions 
In this section four test functions which have been widely used in literature (Deb et al., 2002) 
are adopted here to test and compare the effectiveness of MUGA with that of NSGA-II. 
These test functions are all bi-objective and have no constraint. A generation number of 250 
with a population size of 100 have been used in all experiments. The probabilities of 
crossover and mutation have been chosen as 0.9 and 0.1, respectively. Each test function has 

Get N         //population size 
t=1 ;    //set generation number 
Random_N(Pt);  //generate the first population (P1) randomly 
Qt=Recomb(Pt)  //generate population Qt from Pt by genetic operators 
Rt=Pt Ụ Qt  //union of both parent and offspring population 
Rt′=ε-elimination (Rt) //remove ε-similar individuals in Rt 
Rt′′= Rt′ Ụ  Random_(Rt_size-R′t_size) (Pt′) //add random individuals to fill Rt to 2N 
 
Do non-dominate sorting procedure (Rt′′)     //Rt′′=P*1Ụ P*2Ụ…ỤP*k   where k is total        

number of fronts 
i=1 
Pt+1=Θ 
While not Pt+1_size>N  //includes fronts into new population 
  Pt+1= Pt+1Ụ P*i 
  i=i+1 
end 
N′=N- Pt+1_size 
While not (0.9 N′< Pt+1_size<1.1 N′) //remove the ε-similar individuals within 

the tolerance of  ±10 percent 
       Ғ′=ε-elimination (P*i-1) 
           If Ғ′_size< N′ 

e=1.1*e 
else 
e=0.9 * e //adjust the value of threshold to get the right population 

size of the last front 
end 

end 
t=t+1    //Start next generation 
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are recognized and simply eliminated from the current population. Therefore, based on a 
value of ε as the elimination threshold, all the individuals in a front within this limit of a 
particular individual are eliminated. It should be noted that such ε-similarity must exist both 
in the space of objectives and in the space of the associated design variables. This will ensure 
that very different individuals in the space of design variables having ε-similarity in the 
space of objectives will not be eliminated from the population. The pseudo-code of the ε-
elimination approach is depicted in Fig. 1. Evidently, the clones and ε-similar individuals 
are replaced from the population by the same number of new randomly generated 
individuals. Meanwhile, this will additionally help to explore the search space of the given 
MOP more effectively. It is clear that such replacement does not appear when a front rather 
than the entire population is truncated for ε-similar individual.  
 

 
Fig. 1. The ε-elimination diversity preserving pseudo-code 

3.3 The main algorithm of MUGA 
It is now possible to present the main algorithm of MUGA which uses both non-dominated 
sorting procedure and ε-elimination diversity preserving approach which is given in Fig.2. It 
first initiates a population randomly. Using genetic operators, another same size population 
is then created. Based on the ε-elimination algorithm, the whole population is then reduced 
by removing ε-similar individuals. At this stage, the population is re-filled by randomly 
generated individuals which helps to explore the search space more effectively. The whole 
population is then sorted using non-dominated sorting procedure. The obtained fronts are 

ε-elim= ε-elimination(pop) // pop includes design variables and 
objective function 

i=1; j=1; 
get K (K=1 for the first front); 
While i,j <pop_size 

 e(i,j)= ║X(i,:),X(j,:) ║/║X(i,:) ║; X(i),X(j) ϵ P*k Ụ PF*k  //finding mean value of ε 

within pop.  
end 
ε=mean(e); 
i=1; 
until i+1<pop_size; 
j=i+1 
 until j<pop_size 
 if e(i,j)<ε 
 then {pop}={pop}/ {pop(j)} //remove the ε-similar individual 
 j=j+1 

end 
i=i+1 
end 
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then used to constitute the main population. It must be noted that the front which must be 
truncated to match the size of the population is also evaluated by ε-elimination procedure to 
identify the ε-similar individuals. Such procedure is only performed to match the size of 
population within ±10 percent deviation to prevent excessive computational effort to 
population size adjustment. Finally, unless the number of individuals in the first rank front 
is changing in certain number of generations, randomly created individuals are inserted in 
the main population occasionally (e.g. every 20 generations of having non-varying first rank 
front). 
 

 
Fig. 2. The pseudo-code of the main algorithm of MUGA 

4. Numerical results of MUGA using test functions 
In this section four test functions which have been widely used in literature (Deb et al., 2002) 
are adopted here to test and compare the effectiveness of MUGA with that of NSGA-II. 
These test functions are all bi-objective and have no constraint. A generation number of 250 
with a population size of 100 have been used in all experiments. The probabilities of 
crossover and mutation have been chosen as 0.9 and 0.1, respectively. Each test function has 

Get N         //population size 
t=1 ;    //set generation number 
Random_N(Pt);  //generate the first population (P1) randomly 
Qt=Recomb(Pt)  //generate population Qt from Pt by genetic operators 
Rt=Pt Ụ Qt  //union of both parent and offspring population 
Rt′=ε-elimination (Rt) //remove ε-similar individuals in Rt 
Rt′′= Rt′ Ụ  Random_(Rt_size-R′t_size) (Pt′) //add random individuals to fill Rt to 2N 
 
Do non-dominate sorting procedure (Rt′′)     //Rt′′=P*1Ụ P*2Ụ…ỤP*k   where k is total        

number of fronts 
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Pt+1=Θ 
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  Pt+1= Pt+1Ụ P*i 
  i=i+1 
end 
N′=N- Pt+1_size 
While not (0.9 N′< Pt+1_size<1.1 N′) //remove the ε-similar individuals within 

the tolerance of  ±10 percent 
       Ғ′=ε-elimination (P*i-1) 
           If Ғ′_size< N′ 

e=1.1*e 
else 
e=0.9 * e //adjust the value of threshold to get the right population 

size of the last front 
end 

end 
t=t+1    //Start next generation 
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been run for 5 times to compute the mean and variance of the metric of non-uniformity of 
the solutions obtained in the final Pareto front. 
In order to evaluate the diversity of the obtained Pareto front, a metric, Δ, has been adopted 
here to measure the spread and uniformity of the achieved non-dominated solutions along a 
Pareto front (Deb et al., 2002). Such metric basically calculates the relative Euclidean 
distance of consecutive solutions from their average value. Hence, a lower value of Δ (zero 
in ideal case) indicates a better uniformly spread non-dominated solutions. It is therefore 
possible to simply compare the performance of MUGA with that of NSGA-II in term of 
uniformity using the same metric. 
Four different functions which have been used to test and compare the results of MUGA 
with those of NSGA-II are as follows: 
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Figure 3 depicts the Pareto fronts obtained for test functions 1 and 2 using MUGA. Figure 4 
depicts the same for test functions 3 and 4. The uniformity of the well spread-out of the non-
dominated solutions is evident from these figures. 
In order to compare the uniformity of the results of this work (MUGA) with those of NSGA-
II, Table 1 shows the means and variances of metric Δ of both methods for multiple runs 
(Deb et al., 2002). 
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Fig. 3. Pareto fronts obtained by MUGA: (a) Test function 1 (b):Test function 2 
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Fig. 4. Pareto fronts obtained by MUGA: (a) Test function 3 (b):Test function 4 
 

Methods Test function 1 Test function 2 Test function 3 Test function 4 
0.449265 0.463292 0.435112 0.442195 

NSGA-II 
0.002062 0.041622 0.024607 0.001498 
1.021110 0.784525 0.755148 0.852490 

SPEA 
0.004372 0.004440 0.004521 0.002619 
1.063288 1.229794 1.165942 1.079838 

PAES 
0.002868 0.004839 0.007682 0.013772 
0.162595 0.273347 0.225211 0.402798 

MUGA (this work) 
2.9E-06 0.000261 2.1E-07 0.0 

Table 1. Comparison of mean and variance of metric Δ of different methods (Deb et al., 2002) 
with those of MUGA (shaded rows are mean values and un-shaded rows are variances) 
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Figure 3 depicts the Pareto fronts obtained for test functions 1 and 2 using MUGA. Figure 4 
depicts the same for test functions 3 and 4. The uniformity of the well spread-out of the non-
dominated solutions is evident from these figures. 
In order to compare the uniformity of the results of this work (MUGA) with those of NSGA-
II, Table 1 shows the means and variances of metric Δ of both methods for multiple runs 
(Deb et al., 2002). 
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It is very evident from Table 1 that the performance of MUGA is better than that of other 
methods in achieving lower Δ in obtaining more uniform non-dominated solutions for these 
test functions. Further, the very small value of variances of that metric obtained in multiple 
runs simply demonstrates the robustness of finding uniform Pareto fronts in MOPs using 
MUGA. 

5. Multi-objective thermodynamic optimization of turbojet engines with two 
design variables 
Turbojet engines use air as the working fluid and produce thrust based on the variation of 
kinetic energy of burnt gases after combustion. The study of the thermodynamic cycle of a 
turbojet engine involves different thermo-mechanical aspects such as specific thrust, thermal 
and propulsive efficiencies, and thrust-specific fuel consumption (Atashkari, et al., 2005). A 
detailed description of the thermodynamic analysis and equations (Mattingly, 1996) of ideal 
turbojet engines is given in Appendix A (Atashkari, et al., 2005). This elementary 
thermodynamic model is sufficient to capture the principles of behaviour and interactions 
among different input and output parameters in a multi-objective optimal sense. 
Furthermore, this provides a suitable real-world engineering benchmark for comparing 
purpose between MOEA using the new diversity preserving mechanism of this work. 
The input parameters involved in such thermodynamic analysis in an ideal turbojet engine 
given in Appendix A are flight Mach number (M0), input air temperature (T0, K), specific 
heat ratio (γ ), heating value of fuel (hpr, kJ/kg), exit burner total temperature (Tt4, K), and 
pressure ratio, πc. The output parameters involved in the thermodynamic analysis in the 
ideal turbojet engine given in Appendix A are, specific thrust, (ST, N/kg/s), fuel-to-air ratio 
(f), thrust-specific fuel consumption (TSFC, kg/s/N), thermal efficiency (ηt), and propulsive 
efficiency (ηp). However, in the multi-objective optimization study, some input parameters 
are already known or assumed as, T0 = 216.6 K, γ =1.4, hpr =48000 kJ/kg, and Tt4 = 1666 K. 
The input flight Mach number 0 < M0 ≤ 1 and the compressor pressure ratio 1 ≤ πc ≤ 40 are 
considered as design variables to be optimally found based on multi-objective optimization 
of 4 output parameters, namely, ST, TSFC, ηt, and ηp. 

5.2 Two-objective thermodynamic optimization of turbojet engines 
In order to investigate the optimal thermodynamic behaviour of subsonic turbojet engines, 5 
different sets, each including two objectives of the output parameters, are considered 
individually. Such pairs of objectives to be optimized separately have been chosen as (ηp, 
TSFCx105), (ηp, ST), (ηt, TSFCx105), (ηt, ST), and (ηp, ηt). Evidently, it can be observed that 
ηp, ηt, and ST are maximized whilst TSFC is minimized in those sets of objective functions.  
A population size of 100 has been chosen in all runs with crossover probability Pc and 
mutation probability Pm as 0.8 and 0.1, respectively.  
The results of the two-objective optimizations considering those 5 different combinations of 
objectives are summarized in Table 2. Some Pareto fronts of each pair of two objectives have 
been shown through figures (5-6) using both the approach of this work and that of NSGA-II. 
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Pairs of objectives in two-objective optimizations 

(ηp, TSFC) (ηt, TSFC) (ηp, ST) (ηt, ST) (ηp, ηt) 
 

0 <ηp≤0.39 
 

2.1≤TSFC≤2.43

0.4<ηp ≤0.55
 

3.16≤TSFC≤6.8

.65≤ηt ≤ 0.7 
 

2.1≤TSFC≤2.43

0.41<ηp≤0.5
 

515≤ST≤817

0 < ηp 0.39
 

906≤ST≤1169

0.64≤ηt 0.7 
 

890≤ST≤1169 

0.4≤ηp≤0.56 
 

0.16≤ηt≤0.55 

M0 0 < Mo ≤1 1 0 < Mo ≤1 0.85≤Mo≤1 0<Mo≤1 0<Mo≤1 1 

πc πc = 40 1.0 ≤πc ≤ 8.25 πc = 40 1.2≤πc≤4.28 13.5≤πc≤39.3 37.3≤πc≤40 1≤πc≤ 8.78 

Table 2. Values of decision variables and objective functions in various two-objective 
optimizations (Atashkari, et al., 2005) 
It is clear from these figures that choosing appropriate values for the decision variables, 
namely flight Mach number (M0) and pressure ratio (πc), to obtain a better value of one 
objective would normally cause a worse value of another objective. However, if the set of 
decision variables is selected based on each of a Pareto front, it will lead to the best possible 
combination of that pair of objectives. In other words, if any other pair of decision variables 
M0 and πc is chosen, the corresponding values of the particular pair of objectives will locate a 
point inferior to that Pareto front. The inferior area in the space of objective functions (plane 
in these cases) for figures (5-6) are in fact bottom/left sides. A better diversity of results 
obtained using the approach of this work than those of NSGA-II can also observed in these 
figures. Evidently, figures (5-6) reveal some important and interesting optimal relationships 
among the thermodynamic parameters in the ideal thermodynamic cycle of turbojet engines 
that may not have been found without a multi-objective optimization approach. Such 
relationships have been called a worthwhile task for a designer by Deb in (Deb, 2003). These 
figures and the associated values of the decision variables and the objective functions given 
in Table 1 simply covers all the 4 objectives studied in the two-objective Pareto optimization. 
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Fig. 5. Pareto front of thermal efficiency and specific thrust in 2-objective optimization: (a) 
MUGA (b) NSGA-II 
However, other pairs of objective functions in the two-objective Pareto optimization 
together with their associated values of the decision variables have been shown in Table 1. A 
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combination of that pair of objectives. In other words, if any other pair of decision variables 
M0 and πc is chosen, the corresponding values of the particular pair of objectives will locate a 
point inferior to that Pareto front. The inferior area in the space of objective functions (plane 
in these cases) for figures (5-6) are in fact bottom/left sides. A better diversity of results 
obtained using the approach of this work than those of NSGA-II can also observed in these 
figures. Evidently, figures (5-6) reveal some important and interesting optimal relationships 
among the thermodynamic parameters in the ideal thermodynamic cycle of turbojet engines 
that may not have been found without a multi-objective optimization approach. Such 
relationships have been called a worthwhile task for a designer by Deb in (Deb, 2003). These 
figures and the associated values of the decision variables and the objective functions given 
in Table 1 simply covers all the 4 objectives studied in the two-objective Pareto optimization. 
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Fig. 5. Pareto front of thermal efficiency and specific thrust in 2-objective optimization: (a) 
MUGA (b) NSGA-II 
However, other pairs of objective functions in the two-objective Pareto optimization 
together with their associated values of the decision variables have been shown in Table 1. A 
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careful investigation of these Pareto optimization results reveals some interesting and 
informative design aspects. It can be observed that a small value of pressure ratio (πc <8.7) is 
required in large value of Mach number (0.85<M0 <1) when high value of ηp is important to 
the designer (0.4 <ηp <0.55). In this case both ST and TSFC get their worse values (ST 
becomes smaller and TSFC becomes larger), whilst ηt varies between small and medium 
values (0.16<ηt<0.55) depending on the value of flight Mach number. However, with high 
value of pressure ratio (37<πc<40) in a wide range of flight Mach number (0<M0 <1), TSFC, 
ST, and ηt improve whilst ηp cannot be better than 0.4. The specific values of these objectives 
depend on the exact value of flight Mach number which have been given in Table 1. 
However, such important and worthwhile information can be simply discovered using a 
four-objective Pareto optimization, which will be presented in the next section.  
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Fig. 6. Pareto front of propulsive efficiency and thermal efficiency in 2-objective 
optimization: (a) MUGA  (b) NSGA-II 
Moreover, figures (5-6) also reveal some important and interesting optimal relationships of 
such objective functions in ideal thermodynamic cycle of turbojet engines that may have not 
been known without a multi-objective optimization approach. For example, figure (3) 
demonstrates that the optimal behaviours of ηt with respect to ST can be readily represented 
by 

 ηt ∝ (ST)2  (4) 

Figure (4) represents a non-linear optimal relationship of ηt and ηp in the form of 

 ηt ∝ (ηp)2    (5) 

 It should be noted that these relationships, which have been obtained from the two-
objective Pareto optimization results, are valid when the corresponding two-objective 
optimization of such functions is of importance to the designer and, in fact, demonstrates 
the optimal compromise of such pairs of objectives. 

5.3 Four-objective thermodynamic optimization of turbojet engines 
A multi-objective thermodynamic optimization including all four objectives simultaneously 
can offer more choices for a designer. Moreover, such 4-objective optimization can subsume 
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all the 2-objective optimization results presented in the previous section. Therefore, in this 
section, four objectives, namely, TSFC, ST, ηp, and ηt, are chosen for multi-objective 
optimization in which ST, ηp, and ηt are maximized whilst TSFC is minimized 
simultaneously. A population size of 200 has been chosen with crossover probability Pc and 
mutation probability Pm as 0.8 and 0.02, respectively. 
Figure (7) depicts the non-dominated individuals in both 4-objective and previously 
obtained 2-objective optimization in the plane of (ηt-ST). Such non-dominated individuals in 
both 4 and 2-objective optimization have alternatively been shown in the plane of (ηp-ηt) in 
figure (8). It should be noted that there is a single set of individuals as a result of 4-objective 
optimization of TSFC, ST, ηp, and ηt that are shown in different planes together with the 
corresponding 2-objective optimization results. Therefore, there are some points in each 
plane that may dominate others in the same plane in the case of 4-objective optimization. 
However, these individuals are all non-dominated when considering all four objectives 
simultaneously. By careful investigation of the results of 4-objective optimization in each 
plane, the Pareto fronts of the corresponding two-objective optimization can now be 
observed in these figures. It can be readily observed that the results of such 4-objective 
optimization include the Pareto fronts of each 2-objective optimization and provide, 
therefore, more optimal choices for the designer.  
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Fig. 7. Thermal efficiency variation with specific thrust in both 4-objective  & 2-objective 
optimisation 

The non-dominated individuals obtained in 4-objective optimization demonstrate some 
interesting behaviours in terms of design variables. Two different parts can be easily 
observed in figures (7-8). One of these parts which is less populated corresponds to high 
value of pressure ratio (0.4<ηp<0.55), unlike the rest of objective functions which all together 
degrades in their values simultaneously, that is, 3<TSFCx105<6.3, 515<ST<890, 0.2<ηt<0.52. 
The corresponding values of objectives for the second part can be given as, 0<ηp<0.4, 
2<TSFCx105<3, 900<ST<1169, 0.6<ηt<0.71 which can be appropriately chosen by the 
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careful investigation of these Pareto optimization results reveals some interesting and 
informative design aspects. It can be observed that a small value of pressure ratio (πc <8.7) is 
required in large value of Mach number (0.85<M0 <1) when high value of ηp is important to 
the designer (0.4 <ηp <0.55). In this case both ST and TSFC get their worse values (ST 
becomes smaller and TSFC becomes larger), whilst ηt varies between small and medium 
values (0.16<ηt<0.55) depending on the value of flight Mach number. However, with high 
value of pressure ratio (37<πc<40) in a wide range of flight Mach number (0<M0 <1), TSFC, 
ST, and ηt improve whilst ηp cannot be better than 0.4. The specific values of these objectives 
depend on the exact value of flight Mach number which have been given in Table 1. 
However, such important and worthwhile information can be simply discovered using a 
four-objective Pareto optimization, which will be presented in the next section.  
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Moreover, figures (5-6) also reveal some important and interesting optimal relationships of 
such objective functions in ideal thermodynamic cycle of turbojet engines that may have not 
been known without a multi-objective optimization approach. For example, figure (3) 
demonstrates that the optimal behaviours of ηt with respect to ST can be readily represented 
by 

 ηt ∝ (ST)2  (4) 

Figure (4) represents a non-linear optimal relationship of ηt and ηp in the form of 

 ηt ∝ (ηp)2    (5) 

 It should be noted that these relationships, which have been obtained from the two-
objective Pareto optimization results, are valid when the corresponding two-objective 
optimization of such functions is of importance to the designer and, in fact, demonstrates 
the optimal compromise of such pairs of objectives. 

5.3 Four-objective thermodynamic optimization of turbojet engines 
A multi-objective thermodynamic optimization including all four objectives simultaneously 
can offer more choices for a designer. Moreover, such 4-objective optimization can subsume 
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all the 2-objective optimization results presented in the previous section. Therefore, in this 
section, four objectives, namely, TSFC, ST, ηp, and ηt, are chosen for multi-objective 
optimization in which ST, ηp, and ηt are maximized whilst TSFC is minimized 
simultaneously. A population size of 200 has been chosen with crossover probability Pc and 
mutation probability Pm as 0.8 and 0.02, respectively. 
Figure (7) depicts the non-dominated individuals in both 4-objective and previously 
obtained 2-objective optimization in the plane of (ηt-ST). Such non-dominated individuals in 
both 4 and 2-objective optimization have alternatively been shown in the plane of (ηp-ηt) in 
figure (8). It should be noted that there is a single set of individuals as a result of 4-objective 
optimization of TSFC, ST, ηp, and ηt that are shown in different planes together with the 
corresponding 2-objective optimization results. Therefore, there are some points in each 
plane that may dominate others in the same plane in the case of 4-objective optimization. 
However, these individuals are all non-dominated when considering all four objectives 
simultaneously. By careful investigation of the results of 4-objective optimization in each 
plane, the Pareto fronts of the corresponding two-objective optimization can now be 
observed in these figures. It can be readily observed that the results of such 4-objective 
optimization include the Pareto fronts of each 2-objective optimization and provide, 
therefore, more optimal choices for the designer.  
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The non-dominated individuals obtained in 4-objective optimization demonstrate some 
interesting behaviours in terms of design variables. Two different parts can be easily 
observed in figures (7-8). One of these parts which is less populated corresponds to high 
value of pressure ratio (0.4<ηp<0.55), unlike the rest of objective functions which all together 
degrades in their values simultaneously, that is, 3<TSFCx105<6.3, 515<ST<890, 0.2<ηt<0.52. 
The corresponding values of objectives for the second part can be given as, 0<ηp<0.4, 
2<TSFCx105<3, 900<ST<1169, 0.6<ηt<0.71 which can be appropriately chosen by the 
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designer. Such facts would be very important to the designer to switch from one optimal 
solution to another for achieving different trade-off requirements of the objectives (Deb, 
2003). 
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Fig. 8. Propulsive efficiency variation with thermal efficiency in both 4-objective & 2-
objective optimization  

Additionally, there are some more profound optimal design relationships among the 
objective functions and the decision variables which have been discovered by the four-
objective thermodynamic Pareto optimization of ideal turbojet engines. Such important 
optimal design facts could not have been found without the multi-objective Pareto 
optimization. Firstly, figure (9) shows the variation of 4 optimized objective functions ST, 
TSFC, ηp, and ηt with the pressure ratio. It can be seen that for pressure ratio less than 14, 
three objectives ST, TSFC, and ηt become worse, unlike ηp which gradually starts getting 
better. The slope of such degradation for ST, TSFC, and ηt becomes faster especially in TSFC 
and ηt when the pressure ratio becomes smaller than 6. However, for high pressure ratios, 
the variation of optimal values of TSFC and ηt are small whilst there are a wide range of 
selections for ηp ≈ 0.4. Secondly, figure (10) demonstrates the behaviours of ST and ηp with 
respect to flight Mach number in high pressure ratios. It can be readily seen that the optimal 
values of ST changes linearly with M0, that is 

 ST = -264.75 M0 + 1164.5  (7)  

with a R-squared value of 0.999. The optimal relationship of ηp with M0 is non-linear and is 
represented as 

 ηp=-0.0977 (M0)2 +0.491 M0 +0.0013  (8) 

with a R-squared value of 0.998.  
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Therefore, such multi-objective optimization of ST, TSFC, ηp, and ηt provide optimal choices 
of design variables based on Pareto non-dominated points.  
 

 
Fig. 9. Variation of four objective functions with pressure ratio in 4-objective optimization  

6. Conclusion 
A new multi-objective uniform-diversity genetic algorithm (MUGA) has been proposed and 
successfully used for some test functions and for thermodynamic cycle optimization of ideal 
turbojet engines. It has been shown that the performance of this algorithm is superior to that  
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designer. Such facts would be very important to the designer to switch from one optimal 
solution to another for achieving different trade-off requirements of the objectives (Deb, 
2003). 
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of design variables based on Pareto non-dominated points.  
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Fig. 10. Relationships of specific thrust & propulsive efficiency with flight Mach No. in 4-
objective optimization (Atashkari, et al., 2005) 

of NSGA-II in terms of diversity and the uniformity of Pareto front obtained for both 2-
objective and 4-objective optimization processes. The robustness of uniform Pareto fronts 
obtained using MUGA has been shown by the very small values of variance of the metric Δ 
in multiple runs in comparisons with that of other methods. Further, such multi-objective 
optimization led to the discovering of important relationships and useful optimal design 
principles in thermodynamic optimization of ideal turbojet engines both in the space of 
objective functions and decision variables. The evolutionary multi-objective optimization 
process has helped to discover important relationships with relatively few efforts of 
modeling preparation that would otherwise have required at least a very through 
mathematical analysis. If the underlying objective modeling becomes more complex (like 
deviating from the ideality of components behaviour) evolutionary multi-objective 
optimization process may even be expected to become the sole present-time means of 
attaining respective solutions. 
 

Appendix A 
Thermodynamic model of ideal turbojet engine  
Assumptions: Inlet diffuser, compressor, turbine and exit nozzle, all operate isentropically. 
No pressure loss in the burner. 
f =(fuel/air)<<1, eP (turbojet exit pressure)= 0P (ambient pressure), PC =1.004 (kJ/kg.K) 

K216.6 0T = , 1.4=γ , 
kg
kJ  48000PRh = , K1666 t4T = (in 2 design variables), gc=1            

(kg-m/(N-s2)) 
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1. Introduction     
EA-based problem solving environments have progressively evolved in the last two decades 
from explicit one-problem serial solvers to multi-solvers platforms running on vast 
distributed heterogeneous resources. Significant efforts in the literature were devoted 
towards designing EA-based problem solving environments. Those research efforts were 
mainly directed to innovating new EAs with a parallel implementation (Cantu-Paz, 2000), 
and the counterpart for those research efforts were directed towards designing and 
constructing parallel computing environments (Weise, 2007) that could host parallel and 
distributed implementations of EAs. Still for the evolution of the problem solving 
paradigms, problem solving environments have not fully shifted to parallel and distributed 
models, and even up till today practices of serially implementing EAs problems of medium 
complexity are still noticeable. These practices prevailed in part due to the continuous 
increase in clock speeds, multicore processors, and problem nature. 
Yet, in the past few years, the significant increase in distributed resources, high 
bandwidth/low latency networks and cheap data storage along with the wide expansion in 
problem scope and addressing new problem types that were not attainable before, all 
combined together strongly motivated to rethinking the strategy of designing EA-based 
problem solving environments. Various distributed computing paradigms were used as 
platforms for EA-based problem solving environments, (Munawar et al., 2008) gives a brief 
illustration of those paradigms. In this chapter we concentrate on a modern distributed 
computing paradigm, namely grid computing (Foster & Kesselman, 1999). In the recent 
years, grid computing acquired widespread attention from both research and industrial 
institutions, as it provides contextual establishment of open standard platforms for 
distributed computing (more details in section 2.1) 
 Constructing an EA-based problem solving environment requires two main streams of 
working, one is the algorithm design and the other is the challenges associated with 
constructing a Grid based platform. The algorithm design is significantly affected when 
using distributed technologies, therefore many points should be taken into account when 
designing algorithms for distributed environments: fault tolerance, support of 
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combined together strongly motivated to rethinking the strategy of designing EA-based 
problem solving environments. Various distributed computing paradigms were used as 
platforms for EA-based problem solving environments, (Munawar et al., 2008) gives a brief 
illustration of those paradigms. In this chapter we concentrate on a modern distributed 
computing paradigm, namely grid computing (Foster & Kesselman, 1999). In the recent 
years, grid computing acquired widespread attention from both research and industrial 
institutions, as it provides contextual establishment of open standard platforms for 
distributed computing (more details in section 2.1) 
 Constructing an EA-based problem solving environment requires two main streams of 
working, one is the algorithm design and the other is the challenges associated with 
constructing a Grid based platform. The algorithm design is significantly affected when 
using distributed technologies, therefore many points should be taken into account when 
designing algorithms for distributed environments: fault tolerance, support of 
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interconnection for loosely coupled resources, support of late binding and dynamic 
migration. The other main stream which is the challenges accompanied with the grid 
computing environments both that are general (i.e. grid computing traditional problems) 
and specific (i.e. challenges related to EA-based solvers deployment).  
In this chapter we present MHGrid (Meta Heuristics Grid), a service-oriented grid 
application that provides easy to use robust environment for meta heuristics optimization 
solvers, including EAs, over a grid. The objective of MHGrid is to offer a framework, using 
which a user can solve complex global optimization problems using EAs over a grid with 
minimal effort. MHGrid is designed in a service-oriented fashion and offers the following 
services to the user: 
1.  Allow the user to use any of the solvers registered with MHGrid to solve a problem 

with minimal input and in a black box manner. 
2.  Allow solver developers to write and register a new EA-based solver with MHGrid. 
3.  Allow solver developers to write and register a new objective function with MHGrid. 
4.  Ability to control the parallelization model of the solver and objective function for high 

complexity problems. 
5.  Provide all the preceding services at both the application layer and middleware layer. 
This chapter is intended for a reader interested in the implementation of grid based problem 
solving environments of EAs. The reader is expected to have the basic background about 
EAs so the chapter scope will be focused on the grid computing problem solving 
environment and the effect of using the grid on the algorithms (i.e. parallelization and 
solver–to-objective function relation). We have tried not to overload the chapter with details 
by providing a very brief summary of the most notable and significant related work. So the 
chapter is focusing the discussion on the MHGrid platform and not devoted to being a 
comprehensive overview or survey of the previous work done in the area. 
The chapter is organized as follows, section 2 discusses grid-based EAs problem solving 
environments, it briefly investigates the related work of grid-based EAs. Section 3 discusses 
the design, architecture and implementation of MHGrid as a problem solving environment. 
Section 4 presents a close-up, from the service orientation perspective, to the SOA (Service 
Oriented Architecture) that MHGrid encompasses and also the modelling of MHGrid 
solvers as services. Section 5 illustrates a full test case starting from a user registering his 
service to using the registered service. Finally, section 6 concludes the whole chapter and 
gives an insight for the future work. 

2. Grid-based problem solving environment in EAs 
This section will give a very brief introduction of grid computing and why use grid 
computing with EA followed by showing the impact of the grid on algorithm design. Also a 
revision of the related work is discussed. 

2.1 Grid computing 
The most commonly used definition to abstractly define a grid is: “Coordinated resource 
sharing and problem solving in dynamic, multi-institutional virtual organization” (Foster & 
Kesselman, 1999). The most common among the categories of grid are:  
- Computational Grids: Grids that basically aggregate computational resource to offer 

transparent computational power to the applications that use them.  
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- Data Grids: Used to manage and control access to huge distributed data stored on 
heterogeneous storage devices.  

- Utility Grid: A market-oriented Grid that applies utility computing concepts in 
designing the grid.  

EAs problem solving environments when associated with grid fall under the category of 
computational grids. Yet in some problem solving environments that require extensive data 
handling, techniques that are basic components in data grids such as data replication and 
staging are introduced in the computational grid. Now almost every production level 
computational grid has support to what is known as workflow (transfer of data and files 
across the grid). Nonetheless, grid computing when addressed in EAs conventionally means 
computational grids. 
The grid architecture as shown in figure 2 is a revised version of the traditional grid 
architecture. The traditional grid architecture is composed of three layers only, the 
resources, the middleware layer and the application layer.  The middleware is a software 
layer that resides between an application and the underlying platform, in grids the 
middleware hides the underlying low-level details and complexities from the application 
layer. Yet, practically in grids, a big semantic gap lies between the middleware and the 
application layer, so (Abramson, 2006) revised the traditional architecture and modified it 
by splitting the middleware layer into two layers, the upper middleware layer and the lower 
middleware layer. This architecture was adopted in MHGrid due to its enhanced subjective 
representation and ease of modelling.  
 

 
Fig.2. General revised architecture of MHGrid as a computational grid. 
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interconnection for loosely coupled resources, support of late binding and dynamic 
migration. The other main stream which is the challenges accompanied with the grid 
computing environments both that are general (i.e. grid computing traditional problems) 
and specific (i.e. challenges related to EA-based solvers deployment).  
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This section will give a very brief introduction of grid computing and why use grid 
computing with EA followed by showing the impact of the grid on algorithm design. Also a 
revision of the related work is discussed. 
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The most commonly used definition to abstractly define a grid is: “Coordinated resource 
sharing and problem solving in dynamic, multi-institutional virtual organization” (Foster & 
Kesselman, 1999). The most common among the categories of grid are:  
- Computational Grids: Grids that basically aggregate computational resource to offer 

transparent computational power to the applications that use them.  
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2.2 Why grid computing for EAs 
An often repeatedly aroused question is why use grid computing for EAs, as it naturally 
adds a significant overhead to the performance compared to other technologies such as 
cluster computing. Also designing and implementing a problem solving environment over 
the grid involves much more complexity than compared to other techniques. The answer to 
that question lies in a three point checklist by Ian Foster (Foster, 2002), that is when satisfied, 
classifies the distributed computing framework as a grid. The checklist is: 
- Resources are not administered centrally. 
- Open standard, general-purpose interfaces and protocols are used. 
- Non-trivial quality of service is achieved. 
From the checklist above, considering the non-trivial quality of service, grid will be a good 
choice as a distributed computing paradigm. The major non trivial quality of service is the 
grid application hosting environment. As the grid application can be available over the 
Internet and accessed through a Web portal (this is the case in MHGrid), so the hosting 
environment in this case is the Internet, and the user could be any person accessing the 
portal and having a valid grid certificate. Other parallel computing paradigms on the other 
hand (e.g. cluster computing and supercomputing) are available locally in the scale of a 
LAN, and thus the users in this case, are users having direct access to the resources. This 
feature of grid computing (i.e. availability over Internet and Intranets) is a basic advantage 
that attracts developers in the case of applications that are intended to be accessed widely 
with remote resources.  
Other non trivial qualities of service include availability, latency and throughput. A more 
detailed study on quality of service metrics and aspects in grid is at (Daniel & Emiliano, 
2004).  The handling and presentation of those metrics could be through defining utility 
functions (Chunlin & Layuan, 2007) or by defining the provided functionalities as services 
and thus have a SLA (Service Level Agreement) for each service.  One more case that will be 
most suitable to adopt grid technology with EAs and that is the case of using grid to 
aggregate resources to provide a huge underlying computational power that enables 
addressing new complex and relatively expensive problems that were not addressed before 
due to resource limitation. One fine example to this case is (Chrabakh & Wolski, 2006) in 
which the authors were able to solve problems that were not solved before due to resource 
limitation. (Chrabakh & Wolski, 2006) is mainly designated for SAT problems but it still 
gives a clear evidence of how the grid can be used to address problems of higher complexity 
compared to other distributed computing paradigms. 
Summarizing the need of using grid for EAs; the ability to use non-trivial quality of service 
metrics rather than speedup, and the ability to use the application over the Internet rather 
than direct local access is particularly the most important non trivial quality of service. 
Another reason will be the ability to address new problem of high order complexity and cost 
depending on the grid ability to aggregate heterogeneous geographically dispersed 
resources.  

2.3 Impact of grid on algorithms 
A common practice of running EAs over grid is to use legacy EAs that were written to run 
on another parallel computing paradigm and running it intactly on the grid. This practice 
for some algorithms will not be suitable and will be error-prone (i.e. an algorithm that is 
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tightly coupled with out being able to tolerate communication delays will have very 
significant performance degradation.). From the other side, if the algorithm design did not 
take into account the nature of the grid it will not benefit most from using a grid and will at 
best expectations run without any degradation in performance. Therefore the following 
points should be taken into account when designing EAs for a grid: 
- The algorithm should be designed and implemented in a manner that supports 

interconnection of loosely coupled entities. 
- The algorithm should be able to tolerate communication delays for up to 100’s      

milliseconds without significant performance degradation. 
- The algorithm should have interfaces allowing for late binding to allow a space for      

dynamic scheduling and workflows. 
- The algorithm should be able to rely on remote data sources as copying the data locally       

before executing might not be feasible. 
- The Algorithm should be fault tolerant. 

2.4 Related work 
Projects using EAs over grids or EAs problem solving environmets over grid are numerous. 
Table 1 summarizes some of the notable efforts in this direction and also projects trageted to 
optimization problem solving environments in general. The table has a comparison of 
MHGrid with different projects, of different scopes and using different technologies, it gives 
a close-up to the relation of optimization problems with grids. 
NEOS (Czyzck, 1998): The only non-grid based project among the other projects in the table, 
yet it later motivated using grids for the similar functionality. NEOS is simply a client-server 
system that is dedicated to solving optimization problems by allowing the user to submit his 
optimization problems as well as allowing the user to add a solver of his own through  
NEOS management. The user has no control over the solver parallelization. 
Folding@Home (Larson, 2003): This project is categorized as what is called desktop grids, 
utilizing processor cycles of distributed non-dedicated normal PCs, it was designed to 
perform computationally intensive simulations of protein folding and other molecular 
dynamics, it involves GROMACS optimization, and it does not allow user interaction with 
the job running, the user just installs the client and offer his resources for usage. 
Folding@Home has not provided optimization solving problem solving environment, yet it 
is a well known example of how aggregated resources when combined can address new 
problem scope. 
Nimrod/O (Abramson et al., 2000): A very significant project as the authors not only 
designed the problem solving environment but they also added and modified the grid 
middleware to adapt with the grid application. Nimrod/O offers namely 4 optimization 
solving packages solving non-linear optimization problems, but it doesn’t allow the user to 
add his own solver and limits him/her to the provided solvers. Further to mention, 
Nimrod/O uses an ontology based module to guide the user to the best solver considering 
his/her problem. 
GEODISE (Cox et al., 2002): Specific to optimization problems in computational fluid 
dynamics, it uses Application Service Provision (ASP) and offers the services through a 
custom Matlab toolbox, it was designed for production and like Nimrod/O and had a 
commercial version. 
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depending on the grid ability to aggregate heterogeneous geographically dispersed 
resources.  

2.3 Impact of grid on algorithms 
A common practice of running EAs over grid is to use legacy EAs that were written to run 
on another parallel computing paradigm and running it intactly on the grid. This practice 
for some algorithms will not be suitable and will be error-prone (i.e. an algorithm that is 
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tightly coupled with out being able to tolerate communication delays will have very 
significant performance degradation.). From the other side, if the algorithm design did not 
take into account the nature of the grid it will not benefit most from using a grid and will at 
best expectations run without any degradation in performance. Therefore the following 
points should be taken into account when designing EAs for a grid: 
- The algorithm should be designed and implemented in a manner that supports 

interconnection of loosely coupled entities. 
- The algorithm should be able to tolerate communication delays for up to 100’s      

milliseconds without significant performance degradation. 
- The algorithm should have interfaces allowing for late binding to allow a space for      

dynamic scheduling and workflows. 
- The algorithm should be able to rely on remote data sources as copying the data locally       

before executing might not be feasible. 
- The Algorithm should be fault tolerant. 

2.4 Related work 
Projects using EAs over grids or EAs problem solving environmets over grid are numerous. 
Table 1 summarizes some of the notable efforts in this direction and also projects trageted to 
optimization problem solving environments in general. The table has a comparison of 
MHGrid with different projects, of different scopes and using different technologies, it gives 
a close-up to the relation of optimization problems with grids. 
NEOS (Czyzck, 1998): The only non-grid based project among the other projects in the table, 
yet it later motivated using grids for the similar functionality. NEOS is simply a client-server 
system that is dedicated to solving optimization problems by allowing the user to submit his 
optimization problems as well as allowing the user to add a solver of his own through  
NEOS management. The user has no control over the solver parallelization. 
Folding@Home (Larson, 2003): This project is categorized as what is called desktop grids, 
utilizing processor cycles of distributed non-dedicated normal PCs, it was designed to 
perform computationally intensive simulations of protein folding and other molecular 
dynamics, it involves GROMACS optimization, and it does not allow user interaction with 
the job running, the user just installs the client and offer his resources for usage. 
Folding@Home has not provided optimization solving problem solving environment, yet it 
is a well known example of how aggregated resources when combined can address new 
problem scope. 
Nimrod/O (Abramson et al., 2000): A very significant project as the authors not only 
designed the problem solving environment but they also added and modified the grid 
middleware to adapt with the grid application. Nimrod/O offers namely 4 optimization 
solving packages solving non-linear optimization problems, but it doesn’t allow the user to 
add his own solver and limits him/her to the provided solvers. Further to mention, 
Nimrod/O uses an ontology based module to guide the user to the best solver considering 
his/her problem. 
GEODISE (Cox et al., 2002): Specific to optimization problems in computational fluid 
dynamics, it uses Application Service Provision (ASP) and offers the services through a 
custom Matlab toolbox, it was designed for production and like Nimrod/O and had a 
commercial version. 
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Table 1. Comparison of Different projects providing optimization solving environments. 
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OSP (Optimization Service Provider, www.osp.org): A recent EU funded project using ASP 
for solving decision support systems optimization problems. It was later extended to 
another project (WEBOPT, www.webopt.org) that uses the E-service model instead. Both of 
them intend to offer a web-based DSS optimization solving environment. 
GE-HPGA (Lim et al., 2007): It is similar to MHGrid in offering black-box optimization, the 
framework is limited to only one solver and the main target was to offer speedup compared 
to other distributed models. To achieve it’s target, GE-HPGA used the island model GA that 
splits the population into sub-populations to minimize the program inter-communication as 
much as possible and thus minimize the grid overhead as much as possible. 
MW (Glankwamdee & Linderoth, 2006): A framework that is targeting to offer 
combinatorial optimization solvers over the grid, MW has a very interesting feature for 
solver and task definition where through MW API (Java interfaces), the user can implement 
the interfaces to define his task, and also his solver. This technique solves the problem of 
solver deployment but on the other hand enforces the user to use Java language which is 
relatively slow, yet it eases the usage of MW by defining flexible interfaces.  
MHGrid is a service oriented grid-based framework compliant with OGSA, Open Grid 
Services Architecture (Foster et al., 2005). It offers various solvers to global optimization 
problems. All solvers belong to the meta heuristics family of solvers (meta heuristics is a 
wide category containing EAs and other solver types like search heuristics). Solvers that are 
meta heuristics based support black box optimization in which the user provides the input 
and receives the output without knowledge of the underlying computation, black box 
optimization is a highly desirable feature in optimization solvers to relief the user from 
involvement in too much details. As for the user interface, the user could use MHGrid’s web 
portal or directly use the Web services of MHGrid. Information interchange between the 
user and the system is maintained through MHML (Meta Heuristics Mark up Language), 
Details for MHML are in section 3.4.  

3. MHGrid: A grid-based global optimization problem solving environment 
MHGrid is a framework dedicated for solving optimization problems over Grid. The main 
target of the framework is global optimization problems (global optimization is a branch of 
applied mathematics and numerical analysis that deals with the optimization of a function 
or a set of functions to some criteria). The framework is intended for the solvers based on 
heuristic or meta heuristic searching methods.  
MHGrid targets general purpose global optimization problems, a major challenge is that 
according to the No Free Lunch theorem, NFL, (Wolpert & Macready, 1995), no single 
optimization algorithm will give good results will all problems. The strategy that MHGrid 
uses to overcome this part is by offering diverse techniques for global optimization covering 
a wide range of problem type, and also offering mediation between the problem-solver pairs 
to assure that the solver used is the most adequate to the problem in hand. The strategies 
enforced by MHGrid to overcome the NFL problem are discussed later in sections 4.1, 4.2. 
MHGrid provides the following functions to the user: 
- Allows the usage of a solver registered with MHGrid to solve a problem in hand, this is 

done with a minimal input. 
- Enables solver developers to write a new solver that is integrated with MHGrid sing 

MHAPI, and register it. 
- Enables solver developers write a new objective function and register it. 
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Table 1. Comparison of Different projects providing optimization solving environments. 
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OSP (Optimization Service Provider, www.osp.org): A recent EU funded project using ASP 
for solving decision support systems optimization problems. It was later extended to 
another project (WEBOPT, www.webopt.org) that uses the E-service model instead. Both of 
them intend to offer a web-based DSS optimization solving environment. 
GE-HPGA (Lim et al., 2007): It is similar to MHGrid in offering black-box optimization, the 
framework is limited to only one solver and the main target was to offer speedup compared 
to other distributed models. To achieve it’s target, GE-HPGA used the island model GA that 
splits the population into sub-populations to minimize the program inter-communication as 
much as possible and thus minimize the grid overhead as much as possible. 
MW (Glankwamdee & Linderoth, 2006): A framework that is targeting to offer 
combinatorial optimization solvers over the grid, MW has a very interesting feature for 
solver and task definition where through MW API (Java interfaces), the user can implement 
the interfaces to define his task, and also his solver. This technique solves the problem of 
solver deployment but on the other hand enforces the user to use Java language which is 
relatively slow, yet it eases the usage of MW by defining flexible interfaces.  
MHGrid is a service oriented grid-based framework compliant with OGSA, Open Grid 
Services Architecture (Foster et al., 2005). It offers various solvers to global optimization 
problems. All solvers belong to the meta heuristics family of solvers (meta heuristics is a 
wide category containing EAs and other solver types like search heuristics). Solvers that are 
meta heuristics based support black box optimization in which the user provides the input 
and receives the output without knowledge of the underlying computation, black box 
optimization is a highly desirable feature in optimization solvers to relief the user from 
involvement in too much details. As for the user interface, the user could use MHGrid’s web 
portal or directly use the Web services of MHGrid. Information interchange between the 
user and the system is maintained through MHML (Meta Heuristics Mark up Language), 
Details for MHML are in section 3.4.  

3. MHGrid: A grid-based global optimization problem solving environment 
MHGrid is a framework dedicated for solving optimization problems over Grid. The main 
target of the framework is global optimization problems (global optimization is a branch of 
applied mathematics and numerical analysis that deals with the optimization of a function 
or a set of functions to some criteria). The framework is intended for the solvers based on 
heuristic or meta heuristic searching methods.  
MHGrid targets general purpose global optimization problems, a major challenge is that 
according to the No Free Lunch theorem, NFL, (Wolpert & Macready, 1995), no single 
optimization algorithm will give good results will all problems. The strategy that MHGrid 
uses to overcome this part is by offering diverse techniques for global optimization covering 
a wide range of problem type, and also offering mediation between the problem-solver pairs 
to assure that the solver used is the most adequate to the problem in hand. The strategies 
enforced by MHGrid to overcome the NFL problem are discussed later in sections 4.1, 4.2. 
MHGrid provides the following functions to the user: 
- Allows the usage of a solver registered with MHGrid to solve a problem in hand, this is 

done with a minimal input. 
- Enables solver developers to write a new solver that is integrated with MHGrid sing 

MHAPI, and register it. 
- Enables solver developers write a new objective function and register it. 
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- Do all the previous either through MHGrid’s web portal or by directly consuming 
MHGrid’s Web services. 

The key contribution is combining the computational power offered by grid technology 
along with the optimization efficiency of meta heuristics algorithms to give an easy to use 
general purpose Problem Solving Environment (PSE) for global optimization problems. All 
MHGrid Web services are WSRF complaint web service to enable the user to use the 
services directly or through the portal. We have used a unique hybrid parallelization 
technique that employs GridRPC (Symour et al., 2002) + GridMPI (Ishikawa et al., 2005) 
approach to dynamically adapt to the grain size of the solver. We have also developed an 
XML based mark up language, MHML, which acts as an interface between the user and 
MHGrid Web services. 

3.1 MHGrid architecture 
Figure 3 gives an overview of MHGrid’s architecture, it shows the services that are directly 
or indirectly used by MHGrid. As the figure shows, the base layer is a high performance 
grid network, on the top of that runs our Web services in a globus GT4 container (Foster, 
2006). All other technologies and services are either build on top of globus or they use 
globus in one way or the other. Globus Toolkit Monitoring and Discovery Service (MDS) are 
used by the Condor-G scheduler (Frey et al., 2001) to collect information about the current 
state of the dynamically changing Grid environment. This information is used by the 
Condor-G based scheduler to negotiate SLA (Service Level Agreement) with the web service 
and also to manage and schedule the jobs in a better way.  
 

