
User Interfaces
Edited by Rita Matrai

Edited by Rita Matrai

Designing user interfaces nowadays is indispensably important. A well-designed
user interface promotes users to complete their everyday tasks in a great extent,
particularly users with special needs. Numerous guidelines have already been

developed for designing user interfaces but because of the technical development, new
challenges appear continuously, various ways of information seeking, publication
and transmit evolve. Computers and mobile devices have roles in all walks of life

such as in a simple search of the web, or using professional applications or in distance
communication between hearing impaired people. It is important that users can apply

the interface easily and the technical parts do not distract their attention from their
work. Proper design of user interface can prevent users from several inconveniences,

for which this book is a great help.

Photo by LV4260 / iStock

ISBN 978-953-307-084-1

U
ser Interfaces

User Interfaces

Edited by

Rita Mátrai

Intech

User Interfaces

Edited by

Rita Mátrai

Intech

User Interfaces
http://dx.doi.org/10.5772/230
Edited by Rita Matrai

© The Editor(s) and the Author(s) 2010
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2010 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

User Interfaces
Edited by Rita Matrai

p. cm.

ISBN 978-953-307-084-1

eBook (PDF) ISBN 978-953-51-5910-0

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,400+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

118,000+
International authors and editors

130M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Preface

Designing user interfaces nowadays is indispensably important. A well-designed user

interface promotes users to complete their everyday tasks in a great extent, particularly
users with special needs. Numerous guidelines have already been developed for designing
user interfaces but because of the technical development new challenges appear
continuously, various ways of information seeking, publication and transmit evolve. The
graphical user interface (GUI) is a standard user interface. Users interpret visual elements
much faster than textual captions, and therefore the work on such interface is faster, easier
and more efficient. The voice user interface (VOI) which can interpret human speech as well
only existed in science fiction; now it is a reality.

With the technical development more and more mobile phones web pages applications
appear. Virtual, augmented and mixed reality also begin to appear on them. There are many
U.I. libraries available on the market (eg. in Java) which promote designers to create GUI-s
easy. It is a hard task to satisfy Design for All Principles. Usability of hardware devices and
software is examined by vast number of empirical studies on different populations.

Not only usability but also user satisfaction is investigated which is influenced by
several factors such as too long waiting time during the use of the system, perspicuity of the
user interface, possibility of easy correction of faults and the proportion of faults, or a layout
which differs from the familiar one and depends on culture. Results of the studies inform
designers to create policies for designing user interfaces.

Computers and mobile devices take role in all walks of life such as in a simple search on
the web, or using professional applications or in distance communication between hearing
impaired people. It is important that user can apply the interface easily and technical parts
do not distract their attentions from their work. Proper design of user interface can prevent
users from several inconveniences in which this book is a great help. The editor would like
to thank for the authors for the comprehensive and high quality researches.

Editor

Rita Mátrai
Lecturer

Eötvös Loránd University
Faculty of Humanities

Institute of Informatics and Library Studies,
Department of Informatics

 Hungary

Preface

Designing user interfaces nowadays is indispensably important. A well-designed user

interface promotes users to complete their everyday tasks in a great extent, particularly
users with special needs. Numerous guidelines have already been developed for designing
user interfaces but because of the technical development new challenges appear
continuously, various ways of information seeking, publication and transmit evolve. The
graphical user interface (GUI) is a standard user interface. Users interpret visual elements
much faster than textual captions, and therefore the work on such interface is faster, easier
and more efficient. The voice user interface (VOI) which can interpret human speech as well
only existed in science fiction; now it is a reality.

With the technical development more and more mobile phones web pages applications
appear. Virtual, augmented and mixed reality also begin to appear on them. There are many
U.I. libraries available on the market (eg. in Java) which promote designers to create GUI-s
easy. It is a hard task to satisfy Design for All Principles. Usability of hardware devices and
software is examined by vast number of empirical studies on different populations.

Not only usability but also user satisfaction is investigated which is influenced by
several factors such as too long waiting time during the use of the system, perspicuity of the
user interface, possibility of easy correction of faults and the proportion of faults, or a layout
which differs from the familiar one and depends on culture. Results of the studies inform
designers to create policies for designing user interfaces.

Computers and mobile devices take role in all walks of life such as in a simple search on
the web, or using professional applications or in distance communication between hearing
impaired people. It is important that user can apply the interface easily and technical parts
do not distract their attentions from their work. Proper design of user interface can prevent
users from several inconveniences in which this book is a great help. The editor would like
to thank for the authors for the comprehensive and high quality researches.

Editor

Rita Mátrai
Lecturer

Eötvös Loránd University
Faculty of Humanities

Institute of Informatics and Library Studies,
Department of Informatics

 Hungary

Contents

 Preface V

1. Simple but Crucial User Interfaces in the World Wide Web:
Introducing 20 Guidelines for Usable Web Form Design

001

 J.A. Bargas-Avila, O. Brenzikofer, S.P. Roth, A.N. Tuch, S. Orsini and K. Opwis

2. Navigation Strategies in Case of Different Kind of User Interfaces 011
 Rita Mátrai and Zsolt Tibor Kosztyán

3. A User Survey on the Interface Causing Discomfort for Warning 021
 Yasuhiro Fujihara and Yuko Murayama

4. Automatic Generation of User Interface Models and Prototypes
from Domain and Use Case Models

035

 António Miguel Rosado da Cruz and João Pascoal Faria

5. Considering the Importance of User Profiles in Interface Design 061
 Yuanhua Liu, Anna-Lisa Osvalder and MariAnne Karlsson

6. Graphical User Interface for PON Network Management System 081
 Boonchuan Ng, Mohammad Syuhaimi Ab-Rahman and Kasmiran Jumari

7. Graphical User Interface of System Identification Toolbox for MATLAB 105
 Hiroyuki Takanashi and Shuichi Adachi

8. GUIs without Pain – the Declarative Way 119
 Mariusz Trzaska

9. Automatic Hand-Pose Trajectory Tracking System Using Video Sequences 133
 Yuan-Hsiang Chang and Chen-Ming Chang

10. An Empirical Approach for the Evaluation of Voice User Interfaces 153
 Valéria Farinazzo, Martins Salvador,

André Luiz S. Kawamoto and João Soares de Oliveira Neto

Contents
 Preface VII

1. Simple but Crucial User Interfaces in the World Wide Web:
Introducing 20 Guidelines for Usable Web Form Design

001

J.A. Bargas-Avila, O. Brenzikofer, S.P. Roth, A.N. Tuch, S. Orsini and K. Opwis

2. Navigation Strategies in Case of Different Kind of User Interfaces 011
Rita Mátrai and Zsolt Tibor Kosztyán

3. A User Survey on the Interface Causing Discomfort for Warning 021
Yasuhiro Fujihara and Yuko Murayama

4. Automatic Generation of User Interface Models and Prototypes
from Domain and Use Case Models

035

António Miguel Rosado da Cruz and João Pascoal Faria

5. Considering the Importance of User Profiles in Interface Design 061
Yuanhua Liu, Anna-Lisa Osvalder and MariAnne Karlsson

6. Graphical User Interface for PON Network Management System 081
Boonchuan Ng, Mohammad Syuhaimi Ab-Rahman and Kasmiran Jumari

7. Graphical User Interface of System Identification Toolbox for MATLAB 105
Hiroyuki Takanashi and Shuichi Adachi

8. GUIs without Pain – the Declarative Way 119
Mariusz Trzaska

9. Automatic Hand-Pose Trajectory Tracking System Using Video Sequences 133
Yuan-Hsiang Chang and Chen-Ming Chang

10. An Empirical Approach for the Evaluation of Voice User Interfaces 153
Valéria Farinazzo, Martins Salvador,
André Luiz S. Kawamoto and João Soares de Oliveira Neto

X

11. Embedded User Interface for Mobile Applications
to Satisfy Design for All Principles

165

Evangelos Bekiaris, Maria Gemou and Kostantinos Kalogirou

12. Mixed Reality on Mobile Devices 191
Jayashree Karlekar, Steven ZhiYing Zhou,Weiquan Lu,
Yuta Nakayama and Daniel Hii

13. Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach 207
Knut Kvale and Narada Dilp Warakagoda

14. Fitts’ Law Index of Difficulty Evaluated and Extended
for Screen Size Variations

229

Hidehiko Okada and Takayuki Akiba

15. Understanding SOA Perspective of e-Governance in Indian Context:
Case Based Study

239

Harekrishna Misra

16. User Interface for Automatic Service Composition 255
Incheon Paik

1

Simple but Crucial User Interfaces
in the World Wide Web: Introducing 20

Guidelines for Usable Web Form Design
J.A. Bargas-Avila, O. Brenzikofer, S.P. Roth, A.N. Tuch,

S. Orsini and K. Opwis
University of Basel, Faculty of Psychology,

Department of Cognitive Psychology and Methodology,
Switzerland

1. Introduction
Most websites use interactive online forms as the main contact point between users and
website owners (e.g. companies, governmental institutions, ect.). Therefore, a proper design
of such forms is crucial to allow smooth information exchange. It can be decisive on the
success or failure of an online transaction. Users mostly visit a website with an intention that
is related to the content of that site (e.g. purchasing an article, gathering information).
Hence, they do not visit a website with the intention or goal of filling in a web form. Let us
illustrate this with an online shopping example: Once users have chosen the items that they
wish to buy, they want to finish their shopping as quickly, easily and safely as possible. But
to successfully complete the shopping process users have to provide some personal data
such as shipping address or credit card information. In the users perception, an online form
may be perceived as a hurdle. There is evidence that unusable web forms lead to customers
aborting the transaction prematurely, resulting in loss of profit (Wroblewski, 2008). To
prevent such dropouts from the buying process, a revision of the form is necessary. A
successful redesign of a suboptimal online form may result in an increased completion rate
in the range of 10%-40% (Wroblewski, 2008). For instance, the eBay User Experience and
Design Group reported that a redesign of the eBay registration form made a significant
contribution to eBay’s business and user success (Herman, 2004).
The World Wide Web contains a wide range of different web form design solutions for
similar interface aspects and problems. Exemplarily, Figure 1 shows four different ways of
implementing and communicating format restrictions to users. It can be seen, that even
website developers of major companies choose very different ways to solve the same
problems. This raises several important questions: Are these solutions equivalent or are
there ways that lead to superior web forms in terms of an enhanced usability? Would it not
be advantageous to use similar solutions for similar problems, so that predictability for
users can be increased? Are there different solutions that may be used depending on the
developer’s intentions?
In the last years a growing body of research and guidelines have been published on how to
make online forms more usable. They answer to a certain extent the questions mentioned

VIII

11. Embedded User Interface for Mobile Applications
to Satisfy Design for All Principles

165

 Evangelos Bekiaris, Maria Gemou and Kostantinos Kalogirou

12. Mixed Reality on Mobile Devices 191
 Jayashree Karlekar, Steven ZhiYing Zhou,Weiquan Lu,

Yuta Nakayama and Daniel Hii

13. Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach 207

 Knut Kvale and Narada Dilp Warakagoda

14. Fitts’ Law Index of Difficulty Evaluated and Extended
for Screen Size Variations

229

 Hidehiko Okada and Takayuki Akiba

15. Understanding SOA Perspective of e-Governance in Indian Context:
Case Based Study

239

 Harekrishna Misra

16. User Interface for Automatic Service Composition 255
 Incheon Paik

1

Simple but Crucial User Interfaces
in the World Wide Web: Introducing 20

Guidelines for Usable Web Form Design
J.A. Bargas-Avila, O. Brenzikofer, S.P. Roth, A.N. Tuch,

S. Orsini and K. Opwis
University of Basel, Faculty of Psychology,

Department of Cognitive Psychology and Methodology,
Switzerland

1. Introduction
Most websites use interactive online forms as the main contact point between users and
website owners (e.g. companies, governmental institutions, ect.). Therefore, a proper design
of such forms is crucial to allow smooth information exchange. It can be decisive on the
success or failure of an online transaction. Users mostly visit a website with an intention that
is related to the content of that site (e.g. purchasing an article, gathering information).
Hence, they do not visit a website with the intention or goal of filling in a web form. Let us
illustrate this with an online shopping example: Once users have chosen the items that they
wish to buy, they want to finish their shopping as quickly, easily and safely as possible. But
to successfully complete the shopping process users have to provide some personal data
such as shipping address or credit card information. In the users perception, an online form
may be perceived as a hurdle. There is evidence that unusable web forms lead to customers
aborting the transaction prematurely, resulting in loss of profit (Wroblewski, 2008). To
prevent such dropouts from the buying process, a revision of the form is necessary. A
successful redesign of a suboptimal online form may result in an increased completion rate
in the range of 10%-40% (Wroblewski, 2008). For instance, the eBay User Experience and
Design Group reported that a redesign of the eBay registration form made a significant
contribution to eBay’s business and user success (Herman, 2004).
The World Wide Web contains a wide range of different web form design solutions for
similar interface aspects and problems. Exemplarily, Figure 1 shows four different ways of
implementing and communicating format restrictions to users. It can be seen, that even
website developers of major companies choose very different ways to solve the same
problems. This raises several important questions: Are these solutions equivalent or are
there ways that lead to superior web forms in terms of an enhanced usability? Would it not
be advantageous to use similar solutions for similar problems, so that predictability for
users can be increased? Are there different solutions that may be used depending on the
developer’s intentions?
In the last years a growing body of research and guidelines have been published on how to
make online forms more usable. They answer to a certain extent the questions mentioned

 User Interfaces

2

(1) Form using no visual format restriction.
Users are not informed in advance about the
password policy (amazon.com).

(2) Form using format example: Users are
shown that the Yahoo ID equals the e-mail
adress (yahoo.com)

(3) Form using format specification. Users are
told that the minimum lenght for the
password is 8 characters (google.com).

(4) Form using format example and
specification. Users are informed about the
password policy in detail (ebay.com).

Fig. 1. Examples of various ways to communicate format restrictions to users.

above. Some publications are based on empirical data; others instead have been gained from
experience and best practice of usability experts (eg. Beaumont et al., 2002; Wroblewski,
2008).
This chapter reviews the different topics, studies and publications. Based on these findings a
set of 20 practical guidelines are derived, that can be used to develop usable web forms or
improve the usability of existing web forms.

2. Theoretical background
In the last decade, many aspects of online forms have been explored. To simplify the
overview, the different topics are classified as follows: (1) form content, (2) form layout, (3)
input types, (4), error handling and (5) form submission. This section provides a brief
summary of the most important results within these areas.

Simple but Crucial User Interfaces in the World Wide Web:
Introducing 20 Guidelines for Usable Web Form Design

3

2.1 Form content
The way an online form should be designed heavily depends on the information asked from
the users. This information has consequences for the entire form layout. On this note, to
facilitate data input, Beaumont et al. (2002) suggest keeping an intuitive order of the
questions, e.g., first ask for the name, then the address and, at the end, for the telephone
number. A basic concept of user-centered design is to map the natural environment, which
is already familiar to users, as closely as possible to the virtual one (Garrett, 2002). If users
are familiar with a concept in real life, it is probable that they will also understand this
concept if it is applied to the online environment. In the case of web forms, this may for
example be achieved by using a layout analogous to paper forms.
In addition, reflecting on which information is essential and which is dispensable, is crucial.
To keep forms simple and fast, Beaumont et al. (2002) recommend asking only those
questions that really need to be answered, e.g., the shipping address in the case of an online
shop. Other “nice-to-know” questions only annoy users and require more time to fill in the
form. However, such “nice-to-know” questions may provide insight into the user
population and may be helpful for marketing purposes. Users must be enabled to
distinguish between required and optional fields at any time (Linderman & Fried, 2004;
Wilhelm & Rehmann, 2006). Nowadays, this is often realized through the use of asterisks.
Pauwels et al. (2009) examined whether highlighting required fields by color coding leads to
faster completion time compared to an asterisk next to required fields. Participants were
faster, made fewer errors, and were more satisfied when the required fields were
highlighted in color. Tullis and Pons (1997) found that people were fastest at filling in
required fields when the required and optional fields were separated from each other.

2.2 Form layout
Online forms consist mainly of labels and input fields of varying design (e.g. free text entry,
radio buttons, check boxes, etc.). These elements can be placed in different variations. Penzo
(2006) examined the position of labels relative to the input field in a study using eye-
tracking. He compared left-, right- and top-aligned labels and came to the conclusion that
with left-aligned labels people needed nearly twice as long to complete the form as with
right-aligned labels. Additionally, the number of fixations needed with right-aligned labels
was halved. The fastest performance however was reached with top-aligned labels, which
required only one fixation to capture both the label and the input field at the same time. As a
result of this study, Wroblewski (2008) recommends using left-aligned labels for unfamiliar
data where one wants users to slow down and consider their answers. On the other hand, if
the designer wants users to complete the form as quickly as possible, top-aligned labels are
recommended. Another advantage of top-aligned labels is that label length does not
influence placement of the input fields.
In terms of form layouts, Robinson (2003) states that a form should not be divided into more
than one column. A row should only be used to answer one question. Concerning the length of
input fields, Wroblewski (2008) recommends matching the length of the field to the length of
the expected answer. This provides a clue or affordance to users as to what kind of answer is
expected from them. Christian et al. (2007) examined the date entry with two separated text
fields for month and year. Participants gave more answers in the expected format (two
characters for the month and four for the year) if the field for the month was half the size of the
one for the year. In another study by Couper et al. (2001), people gave more incorrect answers
if the size of the input field did not fit the length of the expected input.

 User Interfaces

2

(1) Form using no visual format restriction.
Users are not informed in advance about the
password policy (amazon.com).

(2) Form using format example: Users are
shown that the Yahoo ID equals the e-mail
adress (yahoo.com)

(3) Form using format specification. Users are
told that the minimum lenght for the
password is 8 characters (google.com).

(4) Form using format example and
specification. Users are informed about the
password policy in detail (ebay.com).

Fig. 1. Examples of various ways to communicate format restrictions to users.

above. Some publications are based on empirical data; others instead have been gained from
experience and best practice of usability experts (eg. Beaumont et al., 2002; Wroblewski,
2008).
This chapter reviews the different topics, studies and publications. Based on these findings a
set of 20 practical guidelines are derived, that can be used to develop usable web forms or
improve the usability of existing web forms.

2. Theoretical background
In the last decade, many aspects of online forms have been explored. To simplify the
overview, the different topics are classified as follows: (1) form content, (2) form layout, (3)
input types, (4), error handling and (5) form submission. This section provides a brief
summary of the most important results within these areas.

Simple but Crucial User Interfaces in the World Wide Web:
Introducing 20 Guidelines for Usable Web Form Design

3

2.1 Form content
The way an online form should be designed heavily depends on the information asked from
the users. This information has consequences for the entire form layout. On this note, to
facilitate data input, Beaumont et al. (2002) suggest keeping an intuitive order of the
questions, e.g., first ask for the name, then the address and, at the end, for the telephone
number. A basic concept of user-centered design is to map the natural environment, which
is already familiar to users, as closely as possible to the virtual one (Garrett, 2002). If users
are familiar with a concept in real life, it is probable that they will also understand this
concept if it is applied to the online environment. In the case of web forms, this may for
example be achieved by using a layout analogous to paper forms.
In addition, reflecting on which information is essential and which is dispensable, is crucial.
To keep forms simple and fast, Beaumont et al. (2002) recommend asking only those
questions that really need to be answered, e.g., the shipping address in the case of an online
shop. Other “nice-to-know” questions only annoy users and require more time to fill in the
form. However, such “nice-to-know” questions may provide insight into the user
population and may be helpful for marketing purposes. Users must be enabled to
distinguish between required and optional fields at any time (Linderman & Fried, 2004;
Wilhelm & Rehmann, 2006). Nowadays, this is often realized through the use of asterisks.
Pauwels et al. (2009) examined whether highlighting required fields by color coding leads to
faster completion time compared to an asterisk next to required fields. Participants were
faster, made fewer errors, and were more satisfied when the required fields were
highlighted in color. Tullis and Pons (1997) found that people were fastest at filling in
required fields when the required and optional fields were separated from each other.

2.2 Form layout
Online forms consist mainly of labels and input fields of varying design (e.g. free text entry,
radio buttons, check boxes, etc.). These elements can be placed in different variations. Penzo
(2006) examined the position of labels relative to the input field in a study using eye-
tracking. He compared left-, right- and top-aligned labels and came to the conclusion that
with left-aligned labels people needed nearly twice as long to complete the form as with
right-aligned labels. Additionally, the number of fixations needed with right-aligned labels
was halved. The fastest performance however was reached with top-aligned labels, which
required only one fixation to capture both the label and the input field at the same time. As a
result of this study, Wroblewski (2008) recommends using left-aligned labels for unfamiliar
data where one wants users to slow down and consider their answers. On the other hand, if
the designer wants users to complete the form as quickly as possible, top-aligned labels are
recommended. Another advantage of top-aligned labels is that label length does not
influence placement of the input fields.
In terms of form layouts, Robinson (2003) states that a form should not be divided into more
than one column. A row should only be used to answer one question. Concerning the length of
input fields, Wroblewski (2008) recommends matching the length of the field to the length of
the expected answer. This provides a clue or affordance to users as to what kind of answer is
expected from them. Christian et al. (2007) examined the date entry with two separated text
fields for month and year. Participants gave more answers in the expected format (two
characters for the month and four for the year) if the field for the month was half the size of the
one for the year. In another study by Couper et al. (2001), people gave more incorrect answers
if the size of the input field did not fit the length of the expected input.

 User Interfaces

4

2.3 Input types
Another question in web form design relates to which input type (user interface elements)
should be used. Miller and Jarret (2001) recommend not using too many different input
types in one form as this can confuse users. As mentioned, Beaumont et al. (2002)
recommend using textboxes as often as possible as they are preferred by users. However, if
the number of possible answers has to be restricted, radio buttons, checkboxes or drop-
down menus can be used (Linderman & Fried, 2004). These input types are also
recommended to avoid errors, prevent users from entering unavailable options and simplify
the decision process. Radio buttons and drop-down menus are used for choosing only one
option (single choice); with checkboxes, users can select as many options as they like. For
multiple selection, there is also the list-box element, which saves screen real estate. Bargas-
Avila et al. (2009) conducted a study that compared these two interface elements
(checkboxes and list boxes). Results showed that participants in general were faster and
more satisfied using checkboxes. Concerning the use of drop-down menus and radio
buttons, Miller and Jarret (2001) see the advantage of radio buttons in the fact that all
options are visible at once, whereas the advantage of drop-down menus lies in the saving of
screen real estate. With the help of the Keystroke-Level Model (Card et al., 1980), it can be
theoretically calculated that interaction with a drop-down menu takes longer than
interaction with radio buttons, mainly because of the additional click needed to open the
drop-down menu. In an empirical study, Healey (2007) found that on the single-question
level, radio buttons were faster to choose from than drop-down menus, but the use of drop-
down menus instead of radio buttons did not affect the overall time to fill in the whole
questionnaire. Hogg and Masztal (2001) could not find any differences in the time needed to
select answers between radio buttons and drop-down menus. Heerwegh and Loosveldt
(2002) found that people needed significantly more time to select options from drop-down
menus than from radio buttons, but these findings could not be replicated in a second study.
Concerning the drop-out rate, no differences between radio buttons and drop-down menus
could be found (Healey, 2007; Heerwegh & Loosveldt, 2002; Hogg & Masztal, 2001).
According to Miller and Jarret (2001), radio buttons should be used when two to four
options are available; with more than four options they recommend using drop-down
menus. When drop-down menus are used, Beaumont et al. (2002) suggest arranging the
options in an order with which the user is already familiar (e.g. for weekdays, the sequence
Monday, Tuesday, etc.). Where there is no intuitive sequence, an alphabetical order should
be considered.
A frequent issue concerning data input is the design of date entries. With date entries, it is
important that they are entered in the expected format to avoid confusion between month
and day. There are many different ways of designing input fields for date entries and many
possibilities for how they have to be completed. Christian et al. (2007) examined date entries
where the month and year field consisted of two separate text boxes. Their study revealed
that 92.9%-95.8% provided their answer in the correct format when symbols (MM and
YYYY) were used to state the restrictions. Positioning the date instructions to the right of the
year field led to fewer correct answers. Linderman and Fried (2004) suggest using drop-
down menus to ensure that no invalid dates are entered. Bargas-Avila et al. (2009) compared
six different versions to design input fields for date entries. The results revealed that using a
drop-down menu is best when format errors must be avoided, whereas using only one
input field and placing the format requirements left or inside the text box led to faster
completion time. Concerning the formatting of other answers, accepting entries in every

Simple but Crucial User Interfaces in the World Wide Web:
Introducing 20 Guidelines for Usable Web Form Design

5

format is recommended, as long as this does not cause ambiguity (Linderman & Fried, 2004;
Myers, 2006). This prevents users from having to figure out which format is required and
avoids unnecessary error messages.

2.4 Error handling
It is important to guide users as quickly and error-free as possible through forms. Errors
should be avoided from the start by explaining restrictions in advance. Field format
restrictions are often used in online forms to impose certain formatting and content rules on
users such as minimum password length or date entry format. Bargas-Avila et al. (2009)
examined if and how format restrictions for fields in online forms should be communicated
to users. Results show that providing format restrictions to users in advance leads to
significantly fewer errors and trials. The most efficient way to communicate field format
restrictions is by stating the imposed rule (format specification) but without providing an
example, because this method leads to a low error rate and uses minimal information.
Often, errors cannot be avoided; in this case, it is important to help users to recover from
them as quickly and easily as possible. To assure usable error messages in the web, Nielsen
(2001) and Linderman and Fried (2004) state that an error message must be written in a
familiar language and clearly state what the error is and how it can be corrected. The error
must be noticeable at a glance, using color, icons and text to highlight the problem area.
Nielsen (2001) also advises never deleting the completed fields after an error has occurred,
as this can be very frustrating for users. Bargas-Avila et al. (2007) compared six different
ways of presenting an error message, including inline validation, pop-up windows and
embedded error messages. People made fewer consecutive errors when error messages
appeared embedded in the form next to the corresponding input fields or one by one in a
pop-up window. This was only the case if the error messages showed up at the end after
clicking the send button. If the error messages appeared at the moment the erroneous field
was left (inline validation), the participants made significantly more errors completing the
form. They simply ignored or, in the case of pop-up windows, even clicked away the
appearing error messages without reading them.

2.5 Form submission
At the end of the fill-in process, the form has to be submitted. This is usually realized
through a button with an action label. Linderman and Fried (2004) suggest disabling the
submit button as soon as it has been clicked to avoid repeated submissions due to long
loading time. Some web forms also offer a reset or cancel button in addition to the submit
button. Many experts recommend eliminating such a button as it can be clicked by accident
and does not provide any real additional value (Linderman & Fried, 2004; Robinson, 2003;
Wroblewski, 2008). After a successful transaction, the company should confirm the receipt
of the user’s data by e-mail (Linderman & Fried, 2004; Wroblewski, 2008).

3. Twenty guidelines for usable web form design
Based on the summarized theoretical and empirical background, 20 guidelines for usable
web form design are derived. The main goal of these guidelines is to support website
developers in designing usable web forms. The following sections summarize these
guidelines, using the same structure as in the theoretical background (see section 2).

 User Interfaces

4

2.3 Input types
Another question in web form design relates to which input type (user interface elements)
should be used. Miller and Jarret (2001) recommend not using too many different input
types in one form as this can confuse users. As mentioned, Beaumont et al. (2002)
recommend using textboxes as often as possible as they are preferred by users. However, if
the number of possible answers has to be restricted, radio buttons, checkboxes or drop-
down menus can be used (Linderman & Fried, 2004). These input types are also
recommended to avoid errors, prevent users from entering unavailable options and simplify
the decision process. Radio buttons and drop-down menus are used for choosing only one
option (single choice); with checkboxes, users can select as many options as they like. For
multiple selection, there is also the list-box element, which saves screen real estate. Bargas-
Avila et al. (2009) conducted a study that compared these two interface elements
(checkboxes and list boxes). Results showed that participants in general were faster and
more satisfied using checkboxes. Concerning the use of drop-down menus and radio
buttons, Miller and Jarret (2001) see the advantage of radio buttons in the fact that all
options are visible at once, whereas the advantage of drop-down menus lies in the saving of
screen real estate. With the help of the Keystroke-Level Model (Card et al., 1980), it can be
theoretically calculated that interaction with a drop-down menu takes longer than
interaction with radio buttons, mainly because of the additional click needed to open the
drop-down menu. In an empirical study, Healey (2007) found that on the single-question
level, radio buttons were faster to choose from than drop-down menus, but the use of drop-
down menus instead of radio buttons did not affect the overall time to fill in the whole
questionnaire. Hogg and Masztal (2001) could not find any differences in the time needed to
select answers between radio buttons and drop-down menus. Heerwegh and Loosveldt
(2002) found that people needed significantly more time to select options from drop-down
menus than from radio buttons, but these findings could not be replicated in a second study.
Concerning the drop-out rate, no differences between radio buttons and drop-down menus
could be found (Healey, 2007; Heerwegh & Loosveldt, 2002; Hogg & Masztal, 2001).
According to Miller and Jarret (2001), radio buttons should be used when two to four
options are available; with more than four options they recommend using drop-down
menus. When drop-down menus are used, Beaumont et al. (2002) suggest arranging the
options in an order with which the user is already familiar (e.g. for weekdays, the sequence
Monday, Tuesday, etc.). Where there is no intuitive sequence, an alphabetical order should
be considered.
A frequent issue concerning data input is the design of date entries. With date entries, it is
important that they are entered in the expected format to avoid confusion between month
and day. There are many different ways of designing input fields for date entries and many
possibilities for how they have to be completed. Christian et al. (2007) examined date entries
where the month and year field consisted of two separate text boxes. Their study revealed
that 92.9%-95.8% provided their answer in the correct format when symbols (MM and
YYYY) were used to state the restrictions. Positioning the date instructions to the right of the
year field led to fewer correct answers. Linderman and Fried (2004) suggest using drop-
down menus to ensure that no invalid dates are entered. Bargas-Avila et al. (2009) compared
six different versions to design input fields for date entries. The results revealed that using a
drop-down menu is best when format errors must be avoided, whereas using only one
input field and placing the format requirements left or inside the text box led to faster
completion time. Concerning the formatting of other answers, accepting entries in every

Simple but Crucial User Interfaces in the World Wide Web:
Introducing 20 Guidelines for Usable Web Form Design

5

format is recommended, as long as this does not cause ambiguity (Linderman & Fried, 2004;
Myers, 2006). This prevents users from having to figure out which format is required and
avoids unnecessary error messages.

2.4 Error handling
It is important to guide users as quickly and error-free as possible through forms. Errors
should be avoided from the start by explaining restrictions in advance. Field format
restrictions are often used in online forms to impose certain formatting and content rules on
users such as minimum password length or date entry format. Bargas-Avila et al. (2009)
examined if and how format restrictions for fields in online forms should be communicated
to users. Results show that providing format restrictions to users in advance leads to
significantly fewer errors and trials. The most efficient way to communicate field format
restrictions is by stating the imposed rule (format specification) but without providing an
example, because this method leads to a low error rate and uses minimal information.
Often, errors cannot be avoided; in this case, it is important to help users to recover from
them as quickly and easily as possible. To assure usable error messages in the web, Nielsen
(2001) and Linderman and Fried (2004) state that an error message must be written in a
familiar language and clearly state what the error is and how it can be corrected. The error
must be noticeable at a glance, using color, icons and text to highlight the problem area.
Nielsen (2001) also advises never deleting the completed fields after an error has occurred,
as this can be very frustrating for users. Bargas-Avila et al. (2007) compared six different
ways of presenting an error message, including inline validation, pop-up windows and
embedded error messages. People made fewer consecutive errors when error messages
appeared embedded in the form next to the corresponding input fields or one by one in a
pop-up window. This was only the case if the error messages showed up at the end after
clicking the send button. If the error messages appeared at the moment the erroneous field
was left (inline validation), the participants made significantly more errors completing the
form. They simply ignored or, in the case of pop-up windows, even clicked away the
appearing error messages without reading them.

2.5 Form submission
At the end of the fill-in process, the form has to be submitted. This is usually realized
through a button with an action label. Linderman and Fried (2004) suggest disabling the
submit button as soon as it has been clicked to avoid repeated submissions due to long
loading time. Some web forms also offer a reset or cancel button in addition to the submit
button. Many experts recommend eliminating such a button as it can be clicked by accident
and does not provide any real additional value (Linderman & Fried, 2004; Robinson, 2003;
Wroblewski, 2008). After a successful transaction, the company should confirm the receipt
of the user’s data by e-mail (Linderman & Fried, 2004; Wroblewski, 2008).

3. Twenty guidelines for usable web form design
Based on the summarized theoretical and empirical background, 20 guidelines for usable
web form design are derived. The main goal of these guidelines is to support website
developers in designing usable web forms. The following sections summarize these
guidelines, using the same structure as in the theoretical background (see section 2).

 User Interfaces

6

3.1 Form content
Concerning form content, these guidelines are suggested:
Guideline 1: Let people provide answers in a format that they are familiar with from common
situations and keep questions in an intuitive sequence (see Beaumont et al., 2002; Card et al.,
1980; Miller & Jarret, 2001).
Guideline 2: If the answer is unambiguous, allow answers in any format (see Linderman &
Fried, 2004).
Guideline 3: Keep the form as short and simple as possible and do not ask for unnecessary
input (see Beaumont et al., 2002; Wroblewski, 2008).
Guideline 4: If possible and reasonable, separate required from optional fields and use color
and asterisk to mark required fields (see Tullis & Pons, 1997; Pauwels et al., 2009).

3.2 Form layout
To ensure optimal form layout, the following guidelines are suggested:
Guideline 5: To enable people to fill in a form as fast as possible, place the labels above the
corresponding input fields (see Penzo, 2006).
Guideline 6: Do not separate a form into more than one column and only ask one question
per row (see Robinson, 2003).
Guideline 7: Match the size of the input fields to the expected length of the answer (see
Christian et al., 2007; Couper et al., 2001; Wroblewski, 2008).

3.3 Input types
Regarding answer input types, the following guidelines are proposed:
Guideline 8: Use checkboxes, radio buttons or drop-down menus to restrict the number of
options and for entries that can easily be mistyped. Also use them if it is not clear to users in
advance what kind of answer is expected from them (see Linderman & Fried, 2004).
Guideline 9: Use checkboxes instead of list boxes for multiple selection items (see Bargas-
Avila et al., 2009).
Guideline 10: For up to four options, use radio buttons; when more than four options are
required, use a drop-down menu to save screen real estate (see Healey, 2007; Heerwegh and
Loosveldt, 2002; Miller & Jarret, 2001).
Guideline 11: Order options in an intuitive sequence (e.g., weekdays in the sequence
Monday, Tuesday, etc.). If no meaningful sequence is possible, order them alphabetically
(see Beaumont et al., 2002).
Guideline 12: For date entries use a drop-down menu when it is crucial to avoid format
errors. Use only one input field and place the format requirements with symbols (MM,
YYYY) left or inside the text box to achieve faster completion time (see Christian et al., 2007;
Bargas-Avila et al., 2009).

3.4 Error handling
Regarding error handling, the following guidelines are proposed:
Guideline 13: If answers are required in a specific format, state this in advance
communicating the imposed rule (format specification) without an additional example (see
Bargas-Avila et al., 2009).
Guideline 14: Error messages should be polite and explain to the user in familiar language
that a mistake has occurred. Eventually the error message should apologize for the mistake

Simple but Crucial User Interfaces in the World Wide Web:
Introducing 20 Guidelines for Usable Web Form Design

7

and it should clearly describe what the mistake is and how it can be corrected (see
Linderman & Fried, 2004; Nielsen, 2001; Tzeng, 2004).
Guideline 15: After an error occurred, never clear the already completed fields (see Nielsen,
2001).
Guideline 16: Always show error messages after the form has been filled and sent. Show
them all together embedded in the form (see Bargas-Avila et al., 2007).
Guideline 17: Error messages must be noticeable at a glance, using color, icons and text to
highlight the problem area and must be written in a familiar language, explaining what the
error is and how it can be corrected (see Linderman & Fried, 2004).

3.5 Form submission
To ensure optimal form submission, these guidelines are suggested:
Guideline 18: Disable the submit button as soon as it has been clicked to avoid multiple
submissions (see Linderman & Fried, 2004).
Guideline 19: After the form has been sent, show a confirmation site, which expresses thanks
for the submission and states what will happen next. Send a similar confirmation by e-mail
(see Linderman & Fried, 2004).
Guideline 20: Do not provide reset buttons, as they can be clicked by accident. If used
anyway, make them visually distinctive from submit buttons and place them left-aligned
with the cancel button on the right of the submit button (see Linderman & Fried, 2004;
Robinson, 2003; Wroblewski, 2008).

3.6 Overview of the guideline’s empirical foundation
Not all guidelines are supported by empirical data. Some are derived by experts from best
practice and experience. Table 1 provides an overview of the 20 guidelines with their
corresponding foundation.

4. Discussion
Twenty guidelines for usable web form design have been presented. This compilation of
guidelines enables an easier overview of important aspects that have to be considered when
designing forms. Many guidelines already exist, scattered about empirical and practical
studies and reports. This paper provides a comprehensive and structured summary of
applicable design guidelines, which are highly relevant not only for research but also for
practitioners. Applying only few of these guidelines may already have a major impact on
usability and economical benefits.
Future research should examine to what extend the overall application of these guidelines
improves usability, shortens form completion time, prevents errors, and enhances user
satisfaction. Further, it should be investigated whether the postulated guidelines lead to
higher completion rates of web forms. It remains to be seen if the catalog is complete, or if
there are important aspects that are currently missing.

5. References
Bargas-Avila, J.A., Oberholzer, G., 2003. Online form validation: Don’t show errors right

away. In: Rauterberg, M., Menozzi, M.,Wesson, J. (Eds.), Human-Computer
Interaction INTERACT ’03. IOS Press, Amsterdam, pp. 848–851.

 User Interfaces

6

3.1 Form content
Concerning form content, these guidelines are suggested:
Guideline 1: Let people provide answers in a format that they are familiar with from common
situations and keep questions in an intuitive sequence (see Beaumont et al., 2002; Card et al.,
1980; Miller & Jarret, 2001).
Guideline 2: If the answer is unambiguous, allow answers in any format (see Linderman &
Fried, 2004).
Guideline 3: Keep the form as short and simple as possible and do not ask for unnecessary
input (see Beaumont et al., 2002; Wroblewski, 2008).
Guideline 4: If possible and reasonable, separate required from optional fields and use color
and asterisk to mark required fields (see Tullis & Pons, 1997; Pauwels et al., 2009).

3.2 Form layout
To ensure optimal form layout, the following guidelines are suggested:
Guideline 5: To enable people to fill in a form as fast as possible, place the labels above the
corresponding input fields (see Penzo, 2006).
Guideline 6: Do not separate a form into more than one column and only ask one question
per row (see Robinson, 2003).
Guideline 7: Match the size of the input fields to the expected length of the answer (see
Christian et al., 2007; Couper et al., 2001; Wroblewski, 2008).

3.3 Input types
Regarding answer input types, the following guidelines are proposed:
Guideline 8: Use checkboxes, radio buttons or drop-down menus to restrict the number of
options and for entries that can easily be mistyped. Also use them if it is not clear to users in
advance what kind of answer is expected from them (see Linderman & Fried, 2004).
Guideline 9: Use checkboxes instead of list boxes for multiple selection items (see Bargas-
Avila et al., 2009).
Guideline 10: For up to four options, use radio buttons; when more than four options are
required, use a drop-down menu to save screen real estate (see Healey, 2007; Heerwegh and
Loosveldt, 2002; Miller & Jarret, 2001).
Guideline 11: Order options in an intuitive sequence (e.g., weekdays in the sequence
Monday, Tuesday, etc.). If no meaningful sequence is possible, order them alphabetically
(see Beaumont et al., 2002).
Guideline 12: For date entries use a drop-down menu when it is crucial to avoid format
errors. Use only one input field and place the format requirements with symbols (MM,
YYYY) left or inside the text box to achieve faster completion time (see Christian et al., 2007;
Bargas-Avila et al., 2009).

3.4 Error handling
Regarding error handling, the following guidelines are proposed:
Guideline 13: If answers are required in a specific format, state this in advance
communicating the imposed rule (format specification) without an additional example (see
Bargas-Avila et al., 2009).
Guideline 14: Error messages should be polite and explain to the user in familiar language
that a mistake has occurred. Eventually the error message should apologize for the mistake

Simple but Crucial User Interfaces in the World Wide Web:
Introducing 20 Guidelines for Usable Web Form Design

7

and it should clearly describe what the mistake is and how it can be corrected (see
Linderman & Fried, 2004; Nielsen, 2001; Tzeng, 2004).
Guideline 15: After an error occurred, never clear the already completed fields (see Nielsen,
2001).
Guideline 16: Always show error messages after the form has been filled and sent. Show
them all together embedded in the form (see Bargas-Avila et al., 2007).
Guideline 17: Error messages must be noticeable at a glance, using color, icons and text to
highlight the problem area and must be written in a familiar language, explaining what the
error is and how it can be corrected (see Linderman & Fried, 2004).

3.5 Form submission
To ensure optimal form submission, these guidelines are suggested:
Guideline 18: Disable the submit button as soon as it has been clicked to avoid multiple
submissions (see Linderman & Fried, 2004).
Guideline 19: After the form has been sent, show a confirmation site, which expresses thanks
for the submission and states what will happen next. Send a similar confirmation by e-mail
(see Linderman & Fried, 2004).
Guideline 20: Do not provide reset buttons, as they can be clicked by accident. If used
anyway, make them visually distinctive from submit buttons and place them left-aligned
with the cancel button on the right of the submit button (see Linderman & Fried, 2004;
Robinson, 2003; Wroblewski, 2008).

3.6 Overview of the guideline’s empirical foundation
Not all guidelines are supported by empirical data. Some are derived by experts from best
practice and experience. Table 1 provides an overview of the 20 guidelines with their
corresponding foundation.

4. Discussion
Twenty guidelines for usable web form design have been presented. This compilation of
guidelines enables an easier overview of important aspects that have to be considered when
designing forms. Many guidelines already exist, scattered about empirical and practical
studies and reports. This paper provides a comprehensive and structured summary of
applicable design guidelines, which are highly relevant not only for research but also for
practitioners. Applying only few of these guidelines may already have a major impact on
usability and economical benefits.
Future research should examine to what extend the overall application of these guidelines
improves usability, shortens form completion time, prevents errors, and enhances user
satisfaction. Further, it should be investigated whether the postulated guidelines lead to
higher completion rates of web forms. It remains to be seen if the catalog is complete, or if
there are important aspects that are currently missing.

5. References
Bargas-Avila, J.A., Oberholzer, G., 2003. Online form validation: Don’t show errors right

away. In: Rauterberg, M., Menozzi, M.,Wesson, J. (Eds.), Human-Computer
Interaction INTERACT ’03. IOS Press, Amsterdam, pp. 848–851.

 User Interfaces

8

Bargas-Avila, J.A., Oberholzer, G., Schmutz, P., de Vito, M., Opwis, K., 2007. Usable error
message presentation in theWorldWideWeb: Do not show errors right away.
Interacting with Computers 19 (3), 330–341.

Bargas-Avila, J.A., Brenzikofer, O., Tuch, A.N., Roth, S.P., Opwis, K., 2009. Working towards
usable forms on the World Wide Web: Optimizing multiple selection interface
elements and date entry input elds. [manuscript submitted for review]

Bargas-Avila, J.A., Orsini, S., Piosczyk, H., Urwyler, D., Roth, S.P., Tuch, A.N., Opwis, K.,
2009. Enhancing online forms: Use format specications for elds with format
restrictions to help respondents. [manuscript submitted for review]

Beaumont, A., James, J., Stephens, J., Ullman, C., 2002. Usable forms for theWeb.
Birmingham: Glasshaus.

Card, S., Moran, T., Newell, A., 1980. The keystroke-level model for user performance time
with interactive systems. Communications of the ACM 23 (7), 396–410.

Christian, L., Dillman, D., Smyth, J., 2007. Helping respondents get it right the first time: The
influence of words, symbols, and graphics in web surveys. Public Opinion
Quarterly.

Couper, M., Traugott, M., Lamias, M., 2001. Web Survey Design and Administration. Public
Opinion Quarterly 65 (2), 230–253.

Garrett, J., 2002. The elements of user experience. New Riders Indianapolis.
Healey, B., 2007. Drop downs and scroll mice: The effect of response option format and

input mechanism employed on data quality in web surveys. Social Science
Computer Review 25 (1), 111.

Heerwegh, D., Loosveldt, G., 2002. An evaluation of the effect of response formats on data
quality in web surveys. Social science computer review 20 (4), 471.

Herman, J., 2004. A process for creating the business case for user experience projects. In:
Conference on Human Factors in Computing Systems. ACM New York, NY, USA,
pp. 1413–1416.

Hogg, A., Masztal, J. J., 2001. Drop-down, radio buttons, or fill-in-the-blank? effects of
attribute rating scale type on web survey responses. In: Proceedings of ESOMAR
Congress, Rome.

Linderman, M., Fried, J., 2004. Defensive Design for theWeb: How to improve error
messages, help, forms, and other crisis points. New Riders Publishing Thousand
Oaks, CA, USA.

Miller, S., Jarret, C., 2001. Should I use a drop-down? four steps for choosing form elements
on the web. http://www.formsthat-work.com/ftp/dropdown.pdf

Myers, E. G., 2006. 5 ways to make sure that users abandon your forms.
http://www.egmstrategy.com/ice/direct_link.cfm?bid= FBCF08E7-DEE8-F2D5-
48AEF8A07371777B

Nielsen, J., 2000. Drop-down menus: Use sparingly.
 http://www.useit.com/alertbox/20001112.html
Nielsen, J., 2001. Error message guidelines.
 http://www.useit.com/alertbox/20010624.html
Pauwels, S., Hübscher, C., Leuthold, S., Bargas-Avila, J., Opwis, K., 2009. Error prevention in

online forms: Use color instead of asterisks to mark required fields. Interacting with
Computers 21 (4), 257–262.

Penzo, M., 2006. Label placement in forms.
 http://www.uxmatters.com/MT/archives/000107.php

Simple but Crucial User Interfaces in the World Wide Web:
Introducing 20 Guidelines for Usable Web Form Design

9

Robinson, D., 2003. Better web forms.
 http://www.7nights.com/dkrprod/gwt_four.php
Tullis, T., Pons, A., 1997. Designating required vs. optional input fields. In: Conference on

Human Factors in Computing Systems. ACM New York, NY, USA, pp. 259–260.
Tzeng, J.-Y., 2004. Toward a more civilized design: studying the effects of computers that

apologize. International Journal of Human-Computer Studies 61 (3), 319–345.
Wilhelm, T., Rehmann, C., 2006. Nutzergerechte formulargestaltung.
 http://www.eresult.de/formulargestaltung.htm
Wroblewski, L., 2008.Web Form Design: filling in the blanks. Rosenfeld Media.

Guideline Based on Supported by
empirical data

1
Let people provide answers in a format that they are familiar
with from common situations and keep questions in an
intuitive sequence.

No

2 If the answer is unambiguous, allow answers in any format. No

3 Keep the form as short and simple as possible and do not ask
for unnecessary input. No

4 If possible and reasonable, separate required from optional
fields and use color and asterisk to mark required fields. Yes

5 To enable people to fill in a form as fast as possible, place the
labels above the corresponding input fields. Yes

6 Do not separate a form into more than one column and only
ask one question per row. No

7 Match the size of the input fields to the expected length of the
answer. Yes

8

Use checkboxes, radio buttons or drop-down menus to restrict
the number of options and for entries that can easily be
mistyped. Also use them if it is not clear to users in advance
what kind of answer is expected from them.

No

9 Use checkboxes instead of list boxes for multiple selection
items. Yes

10
For up to four options, use radio buttons; when more than four
options are required, use a drop-down menu to save screen
real estate.

Yes

11
Order options in an intuitive sequence (e.g., weekdays in the
sequence Monday, Tuesday, etc.). If no meaningful sequence is
possible, order them alphabetically.

No

 User Interfaces

8

Bargas-Avila, J.A., Oberholzer, G., Schmutz, P., de Vito, M., Opwis, K., 2007. Usable error
message presentation in theWorldWideWeb: Do not show errors right away.
Interacting with Computers 19 (3), 330–341.

Bargas-Avila, J.A., Brenzikofer, O., Tuch, A.N., Roth, S.P., Opwis, K., 2009. Working towards
usable forms on the World Wide Web: Optimizing multiple selection interface
elements and date entry input elds. [manuscript submitted for review]

Bargas-Avila, J.A., Orsini, S., Piosczyk, H., Urwyler, D., Roth, S.P., Tuch, A.N., Opwis, K.,
2009. Enhancing online forms: Use format specications for elds with format
restrictions to help respondents. [manuscript submitted for review]

Beaumont, A., James, J., Stephens, J., Ullman, C., 2002. Usable forms for theWeb.
Birmingham: Glasshaus.

Card, S., Moran, T., Newell, A., 1980. The keystroke-level model for user performance time
with interactive systems. Communications of the ACM 23 (7), 396–410.

Christian, L., Dillman, D., Smyth, J., 2007. Helping respondents get it right the first time: The
influence of words, symbols, and graphics in web surveys. Public Opinion
Quarterly.

Couper, M., Traugott, M., Lamias, M., 2001. Web Survey Design and Administration. Public
Opinion Quarterly 65 (2), 230–253.

Garrett, J., 2002. The elements of user experience. New Riders Indianapolis.
Healey, B., 2007. Drop downs and scroll mice: The effect of response option format and

input mechanism employed on data quality in web surveys. Social Science
Computer Review 25 (1), 111.

Heerwegh, D., Loosveldt, G., 2002. An evaluation of the effect of response formats on data
quality in web surveys. Social science computer review 20 (4), 471.

Herman, J., 2004. A process for creating the business case for user experience projects. In:
Conference on Human Factors in Computing Systems. ACM New York, NY, USA,
pp. 1413–1416.

Hogg, A., Masztal, J. J., 2001. Drop-down, radio buttons, or fill-in-the-blank? effects of
attribute rating scale type on web survey responses. In: Proceedings of ESOMAR
Congress, Rome.

Linderman, M., Fried, J., 2004. Defensive Design for theWeb: How to improve error
messages, help, forms, and other crisis points. New Riders Publishing Thousand
Oaks, CA, USA.

Miller, S., Jarret, C., 2001. Should I use a drop-down? four steps for choosing form elements
on the web. http://www.formsthat-work.com/ftp/dropdown.pdf

Myers, E. G., 2006. 5 ways to make sure that users abandon your forms.
http://www.egmstrategy.com/ice/direct_link.cfm?bid= FBCF08E7-DEE8-F2D5-
48AEF8A07371777B

Nielsen, J., 2000. Drop-down menus: Use sparingly.
 http://www.useit.com/alertbox/20001112.html
Nielsen, J., 2001. Error message guidelines.
 http://www.useit.com/alertbox/20010624.html
Pauwels, S., Hübscher, C., Leuthold, S., Bargas-Avila, J., Opwis, K., 2009. Error prevention in

online forms: Use color instead of asterisks to mark required fields. Interacting with
Computers 21 (4), 257–262.

Penzo, M., 2006. Label placement in forms.
 http://www.uxmatters.com/MT/archives/000107.php

Simple but Crucial User Interfaces in the World Wide Web:
Introducing 20 Guidelines for Usable Web Form Design

9

Robinson, D., 2003. Better web forms.
 http://www.7nights.com/dkrprod/gwt_four.php
Tullis, T., Pons, A., 1997. Designating required vs. optional input fields. In: Conference on

Human Factors in Computing Systems. ACM New York, NY, USA, pp. 259–260.
Tzeng, J.-Y., 2004. Toward a more civilized design: studying the effects of computers that

apologize. International Journal of Human-Computer Studies 61 (3), 319–345.
Wilhelm, T., Rehmann, C., 2006. Nutzergerechte formulargestaltung.
 http://www.eresult.de/formulargestaltung.htm
Wroblewski, L., 2008.Web Form Design: filling in the blanks. Rosenfeld Media.

Guideline Based on Supported by
empirical data

1
Let people provide answers in a format that they are familiar
with from common situations and keep questions in an
intuitive sequence.

No

2 If the answer is unambiguous, allow answers in any format. No

3 Keep the form as short and simple as possible and do not ask
for unnecessary input. No

4 If possible and reasonable, separate required from optional
fields and use color and asterisk to mark required fields. Yes

5 To enable people to fill in a form as fast as possible, place the
labels above the corresponding input fields. Yes

6 Do not separate a form into more than one column and only
ask one question per row. No

7 Match the size of the input fields to the expected length of the
answer. Yes

8

Use checkboxes, radio buttons or drop-down menus to restrict
the number of options and for entries that can easily be
mistyped. Also use them if it is not clear to users in advance
what kind of answer is expected from them.

No

9 Use checkboxes instead of list boxes for multiple selection
items. Yes

10
For up to four options, use radio buttons; when more than four
options are required, use a drop-down menu to save screen
real estate.

Yes

11
Order options in an intuitive sequence (e.g., weekdays in the
sequence Monday, Tuesday, etc.). If no meaningful sequence is
possible, order them alphabetically.

No

 User Interfaces

10

Guideline Based on Supported by
empirical data

12

For date entries use a drop-down menu when it is crucial to
avoid format errors. Use only one input field and place the
format requirements with symbols (MM, YYYY) left or inside
the text box to achieve faster completion time.

Yes

13
If answers are required in a specific format, state this in
advance communicating the imposed rule (format
specification) without an additional example.

Yes

14

Error messages should be polite and explain to the user in
familiar language that a mistake has occurred. Eventually the
error message should apologize for the mistake and it should
clearly describe what the mistake is and how it can be
corrected.

Yes

15 After an error occurred, never clear the already completed
fields. No

16
Always show error messages after the form has been filled and
sent.
Show them all together embedded in the form.

Yes

17

Error messages must be noticeable at a glance, using color,
icons and text to highlight the problem area and must be
written in a familiar language, explaining what the error is and
how it can be corrected.

No

18 Disable the submit button as soon as it has been clicked to
avoid multiple submissions. No

19

After the form has been sent, show a confirmation site, which
expresses thanks for the submission and states what will
happen next.
Send a similar confirmation by e-mail.

No

20

Do not provide reset buttons, as they can be clicked by
accident. If used anyway, make them visually distinctive from
submit buttons and place them left-aligned with the cancel
button on the right of the submit button.

Yes

Table 1. Overview of the 20 guidelines for usable web form design.

2

Navigation Strategies in Case
of Different Kind of User Interfaces

Rita Mátrai1 and Zsolt Tibor Kosztyán2
 1Eötvös Loránd University

2Pannon University
Hungary

1. Introduction
Information seeking is a very frequent task in our everyday computer usage. We often
search not only one but also more information, more objects on web pages, on the user
interface of different kind of software or multimedia program. In our study we sought the
answer to the question how property of objects (etc. size, form) influence the time needed to
find them, how object placement influence searching time, what kind of searching strategy
users use to find the targets and whether we find everything we need.
We examined within-page navigation thus, all targets were placed on the same screen. Users
had to search among 2- and 3-dimensional shapes and in pictures.

1.1 What do we (not) observe?
If we open our eyes, a huge amount of visual information streams to us, which changes for
moment to moment as we move our head and eyes. It would be unnecessary to process all
incoming information in the fullest detail. From these huge amount of information the brain
should select and process in full detail only those information which is necessary. Which
information will be processed in detail?
Visual information is projected on the retina. The region of sharp-sightedness is the central
part of the retina, called fovea. Information projected on this area can be processed in the
fullest detail. Information projected on the periphery can be processed in less detailed.
What happens if we search an object? In the first moment a “map” is formed about basic
visual features of visual information in the brain. This is the pre-attentive stage. On the basis
of this map, our visual attention guides what we should see in more detailed. In the
attentive stage we concentrate only on a limited part of the visual field; the information
processing is more detailed in this smaller field. We could perceive objects or reading texts
only in this stage.

1.2 The visual attention
If we search something, our gaze is guided by the visual attention. It is hard to imagine how
visual attention works; what kind of processes work in the brain when we decide where we
look, and on which area we look after a few minutes.

 User Interfaces

10

Guideline Based on Supported by
empirical data

12

For date entries use a drop-down menu when it is crucial to
avoid format errors. Use only one input field and place the
format requirements with symbols (MM, YYYY) left or inside
the text box to achieve faster completion time.

Yes

13
If answers are required in a specific format, state this in
advance communicating the imposed rule (format
specification) without an additional example.

Yes

14

Error messages should be polite and explain to the user in
familiar language that a mistake has occurred. Eventually the
error message should apologize for the mistake and it should
clearly describe what the mistake is and how it can be
corrected.

Yes

15 After an error occurred, never clear the already completed
fields. No

16
Always show error messages after the form has been filled and
sent.
Show them all together embedded in the form.

Yes

17

Error messages must be noticeable at a glance, using color,
icons and text to highlight the problem area and must be
written in a familiar language, explaining what the error is and
how it can be corrected.

No

18 Disable the submit button as soon as it has been clicked to
avoid multiple submissions. No

19

After the form has been sent, show a confirmation site, which
expresses thanks for the submission and states what will
happen next.
Send a similar confirmation by e-mail.

No

20

Do not provide reset buttons, as they can be clicked by
accident. If used anyway, make them visually distinctive from
submit buttons and place them left-aligned with the cancel
button on the right of the submit button.

Yes

Table 1. Overview of the 20 guidelines for usable web form design.

2

Navigation Strategies in Case
of Different Kind of User Interfaces

Rita Mátrai1 and Zsolt Tibor Kosztyán2
 1Eötvös Loránd University

2Pannon University
Hungary

1. Introduction
Information seeking is a very frequent task in our everyday computer usage. We often
search not only one but also more information, more objects on web pages, on the user
interface of different kind of software or multimedia program. In our study we sought the
answer to the question how property of objects (etc. size, form) influence the time needed to
find them, how object placement influence searching time, what kind of searching strategy
users use to find the targets and whether we find everything we need.
We examined within-page navigation thus, all targets were placed on the same screen. Users
had to search among 2- and 3-dimensional shapes and in pictures.

1.1 What do we (not) observe?
If we open our eyes, a huge amount of visual information streams to us, which changes for
moment to moment as we move our head and eyes. It would be unnecessary to process all
incoming information in the fullest detail. From these huge amount of information the brain
should select and process in full detail only those information which is necessary. Which
information will be processed in detail?
Visual information is projected on the retina. The region of sharp-sightedness is the central
part of the retina, called fovea. Information projected on this area can be processed in the
fullest detail. Information projected on the periphery can be processed in less detailed.
What happens if we search an object? In the first moment a “map” is formed about basic
visual features of visual information in the brain. This is the pre-attentive stage. On the basis
of this map, our visual attention guides what we should see in more detailed. In the
attentive stage we concentrate only on a limited part of the visual field; the information
processing is more detailed in this smaller field. We could perceive objects or reading texts
only in this stage.

1.2 The visual attention
If we search something, our gaze is guided by the visual attention. It is hard to imagine how
visual attention works; what kind of processes work in the brain when we decide where we
look, and on which area we look after a few minutes.

 User Interfaces

12

According to a famous philosopher, William James visual attention looks like a spotlight
with which a small area of a dark stage is illuminated: perception is more precise or faster
in the area to which we just pay attention (James, 1890). This is the area of attentional
focus.
The size of this area is not state, it can be smaller or larger depending on the actual task
(LaBerge, 1983). Efficiency of the processing in the attention area is not uniform; it decreases
by moving off the central point (LaBerge and Brown, 1989). However, it was found in
certain tasks, that the centre of the attention area can be “holed” as well, as if it were ring-
shaped (Eimer, 1999). Moreover, some researches highlighted the discontinuity of the spatial
attention. The attention area can be made up of more areas, which are not connected with
each other (Kramer and Hahn, 1995).
Helmholz took note of an interesting phenomenon. We are able to fix on a given point but
pay attention to another point of the field of view. This means that the attention area and the
area around the fixation point is not definitely the same.
Consequently, an eye-tracking experiment do not give a definite answer to the question
whether information on which the user fixated was increasingly realised in the user.
Therefore in our experiments targets had to be clicked on, because if the user clicked them
on, then it is sure that they perceived them.