 
Fig.3. MHGrid architecture at an abstract level. 
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GridRPC (Symour et al., 2002) - MHGrid uses Ninf-G (Tanaka et al., 2003) implementation 
of GridRPC- and GridMPI (Ishikawa et al., 2005) are also built on top of the Grid 
technologies, they are Grid variants of the famous Remote Procedure Call (RPC) and 
Message Passing Interface (MPI) technologies respectively and their use is almost similar to 
that of their non-Grid counterparts. Next is the Directory index, which is responsible for 
storing the logs and maintaining the indexes for the solvers and objective functions. A 
Workflow management module is needed for managing data staging in case of solvers 
requiring remote datasets. Service Level Agreement (SLA) layer is used for controlling the 
negotiations between the resource broker (i.e. Condor-G Central Manager) and the users 
submitting jobs. On top of all these layers come the solvers that run on the Grid to solve 
global optimization problems. 
 

 
Fig.4. A close-up to MHGrid internals. 
Figure 4 gives an insight to the internals of MHGrid and the flow of information inside 
MHGrid. The arrows with short dashed show the information flow for a user submitting a 
job, while the dashed-single dotted show an objective function developer registering an 
objective function and the long dashed are of a solver developer registering a solver. 
Different modules and functionalities provided by the framework are visible from the 
figure. The modules of the framework are as follows: 
Web Portal: A 2nd generation portal using Gridshpere (Novotny, 2004) as a portlet container.  
Custom JSR compliant portlets are added to enable the user to use MHGrid with minimal 
effort. The portal is simply a client application consuming MHGrid’s Web services on behalf 
of the user. 
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- Do all the previous either through MHGrid’s web portal or by directly consuming 
MHGrid’s Web services. 

The key contribution is combining the computational power offered by grid technology 
along with the optimization efficiency of meta heuristics algorithms to give an easy to use 
general purpose Problem Solving Environment (PSE) for global optimization problems. All 
MHGrid Web services are WSRF complaint web service to enable the user to use the 
services directly or through the portal. We have used a unique hybrid parallelization 
technique that employs GridRPC (Symour et al., 2002) + GridMPI (Ishikawa et al., 2005) 
approach to dynamically adapt to the grain size of the solver. We have also developed an 
XML based mark up language, MHML, which acts as an interface between the user and 
MHGrid Web services. 

3.1 MHGrid architecture 
Figure 3 gives an overview of MHGrid’s architecture, it shows the services that are directly 
or indirectly used by MHGrid. As the figure shows, the base layer is a high performance 
grid network, on the top of that runs our Web services in a globus GT4 container (Foster, 
2006). All other technologies and services are either build on top of globus or they use 
globus in one way or the other. Globus Toolkit Monitoring and Discovery Service (MDS) are 
used by the Condor-G scheduler (Frey et al., 2001) to collect information about the current 
state of the dynamically changing Grid environment. This information is used by the 
Condor-G based scheduler to negotiate SLA (Service Level Agreement) with the web service 
and also to manage and schedule the jobs in a better way.  
 

 
Fig.3. MHGrid architecture at an abstract level. 
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GridRPC (Symour et al., 2002) - MHGrid uses Ninf-G (Tanaka et al., 2003) implementation 
of GridRPC- and GridMPI (Ishikawa et al., 2005) are also built on top of the Grid 
technologies, they are Grid variants of the famous Remote Procedure Call (RPC) and 
Message Passing Interface (MPI) technologies respectively and their use is almost similar to 
that of their non-Grid counterparts. Next is the Directory index, which is responsible for 
storing the logs and maintaining the indexes for the solvers and objective functions. A 
Workflow management module is needed for managing data staging in case of solvers 
requiring remote datasets. Service Level Agreement (SLA) layer is used for controlling the 
negotiations between the resource broker (i.e. Condor-G Central Manager) and the users 
submitting jobs. On top of all these layers come the solvers that run on the Grid to solve 
global optimization problems. 
 

 
Fig.4. A close-up to MHGrid internals. 
Figure 4 gives an insight to the internals of MHGrid and the flow of information inside 
MHGrid. The arrows with short dashed show the information flow for a user submitting a 
job, while the dashed-single dotted show an objective function developer registering an 
objective function and the long dashed are of a solver developer registering a solver. 
Different modules and functionalities provided by the framework are visible from the 
figure. The modules of the framework are as follows: 
Web Portal: A 2nd generation portal using Gridshpere (Novotny, 2004) as a portlet container.  
Custom JSR compliant portlets are added to enable the user to use MHGrid with minimal 
effort. The portal is simply a client application consuming MHGrid’s Web services on behalf 
of the user. 
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MHGrid’s Web services: Runs in a globus container and are the core of MHGrid connecting all 
components together. Three main services exist, one for retrieving the list of solvers and 
objective functions registered, one for adding a new solver or objective function to MHGrid 
and the last is for job submission. 
Directory Index: A database that consists of all the objective functions and solvers registered 
with the framework. It maintains a list of all the jobs and is also responsible for keeping a 
log of all the previous runs along with the obtained results. 
Condor-G based Scheduler: A simple scheduler that is responsible for scheduling jobs to 
appropriate resources in the grid. 
 

 
 

Fig. 5.Different grain size depending on parallelization combination. a) A solver running in 
serial fashion and objective function computing also running in serial, simplest scenario 
with no parallelization. b) The solver running serial but the objective computing is running 
parallel in another cluster, Master-slave GAs are an example that will use this scenario. The 
Master here is the solver process running in serial and the GridMPI objective function 
processes are the slaves. c) The solver running in parallel while objective function 
calculation is serial, a solver like parallel BOA will use this scenario where the objective 
function calculation is not heavy while the solver involves heavy computation (candidate 
selection). In this scenario one of the GridMPI solver processes is a controlling node that will 
call upon objective function calculation. d) Both solver and objective function are running in 
parallel on different clusters. This scenario will have one of the GridMPI solver processes 
acting as a controlling node that will be acting as a master for the GridMPI objective 
function processes. 

3.2 Dynamic grain size in MHGrid 
Parallelization in meta heuristics in general differs depending on the algorithm 
communication/computation ratio. To offer an environment that will host a variety of 
solvers, there is a necessity of having a mechanism that allows the usage of different 
parallelization technologies to be used within the solvers and objective functions. MHGrid 
uses a hybrid of two technologies, GridMPI and GridRPC (MHGrid uses Ninf-G, a wrapper 
for GridRPC). Figure 5 shows how the mixed use of GridMPI and GridRPC can offer 

GridRPC GridRPC GridRPC GridRPC 

Serial 

Serial Serial 

Serial 

GridMPI 

a b c d 
Solver Objective 

Function
Cluster or node 

GridMPI 

GridMPI GridMPI 

EA-based Problem Solving Environment over the GRID 

 

325 

different parallelization models providing the solver developer with flexibility in designing 
his solver. This unique parallelization technique employing GridRPC and GridMPI was first 
used in (Takemiya et al, 2006) for a specific problem. MHGrid deploys this technique as a 
general model for dynamic grain size definition. 
The deployment of solvers and objective functions in such a way to provide those 
parallelization models is a complicated process that uses both Ninf-G and Condor-G 
deployment techniques. Detailed method of objective function deployment is discussed in 
(Munawar et al., 2008). 

3.3 Solver developing and integration to MHGrid 
When a user requires adding a solver to MHGrid, he is required to provide two things, the 
first is the solver source files and the other is an MHML file including the SLD of the solver 
to be added (the SLD part of MHML usage will be explained later in section 4.2). On the 
other hand for the user to be able to integrate his solver with MHGrid, he/she needs to use 
MHAPI. MHAPI is an API provided by MHGrid that includes a set of functions that allow 
the user to run and deploy his solver on MHGrid. As shown in figure 6 the solver developer 
writes the solver and uses the APIs in MHAPI for the following: 
- Reading the input and configuration data from the job’s MHML file. 
- Calling the objective function calculation whenever needed. 
- Initialize the deployment of the objective function. Then MHGrid will transparently 

deploy the objective function on behalf of the user. 

 
Fig.6.Main functionalities provided by MHAPI. Note that every thing is kept transparent 
from the solver developer. 
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MHGrid’s Web services: Runs in a globus container and are the core of MHGrid connecting all 
components together. Three main services exist, one for retrieving the list of solvers and 
objective functions registered, one for adding a new solver or objective function to MHGrid 
and the last is for job submission. 
Directory Index: A database that consists of all the objective functions and solvers registered 
with the framework. It maintains a list of all the jobs and is also responsible for keeping a 
log of all the previous runs along with the obtained results. 
Condor-G based Scheduler: A simple scheduler that is responsible for scheduling jobs to 
appropriate resources in the grid. 
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different parallelization models providing the solver developer with flexibility in designing 
his solver. This unique parallelization technique employing GridRPC and GridMPI was first 
used in (Takemiya et al, 2006) for a specific problem. MHGrid deploys this technique as a 
general model for dynamic grain size definition. 
The deployment of solvers and objective functions in such a way to provide those 
parallelization models is a complicated process that uses both Ninf-G and Condor-G 
deployment techniques. Detailed method of objective function deployment is discussed in 
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MHAPI. MHAPI is an API provided by MHGrid that includes a set of functions that allow 
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Two points to note here about objective function calling and objective function deployment. 
For objective function calling, the writer of the objective function is usually different from 
the writer of the solver, so for an objective function to be used by solvers in MHGrid, it must 
comply with a predefined Ninf IDL.  This IDL defines the interfacing between the solver 
and any objective function that will be used with it with eyes on the different problem 
encodings that can be used (e.g. binary, real, combinatorial … etc). Figure 7 shows how a 
simple Ninf-IDL file looks like. 
 

 
Fig. 7.Simple sample of a Ninf-IDL file. 

3.4 MHML 
MHML is an XML-based language providing all the functionalities required from a 
language to describe meta heuristics information interchange. Full details about MHML is 
beyond the scope of this chapter, MHML language is fully demonstrated in (Munawar et al., 
2007), we will only summarize why the need to use MHML and the basic features of 
MHML.  
 

 
 
Fig.8.Top level hierarchy of MHML. 
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Module obj; 
Define obj-func(IN int in_length_of_chromosome, IN float in_chromosome[length], OUT float *out_fitness) 
“sga on rpc” 
Required “obj_func.o” 
{ 
 Extern float obj_func(float length, float *x); 
 *out_fitness = obj_func(int in_length_of_chromosome, in_chromosome); 
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The rationale behind MHML was the need for standardizing the communication interface. 
Standardizing the communication interface not only enables a flexible design, but also eases 
the process of extendibility and interoperability. XML was chosen as it appears the most 
promising information interchange language, and its wide dominance in the area of web-
based information interchange.  
MHML basically is an extension/modification to an earlier attempt by (Alba et al., 2003). 
(Alba et al., 2003) proposed a language to configure optimization algorithms as XML DTD. 
Yet, it failed to address important issues considering the configuration of optimization 
algorithms. MHML offers many advantages compared to (Alba et al., 2003), from the top-
level hierarchy of MHML shown in figure 8, it is clear that MHML has the capability to 
represent: Job configuration, Solver description and configuration, Objective function description 
and configuration, submitting client information and job results 

4. Service orientation aspect in MHGrid 
Creating a general framework for global optimization problem solving is challenged with 
two major problems that will compromise the generality-to-performance trade-off; the first 
problem is that if the set of available solvers is fixed then the overall scope of the framework 
will be limited to the solvers in hand. The second problem is the reduced efficiency due to 
week or non existing relation between the solver and the problem using the solver. Added 
to the complexity of the second problem is that the nature and availability of the underlying 
resources is dynamically changing in Grid-based systems. Another complexity added to the 
second problem is the compound nature of meta heuristics based solvers, as Meta heuristic 
based solvers constitute of the main solver code and the objective function which is a 
computationally independent, cost expensive and repeatedly called function. Thus, the need 
to formulate the interaction between solver and objective function counterparts. 
MHGrid tackles these two problems by adopting service oriented architecture (SOA), this 
SOA is attained in MHGrid by applying a set of strategies in both the vertical and horizontal 
direction. And by applying these set of strategies that melt down MHGrid in a SOA frame, 
the performance of MHGrid as a framework is leveraged to the desired level of being a 
general framework (i.e. addressing problems of different scope.) while still offering a 
reasonable performance to the problems submitted. Figure 9 shows three different models 
with different problem type to performance relations. The Narrow scope-High Quality 
model is the typical case of optimization problem solvers according to NFL (Wolpert & 
Macready., 1995). The Wide scope low quality model is a model having a set of robust 
solvers. This model targets average performance for wide scope of problem types. The last 
model, MHGrid, targets a wide problem scope with performance that is high above the 
average by modelling MHGrid in a SOA through applying strategies to expand in the 
horizontal and vertical directions. 
This section will give a close-up to the SOA of MHGrid by discussing the strategies used to 
model MHGrid into a SOA. An important point to note here is that MHGrid doesn’t 
embrace SOA by just using OGSA and Web services in the middleware layer, as normally in 
SOA context, modelling a framework to fit into a SOA implies using Web services. This is 
not the case in MHGrid, as Web services – though used in all modules of MHGrid – are just 
tools in the middleware layer. The SOA referred to here is effective at the application layer 
(i.e. solvers as services), section 4.2 discusses this point in details.  The next sections will 
discuss the horizontal expansion strategies, vertical expansion strategies and finally the 
impact of those expansions on the adaptation of MHGrid into a SOA.  
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The rationale behind MHML was the need for standardizing the communication interface. 
Standardizing the communication interface not only enables a flexible design, but also eases 
the process of extendibility and interoperability. XML was chosen as it appears the most 
promising information interchange language, and its wide dominance in the area of web-
based information interchange.  
MHML basically is an extension/modification to an earlier attempt by (Alba et al., 2003). 
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and configuration, submitting client information and job results 
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second problem is the compound nature of meta heuristics based solvers, as Meta heuristic 
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reasonable performance to the problems submitted. Figure 9 shows three different models 
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solvers. This model targets average performance for wide scope of problem types. The last 
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SOA context, modelling a framework to fit into a SOA implies using Web services. This is 
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Fig.9. MHGrid scope according to problem-type space. 

4.1 Horizontal expansion strategies 
Expanding MHGrid in the horizontal direction is mainly directed to widen the solvers base. 
The strategies that MHGrid use to expand horizontally can be summarized in two points: 
- Offer a variety of state-of-art robust solvers that make the framework suitable for 

different problem types. 
- Allow the user to add his own solver(s) and objective function(s). 
For the first point, a set of robust solvers developed by the information systems design 
laboratory at the information initiative center, Hokkaido university are to be used in 
MHGrid platform. These solvers are the fuel of MHGrid that provide the ability to address a 
wide variety of problems. The second point is as mentioned before in section 3.3, providing 
a mechanism to allow the solver developers to add their solvers and objective functions.  

4.2 Vertical expansion strategies 
The vertical expansion strategies are much more complicated as they are mainly concerned 
with increasing the semantics of the solver to problem relation. The following are the 
strategies: 
- Solvers and objective functions are represented as services in MHGrid, thus binding a 

Service Level Description (SLD) with each solver/objective function to describe the 
service level offered by the solver/objective function. MHML has two main sections one 
for solvers and the other for objective functions. The SLD part should be submitted with 
newly added solvers/objective functions. The SLD section contains information like 
what problem type is the solver targeting, problem encoding and what model of 
parallelization is used (e.g. Island model GA will use any parallel model while 
master/slave pBOA requires the solver to run in parallel on the same cluster). The SLD 
information is later used to guide the user for which solver to select to the problem in 
hand and to check if the grid resources will support the parallelization model required.  

- Having an M-N relation between the solvers and objective functions registered with 
MHGrid, where the user can run the same solver against many objective functions and 
vice versa. This strategy is handled through the Ninf-IDL interface described in section 
3.3. 
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- Allowing the solver developer to control the parallelization model in the solver 
/objective function he writes. The solver developer can choose the parallelization 
model and thus the grain size as mentioned in section 3.2. 

- Offering two SAPs (Service Access Points) for the user of MHGrid, one of them is the 
web portal and the other is by consuming the MHGrid’s Web services directly. 
Accessing MHGrid services through the portal will be shown in the test case of section 
5, also there is another SAP that can be used in case the user wants to avoid the 
overhead in using the web portal and also to use MHGrid’s services automatically in 
case he needs that. 

- Having a Service Level Agreement (SLA) for each job submitted to MHGrid. Initially 
upon job submission and after the user chooses the solver/objective function pair, the 
scheduler checks the state of the available resources, then the SLA manager using the 
state of resources along with the solver/objective function SLD informs the user with 
the expected scenario that rises from running the selected solver/objective function 
running on the current available resources. The SLA in the case of MHGrid is at the 
application layer and not the middleware layer, and therefore refraining from the 
expected SLA procedure at middleware (i.e. SLA based scheduling). SLA at the 
application layer guarantee to the user that his problem is well matched to a solver, 
while if at middleware layer will be targeting QoS metrics such as time, cost and 
resources availability. The current SLA implementation is rather trivial, but different 
options are now being investigated and it is anticipated that SLA mechanism will later 
use e-contracts at the application level. 

4.3 MHGrid as a grid application benefiting from SOA 
Grid applications are combined with SOA and service fundamentals in many projects, and 
often the grid application that are modelled after SOA are referred to as service-oriented grid 
applications. The case of MHGrid despite being a service-oriented application, yet it used a 
different approach to combine SOA with grid technology. MHGrid as a framework is 
designed to be a general framework for global optimization, yet this goal was challenged 
with the NFL theorem, and so the expansion in both directions was thought of in order to 
enable more generality for MHGrid. This expansion design for MHGrid was clearly 
consistent with SOA fundamentals and concepts, for example the following are the SOA 
projections mapped to the vertical expansion strategies: 
- Solvers as services with SLDs. Mapping: A well known practice of SOA, where every 

service in a SOA model should have a description of what it is doing in order to be used 
later for QoS process. Analogous to WSDL associated with Web services. 

- M-N solver to objective function relation (one solver can be associated to many 
objective functions and vice versa). Mapping: Service interoperability is a main concept in 
SOA. 

- Solver developer control over the parallelization model. Mapping: From SOA 
perspective, this is providing strong semantics for inter-services relations. 

- Offering two SAPs. Mapping: The two service access points for the solvers in MHGrid comes 
in favour of ease of use, this polymorphic interfacing to the services is indeed a merit from SOA 
perspective. 

- Having an SLA for each job submitted. Mapping: A straightforward SOA pillar. 
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- Allowing the solver developer to control the parallelization model in the solver 
/objective function he writes. The solver developer can choose the parallelization 
model and thus the grain size as mentioned in section 3.2. 

- Offering two SAPs (Service Access Points) for the user of MHGrid, one of them is the 
web portal and the other is by consuming the MHGrid’s Web services directly. 
Accessing MHGrid services through the portal will be shown in the test case of section 
5, also there is another SAP that can be used in case the user wants to avoid the 
overhead in using the web portal and also to use MHGrid’s services automatically in 
case he needs that. 
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scheduler checks the state of the available resources, then the SLA manager using the 
state of resources along with the solver/objective function SLD informs the user with 
the expected scenario that rises from running the selected solver/objective function 
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Fig.10. MHGrid modules mapped to a typical SOA layout. 
The point of concern that can be concluded from merging MHGrid as a grid application with 
SOA, is that MHGrid was not designed as a SOA compliant model in order to benefit from the 
typical advantages of SOA such as ease of extensibility, but MHGrid was framed into a SOA 
model to achieve the basis of having a general problem solving framework in terms of wide 
problem type support. Figure 10 shows a mapping of MHGrid modules to a typical SOA layout. 

5. Test case of MHGrid from user perspective 
This section illustrates a test case example for MHGrid from the user perspective. The illustration 
will start by a solver developer registering a solver he wrote for MHGrid, then as a user 
retrieving the list of solvers and objective functions and finally submitting a job to MHGrid. 
- Solver registration: The solver developer will initially write his solver that uses MHAPI, 

and then write the MHML file with the SLD section of the solver. Then the solver 
developer logins to the portal opens the solver registration portlet and uploads both the 
solver tar ball and the MHML file. The solver developer will be notified though his e-
mail registered with the portal. Figure 11 middle snapshot shows the solver registration 
portlet while registering a solver.  

- Job submission: The job submission is done in two steps, first the user uses the retrieve 
portlet to get a list of all the registered solvers and the registered objective functions. 
For each solver and objective function displayed, the information for the corresponding 
SLD is displayed to give guidance to the user. Figure 11 top snapshot shows the retrieve 
portlet where the user can view the solvers and objective functions before deciding 
which one to use. The next step where the user actually submits the job, the user will 
switch to the job submission portlet and choose a solver/objective function pair, and 
then the portlet will give the user an indication of how the current available resources 
are coherent with the SLDs of the solver and objective function. After the user decides 
which solver/objective function pair to use, he has to supply the MHML job file, and 
he’ll later get the MHML result file on his e-mail. Figure 11 bottom snapshot shows the 
job submission portlet while in submission process. 
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Fig.11. Top Snapshot: A user registering a solver with MHGrid through the web portal. 
Middle snapshot: A user retrieving information about the solvers and objective functions 
registered with MHGrid through the web portal. Bottom snapshot: A user submitting a job 
to MHGrid through the web portal 
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This was a simple example case just to acknowledge the reader with how MHGrid is viewed 
from the user perspective, nevertheless, MHGrid can still be accessed directly from the Web 
services, but illustration for that was skipped to refrain the user from details outside the 
scope of the book. 

6. Conclusions and future work 
This chapter presented a grid based problem solving environment that uses EAs and other 
algorithms all falling under the meta heuristics category to offer black box global 
optimization for the user. The chapter first highlighted the grid computing technology and 
then discussed with reasons behind using the grid for MHGrid, Meta Heuristics Grid, and 
the benefits of the grid technology compared to other distributed paradigms. 
Then a comparison of MHGrid with related work was discussed, to imply the concepts 
behind the design of optimization solving grid applications. The design and implementation 
of MHGrid was explained, including the layered architecture, the workflow inside the 
framework and explanation of MHAPI, a library that allows the solver developers to 
integrate their solvers with MHGrid.  
MHGrid as a model was expanded in both the vertical and horizontal directions in order to 
widen the base of MHGrid to be a general framework rather than being tailored to one 
problem type. The expansion strategies reformed the architecture of MHGrid into a SOA, 
the main impact for MHGrid adopting SOA was the representation of solvers and objective 
functions as services and thus having the service oriented grid application mostly affecting 
the application layer whilst using OGSA and Web services at the middleware layer. A 
sample example case was demonstrated to acknowledge the reader with the user 
perspective of MHGrid. 
For the future work, modifications and extensions will cover different aspects. Major points 
will include adopting a more sophisticated SLA mechanism, defining new interfaces that 
allow one solver to use another solver, for example pBOA algorithm can internally use Tabu 
search for candidate offspring selection, and one more important point is to conduct more 
study on the dynamic grain size in EAs to reach the best formulation of parallelization 
models adopted. Other minor points will include enchantments on the portlets to auto 
generate the MHML files on behalf of the users. 
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Evolutionary Methods for Learning Bayesian 
Network Structures 
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1. Introduction 
Bayesian networks (BN) are a family of probabilistic graphical models representing a joint 
distribution for a set of random variables. Conditional dependencies between these 
variables are symbolized by a Directed Acyclic Graph (DAG). Two classical approaches are 
often encountered when automaticaly determining an appropriate graphical structure from 
a database of cases,. The first one consists in the detection of (in)dependencies between the 
variables (Spirtes et al., 2001; Cheng et al., 2002). The second one uses a scoring metric 
(Chickering, 2002a). But neither the first nor the second are really satisfactory. The first one 
uses statistical tests which are not reliable enough when in presence of small datasets. If 
numerous variables are required, it is the computing time that highly increases. Even if 
score-based methods require relatively less computation, their disadvantage lies in that the 
searcher is often confronted with the presence of many local optima within the search space 
of candidate DAGs. Finally, in the case of the automatic determination of the appropriate 
graphical structure of a BN, it was shown that the search space is huge (Robinson, 1976) and 
that is a NP-hard problem (Chickering et al., 1994) for a scoring approach.  
In this field of research, evolutionary methods such as Genetic Algorithms – GAs (De Jong, 
2006) have already been used in various forms (Larrañaga et al., 1996; Muruzábal & Cotta, 
2004; Wong et al., 1999; Wong et al., 2002; Van Dijk et al., 2003b; Acid & De Campos, 2003). 
Among these works, two lines of research are interesting. The first idea is to effectively 
reduce the search space using the notion of equivalence class (Pearl, 1988). In (Van Dijk et 
al., 2003b) for example the authors have tried to implement a genetic algorithm over the 
partial directed acyclic graph space in hope to benefit from the resulting non-redundancy, 
without noticeable effect. Our idea is to take advantage both from the (relative) simplicity of 
the DAG space in terms of manipulation and fitness calculation and the unicity of the 
equivalence classes’ representations.  
One major difficulty when tackling the problem of structure learning with scoring methods 
— evolutionary methods included — is to avoid the premature convergence of the 
population to a local optimum. When using a genetic algorithm, local optima avoidance is 
often ensured by preserving some genetic diversity. However, the latter often leads to slow 
convergence and difficulties in tuning the GA's parameters.  
To overcome these problems, we designed a general genetic algorithm based upon 
dedicated operators: mutation, crossover but also a mutual information-driven repair 
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One major difficulty when tackling the problem of structure learning with scoring methods 
— evolutionary methods included — is to avoid the premature convergence of the 
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operator which ensures the closeness of the previous. Various strategies were then tested in 
order to find a balance between speed of convergence and avoidance of local optima. We 
focus particularly onto two of these: a new adaptive scheme to the mutation rate on one 
hand and sequential niching techniques on the other.  
The remaining of the chapter is structured as follows: In the second section we will define 
the problem, ended by a brief state of the art. In the third section, we will show how an 
evolutionary approach is well suited to this kind of problem. After briefly recalling the 
theory of genetic algorithms, we will describe the representation of a Bayesian network 
adapted to genetic algorithms and all the needed operators necessary to take in account the 
inherent constraints to Bayesian networks. In the fourth section the various strategies will 
then be developed: Adaptive scheme to the mutation rate on one hand and niching 
techniques on the other hand. The fifth section will describe the test protocol and the results 
obtained compared to other classical algorithms. A study of the behaviour of the used 
strategies will also be given. And finally, the sixth section will present future search in this 
domain. 

2. Problem settings and related work 
2.1 Settings 
A probabilistic graphical model can represent a whole of conditional relations within a field 
X = {X1, X2,…, Xn} of random variables having each one their own field of definition. 
Bayesian networks belong to a specific branch of the family of the probabilistic graphical 
models and appear as a directed acryclic graph (DAG) symbolizing the various 
dependences existing between the variables represented. An example of such a model is 
given Fig. 1. 
 

 
Fig. 1. Example of a Bayesian network. 
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A Bayesian network is denoted B = {G, θ}. Here, G = {X, E} is a directed acyclic graph whose 
set of vertices X represents a set of random variables and its set of arcs E represents the 
dependencies between these variables. The set of parameters θ holds the conditional 
probabilities for each vertice, depending on the values taken by its parents in G. The 
probability θi = {P(Xi|Pa(Xi))}, where Pa(Xi) are the parents of variable Xi in G. If Xi has no 
parents, then Pa(Xi) = Ø. 
The main convenience of Bayesian networks is that, given the representation of conditional 
independences by its structure and the set θ of local conditional distributions, we can write 
the global joint probability distribution as:  
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2.2. Field of applications of Bayesian networks 
Bayesian networks are encountered in various applications like filtering junk e-mail (Sahami 
et al., 1998), assistance for blind people (Lacey & MacNamara, 2000),  meteorology (Cano et 
al., 2004), traffic accident reconstruction (Davis, 2003), image analysis for tactical computer-
aided decision (Fennell & Wishner, 1998), market research (Jaronski et al., 2001), user 
assistance in sofware use (Horvitz et al. 1998), fraud detection (Ezawa & Schuermann, 1995), 
human-machine interaction enhancement (Allanach et al., 2004). 
The growing interest, since the mid-nineties, that has been shown by the industry for 
Bayesian models is growing particularly through the widespread process of interaction 
between man and machine to accelerate decisions. Moreover, it should be emphasized their 
ability, in combination with Bayesian statistical methods (i.e. taking into account prior 
probability distribution model) to combine the knowledge derived from the observed 
domain with a prior knowledge of that domain. This knowledge, subjective, is frequently 
the product of the advice of a human expert on the subject. This property is valuable when it 
is known that in the practical application, data acquisition is not only costly in resources and 
in time, but, unfortunately, often leads to a small knowledge database. 

2.3 Training the structure of a Bayesian network 
Learning Bayesian network can be broken up into two phases. As a first step, the network 
structure is determined, either by an expert, either automatically from observations made 
over the studied domain (most often). Finally, the set of parameters θ is defined here too by 
an expert or by means of an algorithm. 
The problem of learning structure can be compared to the exploration of the data, i.e. the 
extraction of knowledge (in our case, network topology) from a database (Krause, 1999). It is 
not always possible for experts to determine the structure of a Bayesian network. In some 
cases, the determination of the model can therefore be a problem to solve. Thus, in (Yu et al., 
2002) learning the structure of a Bayesian network can be used to identify the most obvious 
relationships between different genetic regulators in order to guide subsequent experiments. 
The structure is then only a part of the solution to the problem but itself a solution. 
Learning the structure of a Bayesian network may need to take into account the nature of 
the data provided for learning (or just the nature of the modelled domain): continuous 
variables— variables can take their values in a continuous space (Lauritzen & Wermuth, 
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1989; Lerner et al. 2001, Cobb & Shenoy, 2006) —, incomplete databases (Lauritzen, 1995; 
Heckerman, 1995). We assume in this work that the variables modelled take their values in a 
discrete set, they are fully observed, there is no latent variable i.e. there is no model in the 
field of non-observable variable that is the parent of two or more observed variables. 
The methods used for learning the structure of a Bayesian network can be divided into two 
main groups:  
1. Discovery of independence relationships: these methods consist in the testing 

procedures on allowing conditional independence to find a structure;  
2. Exploration and evaluation: these methods use a score to evaluate the ability of the 

graph to recreate conditional independence within the model. A search algorithm will 
build a solution based on the value of the score and will make it evolve iteratively. 

Without being exhaustive, belonging to the statistical test-based methods it should be noted 
first the algorithm PC, changing the algorithm SGS (Spirtes et al. 2001). In this approach, 
considering a graph G (X, E, θ), two vertices Xi and Xj from X and a subset of vertices SXi,Xj ∈ 
X /{Xi,Xj}, the vertices Xi and Xj are connected by an arc in G if there is no SXi,Xj such as (Xi ⊥ 
Xj|SXi,Xj) where ⊥ denotes the relation of conditional independence. Based on an undirected 
and fully connected graph, the detection of independence allows us to remove the 
corresponding arcs until the obtention the skeleton of the expected DAG. Then followed two 
distinct phases: i) detection and determination of the V-structures1 of the graph and ii) 
orientation of the remaining arcs. The algorithm returns a directed graph belonging to the 
Markov’s equivalence class of the sought model. The orientation of the arcs, except those of 
V-structures detected, does not necessarily correspond to the real causality of this model. In 
parallel to the algorithm PC, another algorithm, called IC (Inductive Causation) has been 
developed by the team of Judea Pearl (Pearl & Verma, 1991). This algorithm is similar to the 
algorithm PC, but starts with an empty structure and links couples of variables as soon as a 
conditional dependency is detected (in the sense that there is no identified subset 
conditioning SXi,Xj such as (Xi ⊥ Xj|SXi,Xj). The common disadvantage to the two algorithms 
is the numerous tests required to detect conditional independences. Finally, the algorithm 
BNPC — Bayes Net Power Constructor — (Cheng et al., 2002) uses a quantitative analysis of 
mutual information between the variables in the studied field to build a structure G. Tests of 
conditional independence are equivalent to determine a threshold for mutual information 
(conditional or not) between couples of involved variables. In the latter case, a work 
(Chickering & Meek, 2003) comes to question the reliability of BNPC. 
Many algorithms, by conducting casual research, are quite similar. These algorithms 
propose a gradual construction of the structure returned. However, we noticed some 
remaining shortcomings. In the presence of an insufficient number of cases describing the 
observed domain, the statistical tests of independence are not reliable enough. The number 
of tests to be independently carried out to cover all the variables is huge. An alternative is 
the use of a measure for evaluating the quality of a structure knowing the training database 
in combination with a heuristic exploring a space of options. 
Scoring methods use a score to evaluate the consistency of the current structure with the 
probability distribution that generated the data. Thus, in (Cooper & Herskovits, 1992) a 
formulation was proposed, under certain conditions, to compute the Bayesian score, 

                                                 
1 We call V-structure, or convergence, a triplet (x, y, z) such as y depends on x and z 
(x→y←z). 
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(denoted BD and corresponds in fact to the marginal likelihood we are trying to maximize 
through the determination of a structure G). In (Heckerman et al. 1995a) a variant of 
Bayesian score based on an assumption of equivalency of likelihood is presented. BDe, the 
resulting score, has the advantage of preventing a particular configuration of a variable Xi 
and of its parents Pa(Xi) from being regarded as impossible. A variant, BDeu, initializes the 
prior probability distributions of parameters according to a uniform law. In (Kayaalp & 
Cooper, 2002) authors have shown that under certain conditions, this algorithm was able to 
detect arcs corresponding to low-weighted conditional dependencies. AIC, the Akaike 
Information Criterion (Akaike, 1970) tries to avoid the learning problems related to 
likelihood alone. When penalizing the complexity of the structures evaluated, the AIC 
criterion focuses the simplest model being the most expressive of extracted knowledge from 
the base D. AIC is not consistent with the dimension of the model, with the result that other 
alternatives have emerged, for example CAIC - Consistent AIC - (Bozdogan, 1987). If the 
size of the database is very small, it is generally preferable to use AICC - Akaike Information 
Corrected Criterion - (Hurvich & Tsai, 1989). The MDL criterion (Rissanen, 1978; Suzuki, 
1996) incorporates a penalizing scheme for the structures which are too complex. It takes 
into account the complexity of the model and the complexity of encoding data related to this 
model. Finally, the BIC criterion (Bayesian Information Criterion), proposed in (Schwartz, 
1978), is similar to the AIC criterion. Properties such as equivalence, breakdown-ability of 
the score and consistency are introduced. Due to its tendency to return the simplest models 
(Bouckaert, 1994), BIC is a metric evaluation as widely used as the BDeu score. 
To efficiently go through the huge space of solutions, algorithms use heuristics. We can 
found in the literature deterministic ones like K2 (Cooper & Herskovits, 1992), GES 
(Chickering, 2002b), KES (Nielsen et al., 2003) or stochastic ones like an application of Monte 
Carlo Markov Chains methods (Madigan & York, 1995) for example. We particularly notice 
evolutionary methods applied to the training of a Bayesian network structure. Initial work is 
presented in (Larrañaga et al., 1996; Etxeberria et al., 1997). In this work, the structure is 
build using a genetic algorithm and with or without the knowledge of a topologically 
correct order on the variables of the network. In (Larrañaga et al., 1996) an evolutionary 
algorithm is used to conduct research over all topologic orders and then the K2 algorithm is 
used to train the model. Cotta and Muruzábal (Cotta & Muruzábal, 2002) emphasize the use 
of phenotypic operators instead of genotypic ones. The first one takes into account the 
expression of the individual’s allele while the latter uses a purely random selection. In 
(Wong et al., 1999), structures are learned using the MDL criterion. Their algorithm, named 
MDLEP, does not require a crossover operator but is based on a succession of mutation 
operators. An advanced version of MDLEP named HEP (Hybrid Evolutionary 
Programming) was proposed (Wong et al., 2002). Based on a hybrid technique, it limits the 
search space by determining in advance a network skeleton by conducting a series of low-
order tests of independence: if X and Y are independent variables, the arcs X→Y and X←Y 
can not be added by the mutation operator. The algorithm forbids the creation of a cycle 
during and after the mutation. In (Van Dijk et al., 2003a, Van Dijk et al., 2003b, Van Dijk & 
Thierens, 2004) a similar method was proposed. The chromosome contains all the arcs of the 
network, and three alleles are defined: none, X→Y and X←Y. The algorithm acts as Wong’s 
one (Wong et al., 2002) but only recombination and repair are used to make the individuals 
evolve. The results presented in (Van Dijk & Thierens, 2004) are slightly better than these 
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obtained by HEP. A search, directly done in the equivalence graph space, is presented in 
(Muruzábal & Cotta, 2004, Muruzábal & Cotta, 2007). Another approach, where the 
algorithm works in the limited partially directed acyclic graph is reported in (Acid & De 
Campos, 2003). These are a special form of PDAG where many of these could fit the same 
equivalence class. Finally, approaches such as Estimation of Distribution Algorithms (EDA) 
are applied in (Mühlenbein & Paab, 1996). In (Blanco et al., 2003), the authors have 
implemented two approaches (UMDA and PBIL) to search structures over the PDAG space. 
These algorithms were applied to the distribution of arcs in the adjacency matrix of the 
expected structure. The results appear to support the approach PBIL. In (Romero et al., 
2004), two approaches (UMDA and MIMIC) have been applied to the topological orders 
space. Individuals (i.e. topological orders candidates) are themselves evaluated with the 
Bayesian scoring. 

2.5 Our contribution 
For the training of the structure of a Bayesian network with a score function and without 
prior knowledge like the topology of the structure sought, one often use a greedy search 
algorithm over the space of structures or in the equivalence classes. But these methods have 
the disadvantage of being frequently trapped into a solution corresponding to a local 
optimum of the evaluation function. This is due to the presence of many local optima in 
space solutions. The smaller the training base is the numerous the optima are. The main 
reason for a premature convergence is that a greedy algorithm considers, at each moment, 
only one solution. The search stops if there is no better evaluated solution around a given 
point. The most widespread technique to avoid this is to use multiple initialization of the 
greedy algorithm, from very different initial structures and keep the best solution obtained. 
This technique has the disadvantage to dramatically increase the computing time but also 
offer no guarantee of obtaining x distinct solutions for x different initialization of the 
algorithm. 
Evolutionary algorithms have two major advantages when processing a problem with many 
local optima. On the one hand, they allow us to maintain a population of solutions, i.e. 
several points in the space of solutions. With the maintenance and development of 
alternatives it becomes possible to reduce the chances of being trapped in a single locally 
optimum. On the other hand, stochastic behaviour of these methods through the mutation 
operator can amplify the robustness to local optima attraction (conditionally on the use of 
parameters and adapted operators) by allowing an exploration of the solutions area which is 
no longer limited to the immediate neighbourhood of individuals in the population. 

3. Genetic algorithm design 
Genetic algorithms are a family of computational models inspired by Darwin’s theory of 
Evolution. Genetic algorithms encode potential solutions to a problem in a chromosome-like 
data structure, exploring and exploiting the search space using dedicated operators. Their 
actual form is mainly issued from the work of J.Holland (Holland, 1992) in which we can 
find the general scheme of a genetic algorithm (see Fig. 2) called canonical GA. Throughout 
the years, different strategies and operators have been developed in order to perform an 
efficient search over the considered space of individuals: selection, mutation and crossing 
operators, etc.  
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 /* Initialization*/  
t ← 0;  
Randomly and uniformly generate an initial population P0 of λ individuals and 
evaluate them using a fitness function ƒ  
/* Evolution */  
Select Pt individuals for the reproduction 
Build new individuals by application of the crossing operator on the 
beforehand selected individuals 
Apply a mutation operator to the new individuals: individuals obtained are 
affected to the new population Pt+1 
/* Evaluation */  
Evaluate the individuals of Pt+1 using ƒ 
t ← t + 1  
/* Stop */  
If a definite criterion is met then stop else start again the evolution phase 

Fig. 2. Holland’s canonical genetic algorithm (Holland, 1992) 

Applied to the search for Bayesian networks structures, genetic algorithm pose two 
problems:  
• The constraint on the absence of circuits in the structures creates a strong link between 

the different genes — and alleles — of a person, regardless of the chosen representation. 
Ideally, operators should reflect this property; 

• Often, a heuristic searching over the space of solutions (genetic algorithm, greedy 
algorithm and so on.) finds itself trapped in a local optimum. This makes it difficult to 
find a balance between a technique able to avoid this problem, with the risk of 
overlooking many quality solutions, and a more careful exploration with a good chance 
to compute only a locally-optimal solution. 

If the first item involves essentially the design of a thoughtful and evolutionary approach to 
the problem, the second point characterizes an issue relating to the multimodal 
optimization. For this kind of problem, there is a particular methodology: the niching. 
We now proceed to a description of a genetic algorithm adapted to find a good structure for 
a Bayesian network. 

3.1 Representation  
As our search is performed over the space of directed acyclic graphs, each invidual is 
represented by an adjacency matrix. Denoting with N the number of variables in the 
domain, an individual is thus described by an N×N binary matrix Adjij where one of its 
coefficients aij is equal to 1 if an oriented arc going from Xi to Xj in G exists.  
Whereas the traditional genetic algorithm considers chromosomes defined by a binary 
alphabet, we chose to model the Bayesian network structure by a chain of N genes (where N 
is the number of variables in the network). Each gene represents one row of the adjacency 
matrix, that’s to say each gene corresponds to the set of parents of one variable. Although 
this non-binary encoding is unusual in the domain of structure learning, it is not an 
uncommon practice among genetic algorithms. In fact, this approach turns out to be 
especially practical for the manipulation and evaluation of candidate solutions.  
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obtained by HEP. A search, directly done in the equivalence graph space, is presented in 
(Muruzábal & Cotta, 2004, Muruzábal & Cotta, 2007). Another approach, where the 
algorithm works in the limited partially directed acyclic graph is reported in (Acid & De 
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2004), two approaches (UMDA and MIMIC) have been applied to the topological orders 
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parameters and adapted operators) by allowing an exploration of the solutions area which is 
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3. Genetic algorithm design 
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 /* Initialization*/  
t ← 0;  
Randomly and uniformly generate an initial population P0 of λ individuals and 
evaluate them using a fitness function ƒ  
/* Evolution */  
Select Pt individuals for the reproduction 
Build new individuals by application of the crossing operator on the 
beforehand selected individuals 
Apply a mutation operator to the new individuals: individuals obtained are 
affected to the new population Pt+1 
/* Evaluation */  
Evaluate the individuals of Pt+1 using ƒ 
t ← t + 1  
/* Stop */  
If a definite criterion is met then stop else start again the evolution phase 

Fig. 2. Holland’s canonical genetic algorithm (Holland, 1992) 

Applied to the search for Bayesian networks structures, genetic algorithm pose two 
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Ideally, operators should reflect this property; 
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coefficients aij is equal to 1 if an oriented arc going from Xi to Xj in G exists.  
Whereas the traditional genetic algorithm considers chromosomes defined by a binary 
alphabet, we chose to model the Bayesian network structure by a chain of N genes (where N 
is the number of variables in the network). Each gene represents one row of the adjacency 
matrix, that’s to say each gene corresponds to the set of parents of one variable. Although 
this non-binary encoding is unusual in the domain of structure learning, it is not an 
uncommon practice among genetic algorithms. In fact, this approach turns out to be 
especially practical for the manipulation and evaluation of candidate solutions.  
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3.2 Fitness function 
We chose to use the Bayesian Information Criterion (BIC) score as the fitness function for 
our algorithm:  
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BIC ×−= θ  (2) 

where D represents the training data, θMAP the MAP-estimated parameters, and Dim() is the 
dimension function defined by Eq. 3:  
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where ri is the number of possible values for Xi. The fitness function ƒ(individual) can be 
written as in Eq. 4: 
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where ƒk is the local BIC score computed over the family of variable Xk.  
The genetic algorithm takes advantage of the breakdown of the evaluation function and 
evaluates new individuals from their inception, through crossing, mutation or repair. The 
impact of any change on local an individual's genome shall be immediately passed on to the 
phenotype of it through the computing of the local score. The direct consequence is that the 
evaluation phase of the generated population took actually place for each individual, 
depending on the changes made, as a result of changes endured by him. 

3.3 Seting up the population 
We choose to initialize the population of structures by the various trees (depending on the 
chosen root vertice) returned by the MWST algorithm. Although these n trees are Markov-
equivalent, the initialization can generate individuals with relevant characteristics. 
Moreover, since early generations, the combined action of the crossover and the mutation 
operators provides various and good quality individuals in order to significantly improve 
the convergence time. We use the undirected tree returned by the algorithm: each individual 
of the population is initialized by a tree directed from a randomly-chosen root. This 
mechanism introduces some diversity in the population. 

3.4 Selection of the individuals 
We use a rank selection where each one of the λ individuals in the population is selected 
with a probability equal to: 
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This strategy allows promote individuals which best suit the problem while leaving the 
weakest one the opportunity to participate to the evolution process. If the major drawback 
of this method is to require a systematic classification of individuals in advance, the cost is 
negligible. Other common strategies have been evaluated without success: the roulette 
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wheel (prematured convergence), the tournament (the selection pressure remained too 
strong) and the fitness scaling (Forrest, 1985; Kreinovich et al., 1993). The latter aims to allow 
in the first instance to prevent the phenomenon of predominance of "super individuals" in 
the early generations while ensuring when the population converges, that the mid-quality 
individuals did not hamper the reproduction of the best ones. 

3.5 Repair operator  
In order to preserve the closeness of our operators over the space of directed acyclic graphs, 
we need to design a repair operator to convert those invalid graphs (typically, cyclic 
directed graphs) into valid directed acyclic graphs. When one cycle is detected within a 
graph, the operator suppresses the one arc in the cycle bearing the weakest mutual 
information. The mutual information between two variables is defined as in (Chow & Liu, 
1968):  
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Where the mutual information W(XA,XB) between two variables XA and XB is calculated 
according to the number of times Nab that XA=a and XB=b, Na the number of times XA=a and 
so on. The mutual information is computed once for a given database. It may happen that an 
individual has several circuits, as a result of a mutation that generated and/or inverted 
several arcs. In this case, the repair is iteratively performed, starting with deleting the 
shortest circuit until the entire circuit has been deleted. 

3.6 Crossover operator  
A first attempt was to create a one-point crossover operator. At least, the operator used has 
been developed from the model of (Vekaria & Clack, 1998). This operator is used to generate 
two individuals with the particularity of defining the crossing point as a function of the 
quality of the individual. The form taken by the criterion (BIC and, in general, by any 
decomposable score) makes it possible to assign a local score to the set {Xi, Pa(Xi)}. Using 
these different local scores we can therefore choose to generate an individual which received 
the best elements of his ancestors. This operation is shown Fig. 3.  
This generation can be performed only if a DAG is produced (the operator is closed). In our 
experiments, Pcross, the probability that an individual is crossed with another is set to 0.8. 

3.7 Mutation operator  
Each node of one individual has a Pmute probability to either lose or gain one parent or to see 
one of its incoming arcs reverted (i.e. reversing the relationship with one parent). 

3.8 Other parameters  
The five best individuals from the previous population are automatically transferred to the 
next one. The rest of the population at t+1 is composed of the S−5 best children where S is 
the size of the population.  
Now, after describing our basic GA, we will present how it can be improved by i) a specific 
adaptive mutation scheme and ii) an exploration strategy: the niching. 
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decomposable score) makes it possible to assign a local score to the set {Xi, Pa(Xi)}. Using 
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the best elements of his ancestors. This operation is shown Fig. 3.  
This generation can be performed only if a DAG is produced (the operator is closed). In our 
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3.7 Mutation operator  
Each node of one individual has a Pmute probability to either lose or gain one parent or to see 
one of its incoming arcs reverted (i.e. reversing the relationship with one parent). 

3.8 Other parameters  
The five best individuals from the previous population are automatically transferred to the 
next one. The rest of the population at t+1 is composed of the S−5 best children where S is 
the size of the population.  
Now, after describing our basic GA, we will present how it can be improved by i) a specific 
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Fig. 3. The crossover operator and the transformation it performs over two DAGs. 

4. Strategies 
The many parameters of a GA are usually fixed by the user and, unfortunately, usually lead 
to sub-optimal choices. As the amount of tests required to evaluate all the conceivable sets of 
parameters will be eventually exponential, a natural approach consists in letting the 
different parameters evolve along with the algorithm. (Eiben et al., 1999) defines a 
terminology for self-adaptiveness which can be resumed as follows: 
• Deterministic Parameter Control: the parameters are modified by a deterministic rule; 
• Adaptive Parameter Control: consists in modifying the parameters using feedback from 

the search; 
• Self-adaptive Parameter Control: parameters are encoded in the individuals and evolve 

along. 
We now present three techniques. The first one, an adaptive parameter control, aims at 
managing the mutation rate. The second one, an evolutionary method tries to avoid local 
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optima using a penalizing scheme. Finaly, the third one, another evolutionary method, 
makes many populations evolve granting sometimes a few individuals to go from one 
population to another.   

4.1 Self-adaptive scheme of the mutation rate 
As for the mutation rate, the usual approach consists in starting with a high mutation rate 
and reducing it as the population converges. Indeed, as the population clusters near one 
optimum, high mutation rates tend to be degrading. In this case, a self-adaptive strategy 
would naturally decrease the mutation rate of individuals so that they would be more likely 
to undergo the minor changes required to reach the optimum. 
However, applying this kind of policy can do more harm than good. When there are many 
local optima, as in our case, we can be confronted with the bowl effect described in (Glickman 
& Sycara, 2000). That is: when the population is clustered around a local optimum and the 
mutation rate is too low to allow at least one individual to escape this local optimum, a 
strictly decrementing adaptive policy will only trap the population around this optimum. 
Other strategies have been proposed which allow the individual mutation rates to either 
increase or decrease, such as in (Thierens, 2002). There, the mutation step of one individual 
induces three differently rated mutations: greater, equal and smaller than the individual’s 
actual rate. The issued individual and its mutation rate are chosen accordingly to the 
qualitative results of the three mutations. Unfortunately, as the mutation process is the most 
costly operation in our algorithm, we obviously cannot choose such a strategy. Therefore, 
we designed two adaptive policies.  
The first one is given Fig. 4: 
 

 At each mutation process, given one individual I, its fitness value ƒ(I) and its 
mutation rate Pm,ω < 1, γ > 1: 

1. Mutate individual I according to its mutation rate Pm: (I,Pm)→(I') 
2. If ƒ (I') > ƒ (I): allocate mutation rate ω ×Pm to individual I' and γ ×Pm 

to individual I, 
3. If ƒ (I') ≤ƒ (I): allocate mutation rate γ ×Pm to individual I' and ω×Pm to 

individual I 

 

Fig. 4. Basic adaptive mutation rate scheme. 

This principle is based on the fact that, during an evolution-based process, the less fit 
individuals have the best chances to produce new, fitter individuals. Our scheme is based on 
the idea of maximizing the mutation rate of less fit individuals while reducing the mutation 
rate of the fitter. However, in order to control the computational complexity of the algorithm 
as well as to leave to the best individuals the possibility to explore their neighbourhood, we 
define a maximum threshold Mutemax and a minimum threshold Mutemin for the mutation 
rate of all individuals. Since we also apply an elitist strategy, we added a deterministic rule 
in order to control the mutation rate of the best individuals: At the end of each iteration 
multipliy the mutation rates of the best D individuals by ω where D is the degree of our 
elitist policy. 
An improvement of this approach is now proposed. Indeed, the computed probability 
concerns all the possible mutation operations. But, perharps some could be benefits, others 
none. So we propose to conduct the search over the space of solutions by taking into account 
information on the quality of later searchs. Our goal is to define a probability distribution 



 Advances in Evolutionary Algorithms 

 

344 

 
Fig. 3. The crossover operator and the transformation it performs over two DAGs. 

4. Strategies 
The many parameters of a GA are usually fixed by the user and, unfortunately, usually lead 
to sub-optimal choices. As the amount of tests required to evaluate all the conceivable sets of 
parameters will be eventually exponential, a natural approach consists in letting the 
different parameters evolve along with the algorithm. (Eiben et al., 1999) defines a 
terminology for self-adaptiveness which can be resumed as follows: 
• Deterministic Parameter Control: the parameters are modified by a deterministic rule; 
• Adaptive Parameter Control: consists in modifying the parameters using feedback from 

the search; 
• Self-adaptive Parameter Control: parameters are encoded in the individuals and evolve 

along. 
We now present three techniques. The first one, an adaptive parameter control, aims at 
managing the mutation rate. The second one, an evolutionary method tries to avoid local 

Evolutionary Methods for Learning Bayesian Network Structures 

 

345 

optima using a penalizing scheme. Finaly, the third one, another evolutionary method, 
makes many populations evolve granting sometimes a few individuals to go from one 
population to another.   

4.1 Self-adaptive scheme of the mutation rate 
As for the mutation rate, the usual approach consists in starting with a high mutation rate 
and reducing it as the population converges. Indeed, as the population clusters near one 
optimum, high mutation rates tend to be degrading. In this case, a self-adaptive strategy 
would naturally decrease the mutation rate of individuals so that they would be more likely 
to undergo the minor changes required to reach the optimum. 
However, applying this kind of policy can do more harm than good. When there are many 
local optima, as in our case, we can be confronted with the bowl effect described in (Glickman 
& Sycara, 2000). That is: when the population is clustered around a local optimum and the 
mutation rate is too low to allow at least one individual to escape this local optimum, a 
strictly decrementing adaptive policy will only trap the population around this optimum. 
Other strategies have been proposed which allow the individual mutation rates to either 
increase or decrease, such as in (Thierens, 2002). There, the mutation step of one individual 
induces three differently rated mutations: greater, equal and smaller than the individual’s 
actual rate. The issued individual and its mutation rate are chosen accordingly to the 
qualitative results of the three mutations. Unfortunately, as the mutation process is the most 
costly operation in our algorithm, we obviously cannot choose such a strategy. Therefore, 
we designed two adaptive policies.  
The first one is given Fig. 4: 
 

 At each mutation process, given one individual I, its fitness value ƒ(I) and its 
mutation rate Pm,ω < 1, γ > 1: 

1. Mutate individual I according to its mutation rate Pm: (I,Pm)→(I') 
2. If ƒ (I') > ƒ (I): allocate mutation rate ω ×Pm to individual I' and γ ×Pm 

to individual I, 
3. If ƒ (I') ≤ƒ (I): allocate mutation rate γ ×Pm to individual I' and ω×Pm to 

individual I 

 

Fig. 4. Basic adaptive mutation rate scheme. 

This principle is based on the fact that, during an evolution-based process, the less fit 
individuals have the best chances to produce new, fitter individuals. Our scheme is based on 
the idea of maximizing the mutation rate of less fit individuals while reducing the mutation 
rate of the fitter. However, in order to control the computational complexity of the algorithm 
as well as to leave to the best individuals the possibility to explore their neighbourhood, we 
define a maximum threshold Mutemax and a minimum threshold Mutemin for the mutation 
rate of all individuals. Since we also apply an elitist strategy, we added a deterministic rule 
in order to control the mutation rate of the best individuals: At the end of each iteration 
multipliy the mutation rates of the best D individuals by ω where D is the degree of our 
elitist policy. 
An improvement of this approach is now proposed. Indeed, the computed probability 
concerns all the possible mutation operations. But, perharps some could be benefits, others 
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which drives the choice of the mutation operation. This distribution should reflect the 
performance of the mutation operations being applied over the individuals during the 
previous iterations of the search. 
Let us define P(i,j,opmute) the probability that the coefficient aij of the adjacency matrix is 
modified by the mutation operation opmute. The mutation decays according to the choice of 
i, j and opmute. We can simplify the density of probability by conditionning a subset of 
{i,j,opmute} by its complementary; this latter being activated according to a static distribution 
of probability. After studying all the possible combination, we have chosen to design a 
process to control P(i|opmute,j). This one influences the choice of the source vertex knowing 
the destination vertex and for a given mutation operation. So the mutation operator can be 
rewritten such as shown by Fig. 5. 
 

 for j = 1 to n do 
     if Pa(Xj) mute with a probability Pmute then 
          choose a mutation operation among these allowed on Pa(Xj) 
          apply opmute(i, j) with the probability P(i|opmute ,j) 
     end if 
end for 

 

Fig. 5. The mutation operator scheme  
Assuming that the selection probability of Pa(Xj) is uniformly distributed and equals a given 
Pmute, Eq. 7 must be verified: 
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The diversity of the individuals lay down to compute P(i|opmute,j) for each allowed opmute 
and for each individual Xj. We introduce a set of coefficients denoted ζ(i,j,opmute(i,j)) where 
1≤i,j≤n  and i≠j to control P(i|opmute,j). So we define:  
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During the initialisation and without any prior knowledge, ζ(i,j,opmute(i,j)) follows an 
uniform distribution: 
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Finally, to avoid the predominance of a given opmute (probability set to 1) and a total lack of a 
given opmute (probability set to 0) we add a constraint given by Eq.10: 
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Now, to modify ζ(i,j,opmute(i,j)) we must take in account the quality of the mutations and 
either their frequencies. After each evolution phase, the ζ(i,j,opmute(i,j)) associated to the opmute 
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applied at least one time are reestimated. This compute is made according to a parameter γ 
which quantifies the modification range of ζ(i,j,opmute(i,j)) and depends on ω which is 
computed as the number of successful applications of opmute minus the number of 
detrimental ones in the current population. Eq.11 gives the computation. In this relation, if 
we set γ=0 the algorithm acts as the basic genetic algorithm previoulsy defined. 
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The regular update ζ(i,j,opmute(i,j)) leads to standardize the P(i|opmute,j) values and avoids a 
prematured convergence of the algorithm as seen in (Glickman & Sycara, 2000) in which the 
mutation probability is strictly decreasing. Our approach is different from an EDA one: we 
drive the evolution by influencing the mutation operator when an EDA makes the best 
individuals features probability distribution evolve until then generated. 

4.2 Niching 
Niching methods appear to be a valuable choice for learning the structure of a Bayesian 
network because they are well-adapted to multi-modal optimization problem. Two kind of 
niching techniques could be encountered: spatial ones and temporal ones. They all have in 
common the definition of a distance which is used to define the niches. In (Mahfoud, 1995), 
it seemed to be expressed a global consensus about performance: spatial approch gives 
better results than temporal one. But the latter is easier to implement because it consists in 
the addition of a penalizing scheme to a given evolutionnary method.  

4.2.1 Sequential niching 
So we propose two algorithms. The first one is apparented to a sequential niching. It makes 
a similar trend to that of a classic genetic algorithm (iterated cycles evaluation, selection, 
crossover, mutation and replacement of individuals) except for the fact that a list of optima 
is maintained. Individuals matching these optima see their fitness deteriorated to discourage 
any inspection and maintenance of these individuals in the future. 
The local optima, in the context of our method, correspond to the equivalence classes in the 
meaning of Markov. When at least one equivalence class has been labelled as corresponding 
to an optimum value of the fitness, the various individuals in the population belonging to 
this optimum saw the value of their fitness deteriorated to discourage any further use of 
these parts of the space of solutions. The determination of whether or not an individual 
belongs to a class of equivalence of the list occurs during the evaluation phase, after 
generation by crossover and mutation of the new population. The graph equivalent of each 
new individual is then calculated and compared with those contained in the list of optima. If 
a match is determined, then the individual sees his fitness penalized and set to at an 
arbitrary value (very low, lower than the score of the empty structure). 
The equivalence classes identified by the list are determined during the course of the 
algorithm: if, after a predetermined number of iterations Iteopt, there is no improvement of 
the fitness of the best individual, the algorithm retrieves the graph equivalent of the 
equivalence class of it and adds it to the list. 
It is important to note here that the local optima are not formally banned in the population. 
The registered optima may well reappear in our population due to a crossover. The 
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which drives the choice of the mutation operation. This distribution should reflect the 
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Fig. 5. The mutation operator scheme  
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The diversity of the individuals lay down to compute P(i|opmute,j) for each allowed opmute 
and for each individual Xj. We introduce a set of coefficients denoted ζ(i,j,opmute(i,j)) where 
1≤i,j≤n  and i≠j to control P(i|opmute,j). So we define:  
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During the initialisation and without any prior knowledge, ζ(i,j,opmute(i,j)) follows an 
uniform distribution: 
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Finally, to avoid the predominance of a given opmute (probability set to 1) and a total lack of a 
given opmute (probability set to 0) we add a constraint given by Eq.10: 
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Now, to modify ζ(i,j,opmute(i,j)) we must take in account the quality of the mutations and 
either their frequencies. After each evolution phase, the ζ(i,j,opmute(i,j)) associated to the opmute 
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applied at least one time are reestimated. This compute is made according to a parameter γ 
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The regular update ζ(i,j,opmute(i,j)) leads to standardize the P(i|opmute,j) values and avoids a 
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to an optimum value of the fitness, the various individuals in the population belonging to 
this optimum saw the value of their fitness deteriorated to discourage any further use of 
these parts of the space of solutions. The determination of whether or not an individual 
belongs to a class of equivalence of the list occurs during the evaluation phase, after 
generation by crossover and mutation of the new population. The graph equivalent of each 
new individual is then calculated and compared with those contained in the list of optima. If 
a match is determined, then the individual sees his fitness penalized and set to at an 
arbitrary value (very low, lower than the score of the empty structure). 
The equivalence classes identified by the list are determined during the course of the 
algorithm: if, after a predetermined number of iterations Iteopt, there is no improvement of 
the fitness of the best individual, the algorithm retrieves the graph equivalent of the 
equivalence class of it and adds it to the list. 
It is important to note here that the local optima are not formally banned in the population. 
The registered optima may well reappear in our population due to a crossover. The 



 Advances in Evolutionary Algorithms 

 

348 

evaluation of these equivalence classes began, in fact until the end of a period of change; an 
optimum previously memorized may well reappear at the end of the crossover operation 
and the individual concerned undergo mutation allowing to explore the neighbourhood of 
the optimum. 
The authors of (Beasley et al., 1993) carry out an evolutionary process reset after each 
determination of an optimum. Our algorithm continues the evolution considering the 
updated list of these optima. However, by allowing the people to move in the 
neighbourhood of the detected optima, we seek to preserve the various building blocks 
hitherto found, as well as reducing the number of evaluations required by multiple launches 
of the algorithm. 
At the meeting of a stopping criterion, the genetic algorithm completes its execution thus 
returning the list of previously determined optima. The stopping criterion of the algorithm 
can also be viewed in different ways, for example: 
• After a fixed number of local optima detected; 
• After a fixed number of iterations (generations).  
We opt for the second option. Choosing a fixed number of local optima may, in fact, appear 
to be a much more arbitrary choice as the number of iterations. Depending on the problem 
under consideration and/or data learning, the number of local optima in which the 
evolutionary process may vary. The algorithm returns a directed acyclic graph 
corresponding to the instantiation of the graph equivalent attached to the highest score in 
the list of optima. 
An important parameter of the algorithm is, at first glance, the threshold beyond which an 
individual is identified as qu'optimum of the evaluation function. It is necessary to define a 
value of this parameter, which we call Iteopt that is: 
• Neither too small: take it too hasty a class of equity as a local optimum hamper space 

exploration research of the genetic algorithm, and it amalga over too many optima; 
• Nor too high: loss of the benefit of the method staying too long in the same point in 

space research: the local optima actually impede the progress of the research. 
Experience has taught us that Iteopt value of between 15 and 25 iterations can get good 
results. The value of the required parameter Iteopt seems to be fairly stable as it allows both to 
stay a short time around the same optimum while allowing solutions to converge around it. 
The value of the penalty imposed on equivalence classes is arbitrary. The only constraint is 
that the value is lowered when assessing the optimum detected is lower than the worst 
possible structure, for example: -1015. 

4.2.2 Sequential and spatial niching combined 
The second algorithm uses the same approach as for the sequential niching combined with a 
technique used in parallels GAs to split the population. We use an island model approach 
for our distributed algorithm. This model is inspired from a model used in genetic of 
populations (Wright, 1964). In this model, the population is distributed to k islands. Each 
island can exchange individuals with others avoiding the uniformization of the genome of 
the individuals. The goals of all of this is to preserve (or to introduce) genetic diversity. 
Some additional parameters are required to control this second algorithm. First, we denote 
Imig the migration interval, i.e. the number if iteration of the GA between two migration 
phases. Then, we use Rmig the migration rate: the rate of individuals selected for a migration. 

Evolutionary Methods for Learning Bayesian Network Structures 

 

349 

Nisl is the number of islands and finaly Isize represents the number of individuals in each 
island.   
In order to remember the local optima encountered by the populations, we follow the next 
process: 
• The population of each island evolves during Imig iterations and then transfert Rmig × Isize 

individuals 
• Local optima detected in a given island are registered in a shared list. Then they can be 

known by all the islands. 

5. Evaluation and discussion 
From an experimental point of view, the training of the structure of a Bayesian network 
consists in: 
• to have an input database containing examples of instantiation of the variables 
• to determine the conditional relationship between the variables of the model 

• Either from statistical tests performed on several subsets of variables;  
• Either from measurements of a match between a given solution and the training 

database 
• to compare the learned structures to determine the respective qualities of the different 

algorithms used 

5.1 Tested methods 
So that we can compare with existing methods, we used some of the most-used learning 
methods: the K2 algorithm, the greedy algorithm applied to the structures space, denoted 
GS; the greedy algorithm applied to the graph equivalent space, noted GES; the MWST 
algorithm, the PC algorithm. These methods are compared to our four evolutionary 
algorithms learning: the simple genetic algorithm (GA); genetic algorithm combined with a 
strategy of sequential niching (GA-SN); the hybrid sequential-spatial genetic approach (GA-
HN); the genetic algorithm with the dynamic adaptive mutation scheme GA-AM. 

5.2 The Bayesian networks used  
We apply the various algorithms in search of some common structures like: Insurance 
(Binder et al., 1997) consisting of 27 variables and 52 arcs; ALARM (Beinlich et al. 1989) 
consisting of 37 variables and 46 arcs. We use each of these networks to summarize: 
• Four training data sets for each network, each one containing a number of databases of 

the same size (250, 500, 1000 & 2000 samples); 
• A single and large database (20000 or 30000 samples) for each network. This one is 

supposed to be sufficiently representative of the conditional dependencies of the 
network it comes from. 

All these data sets is obtained by logic probabilistic sampling (Henrion, 1988): the value of 
vertices with no predecessors is randomly set, according to the probability distributions of 
the guenine network, and then the remaining variables are sampled following the same 
principle, taking into account the values of the parent vertices. We use several training 
databases for a given network and for a given number of cases, in order to reduce any bias 
due to sampling error. Indeed, in the case of small databases, it is possible (and it is 
common) that the extracted statistics are not exactly the conditional dependencies in the 
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that the value is lowered when assessing the optimum detected is lower than the worst 
possible structure, for example: -1015. 
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The second algorithm uses the same approach as for the sequential niching combined with a 
technique used in parallels GAs to split the population. We use an island model approach 
for our distributed algorithm. This model is inspired from a model used in genetic of 
populations (Wright, 1964). In this model, the population is distributed to k islands. Each 
island can exchange individuals with others avoiding the uniformization of the genome of 
the individuals. The goals of all of this is to preserve (or to introduce) genetic diversity. 
Some additional parameters are required to control this second algorithm. First, we denote 
Imig the migration interval, i.e. the number if iteration of the GA between two migration 
phases. Then, we use Rmig the migration rate: the rate of individuals selected for a migration. 

Evolutionary Methods for Learning Bayesian Network Structures 

 

349 

Nisl is the number of islands and finaly Isize represents the number of individuals in each 
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In order to remember the local optima encountered by the populations, we follow the next 
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individuals 
• Local optima detected in a given island are registered in a shared list. Then they can be 

known by all the islands. 

5. Evaluation and discussion 
From an experimental point of view, the training of the structure of a Bayesian network 
consists in: 
• to have an input database containing examples of instantiation of the variables 
• to determine the conditional relationship between the variables of the model 

• Either from statistical tests performed on several subsets of variables;  
• Either from measurements of a match between a given solution and the training 

database 
• to compare the learned structures to determine the respective qualities of the different 

algorithms used 

5.1 Tested methods 
So that we can compare with existing methods, we used some of the most-used learning 
methods: the K2 algorithm, the greedy algorithm applied to the structures space, denoted 
GS; the greedy algorithm applied to the graph equivalent space, noted GES; the MWST 
algorithm, the PC algorithm. These methods are compared to our four evolutionary 
algorithms learning: the simple genetic algorithm (GA); genetic algorithm combined with a 
strategy of sequential niching (GA-SN); the hybrid sequential-spatial genetic approach (GA-
HN); the genetic algorithm with the dynamic adaptive mutation scheme GA-AM. 

5.2 The Bayesian networks used  
We apply the various algorithms in search of some common structures like: Insurance 
(Binder et al., 1997) consisting of 27 variables and 52 arcs; ALARM (Beinlich et al. 1989) 
consisting of 37 variables and 46 arcs. We use each of these networks to summarize: 
• Four training data sets for each network, each one containing a number of databases of 

the same size (250, 500, 1000 & 2000 samples); 
• A single and large database (20000 or 30000 samples) for each network. This one is 

supposed to be sufficiently representative of the conditional dependencies of the 
network it comes from. 

All these data sets is obtained by logic probabilistic sampling (Henrion, 1988): the value of 
vertices with no predecessors is randomly set, according to the probability distributions of 
the guenine network, and then the remaining variables are sampled following the same 
principle, taking into account the values of the parent vertices. We use several training 
databases for a given network and for a given number of cases, in order to reduce any bias 
due to sampling error. Indeed, in the case of small databases, it is possible (and it is 
common) that the extracted statistics are not exactly the conditional dependencies in the 
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guenine network. After training with small databases, the BIC score of the returned 
structures by the different methods are computed from the large database mentioned 
earlier, in order to assess qualitative measures. 

5.3 Experiments 
GAs: The parameters of the evolutionary algorithms are given in Table 1. 
 

Parameter Value Remarks 
Population size 150  
Mutation probability 1/n  
Crossover probability 0.8  
Recombination scheme elitist The best solution is never lost 
Stop criterion 1000 iter.  
Initialisation  See footnote2  
Iteopt 20 For GA-SN only 
γ 0.5 For D1-GA & GA-AM 
Imig 20 For GA-HN only 
Rmig 0.1 For GA-HN only 
Nisl 30 For GA-HN only 
Isize 30 For GA-HN only 

Table 1. Parameters used for the evolutionary algorithms. 

GS: This algorihtm is initialized with a tree returned by the MWST method, where the root 
vertice is randomly chosen. 
GES: This algorithm is initialized with the empty structure. 
MWST: it is initialized with a root node randomly selected (it had no effect on the score of 
the structure obtained). 
K2: This algorithm requires a topological order on the vertices of the graph. We used for this 
purpose two types of initialization:  
• The topological order of a tree returned by the MWST algorithm (method K2-T); 
• A topological order random (method K2-R).  
For each instance of K2-R — i.e. for each training database considered — we are proceeding 
with 5 × n random initialization for choosing only those returning the best BIC score. 
Some of these values (crossover, mutation probability) are coming from some habits of the 
domain (Bäck, 1993) but especially from experiments too. The choice of the iteration number 
is therefore sufficient to monitor and interpret the performance of the method considered 
while avoiding a number of assessments distorting the comparison of results with greedy 
methods. 
We evaluate the quality of the solutions with two criteria: the BIC score from one hand, and 
a graphic distance measuring the number of differences between two graphs on the other 

                                                 
2 The populations of the evolutionary methods are all initialized like GS. We make sure, 
however, that each vertice will be selected at least once as root. 
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hand. The latter is defined from 4 terms: (D) the total number of different arcs between two 
graphs G1 and G2, (+) the number of arcs existing in G1 but not in G2, (-) the number of arcs 
existing in G2 but not in G1 and (inv) the number of arcs inverted in G1 comparing to G2. 
These terms are important because, when considering two graphs of the same equivalence 
class, some arcs could be inverted. This implies that the corresponding arcs are not oriented 
in the corresponding PDAG. The consequence is that G1 and G2 have the same BIC score but 
not the same graphic distance. To compare the results with we also give the score of the 
empty structure G0 and the score of the reference network GR. 

5.4 Results for the INSURANCE network 
Results are given Table 2 & Table 3. The evaluation is averaged over 30 databases. Table 2 
shows the means and the standard deviations of the BIC scores. For a better seeing, values 
are all divided by 10. Values labelled by † are significantly different from the best mean 
score (Mann-Whitney’s test). 
The results in Table 2 give an advantage to evolutionary methods. While it is impossible to 
distinguish clearly the performance of the different evolutionary methods, it is interesting to 
note that these latter generally outperform algorithms like GES and GS. Only the algorithm 
GS has such good results as the evolutionary methods on small databases (250 and 500). We 
can notice too, according to a Mann-Whitney’s test that, for large datasets, GA-SN & GA-
AM returns a structure close to the original one.  Standard deviations are not very large for 
the GAs, showing a relative stability of the algorithms and so, a good avoidance of local 
optima.  
 

 250 500 1000 2000 
GA −32135 ± 290 −31200 ± 333 −29584 ± 359 −28841 ± 89† 

GA-SN −31917 ± 286 −31099 ± 282 −29766 ± 492 −28681±156 
GA-HN −31958±246 −31075 ± 255 −29428 ± 290 −28715 ± 164 
GA-AM −31826±270 −31076 ± 151 −29635 ± 261 −28688 ± 165 

GS −32227 ± 397 −31217 ± 314 −29789 ± 225† −28865 ± 151† 
GES −33572 ± 247† −31952 ± 273† −30448 ± 836† −29255 ± 634† 
K2-T −32334 ± 489† −31772 ± 339† −30322 ± 337† −29248 ± 163† 
K2-R −33002 ± 489† −31858 ± 395† −29866 ± 281† −29320 ± 245† 

MWST −34045 ± 141† −33791 ± 519† −33744 ± 296† −33717 ± 254† 
GR −28353 
G0 −45614 

Table 2. Means and standard deviations of the BIC scores (INSURANCE).  

Table 3 shows the mean structural differences between the original network and these 
delivered by some learning algorithms. There, we can see that evolutionary methods, 
particularly GA-SN, return the structures which are the closest to the original one. This 
network was chosen because it contains numerous low-valued conditional probabilities. 
These are difficult to find using small databases. So even if the BIC score is rather close to 
the original one, graphical distances reveals some differences. First, we can see that D is 
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rather high (the original network GR is made with only 52 arcs, compared to D which 
minimum is 24.4) even if the BIC score is very close (resp. -28353 compared to -28681). 
Second, as expected, D decreases when the size of the learning database grows, mainly 
because of the (-) term. Third, GAs obtains the closest models to the original in 11 cases over 
16; the 5 others are provided by GES. 
 

250 500 
 

D + inv - D + inv - 
GA 39.6 4.4 7.2 28 34 3.1 7.6 23.3

GA-SN 37 3.5 7.1 26.4 35.1 3.7 7.4 24 
GA-HN 38.1 3.5 7.5 27.1 33.3 3 7.3 23 
GA-AM 37.5 4.3 6.6 26.6 33.9 3.2 7.7 23 

GS 42.1 4.6 9.4 28.1 37.7 4.5 9.4 23.8
GES 39.5 3.7 7.1 28.7 35.1 3 7.1 25 
K2-T 42.7 5.1 8.4 29.2 40.8 5.4 8.8 26.6
K2-R 42.4 4.8 7.2 30.4 41.8 6.5 8.8 26.6

MWST 41.7 4 7.7 30 41.3 3.5 8.3 29.5
1000 2000 

 
D + inv - D + inv - 

GA 39.6 4.4 7.2 28 27.8 4.7 8 15.1
GA-SN 30.8 3.8 7.4 19.6 24,4 3.4 6.7 14.3
GA-HN 29.3 3.6 6.5 19.2 26.6 3.6 8.6 14.4
GA-AM 31.4 4 8 19.4 27 4.3 8.4 14.3

GS 35.9 5.1 10 20.8 31.9 5.2 11.4 15.3
GES 32.4 4.1 8.1 20.2 27.5 4 8.4 15.1
K2-T 38.7 5.9 11 21.8 34.6 7.3 10.9 16.4
K2-R 39.6 8.3 8.3 23 36.1 8.5 8.5 9.1 

MWST 37.7 1.7 8.3 27.7 36.3 1.2 7.9 27.2

Table 3. Mean structural differences between the original INSURANCE network and the 
best solutions founded by some algorithms 

5.5 Results for the ALARM network 
The results are shown Table 4 & Table 5. This network contains more vertices than the 
INSURANCE one, but less low-valued arcs. The evaluation is averaged over 30 databases. 
Table 4 shows that evolutionary algorithms obtain the best scores. But while GES provides 
less qualitative solutions accordingly to the BIC score, these solutions are closest to the 
original one if we consider the graphical distance. Here, a strategy consisting in gradually 
building a solution seems to produce better structures than an evolutionary search. In this 
case, a GA has a huge space (3×10237 when applying the Robinson's formula) into which one 
it enumerates solutions. If we increases the size of the population the results are better than 
these provided by GES.  
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 250 500 1000 2000 
GA −36239 ± 335 −34815 ± 317 −33839 ± 159 −33722 ± 204† 

GA-SN −36094±297 −34863 ± 346 −33865 ± 203 −33640 ± 196† 
GA-HN −36144 ± 326 −34864 ± 337 −33723 ± 251 −33496 ± 170 
GA-AM −36104 ± 316 −34791±340 −33942 ± 198† −33722 ± 204† 

GS −36301 ± 309† −35049 ± 380† −33839 ± 109† −33638 ± 964† 
GES −36124 ± 315 −34834 ± 288 −33801 ± 562† −33593 ± 692† 
K2-T −36615 ± 308† −35637 ± 328† −34427 ± 200† −34045 ± 818† 
K2-R −37173 ± 435† −35756 ± 264† −34579 ± 305† −34128 ± 173† 

MWST −37531 ± 185† −37294 ± 737† −37218 ± 425† −37207 ± 366† 
GR −33097 
G0 −63113 

Table 4. Means and standard deviations of the BIC scores (ALARM).  
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GS 33.7 5 12.6 16.1 30.2 5 13.5 11.7
GES 32.5 4.5 12.7 15.3 23.3 3.8 8 11.5
K2-T 34.5 5.1 13.1 16.3 35.1 7.2 15.2 12.7
K2-R 36.5 6.6 10.2 19.6 35 8.7 11.3 11.5

MWST 38.5 6.9 14.7 16.9 36.5 4.7 17.1 14.7
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GA-SN 22 4.5 10.4 7.1 20.1 4.1 10.2 5.8 
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GA-AM 27 6.4 13.1 7.4 29 7.4 16 6.3 

GS 27.8 6.2 14.5 7.1 25.4 6.2 13.6 5.6 
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K2-R 37.1 11.4 15.1 10.6 40.2 14.6 16.1 9.5 

MWST 35.1 4.4 16.3 14.4 34.1 14 16.1 14 

Table 5. Mean structural differences between the original ALARM network and the best 
solutions founded by some algorithms 
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rather high (the original network GR is made with only 52 arcs, compared to D which 
minimum is 24.4) even if the BIC score is very close (resp. -28353 compared to -28681). 
Second, as expected, D decreases when the size of the learning database grows, mainly 
because of the (-) term. Third, GAs obtains the closest models to the original in 11 cases over 
16; the 5 others are provided by GES. 
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5.5 Behaviour of the GAs 
Now look at some measures in order to evaluate the behaviour of our genetic algorithms.  
A repair operator was designed to avoid individuals having a cycle. Statistics computed 
during the tests show that the rate of individuals repaired does not seem to depend neither 
on the algorithm used nor and on the size of the training set. It seems to be directly related 
to the complexity of the network. Thus, this rate is about 15% for the INSURANCE network 
and about 7% for the ALARM network. 
The mean number of iterations before the GA found the best solution returned for the 
INSURANCE network is given Table 6. The data obtained for the ALARM network are the 
same order of magnitude. We note here that GA-HN quickly gets the best solution. This 
makes it competitive in terms of computing time if we could detect this event.  
 

 250 500 1000 2000 

GA 364 454 425 555 

GA-AM 704 605 694 723 

GA-SN 398 414 526 501 

GA-HN 82 106 166 116 

Table 6. Mean of the necessary number of iterations to find the best structure 
(INSURANCE). 

The averaged computing time of each algorithm is given Table 7 (for the ALARM network). 
We note here that GA-HN is only three times slower than GES. We note too that these 
computing times are rather stable when the size of the database increases.  
 

 250 500 1000 2000 

GA 3593 ± 47 3659 ± 41 3871 ± 53 4088 ± 180 

GA-AM 3843 ± 58 3877 ± 44 4051 ± 59 4332 ± 78 

GA-SN 3875 ± 32 4005 ± 43 4481 ± 46 4834 ± 52 

GA-HN 9118 ± 269 9179 ± 285 9026 ± 236 9214 ± 244 

GS 9040 ± 1866 9503 ± 1555 12283 ± 1403 16216 ± 2192 

GES 3112 ± 321 2762 ± 166 4055 ± 3.4 5759 ± 420 

K2-T 733 ± 9 855 ± 25 1011 ± 14 1184 ± 8 

K2-R 3734 ± 61 4368 ± 152 5019 ± 67 5982 ± 43 

MWST 10 ± 1 10 ± 2 11 ± 1 12 ± 1 

Table 7. Averaged computing times (in seconds) and standard deviations (ALARM). 

An example of the evolution of the fitness of the population is given Fig. 6. The curves for 
GA, GA-SN and GA-AM are very similar. The curve associated with GA-HN increases 
through levels, a consequence of spatial niching policy who promptly exchange some 
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individuals between islands. Although the average quality is progressing more slowly, it is 
revealed fairly quickly, however, better than in other genetic algorithms. Although the curve 
corresponding to the algorithm GA seems well placed, Tables 4 and 5 learn us a bit more. 
First, the score is not considered equivalent: the algorithm GA-HN have the best one. 
Second, the graphical distance of GA-HN is the lowest. Although GA-SN seems more 
remote, the results presented in Tables 4 and 5 show that the BIC score obtained by GA-SN 
is closer to the optimal, and the editing distance of GA-SN is better than the GA one. 
 

 
Fig. 6. Evolution of the individuals’ fitness (ALARM, 2000 training samples). 

6. Future search 
We will continue the development of the hybrid niching technique. The first step is the 
distribution over a cluster of computers. Then we plan to develop new strategies implying a 
global behaviour like in GA-HN and a dynamic mutation scheme like this one used in GA-
AM. The next goal will be the definition of a stopping criterion based on population’s 
statistics to make our algorithm competitive in term of computing time. 

7. Conclusion 
We have presented three methods for learning the structure of a Bayesian network. The first 
one consists in the control of the probability distribution of mutation in the genetic 
algorithm. The second one is to incorporate a scheme penalty in the genetic algorithm so 
that it avoids certain areas of space research. The third method is to search through several 
competing populations and to allow timely exchange among these populations. We have 
shown experimentally that different algorithms behaved satisfactorily, in particular that 
they were proving to be successful on large databases. We also examined the behaviour of 
proposed algorithms. Niching strategies are interesting, especially using the spatial one, 
which focuses quickly on the best solutions. 
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1. Introduction  
Mobile and wireless communication systems have now arrived at the point where 
substancial advances in antenna technology have become a critical issue. The majority of 
these systems consist of an antenna array combined with an appropriate signal processing 
(Soni et al., 2002; Godara, 2002), i.e., the antenna elements are allowed to work in concert by 
means of array element phasing, which is accomplished with hardware or is performed 
digitally. 
In these systems, the antenna array performance over a certain steering range is of primary 
concern. In this case, the antenna array design problem consists of finding weights that 
make the radiation pattern satisfy the desired characteristics (a maximum directivity, a 
minimum side lobe level, etc), so the direction of the main beam can be steered at will. 
Generally, the design problem is formulated as an optimization problem. The design of 
antenna arrays has a nonlinear and non-convex dependence of elements parameters [Kurup 
et al. 2003], because of that, the interest has been focused on stochastic search techniques, 
such as simulated annealing (Murino et al., 1996), and mainly, genetic algorithms (GA’s) 
(Ares-Pena et al., 1999; Haupt, 1994; Haupt, 1995; Panduro et al., 2005; Rahmat-Samii et al, 
1999; Weile et al., 1997; Yan et al., 1997), widely used in electromagnetic problems, including 
the synthesis of phased antenna arrays (Mailloux, 2005; Hansen, 1998). 
The antenna arrays optimization for improving performance represents an open line of 
research in the antenna design field. In the application of evolutionary optimization 
techniques for designing antenna arrays, it has been considered the design of different 
phased array structures, such as the linear arrays (Bray et al., 2002; Panduro, 2006) and the 
circular arrays (Panduro et al., 2006), among others. The design of planar arrays is dealt with 
in (Bae et al., 2005). In many design cases, it has been considered the optimization in the 
design of scannable arrays with non-uniform separation (Bray et al., 2002; Bae et al., 2004; 
Junker et al., 1998; Tian et al., 2005; Lommi et al., 2002). 
In this chapter it is considered the case of designing scannable arrays with the optimization 
of the amplitude and phase excitations for maximum side lobe level reduction in a wide 
scanning range. 
The purpose of this chapter is to investigate the behavior of the radiation pattern for the 
design of different phased array structures (linear and circular arrays) considering the 
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optimization of the amplitude and phase excitation across the antenna elements, by using 
the well-known method of Genetic Algorithms. Due to the great variety of parameters 
involved, optimization techniques such as Genetic Algorithms are very appropriate tools to 
search for the best antenna array models. 
The primary focus of this chapter is to present a study of the application of GA techniques to 
the design of scannable linear and circular arrays in a uniform geometry considering the 
optimization of the amplitude and phase excitation across the antenna elements. This study 
considers the design of scannable linear and circular arrays to be a problem optimizing a 
simple objective function. This objective function considers the synthesis of the radiation 
diagram with desired characteristics of the side lobe level and the directivity in a wide 
steering range. The contribution of this work is to present a model for the design of 
scannable linear and circular arrays that includes the synthesis of the radiation diagram 
using the method of genetic algorithms. 
The remainder of this chapter is organized as follows. Section 2 states the design of phased 
linear arrays. A description of the objective function used by the genetic algorithm and the 
obtained results for this design problem are presented in this section. Following the same 
design philosophy, the design of phased circular arrays is presented in the section 3. 
Discussions and open problems are presented in the section 4. Finally, the summary and 
conclusions of this work are presented in the section 5. 

2. Design of phased linear arrays  
The design of scannable linear arrays has been dealt with in many papers. In these 
documents, the study has been focused mainly to design scannable linear arrays with non-
uniform separation (Bray et al., 2002; Bae et al., 2004; Junker et al., 1998; Tian et al., 2005; 
Lommi et al., 2002; Panduro et al., 2005)., i.e, the performance of the array is improved, in 
the sense of the side lobe level, optimizing the spacing between antenna elements. In this 
case, it is presented the design of scannable linear arrays optimizing the amplitude and 
phase excitations across the antenna elements. It is believed by the authors that the 
performance of the array could be improved substantially, with respect to the linear array 
with the conventional progressive phase excitation, if the amplitude and phase excitations 
are set or optimized in an adequate way. Next, it is presented the theoretical model for the 
design of scannable linear arrays. 

2.1 Theoretical model  
Consider a scannable linear array with N antenna elements uniformly spaced, as shown in 
figure 1. If the elements in the linear array are taken to be isotropic sources, the radiation 
pattern of this array can be described by its array factor (Stutzman, 1998). The array factor 
for a conventional linear array in the x-y plane is given by (Balanis, 2005) 

 
(1) 

In this case, the array factor for a linear array with phase excitation is created by adding in 
the appropriate element phase perturbations, P = [δβ1, δβ2, ..., δβN], δβi represents the phase 
perturbation of the ith element of the array, such that 
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(2) 

In these equations, I = [I1, I2, ..., IN], Ii represents the amplitude excitation of the ith element 
of the array, ψn=kdncosθ0, θ0 is the direction of maximum radiation, k = 2π/λ is the phase 
constant and θ is the angle of incidence of a plane wave, λ is the signal wavelength. 
 

 
Figure 1. Steerable linear array with antenna elements uniformly spaced. 

The idea of adding perturbations in the conventional array factor is that the optimization 
algorithm searches possible optimal phase excitations in angles near the direction of desired 
maximum gain. The optimization process developed in this paper for generating arrays that 
have radiation patterns with low side lobe level will be based on (2). 
We now need to formulate the objective function we want to optimize. 

2.2 Objective function used to optimize the design of linear arrays.  
The objective function is the driving force behind the GA (Goldberg, 1989). It is called from 
the GA to determine the fitness of each solution string generated during the search. In this 
case, each solution string represents possible amplitude excitations and phase perturbations 
of antenna elements. As already being pointed out, the objective of the present study is to 
evaluate the radiation pattern of scannable linear arrays in a uniform geometry considering 
the optimization of the amplitude and phase excitation across the antenna elements. In this 
case, it is studied the behavior of the array factor for the scanning range of 50°≤θ0≤130° with 
an angular step of 10°. In order to calculate the objective function of an individual, the 
procedure described below is followed. 
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phase excitations across the antenna elements. It is believed by the authors that the 
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with the conventional progressive phase excitation, if the amplitude and phase excitations 
are set or optimized in an adequate way. Next, it is presented the theoretical model for the 
design of scannable linear arrays. 

2.1 Theoretical model  
Consider a scannable linear array with N antenna elements uniformly spaced, as shown in 
figure 1. If the elements in the linear array are taken to be isotropic sources, the radiation 
pattern of this array can be described by its array factor (Stutzman, 1998). The array factor 
for a conventional linear array in the x-y plane is given by (Balanis, 2005) 

 
(1) 

In this case, the array factor for a linear array with phase excitation is created by adding in 
the appropriate element phase perturbations, P = [δβ1, δβ2, ..., δβN], δβi represents the phase 
perturbation of the ith element of the array, such that 
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In these equations, I = [I1, I2, ..., IN], Ii represents the amplitude excitation of the ith element 
of the array, ψn=kdncosθ0, θ0 is the direction of maximum radiation, k = 2π/λ is the phase 
constant and θ is the angle of incidence of a plane wave, λ is the signal wavelength. 
 

 
Figure 1. Steerable linear array with antenna elements uniformly spaced. 

The idea of adding perturbations in the conventional array factor is that the optimization 
algorithm searches possible optimal phase excitations in angles near the direction of desired 
maximum gain. The optimization process developed in this paper for generating arrays that 
have radiation patterns with low side lobe level will be based on (2). 
We now need to formulate the objective function we want to optimize. 

2.2 Objective function used to optimize the design of linear arrays.  
The objective function is the driving force behind the GA (Goldberg, 1989). It is called from 
the GA to determine the fitness of each solution string generated during the search. In this 
case, each solution string represents possible amplitude excitations and phase perturbations 
of antenna elements. As already being pointed out, the objective of the present study is to 
evaluate the radiation pattern of scannable linear arrays in a uniform geometry considering 
the optimization of the amplitude and phase excitation across the antenna elements. In this 
case, it is studied the behavior of the array factor for the scanning range of 50°≤θ0≤130° with 
an angular step of 10°. In order to calculate the objective function of an individual, the 
procedure described below is followed. 
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1. A set of 1000 points is used to specify a desired radiation pattern with direction of 
maximum gain in each angle of the scanning range. Each point represents the ith desired 
normalized radiation pattern value. 
2. An individual is generated by the GA (amplitude excitations and phase perturbations of 
antenna elements). Each individual is in general represented by a vector of real numbers, 
i.e., I = [I1, I2, ..., IN], and a vector of real numbers restrained on the range (0, 2π), i.e.,  
P = [δβ1, δβ2, ..., δβN]. 
3. The value of the objective function is calculated as 

 (3) 

where θMSL is the angle where the maximum side lobe is attained, and DIR the directivity for 
the radiation pattern. In this case, the design problem is formulated as minimize the 
objective function of. 
4. A random population of individuals is generated and the genetic mechanisms of 
crossover, survival and mutation are used to obtain better and better individuals, until the 
GA converges to the best solution or the desired goals are achieved. 
The results of using a GA for the design of scannable linear arrays are described in the next 
section. 

2.3 Results obtained for the design of phased linear arrays  
The method of Genetic Algorithms was implemented to study the behavior of the radiation 
pattern for scannable linear arrays. In this case, it is studied the behavior of the array factor 
for the scanning range of 50°≤θ0≤130°. Several experiments were carried out with different 
number of antenna elements. In the experiments the algorithm parameters, after a trial and 
error procedure, were set as follows: maximum number of generations rmax = 500, 
population size gsize = 200, crossover probability pc = 1.0 and mutation probability pm = 0.1. 
A selection scheme combining Fitness Ranking and Elitist Selection (Goldberg, 1989) was 
implemented instead of a common weighted roulette wheel selection. The used genetic 
operators are standard: the well known two point crossover (Goldberg, 1989) along with a 
single mutation where a locus is randomly selected and the allele is replaced by a random 
number uniformly distributed in the feasible region. The obtained results are explained 
below. 
Figure 2 shows the behavior of the radiation pattern for a scannable linear array with the 
amplitude and phase excitation optimized by the GA. The separation between antenna 
elements is set as d=0.5λ. In this case, we illustrate the examples for a) N=6, b) N=8, c) N=12. 
As shown in the examples of the Figure 2, the Genetic Algorithm generates a set of 
amplitude and phase excitations in each angle of the scanning range to provide a 
normalized array factor with a side lobe level < -20 dB in the steering range. The 
optimization of the array can maintain a low side lobe level without pattern distortion 
during beam steering. 
Numerical values of the side lobe level, directivity, amplitude and phase perturbation 
distributions for the array factor illustrated in Figure 2 are presented in the Table 1.  
Table 1 illustrates that the design case with the amplitude and phase optimized by the GA 
could provide a better performance in the side lobe level with respect to the conventional 

Design of Phased Antenna Arrays using Evolutionary Optimization Techniques 

 

365 

case. These low values of the side lobe level for the optimized design case could be achieved 
with very similar values of directivity and the same aperture in both design cases. 
 

 
 

(a) 
 

 
 

 

(b) 
 

Figure 2. Behavior of the radiation pattern for a scannable linear array in a steering range of 
50°≤θ0≤130° with the amplitude and phase excitation optimized by the GA, a) N=6, b) N=8, 
c) N=12. 
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Figure 2. (continued). 
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Table 1. Numerical values of the side lobe level (SLL), directivity (DIR), amplitude and 
phase perturbation distribution for the array factor illustrated in Fig. 2, a) N=6, b) N=8, c) 
N=12. 
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From the results shown previously, it is illustrated a perspective of designing scannable 
linear arrays in a uniform structure with amplitude and phase optimization using genetic 
algorithms. The genetic algorithm efficiently computes a set of antenna element amplitude 
and phase excitations in each angle of the steering range in order to provide a radiation 
pattern with maximum side lobe level reduction in all scanning range. The optimized design 
case provides a considerable side lobe level reduction with respect to the conventional 
phased array, with very similar values of directivity and maintaining the same aperture. 
The design case for phased circular arrays is presented in the next section. 

3. Design of phased circular arrays  
Among antenna array configurations, the phased linear array is the most common form 
employed in cellular and personal communication systems (PCS) (Song et al., 2001). 
However, 360° scanning of the radiation beam can be obtained by combining a few linear 
arrays whose sector scans add to give the desired 360° scan. This could result in 
objectionably high costs, i.e., the array cost, the control complexity, and the data processing 
load are increased. Furthermore, the radiation pattern varies with the scan angle, i.e., the 
gain of a linear array degrades in its end-fire directions giving way to interference coming 
from other directions (Durrani et al., 2002). Unlike the linear array, the performance of the 
circular arrays (Du, 2004; Goto et al., 1977; Tsai et al., 2001; Tsai et al., 2004; Vescovo, 1995; 
Watanabe, 1980) has not been extensively studied. Therefore, in this section it is presented 
the design of scannable circular arrays optimizing the amplitude and phase excitations 
across the antenna elements. It is believed by the authors that an evaluation of the array 
factor for scannable circular arrays optimized by GA’s considering a scanning range in all 
azimuth plane (360°) has not been presented previously. Depending on the performance 
improvement that we could get (in terms of the side lobe level and the directivity) with 
respect to the circular array with the conventional progressive phase excitation, this 
information could be interesting for antenna designers. Next, it is presented the theoretical 
model for this design case. 