2. From visual search to navigation structure
In visual search task one object has to be found. If more objects have to be found, what does
the order of findings influence? Is the order of finding targets randomly or does it have a
kind of structure?
A method was developed to analyse the order of finding objects. Targets were represented
as nodes of a graph. Navigation routes of every user can be drawn as directed edges
between the nodes, where the head of arrow shows the going direction. Navigation routes
of all users can be drawn in the graph; in this case the directed edges are to be weighted. The
weight of each edge shows the relative frequency of the sequence of selection. This graph
was called as navigation graph.
Definition: A G(N,A) (n=|N|) navigation graph which contains n target objects is a
weighted, directed graph in which the w(i,j) (0≤w(i,j)≤1) weight of the (i,j) ∈A, i,j∈N edge
denotes, how many percent of subjects clicked on the object j directly after the object i.
If the order of clickings were random than in the navigation graph there were edges from
one node to the other and the weight of each edge would be 1/(n-1) where n is the number
of nodes.
In the navigation graph there may be some edges which weight is very small because users
rarely choose that two objects after each other. If the weight of an edge is significantly
smaller that 1/(n-1) then it can be deleted from the graph and we get the navigation
structure.
Definition: In a G(N,A) (n=|N|) navigation graph an (i,j) ∈A, i,j∈N edge is significant, if the
weight of the edge is significantly higher, than 1/(n-1). (Expected value calculated on the
base of the equal distribution.) In the opposite case the edge is non-significant.
Definition: A navigation graph is a navigation structure, if it does not contain any non-
significant edges.

Navigation Strategies in Case of Different Kind of User Interfaces

13

2.1 Searching strategies
Navigation structure representates significant going directions, but does not show which
object was selected first, which for the second time etc. These values were signed by every
node and we called it navigation map.
Definition: navigation map is a G(N,A) (n=|N|) weighted, directed graph which contains n
target objects, in which w(i,j) (0≤w(i,j)≤1) weight of the (i,j) ∈A, i,j∈N edge denotes, how
many percent of subjects clicked on the object j directly after the object i, as well as (i:si:v(i))
denotes that on an i∈N object si-th clickings (1≤si≤n) occured in v(i) % (0≤v(i)≤1). (max(si)
denotes the ordinal number of that click where the value of v(i) is the greatest.)
After that we could conclude the navigation strategy of the users.
If users can perceive all objects for the first glance then they might click on the targets so that
the length of the route will be minimal. In this case they follow global strategy; in this case
the route went round by the user is the shortest. If the task is more difficult the user might
click the nearest object every time; this is the local strategy. On a more crowded and
disordered screen navigation of users becomes random; in this case the strategy is ad-hoc.
We analysed which strategy occurs the most frequently by every worksheet, and that
strategy was called the dominant searching strategy for that worksheet.
How can we establish which searching strategy is dominant for each worksheet?

2.2 Calculation of similarity and identity indexes
New metrics and indices had to be made which show the occurrence of each sequences.
With these metrics and indices any number of sequences can be compared with each other.
For this, several concepts had to be initiated.
Clicking orders are called clicking sequences. The sequence which contains two elements is
an element sequence. Two sequences can be equivalent if their elements and their order are
also the same; antagonistic, if their elements are the same but their orders are reversed; and
indifferent in any other cases.
Definition: The clicking orders s={o1,o2,…,on}, where o1,..,on∈N are called (clicking)
sequences, where o1,..,on denote the serial number of the objects, and o1≠o2≠..≠on.
Definition: The s2 sequence is the opposite of s1={o1,o2,…,on} if s2={on, on-1,…,o1}, where
o1,..,on∈{1,..,n}. The reversed sequence is denoted as s2=-s1.
Definition: A sequence is an element sequence if the sequence contains two elements:
e={o1,o2}, where o1,o2∈N
Definition: Two element sequences e1, e2 are
• equivalent, if their elements and order of elements are also the same:

e1={o1,o2}={p1,p2}=e2, o1=p1, o2=p2, o1,o2,p1,p2∈N;
• antagonistic, if their elements are the same, but their orders are reversed: e1=-e2
• indifferent, if there are neither equivalent nor antagonistic.
After that we introduced the similarity measure which express numerically how similar are
the two sequences. The similarity measure of two sequences are 1 if they are equivalent; -1 if
there are antagonistic; 0 if there are indifferent. Similarity measure of two longer sequences
can be calculated as follows: sequences should be divided into element sequences, after that
they could be compared pairwise. Values given by pairwise comparison should be summed
and divided with n-1 where n is the number of elements (thus, the number of objects which
had to be found). Consequently, the value of the similarity measure is between -1 and 1.
Definition: Similarity measure of two element sequences:

 User Interfaces

12

According to a famous philosopher, William James visual attention looks like a spotlight
with which a small area of a dark stage is illuminated: perception is more precise or faster
in the area to which we just pay attention (James, 1890). This is the area of attentional
focus.
The size of this area is not state, it can be smaller or larger depending on the actual task
(LaBerge, 1983). Efficiency of the processing in the attention area is not uniform; it decreases
by moving off the central point (LaBerge and Brown, 1989). However, it was found in
certain tasks, that the centre of the attention area can be “holed” as well, as if it were ring-
shaped (Eimer, 1999). Moreover, some researches highlighted the discontinuity of the spatial
attention. The attention area can be made up of more areas, which are not connected with
each other (Kramer and Hahn, 1995).
Helmholz took note of an interesting phenomenon. We are able to fix on a given point but
pay attention to another point of the field of view. This means that the attention area and the
area around the fixation point is not definitely the same.
Consequently, an eye-tracking experiment do not give a definite answer to the question
whether information on which the user fixated was increasingly realised in the user.
Therefore in our experiments targets had to be clicked on, because if the user clicked them
on, then it is sure that they perceived them.

2. From visual search to navigation structure
In visual search task one object has to be found. If more objects have to be found, what does
the order of findings influence? Is the order of finding targets randomly or does it have a
kind of structure?
A method was developed to analyse the order of finding objects. Targets were represented
as nodes of a graph. Navigation routes of every user can be drawn as directed edges
between the nodes, where the head of arrow shows the going direction. Navigation routes
of all users can be drawn in the graph; in this case the directed edges are to be weighted. The
weight of each edge shows the relative frequency of the sequence of selection. This graph
was called as navigation graph.
Definition: A G(N,A) (n=|N|) navigation graph which contains n target objects is a
weighted, directed graph in which the w(i,j) (0≤w(i,j)≤1) weight of the (i,j) ∈A, i,j∈N edge
denotes, how many percent of subjects clicked on the object j directly after the object i.
If the order of clickings were random than in the navigation graph there were edges from
one node to the other and the weight of each edge would be 1/(n-1) where n is the number
of nodes.
In the navigation graph there may be some edges which weight is very small because users
rarely choose that two objects after each other. If the weight of an edge is significantly
smaller that 1/(n-1) then it can be deleted from the graph and we get the navigation
structure.
Definition: In a G(N,A) (n=|N|) navigation graph an (i,j) ∈A, i,j∈N edge is significant, if the
weight of the edge is significantly higher, than 1/(n-1). (Expected value calculated on the
base of the equal distribution.) In the opposite case the edge is non-significant.
Definition: A navigation graph is a navigation structure, if it does not contain any non-
significant edges.

Navigation Strategies in Case of Different Kind of User Interfaces

13

2.1 Searching strategies
Navigation structure representates significant going directions, but does not show which
object was selected first, which for the second time etc. These values were signed by every
node and we called it navigation map.
Definition: navigation map is a G(N,A) (n=|N|) weighted, directed graph which contains n
target objects, in which w(i,j) (0≤w(i,j)≤1) weight of the (i,j) ∈A, i,j∈N edge denotes, how
many percent of subjects clicked on the object j directly after the object i, as well as (i:si:v(i))
denotes that on an i∈N object si-th clickings (1≤si≤n) occured in v(i) % (0≤v(i)≤1). (max(si)
denotes the ordinal number of that click where the value of v(i) is the greatest.)
After that we could conclude the navigation strategy of the users.
If users can perceive all objects for the first glance then they might click on the targets so that
the length of the route will be minimal. In this case they follow global strategy; in this case
the route went round by the user is the shortest. If the task is more difficult the user might
click the nearest object every time; this is the local strategy. On a more crowded and
disordered screen navigation of users becomes random; in this case the strategy is ad-hoc.
We analysed which strategy occurs the most frequently by every worksheet, and that
strategy was called the dominant searching strategy for that worksheet.
How can we establish which searching strategy is dominant for each worksheet?

2.2 Calculation of similarity and identity indexes
New metrics and indices had to be made which show the occurrence of each sequences.
With these metrics and indices any number of sequences can be compared with each other.
For this, several concepts had to be initiated.
Clicking orders are called clicking sequences. The sequence which contains two elements is
an element sequence. Two sequences can be equivalent if their elements and their order are
also the same; antagonistic, if their elements are the same but their orders are reversed; and
indifferent in any other cases.
Definition: The clicking orders s={o1,o2,…,on}, where o1,..,on∈N are called (clicking)
sequences, where o1,..,on denote the serial number of the objects, and o1≠o2≠..≠on.
Definition: The s2 sequence is the opposite of s1={o1,o2,…,on} if s2={on, on-1,…,o1}, where
o1,..,on∈{1,..,n}. The reversed sequence is denoted as s2=-s1.
Definition: A sequence is an element sequence if the sequence contains two elements:
e={o1,o2}, where o1,o2∈N
Definition: Two element sequences e1, e2 are
• equivalent, if their elements and order of elements are also the same:

e1={o1,o2}={p1,p2}=e2, o1=p1, o2=p2, o1,o2,p1,p2∈N;
• antagonistic, if their elements are the same, but their orders are reversed: e1=-e2
• indifferent, if there are neither equivalent nor antagonistic.
After that we introduced the similarity measure which express numerically how similar are
the two sequences. The similarity measure of two sequences are 1 if they are equivalent; -1 if
there are antagonistic; 0 if there are indifferent. Similarity measure of two longer sequences
can be calculated as follows: sequences should be divided into element sequences, after that
they could be compared pairwise. Values given by pairwise comparison should be summed
and divided with n-1 where n is the number of elements (thus, the number of objects which
had to be found). Consequently, the value of the similarity measure is between -1 and 1.
Definition: Similarity measure of two element sequences:

 User Interfaces

14

1 2

1 2 1 2

1 2

1,
(,) 1,

0,
e

if e e
sim e e if e e

if e e

=⎧
⎪= − = −⎨
⎪
⎩ ∼

 (1)

Definition: Similarity measure of two so={o1,o2,…,on}, sp={p1,p2,…,pn}, oi, pj∈{1,…,n}, ∀i,
j∈{1,…,n} sequences can be calculated as follows:

 1 1
1 1 1(,) ({ , },{ , })1 11o p e i i j j

n nsim s s sim o o p pi jn + +
− −= = =− ∑ ∑ (2)

In case of m experimental people each sequence should be compared with the others
pairwise, the value of similarity measures should be summed and normalized between -1
and 1, and we get the similarity index.
Definition: Similarity index of m sequences:

 1
1 1 11

1 2(,) (,)
(1) (1)S i j i j

m m mm
i i j ijI sim s s sim s s

m m m m
i j

−
= = = +== =

− −
≠

∑∑ ∑ ∑ (3)

The value of similarity index is also between -1 and 1. This value is 1 if each sequence is the
same; -1 if each sequence is antagonistic. But this is only possible if we compare 2 sequences.
3 sequences can not be pairwise antagonistic. Therefore the so-called identity measure and
identity index were applied instead of similarity measure and similarity index.
Definition: Identity measure of two element sequences:

 1 2
1 2

1, f
(,)

0, otherwisee
i e e

con e e
=⎧

= ⎨
⎩

 (4)

Definition: Identity measure of two so={o1,o2,…,on}, sp={p1,p2,…,pn} oi, pj∈{1,…,n}, ∀i,
j∈{1,…,n} sequences can be calculated as follows:

 1 1
1 1 1(,) ({ , },{ , })1 11o p e i i j j

n ncon s s con o o p pi jn + +
− −= = =− ∑ ∑ (5)

Identity measure of two element seqences is 1 if they are the same, otherwise this value is 0.
Identity measure of two longer sequences can be calculated as follows: sequences should be
divided into element sequences, compared pairwise the calculated identity measures should
be summed and divided with n-1 where n is the number of elements in the sequence. The
value of the identity measure is between 0 and 1.
Identity index can be calculated for m sequences. If its value is near 1, this means that users
found the targets in similar order.
Definition: Identity index of m sequences:

 1
1 1 11

1 2(,) (,)
(1) (1)C i j i j

m m mm
i i j ijI con s s con s s

m m m m
i j

−
= = = +== =

− −
≠

∑∑ ∑ ∑ (6)

Navigation Strategies in Case of Different Kind of User Interfaces

15

The value of the identity index is between 0 and 1. If the value is near 0, this means that
clicking orders of users differ from each other in a great extent. If the value is high (if it is
near 1), this means not only that users found the targets in similar order, but also that there
are sequences which occur often thus, which appear more concentrated.
For every worksheet navigation route according to the global strategy and also to the local
strategy was determined after users’ navigation routes was compared pairwise to these
predetermined routes. Identity indexes were calculated in every case. If identity index was
smaller than 0.5 in case of both strategies, then we reconed the navigation strategy of the
user ad-hoc. In any other cases the strategy was reconed dominant which gave higher value
for the identity index.

3. Analysing searching strategies on different kind of user interfaces
3.1 Introducing test programs
In the worksheets of “Geometrical shapes” geometrical shapes (circles, squares and
triangles) were placed on the screen. The task was to find all occurrences of a particular
shape. (Mátrai, 2006; Mátrai, Kosztyán, Sik-Lányi, 2008a). There were 3 easier worksheets
which contained fewer (8-9) objects with 4 targets, and all objects were regular and same
hight. In the 4 complicated worksheets each form occurred 7-times, and all forms had
different size. Squares were rotated, trianges were rotated and stretched. Worksheets were
mirror image or rotated image of each other, but only the positions were mirrored or
rotated, the objects were not. Similar worksheets were made with 3-dimensional shapes
(sphere, cube, pyramid, torus, and column). Here not only the positions but also the objects
were mirrored or rotated. Clicking orders and reaction times were measured (Sik-Lányi,
Mátrai, Tarjányi, 2006).

Fig. 1. Finding 2-dimensional and 3-dimensional geometrical shapes

Searching task can be made more interesting if targets are hidden in a picture. How can
background image change searching routes and times? Does it help or disturb users in their
searching task? Two worksheets were made to analyse this question. In the first one users
had to discover 9 birds in a forest, in the other one 15 fish which were hidden not only in the
water but also in a tree and in the cloud and behind the sun. Thus, targets were placed also
in unusual environments. We wondered whether users search in “logical way” or not. Will
they search targets in those places first where they think (according to their knowledge) they

 User Interfaces

14

1 2

1 2 1 2

1 2

1,
(,) 1,

0,
e

if e e
sim e e if e e

if e e

=⎧
⎪= − = −⎨
⎪
⎩ ∼

 (1)

Definition: Similarity measure of two so={o1,o2,…,on}, sp={p1,p2,…,pn}, oi, pj∈{1,…,n}, ∀i,
j∈{1,…,n} sequences can be calculated as follows:

 1 1
1 1 1(,) ({ , },{ , })1 11o p e i i j j

n nsim s s sim o o p pi jn + +
− −= = =− ∑ ∑ (2)

In case of m experimental people each sequence should be compared with the others
pairwise, the value of similarity measures should be summed and normalized between -1
and 1, and we get the similarity index.
Definition: Similarity index of m sequences:

 1
1 1 11

1 2(,) (,)
(1) (1)S i j i j

m m mm
i i j ijI sim s s sim s s

m m m m
i j

−
= = = +== =

− −
≠

∑∑ ∑ ∑ (3)

The value of similarity index is also between -1 and 1. This value is 1 if each sequence is the
same; -1 if each sequence is antagonistic. But this is only possible if we compare 2 sequences.
3 sequences can not be pairwise antagonistic. Therefore the so-called identity measure and
identity index were applied instead of similarity measure and similarity index.
Definition: Identity measure of two element sequences:

 1 2
1 2

1, f
(,)

0, otherwisee
i e e

con e e
=⎧

= ⎨
⎩

 (4)

Definition: Identity measure of two so={o1,o2,…,on}, sp={p1,p2,…,pn} oi, pj∈{1,…,n}, ∀i,
j∈{1,…,n} sequences can be calculated as follows:

 1 1
1 1 1(,) ({ , },{ , })1 11o p e i i j j

n ncon s s con o o p pi jn + +
− −= = =− ∑ ∑ (5)

Identity measure of two element seqences is 1 if they are the same, otherwise this value is 0.
Identity measure of two longer sequences can be calculated as follows: sequences should be
divided into element sequences, compared pairwise the calculated identity measures should
be summed and divided with n-1 where n is the number of elements in the sequence. The
value of the identity measure is between 0 and 1.
Identity index can be calculated for m sequences. If its value is near 1, this means that users
found the targets in similar order.
Definition: Identity index of m sequences:

 1
1 1 11

1 2(,) (,)
(1) (1)C i j i j

m m mm
i i j ijI con s s con s s

m m m m
i j

−
= = = +== =

− −
≠

∑∑ ∑ ∑ (6)

Navigation Strategies in Case of Different Kind of User Interfaces

15

The value of the identity index is between 0 and 1. If the value is near 0, this means that
clicking orders of users differ from each other in a great extent. If the value is high (if it is
near 1), this means not only that users found the targets in similar order, but also that there
are sequences which occur often thus, which appear more concentrated.
For every worksheet navigation route according to the global strategy and also to the local
strategy was determined after users’ navigation routes was compared pairwise to these
predetermined routes. Identity indexes were calculated in every case. If identity index was
smaller than 0.5 in case of both strategies, then we reconed the navigation strategy of the
user ad-hoc. In any other cases the strategy was reconed dominant which gave higher value
for the identity index.

3. Analysing searching strategies on different kind of user interfaces
3.1 Introducing test programs
In the worksheets of “Geometrical shapes” geometrical shapes (circles, squares and
triangles) were placed on the screen. The task was to find all occurrences of a particular
shape. (Mátrai, 2006; Mátrai, Kosztyán, Sik-Lányi, 2008a). There were 3 easier worksheets
which contained fewer (8-9) objects with 4 targets, and all objects were regular and same
hight. In the 4 complicated worksheets each form occurred 7-times, and all forms had
different size. Squares were rotated, trianges were rotated and stretched. Worksheets were
mirror image or rotated image of each other, but only the positions were mirrored or
rotated, the objects were not. Similar worksheets were made with 3-dimensional shapes
(sphere, cube, pyramid, torus, and column). Here not only the positions but also the objects
were mirrored or rotated. Clicking orders and reaction times were measured (Sik-Lányi,
Mátrai, Tarjányi, 2006).

Fig. 1. Finding 2-dimensional and 3-dimensional geometrical shapes

Searching task can be made more interesting if targets are hidden in a picture. How can
background image change searching routes and times? Does it help or disturb users in their
searching task? Two worksheets were made to analyse this question. In the first one users
had to discover 9 birds in a forest, in the other one 15 fish which were hidden not only in the
water but also in a tree and in the cloud and behind the sun. Thus, targets were placed also
in unusual environments. We wondered whether users search in “logical way” or not. Will
they search targets in those places first where they think (according to their knowledge) they

 User Interfaces

16

should be there or does background not influence their search? If we experiences that
background promote search of users with mild intellectual disabilities, then this result can
be used in home page or software design, because in this case proper design promote their
navigation and decrease searching time (Mátrai, 2006).

Fig. 2. a. Finding fish in a picture.

Fig. 2. b. Finding birds in a picture.

The last task contained geometrical shapes: triangles, quadrangles and pentagons, where all
occurrences of each particular shape had to be filled with different colours. Thus, not only a
simple searching task had to be solved. Users also had to interpret the task. In our everyday
information seeking tasks, information has to not only be found but also be interpreted.

Navigation Strategies in Case of Different Kind of User Interfaces

17

Therefore, we expected that important conclusions can be drawn by analysing reaction
times and navigation structures, which can be use in textual searching tasks as well.
Similarly to the “Geometrical shapes” task, 4 worksheets were made. We analysed whether
reaction times and navigation structures between different layouts differ or not, and
whether significant differences can be establish between the different groups (Mátrai, 2006).

Fig. 3. Colourizing different shapes.

3.2 Participants, devices
In the experiments 120 university students (with age of 21-24), 55 secondary pupils (with
age of 13-17), 45 children with mild intellectual disabilities (with age of 10-19) participated.
Experiments were made in computer rooms with the control of the teachers during 45-
minutes lessons. 17’’ cathode ray tube monitors were used, viewing distance was
approximately 60 cm. Users who participated in the experiments could use the mouse
without any difficulties.

4. Results
There were no signifant differences between results of universitiy students and secondary
pupils, therefore their results were contracted.

4.1 Finding geometrical shapes
In case of searching among 2-dimensional geometrical shapes, in a previous study it was
established that for simple tasks – when a few (8-9) well-ordered objects were placed on the
screen – the observed results closely mathed the global strategy, and searching routes from
left to right also dominated. On more crowded and disordered screens search strategies
were observed only by normal users (Mátrai, Kosztyán, Sik-Lányi, 2008a).
Position of objects had influential role on navigation by both groups, and strategy from
going from left to right predominated even if the targets had to be clicked on. An object
which influences the navigation (in our experiment it was the Start button) could guide the

 User Interfaces

16

should be there or does background not influence their search? If we experiences that
background promote search of users with mild intellectual disabilities, then this result can
be used in home page or software design, because in this case proper design promote their
navigation and decrease searching time (Mátrai, 2006).

Fig. 2. a. Finding fish in a picture.

Fig. 2. b. Finding birds in a picture.

The last task contained geometrical shapes: triangles, quadrangles and pentagons, where all
occurrences of each particular shape had to be filled with different colours. Thus, not only a
simple searching task had to be solved. Users also had to interpret the task. In our everyday
information seeking tasks, information has to not only be found but also be interpreted.

Navigation Strategies in Case of Different Kind of User Interfaces

17

Therefore, we expected that important conclusions can be drawn by analysing reaction
times and navigation structures, which can be use in textual searching tasks as well.
Similarly to the “Geometrical shapes” task, 4 worksheets were made. We analysed whether
reaction times and navigation structures between different layouts differ or not, and
whether significant differences can be establish between the different groups (Mátrai, 2006).

Fig. 3. Colourizing different shapes.

3.2 Participants, devices
In the experiments 120 university students (with age of 21-24), 55 secondary pupils (with
age of 13-17), 45 children with mild intellectual disabilities (with age of 10-19) participated.
Experiments were made in computer rooms with the control of the teachers during 45-
minutes lessons. 17’’ cathode ray tube monitors were used, viewing distance was
approximately 60 cm. Users who participated in the experiments could use the mouse
without any difficulties.

4. Results
There were no signifant differences between results of universitiy students and secondary
pupils, therefore their results were contracted.

4.1 Finding geometrical shapes
In case of searching among 2-dimensional geometrical shapes, in a previous study it was
established that for simple tasks – when a few (8-9) well-ordered objects were placed on the
screen – the observed results closely mathed the global strategy, and searching routes from
left to right also dominated. On more crowded and disordered screens search strategies
were observed only by normal users (Mátrai, Kosztyán, Sik-Lányi, 2008a).
Position of objects had influential role on navigation by both groups, and strategy from
going from left to right predominated even if the targets had to be clicked on. An object
which influences the navigation (in our experiment it was the Start button) could guide the

 User Interfaces

18

attention to the bottom area temporarily. However, the most difficult objects to find are
those in the bottom right section of the screen in that case as well.
In case of users with mild intellectual disabilities, reaction times could be approached with
exponential trend best. In case of worksheets where users had to search among 3-
dimensional objects, this nonlinear trend between the reaction time and number of targets
were observed in a greater extent. In those worksheets, reaction times increased in greater
extent by users with mild intellectual disabilities than in the control group. (Sik-Lányi,
Mátrai, Tarjányi, 2006).

4.2 Searching figures in a picture
In the first worksheet users had to find all birds in a forest. Although there were birds which
looked like a leaf for the first glance, significant differences in clicking orders were not
found between the target groups. Both target groups followed local strategy. Navigation
strategy of users with mild intellectual disabilities did not become ad-hoc. Moreover,
analysing reaction times in function of number of found targets gave also interesting result.
Reaction times could be approached with linear trend if the number of found target was not
greater than 8 by both target groups. Consequently, the background promoted the searching
task of the users with mild intellectual disabilities (Mátrai, 2006). Normal users solved the
task in 30 sec, users with mild intellectual disabilities approximately in 90 sec.
By searching fish, ad-hoc strategy was observed in both target groups. Users usually started
searching in the water, after that in other parts of the picture. Searching from left to right
was observed by both groups but especially by normal users. Users with mild intellectual
disabilities found fish outside the water much later than normal users. However, normal
users found the fish on the bottom right corner later than the fish behind the cloud or in the
smog. It is inferred that the background influence searching by users with mild intellectual
disabilities in a greater extent. By normal users, reaction times could be approached with
linear trend if the number of found targets were not greater than 8, as in the previous task.
But, in case of users with mild intellectual disabilities, the trend is nonlinear. After they
found all fish in the water, they needed usually more than 10 seconds to found out to
continue searching outside the water – this value is only 2-3 seconds in case of normal users.
Normal users solved the task in 42 seconds, users with mild intellectual disabilities in 124
seconds.

4.3 Colourizing different kind of shapes
We discerned “within-object-group” and “between-object-groups” navigation. We analysed
navigation strategy in all “object-group” similarly as in the worksheets introduced
previously. By analysing “between-object-group” navigation, we examined whether the
user clicked the triangles first, after that the squares and for the last the pentagons, and
whether they started clickings in the next object group with the object which was the nearest
to the previously found object.
Users with mild intellectual disabilities solved the task significantly slower in this case as
well. However, reaction times of normal users could be approached by linear trend. Normal
users usually followed global strategy; they searched the triangles first, after that the
squares and for the last the pentagons systematically. In case of users with mild intellectual
disabilities, after they filled all occurrences of a particular shape with colour, they needed

Navigation Strategies in Case of Different Kind of User Interfaces

19

few seconds for noticing that they did not finished the task. They often made mistakes as
well. They often got confused that they should search more kind of shapes as well.

5. Conclusion
A method was developed with which navigation structures of users can be determined.
With the similarity and identity coefficients two clicking sequences can be compared, with
the similarity and identity indexes the concentration of clicking sequences can be
determined. With the suggested clicking scale preference map it can be examined which
objects were found sooner and which objects were preferred during clickings.
The concepts of navigation graph, navigation structure, navigation and preference map was
defined. With the method these graphs, structures, maps can be determined if we know
clicking orders. (Mátrai, Kosztyán, Sik-Lányi, 2008b).
The suggested (similarity, identity) coefficients and indexes can be used for characterizing
clicking orders widely than rank correlation coefficients in case of comparing clicking
orders. The method takes into consideration not only the clicking orders but also the
occurrence of element sequences. Not only clicking sequences but also going directions can
be determined and characterized. I used these methods for all tasks and compare navigation
structures between average users and users with mild intellectual disabilities.
If the number of targets increases then searching strategies will be the followings in case of
average users and those with mild intellectual disabilities as well: global, if the number of
targets is not greater than 5, local in case of 6-9 targets, ad-hoc in case of 10 or more targets.
Local and ad-hoc strategy can occur in case of fewer targets if target size and direction of
rotation also change, and/or users have to search 3D-objects.
In case of users with mild intellectual disabilities, if more target properties change (eg. size,
direction of rotation, form), then searching strategy became ad-hoc sooner in function of the
number of targets than by average users.
Well-designed layout and logical background promote navigation especially of users with
mild intellectual disabilities.

6. Future works
The authors continue examinations with tasks where users have to read as well. In this case
more cognitive functions take role in the navigation. The effect of font type, font size, fore-
and background colours on navigation strategies and searching times will be examined.
Navigation on home pages with more column layouts will also be analysed.

7. Acknowledgement
The authors would like to thank the help of Edit Komlósi for correcting the English of this
article.

8. References
Eimer, M. (1999). Attending to quadrals and ring-shaped regions: ERP effects of visual

attention in different spatial selection tasks. Psyhophysiology, 36, pp. 491-503.
James, W. (1890). The Principles of Psychology. New York: Henry Holt, Vol. 1, pp. 403-404.

 User Interfaces

18

attention to the bottom area temporarily. However, the most difficult objects to find are
those in the bottom right section of the screen in that case as well.
In case of users with mild intellectual disabilities, reaction times could be approached with
exponential trend best. In case of worksheets where users had to search among 3-
dimensional objects, this nonlinear trend between the reaction time and number of targets
were observed in a greater extent. In those worksheets, reaction times increased in greater
extent by users with mild intellectual disabilities than in the control group. (Sik-Lányi,
Mátrai, Tarjányi, 2006).

4.2 Searching figures in a picture
In the first worksheet users had to find all birds in a forest. Although there were birds which
looked like a leaf for the first glance, significant differences in clicking orders were not
found between the target groups. Both target groups followed local strategy. Navigation
strategy of users with mild intellectual disabilities did not become ad-hoc. Moreover,
analysing reaction times in function of number of found targets gave also interesting result.
Reaction times could be approached with linear trend if the number of found target was not
greater than 8 by both target groups. Consequently, the background promoted the searching
task of the users with mild intellectual disabilities (Mátrai, 2006). Normal users solved the
task in 30 sec, users with mild intellectual disabilities approximately in 90 sec.
By searching fish, ad-hoc strategy was observed in both target groups. Users usually started
searching in the water, after that in other parts of the picture. Searching from left to right
was observed by both groups but especially by normal users. Users with mild intellectual
disabilities found fish outside the water much later than normal users. However, normal
users found the fish on the bottom right corner later than the fish behind the cloud or in the
smog. It is inferred that the background influence searching by users with mild intellectual
disabilities in a greater extent. By normal users, reaction times could be approached with
linear trend if the number of found targets were not greater than 8, as in the previous task.
But, in case of users with mild intellectual disabilities, the trend is nonlinear. After they
found all fish in the water, they needed usually more than 10 seconds to found out to
continue searching outside the water – this value is only 2-3 seconds in case of normal users.
Normal users solved the task in 42 seconds, users with mild intellectual disabilities in 124
seconds.