3.1 Theoretical model  
Consider a circular antenna array of N antenna elements uniformly spaced on a circle of 
radius a in the x-y plane. The array factor for the circular array shown in Figure 1, 
considering the center of the circle as the phase reference, is given by 

 
(4) 

where Δφn=2π(n-1)/N for n=1,2, …, N is the angular position of the nth element on the x-y 
plane, ka=Nd, i.e., a=Ndλ/2π, I = [I1, I2, ..., IN], In represents the amplitude excitation of the 
nth element of the array, φ0 is the direction of maximum radiation and φ is the angle of 
incidence of the plane wave. 
As it was established for the linear array case, the array factor with phase excitation is 
created by adding in the appropriate element phase perturbations, P = [δβ1, δβ2, ..., δβN], δβi 

represents the phase perturbation of the ith element of the array, such that 
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 (5) 

where ϕn=ka[cos(φ-Δφn)- cos(φ0-Δφn)]. 
It is important to mention that as the center of the circle is taken as the phase reference in the 
array factor, it is considered a symmetrical excitation for the optimization process, i.e, the 
phase perturbation would be given in the next way I1exp(jδβ1), …, IN/2exp(jδβN/2), 
IN/2+1exp(jδβN/2+1)=I1exp(-jδβ1), …, INδβN=IN/2exp(-jδβN/2). Note that we will have N/2 
amplitude and phase excitations in the optimization process. 
 

 
Figure 3. Array geometry for an N element uniform circular array with inter-element 
spacing d. 

As already being pointed out, the objective of this section is to present an evaluation of the 
array factor for scannable circular arrays in a uniform geometry considering the 
optimization of the amplitude and phase excitation across the antenna elements. In this case, 
it is studied the behavior of the array factor for the scanning range of 0°≤φ0≤360° with an 
angular step of 30°. In this case, the objective function and the optimization process are set 
as they were presented for the linear array case, with the considerations of the scanning 
range and the symmetrical excitation aforementioned. 
The results of using the GA for the design of scannable circular arrays are described in the 
next section. 

3.3 Results obtained for the design of phased circular arrays  
The application of a phased circular array has sense when it is used to have a scanning 
range in all azimuth plane (360°). Therefore, the method of GA’s was implemented to 
evaluate the behavior of the array factor for the scanning range of 0°≤φ0≤360° with an 
angular step of 30°. Next, some examples of the obtained results for the design of scannable 
circular arrays are explained. 
Figure 4 shows the behavior of the array factor for a scannable circular array with the 
amplitude and phase excitation optimized by the GA. In this case, the separation between 
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antenna elements is set as d=0.5λ, and it is illustrated the examples for a) N=12 and b) N=18. 
The numerical values of the side lobe level, directivity, amplitude and phase perturbation 
distributions for the array factor shown in Figure 4 are presented in the Table 2. 
 

 
 

(a) 
 

 
 

(b) 

Figure 4. Behavior of the radiation pattern for a scannable circular array in a steering range 
of  0°≤φ0≤360° with the amplitude and phase excitation optimized by the GA, a) N=12, b) 
N=18. 
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As illustrated in the Figure 4 and the Table 2, the results of the side lobe level and the 
directivity for the optimized design are surprising. Observing the results, the conventional 
case of progressive phase excitation provides a SLL= -7.16 dB, and DIR=10.6 dB for a) N=12, 
and a SLL= -7.9 dB, DIR=12 dB for b) N=18. For the case of the optimized design, it is 
obtained a SLLmin= -12.17 dB, SLLmax= -13.68 dB and DIRmin=11.35 dB, DIRmax=11.56 dB for a) 
N=12, and a SLLmin= -13.50 dB, SLLmax= -16.74 dB and DIRmin=12.96 dB, DIRmax=13.23 dB for 
b) N=18. 
These values mean a substantial improvement in the performance of the array for the design 
optimized by the GA with respect to the conventional case, i.,e, it is obtained a substantial 
improvement in the sense of the side lobe level and an improvement of about 1 dB in the 
directivity, maintaining the same scanning range and the same aperture. 
 
 

 
 
 

(a) 
 

Table 2. Numerical values of the side lobe level (SLL), directivity (DIR), amplitude and 
phase perturbation distribution for the array factor illustrated in Fig. 4, a) N=12, b) N=18. 
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Table 2. (continued). 

Now, if the results of the side lobe level and the directivity for the scannable circular array 
optimized by the GA (for N=12, shown in the Table 2a) are compared with the linear array 
case with conventional phase excitation (for N=12, shown in the Table 1c), we observe that 
the values of the SLL and DIR are a little better for the circular array case with the great 
advantage of having a scanning range several times bigger than the linear array case. 
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4. Discussions and open problems  
The main objective of this chapter is to illustrate the application of an evolutionary 
optimization technique in the problem of designing scannable antenna arrays with 
geometry lineal and circular. A genetic algorithm is applied to evaluate the performance 
of scannable linear and circular arrays optimizing the amplitude and phase excitations 
across the antenna elements. The results obtained for the design of scannable linear and 
circular arrays reveal that the performance of the phased array could be improved 
substantially, with respect to the conventional case of progressive phase excitation, if the 
amplitude and phase excitations are optimized in an adequate way by an evolutionary 
algorithm. 
There are many remaining open problems. In this case, we propose the following 
questions: 
• Which is the best evolutionary algorithm for the problem in terms of solution quality 

and in terms of computation time?  
• Given the algorithm, what is the best representation and the best genetic operators to 

use?  
• Is there a better way to model or represent the problem in such a way to avoid the 

evaluation of the SLL and the DIR for each angle in the scanning range? 
• What are the limits of performance for non-uniformly spaced phased arrays? How do 

these limits compare with the ones obtained by uniformly spaced phased arrays?  

5. Conclusions  
This chapter illustrates how to model the design of phased linear and circular arrays with 
the optimization of the amplitude and phase excitations for improving the performance of 
the array in the sense of the side lobe level and the directivity. 
In the case of the scannable linear arrays, the experimental results illustrated that the 
design of scannable linear arrays with the amplitude and phase optimized with the use of 
genetic algorithms could provide a lower side lobe level (<-20 dB), with respect to a 
conventional phased linear array. In this case, these values of the side lobe level for the 
optimized design case are achieved with very similar values of directivity and the same 
aperture in both design cases. 
For the case of the scannable circular arrays, the obtained results illustrated that the 
optimization of the array could provide a substantial improvement in the side lobe level 
and an improvement of about 1 dB in the directivity, with respect to the conventional case 
of progressive phase excitation. These improvements in the performance of the array are 
achieved maintaining the same scanning range, i.e., in all azimuth plane (360°), and the 
same aperture. 
Future research will be aimed at considering the application and performance evaluation of 
new evolutionary algorithms in the design of different array geometries to understand 
which algorithm fits best a given problem. Also, the answer for the proposed set of 
questions will be investigated. Furthermore, it will be investigated the application of 
evolutionary techniques in the optimization of different phased arrays considering the 
feeding network in order to simplify the beam-forming network. 
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evaluation of the SLL and the DIR for each angle in the scanning range? 
• What are the limits of performance for non-uniformly spaced phased arrays? How do 

these limits compare with the ones obtained by uniformly spaced phased arrays?  

5. Conclusions  
This chapter illustrates how to model the design of phased linear and circular arrays with 
the optimization of the amplitude and phase excitations for improving the performance of 
the array in the sense of the side lobe level and the directivity. 
In the case of the scannable linear arrays, the experimental results illustrated that the 
design of scannable linear arrays with the amplitude and phase optimized with the use of 
genetic algorithms could provide a lower side lobe level (<-20 dB), with respect to a 
conventional phased linear array. In this case, these values of the side lobe level for the 
optimized design case are achieved with very similar values of directivity and the same 
aperture in both design cases. 
For the case of the scannable circular arrays, the obtained results illustrated that the 
optimization of the array could provide a substantial improvement in the side lobe level 
and an improvement of about 1 dB in the directivity, with respect to the conventional case 
of progressive phase excitation. These improvements in the performance of the array are 
achieved maintaining the same scanning range, i.e., in all azimuth plane (360°), and the 
same aperture. 
Future research will be aimed at considering the application and performance evaluation of 
new evolutionary algorithms in the design of different array geometries to understand 
which algorithm fits best a given problem. Also, the answer for the proposed set of 
questions will be investigated. Furthermore, it will be investigated the application of 
evolutionary techniques in the optimization of different phased arrays considering the 
feeding network in order to simplify the beam-forming network. 
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1. Introduction  
In many industrial sectors, decision makers are faced with large and complex problems that 
are often multi-objective. Many of these problems may be expressed as a combinatorial 
optimization problem in which we define one or more objective functions that we are trying 
to optimize. Thus, the car sequencing problem in an assembly line is a well known 
combinatorial optimization problem that cars manufacturers face. This problem involves 
scheduling cars along an assembly line composed of three consecutive shops: body welding 
and construction, painting and assembly. In the literature, this problem is most often treated 
as a single objective problem and only the capacity constraints of the assembly shop are 
considered (Dincbas et al., 1988). In this workshop, each car is characterized by a set of 
different options and the workstations where each option is installed are designed to handle 
a certain percentage of cars requiring the same options. To smooth the workload at the 
critical assembly workstations, cars requiring high work content must be dispersed 
throughout the production sequence. Industrial car sequencing formulation subdivides the 
capacity constraints into two categories, that are the capacity constraints linked to the high-
priority options and the capacity constraints linked to the low-priority options. 
However, the reality of industrial production does not only take into account the assembly 
shop requirements. The industrial formulation proposed by French automobile 
manufacturer Renault, in the context of the ROADEF 2005 Challenge, also takes into account 
the paint shop requirements.  In this workshop, the minimization of the amount of solvent 
used to purge the painting nozzles for colour changeovers, or when a known maximum 
number of vehicle bodies of the same colour have been painted, is an important objective to 
consider.  Indeed, long sequences of cars of the same colour tend to render visual quality 
controls inaccurate. To ensure this quality control, the number of cars of the same colour 
must not exceed an upper limit. 
The industrial car sequencing problem (ICSP) is thus a multi-objective problem in nature, 
with three conflicting objectives to minimize.  In the assembly shop, one tries to minimize 
the number of violations of capacity constraints related to high-priority options (HPO) and 
to low-priority options (LPO).  In the paint shop, one tries to minimize the number of colour 
changes (COLOUR).  In the 2005 ROADEF Challenge, the Renault automobile manufacturer 
proposes to tackle the problem by treating the three objectives lexicographically.     
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Among the resolution methods proposed by the participants of the challenge, one finds 
essentially neighbourhood search methods as simulated annealing, iterative tabu search, 
iterative local search and variable neighbourhood search (Briant et al., 2007; Cordeau et al., 
2007; Estellon et al., 2007; Ribiero et al., 2007a; Gavranović, 2007; Benoist, 2007), an ant colony 
optimization algorithm (ACO) (Gagné et al., 2006) and a genetic algorithm (GA) (Jaszkiewicz 
et al., 2004).  Since the work of all the participating teams was not published, the previous 
enumeration is not exhaustive.  After the challenge, other authors proposed to solve the 
problem using an integer linear programming model (Estellon et al., 2005; Gagné et al., 2006; 
Prandtstetter and Raidl, 2007), an algorithm hybridizing variable neighbourhood search and 
integer linear programming (Prandtstetter and Raidl, 2007) or an iterative local search 
approach (Ribeiro et al., 2007b). 
One may note that few authors proposed GAs to solve this multi-objective problem, except 
for Jaszkiewicz et al. (Jaszkiewicz et al., 2004). Moreover, this team was not amongst the 
twelve finalists of the 2005 ROADEF Challenge that included 55 teams from 15 countries at 
the beginning. As for the ICSP, one may only find the GAs proposed by Warwick and Tsang 
(1995), Terada et al. (2006) and Zinflou et al. (2007) in the literature for the standard version 
of the car sequencing problem. Among them, only Zinflou et al. (2007) succeeded in 
proposing an efficient GA, suggesting that this metaheuristic is not well suited to deal with 
the specificities of this problem. 
The main purpose of this chapter is to show that GAs can be efficient approaches for solving 
the ICSP when the different mechanisms of the algorithm are specially design to deal with 
the specificities of the problem.  To achieve this, we present the different choices made 
during the design of the genetic operators. In particular, we propose two new crossover 
operators dedicated to the multi-objective characteristic of the problem. The performance of 
the proposed approaches is assessed experimentally using the different instances of the 2005 
ROADEF Challenge and compared with the best results obtained during the challenge. 
This chapter is organized as follows: Section 2 briefly defines the industrial car sequencing 
problem and Section 3 describes the new crossover operators proposed for this multi-
objective problem.  The basic features of the proposed GA are presented in Section 4.  
Section 5 is dedicated to computational experiments and comparisons with previous results 
from literature.  Finally, the conclusion of this research work is given in Section 6.  

2. The industrial car sequencing problem 
This section provides the main elements to describe the ICSP.  The reader may consult 
Nguyen & Cung (2005) and Solnon et al. (2007) for a complete description of the problem. 
On each production day, customer orders are sent in real time to the assembly plant.  The 
daily task of the planners is then: (1) to assign a production day to each ordered vehicle, 
according to production line capacities and delivery dates that were promised to customers; 
and (2) to schedule the cars within each production day while satisfying as many of the 
requirements as possible of the three manufacturing workshops, as illustrated in Figure 1.  
The sequence thus found is then applied to the whole assembly line.  
In the definition of ICSP proposed during the 2005 ROADEF Challenge, the Renault car 
manufacturer stated that technologies used in the plants are such that the body shop does 
not set requirements for the daily schedule. The ICPS then consists in scheduling a set of 
cars (Nb_cars) for a production day taking into consideration the paint shop and assembly 
shop requirements. 
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Body  Paint  Assembly 

Fig. 1. The three workshops of the assembly line (Nguyen & Cung, 2005) 

In the paint shop, production scheduler tries to group cars by paint colour to minimize the 
number of colour changes.  Painting nozzles must be purged with solvent when changing 
car colour, or after a maximum number of cars (rlmax) painted the same colour, to ensure 
quality.  Each purge requires a colour change. Then, each solution with more consecutive 
cars than rlmax to be painted the same colour must be considered unfeasible.  
In the assembly shop, many elements are added to the painted body to complete the car 
assembly.  Each car is characterized by a set of different options O for which the 
workstations, where these options are installed, are designed to handle up to a certain 
percentage of the cars requiring the same options.  These capacity constraints may be 
expressed by a ratio r0/s0, that means that any consecutive subsequence of s cars must 
include at most r cars with option o.  Cars requiring the same configuration of options must 
be dispersed throughout the production sequence to smooth out the workload at various 
critical workstations.  If, for a subsequence of length s, it is impossible to satisfy the capacity 
constraint for option o, the number of cars that exceeds r defines what is called conflicts or 
violations.  As mentioned previously, the ICSP subdivides the capacity constraints of the 
assembly shop into two groups; the constraints related to the high-priority options and 
those related to the low-priority options.  In this shop, production scheduler tries to 
optimize two different objectives: the number of capacity constraint violations related to the 
high-priority options (HPO) and the number of capacity constraints violations related to the 
low-priority options (LPO). 
We choose to cluster the cars requiring the same configuration of high-priority and low-
priority options into V car classes, for which we know the exact number to produce (cv). 
These quantities represent the production constraints of the problem.  Table 1(a) shows an 
example of the industrial problem for producing 25 cars (Nb_cars) having 5 options (O) with 
6 car classes (V) and a possibility of 4 different colours across each class.  One defines a 
production sequence Y by two vectors representing respectively the car classes (Classes) and 
the car colour codes (Colours) as shown in Figure 1(b).  A production sequence will be 
designated by Y = {Classes/Colours} in the remainder of the chapter and the element at 
position i of the sequence will be defined by Y(i) = Classes(i)/Colours(i). 
Another interesting feature of the ICSP is that it links the different production days.  Thus, 
the evaluation of a solution must take into account the end of the previous production day 
and must extrapolate the minimum number of conflicts generated with the next production 
day.  Similarly, a colour change will be added if the colour of the first car of the current day 
is different from the colour of the last car of the previous day. 
To evaluate the number of conflicts for each option, we first construct binary matrix S of size 
O * Nb_cars using solution vector Y.  We have Soi = 1 if the class of car assigned to position i 
of the solution vector requires option o, otherwise it is equal to 0.  The decomposition of the 
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cars (Nb_cars) for a production day taking into consideration the paint shop and assembly 
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Fig. 1. The three workshops of the assembly line (Nguyen & Cung, 2005) 

In the paint shop, production scheduler tries to group cars by paint colour to minimize the 
number of colour changes.  Painting nozzles must be purged with solvent when changing 
car colour, or after a maximum number of cars (rlmax) painted the same colour, to ensure 
quality.  Each purge requires a colour change. Then, each solution with more consecutive 
cars than rlmax to be painted the same colour must be considered unfeasible.  
In the assembly shop, many elements are added to the painted body to complete the car 
assembly.  Each car is characterized by a set of different options O for which the 
workstations, where these options are installed, are designed to handle up to a certain 
percentage of the cars requiring the same options.  These capacity constraints may be 
expressed by a ratio r0/s0, that means that any consecutive subsequence of s cars must 
include at most r cars with option o.  Cars requiring the same configuration of options must 
be dispersed throughout the production sequence to smooth out the workload at various 
critical workstations.  If, for a subsequence of length s, it is impossible to satisfy the capacity 
constraint for option o, the number of cars that exceeds r defines what is called conflicts or 
violations.  As mentioned previously, the ICSP subdivides the capacity constraints of the 
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We choose to cluster the cars requiring the same configuration of high-priority and low-
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and must extrapolate the minimum number of conflicts generated with the next production 
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O * Nb_cars using solution vector Y.  We have Soi = 1 if the class of car assigned to position i 
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Classes vector of solution Y from Table 1 into its different options to obtain S is given in 
Table 2.  In Table 2(a), we also report the end of the previous production day sequence to 
allow to evaluate the number of conflicts related to the link of these two production days.  In 
Table 2(b), we also evaluate the solution based on the next day, assuming cars without any 
option. 
 

  Class # 
o r s 1 2 3 4 5 6
1 1 2 0 1 1 0 0 0
2 2 5 1 0 1 0 1 1
3 1 3 0 1 0 0 0 0
4 3 5 0 0 0 1 0 1
5 2 3 0 1 1 0 1 0

cv 5 5 4 4 3 4
1 2 1 1 2 1 1
2 1 1 0 2 1 1
3 1 3 2 0 0 2

C 
o 
l 

     o   # 
u 
r 4 1 0 1 0 1 0

(a) 
Y 1 2 3 4 5 6 ….. 21 22 23 24 25 

Classes 3 5 5 4 6 4  3 1 4 5 1 
Colours 4 4 2 2 2 2  3 3 1 1 1 

(b) 

Table 1. Example and solution of an ICSP 

 Previous day (D-1) Current day (D) 
Positions -5 -4 -3 -2 -1 1 2 3 4 5 6 ……… 

Classes 4 1 4 4 2 3 5 5 4 6 4  
1/2 0 0 0 0 1 1 0 0 0 0 0  
2/5 0 1 0 0 0 1 1 1 0 1 0  
1/3 0 0 0 0 1 0 0 0 0 0 0  
3/5 1 0 1 1 0 0 0 0 1 1 1  

O 
P 
T 
I 
O 
N 

2/3 0 0 0 0 1 1 1 1 0 0 0  
(a) 

 Current day (D) Next day (D+1) 
Positions …. 21 22 23 24 25 26 27 28 29 30 

Classes  3 1 4 5 1      
1/2  1 0 0 0 0 0 0 0 0 0 
2/5  1 1 0 1 1 0 0 0 0 0 
1/3  0 0 0 0 0 0 0 0 0 0 
3/5  0 0 1 0 0 0 0 0 0 0 

O 
P 
T 
I 
O 
N 

2/3  1 0 0 1 0 0 0 0 0 0 
(b) 

Table 2. Evaluation of the solution shown in Table 1  
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For the current production day D, options 1, 3 and 4 do not cause any violation in this part 
of the solution.  Indeed, for each of these three options, we never have a subsequence of size 
s, with more than r cars with the option.  However, for option 2, there are two conflicts 
located between positions 1 to 5 since we have 4 cars having the option while the capacity 
constraint limits the maximum to 2. In addition, there is one conflict located between 
positions 2 to 6, another conflict between positions 20 to 24 and two other conflicts between 
positions 21 to 25, since capacity constraint 2/5 is not satisfied.  For option 5, we also have 
one conflict as capacity constraint 2/3 is not satisfied between positions 1 to 3.   
For the link with previous production day D-1, we have one conflict located between positions 
-1 to 1 for option 1 , two conflicts located between positions -2 to 3 and positions -1 to 4 for 
option 2, and another conflict between positions -1 to 2 for option 5.  For the link with next 
production day D+1, we only have one conflict located between positions 22 to 26 for option 2.   
Considering that the first three options are high-priority and that the other two are low-
priority, we therefore have 10 conflicts for the HPO objective and 2 conflicts for the LPO 
objective for this solution Y.  Then, we only have to count the number of colour changes 
(COLOUR) to complete the evaluation of solution Y. 
The 2005 ROADEF Challenge proposed to tackle the problem using a weighted sum method 
that assigns different weights w1, w2 and w3 to each objective according to their priority 
level, in order to evaluate a solution Y. The quality of solution Y is then given by:  

 F(Y)=w1*obj1+w2*obj2+w3*obj3  (1) 

where obj1, obj2 and obj3 correspond respectively to the values obtained for a solution Y on 
each objective according to the priority level assigned.  The weights w1, w2 and w3 are 
respectively set at 1000000, 1000 and 1 (Nguyen & Cung, 2005). According to the different 
configurations of the Renault plants, the three following objective hierarchies are possible: 
HPO-COLOUR-LPO, HPO-LPO-COLOUR and COLOUR-HPO-LPO. 

3. Introducing problem knowledge in crossover design for the industrial car 
sequencing problem 
Traditional crossover operators are not well suited to deal with the specificities of the car 
sequencing problem.  Indeed, Warwick and Tsang (1995), and Terada et al. (2006) used such 
operators to solve the single objective car sequencing problem found in the literature and 
their results were not competitive.  However, Zinflou et al. (2007) obtained very competitive 
results using two highly-specialized crossover operators for the same problem.   
For the multi-objective ICSP, Jaszkiewicz et al. (2004) proposed to use a common sequence 
preserving crossover. Basically, the purpose of this operator is to create an offspring using 
the common maximum subsequence of the indices of the groups in two given solutions 
(parents). However, even if the results of this approach are promising, they did not allow 
the authors to be part of the twelve finalists during the 2005 ROADEF Challenge. 
The crossover operators proposed by Zinflou et al. (2007) for the single objective car 
sequencing problem, called non-conflict position crossover (NCPX) and interest based crossover 
(IBX), use problem-knowledge to perform recombination. The concept used by NCPX and 
IBX crossovers to use problem-knowledge is called interest.  The idea behind this concept is 
to penalize the conflicting car classes, by counting the number of new conflicts caused by the 
addition of these classes as a cost.  Conversely, if the addition of a car class does not cause 
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Classes vector of solution Y from Table 1 into its different options to obtain S is given in 
Table 2.  In Table 2(a), we also report the end of the previous production day sequence to 
allow to evaluate the number of conflicts related to the link of these two production days.  In 
Table 2(b), we also evaluate the solution based on the next day, assuming cars without any 
option. 
 

  Class # 
o r s 1 2 3 4 5 6
1 1 2 0 1 1 0 0 0
2 2 5 1 0 1 0 1 1
3 1 3 0 1 0 0 0 0
4 3 5 0 0 0 1 0 1
5 2 3 0 1 1 0 1 0

cv 5 5 4 4 3 4
1 2 1 1 2 1 1
2 1 1 0 2 1 1
3 1 3 2 0 0 2

C 
o 
l 

     o   # 
u 
r 4 1 0 1 0 1 0

(a) 
Y 1 2 3 4 5 6 ….. 21 22 23 24 25 

Classes 3 5 5 4 6 4  3 1 4 5 1 
Colours 4 4 2 2 2 2  3 3 1 1 1 

(b) 

Table 1. Example and solution of an ICSP 

 Previous day (D-1) Current day (D) 
Positions -5 -4 -3 -2 -1 1 2 3 4 5 6 ……… 

Classes 4 1 4 4 2 3 5 5 4 6 4  
1/2 0 0 0 0 1 1 0 0 0 0 0  
2/5 0 1 0 0 0 1 1 1 0 1 0  
1/3 0 0 0 0 1 0 0 0 0 0 0  
3/5 1 0 1 1 0 0 0 0 1 1 1  

O 
P 
T 
I 
O 
N 

2/3 0 0 0 0 1 1 1 1 0 0 0  
(a) 

 Current day (D) Next day (D+1) 
Positions …. 21 22 23 24 25 26 27 28 29 30 

Classes  3 1 4 5 1      
1/2  1 0 0 0 0 0 0 0 0 0 
2/5  1 1 0 1 1 0 0 0 0 0 
1/3  0 0 0 0 0 0 0 0 0 0 
3/5  0 0 1 0 0 0 0 0 0 0 

O 
P 
T 
I 
O 
N 

2/3  1 0 0 1 0 0 0 0 0 0 
(b) 

Table 2. Evaluation of the solution shown in Table 1  

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem 

 

381 

For the current production day D, options 1, 3 and 4 do not cause any violation in this part 
of the solution.  Indeed, for each of these three options, we never have a subsequence of size 
s, with more than r cars with the option.  However, for option 2, there are two conflicts 
located between positions 1 to 5 since we have 4 cars having the option while the capacity 
constraint limits the maximum to 2. In addition, there is one conflict located between 
positions 2 to 6, another conflict between positions 20 to 24 and two other conflicts between 
positions 21 to 25, since capacity constraint 2/5 is not satisfied.  For option 5, we also have 
one conflict as capacity constraint 2/3 is not satisfied between positions 1 to 3.   
For the link with previous production day D-1, we have one conflict located between positions 
-1 to 1 for option 1 , two conflicts located between positions -2 to 3 and positions -1 to 4 for 
option 2, and another conflict between positions -1 to 2 for option 5.  For the link with next 
production day D+1, we only have one conflict located between positions 22 to 26 for option 2.   
Considering that the first three options are high-priority and that the other two are low-
priority, we therefore have 10 conflicts for the HPO objective and 2 conflicts for the LPO 
objective for this solution Y.  Then, we only have to count the number of colour changes 
(COLOUR) to complete the evaluation of solution Y. 
The 2005 ROADEF Challenge proposed to tackle the problem using a weighted sum method 
that assigns different weights w1, w2 and w3 to each objective according to their priority 
level, in order to evaluate a solution Y. The quality of solution Y is then given by:  

 F(Y)=w1*obj1+w2*obj2+w3*obj3  (1) 

where obj1, obj2 and obj3 correspond respectively to the values obtained for a solution Y on 
each objective according to the priority level assigned.  The weights w1, w2 and w3 are 
respectively set at 1000000, 1000 and 1 (Nguyen & Cung, 2005). According to the different 
configurations of the Renault plants, the three following objective hierarchies are possible: 
HPO-COLOUR-LPO, HPO-LPO-COLOUR and COLOUR-HPO-LPO. 

3. Introducing problem knowledge in crossover design for the industrial car 
sequencing problem 
Traditional crossover operators are not well suited to deal with the specificities of the car 
sequencing problem.  Indeed, Warwick and Tsang (1995), and Terada et al. (2006) used such 
operators to solve the single objective car sequencing problem found in the literature and 
their results were not competitive.  However, Zinflou et al. (2007) obtained very competitive 
results using two highly-specialized crossover operators for the same problem.   
For the multi-objective ICSP, Jaszkiewicz et al. (2004) proposed to use a common sequence 
preserving crossover. Basically, the purpose of this operator is to create an offspring using 
the common maximum subsequence of the indices of the groups in two given solutions 
(parents). However, even if the results of this approach are promising, they did not allow 
the authors to be part of the twelve finalists during the 2005 ROADEF Challenge. 
The crossover operators proposed by Zinflou et al. (2007) for the single objective car 
sequencing problem, called non-conflict position crossover (NCPX) and interest based crossover 
(IBX), use problem-knowledge to perform recombination. The concept used by NCPX and 
IBX crossovers to use problem-knowledge is called interest.  The idea behind this concept is 
to penalize the conflicting car classes, by counting the number of new conflicts caused by the 
addition of these classes as a cost.  Conversely, if the addition of a car class does not cause 
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new conflicts, then this is counted as a profit equal to the difficulty of class Dv as proposed 
by Gottlieb et al. (2003). Basically, NCPX crossover tries to minimize the number of relocated 
cars by emphasizing non conflict position information from both parents. The IBX crossover, 
in turn, rather tries to keep the cars in the same area of the chromosome as it occupied with 
one of the two parents. For more details about these two crossover operators, the reader 
may consult Zinflou et al. (2007).   
The following sections will show how to adapt the two NCPX and IBX crossover operators 
to the multi-objective ICSP.  

3.1 Adaptation of the interest calculation for the industrial car sequencing problem 
To present the different adaptation of the crossover operators, we must redefine the interest 
concept to be able to take into account the multi-objective nature of the ICSP.  We define the 
total weighted interest (TWI) to establish if it is interesting to add a car of class v, of colour 
colour at a position i in the sequence.  The total weighted interest is expressed by: 

   +  + TWI I * w I * w I * wv,i,HPO HPO v,i,COLOUR COLOUR v,i,LPO LPOv,colour,i =  (2) 

where wHPO, wCOLOUR and wLPO correspond respectively to the weight of each objective 
(1000000, 1000 or 1 according to their priority levels) and Iv,i,HPO, Iv,i,COLOUR and Iv,i,LPO 
correspond to the interest in inserting a car of class v at the position i for each objective.  The 
interest concept may be defined according to each objective. 
According to Equation 3, the interest Iv,i,COLOUR to insert a car of class v at position i to 
minimize objective COLOUR is set at 1 if it is possible to complete the current colour 
subsequence with a car of class v.   If it isn’t possible, the interest is set to -1.  

 ( 1) max
, ,

  1 if ( ) 0 & _

1 otherwise

colour i
v i COLOUR

nb v run length rl
I −

⎧ > <⎪=⎨
⎪−⎩

 (3) 

nb(vcolour(i-1)) indicates the number of cars of class v painted the same colour as the car in 
position i-1, run_length indicates the size of the consecutive subsequence of cars of the same 
colour as the car in position i-1 and rlmax indicates the maximum length of a subsequence of 
the same colour. This notion serves to favour the classes of cars that have the same colour as 
the car located in the previous position, to lengthen the colour subsequence to the maximum 
size.  Conversely, we penalize the car classes for which the addition implies a colour change.   
Iv,i,HPO and Iv,i,LPO indicate the interest to insert a car of class v at position i in the sequence to 
minimize objectives HPO and LPO respectively. According to Equation 4, the interest 
corresponds to the difficulty for class v if the addition of this class does not cause new 
conflicts respectively on high-priority options (k = HPO) and on low-priority options (k = 
LPO).  In the opposite case, we will define the cost that corresponds to the number of new 
conflicts produced on the high-priority or low-priority options, to discourage the insertion 
of this class at position i.  
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NbNewConflictsv,i,k corresponds to the number of new conflicts for the high-priority options 
(k = HPO) or for the low-priority options (k = LPO) caused by the addition of a car of class v 
at position i.  Dv,k indicates the difficulty of class v for high-priority options (k = HPO) and 
for low-priority options (k = LPO).  The idea behind this concept is simply to penalize the 
classes of cars for which the addition leads to additional conflicts for the high-priority or 
low-priority options, on considering this number of new conflicts as a cost.  Conversely, if 
the addition of a class does not cause new conflicts on the options, we then evaluate the 
benefit of placing this class according to its difficulty.  Gottlieb et al. (2003) established that 
the difficulty of a class of cars v for high-priority or low-priority options (Dv,k) is the sum of 
the utilization rates of the high-priority options (k = HPO) or low-priority options (k = LPO) 
that compose that class. The utilization rate of an option may be expressed as the ratio 
between the number of cars requiring this option and the maximum number of cars that 
may have this option such that the ro/so constraint is satisfied. 

3.2 The multi-objective NCPX crossover operator (NCPXMO)  
The NCPXMO procedure for the ICSP is inspired by the NCPX crossover proposed for the 
single objective car sequencing problem (Zinflou et al., 2007) and is carried out in two main 
steps. Step 1 consists of selecting a parent P1 and establishing in this chromosome the 
number of positions that are not part of a conflict for objectives HPO (nbposHPO) and LPO 
(nbposLPO) and the number of positions where there is no colour change (nbposCOLOUR).  Then, 
we randomly select a number nbgk between 0 and nbposk for each objective k (k = HPO, LPO, 
COLOUR).  These three numbers are used to determine, for each objective k, the number of 
"good" genes that will maintain in offspring E1 the same position they had in P1. To take 
into account the priority of the objectives, we must make sure that the number of "good" 
genes kept for the main objective is greater or equal to the number of "good" genes selected 
for the secondary objective, and so forth.  Once we establish these numbers, starting position 
(sPos) that is between 1 and Nb_cars, is randomly selected in the offspring to be created.  The 
process of copying the good genes of P1 to the offspring being created starts from sPos by 
first considering the main objective.  If we reach the end of the chromosome and the number 
of genes copied for objective k is less than its corresponding nbgk, the copy process restarts 
this time from the beginning of the offspring up to sPos-1.  The same process is repeated for 
the other objectives, taking into account the already copied genes.  Thereafter, the remainder 
of the genes from P1 are used to constitute a non-orderly list L for the cars that must still be 
placed.  We then randomly determine a position (Pos) from which the remaining positions 
of chromosome E1 will be completed.   
In Step 2, the cars in L are sorted according to their TWI.  In case of a tie in TWI, if one of the 
cars is in P2 at the position to be completed, this car is then selected.  In the opposite case, 
we randomly select a car amongst those of equal ranking.   
The operation of this cross operator is illustrated in Figure 2 for two parents P1 = 
{21352446/62224622} and P2 = {32621454/26242622} with the following objective hierarchy 
HPO-LPO-COLOUR.  Let us assume that the evaluation of P1 gives 5 positions without 
conflicts for objective HPO and for objective LPO (expressed by 0 in vectors “conflicts on 
HPO and LPO” below chromosome P1), 4 positions where there is no colour change 
(expressed by 0 in vector the “colour changes” below chromosome P1) and the values for 
numbers nbgHPO = 4, nbgLPO =2, nbgCOLOUR =1 and sPos = 3 by random setting.  Starting with 
sPos and considering objective HPO, we may copy genes 5/2, 4/6, 4/2 and 2/6 in the 
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new conflicts, then this is counted as a profit equal to the difficulty of class Dv as proposed 
by Gottlieb et al. (2003). Basically, NCPX crossover tries to minimize the number of relocated 
cars by emphasizing non conflict position information from both parents. The IBX crossover, 
in turn, rather tries to keep the cars in the same area of the chromosome as it occupied with 
one of the two parents. For more details about these two crossover operators, the reader 
may consult Zinflou et al. (2007).   
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number of positions that are not part of a conflict for objectives HPO (nbposHPO) and LPO 
(nbposLPO) and the number of positions where there is no colour change (nbposCOLOUR).  Then, 
we randomly select a number nbgk between 0 and nbposk for each objective k (k = HPO, LPO, 
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"good" genes that will maintain in offspring E1 the same position they had in P1. To take 
into account the priority of the objectives, we must make sure that the number of "good" 
genes kept for the main objective is greater or equal to the number of "good" genes selected 
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this time from the beginning of the offspring up to sPos-1.  The same process is repeated for 
the other objectives, taking into account the already copied genes.  Thereafter, the remainder 
of the genes from P1 are used to constitute a non-orderly list L for the cars that must still be 
placed.  We then randomly determine a position (Pos) from which the remaining positions 
of chromosome E1 will be completed.   
In Step 2, the cars in L are sorted according to their TWI.  In case of a tie in TWI, if one of the 
cars is in P2 at the position to be completed, this car is then selected.  In the opposite case, 
we randomly select a car amongst those of equal ranking.   
The operation of this cross operator is illustrated in Figure 2 for two parents P1 = 
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HPO-LPO-COLOUR.  Let us assume that the evaluation of P1 gives 5 positions without 
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offspring. Repeating the same procedure with LPO, one notes that the three good genes 5/2, 
4/2 and 2/6 are already transferred to the offspring, that corresponds to the number of good 
genes to transfer for this objective.  Also, the two good genes 5/2 and 2/6 are already 
present in the offspring for the COLOUR objective, that corresponds to the number of good 
genes to transfer for this objective.  Genes 1/2, 3/2, 2/4 and 6/2 of P1 are then used to 
constitute non-orderly list L.  In Step 2, assuming that Pos = 7 and that the TWI calculation 
places the genes in the order 3/2, 2/4, 6/2, 1/2 with equal TWI value on genes 2/4 and 6/2.  
We then place 3/2 gene in position 8 and favour placing gene 6/2 in position 3 since it 
occupies this position in P2 and genes 2/4 and 1/2 are placed in positions 2 and 5 
respectively.  In this example, genes 1/2 and 6/2 are directly inherited from P2 since they 
have the same position in the second parent.  The offspring produced from P1 and P2 is then 
E1= {22651443/64222622}. 
A second offspring is created similarly, this time starting with parent P2. 
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steps.  Step 1 consists in randomly determining two cut-off points for both parents P1 and P2.  
Once these temporary cut-off points are determined, the colours of the preceding cars at the 
1st cut-off point and the colour of the cars immediately after the 2nd cut-off point in P1 are 
verified so as not to interrupt an ongoing colour subsequence. As long as the colour of the 
cars located before the 1st cut-off point is the same as the colour of the car located at the cut-
off point, we move the cut-off point to the left.  Inversely, as long as the colour of the car at 
the 2nd cut-off point is identical to the colour of the car after that cut-of point, we move the 
2nd cut-off point to the right.   
In Figure 3, once the cut-off points are set for both parents P1 = {22351446/46222622} and P2 
= {32421465/24662222}, the genes subsequence {351/222} included between the two cut-off 
points of the first parent (a1 ∈ P1) is directly recopied in the offspring.  Thereafter, two non-
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orderly lists (L1 and L2) are created from subsequence b3 = {32/24} and b4 = {465/222} of P2 
and will be used to complete the beginning and the end of offspring E1.  However, during 
this operation, part of the information may be lost by the addition of duplicates.  One effect 
of this process is that the production requirements will not always be satisfied.  In the 
example in Figure 3, we may thus notice that the production constraints for the 2, 3, 4 and 5 
car classes are no longer met.  To restore all the genes and to produce exactly cv cars of the v 
class, replacement of genes 3/2 and 5/2 (obtained from a1-a2) whose number exceeds the 
production constraints are replaced by genes 4/6 and 2/6 (obtained from a2-a1) whose 
number is now lower than the production constraints.  This replacement is done randomly 
in the second step to adjust the L1 and L2 lists.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3. Schematic of the IBXMO crossover 
Finally, the last step consists in rebuilding the beginning and the end of the offspring using 
the two corrected lists L1 and L2 by using TWI as defined in Equation 2.  In both cases, the 
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A second offspring is created by using the same process, but this time starting from parent 
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In this section, we present the complete description of the genetic algorithm (GA) used to 
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4.1 Representation of the chromosome 
As shown previously in Table 1(b), instead of choosing classical bit-string encoding, that 
seems ill-suited for this type of problem, a chromosome is represented using two vectors of 
size Nb_cars corresponding respectively to the class and the colour of the car.    

4.2 Creating the initial population 
In the proposed implementation, the individuals of the initial population are generated in 
two ways: 70 % randomly and 30 % using a greedy heuristic based on the concept of 
interest.  Two greedy heuristics are used according the main objective.  If the main objective 
is to minimize the number of colour changes (COLOUR), the greedy heuristic used is 
greedy_colour.  If the main objective is to minimize the number of conflicts on high-priority 
options (HPO), the greedy heuristic used is greedy_ratio.  Figure 4 resumes the operation of 
these two heuristics.  Notice that in both cases, one ensures that the individuals produced 
are feasible solutions.  
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2 : i=1 ; run_length =1 
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Fig. 4. Greedy construction of an individual us the greedy_colour or greedy_ratio heuristic 
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Greedy_colour begins with an initial solution composed of the cars planned the previous 
production day.  In fact, to link with the previous production day, we only need to know the 
maximum value of so for all the options and this value determines the length of the sequence 
required at the end of the previous day to evaluate the current solution.  Then, we initialize 
the counter for positions i at 1, the length of the current colour subsequence (run_length) that 
is also at 1 and the colour of the last car produced the previous day (previous_colour) (lines 2-
3).  The selection iteration process for the next car to place in the building sequence (lines 4-
25) begins by selecting a current colour (colour) according to rlmax and previous_colour (lines 5-
11).  Once the colour of the next car to place is determined, we limit the selection process to 
the m car classes having that colour.  At this step, for each of the m classes, we evaluate the 
interest Iv,i,COLOUR to place a car of class v at the current position i.  In 95 % of the cases, the 
selected class is the one with the largest Iv,i,COLOUR (Arg Max { Iv,i,COLOUR }).  For the remaining 
5 % of the cases, the car class to place is selected using the roulette wheel principle.  Once 
the colour and the car class are selected, we add the selected car class v and the selected 
colour at position i of sequence Y being built (line 23). This process is thus repeated until an 
entire sequence of cars is built.  The main purpose of this greedy_colour heuristic is thus to 
minimize, in a greedy way, the number of colour changes. 
The second proposed construction heuristic, called greedy_ratio, also uses a greedy approach 
to build an individual Y. However, for this heuristic, the main greedy criterion used to select 
the car to add in the next position of sequence Y being built is the interest Iv,i,HPO.  Just as for 
the greedy_colour heuristic, the greedy_ratio procedure starts with an initial solution 
consisting of cars already sequenced the previous production day.  We then initialize the 
various counters and the colour of the previous car produced on day D-1 the same way as 
for the greedy_colour heuristic.  The main loop of the algorithm (lines 4-27) first checks if the 
maximum length for a subsequence of identical colour, rlmax, has not been reached.  If rlmax is 
reached, we withdraw all the cars of colour previous_colour from the list of classes that may 
be added at current position i (list of candidate car classes). This step ensures that the 
generated solution is feasible.  Then, for each candidate car class v, we calculate the interest 
Iv,i,HPO to place a car of class v at the current position i according to the HPO objective.  Then, 
the selection of the next car class to place in the sequence is made in 95 % of the cases by 
selecting the class with the largest Iv,i,HPO. Note that in case of a tie for the Iv,i,HPO, the tie is 
broken using the highest interest for the second objective and then the third objective, 
respectively.  In 5 % of the cases, the car class to place is selected using the roulette wheel 
principle.  Once the car class is selected, we choose the colour of the car to add from the 
colours available for this class according to Iv,i,COLOUR. If all the colours for this class of cars 
are of the same interest, we choose a colour randomly.  Thereafter, we add the selected car 
class and colour at position i in sequence Y being built. Finally, we update the various 
counters (run_length and i) and previous_colour.  This process is repeated until a complete 
sequence of cars is done. 

4.3 Selection  
Several selection strategies could have been considered in the GA based algorithm to solve 
the multi-objective ICSP.  However, since it is easy to implement and that it is efficient for 
the standard car sequencing problem (Zinflou et al., 2007), the selection procedure chosen to 
solve the multi-objective ICSP is a binary tournament selection.  
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4.4 Mutation operator  
According to the objective hierarchy, four mutation operators are used here: reflection, 
random_swap, group_exchange and block_reflection.  Note that these four operators have often 
been used in the literature for the ICSP to explore the neighbourhood within a local search 
method (Solnon et al., 2007).  For problems with HPO-COLOUR-LPO and HPO-LPO-
COLOUR objective hierarchies, the mutation operators used are reflection and 
random_swap.  A reflection consists in randomly selecting two positions and reversing the 
subsequence included between these two positions. A random_swap simply consists in 
randomly exchanging the positions of two cars belonging to different classes.  For problems 
with COLOUR-HPO-LPO objective hierarchy, the mutation operators used are the 
group_exchange and the block_reflection. The group_exchange mutation consists in 
randomly exchanging the position of two subsequences of consecutive cars painted the 
same colour.  The block_reflection consists in selecting a subsequence of consecutive cars 
painted the same colour and in inverting the position of the cars included in this 
subsequence.  

4.5 Replacement strategy  
The proposed GA is an elitist approach in that it has explicit mechanisms that keep the best 
solution found during the search process.  To ensure that elitism, the replacement strategy 
used is a (λ+μ) type of deterministic replacement.  In this replacement strategy, the parent 
and offspring populations are combined and sorted and only the λ best individuals are kept 
to form the next generation. 
 

1: Generate randomly or using the two greedy heuristics of the initial population POP0 
2: Evaluate each individual Y ∈ POP0 and sort POP0 
3: While no stop criterion is reached  
4:  While | Qt | < N  
5:   Choose randomly a number rnd between 0 and 1  
6:   If rnd < pc then 
7:    Select parents P1 and P2 
8:    Create two offspring E1 and E2 using NCPXMO or IBXMO crossover 
9:    Evaluate the generated offspring 
10:  else 
11:   Generate random migrant using the greedy heuristic 
12:   End If 
13:   Choose randomly a number rnd between 0 and 1 
14:   If rnd < pm then 
15:    Mutate and evaluate the offspring or the migrant  
16:   End If 
17:   Add E1 and E2 or the migrant to Qt 
18:  End While 
19:  Sort Qt ∪ POPt 
20:  Choose the first N individuals of Qt ∪ POPt to the next generation POPt+1 

21:  t = t +1   
22: End while 
23: Return the best individual found so far 

Fig. 5. The proposed GA procedure for ICSP 
Figure 5 describes the general procedure of our GA for the ICSP.  The GA starts building an 
initial population POP0 in which each individual Y ∈ POP0 is evaluated.  Then it performs a 
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series of iterations called generations.  At each generation t, a limited number of individuals 
are selected to perform recombination according to a crossover probability (pc).  Notice that, 
occasionally, a new individual is introduced in the offspring population to maintain 
diversity and avoid stagnation.  This individual called random migrant is created using the 
greedy heuristic used to creation the initial population according to the objective hierarchy 
of the problem to solve. After the crossover, the generated offspring or the migrant is 
mutated according to mutation probability (pm).  Finally, the current population is updated 
by selecting the best individuals from the pool of parents (POPt) and offspring (Qt).  This 
process is repeated until a stop criterion is reached. 

5. Computational experiments 
The GA proposed in this chapter was implemented in C++ and compiled with Visual Studio 
.Net 2005.  The computational experiments were run on a Dell Pentium with a Xeon 3.6 GHz 
processor and 1 Gb of RAM, with Windows XP.  For all the experiments performed, the 
parameters N, pc, pm, Tmax that represent respectively the population size, crossover 
probability, mutation probability and time limit allowed for the GA are set at the following 
values: 5, 0.8, 0.35 and 350 seconds.  The small population size and the mutation and 
crossover probabilities were determined using the theoretical results of Goldberg (1989) and 
the work of Coello Coello and Pulido (2001).  According to these authors, a very small 
population size is sufficient to obtain convergence, regardless of the chromosome length.  
Thus, the use of a small population with a high crossover probability allows, on one hand, 
to increase the efficiency of the GA for the ICSP by limiting the computation time required 
to evaluate the fitness of each individual.  In fact, the evaluation of the fitness of a solution 
for the ICSP requires considerable computation time.  On the other hand, a high crossover 
probability usually allows better exploration of the search space (Grefenstette, 1986).  In 
addition to the difficulties related to the multi-objective nature of the ICSP, a 600 second 
time limit was set for a Pentium 4/1.6 GHz/Win2000/1 Go RAM computer for the 2005 
ROADEF Challenge.  To meet this time limit, we set the running time of our GA at 350 
seconds, that corresponds roughly to the time limit defined in the Challenge, considering 
the differences in hardware. 
Three versions of our GA will be used for the numerical experiments.  The first version 
integrates the NCPXMO crossover operator (AG-NCPXMO), the second uses the IBXMO 
crossover operator (AG-IBXMO) and the third version integrates the NCPXMO crossover 
operator with a local search procedure (AG-NCPXMO+LS). 

5.1 Benchmark problems 
The performance of the proposed multi-objective GAs is evaluated using three test suites 
provided by the Renault car manufacturer and that are available from the Challenge website 
at : http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/.  The first set (SET 
A) includes 16 sets of data to sequence 334 to 1314 cars that have from 6 to 22 options that 
create from 36 to 287 cars classes with 11 to 24 different colours.  This set allowed to evaluate 
the teams during the qualification phase and thus to determine the 18 teams who qualified 
for the next phase of the Challenge.  The second set (SET B) consists of a wide range of 45 
instances each consisting of 65 to 1270 cars having from 4 to 25 options, with 11 to 339 car 
classes and 4 to 20 different colours.  This set was used by the qualified teams to improve 
and tune their algorithms.  Finally, the last set (SET X) consists of 19 instances having from 
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classes and 4 to 20 different colours.  This set was used by the qualified teams to improve 
and tune their algorithms.  Finally, the last set (SET X) consists of 19 instances having from 
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65 to 1319 cars to sequence, with 5 to 26 options, 10 to 328 car classes and 5 to 20 different 
colours. This set remained unknown to the teams until the last phase of the Challenge and 
was used by the jury to establish the final ranking.    
In comparison with the standard car sequencing problem whose largest instances included 
400 cars, 5 options and from 18 to 24 car classes, the resolution of the multi-objective ICSP 
thus represents a large challenge. 

5.2 Experimental comparison 
To evaluate the performance of the algorithms proposed in this chapter, we compare our 
results with the best results obtained during the 2005 ROADEF Challenge for the 61 
instances of SET A and SET B.  All the results of the 2005 ROADEF Challenge are available 
online from the Challenge website.  Thus, Tables 3 to 5 report the comparative results of GA-
NCPXMO, GA-IBXMO and GA-NCPXMO+LS with those of the Challenge Winning Team and 
those of the GLS (Jaszkiewicz et al., 2004) which is the best evolutionary algorithm proposed 
during the Challenge.  The rank of the solution found by each algorithm for the same 
instance is listed in Tables 3 to 5 and is based on the results of the 18 qualified teams and the 
results of the three GAs proposed here . 
In these tables, we group instances in three categories:  
• those for which the main objective is the minimization of the number of conflicts on 

high-priority options (HPO) and where the requirements for these high-priority options 
are considered  “easy” according to Renault (Table 3) ; 

• those for  which the main objective is the minimization of the number of conflicts on 
high-priority options (HPO) and where the requirements for these high-priority options 
are considered “difficult” according to Renault (Table 4) ; and 

• those for which the main objective is the minimization of the number of colour changes 
(COLOUR) (Table 5). 

Each row of Tables 3 to 5 indicates the name of the instance, the value and the rank of the 
solution found respectively by the Winning Team, the GLS (Jaszkiewicz et al., 2004), the GA-
IBXMO, the GA-NCPXMO and the GA-NCPXMO+LS. The best results obtained for each 
instance are highlighted in bold in the different tables.  It is important to note that as for the 
Challenge results, the GAs proposed were run once only and what we report is the solution 
value obtained for this execution. The results reported in the different tables indicate the 
objectives weighted sum value (F(X)) of the solution as calculated in Equation 1. 
Table 3 reports the results for instances with “easy” high-priority options according to 
Renault. These instances have two possible hierarchies that are HPO-LPO-COLOUR or 
HPO-COLOUR-LPO.  By examining the results of Table 3, one may note that GA-NCPXMO 
outperforms GA-IBXMO for all the instances of SET A and SET B, except for instance 
028_ch2_S23_J3 with HPO_COLOUR_LPO objective hierarchy where the two algorithms 
obtain equal results. These results seem to highlight the superiority of the NCPXMO 
crossover operator over the IBXMO crossover operator for the ICSP.  The best performance of 
the NCPXMO crossover operator may probably be explained by its ability to use information 
about non-conflict positions.  Thus, this crossover is able to do a better search intensification 
during the allowed time.  
Except for instance 028_ch2_S23_J3 with HPO_LPO_COLOUR objective hierarchy, that is 
trivially solved by all algorithms, GA-IBXMO ranks between 11th and 19th while GA-NCPXMO 
ranks between 1st and 17th according to the instances.  It should be noted that, contrary to 
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most algorithms of the Challenge, GA-IBXMO and GA-NCPXMO do not use a local search 
procedure in their algorithm. 
By comparing the results of GA-NCPXMO and GA-IBXMO to those of GLS, one may note for 
SET A that GLS globally outperforms GA-IBXMO but GA-NCPXMO clearly outperforms GLS.  
Indeed, GLS outperforms GA-IBXMO for 3 instances of Set A, is worse for one instance while 
it obtains identical results for the remaining instance.  By contrast, GLS is worse than GA-
NCPXMO for 4 of the 5 instances of SET A shown in Table 3.  These results are confirmed 
with a few slight differences for the instances of SET B.  Thus, GLS outperforms GA-IBXMO 
for 10 instances, is worse for 7 instances while obtaining identical results for the remaining 
instance.  Compared to GA-NCPXMO, GLS achieves better results for 6 instances, is worse for 
8 instances while obtaining identical results for the 4 remaining instances.  We may 
therefore notice a slight advantage for GA-NCPXMO for the instances of SET B with easy 
high-priority options.  These results are very promising considering that GLS is a memetic 
algorithm, that is, an approach hybridizing GA with local search method.   
When we now compare the results of GA-NCPXMO and GA-IBXMO to those of the Winning 
Team for the 2005 ROADEF Challenge, one may notice that the results of the two proposed 
GAs are clearly lower than the results of the Winning Team in terms of solution quality.  We 
believe that this gap may be explained by the lack of intensification of the search for this 
type of approach.  By combining GA-NCPXMO with a local search procedure inspired from 
the one proposed by Estellon et al. (2007) and using the mutation operators presented in 
Section 4.4 to explore the neighbourhood, we obtain the results shown in the last column of 
Table 3.  We mention here that GA-NCPXMO+LS was executed with the same time limit as 
the other algorithms presented in this chapter.  We observe that adding the local search 
procedure clearly improves the performance of the algorithm.  Indeed, GA-NCPXMO+LS 
clearly outperforms GA-NCPXMO and achieves competitive results compared to those of the 
Challenge Winning Team for all instances of SET A with easy high-priority options.  In fact, 
GA-NCPXMO+LS ranks first for all these instances and even finds new minimums for 
instance 022_3_4 with HPO_COLOUR_LPO objective hierarchy and for instance 25_38_1 
with HPO_LPO_COLOUR objective hierarchy.  For the instances of SET B, GA-NCPXMO+LS 
obtains similar results as those of the Challenge Winning Team for 10 of the 16 instances.  For 
the remaining instances, we observe a small gap that comes from the results of the second or 
the third objective.  Indeed, GA-NCPXMO+LS is always ranked between 1st and 3rd, except for 
instance 064_ch1_S22_J3 with HPO_COLOUR_LPO objective hierarchy where it ranks 7th. 
Table 4 reports the results obtained by the different algorithms for the instances of SET A 
and SET B considered by Renault as “difficult “ high-priority options.  The two possible 
objective hierarchies for these instances are HPO-LPO-COLOUR and HPO-COLOUR-LPO. 
We may notice again that GA-NCPXMO clearly outperforms GA-IBXMO.  Therefore, for the 
instances of SET A, GA-NCPXMO obtains better results than GA-IBXMO for 6 of the 7 
instances while GA-IBXMO is better for the only remaining instance.  The results are quite the 
same for the instances of SET B where, this time, GA-NCPXMO always outperforms GA-
IBXMO.  GA-IBXMO ranks between 12th and 20th while GA-NCPXMO ranks between 1st and 19th 
depending on the instances.  Despite the fact these two algorithms do not use a local search 
procedure, they are quite competitive with the global results of the teams that qualified for 
the Challenge.  However, for the instances with easy high-priority options, we notice that 
the results of the two proposed algorithms are not competitive with those of the Challenge 
Winning Team. 
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 Winning 
Team 

GLS 
(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET A      
HPO_COLOUR_LPO      
 022_3_4 31001 (1) 37000 (14) 32022 (11) 32001 (8) 31001 (1) 
 025_38_1 231452 (4) 262460  (15) 262460 (15) 231772 (6) 229295 (1) 
 064_38_2_ch1 112759 (1) 139757 (15) 184775 (17) 164760 (16) 112759 (1) 
 064_38_2_ch2 34051 (1) 36056 (15) 37156 (16) 34052 (8) 34051 (1) 
HPO_ LPO_COLOUR      
 025_38_1 99720 (2) 200711 (10) 270686 (14) 150767 (6) 97076 (1) 

SET B      
HPO_COLOUR_LPO      
022_S22-J1 19144 (1) 23144 (13) 21174 (12) 20176 (9) 19144 (1) 
025_S22-J3 172180 (1) 281877 (20) 264156 (19) 222711 (13) 179378 (3) 
028_ch_S22_J2 54049124 (1) 54059164 (13) 54072436 (19) 54063113 (14) 54049124 (1) 
028_ch2_S23_J3 4071 (1) 4071 (1) 5078 (17) 4071 (1) 4071 (1) 
039_ch1_S22_J4 78089 (1) 92308 (17) 82731 (14) 79128 (7) 78220 (3) 
039_ch3_S22_J4 189146 (4) 199223 (17) 195718 (15) 192160 (12) 189122 (2) 
048_ch1_S22_J3 161378 (1) 186438 (18) 180440 (16) 170377 (12) 161401 (2) 
064_ch1_S22_J3 130187 (1) 158222 (14) 183149 (19) 177376 (17) 134368 (7) 
064_ch2_S22_J4 130069 (1) 130069 (1) 130088 (14) 130069 (1) 130069 (1) 
HPO_LPO_COLOUR      
022_S22_J1 3109 (1) 3138 (12) 3191 (14) 3186 (13) 3109 (1) 
025_S22_J3 3912479 (1) 3926649 (11) 4041787 (19) 3928619 (12) 3912479 (1) 
028_ch1_S22_J2 54003079 (4) 54021114 (12) 54065112 (14) 54017116 (9) 54003077 (2) 
028_ch2_S23_J3 70006 (1) 70006 (1) 70006 (1) 70006 (1) 70006 (1) 
039_ch1_ S22_J4 29117 (1) 29385 (16) 29375 (15) 29272 (11) 29117 (1) 
039_ch3_ S22_J4 197 (1) 276 (12) 315 (17) 290 (13) 201 (2) 
048_ch1_S22_J3 200 (1) 298 (15) 367 (19) 298 (15) 203 (3) 
064_ch1_S22_J3 182 (1) 1359 (18) 421 (15) 240 (10) 182 (1) 
064_ch2_S22_J4 69130 (1) 69131 (9) 69161 (19) 69132 (11) 69130 (1) 

Table 3. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
“easy” high-priority options instances with HPO as the main objective 
If we now compare the performance of GA-IBXMO and GA-NCPXMO with those of GLS, we 
notice that GLS clearly outperforms GA-IBXMO, both for the instances of SET A and SET B.  
Thus, GLS obtains better results than GA-IBXMO for 6 of the 7 instances of SET A and for 11 
of 12 instances of SET B.  We believe that the poor performance of GA-IBXMO may be 
explained by the difficulty of these instances which, combined with the time limit, more 
highlight the lack in terms of intensification of the search process of the crossover operator.  
However, when we compare the results of GLS with those of GA-NCPXMO, we observe 
essentially the same results as those obtained in Table 3 for the instances of SET A.  Indeed, 
GA-NCPXMO outperforms GLS for 6 of the 7 instances of SET A.  But, for the SET B instances, 
the results slightly favour GLS.  Thus, GA-NCPXMO is better than GLS for 4 instances, is 
worse for 5 instances while obtaining identical results for the 3 remaining instances. 
These results confirm the previous observations made and once again highlight the need to 
incorporate more explicit intensification mechanisms in our GA.  By analyzing the results of 
adding a local search procedure to GA-NCPXMO (last column of Table 4), we notice a clear 

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem 

 

393 

improvement of the performance for all the instances.  In fact, the results of GA-NCPXMO+LS  
are competitive with those of the Challenge Winning Team by obtaining equal or better results 
for 9 of the 19 instances of the two sets, while obtaining significantly closer results for the 
remaining instances. GA-NCPXMO+LS always ranks between 1st and 6th except for instance 
024_38_5 with HPO_COLOUR_LPO hierarchy where it ranks 12th.  Compared to GLS, GA-
NCPXMO+LS always obtains better result except for two instances for which the two 
algorithms obtain identical results. 
 

   Winning 
Team 

GLS 
(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET A      
HPO_COLOUR_LPO      
024_38_3 4249083 (1) 4327229 (12) 4471615 (15) 4304266 (9) 4256186 (3) 
024_38_5 4280079 (1) 7347154 (17) 26015122 (18) 6501289 (15) 4392151 (12) 
039_38_4_ch1 13129000 (1) 15179000 (11) 17201000 (14) 14122000 (8) 13129000 (1) 
048_39_1 175615 (4) 202740 (13) 3286796 (18) 191750 (11) 174690 (2) 
HPO_LPO_COLOUR      
024_38_3 4000306 (1) 4041506 (8) 5035482 (13) 6015504 (14) 4033403 (6) 
024_38_5 4034309 (1) 6080457 (18) 58072610 (17) 5068407 (15) 4045349 (6) 
048_39_1 61290 (1) 83403 (11) 246439 (17) 81406 (10) 63323 (4) 
      

SET B      
HPO_COLOUR_LPO      
023_S23_J3 48310008 (1) 48349006 (10) 48465018 (18) 48429000 (13) 48313000 (4) 
024_V2_S22_J1 1074299068 (1) 1100352464 (8) 1124857475 (16) 1106420563 (10) 1078310188 (4) 
029_HPO_ S21_J6 35167170 (1) 35192150 (14) 35187151 (12) 35173150 (6) 35168171 (3) 
035_ch1_ S22_J3 67036064 (7) 67037063 (12) 67044083 (20) 67037063 (12) 67036061 (1) 
035_ch2_ S22_J3 385187351 (1) 385187351 (1) 385187353 (17) 385187351 (1) 385187351 (1) 
048_ch2_ S22_J3 3094029 (1) 3126017 (15) 3131944 (17) 3124086 (12) 3094030 (2) 
HPO_LPO_COLOUR      
023_S23_J3 48000317 (3) 48000406 (10) 65000453 (19) 48000496 (15) 48000316 (1) 
024_V2_S22_J1 1074850430 (1) 1097921524 (9) 1179022413 (19) 1113997557 (13) 1075884555 (4) 
029_HPO _S21_J6 37150167 (1) 37150194 (12) 37150402 (18) 37150182 (9) 37150167 (1) 
035_ch1 _S22_J3 67052049 (1) 67052052 (9) 67059057 (19) 67052052 (9) 67052049 (1) 
035_ch2 _S22_J3 385341205 (1) 385341205 (1) 388350188 (20) 385353192 (19) 385341205 (1) 
048_ch2_S22_J3 3000337 (1) 3000375 (14) 3000405 (17) 3000356 (7) 3000337 (1) 

Table 4. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
“difficult” high-priority options instances with HPO as the main objective 

Table 5 lists the results of the different algorithms for the instances of SET A and SET B with 
COLOUR-HPO-LPO objective hierarchy.  By comparing first GA-IBXMO and GA-NCPXMO, 
we observe once again that GA-NCPXMO globally outperforms GA-IBXMO.  GA-NCPXMO 
obtains better results for 18 instances out of 19 and identical results for the remaining 
instance. However, contrary to the previous observation, the gap between the two 
algorithms is smaller for this group of instances. Except for three instances, the two 
algorithms give the same value for the main objective.  For these instances, the gap between 
the two algorithms is observed for the second and third objective. However, we notice again 
that the results of the two algorithms are not competitive with those of the Challenge 
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 Winning 
Team 

GLS 
(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET A      
HPO_COLOUR_LPO      
 022_3_4 31001 (1) 37000 (14) 32022 (11) 32001 (8) 31001 (1) 
 025_38_1 231452 (4) 262460  (15) 262460 (15) 231772 (6) 229295 (1) 
 064_38_2_ch1 112759 (1) 139757 (15) 184775 (17) 164760 (16) 112759 (1) 
 064_38_2_ch2 34051 (1) 36056 (15) 37156 (16) 34052 (8) 34051 (1) 
HPO_ LPO_COLOUR      
 025_38_1 99720 (2) 200711 (10) 270686 (14) 150767 (6) 97076 (1) 

SET B      
HPO_COLOUR_LPO      
022_S22-J1 19144 (1) 23144 (13) 21174 (12) 20176 (9) 19144 (1) 
025_S22-J3 172180 (1) 281877 (20) 264156 (19) 222711 (13) 179378 (3) 
028_ch_S22_J2 54049124 (1) 54059164 (13) 54072436 (19) 54063113 (14) 54049124 (1) 
028_ch2_S23_J3 4071 (1) 4071 (1) 5078 (17) 4071 (1) 4071 (1) 
039_ch1_S22_J4 78089 (1) 92308 (17) 82731 (14) 79128 (7) 78220 (3) 
039_ch3_S22_J4 189146 (4) 199223 (17) 195718 (15) 192160 (12) 189122 (2) 
048_ch1_S22_J3 161378 (1) 186438 (18) 180440 (16) 170377 (12) 161401 (2) 
064_ch1_S22_J3 130187 (1) 158222 (14) 183149 (19) 177376 (17) 134368 (7) 
064_ch2_S22_J4 130069 (1) 130069 (1) 130088 (14) 130069 (1) 130069 (1) 
HPO_LPO_COLOUR      
022_S22_J1 3109 (1) 3138 (12) 3191 (14) 3186 (13) 3109 (1) 
025_S22_J3 3912479 (1) 3926649 (11) 4041787 (19) 3928619 (12) 3912479 (1) 
028_ch1_S22_J2 54003079 (4) 54021114 (12) 54065112 (14) 54017116 (9) 54003077 (2) 
028_ch2_S23_J3 70006 (1) 70006 (1) 70006 (1) 70006 (1) 70006 (1) 
039_ch1_ S22_J4 29117 (1) 29385 (16) 29375 (15) 29272 (11) 29117 (1) 
039_ch3_ S22_J4 197 (1) 276 (12) 315 (17) 290 (13) 201 (2) 
048_ch1_S22_J3 200 (1) 298 (15) 367 (19) 298 (15) 203 (3) 
064_ch1_S22_J3 182 (1) 1359 (18) 421 (15) 240 (10) 182 (1) 
064_ch2_S22_J4 69130 (1) 69131 (9) 69161 (19) 69132 (11) 69130 (1) 

Table 3. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
“easy” high-priority options instances with HPO as the main objective 
If we now compare the performance of GA-IBXMO and GA-NCPXMO with those of GLS, we 
notice that GLS clearly outperforms GA-IBXMO, both for the instances of SET A and SET B.  
Thus, GLS obtains better results than GA-IBXMO for 6 of the 7 instances of SET A and for 11 
of 12 instances of SET B.  We believe that the poor performance of GA-IBXMO may be 
explained by the difficulty of these instances which, combined with the time limit, more 
highlight the lack in terms of intensification of the search process of the crossover operator.  
However, when we compare the results of GLS with those of GA-NCPXMO, we observe 
essentially the same results as those obtained in Table 3 for the instances of SET A.  Indeed, 
GA-NCPXMO outperforms GLS for 6 of the 7 instances of SET A.  But, for the SET B instances, 
the results slightly favour GLS.  Thus, GA-NCPXMO is better than GLS for 4 instances, is 
worse for 5 instances while obtaining identical results for the 3 remaining instances. 
These results confirm the previous observations made and once again highlight the need to 
incorporate more explicit intensification mechanisms in our GA.  By analyzing the results of 
adding a local search procedure to GA-NCPXMO (last column of Table 4), we notice a clear 
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improvement of the performance for all the instances.  In fact, the results of GA-NCPXMO+LS  
are competitive with those of the Challenge Winning Team by obtaining equal or better results 
for 9 of the 19 instances of the two sets, while obtaining significantly closer results for the 
remaining instances. GA-NCPXMO+LS always ranks between 1st and 6th except for instance 
024_38_5 with HPO_COLOUR_LPO hierarchy where it ranks 12th.  Compared to GLS, GA-
NCPXMO+LS always obtains better result except for two instances for which the two 
algorithms obtain identical results. 
 

   Winning 
Team 

GLS 
(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET A      
HPO_COLOUR_LPO      
024_38_3 4249083 (1) 4327229 (12) 4471615 (15) 4304266 (9) 4256186 (3) 
024_38_5 4280079 (1) 7347154 (17) 26015122 (18) 6501289 (15) 4392151 (12) 
039_38_4_ch1 13129000 (1) 15179000 (11) 17201000 (14) 14122000 (8) 13129000 (1) 
048_39_1 175615 (4) 202740 (13) 3286796 (18) 191750 (11) 174690 (2) 
HPO_LPO_COLOUR      
024_38_3 4000306 (1) 4041506 (8) 5035482 (13) 6015504 (14) 4033403 (6) 
024_38_5 4034309 (1) 6080457 (18) 58072610 (17) 5068407 (15) 4045349 (6) 
048_39_1 61290 (1) 83403 (11) 246439 (17) 81406 (10) 63323 (4) 
      

SET B      
HPO_COLOUR_LPO      
023_S23_J3 48310008 (1) 48349006 (10) 48465018 (18) 48429000 (13) 48313000 (4) 
024_V2_S22_J1 1074299068 (1) 1100352464 (8) 1124857475 (16) 1106420563 (10) 1078310188 (4) 
029_HPO_ S21_J6 35167170 (1) 35192150 (14) 35187151 (12) 35173150 (6) 35168171 (3) 
035_ch1_ S22_J3 67036064 (7) 67037063 (12) 67044083 (20) 67037063 (12) 67036061 (1) 
035_ch2_ S22_J3 385187351 (1) 385187351 (1) 385187353 (17) 385187351 (1) 385187351 (1) 
048_ch2_ S22_J3 3094029 (1) 3126017 (15) 3131944 (17) 3124086 (12) 3094030 (2) 
HPO_LPO_COLOUR      
023_S23_J3 48000317 (3) 48000406 (10) 65000453 (19) 48000496 (15) 48000316 (1) 
024_V2_S22_J1 1074850430 (1) 1097921524 (9) 1179022413 (19) 1113997557 (13) 1075884555 (4) 
029_HPO _S21_J6 37150167 (1) 37150194 (12) 37150402 (18) 37150182 (9) 37150167 (1) 
035_ch1 _S22_J3 67052049 (1) 67052052 (9) 67059057 (19) 67052052 (9) 67052049 (1) 
035_ch2 _S22_J3 385341205 (1) 385341205 (1) 388350188 (20) 385353192 (19) 385341205 (1) 
048_ch2_S22_J3 3000337 (1) 3000375 (14) 3000405 (17) 3000356 (7) 3000337 (1) 

Table 4. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
“difficult” high-priority options instances with HPO as the main objective 

Table 5 lists the results of the different algorithms for the instances of SET A and SET B with 
COLOUR-HPO-LPO objective hierarchy.  By comparing first GA-IBXMO and GA-NCPXMO, 
we observe once again that GA-NCPXMO globally outperforms GA-IBXMO.  GA-NCPXMO 
obtains better results for 18 instances out of 19 and identical results for the remaining 
instance. However, contrary to the previous observation, the gap between the two 
algorithms is smaller for this group of instances. Except for three instances, the two 
algorithms give the same value for the main objective.  For these instances, the gap between 
the two algorithms is observed for the second and third objective. However, we notice again 
that the results of the two algorithms are not competitive with those of the Challenge 
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Winning Team, except for instance 35_ch2_S22_J4 with COLOUR_HPO_LPO objective 
hierarchy for which all algorithms obtain the same result.  GA-IBXMO ranks between 12th and 
20th while GA-NCPXMO ranks between 1st and 17th. We also notice that, except for one 
instance for GA-NCPXMO and three instances for GA-IBXMO, the two algorithms obtain the 
same value for the main objective as the Challenge Winning Team did. We can make this 
conclusion considering that the weight of the main objective is set at 1000000 and that the 
gap between the algorithms is less than this value.  
 

 Winning 
Team 

GLS 
(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET A      
COLOUR_HPO_LPO      
022_3_4 11039001 (1) 11041001 (15) 11039131 (12) 11039098 (11) 11039001 (1) 
039_38_4 _ch1 68161000 (3) 68265000 (15) 68265000 (15) 68249000 (12) 68155000 (1) 
064_38_2 _ch1 63423782 (1) 63435799 (15) 63443831 (17) 63423782 (1) 63423782 (1) 
064_38_2_ch2 27367052 (1) 27367052 (1) 27367067 (15) 27367052 (1) 27367052 (1) 

SET B      
COLOUR_HPO_LPO      
022_S22_J1 13022148 (1) 13022154 (11) 13022189 (19) 13022178 (17) 13022148 (1) 
023_S23_J3 51327031 (1) 54349063 (21) 51735264 (20) 51393130 (17) 51343070 (9) 
024_V2_S22_J1 134023158 (1) 135226676 (20) 134902740 (19) 134230457 (14) 134057341 (4) 
025_S22_J3 126127589 (1) 133129840 (21) 126300350 (18) 126136839 (12) 126127589 (1) 
028_ch1_S22_J2 38098201 (4) 38098251 (9) 38099330 (16) 38098334 (12) 38098188 (1) 
028_ch2_S23_J3 4000071 (1) 4000071 (1) 5000078 (18) 4000071 (1) 4000071 (1) 
029_ S21_J6 52711171 (1) 52755179 (14) 52905570 (20) 52763341 (15) 52717428 (8) 
035_ch1_S22_J3 6156090 (1) 6156092 (10) 6156109 (18) 6156092 (10) 6156090 (1) 
035_ch2_S22_J3 7651671 (1) 7651671 (1) 7651671 (1) 7651671 (1) 7651671 (1) 
039_ch1_S22_J4 55045096 (1) 55045235 (9) 55046737 (18) 55045235 (9) 55045096 (1) 
039_ch3_ S22_J4 59214671 (1) 59214698 (12) 59214783 (15) 59214681 (9) 59214671 (1) 
048_ch1_ S22_J3 64115670 (1) 64135847 (14) 64153806 (15) 64124687 (12) 64115670(1) 
048_ch2_ S22_J3 58283180 (1) 58288194 (12) 58312194 (19) 58290183 (13) 58283180 (1) 
064_ch1_ S22_J3 62095288 (1) 62108458 (10) 63116379 (19) 62113381 (12) 62097307 (3) 
064_ch2_ S22_J4 31052178 (1) 31052184 (9) 32052158 (16) 31053188 (13) 31052178 (1) 

Table 5. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
instances with COLOUR as the main objective 

By comparing the results of our algorithms with those of GLS, we again notice that GLS 
outperforms GA-IBXMO for 2 of 4 instances of SET A, is worse for only one instance while 
obtaining an identical result for the remaining instance. However, for the SET B instances, 
GLS clearly outperforms GA-IBXMO by obtaining better results for 11 instances, worse results 
for 3 instances and identical results for the remaining instance.  By comparing the results of 
GA-NCPXMO with those of GLS, one notes that GA-NCPXMO obtains better results for all 
instances of SET A except one where the two algorithms achieve identical results.  For the 
SET B instances, GA-NCPXMO obtains better results than GLS for 5 instances, is worse for 6 
instances while obtaining identical results for the 4 remaining instances.  Again, we observe 
very close performance between the two algorithms. 
By now comparing the results of the two GAs to those of the Challenge Winning Team, we 
notice on one hand that GA-NCPXMO always reaches the same value for the main objective.  
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On the other hand, GLS doesn’t always reach these values. GLS even obtains the worst 
solution for instances 023_S23_J3 and 025_S22_J3 with COLOUR_HPO_LPO objective 
hierarchy. 
By analysing the results of GA-NCPXMO+LS, we observe a clear performance improvement 
for all the instances.  Thus, for SET A instances, GA-NCPXMO+LS always obtains identical or 
better results than those of the Challenge Winning Team. For SET B instances, GA-
NCPXMO+LS obtains identical or better results than those of the Challenge Winning Team for 
11 of the 15 instances. GA-NCPXMO+LS always ranks between 1st and 4th except for instances 
023_S23_J3 and 029_S21_J6 with COLOUR_HPO_LPO objective hierarchy, where it ranks 9th 
and 8th respectively.  Compared to GLS, GA-NCPXMO+LS gets better results for 16 of the 19 
instances while obtaining identical results for the 3 remaining ones. 
Finally, Table 6 gives the results of the different algorithms for the 19 instances of SET X that 
was used in the 2005 ROADEF Challenge to determine the final ranking. Here, instead of 
executing the algorithms once as we did in the previous results, we executed the algorithms 
5 times as was done for the qualified teams in this phase of the Challenge. The values 
reported in this table are thus the average results of 5 runs.   
 

 Winning 
Team 

GLS 
(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET X      
HPO_COLOUR_LPO      
023_S49_J2 192466 (1) 246268.20 (17) 246268.40 (18) 211879 (12) 193077 (3) 
024_S49_J2 337006 (1) 421425 (8) 27046420.20 (18) 506015 (11) 346202.20 (2) 
029_S49_J5 110442.60 (2) 120855 (11) 150969.20 (17) 123029.20 (12) 111093.20 (3) 
034_VP_S51_J1_J2_J3 56386.80 (1) 76217.60 (17) 74354.20 (15) 66750 (12) 57577.40 (5) 
034_VU_S51_J1_J2_J3 8087037 (4) 8091450.20 (10) 8112049 (16) 8103064 (15) 8087035.80 (1) 
039_CH1_S49_J1 69239 (1) 69455.60 (6) 69705 (9) 69479.60 (7) 69355.20 (2) 
039_CH3_S49_J1 231030.20 (2) 239593.20 (16) 250670 (17) 235475.40 (13) 231030.40 (3) 
048_CH1_S50_J4 197044.80 (3) 206509.60 (16) 207634 (17) 204182 (14) 197045.40 (4) 
048_CH2_S49_J5 31077916.20 (1) 31104598.80 (12) 31128931 (18) 31106266.2 (13) 31078317.20 (2) 
064_CH1_S49_J1 61187229.80 (1) 61229518.80 (12) 61309246.20 (20) 61223429 (10) 61190429 (2) 
064_CH2_S49_J4 37000 (1) 40400 (14) 42000 (15) 39000 (12) 37000 (1) 
655_CH1_S51_J2_J3_J4 30000 (1) 30000 (1) 30000 (1) 30000 (1) 30000 (1) 
655_CH2_S52_J1_J2_S01_J1 153034000 (1) 153035200 (8) 153047000 (12) 153041000 (11) 153034000 (1) 
COLOUR_HPO_LPO      
022_S49_J2 12002003 (1) 12002003 (1) 12002008 (16) 12002003 (1) 12002003 (1) 
035_CH1_S50_J4 5010000 (1) - 5010000 (1) 5010000 (1) 5010000 (1) 
035_CH2_S50_J4 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1) 
LPO_COLOUR_HPO      
025_ S49_J1 160407.60 (2) 189390.20 (15) 188118.20 (13) 176454.60 (10) 160407.20 (1) 
028_CH1_S50_J4 36370094 (4) 36377907.20 (5) 49863125.80 (20) 39634315.20 (12) 36360092.40 (2) 

  028_CH2_S51_J1 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 

Table 6. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
SET X instances 

When we compare the average results of GA-IBXMO and GA-NCPXMO, we again notice for 
this set that GA-NCPXMO clearly outperforms GA-IBXMO by obtaining better results except 
for 4 instances for which the two algorithms obtain the same average results.  We also notice 
for these 4 instances that the two algorithms always find the same solution for each run.  
Moreover, the results obtained by the two GAs are the same as those of the Winning Team.  
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Winning Team, except for instance 35_ch2_S22_J4 with COLOUR_HPO_LPO objective 
hierarchy for which all algorithms obtain the same result.  GA-IBXMO ranks between 12th and 
20th while GA-NCPXMO ranks between 1st and 17th. We also notice that, except for one 
instance for GA-NCPXMO and three instances for GA-IBXMO, the two algorithms obtain the 
same value for the main objective as the Challenge Winning Team did. We can make this 
conclusion considering that the weight of the main objective is set at 1000000 and that the 
gap between the algorithms is less than this value.  
 

 Winning 
Team 

GLS 
(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET A      
COLOUR_HPO_LPO      
022_3_4 11039001 (1) 11041001 (15) 11039131 (12) 11039098 (11) 11039001 (1) 
039_38_4 _ch1 68161000 (3) 68265000 (15) 68265000 (15) 68249000 (12) 68155000 (1) 
064_38_2 _ch1 63423782 (1) 63435799 (15) 63443831 (17) 63423782 (1) 63423782 (1) 
064_38_2_ch2 27367052 (1) 27367052 (1) 27367067 (15) 27367052 (1) 27367052 (1) 

SET B      
COLOUR_HPO_LPO      
022_S22_J1 13022148 (1) 13022154 (11) 13022189 (19) 13022178 (17) 13022148 (1) 
023_S23_J3 51327031 (1) 54349063 (21) 51735264 (20) 51393130 (17) 51343070 (9) 
024_V2_S22_J1 134023158 (1) 135226676 (20) 134902740 (19) 134230457 (14) 134057341 (4) 
025_S22_J3 126127589 (1) 133129840 (21) 126300350 (18) 126136839 (12) 126127589 (1) 
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By comparing the results of our algorithms with those of GLS, we again notice that GLS 
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notice on one hand that GA-NCPXMO always reaches the same value for the main objective.  
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On the other hand, GLS doesn’t always reach these values. GLS even obtains the worst 
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By analysing the results of GA-NCPXMO+LS, we observe a clear performance improvement 
for all the instances.  Thus, for SET A instances, GA-NCPXMO+LS always obtains identical or 
better results than those of the Challenge Winning Team. For SET B instances, GA-
NCPXMO+LS obtains identical or better results than those of the Challenge Winning Team for 
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 Winning 
Team 

GLS 
(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET X      
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048_CH2_S49_J5 31077916.20 (1) 31104598.80 (12) 31128931 (18) 31106266.2 (13) 31078317.20 (2) 
064_CH1_S49_J1 61187229.80 (1) 61229518.80 (12) 61309246.20 (20) 61223429 (10) 61190429 (2) 
064_CH2_S49_J4 37000 (1) 40400 (14) 42000 (15) 39000 (12) 37000 (1) 
655_CH1_S51_J2_J3_J4 30000 (1) 30000 (1) 30000 (1) 30000 (1) 30000 (1) 
655_CH2_S52_J1_J2_S01_J1 153034000 (1) 153035200 (8) 153047000 (12) 153041000 (11) 153034000 (1) 
COLOUR_HPO_LPO      
022_S49_J2 12002003 (1) 12002003 (1) 12002008 (16) 12002003 (1) 12002003 (1) 
035_CH1_S50_J4 5010000 (1) - 5010000 (1) 5010000 (1) 5010000 (1) 
035_CH2_S50_J4 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1) 
LPO_COLOUR_HPO      
025_ S49_J1 160407.60 (2) 189390.20 (15) 188118.20 (13) 176454.60 (10) 160407.20 (1) 
028_CH1_S50_J4 36370094 (4) 36377907.20 (5) 49863125.80 (20) 39634315.20 (12) 36360092.40 (2) 

  028_CH2_S51_J1 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 

Table 6. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
SET X instances 

When we compare the average results of GA-IBXMO and GA-NCPXMO, we again notice for 
this set that GA-NCPXMO clearly outperforms GA-IBXMO by obtaining better results except 
for 4 instances for which the two algorithms obtain the same average results.  We also notice 
for these 4 instances that the two algorithms always find the same solution for each run.  
Moreover, the results obtained by the two GAs are the same as those of the Winning Team.  
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By looking more closely at the characteristics of these 4 instances, we notice that they are 
small instances where the number of cars to schedule is between 65 and 376.  These small 
sizes probably explain why the two algorithms solve these 4 instances trivially.  As shown in 
the previous results, the gap between the two algorithms seems to be related to the size of 
the instances.  Indeed, GA-IBXMO seems to have more difficulty to converge towards a good 
solution for large instances. This situation is again confirmed using instance 024_S49_J2 with 
HPO_COLOUR_LPO objective hierarchy and 1319 cars to schedule. For this instance, the 
gap between the average results of the two algorithms for the main objective is over 26 
conflicts.  Except for the 4 small size instances solved trivially, GA-IBXMO ranks between 9th 
and 20th while GA-NCPXMO ranks between 7th and 15th. 
If we now compare the results of our two algorithms to those of GLS, we observe similar 
results to those obtained for SET A et SET B.  GA-IBXMO is worse than GLS for 13 instances, 
better for 3 instances while identical for the 3 other instances.  We notice that among the 3 
instances for which GA-IBXMO achieves better average results than GLS, there is one instance 
(035_CH1_S50_J4 with COLOUR_HPO_LPO hierarchy) for which GLS did not provide a 
feasible solution during this phase of the Challenge.  When we now compare GLS to GA-
NCPXMO, we notice that GA-NCPXMO outperforms GLS for 8 instances, is worse for 7 
instances while identical for the 4 remaining instances.  
We also notice that the results of GA-IBXMO and GA-NCPXMO are not competitive with the 
average results of the Winning Team.  However, by adding a local search procedure to GA-
NCPXMO, we considerably improve the performance of the algorithm by obtaining the best 
average results for 10 instances while obtaining very close average results for the other 
instances.  GA-NCPXMO+LS ranks between 1st and 5th for all the instances of SET X. 
Now, to compare the performance of the proposed approaches with the results of the teams 
that qualified for the Challenge, we used the ranking procedure described in the Challenge 
description, that consists in calculating a mark for each instance of SET X according to 
Equation 5.  The mark of each algorithm is calculated according to the best and the worst 
solution found by the 18 teams that qualified for the Challenge and the 3 proposed 
algorithms. The score is a normalized measure of solution quality that necessarily lies 
between 0 and 1. 
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In Equation 5, Best_result and Worst_result indicate respectively the best and the worst 
average result found for an instance while resultAlgo indicates the average result found by the 
algorithm for which we compute the mark for the same instance.  Then, each row of Table 7 
lists the mark of the Winning Team, the GA-IBXMO, the GA-NCPXMO and GA-NCPXMO +LS 
for each instance of SET X.  The last row of this table lists the total mark of each algorithm 
for the whole set.  On analysing the results of Table 7, we notice that they confirm the results 
of Tables 3 to 6, namely that GA-NCPXMO is a better performer than GA-IBXMO and that GA-
NCPXMO+LS is the best performer compared to the two other algorithms.  It is important to 
mention that, according to the final rank of the Challenge that is published by the organizers 
and that is available online from the Challenge website, GLS ranks 13th with a mark of 
16.8937 while the Winning Team has a mark of 18.9935.  Based on these results, we may 
conclude that the difference between the results of our best genetic approach and those of 
the Winning Team is rather small (0.0345).  We also notice that both GA-NCPXMO obtain a 
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better mark than GLS, with and without local search procedure. We may then conclude that 
the methods proposed in this chapter achieve competitive results for the multi-objective 
ICSP. Thus, we demonstrate that GAs are well suited to address this category of problem if 
they incorporate specific knowledge of the problem to design dedicated genetic operators. 
 

 Marks 

SET X Winning  
Team AG-IBXMO AG-NCXMO AG-

NCXMO+LS 
HPO_COLOUR_LPO     
023_S49_J2 1 0.5575 0.8403 0.9950 
024_S49_J2 1 0.4605 0.9966 0.9998 
029_S49_J5 0.9980 0.4249 0.8200 0.9888 
034_VP_S51_J1_J2_J3 0.9956 0.7949 0.8799 0.9823 
034_VU_S51_J1_J2_J3 1 0.9998 0.9999 1 
039_CH1_S49_J1 1 0.9755 0.9873 0.9939 
039_CH3_S49_J1 0.9999 0.6368 0.9178 1 
048_CH1_S50_J4 0.9999 0.9952 0.9968 1 
048_CH2_S49_J5 1 0.9868 0.9927 0.9999 
064_CH1_S49_J1 1 0.9799 0.9940 0.9995 
064_CH2_S49_J4 1 0.8588 0.9435 1 
655_CH1_S51_J2_J3_J4 1 1 1 1 
655_CH2_S52_J1_J2_S01_J1 1 0.9999 0.9999 1 
COLOUR_ HPO_LPO     
022_S49_J2 1 0.9999 1 1 
035_CH1_S50_J4 1 1 1 1 
035_CH2_S50_J4 1 1 1 1 
HPO_LPO_COLOUR     
025_S49_J1 1 0.9983 0.9990 1 
028_CH1_S50_J4 0.9999 0.9553 0.9891 0.9999 
028_CH2_S51_J1 1 1 1 1 
Total 18.9935 16.6241 18.3569 18.9590 

Table 7. Marks of the Winning Team, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for SET 
X instances. 