4.3 Colourizing different kind of shapes
We discerned “within-object-group” and “between-object-groups” navigation. We analysed
navigation strategy in all “object-group” similarly as in the worksheets introduced
previously. By analysing “between-object-group” navigation, we examined whether the
user clicked the triangles first, after that the squares and for the last the pentagons, and
whether they started clickings in the next object group with the object which was the nearest
to the previously found object.
Users with mild intellectual disabilities solved the task significantly slower in this case as
well. However, reaction times of normal users could be approached by linear trend. Normal
users usually followed global strategy; they searched the triangles first, after that the
squares and for the last the pentagons systematically. In case of users with mild intellectual
disabilities, after they filled all occurrences of a particular shape with colour, they needed

Navigation Strategies in Case of Different Kind of User Interfaces

19

few seconds for noticing that they did not finished the task. They often made mistakes as
well. They often got confused that they should search more kind of shapes as well.

5. Conclusion
A method was developed with which navigation structures of users can be determined.
With the similarity and identity coefficients two clicking sequences can be compared, with
the similarity and identity indexes the concentration of clicking sequences can be
determined. With the suggested clicking scale preference map it can be examined which
objects were found sooner and which objects were preferred during clickings.
The concepts of navigation graph, navigation structure, navigation and preference map was
defined. With the method these graphs, structures, maps can be determined if we know
clicking orders. (Mátrai, Kosztyán, Sik-Lányi, 2008b).
The suggested (similarity, identity) coefficients and indexes can be used for characterizing
clicking orders widely than rank correlation coefficients in case of comparing clicking
orders. The method takes into consideration not only the clicking orders but also the
occurrence of element sequences. Not only clicking sequences but also going directions can
be determined and characterized. I used these methods for all tasks and compare navigation
structures between average users and users with mild intellectual disabilities.
If the number of targets increases then searching strategies will be the followings in case of
average users and those with mild intellectual disabilities as well: global, if the number of
targets is not greater than 5, local in case of 6-9 targets, ad-hoc in case of 10 or more targets.
Local and ad-hoc strategy can occur in case of fewer targets if target size and direction of
rotation also change, and/or users have to search 3D-objects.
In case of users with mild intellectual disabilities, if more target properties change (eg. size,
direction of rotation, form), then searching strategy became ad-hoc sooner in function of the
number of targets than by average users.
Well-designed layout and logical background promote navigation especially of users with
mild intellectual disabilities.

6. Future works
The authors continue examinations with tasks where users have to read as well. In this case
more cognitive functions take role in the navigation. The effect of font type, font size, fore-
and background colours on navigation strategies and searching times will be examined.
Navigation on home pages with more column layouts will also be analysed.

7. Acknowledgement
The authors would like to thank the help of Edit Komlósi for correcting the English of this
article.

8. References
Eimer, M. (1999). Attending to quadrals and ring-shaped regions: ERP effects of visual

attention in different spatial selection tasks. Psyhophysiology, 36, pp. 491-503.
James, W. (1890). The Principles of Psychology. New York: Henry Holt, Vol. 1, pp. 403-404.

 User Interfaces

20

Kramer, A.F., Hahn, S. (1995). Splitting the beam: distribution of attention over
noncontiguous regions of the visual field. Psychological Science, 6, pp. 381-386.

LaBerge, D. (1983). The spatial extent of attention to letters and words. Journal of
Experimental Psychology: Human Perception and Performance, 9, pp. 371-379.

LaBerge, D., Brown, V. (1989). Theory of attention operations in shape identification.
Psychological Review, 96, 101-124.

Mátrai, R. (2006). Analysing the navigation and information retrieval of mentally impaired
children. Central European Multimedia and Virtual Reality Conference 6-8
November 2006, pp. 199-203. ISBN: 963 9495 89 1

Mátrai, R., Sik-Lányi, C. (2007). Investigation of navigation routes of normal children and
those with mild intellectual disabilities. 9th European Conference for the
Advancement of Assistive Technology (AAATE 2007), 3-5 October, San Sebastian,
Spain.

Mátrai, R., Kosztyán, Zs.T., Sik-Lányi, C. (2008a). Navigation method of special needs users
in multimedia systems. Computers in Human Behavior, Volume 24, Issue 4, Special
Issue: Integration of Human Factors in Networked Computing, pp. 1418-1433.

Mátrai, R., Kosztyán, Zs.T., Sik-Lányi, C. (2008b). Analysing the 2D, 3D and Web User
Interface Navigation Structures of Normal Users and Users with Mild Intellectual
Disabilities. Lecture Notes in Computer Science, LNCS 5105, 2008, Springer Verlag
Berlin-Heidelberg, pp. 386-393.

Sik-Lányi, C., Mátrai, R., Tarjányi, I. (2006). Analyzing navigation of mentally impaired
children in virtual environments. International Journal on Disability and Human
Development, Vol. 5, No. 3, 2006, pp. 217-221.

3

A User Survey on the Interface
Causing Discomfort for Warning

Yasuhiro Fujihara and Yuko Murayama
Iwate Prefectural University

Japan

1. Introduction
Security technology has been evaluated in terms of theoretical and engineering feasibility
and mostly from the viewpoint of service providers. However, there has been no evaluation
from the viewpoint of users. The term “security” includes objective viewpoints of security
engineering and subjective factors such as sense of security. We have introduced the concept
of “Anshin” (Hikage et al., 2007; Murayama et al., 2007). Anshin is a Japanese noun that
literally means “to ease one’s mind”. We have used this term to indicate the sense of
security.
Since research on information security has been focused on its cognitive aspect, it is difficult
to find specific studies related to the emotional aspect. On the other hand, some researchers
have been considering the emotional aspects of trust. According to Xiao & Benbasat (2004),
emotional trust is a feeling, whereas cognitive trust is cognition. Emotional trust is the
feeling of interpersonal sensitivity and support (McAllister, 1995), that is, feeling secure
about the trustee. More recent studies have accounted for the emotional aspects of trust in
their frameworks for trust in electronic environments as well (Chopra & Wallace, 2003;
Kuan & Bock, 2005). Luhmann (2000) reports on the relation between trust and confidence.
Confidence is also an expectation that may lapse into disappointments. The distinction
between confidence and trust is whether s/he is willing to consider alternatives. If s/he
does not consider alternatives, they are in a situation of confidence.
We explored an interesting concept in which an interface causing discomfort could let a user
achieve Anshin, because the user would be aware of the danger and risks involved (Oikawa,
2008; Fujihara et al., 2008). In this paper, we report on the initial model of the discomfort felt
by a user when using a computer. We use services and systems on the Internet under many
security threats such as computer viruses and phishing. Quite often, users are unaware of
such security threats; therefore, they do not take any countermeasures. We have
investigated some factors of feelings of discomfort and constructed a causal structural
model of discomfort in order to create an interface that causes discomfort.

2. Interface causing discomfort
In this section, we introduce an interface causing discomfort; the interface is described in
terms of its constructions and applications.

 User Interfaces

20

Kramer, A.F., Hahn, S. (1995). Splitting the beam: distribution of attention over
noncontiguous regions of the visual field. Psychological Science, 6, pp. 381-386.

LaBerge, D. (1983). The spatial extent of attention to letters and words. Journal of
Experimental Psychology: Human Perception and Performance, 9, pp. 371-379.

LaBerge, D., Brown, V. (1989). Theory of attention operations in shape identification.
Psychological Review, 96, 101-124.

Mátrai, R. (2006). Analysing the navigation and information retrieval of mentally impaired
children. Central European Multimedia and Virtual Reality Conference 6-8
November 2006, pp. 199-203. ISBN: 963 9495 89 1

Mátrai, R., Sik-Lányi, C. (2007). Investigation of navigation routes of normal children and
those with mild intellectual disabilities. 9th European Conference for the
Advancement of Assistive Technology (AAATE 2007), 3-5 October, San Sebastian,
Spain.

Mátrai, R., Kosztyán, Zs.T., Sik-Lányi, C. (2008a). Navigation method of special needs users
in multimedia systems. Computers in Human Behavior, Volume 24, Issue 4, Special
Issue: Integration of Human Factors in Networked Computing, pp. 1418-1433.

Mátrai, R., Kosztyán, Zs.T., Sik-Lányi, C. (2008b). Analysing the 2D, 3D and Web User
Interface Navigation Structures of Normal Users and Users with Mild Intellectual
Disabilities. Lecture Notes in Computer Science, LNCS 5105, 2008, Springer Verlag
Berlin-Heidelberg, pp. 386-393.

Sik-Lányi, C., Mátrai, R., Tarjányi, I. (2006). Analyzing navigation of mentally impaired
children in virtual environments. International Journal on Disability and Human
Development, Vol. 5, No. 3, 2006, pp. 217-221.

3

A User Survey on the Interface
Causing Discomfort for Warning

Yasuhiro Fujihara and Yuko Murayama
Iwate Prefectural University

Japan

1. Introduction
Security technology has been evaluated in terms of theoretical and engineering feasibility
and mostly from the viewpoint of service providers. However, there has been no evaluation
from the viewpoint of users. The term “security” includes objective viewpoints of security
engineering and subjective factors such as sense of security. We have introduced the concept
of “Anshin” (Hikage et al., 2007; Murayama et al., 2007). Anshin is a Japanese noun that
literally means “to ease one’s mind”. We have used this term to indicate the sense of
security.
Since research on information security has been focused on its cognitive aspect, it is difficult
to find specific studies related to the emotional aspect. On the other hand, some researchers
have been considering the emotional aspects of trust. According to Xiao & Benbasat (2004),
emotional trust is a feeling, whereas cognitive trust is cognition. Emotional trust is the
feeling of interpersonal sensitivity and support (McAllister, 1995), that is, feeling secure
about the trustee. More recent studies have accounted for the emotional aspects of trust in
their frameworks for trust in electronic environments as well (Chopra & Wallace, 2003;
Kuan & Bock, 2005). Luhmann (2000) reports on the relation between trust and confidence.
Confidence is also an expectation that may lapse into disappointments. The distinction
between confidence and trust is whether s/he is willing to consider alternatives. If s/he
does not consider alternatives, they are in a situation of confidence.
We explored an interesting concept in which an interface causing discomfort could let a user
achieve Anshin, because the user would be aware of the danger and risks involved (Oikawa,
2008; Fujihara et al., 2008). In this paper, we report on the initial model of the discomfort felt
by a user when using a computer. We use services and systems on the Internet under many
security threats such as computer viruses and phishing. Quite often, users are unaware of
such security threats; therefore, they do not take any countermeasures. We have
investigated some factors of feelings of discomfort and constructed a causal structural
model of discomfort in order to create an interface that causes discomfort.

2. Interface causing discomfort
In this section, we introduce an interface causing discomfort; the interface is described in
terms of its constructions and applications.

 User Interfaces

22

2.1 Unusability
Human interfaces have been researched to a great extent in terms of usability (Nielsen,
1993). On the other hand, researches have also been carried out on methods to avoid human
errors in safety engineering. Some interfaces are deliberately designed such that it is difficult
to operate the systems that employ them. Examples of such systems that are intentionally
made difficult to use include
• A system used for blasting dynamite. It is designed in such a way that it is not easy to

trigger the blast; that is, one has to press two switches simultaneously to initiate the
explosion. Such a design has been recommended in military installations (Norman,
1988).

• The fail-safe design of a microwave oven. According to the International
Electrotechnical Commission (1996), a microwave oven should be designed such that is
not possible to operate it without shutting the door (IEC 60335-2-25).

Such hard-to-use interfaces have also been used in the electronic space. When a user is going
to execute erroneous operations, the system would display a warning message window and
ask the user to answer “Yes” or “No” to proceed. However, the problem is that users tend to
answer “Yes” in order to proceed, without fully understanding the warning message.

2.2 Applications of feelings of discomfort
According to an experimental test by Mackie et al. (1989), when the receiver of a message
was comfortable, s/he would form a reply based on the professionalism of the persuader.
On the other hand, when the receiver was uncomfortable, s/he would form a reply based on
the semantics of the message. This experiment shows that the feeling of discomfort would
persuade the user to take a cautious decision.

2.3 Methods of causing discomfort
Methods that can cause discomfort to a user might include designing a system that makes it
difficult to see or hear through the output device of a computer, makes the user to input and
search for information or files, or makes a computer run slowly.
It is also possible to use the sense of touch in order to cause discomfort. Ishii et al. (1997)
suggested user interfaces that employ tangible devices. For example, it is possible to
manufacture parts of a computer using certain materials and in certain shapes such that
these parts would cause a tactile sensation, vibration, or temperature change when touched
by the user.

2.4 Possible applications of interface causing discomfort
An interface causing discomfort would raise the user’s attention when a warning message is
displayed on a computer. For example, some users choose “Yes” without reading warning
messages about expired server certification. We believe that we can raise the user’s attention
to the warning message by applying discomfort interface principles to the design of the
warning. Sankarapandian et al. (2008) suggested an interface to make the user aware about
the vulnerabilities posed by unpatched software. They implemented a desktop with
annoying graffiti that showed the number and seriousness of vulnerabilities. Egelman et al.
(2008) carried out an experiment on the rate to avoid the damage caused by phishing; the
experiment was based on a C-HIP (Communication-Human Information Processing) model

A User Survey on the Interface Causing Discomfort for Warning

23

(Wogalter, 2006) in which the interface warns users about vulnerabilities. They reported that
the user responses to a warning differed depending on the type of interface used.
In addition, an application concept exists to avoid accidents caused by the wrong usage of
industrial products in the real world. This concept involves the application of a discomfort
interface to the warning message label of a product or dangerous parts of the product so
that users will not touch those parts.
Design for awareness of danger is highly interdisciplinary. Generally, red denotes a
command to “stop” (International Organization for Standardization, 2002). In fact, road
traffic signs and crossing bars are mostly red and white. However, the color red cannot be
easily recognized by all human beings. We can raise the user’s awareness of danger by
adding a discomfort interface to warning information.

3. User survey
3.1 Identification of elements causing discomfort
We have investigated the factors causing feelings of discomfort, first, by finding the
elements (hereinafter called the discomfort elements) that cause discomfort to users, and
second, by identifying the factors of discomfort with the use of factor analysis. We identified
discomfort elements by two methods: a literature survey and a preliminary test.
From the literature survey, we identified several elements that caused discomfort to a user
(Ramsay, 1997; Awad & Fitzgerald 2005; Takahashi et al., 2002). Moreover, Tsuji et al. (2005)
and Hagiwara (2006) investigated the degree of discomfort in daily life. In their studies, they
used stimulus sentences in order to stimulate subjects. We derived discomfort elements
from their stimulus sentences as well. In this manner, we identified the following discomfort
elements: a user cannot use a computer well, malfunctions of the system due to spyware,
blast of a siren, noise of television, a sudden telephone ring at night, sight of bugs or
crawlers, etc.
In our preliminary test, we asked subjects for their opinions about situations and events that
cause discomfort. In this manner, we identified the following discomfort elements: waiting
for a computer process to finish, popping up of a system message and advertisements, a
computer getting stalled/hanged, eyestrain, etc.
For further analysis, we selected discomfort elements from the opinions. The subjects of the
preliminary test included twenty two undergraduate students from the faculty of Software
and Information Science of our university; sixteen of them were males and six were females.
We asked them their opinions and feelings in detail about “dislike,” “a bit of a bind,”
“bothering” and “hurtful” matters when they use a computer and the Internet daily.

3.2 Review of the questionnaire
We created eighty six questions for simulating discomfort; the questions were based on the
discomfort elements selected from our preliminary survey. We asked subjects to rate each
discomfort element. The rates included five ranks: from calm (zero points) to acute
discomfort (four points).
We conducted a user survey in order to review the questionnaire. In total, seventy five men
and eighty seven women of the first-year students from four different departments
participated in the survey. The survey was conducted from May 8, 2007 for one week. On
the basis of the survey results, we revised some questions.

 User Interfaces

22

2.1 Unusability
Human interfaces have been researched to a great extent in terms of usability (Nielsen,
1993). On the other hand, researches have also been carried out on methods to avoid human
errors in safety engineering. Some interfaces are deliberately designed such that it is difficult
to operate the systems that employ them. Examples of such systems that are intentionally
made difficult to use include
• A system used for blasting dynamite. It is designed in such a way that it is not easy to

trigger the blast; that is, one has to press two switches simultaneously to initiate the
explosion. Such a design has been recommended in military installations (Norman,
1988).

• The fail-safe design of a microwave oven. According to the International
Electrotechnical Commission (1996), a microwave oven should be designed such that is
not possible to operate it without shutting the door (IEC 60335-2-25).

Such hard-to-use interfaces have also been used in the electronic space. When a user is going
to execute erroneous operations, the system would display a warning message window and
ask the user to answer “Yes” or “No” to proceed. However, the problem is that users tend to
answer “Yes” in order to proceed, without fully understanding the warning message.

2.2 Applications of feelings of discomfort
According to an experimental test by Mackie et al. (1989), when the receiver of a message
was comfortable, s/he would form a reply based on the professionalism of the persuader.
On the other hand, when the receiver was uncomfortable, s/he would form a reply based on
the semantics of the message. This experiment shows that the feeling of discomfort would
persuade the user to take a cautious decision.

2.3 Methods of causing discomfort
Methods that can cause discomfort to a user might include designing a system that makes it
difficult to see or hear through the output device of a computer, makes the user to input and
search for information or files, or makes a computer run slowly.
It is also possible to use the sense of touch in order to cause discomfort. Ishii et al. (1997)
suggested user interfaces that employ tangible devices. For example, it is possible to
manufacture parts of a computer using certain materials and in certain shapes such that
these parts would cause a tactile sensation, vibration, or temperature change when touched
by the user.

2.4 Possible applications of interface causing discomfort
An interface causing discomfort would raise the user’s attention when a warning message is
displayed on a computer. For example, some users choose “Yes” without reading warning
messages about expired server certification. We believe that we can raise the user’s attention
to the warning message by applying discomfort interface principles to the design of the
warning. Sankarapandian et al. (2008) suggested an interface to make the user aware about
the vulnerabilities posed by unpatched software. They implemented a desktop with
annoying graffiti that showed the number and seriousness of vulnerabilities. Egelman et al.
(2008) carried out an experiment on the rate to avoid the damage caused by phishing; the
experiment was based on a C-HIP (Communication-Human Information Processing) model

A User Survey on the Interface Causing Discomfort for Warning

23

(Wogalter, 2006) in which the interface warns users about vulnerabilities. They reported that
the user responses to a warning differed depending on the type of interface used.
In addition, an application concept exists to avoid accidents caused by the wrong usage of
industrial products in the real world. This concept involves the application of a discomfort
interface to the warning message label of a product or dangerous parts of the product so
that users will not touch those parts.
Design for awareness of danger is highly interdisciplinary. Generally, red denotes a
command to “stop” (International Organization for Standardization, 2002). In fact, road
traffic signs and crossing bars are mostly red and white. However, the color red cannot be
easily recognized by all human beings. We can raise the user’s awareness of danger by
adding a discomfort interface to warning information.

3. User survey
3.1 Identification of elements causing discomfort
We have investigated the factors causing feelings of discomfort, first, by finding the
elements (hereinafter called the discomfort elements) that cause discomfort to users, and
second, by identifying the factors of discomfort with the use of factor analysis. We identified
discomfort elements by two methods: a literature survey and a preliminary test.
From the literature survey, we identified several elements that caused discomfort to a user
(Ramsay, 1997; Awad & Fitzgerald 2005; Takahashi et al., 2002). Moreover, Tsuji et al. (2005)
and Hagiwara (2006) investigated the degree of discomfort in daily life. In their studies, they
used stimulus sentences in order to stimulate subjects. We derived discomfort elements
from their stimulus sentences as well. In this manner, we identified the following discomfort
elements: a user cannot use a computer well, malfunctions of the system due to spyware,
blast of a siren, noise of television, a sudden telephone ring at night, sight of bugs or
crawlers, etc.
In our preliminary test, we asked subjects for their opinions about situations and events that
cause discomfort. In this manner, we identified the following discomfort elements: waiting
for a computer process to finish, popping up of a system message and advertisements, a
computer getting stalled/hanged, eyestrain, etc.
For further analysis, we selected discomfort elements from the opinions. The subjects of the
preliminary test included twenty two undergraduate students from the faculty of Software
and Information Science of our university; sixteen of them were males and six were females.
We asked them their opinions and feelings in detail about “dislike,” “a bit of a bind,”
“bothering” and “hurtful” matters when they use a computer and the Internet daily.

3.2 Review of the questionnaire
We created eighty six questions for simulating discomfort; the questions were based on the
discomfort elements selected from our preliminary survey. We asked subjects to rate each
discomfort element. The rates included five ranks: from calm (zero points) to acute
discomfort (four points).
We conducted a user survey in order to review the questionnaire. In total, seventy five men
and eighty seven women of the first-year students from four different departments
participated in the survey. The survey was conducted from May 8, 2007 for one week. On
the basis of the survey results, we revised some questions.

 User Interfaces

24

No. Question mean S.D. skewness kurtosis
01 It takes so long to boot up a computer. 2.86 0.94 -0.49 -0.37
02 It takes so long to shut down a computer. 1.83 1.27 0.25 -0.61

03 A computer works slowly due to a useful
operation such as virus check. 2.30 1.16 0.00 -0.69

04 A computer works slowly due to poor
performance of the computer 3.02 0.78 -0.57 -0.05

05 A computer has been freezing. 3.37 0.75 -1.37 1.60

06 You get an error message and can not complete
the operation you need. 2.80 0.96 -0.47 -0.31

07 You get a system message to ask you to confirm
whenever you try and start a specific operation 2.07 1.16 0.04 -0.55

08 A computer restarted unexpectedly while you
were using it. 3.04 1.00 -0.80 -0.04

09
You get a system message on a display to ask
you whether you would like to update some
software or not.

1.82 1.11 0.33 -0.37

10 The computer is infected with a computer virus. 3.64 0.55 -2.21 4.54
11 The computer display suddenly blacks out. 3.23 0.80 -0.96 0.16

12 New software was installed automatically
without consideration to your wishes. 2.80 1.25 -0.72 -0.21

13
You try and start a prohibited operation and get
prevented from doing so. (e.g. restricted
operation)

1.86 1.36 0.27 -0.73

14 You heard suddenly a loud noise from a pair of
speakers or through a headset. 2.65 1.18 -0.46 -0.47

15 You heard repeated sounds from computer for
a long time. 2.53 1.16 -0.36 -0.59

16 It takes so long to get an access to and display a
web site. 2.79 0.92 -0.50 -0.08

17 You set up a LAN cable correctly but cannot
connect to the internet. 2.85 1.00 -0.73 0.17

18 You get connected to the internet from time to
time. 3.05 0.78 -0.78 0.39

19 It is hard to grasp what information is available
and where it is. 2.49 1.02 -0.25 -0.49

20 You see advertisements displayed on the
website. 1.66 1.44 0.48 -0.68

21 You are not sure whether the information on a
website is accurate or not. 1.88 1.21 0.22 -0.60

22 It is hard for you to see information on the
website due to its background color. 2.26 1.03 -0.03 -0.35

23 It is hard for you to find information which you
are looking for on the web site. 2.36 0.97 -0.25 -0.13

A User Survey on the Interface Causing Discomfort for Warning

25

24 You cannot see a web site due to unsupported
functions with your web browser 2.51 1.04 -0.41 -0.07

25 When you saw unpleasant graphics or texts. 2.69 1.34 -0.61 -0.44

26 You come across a website which makes too
much usage of Flash. 1.88 1.48 0.09 -0.98

27 When you heard sounds or music
unexpectedly. 2.33 1.21 -0.05 -0.79

28
You get a system message suddenly to ask you
whether you would like to update some
software or not.

1.71 1.10 0.39 -0.34

29 You get too many pop-up advertisements on a
display. 2.77 1.09 -0.50 -0.37

30 When you saw a web site with too many banner
advertisements. 2.11 1.33 -0.04 -0.78

31 You read texts in too small font size. 1.75 0.97 0.30 -0.29

32 You need to read too long messages on a web
page. 1.77 1.06 0.11 -0.45

33 You need to keep scrolling to read a document. 1.46 1.01 0.56 0.02
34 You forgot a password. 2.20 1.04 0.02 -0.53

35 You need to input too long URL (website
address). 2.45 1.45 -0.39 -0.74

36 You are asked to input your ID and password. 1.59 1.32 0.45 -0.47

37 You need to input too many personal
information items 2.22 1.24 -0.13 -0.62

38 You need to input some personal information
which you do not like to do so. 2.66 1.06 -0.41 -0.33

39 When you press a key where it is difficult for
your fingers to reach on your keyboard. 1.37 1.37 0.61 -0.42

40 It is hard to control a mouse pointer. 2.52 0.95 -0.06 -0.45

41 You need to install more extra software in order
to install one software. 2.25 1.13 -0.17 -0.47

42
When you input Kanji characters, you cannot
get the result of the Kanji conversion as you
wish.

2.16 1.18 0.07 -0.62

43 Your texts are transformed with the auto-correct
function. 2.05 1.20 0.12 -0.62

44 It is hard to understand how to use software. 2.45 1.04 -0.24 -0.28

45 You look for a particular window out of too
many windows. 1.84 1.31 0.08 -0.77

46 It is hard to find software or files you are
looking for. 2.24 0.98 -0.11 -0.25

Note: The rates included five ranks: from calm (zero points) to acute discomfort (four
points).

Table 1. Details of the questions

 User Interfaces

24

No. Question mean S.D. skewness kurtosis
01 It takes so long to boot up a computer. 2.86 0.94 -0.49 -0.37
02 It takes so long to shut down a computer. 1.83 1.27 0.25 -0.61

03 A computer works slowly due to a useful
operation such as virus check. 2.30 1.16 0.00 -0.69

04 A computer works slowly due to poor
performance of the computer 3.02 0.78 -0.57 -0.05

05 A computer has been freezing. 3.37 0.75 -1.37 1.60

06 You get an error message and can not complete
the operation you need. 2.80 0.96 -0.47 -0.31

07 You get a system message to ask you to confirm
whenever you try and start a specific operation 2.07 1.16 0.04 -0.55

08 A computer restarted unexpectedly while you
were using it. 3.04 1.00 -0.80 -0.04

09
You get a system message on a display to ask
you whether you would like to update some
software or not.

1.82 1.11 0.33 -0.37

10 The computer is infected with a computer virus. 3.64 0.55 -2.21 4.54
11 The computer display suddenly blacks out. 3.23 0.80 -0.96 0.16

12 New software was installed automatically
without consideration to your wishes. 2.80 1.25 -0.72 -0.21

13
You try and start a prohibited operation and get
prevented from doing so. (e.g. restricted
operation)

1.86 1.36 0.27 -0.73

14 You heard suddenly a loud noise from a pair of
speakers or through a headset. 2.65 1.18 -0.46 -0.47

15 You heard repeated sounds from computer for
a long time. 2.53 1.16 -0.36 -0.59

16 It takes so long to get an access to and display a
web site. 2.79 0.92 -0.50 -0.08

17 You set up a LAN cable correctly but cannot
connect to the internet. 2.85 1.00 -0.73 0.17

18 You get connected to the internet from time to
time. 3.05 0.78 -0.78 0.39

19 It is hard to grasp what information is available
and where it is. 2.49 1.02 -0.25 -0.49

20 You see advertisements displayed on the
website. 1.66 1.44 0.48 -0.68

21 You are not sure whether the information on a
website is accurate or not. 1.88 1.21 0.22 -0.60

22 It is hard for you to see information on the
website due to its background color. 2.26 1.03 -0.03 -0.35

23 It is hard for you to find information which you
are looking for on the web site. 2.36 0.97 -0.25 -0.13

A User Survey on the Interface Causing Discomfort for Warning

25

24 You cannot see a web site due to unsupported
functions with your web browser 2.51 1.04 -0.41 -0.07

25 When you saw unpleasant graphics or texts. 2.69 1.34 -0.61 -0.44

26 You come across a website which makes too
much usage of Flash. 1.88 1.48 0.09 -0.98

27 When you heard sounds or music
unexpectedly. 2.33 1.21 -0.05 -0.79

28
You get a system message suddenly to ask you
whether you would like to update some
software or not.

1.71 1.10 0.39 -0.34

29 You get too many pop-up advertisements on a
display. 2.77 1.09 -0.50 -0.37

30 When you saw a web site with too many banner
advertisements. 2.11 1.33 -0.04 -0.78

31 You read texts in too small font size. 1.75 0.97 0.30 -0.29

32 You need to read too long messages on a web
page. 1.77 1.06 0.11 -0.45

33 You need to keep scrolling to read a document. 1.46 1.01 0.56 0.02
34 You forgot a password. 2.20 1.04 0.02 -0.53

35 You need to input too long URL (website
address). 2.45 1.45 -0.39 -0.74

36 You are asked to input your ID and password. 1.59 1.32 0.45 -0.47

37 You need to input too many personal
information items 2.22 1.24 -0.13 -0.62

38 You need to input some personal information
which you do not like to do so. 2.66 1.06 -0.41 -0.33

39 When you press a key where it is difficult for
your fingers to reach on your keyboard. 1.37 1.37 0.61 -0.42

40 It is hard to control a mouse pointer. 2.52 0.95 -0.06 -0.45

41 You need to install more extra software in order
to install one software. 2.25 1.13 -0.17 -0.47

42
When you input Kanji characters, you cannot
get the result of the Kanji conversion as you
wish.

2.16 1.18 0.07 -0.62

43 Your texts are transformed with the auto-correct
function. 2.05 1.20 0.12 -0.62

44 It is hard to understand how to use software. 2.45 1.04 -0.24 -0.28

45 You look for a particular window out of too
many windows. 1.84 1.31 0.08 -0.77

46 It is hard to find software or files you are
looking for. 2.24 0.98 -0.11 -0.25

Note: The rates included five ranks: from calm (zero points) to acute discomfort (four
points).

Table 1. Details of the questions

 User Interfaces

26

3.3 Survey design
We have conducted an extensive user survey in order to measure the degree of discomfort
caused by the individual discomfort elements. We prepared forty six questions for
simulating discomfort on the basis of the results of our preliminary test. Some of the
questions are listed in Table 1.
In total, one hundred forty six men and one hundred sixty four women of the second-, third,
and fourth-year students from four different departments participated the survey. The
survey was conducted from November 14, 2007 for one week.
From the three hundred thirteen data records collected, we discarded three data records as
invalid, including those involving multiple answers, thereby leaving three hundred ten data
records to be used for analysis. Breakdown of the three hundred ten data records: forty nine
correspond to the faculty of Nursing; fifty two, to the faculty of Social Welfare; one hundred
thirty four, to the faculty of Software and Information Science; and seventy five, to the
faculty of Policy Studies. The average age of the subjects was approximately 20.38 years.
Most subjects had completed the course on liberal arts of computer use and used a computer
daily.