6. Conclusion 
In this chapter, we have introduced a GA based on two specialized crossover operators 
dedicated to the multi-objective nature of the ICSP proposed by French automobile 
manufacturer Renault for the ROADEF 2005 Challenge.  If GAs are known to be well suited 
for multi-objective optimization (Barichard, 2003; Basseur, 2004; Zinflou et al., 2006), few 
researchers and industrials decided to use this category of algorithms to solve the ICSP.  
Among the 18 teams that qualified for the second phase of the Challenge, only one proposed 
a genetic algorithm based approach. This situation may be explained by the difficulty in 
defining specific and efficient genetic operators that take into account the specificities of the 
problem.  The approach proposed in this chapter is essentially based on adapting highly 
specialized genetic crossover operators to the specificities of the industrial version of the 
single objective car sequencing problem, for which we have three conflicting objectives to 
optimize.  The numerical experiments allowed us to demonstrate the efficiency of the 
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description, that consists in calculating a mark for each instance of SET X according to 
Equation 5.  The mark of each algorithm is calculated according to the best and the worst 
solution found by the 18 teams that qualified for the Challenge and the 3 proposed 
algorithms. The score is a normalized measure of solution quality that necessarily lies 
between 0 and 1. 
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for the whole set.  On analysing the results of Table 7, we notice that they confirm the results 
of Tables 3 to 6, namely that GA-NCPXMO is a better performer than GA-IBXMO and that GA-
NCPXMO+LS is the best performer compared to the two other algorithms.  It is important to 
mention that, according to the final rank of the Challenge that is published by the organizers 
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16.8937 while the Winning Team has a mark of 18.9935.  Based on these results, we may 
conclude that the difference between the results of our best genetic approach and those of 
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better mark than GLS, with and without local search procedure. We may then conclude that 
the methods proposed in this chapter achieve competitive results for the multi-objective 
ICSP. Thus, we demonstrate that GAs are well suited to address this category of problem if 
they incorporate specific knowledge of the problem to design dedicated genetic operators. 
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dedicated to the multi-objective nature of the ICSP proposed by French automobile 
manufacturer Renault for the ROADEF 2005 Challenge.  If GAs are known to be well suited 
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researchers and industrials decided to use this category of algorithms to solve the ICSP.  
Among the 18 teams that qualified for the second phase of the Challenge, only one proposed 
a genetic algorithm based approach. This situation may be explained by the difficulty in 
defining specific and efficient genetic operators that take into account the specificities of the 
problem.  The approach proposed in this chapter is essentially based on adapting highly 
specialized genetic crossover operators to the specificities of the industrial version of the 
single objective car sequencing problem, for which we have three conflicting objectives to 
optimize.  The numerical experiments allowed us to demonstrate the efficiency of the 
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proposed approach for this industrial problem.  A natural conclusion of these experimental 
results is that GAs may be robust and efficient alternative to solve the multi-objective ICSP.  
These results also again highlight the importance of incorporating specific problem 
knowledge into genetic operators, even if classical genetic operators could be used.  We are 
also aware of the fact that having known the solutions found by the algorithms of the 
different qualified teams has facilitated improving and tuning our algorithms. However, the 
main purpose of this study was to demonstrate that GAs can be an efficient alternative to 
solve this kind of industrial problem. 
The lexicographical treatment of the objectives proposed by Renault is such that it can 
eliminate several “interesting” solutions for the manufacturer.  Indeed, the relaxation of the 
importance granted to the main objective can highlight other attractive solutions for the 
company.  For example, if an additional violation on the HPO objective allows to avoid 5 
colour changes, the production scheduler could then be interested to a such solution to 
make his final schedule. We therefore believe that the industrial problem introduced by 
Renault would benefit to be treated to obtain so-called “compromise solutions”.  In this 
context, the GAs proposed in this chapter represent very interesting alternatives to find 
these compromise solutions.  In fact, GAs are well suited for multi-objective optimization in 
the Pareto sense and these approaches have proven their ability to generate compromise 
solutions in a single optimization step. Since the mid-nineties, an increasing number of 
approaches exploit the principle of dominance (Zitzler and Thiele, 1998; Deb, 2000; Knowles 
and Corne, 2000a; Knowles and Corne, 2000b; Coello Coello and Pulido, 2001) in the Pareto 
sense as defined by Goldberg (1989).  These evolutionary multi-objective algorithms use the 
concepts of dominance, niches and elitism (Deb, 2000; Knowles and Corne, 2000b; Deb and 
Goel, 2001; Zitzler et al., 2001).  The NSGAII algorithm (Deb, 2000), the SPEA2 algorithm 
(Zitler et al., 2001) and the PMSMO algorithm (Zinflou et al., 2007) are recognized as amongst 
the best performing of the elitist multi-objective evolutionary algorithms.  These algorithms 
are said to be elitist because they include one or several mechanisms allowing the 
memorization of the best solutions found during the execution of the GA.   
For future work, we will use this type of approaches to consider the objectives 
simultaneously, without assigning priority or weight.  A set of compromise solutions may 
then be found for comparison to the solution by considering the objectives in lexicographical 
order.  It will thus be possible to highlight different solutions that are much more financially 
interesting for a manufacturer and that are better suited to industrial reality.   
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1. Introduction     
The advent of fuzzy logic controllers has inspired the allocation of new resources for the 
possible realization of more efficient methods of control. In comparison with traditional 
controller design methods requiring mathematical models of the plants, one key advantage 
of fuzzy controller design lies in its model-free approach. Conventionally, the selection of 
fuzzy if-then rules often relies heavily upon the substantial amounts of heuristic observation 
to express the strategy's proper knowledge. It is very difficult for human experts to examine 
all the input-output data from a complex system, and then to design a number of proper 
rules for the fuzzy logic controllers. Many design approaches for automatic fuzzy rules 
generation have been developed in an effort to tackle this problem (Lin & Lee, 1996). The 
neural learning method is one of them. In (Miller et al., 1990), several neural learning 
methods including supervised and reinforcement based control configurations are studied. 
For many control problems, the training data are usually difficult and expensive, if not 
impossible, to obtain. Besides, many control problems require selecting control actions 
whose consequences emerge over uncertain periods for which training data are not readily 
available. In reinforcement learning, agents learn from signals that provide some measure of 
performance which may be delivered after a sequence of decisions being made. Hence, 
when the above mentioned control problems occur, reinforcement learning is more 
appropriate than  supervised learning. 
Genetic algorithms (GAs) are stochastic search algorithms based on the mechanics of natural 
selection and natural genetics (Goldberg, 1989). Since GAs do not require or use derivative 
information, one appropriate application for their use is the circumstance where gradient 
information is unavailable or costly to obtain. Reinforcement learning is an example of such 
domain. The link of GAs and reinforcement learning may be called genetic reinforcement 
learning (Whitley et al., 1993). In genetic reinforcement learning, the only feedback used by 
the algorithm is the information about the relative performance of different individuals and 
may be applied to reinforcement problems where the evaluative signals contain relative 
performance information. Besides GAs, another general approach for realizing 
reinforcement learning is the temporal difference (TD) based method (Sutton & Barto, 1998). 
One generally used TD-based reinforcement learning method is Adaptive Heuristic Critic 
(AHC) learning algorithm. AHC learning algorithm relies upon both the learned evaluation 
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The advent of fuzzy logic controllers has inspired the allocation of new resources for the 
possible realization of more efficient methods of control. In comparison with traditional 
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of fuzzy controller design lies in its model-free approach. Conventionally, the selection of 
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to express the strategy's proper knowledge. It is very difficult for human experts to examine 
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domain. The link of GAs and reinforcement learning may be called genetic reinforcement 
learning (Whitley et al., 1993). In genetic reinforcement learning, the only feedback used by 
the algorithm is the information about the relative performance of different individuals and 
may be applied to reinforcement problems where the evaluative signals contain relative 
performance information. Besides GAs, another general approach for realizing 
reinforcement learning is the temporal difference (TD) based method (Sutton & Barto, 1998). 
One generally used TD-based reinforcement learning method is Adaptive Heuristic Critic 
(AHC) learning algorithm. AHC learning algorithm relies upon both the learned evaluation 
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network and the learned action network. Learning of these two networks is based on 
gradient-descent learning algorithms with errors derived from internal and external 
reinforcement signals. In comparison with the GAs, one disadvantage of AHC learning 
algorithms is that they usually suffer the local minimum problem in network learning due 
to the use of the gradient descent method. Overall performance comparisons between TD-
based reinforcement learning methods, including AHC and Q-learning, and GAs are made 
in (Whitley et al., 1993; Moriarty & Miikkulainen, 1996). The results show that GAs achieve 
better performance both in CPU time and number of control trials. In the past, some studies 
on the combination of GAs with TD-based reinforcement learning methods were proposed 
(Lin & Jou, 1999; Juang, 2005a). These studies show that the combination approach achieves 
better performance than using only GAs or the TD-based method.  
Many approaches to fuzzy system design using GAs have been proposed (Cordón et al., 
2004). If we distinguish them by individual representation in GAs, the major ones include 
Pittsburgh, Michigan, and the iterative rule learning (IRL) approach (Cordón et al., 2001). In 
the Pittsburgh approach, each individual represents an entire fuzzy rule set. A population of 
candidate rule sets is maintained by performing genetic operators to produce new 
generations of rule sets. Most GA-based fuzzy controller design methods belong to this 
approach (Karr, 1991; Homaifar & McCormick, 1995; Shi et al., 1999; Belarbi & Titel, 2000; 
Chung et al., 2000; Juang, 2004; Chou, 2006). In (Karr, 1991), Karr applied GAs to the design 
of the membership functions of a fuzzy controller, with the fuzzy rule set assigned in 
advance. Since the membership functions and rule sets are co-dependent, simultaneous 
design of these two approaches would be a more appropriate methodology. Based upon this 
concept, many researchers have applied GAs to optimize both the parameters of the 
membership functions and the rule sets. Differences between the approaches depend mainly 
on the type of coding and the way in which the membership functions are optimized. The 
disadvantage of this approach is the computational cost, since a population of rule set has to 
be evaluated in each generation. Also, the dimension of search space increases significantly, 
making it substantially difficult to find good solutions. In the Michigan approach, each 
individual of the population represents a single rule and a rule set is represented by the 
entire population. All researches in (Valenzuela-Rendon, 1991; Bonarini, 1993; Furuhashi et 
al., 1995) belong to this approach. As the evolutionary process is applied to the individual 
rule base, this approach invariably leads to consideration of both cooperation and 
competition. Obviously, it is difficult to obtain a good cooperation among the fuzzy rules 
that compete with each other. To solve this cooperation versus competition problem, a 
complex credit assignment policy is required, which is a disadvantage of this approach. This 
credit assignment task becomes more difficult especially for controller design based upon 
reinforcement learning problems, where the reinforcement signal is available after a long 
sequence of control actions. Besides, if the rule number in the designed fuzzy system is 
small, the small rule set in the population may easily converge to a local optimum and 
degrade the search speed. Like the Michigan approach, in IRL, each individual represents a 
single rule. However, in contrast to the former, only the best rule is adopted and added to 
the rule set in every GA run. The process is run several times to obtain the complete rule set. 
The IRL approach is considered to design genetic processes for off-line inductive learning 
problems and is not suitable to the controller design problem considered here.  
Recently, the adoption of coevolutionary GAs for fuzzy system design has also been 
proposed. In GAs, coevolution refers to the simultaneous evolution of two or more species 
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with coupled fitness (Zhao, 1998; Paredis, 1995). Coevolution may be performed at the 
population level (Potter et al., 1995; Pena -Reyes & Sipper, 2001) or at the individual level 
(Juang et al., 2000). The idea of coevolutionary GA is similar to the Michigan approach. The 
cooperative coevolutionary GAs (Potter & DeJong, 2000; Pena -Reyes & Sipper, 2001) and 
Symbiotic GAs (Moriarty & Miikkulainen, 1996; Moriarty & Miikkulainen, 1998; Juang et al., 
2000; Juang, 2005b; Lin & Xu, 2006) are of this type. In (Moriarty & Miikkulainen, 1996; 
Moriarty & Miikkulainen, 1998), Symbiotic Adaptive Neuro-Evolution (SANE) and 
hierarchical SANE were proposed for neural networks design. In (Juang et al., 2000), a 
Symbiotic-Evolution-based Fuzzy Controller (SEFC) was proposed and the performance of 
SEFC is shown to be better than SANE. In (Juang, 2005b), a coevolutionary GA with divide-
and-conquer (CGA-DC) technique was proposed. The CGA-DC not only performs a GA 
search on separate fuzzy rules, but also on a global fuzzy network simultaneously. 
Therefore, the performance of CGA-DC is better than SEFC. This chapter extends the idea of 
CGA-DC to both feedforward and recurrent fuzzy systems design, and the design method is 
called hierarchical SEFC (HSEFC). 
Besides GAs, another factor that may influence fuzzy controller performance is its structure. 
Depending on the property of a controlled plant, different types of fuzzy controller 
structures are used in this chapter. A feedforward fuzzy controller is designed for a static 
plant. For a dynamic plant, whose output depends upon either previous states or control 
inputs or both, a recurrent controller should be a better choice. To apply a feedforward 
controller to this type of plant, we need to know the exact order of the plant in advance, and 
the inclusion of the past values to the controller input increases the controller size. Several 
recurrent fuzzy systems have been proposed (Zhang & Morris, 1999; Juang & Lin, 1999; Lee 
&. Teng, 2000; Juang, 2002). The performance of these systems has been demonstrated to be 
superior to that of recurrent neural networks. Based on this observation, a recurrent fuzzy 
controller should be a better choice compared to a recurrent neural controller under genetic 
reinforcement learning. 
This Chapter introduces feedforward and recurrent fuzzy controllers design using HSEFC. 
For a static plant control problem under reinforcement learning environment, HSEFC for 
feedforward fuzzy controller design (HSEFC-F) is introduced, while for a dynamic plant, 
HSEFC for recurrent fuzzy controller (HSEFC-R) is proposed. In HSEFC-F, two populations 
are created. One of the populations is for searching the well-performed local rules, and each 
individual in the population represents only a fuzzy rule. Within the other population, each 
individual represents a whole fuzzy controller. The objective of the population is to search 
the best fuzzy system participating rules selected from the rule population, and the 
relationship between each rule is cooperative. Concurrent evolution of the local-mapping 
and global-mapping stages increases the design efficiency. With the above techniques, 
HSEFC-F performs an efficient fuzzy controller design task with a small population size. 
HSEFC-R is applied to the design of a recurrent fuzzy controller obtained by adding 
feedback structures into the feedforward fuzzy systems. In the local-mapping stage, each 
recurrent fuzzy rule is divided into two sub-rules, one representing a spatial mapping and 
the other doing a temporal mapping. These two sub-rules are considered as two distant 
species, and two populations are created for each sub-rule search, which is a technique 
based on the divide-and-conquer concept. In the global-mapping search stage, the third 
population is created to seek the best combination of spatial sub-rules, temporal sub-rules or 
both. 
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based on the divide-and-conquer concept. In the global-mapping search stage, the third 
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This chapter is organized as follows. Section 2 describes the types and functions of the fuzzy 
controller to be designed, including feedforward and recurrent fuzzy controllers. Section 3 
describes the concepts of symbiotic evolution for fuzzy systems. Section 4 introduces HSEFC 
for fuzzy controller design, including HSEFC-F and HSEFC-R. Section 5 presents simulation 
results, where HSEFC-F is applied to control a cart-pole balancing system and HSEFC-R is 
applied to control a dynamic system with delays. Comparisons with SEFC for the same task 
are also made in this section. The conclusions are summarized in the last section. 

2. Fuzzy controller 
Control Systems represent an important application for reinforcement learning algorithms.   
From the perspective of controller learning, since GAs only require the appropriate 
evaluation of the controller performance to yield the fitness values for evolution, they are 
suitable for fuzzy controller design under reinforcement learning problems. 

2.1 Feedforward fuzzy controller 
Several types of fuzzy systems have been proposed depending on the types of fuzzy if-then 
rules and fuzzy reasoning. In this chapter, each rule in the feedforward fuzzy controller is 
presented in the following form: 

 Rule  i  :   IF  1 ( )x t   is  1iA  And … And ( )nx t  is inA   Then  ( 1)u t +  is ib   (1) 

where jx  is the input variable, u is the control output variable, ijA  is a fuzzy set, and ib  is 

a fuzzy singleton. For a fuzzy set ijA , a Gaussian membership function with 
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is used, where ijm  and ijσ  denote the mean and width of a fuzzy set ijA , respectively. In 

the fuzzification process, crisp input jx  is converted into a fuzzy singleton and is mapped 

to the fuzzy set ijA  with degree ( )ij jM x . In the inference engine, the fuzzy AND operation 

is implemented by the algebraic product in fuzzy theory. Given an input data set 

1( , ..., )nx x=x , the firing strength ( )iμ x of rule i  is calculated by 
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The output from each rule is a crisp value. The fuzzy logic control action is the combination 
of the output of each rule using the weighted average defuzzification method. Suppose that 
a fuzzy controller consists of r  rules, and then the output of the controller is 
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 In applying HSEFC to the feedforward fuzzy controller design, only the number of rules 
should be assigned in advance. Instead of grid type partition, the rules are flexibly 
partitioned in the input space. If the total number of rules is set to r , then the number of 
fuzzy sets in each input variable as well as the number of fuzzy singletons in the consequent 
part are also equal to r . 

2.2 Recurrent fuzzy controller 
For a dynamic plant control, a recurrent controller appears to be a better choice than a 
feedforward controller. In the previous studies (Juang & Lin, 1999; Juang, 2002), 
performance recorded by applying recurrent fuzzy systems to dynamic problems solving 
has been shown to be superior to recurrent neural networks. The recurrent fuzzy controller 
designed in this chapter is a slight modification of that used in TSK-type recurrent fuzzy 
network (TRFN) (Juang, 2002) in that the consequent part is of zero-order instead of first-
order TSK type.  Figure 1 shows structure of the recurrent fuzzy system. Suppose the system 
consists of two rules. Each recurrent fuzzy if-then rule is in the following form 
 

       Rule i :  IF 1 ( )x t  is 1iA  AND … AND ( )nx t  is inA  AND ( )ih t  is G  

                 THEN ( 1)u t + is ib  AND 1 ( 1)h t +  is 1iw  AND 2 ( 1)h t +  is 2 iw , 1, 2i =   (5) 

where ijA  and G  are fuzzy sets, u  is the output variable, ih  is the internal variable, ijw  

and ib  are the consequent parameters for inference outputs ih  and u , respectively. The 

recurrent reasoning implies that the inference output ( 1)u t +  is affected by the internal 

variable ( )ih t , and the current internal output ( 1)ih t + is a function of previous output 

value ( )ih t , i.e., the internal variable ( )ih t itself forms a recurrent reasoning. As in a 

feedforward fuzzy controller, Gaussian membership function is used for the fuzzy set ijA . 

For the fuzzy set G , a global membership function ( ) 1/(1 )xG x e−= +  is used. Given an 

input set 1( , ..., )nx x=x , the inference and internal outputs of the recurrent fuzzy controller 
are calculated, respectively, by 
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In applying HSEFC to the recurrent fuzzy controller design, only the number of recurrent 
fuzzy rules should be assigned in advance. Suppose there are r rules in total, then the 
numbers of fuzzy sets A's on each external input variable ix  and the internal variable ih ,  
are all equal to r . 
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Fig. 1. Recurrent fuzzy system structure. 

3. Symbiotic Evolution-based  Fuzzy Controller (SEFC) 
The symbiotic evolution-based fuzzy controller (SEFC) was proposed in (Juang et al., 2000), 
and the idea was used in many later studies (Mahfouf et al., 2001, Jamei et al., 2004, Kuo et 
al., 2004, Juang, 2005b, Lin & Xu, 2006). Unlike general GAs' evolution algorithms which 
operate on a population of full solutions to a problem (the Pittsburgh approach), symbiotic 
evolution assumes that each individual in the population represents only a partial solution; 
complete solutions are formed by combining several individuals. Figure 2(a) and (b) show 
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codings of a fuzzy system using the general and symbiotic evolutions, respectively. Each 
individual in Fig. 2(a) represents a whole fuzzy system. On the contrary, each individual in 
Fig. 2(b) represents a single fuzzy rule. In general GAs, a single individual is responsible for 
the overall performance, with the fitness value assigned to itself according to its 
performance. In symbiotic evolution, the fitness of an individual (a partial solution) depends 
on others. Partial solutions can be characterized as specializations. The specialization 
property tries to keep search diversity which prevents convergence of the population. The 
symbiotic evolution appears to be a faster and more efficient search scheme than the general 
evolution approaches for reinforcement learning problems (Moriarty & Miikkulainen, 1996; 
Juang et al., 2000; Lin & Xu, 2006). 
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Fig. 2. Coding of a fuzzy system using (a) the general and (b) symbiotic evolutions. 

The basic idea of SEFC is on the representation of a single fuzzy rule by an  individual. A 
whole fuzzy system is formed by combining r  randomly selected rules from a population.  
With the fitness assignment performed by symbiotic evolution and the local property of a 
fuzzy rule, symbiotic evolution and the fuzzy system design can complement each other. If  
a normal GA evolution scheme is adopted for fuzzy system design, only the overall 
performance of a fuzzy system is known, not the performance of each fuzzy rule. The 
method to replace the unsuitable fuzzy rules that degrade the overall performance of a 
fuzzy system is through random crossover operations, followed by observing the 
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performance of the offspring. Only when the overall performance of the fuzzy system is 
good  do we know that the unsuitable rules have been replaced. In SEFC, the performance 
of each fuzzy rule may be implicitly evaluated. Such implicit evaluation is especially 
suitable for reinforcement learnimg problems which require only evaluation instead of 
instructive feedback information. With the local property of a fuzzy rule, the fitness 
assignment performed by the SEFC is quite representative. In this way, symbiotic evolution 
and fuzzy system design can complement each other, which result in a fast, efficient genetic 
search for reinforcement learning problems. 

4. Hierarchical SEFC (HSEFC) 
In SEFC, a GA search is performed only on the separate rules. The information about the 
participating rules in a well-performed fuzzy network is not propagated from generation to 
generation. If, besides the local rule search, we can propagate the information to the next 
generation and perform a global fuzzy network search simultaneously, then a better design 
performance could be achieved. This is the motivation of Hierarchical SEFC (HSEFC). This 
section introduces the detailed HSEFC implementation algorithm. Subsection 3.1 presents 
the HSEFC implementation algorithm for feedforward fuzzy controller design (HSEFC-F). 
In subsection 3.2, the HSEFC for recurrent fuzzy controller design (HSEFC-R) is presented. 

4.1 HSEFC for feedforward fuzzy controller design (HSEFC-F) 
Figure 3 shows the structure of the HSEFC-F design system. It consists of two populations. 
In population 1, each individual represents only a single fuzzy rule in the form described in 
(1). A whole fuzzy system constituted by r  fuzzy rules is built by randomly selecting 
r individuals from population 1. The selected rules are recorded in an individual of 
population 2. Therefore, each individual in population 2 indicates a whole fuzzy system, 
with each gene representing a rule selected from population 1. Each constituted fuzzy 
controller in population 2 is applied to the plant to be controlled with a controller 
performance evaluation returned and used as the fitness value. This fitness value is assigned 
not only to the action system in population 2, but also distributed to the rules participating 
in the system. The concurrent evolution of populations 1 and 2 leads to an efficient 
algorithm. Detailed processes of these two stages are described as follows.  

4.1.1 Local mapping stage 
This stage performs evolution of population 1. Like general GAs, the evolution consists of 
three major operations: reproduction, crossover, and mutation. Initially, this stage randomly 
generates a population of individuals, each of which represents a set of parameters for the 
fuzzy rule in (1). The population size is denoted as 1SP , which indicates that 1SP  fuzzy rules 
are generated.  Each gene is represented by a floating number and the encoded form of each 
rule (individual) is as follows, 

1 1 2 2| | | | | ... | | | |i i i i in in im m m bσ σ σ  

After creating a whole population with real-valued individuals, an interpreter takes one 
from the population and uses it to set part of the parameters in a fuzzy system. Suppose 
there are r  rules in a fuzzy system, then a whole fuzzy system is constructed by selecting r  
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individuals from population 1. The fuzzy system runs in a feedforward fashion to control 
the plant until a failure or a success occurs. Then, in the reinforcement control problem, we 
should assign a credit to the fuzzy system. From the view point of temporal credit, if the 
fuzzy system can control the plant for a longer time, then the degree of success is higher and 
a higher credit should be assigned. Based on this concept, for each individual in population 
2, the fitness value is assigned at the moment of failure. 
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Fig. 3. Structure of the HSEFC for feedforward fuzzy system design (HSEFC-F). 

To evaluate the performance of each individual in population 1, the credit assignment is not 
as direct as that used in population 2. We should apportion the credit to the participating 
rules in a fuzzy system. This credit assignment problem also occurs in the Michigan 
approach. In the Michigan approach, many different credit assignment schemes have been 
proposed (Cordón et al., 2001). The two most important ones are the bucket bridge 
algorithm (BBA) (Booker et al., 1989) and the profit sharing plan (PSP) (Grefenstette, 1988). 
The BBA adjusts the strength of an individual rule classifier by distributing the obtained 
reward across the sequence of active rule classifiers that are directly or indirectly 
contributed to the past actions by the fuzzy classifier system. It uses only the local 
interactions between rules to distribute credit. In contrast to the BBA, the PSP is a global 
learning scheme and typically achieves a better performance than the BBA. In (Ishibuchi et 
al., 1999), a simpler credit assignment algorithm is proposed. In this algorithm, there is 
always a unique winner rule to be rewarded or penalized depending on whether it correctly 
predicts the class of the training example. The fitness value of each rule is determined by the 
total reward assigned to the rule. Basically, the aforementioned schemes are based on an 
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performance of the offspring. Only when the overall performance of the fuzzy system is 
good  do we know that the unsuitable rules have been replaced. In SEFC, the performance 
of each fuzzy rule may be implicitly evaluated. Such implicit evaluation is especially 
suitable for reinforcement learnimg problems which require only evaluation instead of 
instructive feedback information. With the local property of a fuzzy rule, the fitness 
assignment performed by the SEFC is quite representative. In this way, symbiotic evolution 
and fuzzy system design can complement each other, which result in a fast, efficient genetic 
search for reinforcement learning problems. 
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performance could be achieved. This is the motivation of Hierarchical SEFC (HSEFC). This 
section introduces the detailed HSEFC implementation algorithm. Subsection 3.1 presents 
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4.1.1 Local mapping stage 
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1 1 2 2| | | | | ... | | | |i i i i in in im m m bσ σ σ  

After creating a whole population with real-valued individuals, an interpreter takes one 
from the population and uses it to set part of the parameters in a fuzzy system. Suppose 
there are r  rules in a fuzzy system, then a whole fuzzy system is constructed by selecting r  
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individuals from population 1. The fuzzy system runs in a feedforward fashion to control 
the plant until a failure or a success occurs. Then, in the reinforcement control problem, we 
should assign a credit to the fuzzy system. From the view point of temporal credit, if the 
fuzzy system can control the plant for a longer time, then the degree of success is higher and 
a higher credit should be assigned. Based on this concept, for each individual in population 
2, the fitness value is assigned at the moment of failure. 
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Fig. 3. Structure of the HSEFC for feedforward fuzzy system design (HSEFC-F). 

To evaluate the performance of each individual in population 1, the credit assignment is not 
as direct as that used in population 2. We should apportion the credit to the participating 
rules in a fuzzy system. This credit assignment problem also occurs in the Michigan 
approach. In the Michigan approach, many different credit assignment schemes have been 
proposed (Cordón et al., 2001). The two most important ones are the bucket bridge 
algorithm (BBA) (Booker et al., 1989) and the profit sharing plan (PSP) (Grefenstette, 1988). 
The BBA adjusts the strength of an individual rule classifier by distributing the obtained 
reward across the sequence of active rule classifiers that are directly or indirectly 
contributed to the past actions by the fuzzy classifier system. It uses only the local 
interactions between rules to distribute credit. In contrast to the BBA, the PSP is a global 
learning scheme and typically achieves a better performance than the BBA. In (Ishibuchi et 
al., 1999), a simpler credit assignment algorithm is proposed. In this algorithm, there is 
always a unique winner rule to be rewarded or penalized depending on whether it correctly 
predicts the class of the training example. The fitness value of each rule is determined by the 
total reward assigned to the rule. Basically, the aforementioned schemes are based on an 
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economic analogy and consist of a bid competition between fuzzy rules. They measure only 
the goodness of an individual rule and do not consider the ability to cooperate with the 
remaining ones in the population. In fact, in the Michigan approach, since a population 
represents a whole system, each individual cooperates with the same ones in each 
generation. The quality of cooperation is difficult to obtain among these competing 
individuals. 
In HSANE-F, many fuzzy systems are formed in each generation, and each individual may 
combine with different ones in each fuzzy system construction. By taking the average 
system fitness value in which an individual participates, we can approximately measure the 
individual cooperation ability. The measure is based on the fact that the fitness of each 
individual depends on the quality of the whole system it participates in, thus measuring 
how well it cooperates to solve the problem. As to the goodness of each individual, owing to 
the local mapping property, a well-performed rule will also have certain contribution to the 
system performance. On the contrary, a wrongly-mapped rule will degrade the system 
performance. The contribution of each rule to the system depends on its firing strength. 
However, the fitness value is available only when the control fails, during which the firing 
strength of each rule varies with time. It would be complex to distribute the fitness value 
among the participating rules based on the firing strength. A simple way is to equally 
distribute the system fitness value among the participating rules to measure its goodness. 
Therefore, by taking the average system fitness values in which an individual participates, 
we can approximately measure both the cooperation and goodness of the individual. 
Effectiveness of this fitness value distribution approach will be verified in simulations. 
Detailed steps of the approach are as follows. 
Step 1. Divide the fitness value by r  and accumulate the divided value to the fitness record 

of the r  selected rules with their fitness set to zero initially. 
Step 2. The above rule selection, plant control, and fitness division process are repeated 2SP  

(the size of population 2) times. The process ends when each rule has been selected 
for a sufficient number of times. Record the number of times each rule has 
participated in a fuzzy system.  

Step 3. Divide the accumulated fitness value of each rule by the number of times it has been 
selected. The average fitness value represents the performance of an individual. 

When the average fitness of each individual in population 1 is obtained, the HSEFC then 
looks for a better set of individuals to form a new population in the next generation by using 
genetic operators, including reproduction, crossover, and mutation. The detailed description 
of the three operations is as follows.  
In reproduction operation, the elite strategy and tournament selection techniques are used. 
The top-half of best-performing individuals in the population are sorted according to their 
fitness value. Based on the elite strategy, these elites are advanced directly to the next 
generation. Also, to keep a non-decreasing best-so-far fitness value, the rules participating in 
the best-performing system in each generation are directly reproduced in the next 
generation. The remaining individuals are generated by performing tournament selection 
and crossover operations on the elites.  
In crossover operation, the tournament selection scheme is used to select parents. Two 
individuals in the top-half of best-performing individuals are selected at random in the 
tournament selection, and their fitness values are compared. The individual with higher 
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fitness value is selected as one parent. The other is also selected in the same way. Two 
offspring are created by performing crossover on the selected parents. Here, one point 
crossover operation is performed. The top-half of worst-performing individuals are replaced 
by the newly produced offspring. The adopted crossover may be regarded as a kind of elite 
crossover.  
In mutation operation, the gene in an individual is altered randomly by mutation. Uniform 
mutation is used, where a mutated gene is drawn randomly and uniformly from its search 
domain. In the following simulations, mutation probability pm is set to 0.1. 
The elite strategy above can improve the searching speed, but the population diversity may 
also be lost quickly at the same time. To overcome this disadvantage, a population renewal 
technique is used. In each generation, the relationship between each individual is 
monitored. Since half of the next generation population is generated by performing 
crossover on the top-half of best-performing individuals, it is only necessary to check the 
similarities between the top-half of best-performers. The cross correlation value between 
two neighbouring individuals in a performance ranked list is calculated and averaged. The 
mathematical form for this measure is as follows:  

 
1

1 1

/ 2 1

11

2
12 ( )S

T T

i i i i

P

iS

T
i iS

P

D D
D D D D

+ +

−

=

+= ∑   (9) 

where Di is the i th best-performing individual in the rank list. The dimension of Di is 1× ,  
where  is the number of genes in the individual. With this measure, if all of the individuals 
are exactly the same, then S  is equal to 1. This similarity measure is performed for each 
generation. When the measurement similarity is higher than a pre-specified threshold Thr, it 
reflects that the elites have moved to a degree of convergence. If this phenomenon occurs, 
then most parts of the individuals are renewed. In the renewal process, only a portion of the 
top best-performing individuals are reproduced to the next generation, and the remaining 
parts are replaced by newly generated individuals. After the renewal process, the similarity 
value is again calculated on each subsequent generation, and the renewal process is 
performed when the value is higher than the threshold Thr. The renewal process can always 
keep the diversity of the population and thus helps to find the best fuzzy rules. 

4.1.2 Global mapping stage 
This stage performs evolution of population 2. The function of population 2 consists of both 
exploitation and exploration of the rule-combination in a fuzzy system. In exploitation, the 
information about which rules are combined together in a well-performed fuzzy system is 
propagated from generation to generation. On the other hand, evolutionary procedure is 
performed on population 2 to search the best-combination in exploration. Without 
population 2, in each generation, the rules participating in a fuzzy system should be 
randomly selected from population 1. Population 2 helps to concentrate the search on the 
best rule combination. Since populations 1 and 2 are evolved concurrently, if individuals in 
the former are updated frequently, the search in the latter might be meaningless. To avoid 
this phenomenon, as stated in the local-mapping-search-stage, the top-half of best-
performing individuals in population 1 are reproduced directly to the next generation. Only 
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economic analogy and consist of a bid competition between fuzzy rules. They measure only 
the goodness of an individual rule and do not consider the ability to cooperate with the 
remaining ones in the population. In fact, in the Michigan approach, since a population 
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of the r  selected rules with their fitness set to zero initially. 
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(the size of population 2) times. The process ends when each rule has been selected 
for a sufficient number of times. Record the number of times each rule has 
participated in a fuzzy system.  

Step 3. Divide the accumulated fitness value of each rule by the number of times it has been 
selected. The average fitness value represents the performance of an individual. 

When the average fitness of each individual in population 1 is obtained, the HSEFC then 
looks for a better set of individuals to form a new population in the next generation by using 
genetic operators, including reproduction, crossover, and mutation. The detailed description 
of the three operations is as follows.  
In reproduction operation, the elite strategy and tournament selection techniques are used. 
The top-half of best-performing individuals in the population are sorted according to their 
fitness value. Based on the elite strategy, these elites are advanced directly to the next 
generation. Also, to keep a non-decreasing best-so-far fitness value, the rules participating in 
the best-performing system in each generation are directly reproduced in the next 
generation. The remaining individuals are generated by performing tournament selection 
and crossover operations on the elites.  
In crossover operation, the tournament selection scheme is used to select parents. Two 
individuals in the top-half of best-performing individuals are selected at random in the 
tournament selection, and their fitness values are compared. The individual with higher 
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fitness value is selected as one parent. The other is also selected in the same way. Two 
offspring are created by performing crossover on the selected parents. Here, one point 
crossover operation is performed. The top-half of worst-performing individuals are replaced 
by the newly produced offspring. The adopted crossover may be regarded as a kind of elite 
crossover.  
In mutation operation, the gene in an individual is altered randomly by mutation. Uniform 
mutation is used, where a mutated gene is drawn randomly and uniformly from its search 
domain. In the following simulations, mutation probability pm is set to 0.1. 
The elite strategy above can improve the searching speed, but the population diversity may 
also be lost quickly at the same time. To overcome this disadvantage, a population renewal 
technique is used. In each generation, the relationship between each individual is 
monitored. Since half of the next generation population is generated by performing 
crossover on the top-half of best-performing individuals, it is only necessary to check the 
similarities between the top-half of best-performers. The cross correlation value between 
two neighbouring individuals in a performance ranked list is calculated and averaged. The 
mathematical form for this measure is as follows:  
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where Di is the i th best-performing individual in the rank list. The dimension of Di is 1× ,  
where  is the number of genes in the individual. With this measure, if all of the individuals 
are exactly the same, then S  is equal to 1. This similarity measure is performed for each 
generation. When the measurement similarity is higher than a pre-specified threshold Thr, it 
reflects that the elites have moved to a degree of convergence. If this phenomenon occurs, 
then most parts of the individuals are renewed. In the renewal process, only a portion of the 
top best-performing individuals are reproduced to the next generation, and the remaining 
parts are replaced by newly generated individuals. After the renewal process, the similarity 
value is again calculated on each subsequent generation, and the renewal process is 
performed when the value is higher than the threshold Thr. The renewal process can always 
keep the diversity of the population and thus helps to find the best fuzzy rules. 

4.1.2 Global mapping stage 
This stage performs evolution of population 2. The function of population 2 consists of both 
exploitation and exploration of the rule-combination in a fuzzy system. In exploitation, the 
information about which rules are combined together in a well-performed fuzzy system is 
propagated from generation to generation. On the other hand, evolutionary procedure is 
performed on population 2 to search the best-combination in exploration. Without 
population 2, in each generation, the rules participating in a fuzzy system should be 
randomly selected from population 1. Population 2 helps to concentrate the search on the 
best rule combination. Since populations 1 and 2 are evolved concurrently, if individuals in 
the former are updated frequently, the search in the latter might be meaningless. To avoid 
this phenomenon, as stated in the local-mapping-search-stage, the top-half of best-
performing individuals in population 1 are reproduced directly to the next generation. Only 
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the remaining poorly-performed individuals are updated. Owing to the local mapping 
property, the update of these rules has only local influence on its participating fuzzy system. 
In general, the newly generated rules outperform the original poorly-performing ones. So 
the evolution of population 1 is also helpful to that of population 2, that is, both are 
cooperative. This property will be verified in the simulations. 
In this stage, an integer-value encoding scheme is used, and the alleles have values in the set 
{1, 2, …,  1SP }. There are r genes in each individual, and it has the following form, 

| 2| 7|5|9| … | 1SP | … |8|1| 

The population size of population 2 is set to be 2SP , indicating that 2SP  fuzzy controllers are 

applied to plant control in each generation. Due to the following two reasons, the genetic 
operation used in this stage is different from that used in the local-mapping search stage. 
First, since a flexible partition of precondition part is adopted and reinforcement learning is 
performed, the rule number r  in a fuzzy system is usually small. Population 2 converges 
quickly due to the small individual length. Second, the character of population 2 in the 
whole searching task is auxiliary and should always maintain diversity to coordinate the 
evolution of population 1 from generation to generation. If population 2 converges faster 
than population 1, then the evolution of population 1 is useless. In order to maintain 
population diversity, the following genetic operation is used. The top-half of best-
performing individuals in population 2 are sorted according to their fitness values. To select 
the parents for crossover operation, the tournament select scheme is adopted and performed 
on the top-half of best-performing individuals. By performing the one-point crossover 
operation on the selected parents, offspring can be created and half of the new population is 
produced in this way. As stated in the local-rule searching stage, it is desired to maintain a 
non-decreasing best-so-far fitness value, consequently the best-performing individual is 
directly reproduced in the next generation. As to the remaining half of the population, they 
are created by randomly generated individuals. For the mutation operation, a mutated gene 
is selected randomly and uniformly from the integer set {1, 2, …, 1SP }. The mutation 

probability is set to 0.1. 
After the above crossover and mutation operations, overlapping of rules might occur. If this 
occurs, then the total number of rules in a fuzzy system is less than r . For this situation, the 
overlapping of each rule is regarded as a weighting factor F of its firing strength. If the 
overlapping number of rule i  is in , then i iF n= . With the weighting factor, the output 

equation of the fuzzy system in (4) can be rewritten as 
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4.2 HSEFC for recurrent fuzzy controller design (HSEFC-R) 
This subsection introduces the application of HSEFC to recurrent fuzzy controller design. 
The recurrent fuzzy rule to be designed is previously described in (5). By regarding each 
recurrent rule as an individual in population 1 of HSEFC-F, the recurrent fuzzy controller 
can be designed. However, this approach does not use the recurrent fuzzy system structure 
to its  full advantage. To speed up the design process, the HSEFC-R designed specifically for 
the recurrent fuzzy rule is proposed. The divide-and-conquer concept is incorporated in 
HSEFC-R (Juang, 2005b). Based on this concept, the recurrent fuzzy rule in (5) is 
decomposed into two sub-rules, the spatial sub-rule and the temporal sub-rule. The 
antecedent parts of both sub-rules are the same as that in (5). The consequent part in each 
spatial sub-rule considers only the output variable u , while the consequent part in each 

temporal sub-rule considers only the variables 1h , …, rh . In HSEFC-R, the spatial and 

temporal sub-rules are evolved simultaneously. Figure 4 shows the HSEFC-R structure, 
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Fig. 4. Structure of the HSEFC for recurrent fuzzy system design (HSEFRC-R). 

where there are three populations. Populations 1 and 2 are responsible for spatial and 
temporal sub-rules searches, respectively. Population 3 is responsible for the whole 
recurrent fuzzy system search. Each individual in population 1 represents a spatial sub-rule, 
whereas each individual in population 2 represents a temporal sub-rule. Since the spatial 
and temporal sub-rules share the same antecedent part, the antecedent parameters are 
encoded in population 1 only. A recurrent fuzzy system consisting of r rules is constructed 
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the remaining poorly-performed individuals are updated. Owing to the local mapping 
property, the update of these rules has only local influence on its participating fuzzy system. 
In general, the newly generated rules outperform the original poorly-performing ones. So 
the evolution of population 1 is also helpful to that of population 2, that is, both are 
cooperative. This property will be verified in the simulations. 
In this stage, an integer-value encoding scheme is used, and the alleles have values in the set 
{1, 2, …,  1SP }. There are r genes in each individual, and it has the following form, 

| 2| 7|5|9| … | 1SP | … |8|1| 

The population size of population 2 is set to be 2SP , indicating that 2SP  fuzzy controllers are 

applied to plant control in each generation. Due to the following two reasons, the genetic 
operation used in this stage is different from that used in the local-mapping search stage. 
First, since a flexible partition of precondition part is adopted and reinforcement learning is 
performed, the rule number r  in a fuzzy system is usually small. Population 2 converges 
quickly due to the small individual length. Second, the character of population 2 in the 
whole searching task is auxiliary and should always maintain diversity to coordinate the 
evolution of population 1 from generation to generation. If population 2 converges faster 
than population 1, then the evolution of population 1 is useless. In order to maintain 
population diversity, the following genetic operation is used. The top-half of best-
performing individuals in population 2 are sorted according to their fitness values. To select 
the parents for crossover operation, the tournament select scheme is adopted and performed 
on the top-half of best-performing individuals. By performing the one-point crossover 
operation on the selected parents, offspring can be created and half of the new population is 
produced in this way. As stated in the local-rule searching stage, it is desired to maintain a 
non-decreasing best-so-far fitness value, consequently the best-performing individual is 
directly reproduced in the next generation. As to the remaining half of the population, they 
are created by randomly generated individuals. For the mutation operation, a mutated gene 
is selected randomly and uniformly from the integer set {1, 2, …, 1SP }. The mutation 

probability is set to 0.1. 
After the above crossover and mutation operations, overlapping of rules might occur. If this 
occurs, then the total number of rules in a fuzzy system is less than r . For this situation, the 
overlapping of each rule is regarded as a weighting factor F of its firing strength. If the 
overlapping number of rule i  is in , then i iF n= . With the weighting factor, the output 

equation of the fuzzy system in (4) can be rewritten as 

 1

1

( )

( )

r

i i i
i

r

i i
i

Fb
u

F

μ

μ

′

=
′

=

=
∑

∑

x

x

  (10) 

where r r′ ≤  is the total number of rules and 
1

r

ii
F r

′

=
=∑ .  

Symbiotic Evolution Genetic Algorithms for Reinforcement Fuzzy Systems Design 

 

413 
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Fig. 4. Structure of the HSEFC for recurrent fuzzy system design (HSEFRC-R). 

where there are three populations. Populations 1 and 2 are responsible for spatial and 
temporal sub-rules searches, respectively. Population 3 is responsible for the whole 
recurrent fuzzy system search. Each individual in population 1 represents a spatial sub-rule, 
whereas each individual in population 2 represents a temporal sub-rule. Since the spatial 
and temporal sub-rules share the same antecedent part, the antecedent parameters are 
encoded in population 1 only. A recurrent fuzzy system consisting of r rules is constructed 
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by randomly selecting r  individuals from both populations 1 and 2. The selected 
individuals from both populations are recorded in population 3. Each individual in 
population 3 represents a whole fuzzy system. The task of creating population 3 is not only 
to search the best combinations of the r  spatial sub-rules or temporal sub-rules selected 
from each population, but also to search for the best match of both types of sub-rules. Each 
recurrent fuzzy system encoded in population 3 is applied to a dynamic plant control with 
the return of a performed evaluation. The evaluation is used as the fitness value of the 
controller. As in HSEFC-F, the fitness value for each individual in population 3 is set to the 
time steps until failure for each control trial. This fitness value is then assigned to the 
participating sub-rules selected from populations 1 and 2. With the distributed fitness value, 
evolution of populations 1 and 2 is performed in the local-mapping search stage, while 
evolution of population 3 is performed in the global-mapping search stage. These two stages 
are executed concurrently until a successful control is achieved. Detailed operations of these 
two stages are described as follows.  

4.2.1 Local mapping stage 
The objective of this stage is to explore the well-performing spatial and temporal sub-rules 
in each local input region. First, populations 1 and 2 are created by randomly generated 
individuals. The sizes of both the populations are equal to and are denoted as SP . The real-
value encoding scheme is used in both populations. Each individual in population 1 encodes 
a spatial  sub-rule and has the following form: 

1 1 2 2| | | | | ... | | | |i i i i in in im m m bσ σ σ  

Each individual in population 2 encodes only the consequent part of a temporal sub-rule 
because the spatial and temporal sub-rules share the same antecedent part. Each individual 
has the following form: 

1 2| | | ... | |i i irw w w  

 The relationship between the individuals in populations 1 and 2 is cooperative. The genetic 
operation of each population is executed independently and concurrently. The fitness value 
decision method of an individual is similar to that used in HSEFC-F.  If the fitness value of 
the recurrent fuzzy system consisting of r  recurrent rules is Fit, then the distributed fitness 
value of each participating individuals from populations 1 and 2 is set to Fit/r. When the 
fitness value of each individual in both populations is given, new populations are generated 
by using genetic operations. Like HSEFC-F, the elite strategy and tournament selection 
techniques are used here. The reproduction, crossover, and mutation operations are the 
same as those used in the local-mapping search stage of HSEFC-F. The mutation probability 
is set at 0.1. To keep population diversity, the population renewal technique is applied to 
both the populations. A threshold value, Thr, is set for both populations. If the similarity 
value of the top-half of best-performing individuals is higher than Thr in each individual, 
then the renewing technique is applied to that population.  

4.2.2 Global mapping stage 
This stage performs evolution of population 3. An integer-value encoding scheme is used. 
Each individual contains 2 r genes. The first r genes represent the r spatial sub-rules 
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selected from population 1, while the remaining r  genes represent the r temporal sub-rules 
selected from population 2. Each gene representing the selected sub-rule has value in the 
integer set {1, 2, …, SP }. Each individual has the following form 

|7|2|4|…| SP | …|11|4||2|13|7|…| SP |…|15|4| 

The temporal sub-rule recorded in position r k+  shares the same antecedent part with the 

spatial sub-rule in position k . The population size is set to 3SP , indicating that 3SP  recurrent 

fuzzy controllers are built and applied to a dynamic plant control in each generation. The 
fitness value of each individual is assigned according to the controller performance 
evaluation. For the genetic operation, in addition to the crossover operation, the other 
operations used are the same as those used in the global-mapping search stage of HSEFC-F. 
In the crossover operation, to exchange the spatial and temporal sub-rule combination 
information of each population, a two-point crossover operation is performed. One 
crossover site is located at the first r genes, indicating the exchange of spatial sub-rule 
combination information; the other is located at the last r  genes, indicating the exchange of 
temporal sub-rule combination information. 

5. Simulations 
This section presents simulation results of HSEFC for feedforward and recurrent fuzzy 
controller design under genetic reinforcement learning environments. All simulations in the 
following examples are written in C++ program, and run on a Pentium-1G personal 
computer. For the fuzzy rule number selection, it is somewhat heuristic and depends on the 
complexity of the plant to be controlled. In the following examples, the number of rules in 
each fuzzy system is set to five, i.e., r = 5. 

5.1 Feedforward fuzzy controller design 
Example 1. Cart-Pole Balancing System. In this example, HSEFC-F is applied to a classic 
control problem referred to as the cart-pole balancing problem. This problem is often used 
as an example of inherently unstable and dynamic systems to demonstrate both modern and 
classic control techniques, and is now used as a control benchmark (Andersonm 1989). The 
cart-pole balancing problem is the problem of learning how to balance an upright pole. 
There are four state variables in the system:θ, the angle of the pole from an upright position 
(in degrees); θ , the angular velocity of the pole (in degrees/second); x , the horizontal 
position of the center of the cart (in meters); and x , the velocity of the cart (in m/s). The 
only control action is u , which is the amount of force (Newton) applied to the cart to move 
it toward its left or right. The system fails when the pole falls past a certain angle (12 degrees 
is used here) or the cart runs into the bounds of its track (the distance is 2.4m from the center 
to both bounds of the track). Details of the control system description can be found in (Juang 
et al. 2000).  A control strategy is deemed successful if it can balance a pole for 120000 time 
steps. In designing the fuzzy controller, the four states are fed as the controller inputs, and 
the controller output is u . In HSEFC-F, the number of individuals (rules) in population 1 is 
set to 50 (i.e., 1SP =50). The size of population 2 is set to 50 (i.e. 2SP =50), indicating that fifty 
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by randomly selecting r  individuals from both populations 1 and 2. The selected 
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the recurrent fuzzy system consisting of r  recurrent rules is Fit, then the distributed fitness 
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complexity of the plant to be controlled. In the following examples, the number of rules in 
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Example 1. Cart-Pole Balancing System. In this example, HSEFC-F is applied to a classic 
control problem referred to as the cart-pole balancing problem. This problem is often used 
as an example of inherently unstable and dynamic systems to demonstrate both modern and 
classic control techniques, and is now used as a control benchmark (Andersonm 1989). The 
cart-pole balancing problem is the problem of learning how to balance an upright pole. 
There are four state variables in the system:θ, the angle of the pole from an upright position 
(in degrees); θ , the angular velocity of the pole (in degrees/second); x , the horizontal 
position of the center of the cart (in meters); and x , the velocity of the cart (in m/s). The 
only control action is u , which is the amount of force (Newton) applied to the cart to move 
it toward its left or right. The system fails when the pole falls past a certain angle (12 degrees 
is used here) or the cart runs into the bounds of its track (the distance is 2.4m from the center 
to both bounds of the track). Details of the control system description can be found in (Juang 
et al. 2000).  A control strategy is deemed successful if it can balance a pole for 120000 time 
steps. In designing the fuzzy controller, the four states are fed as the controller inputs, and 
the controller output is u . In HSEFC-F, the number of individuals (rules) in population 1 is 
set to 50 (i.e., 1SP =50). The size of population 2 is set to 50 (i.e. 2SP =50), indicating that fifty 
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fuzzy controllers are built and evaluated per generation. The evaluation of a fuzzy controller 
consists of a single trial to the cart-pole system. The similarity measure threshold Thr in the 
renewing process is set at 0.5. The fitness value is equal to the number of time steps in which 
the pole remains balanced. For each control trial, the initial values of ( , , , )x x θ θ  are random 
values in region [-2, 2]x[-1.5, 1.5]x[-5, 5]x[-40, 40]. In this example, 100 runs are simulated, 
and a run ends when a successful controller is found or a failure run occurs. The definition 
of a failure run is if no successful fuzzy controller is found after 25,000 trials. The number of 
pole-balance trials and the CPU time (the time from the first trial to the end of a successful 
trial) are measured. The average CPU time and trial number of the HSEFC-F are 4.0 (sec) 
and 179, respectively. Figure 5 (a) and (b) show the control results of position and angle in 
the first 1000 time steps of three different runs with different initial states. For SEFC, the 
average results are 5.1 (sec) and 256 trials. The results show that the performance of HSEFC-
F is better than SEFC. Since the performance of SEFC has been shown to be better than other 
compared reinforcement learning methods in (Juang et al., 2000), only SEFC is compared 
this example. 

 
Fig. 5. Control results of (a) position (b) angle in the first 1000 time steps of three different 
runs with different initial states in Example 1. 

5.2 Recurrent fuzzy controller design 
Example 2. Dynamic Plant Control. The dynamic plant to be controlled is described by the 
following equation 

 2( 1) 0.6 ( ) 0.03 ( 1) ( ) 0.01 ( 2) 0.2 ( 3)p p py k y k y k u k u k u k+ = + − + − + −  (11) 
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The current output of the plant depends on two previous outputs and four previous inputs. 
In (Kim et al., 1998), it is shown that for this type of plant, a poor performance is achieved by 
a linear predictive control. The controller input u is in the range [-20, 20]. The initial states 
are (0)py = (1)py = 3. The regulation point refy  is set to 10. The performance of a controller 

is measured by the number of time steps in which the controlled state py  satisfies the 

following constraint. The constraint set starts from the initial state and after 10 times of 
control, the state of  py  should be within the region [ refy -0.2, refy +0.2], otherwise a failure 

occurs. A recurrent fuzzy controller designed by HSEFC-R is applied to the plant. In 
HSEFC-R, the sizes of populations 1, 2, and 3 are all set to 100. The similarity measure 
threshold hrT  in the renewal process is set to 0.35.  Since a recurrent fuzzy controller is used, 

only the current state ( )py k  and reference state refy  are fed as the controller inputs. Since a 

recurrent fuzzy controller consists of five recurrent fuzzy rules, the number of genes in each 
individual of populations 1 or 2 is equal to 5. One hundred runs are simulated, and a run 
ends when a successful controller is found. A failure run is said to occur if no successful 
fuzzy controller is found after 100,000 trials.  The average CUP time and trial number of 
HSANE-R are 0.65 (sec) and 1853, respectively. For SEFC, the results are 1.37 (sec) and 3960 
trials. The performance of HSANE-R is much better than SEFC. Detailed comparisons of 
different design methods can be found in (Juang, 2005b). 

 
Fig. 6. Dynamic plant control results of five different runs using HSEFC-R in Example 2. 

6. Conclusion 
This chapter introduces a unified symbiotic evolution framework (the HSEFC) for 
feedforward and recurrent fuzzy controller design in reinforced learning environments. The 
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design of a fuzzy controller is divided by the HSEFC into two iterative search stages: the 
local-mapping search stage and the global-mapping search stage. In this way, the 
population in each stage is evolved independently and concurrently. Furthermore, to avoid 
the premature population phenomenon, modifications of general genetic operations are also 
incorporated in the design process. In the interests of utility and economy, the HSEFC 
operates under two formats; HSEFC-F and HSEFC-R. For feedforward fuzzy controller 
design, HSEFC-F is presented, while for recurrent fuzzy controller design, HSEFC-R, which 
uses the divide-and-conquer technique on spatial and temporal sub-rules search, is 
presented. As shown, simulation results in static and dynamic plant control problems have 
verified the effectiveness and efficiency of HSEFC-F and HSEFC-R.  Although in HSEFC 
solutions, the designed fuzzy controller structure is currently assigned in advance, further 
work on HSEFC intends to focus on its extension to automatic controller structure 
determination. A more accurate fitness assignment for each single rule in symbiotic 
evolution is another future research topic.  
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design of a fuzzy controller is divided by the HSEFC into two iterative search stages: the 
local-mapping search stage and the global-mapping search stage. In this way, the 
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1. Introduction 
At the present time, many sings seem to indicate that we live a global energy and 
environmental crisis. The scientific community argues that the global warming process is, at 
least in some degree, a consequence of modern societies unsustainable development. A key 
area in that situation is the citizens mobility. World economies seem to require fast and 
efficient transportation infrastructures for a significant fraction of the population. 
The non-stopping overload process that traffic networks are suffering calls for new 
solutions. In the vast majority of cases it is not viable to extend that infrastructures due to 
costs, lack of available space, and environmental impacts. Thus, traffic departments all 
around the world are very interested in optimizing the existing infrastructures to obtain the 
very best service they can provide. 
In the last decade many initiatives have been developed to give the traffic network new 
management facilities for its better exploitation. They are grouped in the so called Intelligent 
Transportation Systems. 
Examples of these approaches are the Advanced Traveler Information Systems (ATIS) and 
Advanced Traffic Management Systems (ATMS). Most of them provide drivers or traffic 
engineers the current traffic real/simulated situation or traffic forecasts. They may even 
suggest actions to improve the traffic flow. 
To do so, researchers have done a lot of work improving traffic simulations, specially 
through the development of accurate microscopic simulators. In the last decades the 
application of that family of simulators was restricted to small test cases due to its high 
computing requirements. Currently, the availability of cheap faster computers has changed 
this situation. 
Some famous microsimulators are MITSIM(Yang, Q., 1997), INTEGRATION (Rakha, H., et 
al., 1998), AIMSUN2 (Barcelo, J., et al., 1996), TRANSIMS (Nagel, K. & Barrett, C., 1997), etc. 
They will be briefly explained in the following section. 
Although traffic research is mainly targeted at obtaining accurate simulations there are few 
groups focused at the optimization or improvement of traffic in an automatic manner — not 
dependent on traffic engineers experience and “art”. 
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One of the most important problems in traffic optimization is traffic light cycles1 
optimization. This is a hard Combinatorial Problem which seems not to have a known 
deterministic solution at the present time. 
In our group we have been working on the optimization of traffic lights cycles for the better 
performance of urban traffic networks. As shown in (Brockfeld, Elmar, et al., 2001), traffic 
light cycles have a strong influence in traffic flow results. For that reason we decided to 
focused on that problem. We have combined a Genetic Algorithm (GA) as optimization 
technique with a traffic microscopic simulator running on a scalable MIMD multicomputer2. 
We have tested the fore mentioned three pillar model with some works (Sánchez, J. J. et al., 
2004), (Sánchez, J. J. et al., 2005 A), (Sánchez, J. J. et al., 2005 B), (Sánchez, J. J. et al., 2006), 
(Sánchez, J. J. et al., 2007) and (Sánchez, J. J. et al., 2008). 
The rest of this chapter is organized as follows. In section 2 we give a wide survey of the 
current State of the Art. In 2.4 we briefly expose our own contribution to the matter. In 
section 3 we explain with some detail the proposed methodology. In section 4 we outline the 
achieved goals obtained with the explained methodology. Finally, section 5 gives some 
ideas of research foreseeable trends. 

2. State of the art 
In this subsection we want to give a survey o some significant works in the area. We have 
categorized works in three classes: those mostly related to Advanced Traveler Information 
Services (ATIS); those mainly about Advanced Traffic Management Systems (ATMS), and in 
a third subset we have called Advanced Traffic Optimization Systems (ATOS), those where 
traffic is not just managed but optimized — or tried to be optimized — in an automatic 
manner, without human interaction. 

2.1 Advanced traveler information services 
Advanced Traveler Information Services are those services that can potentially help drivers 
to make better decisions in order to reduce their travel time. There are many initiatives in 
this area. Here we show some examples. 
In (Florian, D. G, 2004), this thesis provides an empirical study of the impact of ATIS on 
transportation network quality of service using an application of DynaMIT (Dynamic 
network assignment for the Management of Information to Travelers). The main results are 
that the provision of dynamic route guidance can simultaneously benefit the individual 
performance of drivers, both guided and unguided, as well as the system performance of 
existing transportation infrastructure. 
In (Hafstein, S. F., et al., 2004) a high resolution cellular automata freeway traffic simulation 
model applied to a Traffic Information System. They provide a simulation for current traffic 
zones without loop detectors, and 30 min. and 60 min. future traffic forecasts. They run a 
java applet in a web page in order to give the network users this useful information. 

                                                 
1 Traffic light cycle: the finite sequence of states — e.g. green, orange, etc. — that a traffic 
light runs iteratively. 
2 MIMD: Multiple Instruction Multiple Data: A type of parallel computing architecture 
where many functional units perform different operations on different data. For example a 
network of PC's working in parallel. 
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2.2 Advanced traffic management systems. 
Advanced Traffic Management Systems are those systems that help engineers to better 
manage traffic networks. There are many works around this topic, most of them focused on 
traffic simulation. Some examples are the following. 
The INTEGRATION model has been used to simulate traffic for the Salt Lake Metropolitan 
Area (Rakha, H., et al., 1998).The objective of this paper is threefold. First, the feasibility of 
modeling a large-scale network at a microscopic level of detail is presented. Second, the 
unique data collection challenges that are involved in constructing and calibrating a large-
scale network microscopically are described. Third, the unique opportunities and 
applications from the use of a microscopic as opposed to a macroscopic simulation tool are 
described. 
The MITSIM model (Yang, Q., 1997) has been used to evaluate aspects of both the traffic 
control system and the ramp configurations of the Central Artery/Tunnel project in Boston. 
It explicitly incorporates traffic prediction, time variant traffic information, and dynamic 
route choice. 
AIMSUN2 has been used to simulate the Rings Roads of Barcelona (Barcelo, J., et al., 1996). 
Uses parallel computers to shorten the execution time. 
Traffic simulation using CA models has also been performed on vector supercomputers to 
simulate traffic in shortest possible time (Nagel, K. & Schleicher, A., 1994). 
The INTELSIM model is used in (Aycin, M. F. & Benekohal, R. F., 1998) and (Aycin, M. F. & 
Benekohal, R. F., 1999). In those works a linear acceleration car-following model has been 
developed for realistic simulation of traffic flow in intelligent transportation systems (ITS) 
applications. The authors argue that the new model provides continuous acceleration 
profiles instead of the stepwise profiles that are currently used. The brake reaction times and 
chain reaction times of drivers are simulated. As a consequence, they say that the good 
performance of the system in car-following and in stop-and-go conditions make this model 
suitable to be used in ITS. 
Moreover, in (Aycin, M. F. & Benekohal, R. F., 1999) they compare many car-following 
methods with their proposed method, and with field data. 
In (Bham et al., 2004) they proposed a ``high fidelity'' model for simulation of high volume 
of traffic at the regional level. Their model uses concepts of Cellular Automata and Car-
Following models. They propose the concept of Space Occupancy (SOC) used to measure 
the traffic congestion. Their aim is to simulate high volume of traffic with shorter execution 
time using efficient algorithms on a personal computer. Like in our case, they based their 
simulator on Cellular Automata concepts. Although their model could be more accurate 
than the one of ourselves, in our work we go further using our simulator inside a GA for 
optimizing the traffic — not just for simulating traffic. 
In (Tveit, O., 2003), Dr. Tveit, a senior researcher with SINTEF3, explains that a common 
cycle time4 for a set of intersections is a worse approach than a distributed and 

                                                 
3 SINTEF means The Foundation for Scientific and Industrial Research at the Norwegian 
Institute of Technology. 
4 Common cycle time: This is a very simple way of programming traffic lights in an 
intersection or groups of intersections. All the traffic lights share a cycle length. The starting 
point of each one of the states or stages in the particular cycle of every traffic light may be 
different, but the cycle period is the same for all of them. 
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individualized one. His conclusions appear sound and convincing, so we consider them in 
our approach. In our system every intersection has independent cycles. 
In (Smith, M. J., 1988) the use of responsive signals5, with network capacity (rather than total 
travel cost) as a control criterion is argued. The capacity of the network is maximized if the 
signals operate to equalize traffic density on the most occupied parts of the network. This is 
another example of multiple local optimizations instead of a global optimization, like the 
one of ours. 
In (Logi, F. & Ritchie, S.G., 2001) a knowledge based system is presented for traffic 
congestion management. The proposed model comprises a data fusion algorithm, an 
algorithm for selection the suitable control plan, and it presents the proposed plan with an 
explanation of the reasoning process for helping the traffic operators decisions. They 
presented also a validation example for displaying the ability of their system to reduce 
congestion. From our point of view, although this seems a very interesting approach to the 
matter, both the selection of control strategies and the estimation of future traffic are based 
on the experience of traffic engineers. In spite of this, in our methodology we use the 
combination of two widely accepted and trusted techniques. We use a more accurate 
estimation of future traffic — thought a microsimulator — and a genetic algorithm for the 
optimization of the traffic flow. 

2.3 Advanced traffic optimization systems 
TRANSIMS project used CA models to simulate traffic for the city of Fortworth-Dallas using 
parallel computers (Nagel, K. & Barrett, C., 1997). This paper presents a day-to-day re-
routing relaxation approach for traffic simulations. Starting from an initial plan-set for the 
routes, the route-based microsimulation is executed. The result of the microsimulation is fed 
into a rerouter, which re-routes a certain percentage of all trips. 
In (Wann-Ming Wey, et al., 2001), an isolated intersection is controlled applying techniques 
based on linear systems control theory to solve the linear traffic model problem. The main 
contribution of this research is the development of a methodology for alleviating the 
recurrent isolated intersection congestion caused by high transportation demand using 
existing technology. Again this work deals with very small scale traffic networks — one 
intersection. 
In (Schutter, B. De & Moor, B. De, 1997) the authors present a single intersection — two two 
ways streets — model describing the evolution of the queue lengths in each lane as a 
function of time, and how (sub)optimal traffic switching schemes for this system can be 
determined. 
In (Febbraro, A. Di, et al., 2002) Petri Nets are applied to provide a modular representation 
of urban traffic networks. An interesting feature of this model is the possibility of 
representing the offsets among different traffic light cycles as embedded in the structure of 
the model itself. Even though it is a very interesting work, the authors only optimize the 
coordination among different traffic light cycles. Our cycle optimization methodology is a 
complete flexible one because we implicitly optimize not only traffic light offsets but also 
every stage length. 

                                                 
5 Responsive signals: Traffic signals capable o adapting their state to the current traffic 
situation near them. 
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Another interesting work using Petri Nets is (Li, L et al., 2004) where they are applied to 
control a single intersection by means of programmable logic controllers (PLCs). They 
compare three methods for modeling the traffic lights at an intersection and found out that 
the more suitable is the one that combines Petri nets with PLCs. Again, in this research just 
one intersection is optimized, and not a whole traffic network. 
In (Spall, J.C. & Chin, D.C., 1994) the author presented a neural network (NN) approach for 
optimizing traffic light cycles. A neural network is used to implement the traffic lights 
control function. The training process of the NN is fed exclusively with real data. This being 
so, it would only be useful in systems with an on-line data acquisition module installed. 
However, so far such systems are not common at all. 
The “offset-time”6 between two traffic lights is optimized using Artificial Neural Networks 
(ANNs) at (López, S., et al. 1999). Although our system does not treat explicitly the offset 
time parameter we think that our system faces traffic optimization in a much more flexible 
manner. 
In (GiYoung L., 2001) a real-time local optimization of one intersection technique is 
proposed. It is based on fuzzy logic. Although an adaptive optimization may be very 
interesting — we checked out this in (Sánchez, J. J. et al., 2004) — we believe that a global 
optimization is a more complete approach to the problem. 
In (You-Sik, H. et al., 1999) authors present a fuzzy control system for extending or 
shortening the fixed traffic light cycle. By means of electrosensitive traffic lights they can 
extend the traffic cycle when many vehicles are passing on the road or reduce the cycle if 
there are few vehicles passing. Through simulation they presented efficiency improvement 
results. This work performs a local adaptation for a single traffic light instead of a global 
optimization. 
In (Rouphail, N., et al., 2000) an “ad hoc” architecture is used to optimize a 9 intersection 
traffic network. It uses Genetic Algorithms as an optimization technique running on a single 
machine. The CORSIM7 model is used within the evaluation function of the GA. In this work 
scalability is not addressed. Authors recognize that it is a customized non scalable system. 
Our system has the scalability feature thanks to the intrinsic scalability of the Beowulf 
Cluster and the parallel execution of the evaluation function within the GA. 
In (You Sik Hong, et al., 2001) the concept of the optimal green time algorithm is proposed, 
which reduces average vehicle waiting time while improving average vehicle speed using 
fuzzy rules and neural networks. Through computer simulation, this method has been 
proven to be much more efficient than using fixed time cycle signals. The fuzzy neural 
network will consistently improve average waiting time, vehicle speed, and fuel 
consumption. This work only considers a very small amount of traffic signals — two near 
intersections — in the cycle optimization. We do agree with them about the non-suitability 
of fixed cycles. 
An interesting combination of Genetic Algorithms and Traffic Simulation is published in 
(Taniguchi, E. & Shimamoto, H., 2004). In this work a routing and scheduling system for 
freight carrier vehicles is presented. They use Genetic Algorithms as optimization technique. 
The objective of the GA is the minimization of the costs of travel. A dynamic vehicle routing 
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individualized one. His conclusions appear sound and convincing, so we consider them in 
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algorithm is proposed and tested with a test road network. The implemented traffic 
simulation model is macroscopic. 
Another very interesting work is presented in (Varia, H.R. & Dhingra, S.L., 2004). A 
dynamic system-optimal (DSO) traffic assignment model is formulated for a congested 
urban network with a number of signalized intersections. They also combine traffic 
simulation with Genetic Algorithms. The aim of this work is to assign any traveler a route. A 
GA is used to minimize the users total travel time. A macroscopic model is used for the 
estimation of traffic delays. The DSO problem is solved with fixed signal timings, and with 
the optimization of signal timings. 
In (Vogel, A. et al., 2000) every intersection is optimized considering only local information. 
Moreover, it can be adapted to short and long term traffic fluctuations. In our case we 
perform a global optimization instead of multiple local optimizations. We think that our 
approach may be a more efficient exploitation of the traffic infrastructure. 
A very interesting work is published in (Wiering, M. et al., 2004). In this work, traffic is 
regarded as formed by a set of intersections to be optimized in a stand alone manner. They 
proposed to use reinforcement learning algorithms to optimize what they consider a multi-
agent decision problem. We do not agree with them. Although a local optimization can 
obviously reduce average waiting times of cars — as it seems to happen with simulated tests 
at this work — we think that a global optimization taking into account every intersection in 
a zone should be more profitable. 

2.4 Own contribution. 
In this subsection we have included our contribution to the art. In (Sánchez, J. J. et al., 2004) 
we presented our methodology for the optimization of Traffic Light Cycles in a Traffic 
Network. The very good results of a parallel speed-up study convinced us that it was 
advisable to use a “Beowulf Cluster” as parallel computing system. 
In OPTDES IV8 we shared a scalability study on that architecture. We ran tests using four 
networks from 80 up to 1176 cells. In that work we found out that our system had a very 
good performance for all cases. 
In (Sánchez, J. J. et al., 2005 A) we compared two versions of our microscopic traffic 
simulator: a stochastic versus a deterministic traffic simulator. There were three differences 
between the stochastic and the deterministic version: The cells updating order; the new 
vehicle creation time and the acceleration probability. From that work we realized that the 
stochastic simulator is a suitable — convergent — statistical process to compare with; and 
we demonstrated that the deterministic simulator outputs are highly linearly correlated 
with the stochastic ones. Therefore, our deterministic simulator can arrange the population 
ranking in order of fitness at least as well as the stochastic simulator, but with a remarkably 
lower computing time. 
In the research presented for CIMCA2005 (Sánchez, J. J., Galán, M. J., & Rubio, E., 2005 B) 
we described the difference between two sorts of encoding, yielding different crossover and 
mutation strategies. The main achievement in that work was to demonstrate — by means of 
a wide set of tests — that, at least for our particular case, a bit level crossover combined with 
a variable mutation probability means a great saving of computing time. Besides, we noticed 
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how that choice lets the algorithm cover the solution space faster due to a bigger gene 
variability between generations. This combination seems to avoid premature convergence. 
In ECT2006 we delivered a research (Sánchez, J. J. et al., 2006) that included two goals. First, 
we introduced a new methodology – such a visual one – helping those practitioners 
occupied tuning a GA by giving them much deeper knowledge of how the GA is doing than 
they had before. Furthermore, we tried this new methodology with a wide set of tests. We 
used it for tuning the genetic algorithm within our traffic optimization architecture applied 
to a particular network. 
We presented another research in Eurocast 2007 (Sánchez, J. J. et al., 2007). In that 
communication we shared a study considering three candidate criteria as a first step toward 
extending our fitness function towards a multicriteria one. The criteria where related to the 
total number of vehicles that left the network, the occupancy of the network and greenhouse 
gases emissions. We performed a correlation study and, although conclusions where not 
definitive, we obtained some interesting conclusions about the relationship among those 
parameters. 
Finally, soon we will publish an optimization research (Sánchez, J. J. et al., 2008) for another 
traffic network situated in Santa Cruz de Tenerife, Spain. Although the scale of that network 
is not as large as the one treated for the current paper, results are promising. 

3. Methodology 
3.1 Optimization model 
The architecture of our system comprises thre items, namely a Genetic Algorithm (GA) as 
Non- Deterministic Optimization Technique, a Cellular Automata (CA) based Traffic 
Simulator inside the evaluation routine of the GA, and a Beowulf Cluster as MIMD 
multicomputer. Through this section we will give a wide description for the GA and the CA 
based Traffic Simulator used in our methodology. Finally, a brief description of the Beowulf 
Cluster sill also be provided. 
 

 
Fig. 1. Model Architecture 
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In this subsection we will describe the genetic algorithm utilized. 
3.1.1.1 Optimization criterion. Fitness function 
After testing several criteria we found out that we obtained the better results just by using 
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During the traffic simulation many new vehicles are created as if they were arriving at the 
inputs of the network. Furthermore, during the simulation many vehicles reach their 
destination point and leave the network. The number of vehicles that reach their destination 
point easily illustrates how the simulation was, and consequently helps us to compare a 
particular cycle combination with another. 
Other optimization criteria tested are the following: 
• Mean time at the network — Mean Elapsed Time, MET. During the simulation, the 

arrival and departure time of every vehicle is stored. With these values we can easily 
calculate the number of iterations (or seconds) it takes any vehicle to leave the network. 
Once the simulation finishes the average time at the network is calculated. 

• Standard Deviation values of vehicle times at the network. 
• A linear combination between the MET and the Standard Deviation of vehicle times at 

the network. 
• A linear combination between the MET and the total number of vehicles that have left 

the network during the simulation. 
• The traffic network mean occupancy density. To calculate this parameter we divided 

the network into small sections and counted the number of vehicles inside every 
section. 

As we search the optimization criteria for our system we encountered an unexpected 
problem. If we included the minimization of the MET in a multicriteria evaluation function 
we provoked a very undesirable effect. The chromosomes that blocked the network faster 
were the best marked. That is because only a few vehicles were able to leave the network (in 
a small amount of iterations) before it collapsed. Hence, we obtained very “good” values but 
caused by “false” optimal cycle combinations. Therefore, we resigned to include that 
criterion in our fitness function. 
3.1.1.2 Chromosome encoding 
In figure 1 we present the chosen encoding used in our methodology. In this figure we 
represent a chromosome example for a very simple traffic network. It consists of only two 
intersections and two traffic lights for each intersection. 
 

 
Fig. 2. Chromosome Codification 
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Below the traffic network we have put the stages9 of each traffic light separated in two 
different color regions, one for each one of the two intersections. The traffic light state at 
each stage may be green (G), orange (O) or red (R). 
This stages sequence is preestabilished, and wil cycle ad infinitum — or until we stop the 
corresponding simulation. The objective of our system is to optimize the duration of each 
stage (in seconds) in order to get the very best traffic behavior from the network under 
study. 
In figure 1 a chromosome encoding example I included. It can be seen that through several 
translation steps we obtained a binary Gray Code encoding (Black, P. E., 2005). We have 
proven out this methodology to be very efficient for our case in (Sánchez, J. J. et al., 2005 B). 
We use Gray Code because it is designed in such a manner that when a bit changes its value 
— when mutation occurs — the stage length value only increases or decreases one unit. This 
is a desirable feature because it makes the search space to conform with the “Hamming 
Distance Metric”. 
3.1.1.3 Initial population 
Before the GA starts we created an initial population. Initially we set a time range for every 
preestablished stage. Each individual is created by choosing a random value within its 
corresponding range. 
3.1.1.4 Random number generation 
For the random number generation we have employed the MT19937 generator of Makoto 
Matsumoto and Takuji Nishimura, known as the "Mersenne Twister" generator. It has 
passed the DIEHARD statistical tests (Matsumoto, M. & Nishimura, T., 1998). The seeds for 
that algorithm were obtained from the ``/dev/urandom'' device provided by the Red Hat 9 
operating system. 
3.1.1.5 Selection strategy 
We have chosen a Truncation and Elitism combination as selection strategy. It means that at 
every generation a little group of individuals — the best two individuals in our case — is 
cloned to the next generation. The remainder of the next generation is created by 
crossovering the individuals from a best fitness subset — usually a 66 percent of the whole 
population. 
This combination seems to be the most fitted to our problem among a set of selection 
strategies tested. However, we do not discard to change it if better results seem attainable. 
Other selection strategies previously tested — and discarded — for this problem are 
succinctly explained as follows: 
• Elitism: The population is ordered by fitness and a small set with the best individuals 

(elite) is cloned to the next generation. 
• Truncation: The population is ordered by fitness. Then the population is divided into 

two sets, one to survive and the another one is simply discarded. 
• Tournament: Small groups of individuals are chosen at random. The best fitness 

individual of each one of them is selected. 
• Random Tournament: Like the Tournament Selection but the best individual is not 

always selected. It will depend on a probability value. 
• Roulette Linear Selection: Every individual has a survival probability proportional to its 

fitness value. 
• Elitism plus Random Tournament. 
                                                 
9 Stage: Every one of the states associated to an intersection, that contains a set of traffic 
lights. 
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3.1.1.6 Crossover operator 
We have tested some different crossover operators: Uniform Crossover, Two Points 
Crossover at fixed points and Two Points Crossover at random points. We reached the 
conclusion that for our case the better one was the third one. 
For a couple of parents, it simply chooses two random points at each one of the two 
chromosomes, cut them into three pieces and then interchanges the central chunk of them. 
3.1.1.7 Mutation operator 
The value of a randomly chosen bit in the chromosome is just flipped. 
The mutation probability is not fixed. It starts with a very high mutation probability that 
will decrease multiplied by a factor value in the range (0,1) until it reaches probability 
values near to the inverse of the population size as approaching the end of the planned 
number of generations. 

3.1.2 Traffic simulator 
Traffic Simulation is known to be a very difficult task. There are mainly two different traffic 
simulations paradigms. The first one is the Macroscopic model. Macroscopic simulators are 
based on Fluid Dynamics, since they consider traffic flow as a continuous fluid. The second 
paradigm is the one that includes Microscopic simulators. For them, traffic is considered as a 
collection of discrete particles following some rules about their interaction. In the last decade 
there has been a common belief about the better performance of Microscopic simulators to 
do Traffic Modeling. One Microscopic model widely used is the Cellular Automata Model. 
There has been a large tradition of macroscopic approaches for traffic modeling. In the 50's 
some “first order” continuum theories of highway traffic appeared. In the 70's and later on 
some other “second order” models were developed in order to correct the formers' 
deficiencies. References (Helbing, D., 1995); (Kerner, B. S., & Konhäuser, P., 1994); (Kühne, 
R. D., et al., 1991); (Kühne, R. D., 1991); (Payne, H. J., 1979) and (Witham, G. B., 1974) may 
illustrate some of these models. However, in (Daganzo, C. F., 1995) “second order” models 
are questioned due to some serious problems like negative flows predictions and negative 
speeds under certain conditions. 
Nowadays the microscopic simulators are widely used. One reason for this fact is that 
macroscopic simulators can not model the discrete dynamics that arises from the interaction 
among individual vehicles (Benjaafar, S., et al., 1997). Cellular Automata are usually faster 
than any other traffic microsimulator (Nagel, K., & Schleicher, A., 1994), and, as said in 
(Cremer, M. & Ludwig, J., 1986) “the computational requirements are rather low with 
respect to both storage and computation time making it possible to simulate large traffic 
networks on personal computers” 
3.1.2.1 The cellular automata as inspiring model 
Cellular Automata Simulators are based on the Cellular Automata Theory developed by 
John Von Neumann (Neumann, J. von, 1963) at the end of the forties at the Logic of 
Computers Group of the University of Michigan. Cellular Automata are discrete dynamical 
systems whose behavior is specified in terms of local relation. Space is sampled into a grid, 
with each cell containing a few bits of data. As time advances, each cell decides its next state 
depending on the neighbors state and following a small set of rules. 
In the Cellular Automata model not only space is sampled into a set of points, but also time 
and speed. Time becomes iterations. A relationship between time and iterations is set. For 
instance, 1(sec.) ≡ 1 (iteration). Consequently, speed turns into “cells over iterations”. 
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In (Brockfeld, E. et al., 2003) we can find a well described list of microscopic models and a 
comparative study of them. Although conclusions are not definitive, this work seems to 
demonstrate that models using less parameters have a better performance. 
We have developed a traffic model based on the SK10 model (Krauss, S., et al., 1997) and the 
SchCh11 model (Schadschneider, A. et al., 1999). The SchCh model is a combination of a 
highway traffic model (Nagel, K. & Schreckenberg, M., 1992) and a very simple city traffic 
model (Biham et al., 1992). The SK model adds the “smooth braking” for avoiding abrupt 
speed changes. We decided to base our model in the SK model due to its better results for all 
the tests shown in (Brockfeld, E. et al., 2003). 
3.1.2.2 Our improved cellular automata model 
Based on the Cellular Automata Model we have developed a non-linear model for 
simulating traffic behavior. The basic structure is the same as the one used in Cellular 
Automata. However, in our case we add two new levels of complexity by creating two new 
abstractions: “Paths”and “Vehicles”. 
“Paths” are overlapping subsets included in the Cellular Automata set. There is one “Path” 
for every origin-destination pair. To do this, every “Path” has a collection of positions and, 
for each one of them, there exists an array of allowed next positions. In figure 2 we try to 
illustrate this idea. 
“Vehicles” consists of an array of structures, each one of them having the following 
properties: 
1.  Position: the Cellular Automaton where it is situated. Note that every cell may be 

occupied by one and only one vehicle. 
2.  Speed: the current speed of a vehicle. It means the number of cells it moves over every 

iteration. 
3.  Path: In our model, every vehicle is related to a “path”. 
 

 
Fig. 3. Paths in our Improved Cellular Automata Model 

These are the rules applied to every vehicle: 
1.  A vehicle ought to accelerate up to the maximum speed allowed. If it has no obstacle in 

its way (another vehicle, or a red traffic light), it will accelerate at a pace of 1 point per 
iteration, every iteration. 

2.  If a vehicle can reach an occupied position, it will reduce its speed and will occupy the 
free position just behind the preceding. 

                                                 
10 Stephan Krauss, the author. 
11 Andreas Schadschneider and Debashish Chowdhury, the authors. 
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3.  If a vehicle has a red traffic light in front of, it will stop. 
4.  Smooth Braking: Once the vehicle position is updated, then the vehicle speed is 

updated too. To do this, the number of free positions from the current position ahead is 
taken into account. If there is not enough free space for the vehicle to move forward on 
the next iteration going at its current speed (hypothetically, since in the next iteration 
the traffic situation may change), it will reduce its speed in one unit. 

5.  Multi-lane Traffic: When a vehicle is trying to move on, or update its speed, it is 
allowed to consider positions on other parallel lanes. For every origindestination couple 
(path), at every point there exists a list of possible next positions. The first considered is 
the one straight forward. If this one is not free, there may be more possible positions in 
parallel lanes that will be considered. Of course, this list of possible next positions is 
created taking the basic driving rules into account. 

By means of these rules we can have lots of different path vehicles running in the same 
network. This model may be seen as a set of N paths traditional Cellular Automata networks 
working I parallel over the same physical points. 
Note that, so far, we are not considering a different behavior for the green and the orange 
state. However, our architecture is designed in such a manner that we can modify this 
whenever we want to, with a small effort. 
3.1.3 Beowulf cluster 
The Architecture of our system is based on a five node Beowulf Cluster, due to its very 
interesting price/performance relationship and the possibility of employing Open Software 
on it. On the other hand, this is a very scalable MIMD computer, a very desirable feature in 
order to solve all sort — and scales — of traffic problems. 
Every cluster node consists of a Pentium IV processor at 3.06 GHz with 1 GB DDR RAM and 
80GB HDD. The nodes are connected through a Gigabit Ethernet Backbone. Every node has 
the same hardware, except the master node having an extra Gigabit Ethernet network card 
for “out world” connection. 
Every node has installed Red Hat 9 on it — Kernel 2.4.20-28.9, glibc ver. 2.3.2 and gcc ver. 
3.3.2. It was also necessary for parallel programming the installation of LAM/MPI (LAM 
6.5.8, MPI 2). 
In our application there are two kinds of processes, namely master and slave process. There is 
only one master process running on each test. At every generation it sends the chromosomes 
(MPI_Send) to slave processes, receives the evaluation results (MPI_Recv) and creates the 
next population. Slave processes are inside an endless loop, waiting to receive a new 
chromosome (MPI_Recv). Then they evaluate it and send the evaluation result (MPI_Send). 

4. Achieved goals and future aims 
The main goal obtain with this methodology is its application to two real world test cases in 
a simulated environment. To do so we have earned both collaboration agreements with 
Saragossa and Santa Cruz de Tenerife local governments. 

4.1 La Almozara 
In figures 4 and 5 the Saragossa district number 7 — “La Almozara”— is shown. We want to 
remark the large scale of the zone. 
In our simulated environment we improve 10% fitness, in comparison with results obtained 
with the times currently used in the zone. 
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Fig. 4. Eye view of "La Almozara" in Saragossa (from Google Maps). 
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Fig. 5. "La Almozara" Zone Scale. 
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The statistics provided reflected a scarcely occupied network (under 10%). Everything 
seems to indicate that when the traffic zone is that empty, no matter what is the combination 
of traffic light times, the network would have similar outputs. In other words, a nearly 
empty traffic network is not likely to be improved just by optimizing traffic light times. 
Nevertheless, we are carrying out a stud increasing the network occupation, and results 
seem really promising. 

4.2 Las Ramblas 
Illustrations 6 and 7 show the treated zone in Santa Cruz de Tenerife — Canary Islands. 
In figure 8 we represent the performance results using the solutions given to us by the Local 
Government — the first 9 points. The rest of the points represent the performance obtained 
using the solutions yielded by our method. One may observe that there is an obvious 
improvement using our times. Likewise, our 150 solutions seem to be more stable than 
theirs. 
Figure 9 shows the improvement — as a percentage — of the mean, best and worst values of 
our 150 solutions against the 9 supplied. 
This improvement (%) stays within a range fro 0.53 to 26.21. The smallest difference between 
the optimized results and the supplied simulated results is 12 vehicles — solution 43 with 
respect to supplied 'R1'. The biggest difference is 521 vehicles — distance from solution 69 to 
supplied 'R6'. 
The improvement stays within a range from 0.53 to 26.21. The smallest difference between 
the optimized results and the supplied simulated results is 12 vehicles — solution 43 with 
respect to supplied 'R1'. The biggest difference is 521 vehicles — distance from solution 69 to 
supplied 'R6'. 
One important conclusion is that we can clearl improve the supplied times in our simulated 
environment. So, we can seek optimal cycle time combinations for the traffic lights 
programming using our architecture with an appropriate amount of statistics. We have 
proven this with a real world test case (nevertheless, using a simulated environment). 
This is useful as reducing travel times in a city clearly means saving money and reducing 
environmental impact. 
It is important to note that our system is intrinsically adaptable to particularized 
requirements, such as “Path” preferences, minimum and maximum stage length, etc. In this 
sense, our system is flexible and adaptable. 

4.3 Future work aims 
Currently, we are planning to extend the model to a dynamic version. To do so we will need 
new agreements with traffic departments in order to obtain real time data. 
On a second step we plan to validate our model running real traffic lights with times 
provided by us. This will require real commitment from any public institution, and we are 
convinced that we will earn that confidence soon. 
Finally, we are considering the possibility of extending our model to take into account the 
“Pedestrians' Interaction” and including environmental aspects in the optimization criteria 
using a multiobjective approach. 

5. Research trends  
Forecasting research trends is always tricky. Fortunately, new discoveries surprise the 
scientific community every day, discarding common places and settled ideas. 
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Fig. 6. Eye View of "Las Ramblas", in Santa Cruz de Tenerife (from Google Maps) 
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Fig. 7. "Las Ramblas" Zone Scale 
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Fig. 8. Number of Vehicles Leaving the Network for the 9 Solutions Provided (on the Left) 
and the 50 Solutions Calculated by the System 

 
Fig. 9. Improvement of Fitness 

However, everything seems to indicate that human control of traffic will be progressively 
replaced by automatic control systems, at least in crowded scenarios. 
First, public traffic facilities, and then private vehicles, could be controlled by safe and 
automatic systems, maximizing the use of infrastructures, the safety of passengers, and 
minimizing the environmental impact of mobility. 
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1. Introduction  
One of the biggest problem that many data analysis techniques have to deal with nowadays 
is Combinatorial Optimization that, in the past, has led many methods to be taken apart. 
Actually, the (still not enough!) higher computing power available makes it possible to 
apply such techniques within certain bounds. Since other research fields like Artificial 
Intelligence have been (and still are) dealing with such problems, their contribute to 
statistics has been very significant. 
This chapter tries to cast the Combinatorial Optimization methods into the Artificial 
Intelligence framework, particularly with respect Decision Tree Induction, which is 
considered a powerful instrument for the knowledge extraction and the decision making 
support. When the exhaustive enumeration and evaluation of all the possible candidate 
solution to a Tree-based Induction problem is not computationally affordable, the use of 
Nature Inspired Optimization Algorithms, which have been proven to be powerful 
instruments for attacking many combinatorial optimization problems, can be of great help. 
In this respect, the attention is focused on three main problems involving Decision Tree 
Induction by  mainly focusing the attention on the Classification and Regression Tree-CART 
(Breiman et al., 1984) algorithm. First, the problem of splitting  complex predictors such a 
multi-attribute ones is faced through the use of Genetic Algorithms. In addition, the 
possibility of growing “optimal” exploratory trees is also investigated by making use of Ant 
Colony Optimization (ACO) algorithm. Finally, the derivation of a subset of decision trees 
for modelling multi-attribute response on the basis of a data-driven heuristic is also 
described. The proposed approaches might be useful for knowledge extraction from large 
databases as well as for data mining applications. The solution they offer for complicated 
data modelling and data analysis problems might be considered for a possible 
implementation in a Decision Support System (DSS). 
The remainder of the chapter is as follows. Section 2 describes the main features and the 
recent developments of Decision Tree Induction. An overview of Combinatorial 
Optimization with a particular focus on Genetic Algorithms and Ant Colony Optimization 
is presented in section 3. The use of these two algorithms within the Decision Tree Induction 
Framework is described in section 4, together with the description of the algorithm for 
modelling multi-attribute response. Section 5 summarizes the results of the proposed 
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method on real and simulated datasets. Concluding remarks are presented in section 6. The 
chapter also includes an appendix that presents J-Fast, a Java-based software for Decision 
Tree that currently implements Genetic Algorithms and Ant Colony Optimization.  

2. Decision tree induction  
Decision Tree Induction (DTI) is a tool to induce a classification or regression model from 
(usually large) datasets characterized by N observations (records), each one containing a set 
x of numerical or nominal variables, and a variable y. Statisticians use the terms “splitting 
predictors” to identify x and “response variable” for y. DTI builds a model that summarizes 
the underlying relationships between x and y. Actually, two kinds of model can be 
estimated using decision trees: classification trees if y is nominal, and regression trees if y is 
numerical. Hereinafter we refer to classification trees to show the main features of DTI and 
briefly recall the main characteristics of regression trees at the end of the section. 
DTI proceeds by inducing a series of follow-up (usually binary) questions about the 
attributes of an unknown observation until a conclusion about what is its most likely class 
label is reached. Questions and their alternative answers can be represented hierarchically in 
the form of a decision tree. It contains a root node and some internal and terminal nodes. 
The root node and the internal ones are used to partition observations of the dataset into 
smaller subsets of relatively homogeneous classes. To classify a previously unlabelled 
observation, say i* (i*=1,…..,N), we start from the test condition in the root node and follow 
the appropriate pattern based on the outcome of the test. When an internal node is reached a 
new test condition is applied, and so on down to a terminal node. Encountering a terminal 
node, the modal class of the observations in that node is the class label of y assigned to the 
(previously) unlabeled observation. For regression trees, the assigned class is the mean of  y 
for the observations belonging to that terminal node. 
Because of their top-down binary splitting approach, decision trees can easily be converted 
into IF-THEN rules and used for decision making purposes. 
DTI is useful for knowledge extraction from  large databases and data mining applications 
because of the possibility to represent functions of numerical and nominal variables as well 
as of its feasibility, predictive ability and interpretability. It can effectively handle missing 
values and noisy data and can be used either as an explanatory tool for distinguishing 
observations of different classes or as a prediction tool to class labels of previously unseen 
observations. 
Some of the well-known DTI algorithms include ID3 (Quinlan, 1983), CART (Breiman et al., 
1984), C4.5 (Quinlan, 1993), SLIQ (Metha et al., 1996), FAST (Mola & Siciliano, 1997) and 
GUIDE (Loh, 2002). All these algorithms use a greedy, top-down recursive partitioning 
approach. They primarily differ in terms of the splitting criteria, the type of splits (2-way or 
multi-way) and the handling of the overfitting problem.  
DTI uses a greedy, top-down recursive partitioning approach to induce a decision tree from 
data. In general, DTI involves the following tasks: decision tree growing and decision tree 
pruning. 

2.1 Tree growing 
As for the growing of a decision tree, DTI use a greedy heuristic to make a series of locally 
optimum decisions about which value of a splitting predictor to use for data partitioning. A 
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test condition depending on a splitting method is applied to partition the data into more 
homogeneous subgroups at each step of the greedy algorithm. 
Splitting methods differ with respect to the type of splitting predictor: for nominal splitting 
predictors the test condition is expressed as a question about one or more of its attributes, 
whose outcomes are “Yes”/”No”. Grouping of splitting predictor attributes is required for 
algorithms using 2-way splits. For ordinal or continuous splitting predictors the test 
condition is expressed on the basis of a threshold value υ such as (xi ≤ υ?) or (xi > υ?). By 
considering all the possible split points υ, the best one υ* partitioning the instances into 
homogeneous subgroups is selected. 
In the classification problem, the sample population consists of N observations deriving 
from C response classes. A decision tree (or classifier) will break these observations into k 
terminal groups, and to each of these a predicted class (being one of the possible attributes 
of the response variable) is assigned. In actual application, most parameters are estimated 
from the data. In fact, denoting with t some node of the tree (t represents both a set of 
individuals in the sample data and, via the tree that produced it, a classification rule for 
future data) from the binary tree it is possible to estimate P(t) and P(i|t) for future 
observations as follows: 
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where πi is the prior probability of each class i (i ∈ 1,2,….,C), τ(x) is the true class of an 
observation xi (x is the vector of predictor variables), ni and nt are the number of 
observations in the sample that respectively are class i and node t, and nit  is the number of 
observations in the sample that are class i and node t. 
In addition, by denoting with R the risk of misclassification, the risk of t (denoted with R(t)) 
and the risk of a model (or tree) T (denoted with R(T)) are measured as follows: 
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where L(i,j) is the loss matrix for incorrectly classifying an i as a j (with L(i,i)=0), and τ(t) is 
the class assigned to t once that t is a terminal node and τ(t) is chosen to minimize R(t) and tj 
are terminal nodes of the tree T. If L(i,i)=1 for all i≠j, and the prior probabilities τ  are set to 
be equal to the observed class frequencies in the sample, then P(i|t)=nit/nt and R(T) is the 
proportion of misclassified observations. 
When splitting a node t into tr and tl (left and right sons), the following relationship holds: 
P(tl) R(tl) + P(tr) R(tr) ≤ P(t) R(t). An obvious way to build a tree is to chose that split 
maximizing ΔR, i.e., the decrease in risk. To this aim, several measures of impurity (or 
diversity) of a node are used. Denoting with f some impurity function, the local impurity of 
a node t is defined as: 
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where πi is the prior probability of each class i (i ∈ 1,2,….,C), τ(x) is the true class of an 
observation xi (x is the vector of predictor variables), ni and nt are the number of 
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where L(i,j) is the loss matrix for incorrectly classifying an i as a j (with L(i,i)=0), and τ(t) is 
the class assigned to t once that t is a terminal node and τ(t) is chosen to minimize R(t) and tj 
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where pit is the proportion of those in t that belong to class i for future samples. Since ε(t)=0 
when t is pure, f must be concave with f(0)=f(1)=0. Two candidates for f are the information 
index f(p) = -p log(p) and the Gini index f(p)= -p(1-p), that slightly differ for the two class 
problem where nearly always choose the same split point. Once that f has been chosen, the 
split maximizing the impurity reduction is: 

 ( ) ( ) ( ) ( ) ( ) ( )l l r rp t t p t t p t tε ε ε εΔ = − −  (6) 

Data partitioning proceeds recursively until a stopping rule is satisfied: this usually happens 
when the number of observations in a node is lower than a previously-specified minimum 
number necessary for splitting, as well as when the same observations belong to the same 
class or have the same response class. 

2.2 FAST splitting algorithm 
The goodness of split criterion based on (6) expresses in different way some equivalent 
criteria which are present in most of the tree-growing procedures implemented in 
specialized software; such as, for instance, CART (Breiman et al., 1984), ID3 and C4.5 
(Quinlan, 1993). 
In many situations the computational time required by a recursive partitioning algorithm is 
an important issue that can not be neglected. In this respect, a fast algorithm is required to 
speed up the procedure. In view of that, it is worth considering a two-stage splitting 
criterion which takes into account of  the global role played by a splitting predictor in the 
partitioning step. A global impurity reduction factor of any predictor xi is defined as: 
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where εy|g(t) is the impurity of the conditional distribution of y given the s-th attribute of xs 
and G is the number of attributes of xs (g ε G). The two-stage criterion finds the best splitting 
predictor(s) as the one (or those) minimizing (7) and, consequently, the best split point 
among the candidate splits induced by the best predictor(s) minimizing the (6) by taking 
account only the partitions or splits generated by the best predictor. This criterion can be 
applied either sic et simpliciter or by considering alternative modelling strategies in the 
predictor selection (an overview of the two-stage methodology can be found in Siciliano & 
Mola, 2000). 
The FAST splitting algorithm (Mola & Siciliano, 1997) can be applied when the following 
property holds for the impurity measure:  
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and it consists of two basic rules: 
• iterate the two-stage partitioning criterion by using (7) and (6): select one splitting 

predictor at a time and consider, at each time, the previously unselected splitting 
predictors; 
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• stop the iterations when the current best predictor in the order x(k) at iteration k does 
not satisfy the condition ( )
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iteration (k − 1). 
The algorithm finds the optimal split with substantial time savings in terms of the reduced 
number of partitions or splits to be tried out at each node of the tree. Simulation studies 
show that the relative reduction in the average number of splits analyzed by the FAST 
algorithm with respect to the standard approaches in binary trees increases as a function of 
both the number of attributes of the splitting predictor and of the number of observations at 
a given node. Further theoretical results about the computational efficiency of FAST-like 
algorithms can be found in Klaschka et al. (1998). 

2.3 Tree pruning 
As for the pruning step, it is usually required in DTI in order to control for the size of the 
induced model and to avoid in this way data overfitting. Typically, data is partitioned into a 
training set (containing two-third of the data) and a test set (with the remaining one-third). 
Training set contains labelled observations and it is used for the tree growing. It is assumed 
that the test set contains unlabelled observations and it is used for selecting the final 
decision tree: to check whether a decision tree, say T, is generalizable, it is necessary to 
evaluate its performance on the test set in terms of misclassification error by comparing the 
true class labels of the test data against those predicted by T. Reduced-size trees perform 
poorly on both training and test sets causing underfitting. Instead, increasing the size of T 
improves both the training and test errors up to a “critical size” from which the test errors 
increase even though the corresponding training errors decrease. This means that T overfits 
the data and cannot be generalized to class prediction of unseen observations. In the 
machine learning framework, the training error is named resubstitution error and the test 
error is known as the generalization error. 
It is possible to prevent overfitting by haltering the tree growing before it becomes too 
complex (pre-pruning). In this framework, one can assume the training data is a good 
representation of the overall data and use the resubstitution error as an optimistic estimate 
of the error of the final DTI model (optimistic approach). Alternatively, Quinlan (1987) 
proposed a pessimistic approach that penalizes complicated models by assigning a cost 
penalty to each terminal node of the decision tree: for C4.5, the generalization error is 
R(t)/nt+ε, where, for a node t, nt is the number of observations and R(t) is the 
misclassification error. It is assumed that R(t) follows a Binomial distribution and that ε is 
the upper bound for R(t)  computed from such a distribution (Quinlan, 1993).  
An alternative pruning strategy is based on the growing of the entire tree and the 
subsequent retrospective trimming of some of its internal nodes (post-pruning): the subtree 
departing from each internal node is replaced with a new terminal node whose class label 
derives from the majority class of observations belonging to that subtree. The latter is 
definitively replaced by the terminal node if such a replacement induces an improvement of 
the generalization error. Pruning stops when no further improvements can be achieved. The 
generalization error can be estimated through either the optimistic or pessimistic 
approaches.  
Other post-pruning algorithms, such as CART, use a complexity measure that accounts for 
both the tree size and the generalization error. Once the entire tree is grown using training 
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evaluate its performance on the test set in terms of misclassification error by comparing the 
true class labels of the test data against those predicted by T. Reduced-size trees perform 
poorly on both training and test sets causing underfitting. Instead, increasing the size of T 
improves both the training and test errors up to a “critical size” from which the test errors 
increase even though the corresponding training errors decrease. This means that T overfits 
the data and cannot be generalized to class prediction of unseen observations. In the 
machine learning framework, the training error is named resubstitution error and the test 
error is known as the generalization error. 
It is possible to prevent overfitting by haltering the tree growing before it becomes too 
complex (pre-pruning). In this framework, one can assume the training data is a good 
representation of the overall data and use the resubstitution error as an optimistic estimate 
of the error of the final DTI model (optimistic approach). Alternatively, Quinlan (1987) 
proposed a pessimistic approach that penalizes complicated models by assigning a cost 
penalty to each terminal node of the decision tree: for C4.5, the generalization error is 
R(t)/nt+ε, where, for a node t, nt is the number of observations and R(t) is the 
misclassification error. It is assumed that R(t) follows a Binomial distribution and that ε is 
the upper bound for R(t)  computed from such a distribution (Quinlan, 1993).  
An alternative pruning strategy is based on the growing of the entire tree and the 
subsequent retrospective trimming of some of its internal nodes (post-pruning): the subtree 
departing from each internal node is replaced with a new terminal node whose class label 
derives from the majority class of observations belonging to that subtree. The latter is 
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Other post-pruning algorithms, such as CART, use a complexity measure that accounts for 
both the tree size and the generalization error. Once the entire tree is grown using training 
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observations, a penalty parameter expressing the gain/cost trade off for trimming each 
subtree is used to generate a sequence of pruned trees, and the tree in the sequence 
presenting the lowest generalization error (0-SE rule) or the one with a generalization error 
within one standard error of its minimum (1-SE rule) is selected. Let α be a number in 
[0,+∞], called complexity parameter, measuring the “cost” of adding another variable to the 
model. Let R(T0) be the risk for the zero split tree. Define: 

 ( ) ( )R T R T Tα α= +  (9) 

to be the cost for the tree, and define Tα to be that subtree of the entire tree having the 
minimal cost. Obviously, T0 is the entire tree and T∞ is the zero splits model. The idea is to 
find, for each α, the subtree Tα ⊆ T0 minimizing Rα(T). The tuning parameter α ≥ 0 governs 
the trade off between the tree size and its goodness of fit to the data. Large values of α result 
in small trees, and conversely for smaller values of α. Of course, with α=0 the solution is the 
full tree T0. It is worth noticing that, by adaptively choosing αI, it exists a unique smallest 
subtree Tα minimizing Rα(T). A weakest link pruning approach is used to find Tα: it consists 
in successively collapsing the internal node producing the smallest per-node increase in 
R(T), continuing this way until the single-node (root) tree is produced. This gives a (finite) 
sequence of subtrees, and it is easy to show that this sequence must contains Tα (see Breiman 
et al (1984) for details). 
Usually, pruning algorithms can be combined with V-fold cross-validation when few 
observations are available. Training data is divided into V disjoint blocks and a tree is 
grown V times on V-1 blocks estimating the error by testing the model on the remaining 
block. In this case, the generalization error is the average error made for the V runs. The 
estimation of αI is achieved by V-fold cross-validation: the final choice is the α̂  minimizing 
the cross-validated R(T) and the final tree is ˆTα . 
Cappelli et al. (2002) improved this approach introducing a statistical testing pruning to 
achieve the most reliable decision rule from a sequence of pruned trees. 