4. Factors of discomfort
4.1 Exploratory factor analysis
We analyzed the three hundred ten data records by carrying out exploratory factor analysis
using the maximum likelihood method. Harman (1976) introduced details about factor
analysis. For the analysis, we used SPSS 14.0J™ for Windows. Here, we explain the
procedure of factor analysis. First, the analyst selects questions for analysis, carries out an
initial analysis, and calculates the initial solution. Second, the analyst decides the number of
factors by various standards based on the initial solution and performs the second analysis
with a fixed number of factors. When several numbers of factors are possible, the analyst
adopts the number of factors is determined according to how possibly interpretable the
chosen factors would be. Depending on the results of this analysis, the analyst makes some
changes, such as selecting questions again or changing the number of factors, and repeats
analyses.
We carried out the initial analysis with the maximum likelihood method and a promax
rotation. Figure 1 is a graph called scree plot for determining the number of factors from the
eigenvalues. From the attenuation of eigenvalues from the initial analysis and the ease of
factor interpretation, we adopt the seven-factor solution.
There were five questions (05, 10, 12, 25, 39) that exerted a ceiling effect, two questions (04,
15) that exhibited high factor loading on two factors, and one question (36) that did not
exhibit high factor loading for any of the factors. We excluded these questions and carried
out the factor analysis once more for the remaining thirty eight questions.
Table 2 lists the values of the factor pattern matrix of three questions that exhibited high
loading on their respective factors. Table 3 lists the values of the factor correlation matrix
obtained by carrying out exploratory factor analysis using the maximum likelihood method
and the promax rotation.

Factor 1: “Hassle” consists of eleven high factor loading items related to looking for
things that are difficult to find or to input information using a keyboard or a mouse.

A User Survey on the Interface Causing Discomfort for Warning

27

Table 2. Factor pattern matrix

 User Interfaces

26

3.3 Survey design
We have conducted an extensive user survey in order to measure the degree of discomfort
caused by the individual discomfort elements. We prepared forty six questions for
simulating discomfort on the basis of the results of our preliminary test. Some of the
questions are listed in Table 1.
In total, one hundred forty six men and one hundred sixty four women of the second-, third,
and fourth-year students from four different departments participated the survey. The
survey was conducted from November 14, 2007 for one week.
From the three hundred thirteen data records collected, we discarded three data records as
invalid, including those involving multiple answers, thereby leaving three hundred ten data
records to be used for analysis. Breakdown of the three hundred ten data records: forty nine
correspond to the faculty of Nursing; fifty two, to the faculty of Social Welfare; one hundred
thirty four, to the faculty of Software and Information Science; and seventy five, to the
faculty of Policy Studies. The average age of the subjects was approximately 20.38 years.
Most subjects had completed the course on liberal arts of computer use and used a computer
daily.

4. Factors of discomfort
4.1 Exploratory factor analysis
We analyzed the three hundred ten data records by carrying out exploratory factor analysis
using the maximum likelihood method. Harman (1976) introduced details about factor
analysis. For the analysis, we used SPSS 14.0J™ for Windows. Here, we explain the
procedure of factor analysis. First, the analyst selects questions for analysis, carries out an
initial analysis, and calculates the initial solution. Second, the analyst decides the number of
factors by various standards based on the initial solution and performs the second analysis
with a fixed number of factors. When several numbers of factors are possible, the analyst
adopts the number of factors is determined according to how possibly interpretable the
chosen factors would be. Depending on the results of this analysis, the analyst makes some
changes, such as selecting questions again or changing the number of factors, and repeats
analyses.
We carried out the initial analysis with the maximum likelihood method and a promax
rotation. Figure 1 is a graph called scree plot for determining the number of factors from the
eigenvalues. From the attenuation of eigenvalues from the initial analysis and the ease of
factor interpretation, we adopt the seven-factor solution.
There were five questions (05, 10, 12, 25, 39) that exerted a ceiling effect, two questions (04,
15) that exhibited high factor loading on two factors, and one question (36) that did not
exhibit high factor loading for any of the factors. We excluded these questions and carried
out the factor analysis once more for the remaining thirty eight questions.
Table 2 lists the values of the factor pattern matrix of three questions that exhibited high
loading on their respective factors. Table 3 lists the values of the factor correlation matrix
obtained by carrying out exploratory factor analysis using the maximum likelihood method
and the promax rotation.

Factor 1: “Hassle” consists of eleven high factor loading items related to looking for
things that are difficult to find or to input information using a keyboard or a mouse.

A User Survey on the Interface Causing Discomfort for Warning

27

Table 2. Factor pattern matrix

 User Interfaces

28

11.22

0.971.041.101.221.341.411.702.032.40

0

5

10

1 2 3 4 5 6 7 8 9 10
number of factors

ei
ge

nv
al

ue

Fig. 1. The scree plot for determining the number of factors from the eigenvalues

-VII
.313-VI
.128.289-V
.276.499.444-IV
.309.346.344.364-III
.460.384.403.482.398-II
.309.423651.599.462.527-I
VIIVIVIVIIIIII

-VII
.313-VI
.128.289-V
.276.499.444-IV
.309.346.344.364-III
.460.384.403.482.398-II
.309.423651.599.462.527-I
VIIVIVIVIIIIII

Table 3. Factor pattern matrix

Factor 2: “Search Information” consists of eight high factor loading items related to a
situation in which a user is attempting to find information that is difficult to locate.
Factor 3: “Message” consists of seven high factor loading items related with messages
that interrupt a user’s activity.
Factor 4: “Unexpected Operation” consists of five high factor loading items related with
a system malfunction that is unexpected or unintended by a user.
Factor 5: “Hard to See” consists of three high factor loading items related with the sense
of sight given by a physical aspect.
Factor 6: “Waiting Time” consists of three high factor loading items related with
waiting time and system delay.
Factor 7: “Sound” consists of three high factor loading items related with the sense of
hearing given by a particular sound.

The seven factors include thirty eight items in total and explained 56.1% of the total
variance. Further, the internal consistency of each factor was as follows: (Cronbach’s
coefficient alpha = 0.867 for Factor 1, 0.842 for Factor 2, 0.771 for Factor 3, 0.731 for Factor 4,
0.757 for Factor 5, 0.699 for Factor 6, and 0.649 for Factor 7). Table 3 presents the list of the
item numbers in a descending order according to factor loading.

A User Survey on the Interface Causing Discomfort for Warning

29

4.2 Construction of a causal structural model of discomfort
Yamazaki & Kikkawa (2006) suggested that there is a structure in Anshin, through their
study on Anshin in an epidemic disease. They inspected the validity of our model by using
structural equation modeling (SEM). We also constructed a causal structural model of
discomfort based on the seven factors of discomfort identified in the previous section.
Structural equation modeling (SEM) is a statistical approach that is used to verify the
validity of a hypothesis as a causal model. Kline (2005) introduced details about SEM. We
used SEM to examine what types of causal relationships would be possible between the
factors of discomfort. For quantifying the degree of validity of a model, we adopted three fit
indexes, viz., GFI, CFI, and RMSEA1 Please refer (Bollen & Long, 1993) for more detailed
introduction to fit indexes used in SEM.
In the model representation of SEM a construct that is measured directly is called an
“observed variable” and shown as a square. On the other hand, a construct that is not
measured directly is called a “latent variable” and shown as an oval. Further, in the model
representation of SEM, a result is decided by a cause. However, some parts of the result are
not explained by the cause. These parts are called “error terms” in the case of observed
variables and “nuisance” in the case of latent variables.
A causal relationship between variables is shown as a straight allow and called a “path.”
The numbers shown adjoining such arrow or paths are the path coefficients, which signify
the strength of the causal relationships.
With the seven factors of discomfort, we prepared the variance-covariance matrix of the
factor score, connected the high-score pairs of factors, and created a path diagram. We
selected three to five items of each factor as observed variables for SEM. For the analysis, we
used AMOS 6.0J™ for Windows.
Figure 2 shows our structural causal model of discomfort. We found that the model is
generally appropriate (fit indexes: GFI (0.867), CFI (0.867), and RMSEA (0.067)). The names
of observed variables in Figure 2 correspond to the ones listed in Table 1. The variables e1 to
e24 are error terms, and d1 to d7 are nuisance variables. Further, the path coefficients are
computed as standardized estimates with the standardized variance of the observed
variables set to 1. There are some paths that have no computed significance probability
because the fixed path coefficients of the observed variables are located on the top of the
observed variables to 1 in each factor to save the discrimination of the model.

1 GFI is the goodness-of-fit index. GFI varies from 0 to 1, but theoretically can yield
meaningless negative values. By convention, a GFI should be equal to or greater than 0.90 to
accept the model. By this criterion, the present model is accepted.
CFI is the comparative fit index, which varies from 0 to 1. A CFI close to 1 indicates a very
good fit, and values above 0.90 indicate an acceptable fit.
RMSEA is root mean square error of approximation. RMSEA is selected as the suitable
model. By convention, there is good model fit if the RMSEA is less than 0.05; adequate fit, if
the RMSEA is less than 0.08.

 User Interfaces

28

11.22

0.971.041.101.221.341.411.702.032.40

0

5

10

1 2 3 4 5 6 7 8 9 10
number of factors

ei
ge

nv
al

ue

Fig. 1. The scree plot for determining the number of factors from the eigenvalues

-VII
.313-VI
.128.289-V
.276.499.444-IV
.309.346.344.364-III
.460.384.403.482.398-II
.309.423651.599.462.527-I
VIIVIVIVIIIIII

-VII
.313-VI
.128.289-V
.276.499.444-IV
.309.346.344.364-III
.460.384.403.482.398-II
.309.423651.599.462.527-I
VIIVIVIVIIIIII

Table 3. Factor pattern matrix

Factor 2: “Search Information” consists of eight high factor loading items related to a
situation in which a user is attempting to find information that is difficult to locate.
Factor 3: “Message” consists of seven high factor loading items related with messages
that interrupt a user’s activity.
Factor 4: “Unexpected Operation” consists of five high factor loading items related with
a system malfunction that is unexpected or unintended by a user.
Factor 5: “Hard to See” consists of three high factor loading items related with the sense
of sight given by a physical aspect.
Factor 6: “Waiting Time” consists of three high factor loading items related with
waiting time and system delay.
Factor 7: “Sound” consists of three high factor loading items related with the sense of
hearing given by a particular sound.

The seven factors include thirty eight items in total and explained 56.1% of the total
variance. Further, the internal consistency of each factor was as follows: (Cronbach’s
coefficient alpha = 0.867 for Factor 1, 0.842 for Factor 2, 0.771 for Factor 3, 0.731 for Factor 4,
0.757 for Factor 5, 0.699 for Factor 6, and 0.649 for Factor 7). Table 3 presents the list of the
item numbers in a descending order according to factor loading.

A User Survey on the Interface Causing Discomfort for Warning

29

4.2 Construction of a causal structural model of discomfort
Yamazaki & Kikkawa (2006) suggested that there is a structure in Anshin, through their
study on Anshin in an epidemic disease. They inspected the validity of our model by using
structural equation modeling (SEM). We also constructed a causal structural model of
discomfort based on the seven factors of discomfort identified in the previous section.
Structural equation modeling (SEM) is a statistical approach that is used to verify the
validity of a hypothesis as a causal model. Kline (2005) introduced details about SEM. We
used SEM to examine what types of causal relationships would be possible between the
factors of discomfort. For quantifying the degree of validity of a model, we adopted three fit
indexes, viz., GFI, CFI, and RMSEA1 Please refer (Bollen & Long, 1993) for more detailed
introduction to fit indexes used in SEM.
In the model representation of SEM a construct that is measured directly is called an
“observed variable” and shown as a square. On the other hand, a construct that is not
measured directly is called a “latent variable” and shown as an oval. Further, in the model
representation of SEM, a result is decided by a cause. However, some parts of the result are
not explained by the cause. These parts are called “error terms” in the case of observed
variables and “nuisance” in the case of latent variables.
A causal relationship between variables is shown as a straight allow and called a “path.”
The numbers shown adjoining such arrow or paths are the path coefficients, which signify
the strength of the causal relationships.
With the seven factors of discomfort, we prepared the variance-covariance matrix of the
factor score, connected the high-score pairs of factors, and created a path diagram. We
selected three to five items of each factor as observed variables for SEM. For the analysis, we
used AMOS 6.0J™ for Windows.
Figure 2 shows our structural causal model of discomfort. We found that the model is
generally appropriate (fit indexes: GFI (0.867), CFI (0.867), and RMSEA (0.067)). The names
of observed variables in Figure 2 correspond to the ones listed in Table 1. The variables e1 to
e24 are error terms, and d1 to d7 are nuisance variables. Further, the path coefficients are
computed as standardized estimates with the standardized variance of the observed
variables set to 1. There are some paths that have no computed significance probability
because the fixed path coefficients of the observed variables are located on the top of the
observed variables to 1 in each factor to save the discrimination of the model.

1 GFI is the goodness-of-fit index. GFI varies from 0 to 1, but theoretically can yield
meaningless negative values. By convention, a GFI should be equal to or greater than 0.90 to
accept the model. By this criterion, the present model is accepted.
CFI is the comparative fit index, which varies from 0 to 1. A CFI close to 1 indicates a very
good fit, and values above 0.90 indicate an acceptable fit.
RMSEA is root mean square error of approximation. RMSEA is selected as the suitable
model. By convention, there is good model fit if the RMSEA is less than 0.05; adequate fit, if
the RMSEA is less than 0.08.

 User Interfaces

30

Fig. 2. Structural causal model of discomfort

5. Discussion
We conducted a survey in which we questioned the subjects about the time they spend on a
PC. Among the subjects, one hundred eighty nine persons responded that they spent more
than ten hours a week on a PC. We examined how the experience of using a PC caused the
users to feel discomfort. By dividing the subjects into a group that used a PC for more than
ten hours a week (frequent-user group) and another group that used a PC for less than ten
hours a week (less-frequent-user group), the difference between the average scores of the
seven factors was reviewed by a t-test.
As for the Hard to See factor, the less-frequent-user group exhibited significantly higher
scores than those exhibited by the frequent-user group. This result indicated that the users
who spent less time on a PC tended to feel severe discomfort about poor viewability, as
compared to those who spent more time on a PC. With regard to the factors Search
information and Sound, the frequent-user group exhibited significantly higher scores than
those exhibited by the less-frequent-user group. This result also indicated that the users who
spent more time on a PC tended to strongly feel discomfort about retrieval of information or
noise, as compared to those who spent less time on a PC. Since significant differences were
not found in the other factors, the discomfort about the factors Hassle, Message, Unexpected
Operation, and Waiting Time seem less likely to be affected by the amount of time spent on
a PC.
As shown in Figure 2, the Hassle factor is at the core of the seven factors. The Search
Information factor and the Unexpected Operation factor have a number of paths to the other

A User Survey on the Interface Causing Discomfort for Warning

31

factors; the coefficients for those paths have high values, which indicate that these two
factors have a strong affect on the other factors.
The Hassle factor has a significant effect on the factors Hard to See, Message, Search
Information, and Unexpected Operation. Further, the factor Search Information has
significant effects on the factors Sound and Unexpected Operation. The factor Unexpected
Operation has a significant effect on the factor Waiting Time. Moreover, the path coefficient
between these two factors is highest; therefore, we considered that the two factors have a
strong causal relationship.
Although the factors Message, Hard to See, Waiting Time, and Sound have a strong effect
on the questionnaire items, which appear as dependent variables, they have a little effect on
the other factors. Therefore, these factors are considered as somewhat independent.
The structural model, even in its current preliminary form, suggests that user interfaces that
cause discomfort represent a promising research direction. Each of the seven discomfort
factors might be used in such an interface. The Hassle factor could be implemented by
giving users a task to search extra software or files. Alternatively, users could be asked to
input some information such as the ID and password repeatedly. Further, the Waiting Time
factor could be implemented so as to provide a user a block to complete an operation.
Hayasaka et al. (2007) has conducted an experimental study on how a progress indicator
could affect an operator’s psychophysiological state. We could apply the results of his study
to implement an interface that compels users to wait for a prolonged time by employing
different methods to display a progress indicator. In addition, the Search Information factor
could be implemented to prevent a user from acquiring content that s/he wants as easily as
s/he expects. The Message factor could be implemented so as to provide a user with too
many messages to confirm; alternatively, the messages could include nothing important.
Further, the factor Unexpected Operation could be implemented so as to produce a sudden
change on a user’s display. With regard to the factors about “five senses” could be
implemented so as to present users with sudden sounds or with text in hard-to-read
combinations of the background and text colors.
It is possible to indicate multiple factors of discomfort together with one interface. We need
to be mindful that if we cause too much discomfort to a user, the user will not use the
system or services anymore. The needed amount of discomfort to work as an alarm to a user
is an important topic of our future work. We need to design an interface with a control over
how much discomfort can be caused.
Moreover, from the causal model that we examined, we need to take account of the fact that
each discomfort factor affects the other discomfort factors; as a result, the feelings of
discomfort may be amplified. We need some tuning mechanisms in the implementation of
this model in the future. The implementation of such an interface and its evaluation to verify
the factor structure is a future study, as is designing methods to quantitatively measure
discomfort.

6. Conclusion
Our aim is to use an interface causing discomfort to alert the user about possible security
threats. The seven factors of discomfort that were identified by carrying out exploratory
factor analysis offered suggestions for the design and implementation of such an interface.
We intend to carry out an evaluation to verify the effects of the interface in a future study. It
is possible to simultaneously indicate multiple factors of discomfort by using one interface.

 User Interfaces

30

Fig. 2. Structural causal model of discomfort

5. Discussion
We conducted a survey in which we questioned the subjects about the time they spend on a
PC. Among the subjects, one hundred eighty nine persons responded that they spent more
than ten hours a week on a PC. We examined how the experience of using a PC caused the
users to feel discomfort. By dividing the subjects into a group that used a PC for more than
ten hours a week (frequent-user group) and another group that used a PC for less than ten
hours a week (less-frequent-user group), the difference between the average scores of the
seven factors was reviewed by a t-test.
As for the Hard to See factor, the less-frequent-user group exhibited significantly higher
scores than those exhibited by the frequent-user group. This result indicated that the users
who spent less time on a PC tended to feel severe discomfort about poor viewability, as
compared to those who spent more time on a PC. With regard to the factors Search
information and Sound, the frequent-user group exhibited significantly higher scores than
those exhibited by the less-frequent-user group. This result also indicated that the users who
spent more time on a PC tended to strongly feel discomfort about retrieval of information or
noise, as compared to those who spent less time on a PC. Since significant differences were
not found in the other factors, the discomfort about the factors Hassle, Message, Unexpected
Operation, and Waiting Time seem less likely to be affected by the amount of time spent on
a PC.
As shown in Figure 2, the Hassle factor is at the core of the seven factors. The Search
Information factor and the Unexpected Operation factor have a number of paths to the other

A User Survey on the Interface Causing Discomfort for Warning

31

factors; the coefficients for those paths have high values, which indicate that these two
factors have a strong affect on the other factors.
The Hassle factor has a significant effect on the factors Hard to See, Message, Search
Information, and Unexpected Operation. Further, the factor Search Information has
significant effects on the factors Sound and Unexpected Operation. The factor Unexpected
Operation has a significant effect on the factor Waiting Time. Moreover, the path coefficient
between these two factors is highest; therefore, we considered that the two factors have a
strong causal relationship.
Although the factors Message, Hard to See, Waiting Time, and Sound have a strong effect
on the questionnaire items, which appear as dependent variables, they have a little effect on
the other factors. Therefore, these factors are considered as somewhat independent.
The structural model, even in its current preliminary form, suggests that user interfaces that
cause discomfort represent a promising research direction. Each of the seven discomfort
factors might be used in such an interface. The Hassle factor could be implemented by
giving users a task to search extra software or files. Alternatively, users could be asked to
input some information such as the ID and password repeatedly. Further, the Waiting Time
factor could be implemented so as to provide a user a block to complete an operation.
Hayasaka et al. (2007) has conducted an experimental study on how a progress indicator
could affect an operator’s psychophysiological state. We could apply the results of his study
to implement an interface that compels users to wait for a prolonged time by employing
different methods to display a progress indicator. In addition, the Search Information factor
could be implemented to prevent a user from acquiring content that s/he wants as easily as
s/he expects. The Message factor could be implemented so as to provide a user with too
many messages to confirm; alternatively, the messages could include nothing important.
Further, the factor Unexpected Operation could be implemented so as to produce a sudden
change on a user’s display. With regard to the factors about “five senses” could be
implemented so as to present users with sudden sounds or with text in hard-to-read
combinations of the background and text colors.
It is possible to indicate multiple factors of discomfort together with one interface. We need
to be mindful that if we cause too much discomfort to a user, the user will not use the
system or services anymore. The needed amount of discomfort to work as an alarm to a user
is an important topic of our future work. We need to design an interface with a control over
how much discomfort can be caused.
Moreover, from the causal model that we examined, we need to take account of the fact that
each discomfort factor affects the other discomfort factors; as a result, the feelings of
discomfort may be amplified. We need some tuning mechanisms in the implementation of
this model in the future. The implementation of such an interface and its evaluation to verify
the factor structure is a future study, as is designing methods to quantitatively measure
discomfort.

6. Conclusion
Our aim is to use an interface causing discomfort to alert the user about possible security
threats. The seven factors of discomfort that were identified by carrying out exploratory
factor analysis offered suggestions for the design and implementation of such an interface.
We intend to carry out an evaluation to verify the effects of the interface in a future study. It
is possible to simultaneously indicate multiple factors of discomfort by using one interface.

 User Interfaces

32

We need to be mindful of the fact that if we cause too much discomfort to a user, the user
will not use the system or services anymore. The optimal amount of discomfort that would
alert a user is an important topic that would be discussed in a future study. We need to
design an interface that can control the amount of discomfort felt by a user. Moreover, in the
causal model that we examined, we need to take account of the fact that each discomfort
factor affects the other discomfort factors; as a result, the feelings of discomfort feelings may
be amplified. Some tuning mechanisms need to be incorporated during the implementation
of this model in future.
We are working on the development of the interface casing discomfort. We considered an
access to a harmful link as an example; a different interface is necessary in other scenes. An
interface causing discomfort is also useful to make users aware of careless operations such
as sending an e-mail to another address by using an autocomplete function without paying
attention.

7. Acknowledgement
Special thanks to Hitomi Oikawa graduated Graduate school of Software and Information
Science, Iwate Prefectural University. Without her master’s degree work this research was
not possible.

8. References
Hikage, N., Murayama, Y. & Hauser, C. (2007). Exploratory survey on an Evaluation Model

for a Sense of Security, IFIP International Federation for Information Processing,
Volume 232, New Approaches for Security, Privacy and Trust in Complex
Environments, pp.121-132.

Murayama, Y., Hikage, N., Fujihara, Y. & Hauser, C. (2007). The structure of the sense of
security, Anshin, 2nd International Workshop on Critical Information Infrastructures
Security, pp.85-96.

Xiao, S. & Benbasat, I. (2004). Understanding Customer Trust in Agent-Mediated Electronic
Commerce, Web-Mediated Electronic Commerce, and Traditional Commerce,
Information Technology and Management, Vol. 5, No. 1–2, Kluwer Academic
Publishers, pp.181–207.

McAllister, D.J. (1995). Affect- and cognition-based trust as foundations for interpersonal
cooperation in organizations, Academy of Management Journal, Vol. 38, No.1, pp.24-
59.

Chopra, K. & Wallace, W. A. (2003). Trust in Electronic Environments, Proceedings of the 36th
Hawaii Interna-tional Conference on System Science (HICSS’03), p.331.1.

H.H Kuan. & G.W. Bock (2005). The Collective Reality of Trust: An Investigation of Social
Relations and Networks on Trust in Multi-Channel Retailers, Proceedings of the 13th
European Conference on Information Systems (ECIS 2005), Available at:
http://is2.lse.ac.uk/asp/ aspecis/20050018.pdf (Last Access: 31 Mar 2009).

Luhmann, N. (2000). Familiarity, Confidence, Trust: Problems and Alternatives, in
Gambetta, D. (ed.) Trust: Making and peaking Cooperative Relations, Department of
Sociology, University of Oxford, pp.94-107.

Oikawa, H. (2008). A study of a causal structural model for a discomfort interface, master’s
thesis, Iwate Prefectural University. (in Japanese)

A User Survey on the Interface Causing Discomfort for Warning

33

Fujihara, Y., Oikawa, H. & Murayama, Y. (2008). Towards an interface causing discomfort
for security: A user survey on the factors of discomfort, Proceedings of 2nd IEEE
International Conference on Secure System Integration and Reliability Improvement
(SSIRI2008), pp.173-174.

Nielsen, J. (1993). Usability Engineering, Academic Press.
Norman, D.A. (1988). the Psychology of Everyday Things, Basic Books.
International Electrotechnical Commission (1996). Safety of household and similar electrical

appliances - part 2: Particular requirements for microwave ovens (MOD IEC 60335-2-25).
Mackie, D. M. & Worth, L. T. (1989). Processing deficits and the mediation of positive affect

in persuasion, Journal of personality and social psychology, Vol.57 (1), pp.27-40.
Ishii, H. and Ullmer, B. (1997). Tangible Bits: Towards Seam-less Interfaces, between People,

Bits and Atoms, Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 97), pp.234-241.

Sankarapandian, K., Little T. & Edwards, W. K TALC: Using Desktop Graffiti to Fight
Software Vulnerability, Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2008), pp.1055-1064, 2008.

Egelman, S., Cranor, L. F. & Hong, J. (2008). You’ve been warned: An empirical study of the
effectiveness of web browser phishing warnings, Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI 2008), pp. 1065-1074.

Wogalter, M. S. (2006). Communication-Human Information Processing (C-HIP) Model. In
Handbook of Warnings, Wogalter, M. S. (Ed), Lawrence Erlbaum Associates, pp. 51–
61.

International Organization for Standardization (2002). Graphical symbols -Safety colors and
safety signs- Part1: Design principles for safety signs in workplaces and public areas
(ISO3864-1)

Ramsay. J. (1997). A factor analysis of user cognition and emotion, Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI 97), pp.546-547.

Awad, N.F. & Fitzgerald, K. (2005). The Deceptive Behaviors that Offend Us Most About
Spyware, Communications of the ACM, Volume48, pp.55-60.

Takahashi, K., Nakatani, M. & Nishida, S. (2002). Information Presentation from the
standpoint of a sense of security, Proceeding of HIS 2002, pp.289-292. (in Japanese)

Tsuji, K., Okuda, T., Takahashi, K. & Ito, T. (2005). Analyses of the discomforts aroused by
stimulus sentences with reference to effects of modality and gender, The Japanese
Journal of research on Emotions, Vol.3, pp.64-70. (in Japanese)

Hagiwara, H. (2006). Sensory Aversion Degrees for Adolescents, Bulletin of Junior College of
Shukutoku, Vol.45, pp.89-113. (in Japanese)

Harman, H. H. (1976). Modern factor analysis, 3rd edition. Chicago, IL: University of Chicago
Press.

Yamazaki, M. & Kikkawa, T. (2006). The Structure of Anxiety Associated with Avian
Influenza and Pandemic Influenza, the 47th annual conference of the Japanese Society of
Social Psychology, pp.676-677. (in Japanese)

Bollen, K. A., & Long, J. S. (1993). Testing Structural Equation Models. Newbury Park, CA:
SAGE Publications.

Kline, R. B. (2005). Principles & Practice of Structural Equation Modeling. New York, NY: The
Guilford Press.

 User Interfaces

32

We need to be mindful of the fact that if we cause too much discomfort to a user, the user
will not use the system or services anymore. The optimal amount of discomfort that would
alert a user is an important topic that would be discussed in a future study. We need to
design an interface that can control the amount of discomfort felt by a user. Moreover, in the
causal model that we examined, we need to take account of the fact that each discomfort
factor affects the other discomfort factors; as a result, the feelings of discomfort feelings may
be amplified. Some tuning mechanisms need to be incorporated during the implementation
of this model in future.
We are working on the development of the interface casing discomfort. We considered an
access to a harmful link as an example; a different interface is necessary in other scenes. An
interface causing discomfort is also useful to make users aware of careless operations such
as sending an e-mail to another address by using an autocomplete function without paying
attention.

7. Acknowledgement
Special thanks to Hitomi Oikawa graduated Graduate school of Software and Information
Science, Iwate Prefectural University. Without her master’s degree work this research was
not possible.

8. References
Hikage, N., Murayama, Y. & Hauser, C. (2007). Exploratory survey on an Evaluation Model

for a Sense of Security, IFIP International Federation for Information Processing,
Volume 232, New Approaches for Security, Privacy and Trust in Complex
Environments, pp.121-132.

Murayama, Y., Hikage, N., Fujihara, Y. & Hauser, C. (2007). The structure of the sense of
security, Anshin, 2nd International Workshop on Critical Information Infrastructures
Security, pp.85-96.

Xiao, S. & Benbasat, I. (2004). Understanding Customer Trust in Agent-Mediated Electronic
Commerce, Web-Mediated Electronic Commerce, and Traditional Commerce,
Information Technology and Management, Vol. 5, No. 1–2, Kluwer Academic
Publishers, pp.181–207.

McAllister, D.J. (1995). Affect- and cognition-based trust as foundations for interpersonal
cooperation in organizations, Academy of Management Journal, Vol. 38, No.1, pp.24-
59.

Chopra, K. & Wallace, W. A. (2003). Trust in Electronic Environments, Proceedings of the 36th
Hawaii Interna-tional Conference on System Science (HICSS’03), p.331.1.

H.H Kuan. & G.W. Bock (2005). The Collective Reality of Trust: An Investigation of Social
Relations and Networks on Trust in Multi-Channel Retailers, Proceedings of the 13th
European Conference on Information Systems (ECIS 2005), Available at:
http://is2.lse.ac.uk/asp/ aspecis/20050018.pdf (Last Access: 31 Mar 2009).

Luhmann, N. (2000). Familiarity, Confidence, Trust: Problems and Alternatives, in
Gambetta, D. (ed.) Trust: Making and peaking Cooperative Relations, Department of
Sociology, University of Oxford, pp.94-107.