2.4 Regression tree 
In the case the response variable is numeric, the outcome of a recursive partitioning 
algorithm is regression tree. Here, the splitting criterion is SSt- (SSl - SSr), where SSt is the 
residual sum of squares for the parent node, and SSl and SSr are the residual sum of squares 
for the left and right son, respectively. This is equivalent to choosing the splits maximizing 
the between-groups sum-of-squares in a simple analysis of variance. In each terminal node, 
the mean value of the response variable μy of cases belonging to that node is considered as 
the fitted value whereas the variance is considered as an indicator of the error of a node. For 
a new observation ynew the prediction error is (ynew - μy). In the regression tree case, cost-
complexity pruning is applied with the sum of squares replacing the misclassification error. 

2.5 DTI enhancements  
A consolidated literature about the incorporation of parametric and nonparametric models 
into trees appeared in recent years. Several algorithms have been introduced as hybrid or 
functional trees (Gama, 2004), among the machine learning community. As an example, DTI 
is used for regression smoothing purposes in Conversano (2002): a novel class of 
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semiparametric models named Generalized Additive Multi-Mixture Models (GAM-MM). 
Other hybrid approaches are presented in Chan and Loh (2004), Su et al. (2004), Choi et al. 
(2005) and Hothorn et al. (2006). Nevertheless, relatively simple procedures  combining DTI 
models in different ways have been proposed in the last decade in the statistics and machine 
learning literature and their effectiveness in improving the predictive ability of the 
traditional DTI method has been proven in different fields of application. 
The first, rather intuitive, approach is Tree Averaging. It is based on the generation of a set 
of candidate trees and on their subsequent aggregation in order to improve their 
generalization ability. It requires the definition of a suitable set of trees and their associated 
weights and classifies a new observation by averaging over the set of weighted trees (Oliver 
and Hand, 1995). Either a compromise rule or a consensus rule can be used for averaging. 
An alternative method consists in summarizing the information of each tree in a table cross-
classifying terminal nodes outcomes with the response classes in order to assess the 
generalization ability through a statistical index and select the tree providing the maximum 
value of such index (Siciliano, 1998). 
Tree Averaging is very similar to Ensemble methods. These are based on a weighted or non 
weighted aggregation of single trees (the so called weak learners) in order to improve the 
overall generalization error induced by each single tree. They are more accurate than a 
single tree if they have a generalization error that is lower than random guessing and if the 
generalization errors of the different trees are uncorrelated (Dietterich, 2000). 
A first example of Ensemble method is Bootstrap Aggregating, which is also called Bagging 
(Breiman, 1996). It works by randomly replicating the training observations in order to 
induce single trees whose aggregation by majority voting provides the final classification. 
Bagging is able to improve the performance of unstable classifiers (i.e. trees with high 
variance). Thus, bagging is said to be a reduction variance method. 
Adaptive Boosting, also called AdaBoost (Freud & Schapire, 1996) is an Ensemble method 
that uses iteratively bootstrap replication of the training instances. At each iteration, 
previously-misclassified observations receive higher probability of being sampled. The final 
classification is obtained by majority voting. Boosting forces the decision tree to learn by its 
error, and is able to improve the performance of trees with both high bias (such as single-
split trees) and variance. 
Finally, Random Forest (Breiman, 2001) is an ensemble of unpruned trees obtained by 
randomly resampling training observations and variables. The overall performance of the 
method derives from averaging the generalization errors obtained in each run. 
Simultaneously, suitable measures of variables importance are obtained to enrich the 
interpretation of the model.  

3. Combinatorial optimization  
Combinatorial Optimization can be defined as the analysis and solution of problems that 
can be mathematically modelled as the minimization (or maximization) of an objective 
function over a feasible space involving mutually exclusive, logical constraints. Such logical 
constraints can be seen as the arrangement of a bunch of given elements into sets. In a 
mathematical form: 
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where T can be seen as an arrangement, F is the collection of feasible arrangements and α(T) 
measures the value of the members of F.  
Combinatorial Optimization problems are of great interest because many real life decision-
making situations force people to choose over a set of possible alternatives with the aim of 
maximizing some utility function. On the one hand, the discreteness of the solutions space 
offers the great advantage of concreteness and, indeed, elementary graphs or similar 
illustrations can often naturally be used to represent the meaning of a particular solution to 
a problem. On the other end, those problems carry a heavy burden in terms of 
dimensionality. If more than few choices are to be made, the decision-making process has to 
face with the evaluation of a terribly big expanse of cases. This dualism (intuitive simplicity 
of presentation of a solution versus complexity of solutions search) has made this area of 
combinatorics attractive for researchers from many fields, ranging from engineering to 
management sciences.  
Elegant procedures to find optimal solutions have been found for some problems, but for 
most of them only a bunch of properties and algorithms have been developed that still do 
not allow to reach a complete resolution. This is the case of Computational Statistics, in 
which computationally-intensive methods are used to “mine“ large, heterogeneous, multi-
dimensional datasets in order to discover knowledge in the data. 
To give an example, the objective of Cluster Analysis is to find the “best” partition of the 
dataset according to some criterion, which is always expressed as an objective function. This 
means that all possible and coherent partitions of the dataset should be generated and the 
objective function has to be calculated for each of them. In many cases, the number of 
possible partitions grows too rapidly with respect to the number of units, making such 
strategy practically unfeasible. Another example is the apparently simple problem of 
calculating the variance for interval data, for which the maximum and the minimum of the 
variance function have to be searched over the multidimensional cube defined by all the 
intervals in which the statistical units are defined. 
These are examples of statistical problems that cannot be faced with the total enumeration 
and evaluation of the solutions. In order to try to tackle with this kind of problems, a lot of 
theory has been developed. One case is when some properties about the objective function 
are available. These allow to calculate some kind of upper (or lower) bound that a set of 
possible solutions could admit. In this case, the search could be performed just on the set of 
possible solutions whose upper bound is higher. If one solution whose effective value is 
higher than the bounds of all the other sets is found, it would not be necessary to continue 
the search, being all the other subsets not able to provide better solutions. This is the case of 
the aforementioned problem of finding the upper bound of variance for interval data, 
because it can be verified that the maximum is necessarily reached in one of the vertices of 
the multidimensional cube, so that exploring the whole cube is not necessary. Such a 
situation allows to restrict the solutions  space to a set of 2n possible solutions, where n is the 
number of statistical units. Unfortunately, this does not solve the problem because the 
solutions space becomes enormous even in presence of small datasets (with just 30 units the 
number of solutions to evaluate is greater than one thousand millions).  
The FAST algorithm is another example of a partial enumeration approach, in which a 
measure of the upper bound of the predictive power of a solutions set is defined and 
exploited in order to get the same results of the CART greedy approach by using a reduced 
amount of computations. 
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Another way to proceed is to make use of non exact procedures, often called heuristics. 
Those algorithms do not claim to find the global optimum, but are able to converge rapidly 
towards a local one. Non exact algorithms (that will be called heuristics in the rest of this 
chapter) are certainly not recent. What has changed, in time, is the respectability associated 
to them, due to the fact that many heuristics have been proved to rival their counterparts in 
elegance, sophistication and, particularly, usefulness. Many heuristics have been proposed 
in the literature, but only two kinds of them will be briefly described in this context due to 
their role in the problems that will be faced in the next sections. These are: Greedy 
procedures and Nature Inspired optimization algorithms. In Greedy procedures the 
optimization process selects, at each stage, an alternative that is the best among all the 
feasible alternatives without taking into account the impact that such choice will have on the 
subsequent decisions. The CART algorithm makes use of a greedy procedure to grow a tree 
in which the optimality criterion is maximised just locally, that is, for each node of the tree 
but not considering the tree as a whole. This approach clearly results in a suboptimal tree 
but allows, at least, to obtain a tree in a reasonable amount of time. Whereas, the so-called 
Nature Inspired heuristics, which are also called “Heuristics from Nature” (Colorni et al., 
1993), are Inspired by natural phenomena or behaviour such as Evolution, Ants, Honey-
Bees, Immune systems, Forests, etc. Some important Nature Inspired heuristics are: 
Simulated Annealing (SA),  TABU Search (TS) algorithms, Ant Colony Optimization (ACO) 
and Evolutionary Computation (EC). ACO and EC are described in the following since they 
are used throughout the chapter.  
Ant Colony Optimization represents a class of algorithms that were inspired by the 
observation of real ant colonies. Observation shows that a single ant only applies simple 
rules, has no knowledge and it is unable to succeed in anything when it is alone. However, 
an ant colony benefits from the coordinated interaction of each ant. Its structured behaviour, 
described as a “social life”, leads to a cooperation of independent searches with high 
probability of success. ACO were initially proposed by Dorigo (1992) to attack the Traveling 
Salesman Problem. A real ant colony is capable of finding the shortest path from a food 
source to its nest by using pheromone information: when walking, each ant deposits a 
chemical substance called pheromone and follows, in probability, a pheromone trail already 
deposited by previous ants. Assuming that each ant has the same speed, the path which 
ends up with the maximum quantity of pheromone is the shortest one. 
Evolutionary computation (Fogel and Fogel, 1993) incorporates algorithms that are inspired 
from evolution principles in nature. The methods of evolutionary computation algorithms 
are stochastic and their search methods imitate and model some natural phenomena, 
namely: 
1. the survival of the fittest 
2. genetic inheritance 
Evolutionary computing can be applied to problems when it is difficult to apply traditional 
methods (e.g., when gradients are not available) or when traditional methods lead to 
unsatisfactory solutions like local optima (Fogel, 1997). Evolutionary algorithms work with a 
population of potential solutions (i.e. individuals). Each individual is a potential solution to 
the problem under consideration and it is encoded into a data structure suitable to the 
problem. Each encoded solution is evaluated by an objective function (environment) in 
order to measure its fitness. The bias on selecting high-fitness individuals exploits the 
acquired fitness information. The individuals will change and evolve to form a new 
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population by applying genetic operators. Genetic operators perturb those individuals in 
order to explore the search space. There are two main types of genetic operators: Mutation 
and Crossover. Mutation type operators are asexual (unary) operators, which create new 
individuals by a small change in a single individual. On the other hand, Crossover type 
operators are multi-sexual (multary) operators, which create new individuals by combining 
parts from two or more individuals. As soon as a number of generations have evolved, the 
process is terminated according to a termination criterion. The best individual in the final 
step of the process is then proposed as a (hopefully suboptimal or optimal) solution for the 
problem. 
Evolutionary computing are further classified into four groups: Genetic Algorithms (GA), 
Evolutionary Programming, Evolution Strategies and Genetic Programming. Although there 
are many relevant similarities between these evolutionary computing paradigms, profound 
differences among them also emerge (Michalewicz, 1996). These differences generally 
involve the level in the hierarchy of the evolution being modelled, that is: the chromosome, 
the individual or the species. There are also many hybrid methods that combine various 
features from two or more of the methods described in this section. 
Genetic Algorithms (GAs), that will be used in the follwing, are part of a collection of 
stochastic optimization algorithms inspired by the natural genetics and the theory of the 
biological evolution. The idea behind genetic algorithms is to simulate the natural evolution 
when optimizing a particular objective function. GAs have emerged as practical, robust 
optimization and search methods in the last three decades. In the literature, Hollands’ 
genetic algorithm is called Simple Genetic Algorithm (Vose, 1999). It works with a 
population of individuals (chromosomes), which are encoded as binary strings (genes). 

4. Genetic algorithms and heuristics in DTI 
4.1 Genetic algorithm for complex predictors 
The CART methodology looks for the best split by making use of a brute-force 
(enumerative) procedure. All the possible splits from all the possible variables are generated 
and evaluated. Such a procedure must be performed anytime a node has to be split and can 
lead to computational problems when the number of modalities grows.  
Let us first consider how a segmentation procedure generates and evaluates all possible 
splits. Nominal unordered predictors (Nup) are more complicated to handle than ordered 
ones because the number of possible splits that can be generated grows exponentially with 
the number of attributes m. The number of possible splits is (2m-1-1). The computational 
complexity of a procedure that generates and evaluates all the splits from a nominal 
unordered predictor is O(2n). In this respect, it is evident that such enumerative algorithm 
becomes prohibitive when the number of attributes is high. This is one of the reasons why 
some software do not accept Nups with a number of attributes higher than a certain 
threshold (usually between 12 and 15).  
One of the possible way to proceed is to make use of a heuristic procedure, like the one 
proposed in this section. In order to design a Genetic Algorithm to solve such a 
combinatorial problem, it is necessary to identify: 
• a meaningful representation (coding) for the candidate solutions (the possible splits) 
• a way to generate the initial population 
• a fitness function to evaluate any candidate solution 
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• a set of useful genetic operators that can efficiently recombine and mutate the candidate 
solutions 

• the values of the parameters used by the GA (population size, genetic operators 
parameters values, selective pressure, etc.); 

• a stopping rule for the algorithm. 
The aforementioned points have been tackled as follows. As for the coding, it has been 
chosen the following representation: a solution is coded in a string of bits (chromosomes) 
called x, where each bit (gene) is associated to an attribute of the predictor according to the 
following rule: 

 
0
1i

if i goes to left
x

if i goes to right
⎧

= ⎨
⎩

  (11) 

The choice of the fitness function is straightforward: the split evaluation function of the 
standard recursive partitioning algorithm is used (i.e. the maximum decrease in node 
impurity). Since the canonical (binary) coding is chosen, the corresponding two parents 
single-point crossover and mutation operators and, as a stopping rule can be used. In 
addition, a maximum number of iterations is chosen on the basis of empirical investigations. 
The rest of the GA features are similar to the classic ones: elitism is used (at each iteration 
the best solution is kept in memory) and the initial population is chosen randomly. 

4.2 An ACO algorithm for exploratory DTI 
When growing a Classification or a Regression Tree, CART first grows the so-called 
exploratory tree. Such tree is grown using data of the training set. Then, it is validated by 
using the test set or by cross-validation.  
In this section, the attention is focused on the exploratory tree-growing procedure. In this 
phase, in theory, the best possible tree should be built, which is the tree having the lowest 
global impurity measure among all the generable trees. It has been shown (Hyafil and 
Rivest, 1976) that  constructing the optimal tree is a NP-Complete problem. In other words, 
in order to use a polynomial algorithm, it is only possible to get suboptimal trees. For such a 
reason, the recursive partitioning algorithms make use of greedy heuristics to reach a 
compromise between the tree quality and the computational effort. In particular, most of the 
existing methods for DTI use a greedy heuristic, which is based on a top-down recursive 
partitioning approach in which, any time, the split that maximizes the one step impurity 
decrease is chosen. This kind of greedy approach, that splits the data locally (i.e., in a given 
node) and only once for each node, allows to grow a tree in a reasonable amount of time. On 
the other hand, this rule is able to generate only a suboptimal tree because anytime a split is 
chosen a certain subspace of possible trees is not investigated anymore by the algorithm. If 
the optimal tree is included in one of those subspaces there is no chance for the algorithm of 
finding it.  
Taking these considerations into account, we propose an Ant Colony Optimization 
algorithm to try to find best exploratory tree. In order to attack a problem with ACO the 
following design task must be performed: 
1. Represent the problem in the form of sets of components and transitions or by means of 

a weighted graph, on which ants build solutions 
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decrease is chosen. This kind of greedy approach, that splits the data locally (i.e., in a given 
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the other hand, this rule is able to generate only a suboptimal tree because anytime a split is 
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algorithm to try to find best exploratory tree. In order to attack a problem with ACO the 
following design task must be performed: 
1. Represent the problem in the form of sets of components and transitions or by means of 

a weighted graph, on which ants build solutions 
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2. Appropriately define the meaning of the pheromone trails: that is, the type of decision 
they bias. 

3. Appropriately define the heuristic reference for each decision an ant has to take while 
constructing a solution. 

4.  If possible, implement an efficient local search algorithm for the problem to be solved. 
The best results from the application of the ACO algorithms to NP-hard combinatorial 
optimization problems are achieved by coupling ACO with local optimizers (Dorigo 
and Stutzle, 2004) 

5. Choose a specific ACO algorithm and apply it to the problem to be solved, taking the 
previous issues into account 

6. Tune the parameters of the ACO algorithm. A good starting point is to use parameter 
settings that were found to be good when applying the same ACO algorithm to similar 
problems or to a variety of other problems 

The most complex task is probably the first one, in which a way to represent the problem in 
the form of a weighted graph must be found. We use a representation based on the 
following idea: let us imagine having two nominal predictors P1 = {a1, b1, c1} and P2 = {a2, b2} 
with, respectively, two and three attributes. Such simple predictors are considered only to 
explain the idea, because of the combinatorial explosion of the phenomenon. In this case, the 
set of all possible splits, at a root node, is the following: 
• S1 = [a1] − [b1, c1] 
• S2 = [a1, b1] − [c1] 
• S3 = [a1, c1] − [b1] 
• S4 = [a2] − [b2] 
Any time a split is chosen, it generates two child nodes. For such nodes, the set of possible 
splits is, in the worst case, equal to 3 (the same as the parent node except the one that was 
chosen for splitting). This consideration leads to the representation shown in Figure 1 in 
which, for simplicity, only the first two levels of the possible trees are considered. 
It is easy to imagine how the complexity grows when we deal with predictors that generate 
hundreds or even thousands of splits (which is a common case).  
In Figure 1, the space of all possible trees is represented by a connected graph. Moving from 
a level to another one corresponds to split a variable. The arcs of such a graph have the same 
meaning of the arcs of the TSP graph (transition from a state to another one or, even better, 
addition of a component to a partial solution). In this view, it would be correct to deposit 
pheromone on them. The pheromone trails meaning, in this case, corresponds to the 
desirability to choose the corresponding split from a certain node. 
As for the heuristic information, it is possible to refer to the decrease in impurity deriving 
from adding the corresponding node to the tree. Such a measure has a meaning which is 
similar, in some way, to the one that visibility has in the TSP . An arc is much more desirable 
as higher the impurity decrease is. As a result, to make analogies with the TSP, such 
impurity decrease can be seen as an inverse measure of the distance between two nodes. 
Once the construction graph has been built, and pheromone trails meaning and heuristic 
function have been defined, it is possible to attack that problem using an ACO algorithm. It 
is important to note that, because of the specificity of the problem to be modelled (ants can 
move into a connected graph and there is a measure of “visibility”), the search of the best 
tree can be seen as a shortest path research, like in TSP. In the latter, ants are forced to pass 
only one time for each city while, in our case, ants are forced to choose paths that 
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correspond to binary trees, since the solutions to build must be in the form of tree structures. 
All the ants will start from the root node and will be forced to move from one node to 
another in order to build a tour that corresponds to a tree.  

 
Fig. 1. An example of ACO algorithm for exploratory DTI: each path corresponds to a 2-
levels tree. 

It is important to notice the basics of the ant moves in the graph shown in Figure 1. At each 
step, the ant looks for the heuristic information (impurity decrease) and the pheromone trail 
of any possible direction and decides for the one to choose (and, therefore, the associated 
split) on the basis of the selected ACO algorithm. Once the ant arrives to a terminal node, it 
recursively starts to move back to the other unexplored nodes.  
In different ACO algorithms, pheromone trails are initialized to a value obtained by 
manipulating the quality measure (the path’s length for the TSP case) of a solution obtained 
with another heuristic (Dorigo suggests the nearest-neighbour heuristic). In our case, the 
greedy tree induction rule solution quality is used. Elitism will also be implemented and the 
chosen parameters (due to the strong similarity with TSP) are the same that have been used 
successfully for the TSP problem. 

4.3 Identification of a parsimonious set of decision trees in multi-class classification 
In many situations, the response variable used in classification tree modelling rarely 
presents a number of attributes that allow to apply the recursive partitioning algorithm in 
the most accurate manner. 
It is well known that: 
a) a multi-class response, namely a nominal variables with several classes, usually causes 

prediction inaccuracy;  
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from adding the corresponding node to the tree. Such a measure has a meaning which is 
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impurity decrease can be seen as an inverse measure of the distance between two nodes. 
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function have been defined, it is possible to attack that problem using an ACO algorithm. It 
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move into a connected graph and there is a measure of “visibility”), the search of the best 
tree can be seen as a shortest path research, like in TSP. In the latter, ants are forced to pass 
only one time for each city while, in our case, ants are forced to choose paths that 
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correspond to binary trees, since the solutions to build must be in the form of tree structures. 
All the ants will start from the root node and will be forced to move from one node to 
another in order to build a tour that corresponds to a tree.  

 
Fig. 1. An example of ACO algorithm for exploratory DTI: each path corresponds to a 2-
levels tree. 

It is important to notice the basics of the ant moves in the graph shown in Figure 1. At each 
step, the ant looks for the heuristic information (impurity decrease) and the pheromone trail 
of any possible direction and decides for the one to choose (and, therefore, the associated 
split) on the basis of the selected ACO algorithm. Once the ant arrives to a terminal node, it 
recursively starts to move back to the other unexplored nodes.  
In different ACO algorithms, pheromone trails are initialized to a value obtained by 
manipulating the quality measure (the path’s length for the TSP case) of a solution obtained 
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chosen parameters (due to the strong similarity with TSP) are the same that have been used 
successfully for the TSP problem. 

4.3 Identification of a parsimonious set of decision trees in multi-class classification 
In many situations, the response variable used in classification tree modelling rarely 
presents a number of attributes that allow to apply the recursive partitioning algorithm in 
the most accurate manner. 
It is well known that: 
a) a multi-class response, namely a nominal variables with several classes, usually causes 

prediction inaccuracy;  
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b) multi-class and numeric predictors play often the role of splitting variables in the tree 
growing process in disadvantage of two-classes ones, causing selection bias. 

To account for the problems deriving from the prediction inaccuracy of tree-based classifiers 
grown for multi-class response, as well as to reduce the drawback of the loss of 
interpretability induced by ensemble methods in these situations, Mola and Conversano 
(2008) introduced an algorithm based on a Sequential Automatic Search of a Subset of Classifiers 
(SASSC). It produces a partition of the set of the response classes into a reduced number of 
disjoint subgroups and introduces a parameter in the final classification model that 
improves its prediction accuracy, since it allows to assign each new observation to the most 
appropriate classifier in a previously-identified reduced set of classifiers. It uses a data-
driven heuristic based on cross-validated classification trees as a tool to induce the set of 
classifiers in the final classification model. 
SASSC produces a partition of the set of the response classes into a reduced number of 
super-classes. It is applicable to a dataset X composed of N observations characterized by a 
set of J (numeric or nominal) splitting variables xj  (j=1,…..,J) and a response variable y 
presenting K classes. Such response classes identify the initial set of classes C(0) =(c1,c2,….,cK). 
Partitioning X with respect to C(0) allows to identify K disjoint subsets X(0)k, such that: X(0)k = 
{xs : ys ∈ ck}, with s=1,…..,N. In practice, X(0)k is the set of observations presenting the k-th 
class of y. The algorithms works by aggregating the K classes in pairs and learns a classifier 
to each subset of corresponding observations. The “best” aggregation (super-class) is chosen 
as the one minimizing the generalization error estimated using V-fold cross-validation. 
Suppose that, in the -th iteration of the algorithm such a best aggregation is found for the 
pair of classes ci* and cj* (with i*≠ j and i*, j* ∈ (1,….,K)) that allows to aggregate the subsets 
Xi* and Xj*. Denoting with T(i*,j*) the decision tree minimizing the cross-validated 
generalization error δ( )cv, the heuristic for selecting the “best” decision tree can be formalized 
as follows: 

   ( ) ( )
( )( ){ },

( , )
*, * arg min |cv i ji j

i j
i j Tδ= ∩X X  (12) 

The SACCS algorithm is analytically described in Table 1. It proceeds by learning all the 
possible decision trees obtainable by joining in pairs the K subgroups, and by retaining the 
one satisfying the selection criteria introduced in (12). After the -th aggregation, the 

number of subgroups is reduced to K( -1) - 1, since the subgroups of observations presenting 
the response classes ci* and cj*  are discarded from the original partition and replaced by the 
subset X( )(i*,j*) = X(i*) ∩ X(j*) identified by the super-class c( ) = (c(i*) ∩ c(j*)). The initial set of 

classes C is replaced by C( ), the latter being composed of a reduced number of classes since 

some of the original classes form the superclasses coming out from the  aggregations. 

Likewise, also X( )k is formed by a lower number of subsets as a consequence of the  
aggregations. 
The algorithm proceeds sequentially in the iteration +1 by searching for the most accurate 

decision tree over all the possible ones obtainable by joining in pairs the K( ) subgroups. The 
sequential search is repeated until the number of subgroups reduces to one in the K-th 
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iteration. The decision tree learned on the last subgroup corresponds to the one obtainable 
applying the recursive partitioning algorithm on the original dataset.  
The output of the procedure is a sequence of sets of response classes C(1),….,C(K−1) with the 
associated sets of decision trees T(1) ,…..,T(K−1). The latter are derived by learning K − k trees 
(k = 1, ….., K − 1) on disjoint subgroups of observations whose response classes complete the 
initial set of classes C(0): these response classes identify the super-classes relating to the sets 
of classifiers T(k). An overall generalization error is associated to each T(k): such an error is 
also based on V-fold cross-validation and it is computed as a weighted average of the 
generalization errors obtained from each of the K − k decision trees composing the set. In 
accordance to the previously introduced notation, the overall generalization errors can be 
denoted as Θ(1)cv, ……, Θ(k)cv,……., Θ(K-1)cv . Of course, by decreasing the number of trees 
composing a sequence T(k) (that is, when moving k from 1 to K−1) the corresponding Θ(k)cv 
increases since the number of super-classes associated to T(k) is also decreasing. This means 
that a lower number of trees are learned on more heterogeneous subsets of observations, 
since each of those subsets pertain to a relatively large number of response classes. 
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Table 1. The SASSC algorithm 

Taking this inverse relationship into account, the analyst can be aware of the overall 
prediction accuracy of the final model on the basis of the relative increase in Θ(k)cv  when 
moving from 1 to K−1. In this respect, he can select the suitable number of decision trees to 
be included in the final classification model accordingly. Supposing that a final subset of g 
decision trees has been selected (g<<K−1), the estimated classification model can be 
represented as: 
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The parameter ψ is called “vehicle parameter”. It allows to assign a new observation to the 
most suitable decision tree in the subset g. It is defined by a set of g−1 dummy variables. 
Each of them equals 1 if the object belongs to the i-th decision tree (i = 1,…, g−1) and zero 
otherwise. The Mi regions, corresponding to the number of terminal nodes of the decision 
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iteration. The decision tree learned on the last subgroup corresponds to the one obtainable 
applying the recursive partitioning algorithm on the original dataset.  
The output of the procedure is a sequence of sets of response classes C(1),….,C(K−1) with the 
associated sets of decision trees T(1) ,…..,T(K−1). The latter are derived by learning K − k trees 
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initial set of classes C(0): these response classes identify the super-classes relating to the sets 
of classifiers T(k). An overall generalization error is associated to each T(k): such an error is 
also based on V-fold cross-validation and it is computed as a weighted average of the 
generalization errors obtained from each of the K − k decision trees composing the set. In 
accordance to the previously introduced notation, the overall generalization errors can be 
denoted as Θ(1)cv, ……, Θ(k)cv,……., Θ(K-1)cv . Of course, by decreasing the number of trees 
composing a sequence T(k) (that is, when moving k from 1 to K−1) the corresponding Θ(k)cv 
increases since the number of super-classes associated to T(k) is also decreasing. This means 
that a lower number of trees are learned on more heterogeneous subsets of observations, 
since each of those subsets pertain to a relatively large number of response classes. 
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tree i, are created by splits on predictors (x1,….,xp). The classification tree i assigns a new 
observation to the class ,ˆk ic  of y according to the region 

imR . I is an indicator function with 

value 1 if an observation belongs to 
imR  and value 0 if not. 

imR  is defined by the inputs 

used in the splits leading to that terminal node. The modal class of the observations in a 
region 

imR  (also called the m-th terminal node of the i-th decision tree) is usually taken as an 

estimate for ,ˆk ic . This notation is consistent with that used in Hastie et al. (2001). 
The estimation of τi is based on the prediction accuracy of each decision tree in the final 
subset g. A new observation is slipped into each of the g trees. The assigned class ,ˆk ic  is 
found with respect to the tree whose terminal node better classifies the new observation. In 
other words, a new observation is assigned to the purest terminal node among all the g 
decision trees. 
Another option of the algorithm is the possibility to learn decision trees to select the suitable 
pair of response classes satisfying (12) using alternative splitting criteria. As for CART, it is 
possible to refer to both the Gini index and Twoing as alternative splitting rules. It is known 
that, unlike Gini rule, Twoing searches for the two classes that make up together more than 
50% of the data and allows us to build more balanced trees even if the resulting recursive 
partitioning algorithm works slower. As an example, if the total number of classes is equal 
to K, Twoing uses 2K−1 possible splits. Since it has been proved (Breiman et al., 1984, pag.95) 
that the decision tree is insensitive to the choice of the splitting rule, it can be interesting to 
see how it works in a framework characterized by the search of the most accurate decision 
treers like the one introduced in SASSC. 

5. Application on real and simulated datasets  
Genetic Algorithm. The proposed GA has been applied on two datasets for which the 
optimal best split could be calculated and for a more complex one, for which it is not 
possible to proceed with such a brute force strategy. 
The first test has been done on the “Mushroom” dataset, available from the UCI Machine 
Learning Repository (source http://archive.ics.uci.edu/ml/). This dataset has a two-class 
response variable (“is the mushroom poisonous?”) and set of categorical and numerical 
predictors. One of them (gill colour) has 12 categories (attributes), which can be evaluated 
exhaustively. The GA algorithm could find the global best solution (which was extracted by 
using the Rpart package of the R software) in less than 10 iterations. The algorithm has then 
been tested on a simulated dataset which was obtained by uniformly generating a response 
variable with 26 modalities and a nominal unordered predictor with 16 modalities for 20,000 
observations. By letting be 16 the number of modalities of the splitting predictor it was 
possible, also in this case, to find the (global) best split by making use of the exhaustive 
enumeration. Such experimental studies showed that the most efficient configuration of the 
GA was the following: 
• By randomly selecting the initial population (no other solutions have been tried, in fact). 
• By setting the number of solutions building the population to be equal to the number of 

necessary genes (the number of categories of the predictor). 
• By setting a crossover proportion of 0.80. 
• By setting a mutation probability equal to 0.10. 
• By selecting the rank for choosing the solutions to be recombined. 
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For this kind of problem (20,000 units, 16 categories for the response variable and 26 
categories for the splitting predictor) the global optimum was reached in less than 30 
iterations.  
When the complexity of the problem grows many iterations seems to be required, though 
such number never appeared to grow exponentially. 
The GA has been tested also on the “Adult” dataset available from the UCI Machine 
Learning website. This dataset has been extracted from the US Census Bureau Database 
(source: http://www.census.gov/) with the aim of predicting whether a person earns more 
than 50,000 dollars per year. Such dataset has 325,614 observations and some categorical 
unordered splitting predictors with many attributes. In particular, the native-country 
predictor has 42 attributes.  
 

State Goes to State Goes to 
United-States Left Cuba Left 
Jamaica Right India Left 
Unknown Country Left Mexico Right 
South Left Puerto-Rico Right 
Honduras Right England Left 
Canada Left Germany Left 
Iran Left Philippines Left 
Italy Left Poland Left 
Columbia Right Cambodia Left 
Thailand Left Ecuador Right 
Laos Right Taiwan Left 
Haiti Right Portugal Right 
Dominican-Republic Right El-Salvador Right 
France Left Guatemala Right 
China Left Japan Left 
Yugoslavia Left Peru Right 
Outlying-US Right Scotland Left 
Trinadad-Tobago Right Greece Left 
Nicaragua Right Vietnam Right 
Hong Left Ireland Left 
Hungary Left Holland-Netherlands Right 

Table 2. The split provided by the GA for the native-country in the Adult dataset 

The GA has been run with the aim of trying to find a good split by making use of the native-
country splitting predictor that both R and SPSS, for instance, refused to process. As 
previously  mentioned, 30 iterations seemed to be not enough because, in many runs of the 
algorithm, the “probably best” solution appeared after iteration 80. The  solution provided 
by the algorithm is shown in Table 2. It gives an idea of the complexity of the problem.  
The corresponding decrease in the node impurity is 0.3628465. The algorithm has been 
tested over many simulated dataset and the number of required iterations for the algorithm 
to reach convergence has been shown to linearly grow as a function of the number of 
attributes of the splitting predictor (the number of observations in the dataset appeared to 
be uninfluential).  
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Ant System. The strong complexity of the decision tree growing procedure (Hyafil & Rivest, 
1976) does not allow to exhaustively enumerate and evaluate all the possible generable 
trees, even from very small datasets. In this respect, it is not possible to check whether the 
chosen heuristic is able to find the global optimum (in the same manner as it has been 
previously done for the genetic algorithm).  
In the first experiment the algorithm has been tested on a simulated dataset of 500 
observations with 11 nominal unordered predictors (with a number of attributes that ranges 
between 2 and 9) and 2 numeric (continuous) predictors. It could be seen that, when the 
required tree depth increases, the differences between the global impurity of the tree 
obtained by the CART greedy heuristic and the one obtained by the Ant System tend to 
increase. Table 3 reports such results.  
 

Tree Depth CART Ant System 
4 0.158119 0.153846 
5 0.147435 0.121794 
6 0.100427 0.085477 
7 0.079059 0.059829 
8 0.044871 0.029911 

Table 3.Global impurity of the decision trees extracted by the proposed algorithm on a 
simulated dataset 

Figure 2 shows the result obtained on the “Credit” dataset that can be found in the SPAD 
software (source: www.spadsoft.com). This dataset has 468 observations on which 11 
nominal variables have been observed together with a two-class response variable. The aim 
would be to predict such response variable (“is a customer good or bad?).  
The first decision tree is the one found by the CART heuristic and the second one has been 
extracted after 200 iterations of the Ant System algorithm. 
Table 4  shows the global impurity of the trees extracted by the CART and Ant heuristics. 
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The algorithms presented here are in an early stage of development. In these examples, an 
Ant System has been proposed to attack the problem of finding the best exploratory 
decision tree and it came out that the Ant System-based decision trees performed better than 
the ones found by the CART greedy heuristic. Even if the improvements weren’t too large 
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(from 2% to 5% in all of the simulation studies) such algorithm could be still useful for the 
situations in which high accuracy is required from the decision tree would. Ant System, on 
the other hand, is the simplest (yet less efficient) ACO technique, so that the use of more 
powerful ACO algorithms (which is currently under development) would reasonably bring 
better results. It is well known that ACO algorithms reach their maximum efficiency when 
coupled with local search techniques or can improve their efficiency by making use of 
candidate lists.  
 

Tree Depth CART Ant System 
2 0.2948 0.2734 
3 0.2435 0.2301 
4 0.2029 0.1816 
5 0.1773 0.1517 
6 0.1645 0.1539 

Table 4. Global impurity of the decision trees extracted by the proposed algorithm on the 
Credit dataset 

SASSC algorithm. In the following, the SASSC algorithm is applied on the “Letter 
Recognition” dataset from the UCI Machine Learning Repository (source 
http://archive.ics.uci.edu/ml/). This dataset is originally analyzed in Frey & Slate (1991), 
who did not achieve a good performance since the correct classified observations did never 
exceed 85%. Later on, the same dataset is analyzed in Fogarty(1992) using nearest 
neighbours classification. Obtained results give over 95.4% accuracy compared to the best 
result of 82.7% reached in Frey & Slate(1991). Nevertheless, no information about the 
interpretability of the nearest neighbour classification model is provided and the 
computational inefficiency of such a procedure is deliberately admitted by the authors. 
In the Letter Recognition analysis, the task is to classify 20, 000 black-and-white rectangular 
pixel displays into one of the 26 letters in the English alphabet. The character images are 
based on 20 different fonts and each letter within these 20 fonts was randomly distorted to 
produce a file of 20,000 unique stimuli. Each stimulus was converted into 16 numerical 
attributes that have to be submitted to a decision tree. Dealing with K = 26 response classes, 
SASSC provides 25 sequential aggregations. Classification trees aggregated at each single 
step were chosen according to 10-fold cross validation. A tree was aggregated to the 
sequence if it provided the lowest cross validated generalization error with respect to the 
other trees obtainable from different aggregations of (subgroups of) response classes. 
The results of the SASSC algorithm are summarized in Figure 3. It compares the 
performance of the SASSC model formed by g=2 up to g=6 superclasses with that of CART 
using, in all cases, either Gini or Twoing as splitting rules. Bagging (Brieman, 1996) and 
Random Forest (Breiman, 2001) are used as benchmarking methods as well. Computations 
have been carried out using the R software for statistical computing. 
The SASSC model using 2 superclasses consistently improves the results of CART using the 
Gini (Twoing) splitting rule since the generalization error reduces to 0.49 (0.34) from 0.52 
(0.49). As expected, the choice of the splitting rule (Gini or Twoing) is relevant when the 
number of superclasses g is relatively small (2 ≤ g ≤ 4), whereas it becomes negligible for 
higher values of g (results for g ≥ 5 are almost identical). Focusing on the Gini splitting 
criterion, the SASSC’s generalization error further reduces to 0.11 when the number of 
subsets increases to 6. For comparative purposes, Bagging and Random Forest have been 
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trained using 6 and 10 classifiers respectively and, in these cases, obtained generalization 
errors are worse than those deriving from SASSC with g = 6. As for Bagging and Random 
Forest, increasing the number of trees used to classify each subset of randomly drawn 
objects improves the performance of these two methods in terms of prediction accuracy. The 
reason is that their predictions derive form (“in-sample”) independent bootstrap 
replications. Instead, cross-validation predictions in SASSC derives from aggregations of 
classifications made on “out-of-sample” observations that are excluded from the tree 
growing procedure. Thus, it is natural to expect that cross-validation predictions are more 
inaccurate than bagged ones. Of course, increasing the number of subsets of the response 
classes in SASSC reduces the cross-validated generalization error but, at the same time, 
increases the complexity of the final classification model. In spite of a relatively lower 
accuracy, interpretability of the results in SASSC with g = 6 is strictly preserved. 
 

 
Figure 3. The generalization errors for the Letter Recognition dataset provided by 
alternative approaches: as for SASSC, subscript G(T) indicates the Gini (Twoing) splitting 
rule, whereas apex g indicates the number of superclasses (i.e., decision trees) identified by 
the algorithm. The subscript for Bagging and Random Forest indicates the number of trees 
used to obtain the classification by majority voting. 

6. Discussion and conclusions 
In the last two decades, computational enhancements highly contributed to the increase in 
popularity of DTI algorithms. This cause the successful use of Decision Tree Induction (DTI) 
using recursive partitioning algorithms in many diverse areas such as radar signal 
classification, character recognition, remote sensing, medical diagnosis, expert systems, and 
speech recognition, to name only a few. But recursive partitioning and DTI are two faces of 
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the same medal. While the computational time has been rapidly reducing, the statistician is 
making more use of computationally intensive methods to find out unbiased and accurate 
classification rules for unlabelled objects. Nevertheless, DTI cannot result in finding out 
simply a number (the misclassification error), but also an accurate and interpretable model. 
Software enhancements based on interactive user interface and customized routines should 
empower the effectiveness of trees with respect to interpretability, identification and 
robustness. The latter considerations have been the inspiration for the algorithms presented 
in this chapter aimed at the improvement of DTI effectiveness. They lead to easily 
interpretable solutions for rather complicated data analysis problems and can be fruitfully 
used in different fields of Knowledge Discovery from Databases (KDD) and data mining 
such as, for example, web mining and Customer Relationship Management (CRM). 
A Genetic Algorithm for multi-attribute predictor splitting is proposed in this chapter. It can 
be said that the proposed GA works very well in presence of treatable splitting predictors, 
for which the exhaustive enumeration is affordable. The algorithm always reaches the global 
optimum very quickly. This makes possible to think positively, even if nothing can be said, 
of course, about the case in which the number of attributes gets too large for the exhaustive 
enumeration and evaluation. Obtained results can be considered definitely useful in those 
cases where there are no other ways to attack the problem. Future research directions will 
include exhaustive enumerations on bigger datasets on a grid computing infrastructure.  
In addition an Ant Colony Optimization algorithm is also proposed for exploratory tree 
growing. Such algorithm could be useful for the situations in which high accuracy is 
required from the decision tree would. Ant System, on the other hand, is the simplest (yet 
less efficient) ACO technique, so that the use of more powerful ACO algorithms (which is 
currently under development) would reasonably bring better results. It is well known that 
ACO algorithms reach their maximum efficiency when coupled with local search techniques 
or can improve their efficiency by making use of candidate lists.  
Finally, a sequential search algorithm for modelling multi-attribute response through DTI 
has also been introduced. The motivation underlying the formalization of the SASSC 
algorithm derives from the following intuition: basically, since standard classification trees 
unavoidably lead to prediction inaccuracy in the presence of multi-class response, it would 
be favourable to look for a relatively reduced number of decision trees each one relating to a 
subset of classes of the response variable, the so called super-classes. Reducing the number 
of response classes for each of those trees naturally leads to improve the overall prediction 
accuracy. To further enforce this guess, an appropriate criterion to derive the correct number 
of super-classes and the most parsimonious tree structure for each of them has to be found. 
In this respect, a sequential approach that automatically proceeds through subsequent 
aggregations of the response classes might be a natural starting point. 
The analysis of the Letter Recognition dataset demonstrated that the SASSC algorithm can 
be applied pursuing two complementary goals: 1) a content-related goal, resulting in the 
specification of a classification model that provides a good interpretation of the results 
without disregarding accuracy; 2) a performance-related goal, dealing with the development 
of a model resulting effective in terms of predictive accuracy without neglecting 
interpretability.  Taking these considerations into account, SASSC appears as a valuable 
alternative to evaluate whether a restricted number of independent classifiers improves the 
generalization error of a classification model. 
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Appendix: The J-FAST software 
The algorithms presented in this chapter have been implemented in the Java language. In 
order to make it possible to test them on real datasets a Java segmentation framework, called 
J-FAST, has been developed. The first aim of this software is to take care of all the necessary 
operations to perform before and after running the recursive partitioning algorithm. These 
can be summarized as follows: reading data from text files and spreadsheets; processing 
data before carrying out the tree growing process; specifying the type of recursive 
partitioning algorithm to be applied (i.e., classification or  regression tree) ; interpretation of 
the results.  
The J-FAST program is a Java-based recursive partitioning software, which is particularly 
research oriented. It mainly consists of a flexible, efficient and transparent cross-platform 
application for building classification and regression trees using any kind of heuristic in the 
tree growing process (like the CART greedy algorithm or the FAST branch and bound 
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Appendix: The J-FAST software 
The algorithms presented in this chapter have been implemented in the Java language. In 
order to make it possible to test them on real datasets a Java segmentation framework, called 
J-FAST, has been developed. The first aim of this software is to take care of all the necessary 
operations to perform before and after running the recursive partitioning algorithm. These 
can be summarized as follows: reading data from text files and spreadsheets; processing 
data before carrying out the tree growing process; specifying the type of recursive 
partitioning algorithm to be applied (i.e., classification or  regression tree) ; interpretation of 
the results.  
The J-FAST program is a Java-based recursive partitioning software, which is particularly 
research oriented. It mainly consists of a flexible, efficient and transparent cross-platform 
application for building classification and regression trees using any kind of heuristic in the 
tree growing process (like the CART greedy algorithm or the FAST branch and bound 
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heuristic or any other one written by the user). It  also allows to interactively visualize and 
compare the results. J-FAST divides the recursive partitioning procedure into three main 
sections. The data-importing Graphical User Interface (see Figure 4) allows to read data 
from Excel-like spreadsheets and plain text files and automatically recognises the nature of 
the variables by distinguishing the categorical, numerical or alphanumerical columns of a 
data matrix. J-Fast also allows the user to specify the Decision Tree Induction model by 
choosing the response variable, as well as which predictor(s) should be treated as ordinal, 
nominal or as excluded from the analysis.  
 

 
Fig. 4. J-Fast data importing Graphical User Interface 

A second GUI visualizes some information about the chosen DTI model and provides some 
descriptive statistics about the analyzing data. It also allows the user to specify which are 
the features of the DTI model under specification, such as the learning sample rate, the 
stopping conditions, the possibility of obtaining a verbose output. It also asks the user to 
choose between all the recursive partitioning heuristics that are present into the class path. 
Then, the software starts the tree growing procedure. 
The third component of the J-FAST software is the results navigator. It allows the user to 
interactively display and navigate into the results of the analysis. 
The results navigator GUI (see Figure 5) consists of two windows. The first one is the main 
results window. It visualises the obtained decision tree, charts the misclassification rates and 
the selected node’s information panel (there is a button for visualizing the splitting rule to 
reach the node, the misclassification rate for the node, etc.). The second component is the 
Tree Console Window (Figure 6). It contains buttons that allow the user to navigate through 
the pruning sequence and access directly the best, the trivial and the maximal tree. For each 
tree in the pruning sequence, the node that is going to be pruned is highlighted. By clicking 
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on the node, the interface allows to get the data units which fall in that node and to write 
them into a file in order to continue the analysis of such units using another software. It is 
also possible, from the second step GUI, to simultaneously start more than one analysis in 
order to obtain different tree navigators simultaneously on the screen. This feature is 
particularly useful for comparing trees grown from different datasets or on the same dataset 
but with using different DTI specifications. 
 

 
Fig. 5. J-Fast data results navigator Graphical User Interface 

J-FAST is more than a simple recursive partitioning software. Because of the fact that it has 
been mainly designed to support the research activity, it offers many useful functions like 
the possibility of saving created objects (trees, datasets, nodes, etc.) via the Java serialization 
mechanism in order to better analyze using other ad-hoc written Java programs (some of 
them have already been implemented, like a different tree interface called “TreeSurfer”).  
Interactivity with the R statistical software is also provided: by right-clicking on a node it is 
possible to send the corresponding data to R in order to continue the analysis. This is 
particularly useful if another statistical analysis (i.e. a logit model) has to be made on a 
particular segment (node) extracted from the obtained decision tree. 
J-FAST has to be also  considered as a Java objects Library (or API - Application Program 
Interface), for building Classification and Regression Trees. Any researcher which is able to 
program in Java could use the classes from the J-FAST API in order to get trees without 
having to write all the necessary code. In addition, the J-FAST platform offers many useful 
objects. The most important ones are: 
• Statistics: it provides univariate and bivariate descriptive statistics. 
• DataSet: it stores data for recursive partitioning purposes (response variable, predictors, 

etc.). 
• Split: it specifies the type of split (binary, ternary,etc.) 
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• TreeGrower: it is a class for growing decision trees 
• Pruner: it is class that for decision tree pruning 
• TreeViewer: it is a interactive interface class 
• Utility: it encompasses many useful function like reading data from plain text files, 

Excel-like  spreadsheets, etc. 
• TreeBuild interface: it defines all the rules to follow for the programmer to write his 

own heuristic. 
 

 
Fig. 6. J-Fast tree console window Graphical User Interface 
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