Oikawa, H. (2008). A study of a causal structural model for a discomfort interface, master’s
thesis, Iwate Prefectural University. (in Japanese)

A User Survey on the Interface Causing Discomfort for Warning

33

Fujihara, Y., Oikawa, H. & Murayama, Y. (2008). Towards an interface causing discomfort
for security: A user survey on the factors of discomfort, Proceedings of 2nd IEEE
International Conference on Secure System Integration and Reliability Improvement
(SSIRI2008), pp.173-174.

Nielsen, J. (1993). Usability Engineering, Academic Press.
Norman, D.A. (1988). the Psychology of Everyday Things, Basic Books.
International Electrotechnical Commission (1996). Safety of household and similar electrical

appliances - part 2: Particular requirements for microwave ovens (MOD IEC 60335-2-25).
Mackie, D. M. & Worth, L. T. (1989). Processing deficits and the mediation of positive affect

in persuasion, Journal of personality and social psychology, Vol.57 (1), pp.27-40.
Ishii, H. and Ullmer, B. (1997). Tangible Bits: Towards Seam-less Interfaces, between People,

Bits and Atoms, Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 97), pp.234-241.

Sankarapandian, K., Little T. & Edwards, W. K TALC: Using Desktop Graffiti to Fight
Software Vulnerability, Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2008), pp.1055-1064, 2008.

Egelman, S., Cranor, L. F. & Hong, J. (2008). You’ve been warned: An empirical study of the
effectiveness of web browser phishing warnings, Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI 2008), pp. 1065-1074.

Wogalter, M. S. (2006). Communication-Human Information Processing (C-HIP) Model. In
Handbook of Warnings, Wogalter, M. S. (Ed), Lawrence Erlbaum Associates, pp. 51–
61.

International Organization for Standardization (2002). Graphical symbols -Safety colors and
safety signs- Part1: Design principles for safety signs in workplaces and public areas
(ISO3864-1)

Ramsay. J. (1997). A factor analysis of user cognition and emotion, Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI 97), pp.546-547.

Awad, N.F. & Fitzgerald, K. (2005). The Deceptive Behaviors that Offend Us Most About
Spyware, Communications of the ACM, Volume48, pp.55-60.

Takahashi, K., Nakatani, M. & Nishida, S. (2002). Information Presentation from the
standpoint of a sense of security, Proceeding of HIS 2002, pp.289-292. (in Japanese)

Tsuji, K., Okuda, T., Takahashi, K. & Ito, T. (2005). Analyses of the discomforts aroused by
stimulus sentences with reference to effects of modality and gender, The Japanese
Journal of research on Emotions, Vol.3, pp.64-70. (in Japanese)

Hagiwara, H. (2006). Sensory Aversion Degrees for Adolescents, Bulletin of Junior College of
Shukutoku, Vol.45, pp.89-113. (in Japanese)

Harman, H. H. (1976). Modern factor analysis, 3rd edition. Chicago, IL: University of Chicago
Press.

Yamazaki, M. & Kikkawa, T. (2006). The Structure of Anxiety Associated with Avian
Influenza and Pandemic Influenza, the 47th annual conference of the Japanese Society of
Social Psychology, pp.676-677. (in Japanese)

Bollen, K. A., & Long, J. S. (1993). Testing Structural Equation Models. Newbury Park, CA:
SAGE Publications.

Kline, R. B. (2005). Principles & Practice of Structural Equation Modeling. New York, NY: The
Guilford Press.

 User Interfaces

34

Hayasaka, Y., T. Kimura, Segawa, N., Miyazaki, M., Yamazaki, K. & Murayama, Y. (2007). A
Study on Effects of Waiting Period in Software Operation on the Operator's
Psychophysiological State. Transactions on Electronics, Information and Systems of the
Institute of Electrical Engineers of Japan, Vol.127, No.10, pp.1770-1779. (in Japanese)

4

Automatic Generation of User Interface
Models and Prototypes from Domain

and Use Case Models
António Miguel Rosado da Cruz and João Pascoal Faria

Instituto Politécnico de Viana do Castelo / Fac. Engenharia Univ. do Porto e INESC Porto
Portugal

1. Introduction
The development of interactive systems typically involves the separate design and
development of disparate system components by different software developers. The user
interface (UI) is the part of an interactive system through which a user can access the system
functionality. User interface development is a complex task that typically involves the
construction of prototypes and/or models. A prototype facilitates the communication with
the stakeholders, especially with the end users, and allows for the validation of elicited
requirements. Modelling is a well established way people take for dealing with complexity.
A model allows one to focus on important properties of the system being modelled and
abstract away from unimportant issues. Software models may capture relevant parts of the
problem and solution domains and are typically used as a means for reasoning about the
system properties and for communicating with the stakeholders.
The user interface tends to be viewed differently, depending on what community the UI
designer belongs to. UI designers that are more identified with the Software Engineering
(SE) community tend to highlight the system functionality issues, and how it encapsulates
system behaviour to provide to the user. UI designers that are more identified with the
Human-Computer Interaction (HCI) community tend to focus on user task analysis and the
way the user shall work on the UI.
According to the HCI perspective, one of the concerns that shall be modelled is the user
intended tasks on the interactive system, and this is made through the development of user
task analysis. Typically, task analysis and modelling involve the development of goal and
task hierarchies and the identification of objects and actions involved in each task (Dix et al.,
1998). Besides this task model, a view of the UI relevant aspects of the system core structure
and functionality may also be modelled, along with a UI presentation model, in order to
complete the whole interactive system model.
In the SE community, a common practice is to build a Unified Modelling Language (UML)
system model, comprising a domain model and a use case model, supplemented by a non-
functional UI prototype, in the early stages of the software development process (Jacobson
et al., 1999; Pressman, 2005). The domain model captures the main system’s domain classes,
its attributes, relations and, in some cases, its operations, through UML class diagrams. The
use case model captures the main system functionalities from the user’s point of view

 User Interfaces

34

Hayasaka, Y., T. Kimura, Segawa, N., Miyazaki, M., Yamazaki, K. & Murayama, Y. (2007). A
Study on Effects of Waiting Period in Software Operation on the Operator's
Psychophysiological State. Transactions on Electronics, Information and Systems of the
Institute of Electrical Engineers of Japan, Vol.127, No.10, pp.1770-1779. (in Japanese)

4

Automatic Generation of User Interface
Models and Prototypes from Domain

and Use Case Models
António Miguel Rosado da Cruz and João Pascoal Faria

Instituto Politécnico de Viana do Castelo / Fac. Engenharia Univ. do Porto e INESC Porto
Portugal

1. Introduction
The development of interactive systems typically involves the separate design and
development of disparate system components by different software developers. The user
interface (UI) is the part of an interactive system through which a user can access the system
functionality. User interface development is a complex task that typically involves the
construction of prototypes and/or models. A prototype facilitates the communication with
the stakeholders, especially with the end users, and allows for the validation of elicited
requirements. Modelling is a well established way people take for dealing with complexity.
A model allows one to focus on important properties of the system being modelled and
abstract away from unimportant issues. Software models may capture relevant parts of the
problem and solution domains and are typically used as a means for reasoning about the
system properties and for communicating with the stakeholders.
The user interface tends to be viewed differently, depending on what community the UI
designer belongs to. UI designers that are more identified with the Software Engineering
(SE) community tend to highlight the system functionality issues, and how it encapsulates
system behaviour to provide to the user. UI designers that are more identified with the
Human-Computer Interaction (HCI) community tend to focus on user task analysis and the
way the user shall work on the UI.
According to the HCI perspective, one of the concerns that shall be modelled is the user
intended tasks on the interactive system, and this is made through the development of user
task analysis. Typically, task analysis and modelling involve the development of goal and
task hierarchies and the identification of objects and actions involved in each task (Dix et al.,
1998). Besides this task model, a view of the UI relevant aspects of the system core structure
and functionality may also be modelled, along with a UI presentation model, in order to
complete the whole interactive system model.
In the SE community, a common practice is to build a Unified Modelling Language (UML)
system model, comprising a domain model and a use case model, supplemented by a non-
functional UI prototype, in the early stages of the software development process (Jacobson
et al., 1999; Pressman, 2005). The domain model captures the main system’s domain classes,
its attributes, relations and, in some cases, its operations, through UML class diagrams. The
use case model captures the main system functionalities from the user’s point of view

 User Interfaces

36

through UML use case diagrams and accompanying textual descriptions. The UI prototype
is used to elicit and validate requirements with the stakeholders, and is typically not
integrated with the system model. Also, the use case and domain models are typically
ambiguous and incomplete, having most of the constraints and business rules specified in
textual natural language, and preventing the automatic validation of its consistency. This
kind of models is mainly used for abstracting away from system complexity, helping
reasoning about the system and facilitating communication between the team members and
with the stakeholders.
Model driven development (MDD) approaches, like Domain Specific Modelling – DSM –
(Kelly & Tolvanen, 2008), or the OMG’s Model Driven Architecture – MDA – (Kleppe et al.,
2003), are based on the successive refinement of models and on the automatic generation of
code and other sub-models, thus requiring the unambiguous definition of models.
After briefly surveying the current approaches to the automatic generation of UI models and
prototypes, this chapter presents an approach for the automatic generation of form-based
applications within a model-driven software development setting (Cruz & Faria, 2007). The
approach proposed involves the iterative and incremental development of a domain model,
and optionally a use case model, by the modeller, and the testing of an automatically
generated executable prototype.

2. Current model-based approaches to user interface automatic generation
This section briefly surveys and compares the main current approaches for the automatic
generation of user interface prototypes (UIP), or UI models (UIM), from non-UI system
models, like domain or application structural models, use case or task models, and some
kind of system behavioural models.
As stated before, typical methodologies for modelling interactive applications use disparate
views, or submodels, to capture different aspects of the system (domain or application
model, task model, dialogue model, abstract and concrete presentation models) (Pinheiro da
Silva, 2000). Most of existing approaches to UI generation demand the specification of a UI
model (see for example the approaches surveyed by Pinheiro da Silva (Pinheiro da Silva,
2000)).

2.1 The XIS approach
Few approaches found in the literature allow a model-to-model generation of a UIM/UIP
within a MDD setting. ProjectIT and the XIS profile and approach (Silva et al., 2007; Silva &
Videira, 2008; Silva, 2003) promote a vision that separates modelling of different system
concerns into disparate sub-models, namely an Entities view, a Use Case view and a User
Interface view.
A XIS-based model may follow a dummy or a smart approach. In the dummy approach, the
entities view is composed only of a domain model, the use case view only defines an actors’
hierarchy (actors view) and a user interface view (an abstract presentation model) must be
fully specified comprising an Interaction Spaces View, which defines the abstract screens
that serve as interface between the users and the system, and the Navigation Space View,
which specifies the possible navigation flows between the defined interaction spaces.
A XIS-based model within the smart approach shall have the following sub-models:
• Entities View: Composed of a Domain View and a Business Entities View. The Domain

View models the domain entities by using a UML class model with properly XIS-profile

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

37

stereotyped classes, attributes, associations, and enumerations. The Business Entities
View is used to group together a set of domain entities, in a coarser granularity entity
(«XisBusinessEntity») that shall be manipulated in the context of a use case. A business
entity must designate a master entity and a sequence of detail entities, or it must define
an aggregation of other business entities.

• Use-Cases View: Subdivided in the Actors View, which defines the hierarchy of actors
that can perform operations on the system, and the UseCases View, which identifies use
cases and relates each actor with the use cases that it can perform. The UseCases View
also associates each use case to the business entity on which the actors related to that
use case can perform operations («XisOperatesOnAssociation»). This stereotype has a
tagged-value, operations, which enables the definition of the set of allowed operations
that must be subset of the operations identified in the business entities view for that
business entity.

In the smart approach, XIS allows the generation of models from models - that is the case of
the User-Interfaces View in the smart approach, although it is not yet available in the
ProjectIT-Studio tool.
A XIS model may, then, be inputted to a model to code (M2C) generation process, made
available in ProjectIT through templates. All model views in XIS are platform independent,
and M2C scripts operate on XIS models. The XIS profile does not support OCL nor the full
specification of operations' syntax. It only allows the declaration of operations' name, not its
signature, nor semantics (body or pre-/post-conditions) (Saraiva & Silva, 2008; Silva et al.,
2007).

2.2 The OO-Method approach
The OO-Method approach / Olivanova (Pastor & Molina, 2007; Pastor et al., 2004; Molina,
2004; Molina & Hernández, 2003) aims at producing a formal specification of a software
system in an executable formal object-oriented language named OASIS. But, in order to
avoid the complexity traditionally associated to the use of formal methods, the OOMethod
only asks for the software engineer to graphically model a system at a conceptual level - the
conceptual model –, which is then translated, through a set of modelling patterns provided
by the method, to an OASIS specification – the execution model. The OO-Method starts,
then, with the construction of a conceptual model, which is in turn composed of the
following sub-models (Pastor et al., 1997; Pastor & Insfrán, 2003; Pastor & Molina, 2007):
• Object Model. Represented through a UML class diagram, capturing domain classes

and classes associated to user roles. For each class, the object model captures
information about its attributes, services (operations triggered by message events with
the same name), derived attributes, constraints and relationships (aggregation and
inheritance).

• Dynamic Model. Used to specify valid object lifecycles and interaction between objects.
To specify valid object lifecycles, a state transition diagram is used per class,
representing its valid states and the valid transitions between states. Transitions may
have attached control or triggering conditions. Object interactions are represented by a
(non-UML) interaction diagram for the whole system. Two types of interactions are
possible: Triggers, which are services of objects that are automatically activated when a
condition is satisfied; and, Global interactions, which are transactions involving services
of different objects.

 User Interfaces

36

through UML use case diagrams and accompanying textual descriptions. The UI prototype
is used to elicit and validate requirements with the stakeholders, and is typically not
integrated with the system model. Also, the use case and domain models are typically
ambiguous and incomplete, having most of the constraints and business rules specified in
textual natural language, and preventing the automatic validation of its consistency. This
kind of models is mainly used for abstracting away from system complexity, helping
reasoning about the system and facilitating communication between the team members and
with the stakeholders.
Model driven development (MDD) approaches, like Domain Specific Modelling – DSM –
(Kelly & Tolvanen, 2008), or the OMG’s Model Driven Architecture – MDA – (Kleppe et al.,
2003), are based on the successive refinement of models and on the automatic generation of
code and other sub-models, thus requiring the unambiguous definition of models.
After briefly surveying the current approaches to the automatic generation of UI models and
prototypes, this chapter presents an approach for the automatic generation of form-based
applications within a model-driven software development setting (Cruz & Faria, 2007). The
approach proposed involves the iterative and incremental development of a domain model,
and optionally a use case model, by the modeller, and the testing of an automatically
generated executable prototype.

2. Current model-based approaches to user interface automatic generation
This section briefly surveys and compares the main current approaches for the automatic
generation of user interface prototypes (UIP), or UI models (UIM), from non-UI system
models, like domain or application structural models, use case or task models, and some
kind of system behavioural models.
As stated before, typical methodologies for modelling interactive applications use disparate
views, or submodels, to capture different aspects of the system (domain or application
model, task model, dialogue model, abstract and concrete presentation models) (Pinheiro da
Silva, 2000). Most of existing approaches to UI generation demand the specification of a UI
model (see for example the approaches surveyed by Pinheiro da Silva (Pinheiro da Silva,
2000)).

2.1 The XIS approach
Few approaches found in the literature allow a model-to-model generation of a UIM/UIP
within a MDD setting. ProjectIT and the XIS profile and approach (Silva et al., 2007; Silva &
Videira, 2008; Silva, 2003) promote a vision that separates modelling of different system
concerns into disparate sub-models, namely an Entities view, a Use Case view and a User
Interface view.
A XIS-based model may follow a dummy or a smart approach. In the dummy approach, the
entities view is composed only of a domain model, the use case view only defines an actors’
hierarchy (actors view) and a user interface view (an abstract presentation model) must be
fully specified comprising an Interaction Spaces View, which defines the abstract screens
that serve as interface between the users and the system, and the Navigation Space View,
which specifies the possible navigation flows between the defined interaction spaces.
A XIS-based model within the smart approach shall have the following sub-models:
• Entities View: Composed of a Domain View and a Business Entities View. The Domain

View models the domain entities by using a UML class model with properly XIS-profile

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

37

stereotyped classes, attributes, associations, and enumerations. The Business Entities
View is used to group together a set of domain entities, in a coarser granularity entity
(«XisBusinessEntity») that shall be manipulated in the context of a use case. A business
entity must designate a master entity and a sequence of detail entities, or it must define
an aggregation of other business entities.

• Use-Cases View: Subdivided in the Actors View, which defines the hierarchy of actors
that can perform operations on the system, and the UseCases View, which identifies use
cases and relates each actor with the use cases that it can perform. The UseCases View
also associates each use case to the business entity on which the actors related to that
use case can perform operations («XisOperatesOnAssociation»). This stereotype has a
tagged-value, operations, which enables the definition of the set of allowed operations
that must be subset of the operations identified in the business entities view for that
business entity.

In the smart approach, XIS allows the generation of models from models - that is the case of
the User-Interfaces View in the smart approach, although it is not yet available in the
ProjectIT-Studio tool.
A XIS model may, then, be inputted to a model to code (M2C) generation process, made
available in ProjectIT through templates. All model views in XIS are platform independent,
and M2C scripts operate on XIS models. The XIS profile does not support OCL nor the full
specification of operations' syntax. It only allows the declaration of operations' name, not its
signature, nor semantics (body or pre-/post-conditions) (Saraiva & Silva, 2008; Silva et al.,
2007).

2.2 The OO-Method approach
The OO-Method approach / Olivanova (Pastor & Molina, 2007; Pastor et al., 2004; Molina,
2004; Molina & Hernández, 2003) aims at producing a formal specification of a software
system in an executable formal object-oriented language named OASIS. But, in order to
avoid the complexity traditionally associated to the use of formal methods, the OOMethod
only asks for the software engineer to graphically model a system at a conceptual level - the
conceptual model –, which is then translated, through a set of modelling patterns provided
by the method, to an OASIS specification – the execution model. The OO-Method starts,
then, with the construction of a conceptual model, which is in turn composed of the
following sub-models (Pastor et al., 1997; Pastor & Insfrán, 2003; Pastor & Molina, 2007):
• Object Model. Represented through a UML class diagram, capturing domain classes

and classes associated to user roles. For each class, the object model captures
information about its attributes, services (operations triggered by message events with
the same name), derived attributes, constraints and relationships (aggregation and
inheritance).

• Dynamic Model. Used to specify valid object lifecycles and interaction between objects.
To specify valid object lifecycles, a state transition diagram is used per class,
representing its valid states and the valid transitions between states. Transitions may
have attached control or triggering conditions. Object interactions are represented by a
(non-UML) interaction diagram for the whole system. Two types of interactions are
possible: Triggers, which are services of objects that are automatically activated when a
condition is satisfied; and, Global interactions, which are transactions involving services
of different objects.

 User Interfaces

38

• Functional Model. Captures the semantics attached to any change of state, as a
consequence of a service occurrence. For that, it is declaratively specified how each
service changes the object state depending on the arguments of the involved service and
the current object state. Nevertheless, for not demanding the knowledge of OASIS, the
OO-Method provides a model where the software engineer only has to categorize every
attribute among a predefined set of three categories and introduce the relevant
information depending on the corresponding selected category (Pastor et al., 1997;
Pastor & Insfrán, 2003).

• Presentation Model. The last step is to specify how users will interact with the system
(Pastor & Insfrán, 2003). Just-UI adds to the OO-Method a Presentation Model that
intends to capture the characteristics of the User Interface as they are conceived at
conceptual level during the requirements elicitation phase of a system's development
process (Molina et al., 2001; Molina & Hernández, 2003). The kind of information that is
collected in the presentation model of the OO-Method is based on conceptual interface
patterns based on Abstract Interaction Objects (AIO).

The abstract execution model is based on the concept of conceptual modelling patterns. The
OlivaNova transformation engines provide a well-defined software representation of the
conceptual modelling patterns in the solution space.

2.3 The ZOOM approach
The ZOOM approach to interactive systems modelling and development (Jia et al., 2005)
provides a set of process, notations, and supporting tools that enable model-driven
development. ZOOM, which stands for Z-based OO modelling notation, is an object-
oriented (OO) extension to the formal specification language Z. ZOOM separates an
application into three parts – structure, behaviour, and user-interface – and provides three
separate, but related, notations to describe each of those parts: ZOOM for structural models;
ZOOM-FSM for specifying behavioural models through finite state machines; and, ZOOM-
UIDL, a user interface description language for UI models. ZOOM provides a Java-like
textual syntax for structural and behavioural models and an XML-based language for the
User-Interface model. Furthermore, ZOOM provides a graphical representation of models
consistent with UML diagrams (Jia et al., 2007; Jia et al., 2005), enabling a graphical formal
modelling of a software system.
An event-based framework integrates the different parts of a ZOOM model, enabling its
validation and execution.
ZOOM may be used in a MDD setting by applying model “compilation” tools. These, are
tools that enable the generation of a complete application from a ZOOM model, exposing its
functional requirements through a UI generated from the UI model. The generated code
must not only meet all functional requirements, but the generation process must address the
choice of architecture, data structures and algorithms (Jia et al., 2005; Jia et al., 2007).

2.4 Other approaches
In (Martinez et al., 2002) a methodology for deriving UIs from early requirements existing in
an organization’s business process model is presented. Martinez’s approach follows a set of
heuristics for extracting use cases and actors from the business process model. Each use
case’s normal and exceptional scenarios are then specified using message sequence charts
enriched with UI related information. These UI enriched sequence diagrams are then used

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

39

for automatically generating application forms and state transition diagrams for the
interface objects and control objects present in the sequence diagrams.
UI generation is also approached in (Elkoutbi et al., 2006) based on the identification of
usage scenarios. Elkoutbi’s approach starts from a system domain structural model with
OCL constraints and a use case model, but proceeds by formalizing each use case through a
set of UML collaboration diagrams, each corresponding to a use case scenario. Then, each
collaboration diagram message is manually labelled with UI constraints (inputData and
outputData) that identify the input and output message parameters for the UI. From the UI
constraints it then automatically produces message constraints with UI widget information.
Statechart diagrams are then derived from the UI labelled collaboration diagrams on a per
use case basis. A statechart is created for each distinct class in a collaboration diagram. Then,
state labeling and statechart integration are done incrementally, in order to obtain only one
statechart per collaboration diagram, that is, per usage scenario. Elkoutbi’s approach is then
able to derive UI prototypes for every interface object defined in the class diagram.
Forbrig et al. (Wolff et al., 2005a; Wolff et al., 2005b; Javahery et al., 2007; Radeke et al., 2007;
Forbrig et al., 2004; Reichart et al., 2004) developed an approach that interactively generates
an abstract UI model, and then a concrete UI, by applying UI-patterns to elements of UI sub-
models (e.g. task models). The approach starts by constructing a task model and a business
objects model, complemented with a user model, that capture relevant information from the
user (e.g.: typical tasks, its type, frequency and importance, preferences), and a device
model, that captures relevant information about the device. Then, from the previous models,
a set of selectable patterns is identified enabling its selection by the modeller in order to
obtain more concrete models. This is not an automatic approach, but one that enables a
computer assisted development of interactive applications by selecting different types of
patterns at different levels of abstractions. Tools like DiaTask (Wolff et al., 2005b) and PIM
Tool (“Patterns in Modelling” tool) (Radeke et al., 2007) enable this computer assisted
approach.

2.5 Discussion of current approaches
Elkoutbi’s and Martinez’s approaches enable the semi-automatic generation of a UIP from
non-UI models, but they do not produce an intermediate UIM. Also, the amount of work
involved in the production of the demanded models makes the approaches of little use for
software development teams.
Forbrig’s approach facilitates the model transformation processes by making the modeller
choose between a set of eligible patterns, but it is not an automatic generation approach.
The XIS/ProjectIT, just like the OO-Method/Olivanova and the ZOOM approach are able to
produce a fully functional (executable) application, but the demanded input models are very
time consuming and arduous to build. The need to attach a stereotype to every model
element, in XIS, makes the models hard to read and build.
All except the XIS smart approach and partially the OO-Method demand the full construction
of a UI model. The XIS smart approach enables the derivation of a UIM, called user interfaces
view, by demanding the construction of three non-UI models, a domain model, a business
entities model and a use case model. This approach to the UIM derivation is simpler than its
full construction, but forces the modeller to repeat definitions that were already made in the
domain model, by defining XIS business entities. XIS business entities select domain entities
relations to provide a lookup or master/detail pattern to the UI needed for the interaction

 User Interfaces

38

• Functional Model. Captures the semantics attached to any change of state, as a
consequence of a service occurrence. For that, it is declaratively specified how each
service changes the object state depending on the arguments of the involved service and
the current object state. Nevertheless, for not demanding the knowledge of OASIS, the
OO-Method provides a model where the software engineer only has to categorize every
attribute among a predefined set of three categories and introduce the relevant
information depending on the corresponding selected category (Pastor et al., 1997;
Pastor & Insfrán, 2003).

• Presentation Model. The last step is to specify how users will interact with the system
(Pastor & Insfrán, 2003). Just-UI adds to the OO-Method a Presentation Model that
intends to capture the characteristics of the User Interface as they are conceived at
conceptual level during the requirements elicitation phase of a system's development
process (Molina et al., 2001; Molina & Hernández, 2003). The kind of information that is
collected in the presentation model of the OO-Method is based on conceptual interface
patterns based on Abstract Interaction Objects (AIO).

The abstract execution model is based on the concept of conceptual modelling patterns. The
OlivaNova transformation engines provide a well-defined software representation of the
conceptual modelling patterns in the solution space.

2.3 The ZOOM approach
The ZOOM approach to interactive systems modelling and development (Jia et al., 2005)
provides a set of process, notations, and supporting tools that enable model-driven
development. ZOOM, which stands for Z-based OO modelling notation, is an object-
oriented (OO) extension to the formal specification language Z. ZOOM separates an
application into three parts – structure, behaviour, and user-interface – and provides three
separate, but related, notations to describe each of those parts: ZOOM for structural models;
ZOOM-FSM for specifying behavioural models through finite state machines; and, ZOOM-
UIDL, a user interface description language for UI models. ZOOM provides a Java-like
textual syntax for structural and behavioural models and an XML-based language for the
User-Interface model. Furthermore, ZOOM provides a graphical representation of models
consistent with UML diagrams (Jia et al., 2007; Jia et al., 2005), enabling a graphical formal
modelling of a software system.
An event-based framework integrates the different parts of a ZOOM model, enabling its
validation and execution.
ZOOM may be used in a MDD setting by applying model “compilation” tools. These, are
tools that enable the generation of a complete application from a ZOOM model, exposing its
functional requirements through a UI generated from the UI model. The generated code
must not only meet all functional requirements, but the generation process must address the
choice of architecture, data structures and algorithms (Jia et al., 2005; Jia et al., 2007).

2.4 Other approaches
In (Martinez et al., 2002) a methodology for deriving UIs from early requirements existing in
an organization’s business process model is presented. Martinez’s approach follows a set of
heuristics for extracting use cases and actors from the business process model. Each use
case’s normal and exceptional scenarios are then specified using message sequence charts
enriched with UI related information. These UI enriched sequence diagrams are then used

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

39

for automatically generating application forms and state transition diagrams for the
interface objects and control objects present in the sequence diagrams.
UI generation is also approached in (Elkoutbi et al., 2006) based on the identification of
usage scenarios. Elkoutbi’s approach starts from a system domain structural model with
OCL constraints and a use case model, but proceeds by formalizing each use case through a
set of UML collaboration diagrams, each corresponding to a use case scenario. Then, each
collaboration diagram message is manually labelled with UI constraints (inputData and
outputData) that identify the input and output message parameters for the UI. From the UI
constraints it then automatically produces message constraints with UI widget information.
Statechart diagrams are then derived from the UI labelled collaboration diagrams on a per
use case basis. A statechart is created for each distinct class in a collaboration diagram. Then,
state labeling and statechart integration are done incrementally, in order to obtain only one
statechart per collaboration diagram, that is, per usage scenario. Elkoutbi’s approach is then
able to derive UI prototypes for every interface object defined in the class diagram.
Forbrig et al. (Wolff et al., 2005a; Wolff et al., 2005b; Javahery et al., 2007; Radeke et al., 2007;
Forbrig et al., 2004; Reichart et al., 2004) developed an approach that interactively generates
an abstract UI model, and then a concrete UI, by applying UI-patterns to elements of UI sub-
models (e.g. task models). The approach starts by constructing a task model and a business
objects model, complemented with a user model, that capture relevant information from the
user (e.g.: typical tasks, its type, frequency and importance, preferences), and a device
model, that captures relevant information about the device. Then, from the previous models,
a set of selectable patterns is identified enabling its selection by the modeller in order to
obtain more concrete models. This is not an automatic approach, but one that enables a
computer assisted development of interactive applications by selecting different types of
patterns at different levels of abstractions. Tools like DiaTask (Wolff et al., 2005b) and PIM
Tool (“Patterns in Modelling” tool) (Radeke et al., 2007) enable this computer assisted
approach.

2.5 Discussion of current approaches
Elkoutbi’s and Martinez’s approaches enable the semi-automatic generation of a UIP from
non-UI models, but they do not produce an intermediate UIM. Also, the amount of work
involved in the production of the demanded models makes the approaches of little use for
software development teams.
Forbrig’s approach facilitates the model transformation processes by making the modeller
choose between a set of eligible patterns, but it is not an automatic generation approach.
The XIS/ProjectIT, just like the OO-Method/Olivanova and the ZOOM approach are able to
produce a fully functional (executable) application, but the demanded input models are very
time consuming and arduous to build. The need to attach a stereotype to every model
element, in XIS, makes the models hard to read and build.
All except the XIS smart approach and partially the OO-Method demand the full construction
of a UI model. The XIS smart approach enables the derivation of a UIM, called user interfaces
view, by demanding the construction of three non-UI models, a domain model, a business
entities model and a use case model. This approach to the UIM derivation is simpler than its
full construction, but forces the modeller to repeat definitions that were already made in the
domain model, by defining XIS business entities. XIS business entities select domain entities
relations to provide a lookup or master/detail pattern to the UI needed for the interaction

 User Interfaces

40

inside the context of a use case (Silva, 2003; Silva et al., 2007). This way, the Business Entities
view is the XIS way to define UI structure and functionality, though possible operations can be
further restricted when associating the business entity to a use case.
It is not possible, in XIS, to specify complex behaviour - only predefined CRUD operations
may be attached to Business Entities and to the connection between the use cases and
business entities.
ZOOM and the OO-Method allow the definition of complex behaviour by using a formal
specification language, ZOOM or OASIS respectively, though the OO-Method also provides
a way that enables the definition of some behaviour without demanding the knowledge of
OASIS from the software engineer.
From the previous survey and discussion the main drawbacks of existing approaches to UI
automatic code generation have been identified, and are summarized below:
• In general, current approaches demand too much effort, from the modeller, in order to

build the system models inputted to the approaches. They don't allow a gradual
approach to system modelling if one wants to generate a (prototype) application to
iteratively evaluate and refine the model. All models expected by one approach must be
fully developed before code generation may be available, except with the OO-Method
(Pastor et al., 2004; Molina, 2004; Pastor et al., 1997), to a certain point, because it may
generate a concrete UI given only a structural model. But the OO-Method does not
permit the specification of a use case driven system model.

• Most of the approaches demand the manual construction of a UI model from scratch, in
order to be able to produce a concrete user interface for an interactive application. The
exception is the XIS smart approach (Silva et al., 2007), that enables the generation of a
user interface model from the core system model, but the generated UI is rather limited
in what concerns its flexibility and the core system behaviour.

• Current approaches don't allow the generation of an executable prototype from the
available system models, that would permit to interactively validate the model through
a UI with the users and other stakeholders, and refine the model in a sequence of
iterative steps.

• Most of the existing approaches don't take advantage of the specification of class state
constraints (invariants) or of operations pre-conditions to enhance the usability of the
generated UI. The exception is the ZOOM approach (Jia et al., 2005; Jia et al., 2007), and
partially the OO-Method (Pastor et al., 2004; Molina, 2004; Pastor et al., 1997).

• Existing approaches don't take advantage of the use of constructs typically found in
task models (e.g.: sequencing, alternative) for detailing use cases (Paternó, 2001).

• Existing approaches don't allow the definition of the semantic of operations at class
level. Again, the exception is the ZOOM approach (Jia et al., 2005; Jia et al., 2007), and
partially the OO-Method (Pastor et al., 2004; Molina, 2004; Pastor et al., 1997).

• With the partial exception of the OO-Method (Pastor et al., 2004; Molina, 2004; Pastor et
al., 1997), existing approaches don't allow the definition of triggers, i.e. actions to be
executed when certain events occur or certain conditions hold. Triggers activated by an
operation's invocation are a way of modifying or adding behaviour to CRUD or other
operations. Using triggers it is possible to specify business rules that involve several
classes' operations. The OO-Method only allows the specification of condition activated
triggers but not invocation activated triggers.

In the next section, a general presentation of the proposed approach is made, aiming the
automatic generation of user interface models and prototypes from non-UI system models.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

41

3. Proposed approach to model-driven user interface generation
The proposed approach to model-driven UI generation and development (Cruz & Faria,
2007; Cruz & Faria, 2008; Cruz & Faria, 2009), illustrated in Fig.1, enables the automatic
generation of user interface models (UIM) and executable user interface prototypes (UIP)
from early, progressively enriched, non-UI system models.

Extended
Domain

Model (EDM)

Software engineer

EDM2UIM

M2C
User

Interface
Model (UIM)

Data layer (e.g.:
RDF)

Application logic
(e.g.: Javascript)

UI (e.g.: XUL)

Application prototype

Prototype
usage and
evaluation

Use Case
Model
(UCM)EDM2UCM

EDM+UCM
2UIM

Fig. 1. General approach to UI generation.

In the first iterations, a simple domain model (DM) is constructed, represented by a UML
class diagram, with classes (base domain entities), attributes and relationships. From this
DM a simple UI can be automatically generated (by the EDM2UIM process, a model to
model transformation, and model to code transformation - M2C -, in Fig. 1) supporting only
the basic CRUD operations and navigation along the associations defined.
In subsequent iterations, the domain model is extended with additional features (to be
explained in more detail in section 4) that allow the generation of richer user interfaces: OCL
constraints, default values, derived attributes, derived entities (views), user-defined
operations, and triggers. From this extended domain model (EDM), it is possible to generate
validation routines from OCL class invariants and operations' pre-conditions, thus
influencing what the user is able to do in the generated user interface. Derived classes allow
the generation of UI forms with a better business tailored data structure.
Simultaneously, the modeller may develop a use case model (UCM), integrated with the
EDM. This UCM will enable the separation of functionality by actor, and its customization
(e.g.: hiding functionality for some actors). Corresponding UI models and prototypes are
then automatically generated from both the EDM and UCM (EDM+UCM2UIM and M2C
processes in Fig. 1). As will be explained in section 5, there is a full integration between the
UCM and EDM, as use case specifications are established over the structural domain model.
On each iteration, the generated UI may be tuned by a UI designer in two points of the
process: after having generated an abstract UIM, but before generating a concrete UI; and,

 User Interfaces

40

inside the context of a use case (Silva, 2003; Silva et al., 2007). This way, the Business Entities
view is the XIS way to define UI structure and functionality, though possible operations can be
further restricted when associating the business entity to a use case.
It is not possible, in XIS, to specify complex behaviour - only predefined CRUD operations
may be attached to Business Entities and to the connection between the use cases and
business entities.
ZOOM and the OO-Method allow the definition of complex behaviour by using a formal
specification language, ZOOM or OASIS respectively, though the OO-Method also provides
a way that enables the definition of some behaviour without demanding the knowledge of
OASIS from the software engineer.
From the previous survey and discussion the main drawbacks of existing approaches to UI
automatic code generation have been identified, and are summarized below:
• In general, current approaches demand too much effort, from the modeller, in order to

build the system models inputted to the approaches. They don't allow a gradual
approach to system modelling if one wants to generate a (prototype) application to
iteratively evaluate and refine the model. All models expected by one approach must be
fully developed before code generation may be available, except with the OO-Method
(Pastor et al., 2004; Molina, 2004; Pastor et al., 1997), to a certain point, because it may
generate a concrete UI given only a structural model. But the OO-Method does not
permit the specification of a use case driven system model.

• Most of the approaches demand the manual construction of a UI model from scratch, in
order to be able to produce a concrete user interface for an interactive application. The
exception is the XIS smart approach (Silva et al., 2007), that enables the generation of a
user interface model from the core system model, but the generated UI is rather limited
in what concerns its flexibility and the core system behaviour.

• Current approaches don't allow the generation of an executable prototype from the
available system models, that would permit to interactively validate the model through
a UI with the users and other stakeholders, and refine the model in a sequence of
iterative steps.

• Most of the existing approaches don't take advantage of the specification of class state
constraints (invariants) or of operations pre-conditions to enhance the usability of the
generated UI. The exception is the ZOOM approach (Jia et al., 2005; Jia et al., 2007), and
partially the OO-Method (Pastor et al., 2004; Molina, 2004; Pastor et al., 1997).

• Existing approaches don't take advantage of the use of constructs typically found in
task models (e.g.: sequencing, alternative) for detailing use cases (Paternó, 2001).

• Existing approaches don't allow the definition of the semantic of operations at class
level. Again, the exception is the ZOOM approach (Jia et al., 2005; Jia et al., 2007), and
partially the OO-Method (Pastor et al., 2004; Molina, 2004; Pastor et al., 1997).

• With the partial exception of the OO-Method (Pastor et al., 2004; Molina, 2004; Pastor et
al., 1997), existing approaches don't allow the definition of triggers, i.e. actions to be
executed when certain events occur or certain conditions hold. Triggers activated by an
operation's invocation are a way of modifying or adding behaviour to CRUD or other
operations. Using triggers it is possible to specify business rules that involve several
classes' operations. The OO-Method only allows the specification of condition activated
triggers but not invocation activated triggers.

In the next section, a general presentation of the proposed approach is made, aiming the
automatic generation of user interface models and prototypes from non-UI system models.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

41

3. Proposed approach to model-driven user interface generation
The proposed approach to model-driven UI generation and development (Cruz & Faria,
2007; Cruz & Faria, 2008; Cruz & Faria, 2009), illustrated in Fig.1, enables the automatic
generation of user interface models (UIM) and executable user interface prototypes (UIP)
from early, progressively enriched, non-UI system models.

Extended
Domain

Model (EDM)

Software engineer

EDM2UIM

M2C
User

Interface
Model (UIM)

Data layer (e.g.:
RDF)

Application logic
(e.g.: Javascript)

UI (e.g.: XUL)

Application prototype

Prototype
usage and
evaluation

Use Case
Model
(UCM)EDM2UCM

EDM+UCM
2UIM

Fig. 1. General approach to UI generation.

In the first iterations, a simple domain model (DM) is constructed, represented by a UML
class diagram, with classes (base domain entities), attributes and relationships. From this
DM a simple UI can be automatically generated (by the EDM2UIM process, a model to
model transformation, and model to code transformation - M2C -, in Fig. 1) supporting only
the basic CRUD operations and navigation along the associations defined.
In subsequent iterations, the domain model is extended with additional features (to be
explained in more detail in section 4) that allow the generation of richer user interfaces: OCL
constraints, default values, derived attributes, derived entities (views), user-defined
operations, and triggers. From this extended domain model (EDM), it is possible to generate
validation routines from OCL class invariants and operations' pre-conditions, thus
influencing what the user is able to do in the generated user interface. Derived classes allow
the generation of UI forms with a better business tailored data structure.
Simultaneously, the modeller may develop a use case model (UCM), integrated with the
EDM. This UCM will enable the separation of functionality by actor, and its customization
(e.g.: hiding functionality for some actors). Corresponding UI models and prototypes are
then automatically generated from both the EDM and UCM (EDM+UCM2UIM and M2C
processes in Fig. 1). As will be explained in section 5, there is a full integration between the
UCM and EDM, as use case specifications are established over the structural domain model.
On each iteration, the generated UI may be tuned by a UI designer in two points of the
process: after having generated an abstract UIM, but before generating a concrete UI; and,

 User Interfaces

42

E.D.M.M. U.C.M.M. U.I.M.M.

Fig. 2. Excerpt of the conceptual metamodels and their relations.

after generating a concrete UI in a XML-based UI description language (e.g.: XUL), which
allows for the a posteriori customization and application of style sheets. A proof of concept
tool has been developed for fully automating the EDM2UIM, EDM+UCM2UIM and M2C
processes. The prototyped M2C process uses XUL to represent an executable UI description,
JavaScript for the executable functionality and RDF to persist data.
Each of the models (EDM, UCM and UIM) presented in Fig. 1 is an instance of a defined
metamodel, of which an excerpt is shown in Fig. 2 (EDMM, UCMM and UIMM,
respectively). Elements in the user interface model are traced back to elements in the UCM
or EDM, e.g.:
• A Menu in the UI traces back to a Use Case (UC) Package in the UCM;
• a Menu Item traces back to a top-level use case in the UCM, i.e. a use case that directly

links to an actor;
• A Form can be traced back to a use case, which is always related to a base or derived

domain Entity;
• An Action Button may trace back to a CRUD operation that may be identified in a use

case, or to a user defined operation.
In the next two sections the mappings for deriving a UI model from one or both of the other
models (EDM and UCM), as depicted in Fig. 1, are defined.
A set of rules has also been defined for transforming an EDM into a default UCM
(EDM2UCM process), and these are briefly presented in section 6.

4. Automatic generation of a user interface model from an extended domain
model
This section presents the rules defined to transform different elements of the extended
domain model into appropriate user interface elements and their underlying functionality.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

43

4.1 Extended domain model and transformation rules
Besides classes (domain entities), attributes and relationships, an extended domain model
may contain the following elements:
• Class invariants: intra-object (over attributes of a single instance) or inter-object (over

attributes of multiple instances of the same or related classes) constraints defined in a
subset of OCL.

• User-defined operations: Operations defined in an Action Semantics-based action
language, supplementing the basic CRUD operations (Create, Retrieve, Update and
Delete).

• Derived attributes: Attributes whose values are defined by expressions in a subset of
OCL, over attributes of self or related instances. A common special case is a reference to
a related attribute, using a sequence of dot separated names.

• Default values: Initial attribute values defined in a subset of OCL.
• Derived classes (views): Classes that extend the domain model with non-persistent

domain entities with a structure closer to the UI needs. Currently, each derived class
must be related to a target base class, and is treated essentially as a virtual
specialization of the base class, possibly restricted by a membership constraint and
extended with derived attributes.

• Triggers: Actions to be executed before, after or instead of CRUD operations, or when a
condition holds within the context of an instance of a class. By defining triggers, the
modeller is able to modify the normal behaviour of CRUD operations, or define generic
business rules.

The main transformation rules for generating a user interface model from an extended
domain model are summarized in Table 1, and extend the rules for transforming simple
domain models, previously addressed in (Cruz & Faria, 2008).
When the UIM/UIP is generated solely from the domain model, a special class named
System has to be created and linked to the domain classes that should correspond to the
application entry points. A more flexible approach is explained in section 5.

4.2 Illustrative example
To illustrate the transformation rules from an extended domain model (EDM) to a user
interface model/prototype (UIM/UIP), a Library System example will be used. Fig. 3 depicts
the extended domain model from our example. In order to be able to identify the application
user interface entry points, the EDM must be rooted in a special class named System. This is
a special class, with no attributes, that aggregates the base or derived entities that shall be
directly accessed by the user. Each aggregation from System to a base entity class produces a
window with a list of instances of the appropriate class, and each aggregation from System
to a derived entity class produces a window with a list of instances of the derived class’
target entity.

Transforming single classes
For each non-abstract entity class (base or derived) with self or inherited attributes, the
EDM2UIM model transformer creates a form window. For instance, for the class Book (see
Figs. 3 and 4), it is created a form with a label and an input field for each class attribute
(attribute access modes are not being taken into account). The «ident» stereotype is used to
mark attributes that are used for external identification (by the user).

 User Interfaces

42

E.D.M.M. U.C.M.M. U.I.M.M.

Fig. 2. Excerpt of the conceptual metamodels and their relations.

after generating a concrete UI in a XML-based UI description language (e.g.: XUL), which
allows for the a posteriori customization and application of style sheets. A proof of concept
tool has been developed for fully automating the EDM2UIM, EDM+UCM2UIM and M2C
processes. The prototyped M2C process uses XUL to represent an executable UI description,
JavaScript for the executable functionality and RDF to persist data.
Each of the models (EDM, UCM and UIM) presented in Fig. 1 is an instance of a defined
metamodel, of which an excerpt is shown in Fig. 2 (EDMM, UCMM and UIMM,
respectively). Elements in the user interface model are traced back to elements in the UCM
or EDM, e.g.:
• A Menu in the UI traces back to a Use Case (UC) Package in the UCM;
• a Menu Item traces back to a top-level use case in the UCM, i.e. a use case that directly

links to an actor;
• A Form can be traced back to a use case, which is always related to a base or derived

domain Entity;
• An Action Button may trace back to a CRUD operation that may be identified in a use

case, or to a user defined operation.
In the next two sections the mappings for deriving a UI model from one or both of the other
models (EDM and UCM), as depicted in Fig. 1, are defined.
A set of rules has also been defined for transforming an EDM into a default UCM
(EDM2UCM process), and these are briefly presented in section 6.

4. Automatic generation of a user interface model from an extended domain
model
This section presents the rules defined to transform different elements of the extended
domain model into appropriate user interface elements and their underlying functionality.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

43

4.1 Extended domain model and transformation rules
Besides classes (domain entities), attributes and relationships, an extended domain model
may contain the following elements:
• Class invariants: intra-object (over attributes of a single instance) or inter-object (over

attributes of multiple instances of the same or related classes) constraints defined in a
subset of OCL.

• User-defined operations: Operations defined in an Action Semantics-based action
language, supplementing the basic CRUD operations (Create, Retrieve, Update and
Delete).

• Derived attributes: Attributes whose values are defined by expressions in a subset of
OCL, over attributes of self or related instances. A common special case is a reference to
a related attribute, using a sequence of dot separated names.

• Default values: Initial attribute values defined in a subset of OCL.
• Derived classes (views): Classes that extend the domain model with non-persistent

domain entities with a structure closer to the UI needs. Currently, each derived class
must be related to a target base class, and is treated essentially as a virtual
specialization of the base class, possibly restricted by a membership constraint and
extended with derived attributes.

• Triggers: Actions to be executed before, after or instead of CRUD operations, or when a
condition holds within the context of an instance of a class. By defining triggers, the
modeller is able to modify the normal behaviour of CRUD operations, or define generic
business rules.

The main transformation rules for generating a user interface model from an extended
domain model are summarized in Table 1, and extend the rules for transforming simple
domain models, previously addressed in (Cruz & Faria, 2008).
When the UIM/UIP is generated solely from the domain model, a special class named
System has to be created and linked to the domain classes that should correspond to the
application entry points. A more flexible approach is explained in section 5.

4.2 Illustrative example
To illustrate the transformation rules from an extended domain model (EDM) to a user
interface model/prototype (UIM/UIP), a Library System example will be used. Fig. 3 depicts
the extended domain model from our example. In order to be able to identify the application
user interface entry points, the EDM must be rooted in a special class named System. This is
a special class, with no attributes, that aggregates the base or derived entities that shall be
directly accessed by the user. Each aggregation from System to a base entity class produces a
window with a list of instances of the appropriate class, and each aggregation from System
to a derived entity class produces a window with a list of instances of the derived class’
target entity.

Transforming single classes
For each non-abstract entity class (base or derived) with self or inherited attributes, the
EDM2UIM model transformer creates a form window. For instance, for the class Book (see
Figs. 3 and 4), it is created a form with a label and an input field for each class attribute
(attribute access modes are not being taken into account). The «ident» stereotype is used to
mark attributes that are used for external identification (by the user).

 User Interfaces

44

EDM feature Generated UI feature (UIM/UIP)
Base domain
entity

Form with an input/output field for each attribute, and buttons and
associated logic for the CRUD operations.

Inheritance A field for each inherited attribute in the form generated for the
specialized class.

To-many
association,
aggregation or
composition

UI component in the source class form, with a list of the identifying
attributes (explained in section 4.2) of the related instances of the target
class, and buttons for adding new instances and for editing or removing
the currently selected instance.

To-one
association,
aggregation or
composition

Group box in the source class form, with a field for each identifying
attribute of the related instance. If the related instance is not fixed by
the navigation path followed so forth, then a button is also generated
for selecting the related instance.

Enumerated
type Group of radio buttons for selecting one option.

Class invariant Validation rule that is called when creating or updating instances of the
class.

User-defined
operation

Button and associated logic, within the form corresponding to the class
where the operation is defined. Forms are also generated for entering
the input parameters and displaying the result, in case they exist. The
operation pre-condition determines when the button is enabled.

Derived
attribute Output-only field (calculated field).

Default value Initial field value.

Derived entity
(view)

Form with an input/output field for each attribute of the target class, an
output-only field for each derived attribute, and buttons for the CRUD
logic (over the target class).

Operation-
Action Trigger

Logic that is executed before, after or instead of the CRUD operation
that it refers to.

Condition-
Action Trigger

Logic that is executed every time the condition holds, after creating or
updating an instance of the class where the trigger is defined.

Table 1. EDM to UIM/UIP transformation rules.

In this example (see Fig. 4), to navigate to the Book window, the user has to select the Book
Collection option in the System (root) window, and then press the Add Book button (to create a
new instance), or select a Book instance and then press the Edit Book button (to view, update or
delete an existing instance). In the first case, the user will have to fill in the appropriate fields,
press the Create/Update button and then close the window or continue editing. In the second
case, the user can update the relevant fields and press the Create/Update button to submit the
changes, or press the Delete button to delete the instance and then close the window.
When a new or updated instance is submitted, it is checked that the values entered in the
fields obey their declared data types, the identifying attributes (marked with the «ident»
stereotype) are filled in, and the invariant constraints are satisfied.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

45

«ident» +Name : string
«ident» +Login : string
+Password : string

LibraryUser

+Salary : int
Librarian Borrower

+returnBook()

+dueDate
+effectiveReturnDate

Loan

1

0..*

1

0..*

«ident» +ISBN : string
«ident» +Title : string
«ident» +Author : string
+Edition : int
+Year : int

Book
1

0..*

+CopyCode : string
+/ BookTitle = bookData.Title

BookCopy

-loan

*

-b
oo

kC
op

y 1

-bookCopies *

-bookData 1

System

1

0..*

1

0..*

+In the shelf
+Borrowed
+For reading in the Library

«enumeration»
BookCopyStatus

* -status 1-/bookCopy.bookData.Title
-/bookCopy.bookData.Author
-/Code = bookCopy.CopyCode
-/CopyStatus = bookCopy.status
-/DueDate = dueDate
-/LoanStatus = status

/ ActiveLoan

1

0..*

1

-«target» 1

+Active
+Inactive

«enumeration»
LoanStatus

* -status 1

+date
+value

Fine

-fine0..1

1

1

-fines*

{status = LoanStatus.Active}

Context Loan trigger after update:
if (self.effectiveReturnDate >
self.dueDate)
fine = new Fine();
fine.date =self.effectiveReturnDate;
fine.value = 1.5;
fine.persist();

Fig. 3. Extended domain model (EDM) for a Library Management System (LibrarySystem),
with an example trigger.
Transforming inheritance hierarchies
In our approach, only single inheritance is currently supported, and forms are generated
only for the leaf classes of the inheritance hierarchy. Each leaf class inherits all the attributes
and constraints from its ancestor classes, and then has the same treatment as single classes.
Transforming associations, aggregations and compositions
For each relationship between two classes, information about related objects and/or links to
related objects are generated in each of the corresponding windows. The elements generated
depend on the kind of relationship (composition is treated slightly differently from
aggregation or association), its multiplicity (to-one and to-many are treated differently), and
the navigation path followed. The information that is shown about related objects is the
value of the identifying attributes (marked with the «ident» stereotype). If no attribute is
marked with the «ident» stereotyped, all the attributes are considered identifying attributes.
Role names are used to group the identifying attributes in the form generated. If a role name
is not provided, it is used the class name.
In Fig. 4 the UI elements generated from the EDM’s classes Book and BookCopy, and from the
composition relationship between them, can be seen. The Book window presents a list of
related BookCopy instances, and a set of buttons for editing (viewing or updating) or
removing a previously selected instance, or adding a new instance. The BookCopy is accessed
from the Book window (to edit or create a BookCopy instance), and presents the related
BookData identified by ISBN, Title and Author, which are external identifiers («ident») in

 User Interfaces

44

EDM feature Generated UI feature (UIM/UIP)
Base domain
entity

Form with an input/output field for each attribute, and buttons and
associated logic for the CRUD operations.

Inheritance A field for each inherited attribute in the form generated for the
specialized class.

To-many
association,
aggregation or
composition

UI component in the source class form, with a list of the identifying
attributes (explained in section 4.2) of the related instances of the target
class, and buttons for adding new instances and for editing or removing
the currently selected instance.

To-one
association,
aggregation or
composition

Group box in the source class form, with a field for each identifying
attribute of the related instance. If the related instance is not fixed by
the navigation path followed so forth, then a button is also generated
for selecting the related instance.

Enumerated
type Group of radio buttons for selecting one option.

Class invariant Validation rule that is called when creating or updating instances of the
class.

User-defined
operation

Button and associated logic, within the form corresponding to the class
where the operation is defined. Forms are also generated for entering
the input parameters and displaying the result, in case they exist. The
operation pre-condition determines when the button is enabled.

Derived
attribute Output-only field (calculated field).

Default value Initial field value.

Derived entity
(view)

Form with an input/output field for each attribute of the target class, an
output-only field for each derived attribute, and buttons for the CRUD
logic (over the target class).

Operation-
Action Trigger

Logic that is executed before, after or instead of the CRUD operation
that it refers to.

Condition-
Action Trigger

Logic that is executed every time the condition holds, after creating or
updating an instance of the class where the trigger is defined.

Table 1. EDM to UIM/UIP transformation rules.

In this example (see Fig. 4), to navigate to the Book window, the user has to select the Book
Collection option in the System (root) window, and then press the Add Book button (to create a
new instance), or select a Book instance and then press the Edit Book button (to view, update or
delete an existing instance). In the first case, the user will have to fill in the appropriate fields,
press the Create/Update button and then close the window or continue editing. In the second
case, the user can update the relevant fields and press the Create/Update button to submit the
changes, or press the Delete button to delete the instance and then close the window.
When a new or updated instance is submitted, it is checked that the values entered in the
fields obey their declared data types, the identifying attributes (marked with the «ident»
stereotype) are filled in, and the invariant constraints are satisfied.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

45

«ident» +Name : string
«ident» +Login : string
+Password : string

LibraryUser

+Salary : int
Librarian Borrower

+returnBook()

+dueDate
+effectiveReturnDate

Loan

1

0..*

1

0..*

«ident» +ISBN : string
«ident» +Title : string
«ident» +Author : string
+Edition : int
+Year : int

Book
1

0..*

+CopyCode : string
+/ BookTitle = bookData.Title

BookCopy

-loan

*

-b
oo

kC
op

y 1

-bookCopies *

-bookData 1

System

1

0..*

1

0..*

+In the shelf
+Borrowed
+For reading in the Library

«enumeration»
BookCopyStatus

* -status 1-/bookCopy.bookData.Title
-/bookCopy.bookData.Author
-/Code = bookCopy.CopyCode
-/CopyStatus = bookCopy.status
-/DueDate = dueDate
-/LoanStatus = status

/ ActiveLoan

1

0..*

1

-«target» 1

+Active
+Inactive

«enumeration»
LoanStatus

* -status 1

+date
+value

Fine

-fine0..1

1

1

-fines*

{status = LoanStatus.Active}

Context Loan trigger after update:
if (self.effectiveReturnDate >
self.dueDate)
fine = new Fine();
fine.date =self.effectiveReturnDate;
fine.value = 1.5;
fine.persist();

Fig. 3. Extended domain model (EDM) for a Library Management System (LibrarySystem),
with an example trigger.
Transforming inheritance hierarchies
In our approach, only single inheritance is currently supported, and forms are generated
only for the leaf classes of the inheritance hierarchy. Each leaf class inherits all the attributes
and constraints from its ancestor classes, and then has the same treatment as single classes.
Transforming associations, aggregations and compositions
For each relationship between two classes, information about related objects and/or links to
related objects are generated in each of the corresponding windows. The elements generated
depend on the kind of relationship (composition is treated slightly differently from
aggregation or association), its multiplicity (to-one and to-many are treated differently), and
the navigation path followed. The information that is shown about related objects is the
value of the identifying attributes (marked with the «ident» stereotype). If no attribute is
marked with the «ident» stereotyped, all the attributes are considered identifying attributes.
Role names are used to group the identifying attributes in the form generated. If a role name
is not provided, it is used the class name.
In Fig. 4 the UI elements generated from the EDM’s classes Book and BookCopy, and from the
composition relationship between them, can be seen. The Book window presents a list of
related BookCopy instances, and a set of buttons for editing (viewing or updating) or
removing a previously selected instance, or adding a new instance. The BookCopy is accessed
from the Book window (to edit or create a BookCopy instance), and presents the related
BookData identified by ISBN, Title and Author, which are external identifiers («ident») in

 User Interfaces

46

Fig. 4. Excerpt of the application prototype generated from the EDM in Fig. 3.
class Book. The BookCopy form also has a non-editable output field, BookTitle, generated
from its derived attribute with the same name.
In the case of an aggregation or association relationship (instead of a composition
relationship), as is the case of the one-to-many association between BookCopy and Loan, the
list of related instances is only shown when requested by the user by pressing an
expand/collapse button (see BookCopy‘s form in Fig. 4).
When one is editing an object that has a related to-one object that is not in the navigation
path followed so forth, the user can change the related instance through a Select button. This
button gives access to a pop-up window with a list of instances (identified by their «ident»
attributes), from which one can be selected. For example, the class Loan is the “many” side of
two one-to-many relations. One can navigate to Loan from BookCopy or Borrower or one can
navigate directly to Loan from the System root class (recall Figs. 3 and 4). Fig. 5 (a) shows the
window that appears to the user when navigating to Loan directly from the System class. In
this case, both the borrower that makes the loan and the lent book copy are selectable from
the Loan window. Fig. 5 (b) shows the window that appears when navigating from

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

47

(a) (b)

Fig. 5. (a) Window Loan that is shown when navigating directly to an instance of class Loan.
(b) Window Loan, which is shown when navigating from a BookCopy instance to an instance
of class Loan.
BookCopy to Loan. In this case, a given BookCopy instance has been previously selected, and
thus the “Select BookCopy” button doesn’t appear in the Loan window, and the field that
identifies a book copy shows the referenced book copy. Similarly, when navigating from a
borrower instance, the “Select Borrower” button wouldn’t appear and the fields that identify
a borrower would display the associated borrower.
Handling enumerated types
Enumerated types are defined in the model as classes with an «enumeration» stereotype. In
Fig. 3, the UI elements that have origin in a class relation to an «enumeration» class can be
seen in the BookCopy’s form window. The relation between class BookCopy and the
enumerated type BookCopyStatus generated a list of radio buttons with the enumeration
fields, in the BookCopy form. The role’s name is used as an attribute, and each of the
enumerated fields may be selected through a radio button.
Handling constraints
We can identify two kinds of business or domain constraints that may be specified in the
domain model: - structural constraints; and, - non-structural constraints. Examples of the
former are the multiplicity of the attributes or the uniqueness of classes’ keys, and of the
latter, are OCL constraints. Each kind of constraints may be further sub-divided into intra-
object constraints, applied to attributes within the same object, and inter-object constraints,
which may apply to attributes of different objects and/or classes.
The model transformer handles intra- and inter-object constraints, by generating data entry
validation functions that are called every time a “Create/Update” button is pressed in the
appropriate form.

 User Interfaces

46

Fig. 4. Excerpt of the application prototype generated from the EDM in Fig. 3.
class Book. The BookCopy form also has a non-editable output field, BookTitle, generated
from its derived attribute with the same name.
In the case of an aggregation or association relationship (instead of a composition
relationship), as is the case of the one-to-many association between BookCopy and Loan, the
list of related instances is only shown when requested by the user by pressing an
expand/collapse button (see BookCopy‘s form in Fig. 4).
When one is editing an object that has a related to-one object that is not in the navigation
path followed so forth, the user can change the related instance through a Select button. This
button gives access to a pop-up window with a list of instances (identified by their «ident»
attributes), from which one can be selected. For example, the class Loan is the “many” side of
two one-to-many relations. One can navigate to Loan from BookCopy or Borrower or one can
navigate directly to Loan from the System root class (recall Figs. 3 and 4). Fig. 5 (a) shows the
window that appears to the user when navigating to Loan directly from the System class. In
this case, both the borrower that makes the loan and the lent book copy are selectable from
the Loan window. Fig. 5 (b) shows the window that appears when navigating from

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

47

(a) (b)

Fig. 5. (a) Window Loan that is shown when navigating directly to an instance of class Loan.
(b) Window Loan, which is shown when navigating from a BookCopy instance to an instance
of class Loan.
BookCopy to Loan. In this case, a given BookCopy instance has been previously selected, and
thus the “Select BookCopy” button doesn’t appear in the Loan window, and the field that
identifies a book copy shows the referenced book copy. Similarly, when navigating from a
borrower instance, the “Select Borrower” button wouldn’t appear and the fields that identify
a borrower would display the associated borrower.
Handling enumerated types
Enumerated types are defined in the model as classes with an «enumeration» stereotype. In
Fig. 3, the UI elements that have origin in a class relation to an «enumeration» class can be
seen in the BookCopy’s form window. The relation between class BookCopy and the
enumerated type BookCopyStatus generated a list of radio buttons with the enumeration
fields, in the BookCopy form. The role’s name is used as an attribute, and each of the
enumerated fields may be selected through a radio button.
Handling constraints
We can identify two kinds of business or domain constraints that may be specified in the
domain model: - structural constraints; and, - non-structural constraints. Examples of the
former are the multiplicity of the attributes or the uniqueness of classes’ keys, and of the
latter, are OCL constraints. Each kind of constraints may be further sub-divided into intra-
object constraints, applied to attributes within the same object, and inter-object constraints,
which may apply to attributes of different objects and/or classes.
The model transformer handles intra- and inter-object constraints, by generating data entry
validation functions that are called every time a “Create/Update” button is pressed in the
appropriate form.

 User Interfaces

48

Constraints may be specified, in the extended domain model, by using an OCL-like abstract
language. Constraint expressions may have relational and logical operators, attribute
references, constants, etc.

5. Automatic generation of a user interface model from extended domain and
use case models
5.1 Use case model and transformation rules
To better allow the configuration of system functionality and enable its differentiation by
actor, our approach allows the definition of a use case model (UCM) in close connection
with the extended domain model (Cruz & Faria, 2009). This allows the modeller to define
and organize the CRUD, user-defined or navigational operations over base or derived
domain entities that are available for each actor (user role). The data manipulated in each
use case is determined by the domain entity and/or operation associated with it. Several
constraints are posed on the types of use cases and use case relationships that can be
handled automatically.
Two categories of use cases are distinguished:
• Independent use cases: use cases that can be initiated directly, and so can be linked

directly to actors (that initiate them) and appear as application entry points;
• Dependent use cases: use cases that can only be initiated from within other use cases,

called source use cases, because they depend on the context set by the source use cases;
the dependent use cases extend or are included by the source ones, according to their
nature (optional or mandatory, respectively).

The types of independent use cases that can be defined in connection with the EDM are:
• List Entity: view the list of instances of an entity (usually only some attributes, marked

as identifying attributes, are shown);
• Create Entity: create a new instance of an entity;
• Call StaticOperation: invoke a static user-defined operation defined in some entity; this

includes entering the input parameters and viewing the results, when they exist.
The types of dependent use cases that can be defined in connection with the EDM are:
• Retrieve, Update and/or Delete Entity: view (retrieve) or edit (update or delete) an

instance of the entity previously selected (in the source use case);
• Call InstanceOperation: invoke a user-defined operation over an instance of an entity

previously selected (in the source use case); this includes entering the input parameters
and viewing the results, when they exist;

• List Related Entity: view the list of (0 or more) instances of the target entity that are linked
to a previously selected source object (in the source use case); in case of ambiguity, in this
and in the next use case types, the link type (association) must also be specified;

• Create Related Entity: create a new instance of the target entity type and link it to a
source object previously selected (in the direct or indirect source use case);

• Retrieve, Update and/or Delete Related Entity: view (retrieve) or edit (update or delete
and unlink) the instance of the target entity type that is linked with a source object
previously selected (in the direct or indirect source use case);

• Select Related Entity: select (and return to the source use case) an instance of the target
entity that can be linked to a source object previously selected (in the source use case);

• Select and Link Related Entity: select an instance of the target entity and link it to the
source object previously selected (in the source use case);

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

49

• Unlink Related Entity: unlink the currently selected instance of the target entity (in the
source use case) from the currently selected source object (in the source use case).

The entity, operation(s), and link type (when needed) associated to each use case are
specified with tagged-values.
The types of relationships that can be defined among use cases are illustrated in Fig. 6.

Fig. 6. Possible types of relationships among use cases for different domain model fragments
(note: aggregations and compositions are treated similarly to associations).

E1 List E1

Create E1

«extend»

«extend»a) Entity

d) Dependent collection

E1 E2 1 * CRUD
E1

Create
Related E2

«extend»

«extend»

List
Related E2 Retrieve, Update

and/or Delete
Related E2

«extend»

«include»

or

e) Independent collection

E1 E2 * *
CRUD

E1

«extend»

«extend»

List
Related

Select and
Link Related

E2

«extend»

«include»

or

Retrieve
Related E2

Unlink
Related E2

«extend»

Retrieve, Update
and/or Delete E1

b) Dependent instance

E1 E2 1
or 1 CRUD

E1
«extend»

«extend»

Retrieve, Update
and/or Delete
Related E2

c) Independent instance

E1 E2 * 0..
1

CRUD
E1

«extend»
Select

Related E2

Retrieve
Related E2

Unlink
Related E2

0..1

or 1

«extend»

«extend»

«include»
or

«include»
or

Create
Related E2

 User Interfaces

48

Constraints may be specified, in the extended domain model, by using an OCL-like abstract
language. Constraint expressions may have relational and logical operators, attribute
references, constants, etc.

5. Automatic generation of a user interface model from extended domain and
use case models
5.1 Use case model and transformation rules
To better allow the configuration of system functionality and enable its differentiation by
actor, our approach allows the definition of a use case model (UCM) in close connection
with the extended domain model (Cruz & Faria, 2009). This allows the modeller to define
and organize the CRUD, user-defined or navigational operations over base or derived
domain entities that are available for each actor (user role). The data manipulated in each
use case is determined by the domain entity and/or operation associated with it. Several
constraints are posed on the types of use cases and use case relationships that can be
handled automatically.
Two categories of use cases are distinguished:
• Independent use cases: use cases that can be initiated directly, and so can be linked

directly to actors (that initiate them) and appear as application entry points;
• Dependent use cases: use cases that can only be initiated from within other use cases,

called source use cases, because they depend on the context set by the source use cases;
the dependent use cases extend or are included by the source ones, according to their
nature (optional or mandatory, respectively).

The types of independent use cases that can be defined in connection with the EDM are:
• List Entity: view the list of instances of an entity (usually only some attributes, marked

as identifying attributes, are shown);
• Create Entity: create a new instance of an entity;
• Call StaticOperation: invoke a static user-defined operation defined in some entity; this

includes entering the input parameters and viewing the results, when they exist.
The types of dependent use cases that can be defined in connection with the EDM are:
• Retrieve, Update and/or Delete Entity: view (retrieve) or edit (update or delete) an

instance of the entity previously selected (in the source use case);
• Call InstanceOperation: invoke a user-defined operation over an instance of an entity

previously selected (in the source use case); this includes entering the input parameters
and viewing the results, when they exist;

• List Related Entity: view the list of (0 or more) instances of the target entity that are linked
to a previously selected source object (in the source use case); in case of ambiguity, in this
and in the next use case types, the link type (association) must also be specified;

• Create Related Entity: create a new instance of the target entity type and link it to a
source object previously selected (in the direct or indirect source use case);

• Retrieve, Update and/or Delete Related Entity: view (retrieve) or edit (update or delete
and unlink) the instance of the target entity type that is linked with a source object
previously selected (in the direct or indirect source use case);

• Select Related Entity: select (and return to the source use case) an instance of the target
entity that can be linked to a source object previously selected (in the source use case);

• Select and Link Related Entity: select an instance of the target entity and link it to the
source object previously selected (in the source use case);

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

49

• Unlink Related Entity: unlink the currently selected instance of the target entity (in the
source use case) from the currently selected source object (in the source use case).

The entity, operation(s), and link type (when needed) associated to each use case are
specified with tagged-values.
The types of relationships that can be defined among use cases are illustrated in Fig. 6.

Fig. 6. Possible types of relationships among use cases for different domain model fragments
(note: aggregations and compositions are treated similarly to associations).

E1 List E1

Create E1

«extend»

«extend»a) Entity

d) Dependent collection

E1 E2 1 * CRUD
E1

Create
Related E2

«extend»

«extend»

List
Related E2 Retrieve, Update

and/or Delete
Related E2

«extend»

«include»

or

e) Independent collection

E1 E2 * *
CRUD

E1

«extend»

«extend»

List
Related

Select and
Link Related

E2

«extend»

«include»

or

Retrieve
Related E2

Unlink
Related E2

«extend»

Retrieve, Update
and/or Delete E1

b) Dependent instance

E1 E2 1
or 1 CRUD

E1
«extend»

«extend»

Retrieve, Update
and/or Delete
Related E2

c) Independent instance

E1 E2 * 0..
1

CRUD
E1

«extend»
Select

Related E2

Retrieve
Related E2

Unlink
Related E2

0..1

or 1

«extend»

«extend»

«include»
or

«include»
or

Create
Related E2

 User Interfaces

50

Table 2 summarizes the rules for generating UI elements from the UCM. Their application is
illustrated in the next section.

UCM feature Generated UI feature (UIM/UIP)

Actor

Button in the application start window, linking to the
actor’s main window.

Use Case Package

Menu in the actor's main window, with a menu item
for each use case that belongs to the package and is
directly linked to the actor.

Use Case of type List Entity
or List Related Entity

Form that displays the full list of instances or the list
of related instances of the target entity, with buttons
for the allowed operations (according to the
dependent use cases). Only the identifying attributes
are shown.

Use Case of type Select Related
Entity or Select and Link
Related Entity

Form that displays the list of candidate instances and
allows selecting one instance. Only the identifying
attributes are shown.

Use Case of type CRUD
Entity or CRUD Related Entity

Form that displays the object attribute values, with
buttons and functionality corresponding to the CRUD
operations allowed. In the case of a related instance,
the identifying attributes of the source object are
shown but cannot be edited.

Use Case of type Call User-
Defined Operation

Forms for entering and submitting input parameters
and presenting output parameters, when they exist.

Extend relationship Button in the form corresponding to the base use case
that gives access to the extension.

Include relationship
If the included use case is of type "List...", it is
generated a sub-window. Otherwise, it is generated a
button in the source use case.

Table 2. UCM to UIM transformation rules.

5.2 Illustrative example
This subsection presents a refinement of the Library System example to illustrate the
transformation rules from an extended domain model (EDM) and a use case model (UCM)
to a user interface model/prototype (UIM/UIP) (Cruz & Faria, 2009). The constructed EDM
is the same presented in section 4 (refer to Fig. 3). Such model has been developed in several
iterations; an executable prototype has been automatically generated and tested at the end
of each iteration.
After having a partial or complete EDM, the modeller may also develop a UCM. Fig. 7
illustrates an extract of a UCM that was developed for this system. Table 3 shows the entity
types and operations associated (via tagged values) with some of the use cases. By applying
the mapping rules described previously, the EDM+UCM2UIM process generates a UI model
and then an executable prototype, part of which is shown in Fig. 8.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

51

Librarian

List Books

Manage Books

Edit Book

«extends»

List Loans

Manage Loans

Add Loan
«extends»

Borrower List Books

View Books

View Details

«extends»

Add a new Book
«extends»

Edit Loan

«extends»

List BookCopies

«extends»

«includes»

«includes»

Select BookCopy

Select Borrower

«includes»

«includes»

«includes»

«includes»

Add BookCopy

«extends»

Edit BookCopy

«extends»

Fig. 7. Partial use case model (UCM) for the Library Management System.

Use case Entity Operation(s)
List Books Book List
Add a new Book Book Create
Edit Book Book Update
List BookCopies BookCopy List Related
Add BookCopy BookCopy Create Related
Edit BookCopy BookCopy Update, Delete
List Loans Loan List
Add Loan Loan Create
Edit Loan Loan Update
Select Borrower Borrower Select Related
Select BookCopy BookCopy Select Related
View Details Book Retrieve

Table 3. Entities and operations associated (via tagged values) with some of the use cases in
Fig. 7.
Transforming actors, use case packages, and directly accessible use cases
Each actor originates a button in the application start window, and an actor’s main window,
which is accessed through the actor’s selection button in the start window. In our example,
the application start window is generated with two buttons for actor selection, “Librarian”
and “Borrower”. For each use case package where an actor has directly accessible use cases,
a menu is generated in that actor’s main window, having a menu item available for each

 User Interfaces

50

Table 2 summarizes the rules for generating UI elements from the UCM. Their application is
illustrated in the next section.

UCM feature Generated UI feature (UIM/UIP)

Actor

Button in the application start window, linking to the
actor’s main window.

Use Case Package

Menu in the actor's main window, with a menu item
for each use case that belongs to the package and is
directly linked to the actor.

Use Case of type List Entity
or List Related Entity

Form that displays the full list of instances or the list
of related instances of the target entity, with buttons
for the allowed operations (according to the
dependent use cases). Only the identifying attributes
are shown.

Use Case of type Select Related
Entity or Select and Link
Related Entity

Form that displays the list of candidate instances and
allows selecting one instance. Only the identifying
attributes are shown.

Use Case of type CRUD
Entity or CRUD Related Entity

Form that displays the object attribute values, with
buttons and functionality corresponding to the CRUD
operations allowed. In the case of a related instance,
the identifying attributes of the source object are
shown but cannot be edited.

Use Case of type Call User-
Defined Operation

Forms for entering and submitting input parameters
and presenting output parameters, when they exist.

Extend relationship Button in the form corresponding to the base use case
that gives access to the extension.

Include relationship
If the included use case is of type "List...", it is
generated a sub-window. Otherwise, it is generated a
button in the source use case.

Table 2. UCM to UIM transformation rules.

5.2 Illustrative example
This subsection presents a refinement of the Library System example to illustrate the
transformation rules from an extended domain model (EDM) and a use case model (UCM)
to a user interface model/prototype (UIM/UIP) (Cruz & Faria, 2009). The constructed EDM
is the same presented in section 4 (refer to Fig. 3). Such model has been developed in several
iterations; an executable prototype has been automatically generated and tested at the end
of each iteration.
After having a partial or complete EDM, the modeller may also develop a UCM. Fig. 7
illustrates an extract of a UCM that was developed for this system. Table 3 shows the entity
types and operations associated (via tagged values) with some of the use cases. By applying
the mapping rules described previously, the EDM+UCM2UIM process generates a UI model
and then an executable prototype, part of which is shown in Fig. 8.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

51

Librarian

List Books

Manage Books

Edit Book

«extends»

List Loans

Manage Loans

Add Loan
«extends»

Borrower List Books

View Books

View Details

«extends»

Add a new Book
«extends»

Edit Loan

«extends»

List BookCopies

«extends»

«includes»

«includes»

Select BookCopy

Select Borrower

«includes»

«includes»

«includes»

«includes»

Add BookCopy

«extends»

Edit BookCopy

«extends»

Fig. 7. Partial use case model (UCM) for the Library Management System.

Use case Entity Operation(s)
List Books Book List
Add a new Book Book Create
Edit Book Book Update
List BookCopies BookCopy List Related
Add BookCopy BookCopy Create Related
Edit BookCopy BookCopy Update, Delete
List Loans Loan List
Add Loan Loan Create
Edit Loan Loan Update
Select Borrower Borrower Select Related
Select BookCopy BookCopy Select Related
View Details Book Retrieve

Table 3. Entities and operations associated (via tagged values) with some of the use cases in
Fig. 7.
Transforming actors, use case packages, and directly accessible use cases
Each actor originates a button in the application start window, and an actor’s main window,
which is accessed through the actor’s selection button in the start window. In our example,
the application start window is generated with two buttons for actor selection, “Librarian”
and “Borrower”. For each use case package where an actor has directly accessible use cases,
a menu is generated in that actor’s main window, having a menu item available for each

 User Interfaces

52

directly accessible use case. For example, the menu generated from the package “Manage
Books” (see Fig. 8), has menu item “List Books” generated from the directly accessible use
case with the same name.
Transforming use cases of type “List Entity” or “List Related Entity”
Every use case of type “List Entity” or “List Related Entity” is related to a base or derived
entity in the extended domain model, and for each of these use cases the model transformer
generates a form displaying a full list of instances or the list of related instances of the target
domain model’s entity. If there are dependent use cases, a button for each one of them is
also generated, giving access to the allowed operations from the listing. In our example,
“List Books” is a List Entity use case from which the “BookCollection” form has been
generated (see Fig. 8). The “BookCollection” form also has buttons “Edit Book” and “Add a
New Book” that were generated from the use cases with the same name included in the
“List Books” use case.
An example of a List Related Entity is use case “List BookCopies”, included in the “Edit
Book” and in the “Add a New Book” use cases. In these use cases a Book is previously
chosen or is created, setting the context for the next list related use case, that is use case “List
BookCopies”.

Fig. 8. Excerpt of the application prototype generated for a Librarian executing use cases List
Books Edit Book (that includes List BookCopies).
Transforming use cases of type “CRUD Entity” or “CRUD Related Entity”
Each use case of type “CRUD entity” or “CRUD related entity”, that is, use cases that target
an entity and a CRUD operation on that entity, generates a form displaying the attributes’
values, with buttons and functionality for the CRUD operations allowed. In our example, a

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

53

CRUD entity use case is, for instance, use case “Edit Book”, which has associated tagged
values Entity = “Book” and Operations = “Update” (see Table 3). An example of a CRUD
related entity use case is “Edit BookCopy”.
Transforming use cases of type “Select Related Entity” or “Select and Link Related Entity”
In the LibrarySystem example “Select BookCopy” and “Select Borrower” are use cases of
type “Select and Link Related Entity”, where an independent instance of BookCopy or
Borrower, respectively, must be associated to an instance of Loan (refer to Fig. 5).
With the use case model, the modeller may choose not to give an actor the possibility to
select a different borrower or book copy to loans.

EDM feature Generated UCM feature

List E1
Edit E1

«extend»

«extend»
1) Aggregations from System class to
Entities

CRUD
E2 «include»

4) n-to-n relations

Add E1

2) 1-to-n relations between Entities
(side 1)

Add or
Edit E1

List Related E2 (in
case of composition)

«include»

actor

Select and
Link Related

E1

System
-...

E1

1 *

CRUD
E1

«include»
Select and Link
multiple related

E2

List
Related E2

«extend»

3) n-to-1 or 0..1-to-1 relations between
Entities (side n or 0..1)

-...
E2

-...
E1

* *

List Related E2 (in
other cases) «extend»

-...
E1

-...
E2

1 *
1 *

1 *

1 *

or1 *
1 *or

-...
E1

-...
E2

0..1 1

0..* 1
or

1

10..*

0..1
or

Fig. 9. Use case model fragments automatically derived from EDM’s patterns.
Transforming use cases of type “Call User Defined Operation”
A “Call User Defined Operation” use case generates a button in the form window
corresponding to the entity where the operation is defined, and a form for entering
parameters and another form for showing the operation’s result, if they exist. In our
example, this situation appears in Loan. Class Loan defines operation returnBook, that is
transformed to a button in the Loan form window, and a form for entering the operation’s

 User Interfaces

52

directly accessible use case. For example, the menu generated from the package “Manage
Books” (see Fig. 8), has menu item “List Books” generated from the directly accessible use
case with the same name.
Transforming use cases of type “List Entity” or “List Related Entity”
Every use case of type “List Entity” or “List Related Entity” is related to a base or derived
entity in the extended domain model, and for each of these use cases the model transformer
generates a form displaying a full list of instances or the list of related instances of the target
domain model’s entity. If there are dependent use cases, a button for each one of them is
also generated, giving access to the allowed operations from the listing. In our example,
“List Books” is a List Entity use case from which the “BookCollection” form has been
generated (see Fig. 8). The “BookCollection” form also has buttons “Edit Book” and “Add a
New Book” that were generated from the use cases with the same name included in the
“List Books” use case.
An example of a List Related Entity is use case “List BookCopies”, included in the “Edit
Book” and in the “Add a New Book” use cases. In these use cases a Book is previously
chosen or is created, setting the context for the next list related use case, that is use case “List
BookCopies”.

Fig. 8. Excerpt of the application prototype generated for a Librarian executing use cases List
Books Edit Book (that includes List BookCopies).
Transforming use cases of type “CRUD Entity” or “CRUD Related Entity”
Each use case of type “CRUD entity” or “CRUD related entity”, that is, use cases that target
an entity and a CRUD operation on that entity, generates a form displaying the attributes’
values, with buttons and functionality for the CRUD operations allowed. In our example, a

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

53

CRUD entity use case is, for instance, use case “Edit Book”, which has associated tagged
values Entity = “Book” and Operations = “Update” (see Table 3). An example of a CRUD
related entity use case is “Edit BookCopy”.
Transforming use cases of type “Select Related Entity” or “Select and Link Related Entity”
In the LibrarySystem example “Select BookCopy” and “Select Borrower” are use cases of
type “Select and Link Related Entity”, where an independent instance of BookCopy or
Borrower, respectively, must be associated to an instance of Loan (refer to Fig. 5).
With the use case model, the modeller may choose not to give an actor the possibility to
select a different borrower or book copy to loans.

EDM feature Generated UCM feature

List E1
Edit E1

«extend»

«extend»
1) Aggregations from System class to
Entities

CRUD
E2 «include»

4) n-to-n relations

Add E1

2) 1-to-n relations between Entities
(side 1)

Add or
Edit E1

List Related E2 (in
case of composition)

«include»

actor

Select and
Link Related

E1

System
-...

E1

1 *

CRUD
E1

«include»
Select and Link
multiple related

E2

List
Related E2

«extend»

3) n-to-1 or 0..1-to-1 relations between
Entities (side n or 0..1)

-...
E2

-...
E1

* *

List Related E2 (in
other cases) «extend»

-...
E1

-...
E2

1 *
1 *

1 *

1 *

or1 *
1 *or

-...
E1

-...
E2

0..1 1

0..* 1
or

1

10..*

0..1
or

Fig. 9. Use case model fragments automatically derived from EDM’s patterns.
Transforming use cases of type “Call User Defined Operation”
A “Call User Defined Operation” use case generates a button in the form window
corresponding to the entity where the operation is defined, and a form for entering
parameters and another form for showing the operation’s result, if they exist. In our
example, this situation appears in Loan. Class Loan defines operation returnBook, that is
transformed to a button in the Loan form window, and a form for entering the operation’s

 User Interfaces

54

parameters. Since this operation, defined using an Action Semantics-like abstract language,
returns no result, an output form is not generated.
When the operation returns, the entity form is refreshed to be able to show data modified by
the operation in the instance’s state.

6. Default use case model generation from extended domain model
As stated before, and according to the proposed approach (refer to section 3) a default UCM
may be derived from the EDM facilitating the initial construction of the UCM. The default
use case model has only one actor that has access to all the system functionality, and may
serve as the basis for producing the intended use case model by creating new actors and
eliminating or redistributing functions among actors.

Actor

List Books

System

Edit Book

«extends»

List Loans Add Loan

«extends»

List Borrowers

Add Book
«extends»

Edit Loan

«extends»

List Related
BookCopies

«includes»

«includes»
Add BookCopy

«extends»

Edit BookCopy
«extends»

Select BookCopy

Select Borrower

«includes»

«includes»

«includes»

«includes»

List Librarians

List ActiveLoans

Add Borrower

Edit Borrower

«extends»

«extends»

Add Loan

«extends»

Edit Loan

«extends»

Select Borrower

«includes»
«includes»

«extends»

«extends»

...

...

List Related Loans

«extends»

«extends»

List Related Loans

Edit Loan

«extends»

Add Loan

«extends» Select BookCopy
«extends»

«extends»

List Related Fines

«includes»
Add Fine

«extends»

Edit Fine

«extends»
Select Borrower

«includes»

«includes»

List Related Fines

«includes»

«includes»

«includes»

«includes»«includes»

Add Fine

«extends»

Edit Fine

«extends»

Select Loan

«includes»

«includes»

Fig. 10. Partial default use case model generated from the EDM in Fig. 3.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

55

Starting from the “System” entity an actor is created, linking to List Entity use cases, one for
each aggregation from “system” to another base or derived entity. Fig. 10 partially shows
the use case model that is generated by the EDM2UCM model-to-model transformation
process.
Each List Entity use case shall have extensions for CRUD use cases (Add and Edit). A CRUD
use case shall include use cases that list related entity instances. In Fig. 10, see, for example,
use case “List Books” that links to the only actor and is extended by “Add Book” and “Edit
Book”. These last two use cases, that allow CRUD operations over Book, include use case
“List Related BookCopies”, which in turn is extended by use cases for adding and editing a
book copy.

 XIS OO-
Method ZOOM

Elkoutbi
et al./

Martinez
et al.

Forbrig
et al.

Our
approach

Is able to generate a fully
functional interactive
prototype

 --- ---

Requires/generates a UIM
as a step for obtaining a
concrete UI

Requires/
generates

Requires

Requires

Generate
only UI

state
model

Requires

Generate
s /

allows
configura

-tion

Is able to generate a
UIM/UIP from non-UI
system models

(in smart

approach)

(only
from

domain
model)

(non

functiona
l UIP)

Is able to generate a
UIM/UIP from domain
model alone

--- --- --- ---

Is able to generate a
UIM/UIP from domain
model + use case model

(in smart

approach)
--- --- --- ---

Allows the definition of
triggers ---

(partial) --- --- ---

Assumes CRUD operations --- --- ---
Generates code for user
defined operations --- --- ---

Takes advantage of formal
constraints to generate
features in the UI

(partial) --- --- ---

Table 4. Feature comparison between the current approaches and the proposed approach.

 User Interfaces

54

parameters. Since this operation, defined using an Action Semantics-like abstract language,
returns no result, an output form is not generated.
When the operation returns, the entity form is refreshed to be able to show data modified by
the operation in the instance’s state.

6. Default use case model generation from extended domain model
As stated before, and according to the proposed approach (refer to section 3) a default UCM
may be derived from the EDM facilitating the initial construction of the UCM. The default
use case model has only one actor that has access to all the system functionality, and may
serve as the basis for producing the intended use case model by creating new actors and
eliminating or redistributing functions among actors.

Actor

List Books

System

Edit Book

«extends»

List Loans Add Loan

«extends»

List Borrowers

Add Book
«extends»

Edit Loan

«extends»

List Related
BookCopies

«includes»

«includes»
Add BookCopy

«extends»

Edit BookCopy
«extends»

Select BookCopy

Select Borrower

«includes»

«includes»

«includes»

«includes»

List Librarians

List ActiveLoans

Add Borrower

Edit Borrower

«extends»

«extends»

Add Loan

«extends»

Edit Loan

«extends»

Select Borrower

«includes»
«includes»

«extends»

«extends»

...

...

List Related Loans

«extends»

«extends»

List Related Loans

Edit Loan

«extends»

Add Loan

«extends» Select BookCopy
«extends»

«extends»

List Related Fines

«includes»
Add Fine

«extends»

Edit Fine

«extends»
Select Borrower

«includes»

«includes»

List Related Fines

«includes»

«includes»

«includes»

«includes»«includes»

Add Fine

«extends»

Edit Fine

«extends»

Select Loan

«includes»

«includes»

Fig. 10. Partial default use case model generated from the EDM in Fig. 3.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

55

Starting from the “System” entity an actor is created, linking to List Entity use cases, one for
each aggregation from “system” to another base or derived entity. Fig. 10 partially shows
the use case model that is generated by the EDM2UCM model-to-model transformation
process.
Each List Entity use case shall have extensions for CRUD use cases (Add and Edit). A CRUD
use case shall include use cases that list related entity instances. In Fig. 10, see, for example,
use case “List Books” that links to the only actor and is extended by “Add Book” and “Edit
Book”. These last two use cases, that allow CRUD operations over Book, include use case
“List Related BookCopies”, which in turn is extended by use cases for adding and editing a
book copy.

 XIS OO-
Method ZOOM

Elkoutbi
et al./

Martinez
et al.

Forbrig
et al.

Our
approach

Is able to generate a fully
functional interactive
prototype

 --- ---

Requires/generates a UIM
as a step for obtaining a
concrete UI

Requires/
generates

Requires

Requires

Generate
only UI

state
model

Requires

Generate
s /

allows
configura

-tion

Is able to generate a
UIM/UIP from non-UI
system models

(in smart

approach)

(only
from

domain
model)

(non

functiona
l UIP)

Is able to generate a
UIM/UIP from domain
model alone

--- --- --- ---

Is able to generate a
UIM/UIP from domain
model + use case model

(in smart

approach)
--- --- --- ---

Allows the definition of
triggers ---

(partial) --- --- ---

Assumes CRUD operations --- --- ---
Generates code for user
defined operations --- --- ---

Takes advantage of formal
constraints to generate
features in the UI

(partial) --- --- ---

Table 4. Feature comparison between the current approaches and the proposed approach.

 User Interfaces

56

7. Results and contributions to the state of art
This section compares the presented approach to the ones surveyed in section 2, and
discusses its similarities and distinguishing features. In table 4 a feature comparison
between the current approaches, presented in section 2, and the approach proposed in this
document is presented.
Unlike XIS, our approach doesn’t demand the stereotyping of every model element, as the
full model package is submitted to the transformation process.
XIS business entities are similar to our derived entities. Like in the XIS smart approach, the
modeller must attach to each use case an Entity (base or derived) from the EDM. The
difference is that, in our approach, relations between entities are inferred from the EDM,
thus not being needed a separate business entities model to provide higher level entities to
the UCM. The relation’s selection provided by the XIS business entities model can be done,
within our approach, in the UCM by modelling use cases for navigating only through the
admitted relations.
Similarly to XIS and the OO-Method, in our approach CRUD operations are predefined.
In our approach user defined operations may be specified using an UML Action Semantics-
based language.
Just like our approach, the OO-Method allows the definition of derived attributes, by
assigning a calculation formula to the attributes.
So, the main contributions of the proposed approach, to the state of art are:
• To make possible to generate an application prototype from an incomplete system

domain model or extended domain model;
• To make use of derived attributes and derived entities (views), in the EDM, to better

specify “boundary” entities;
• To take advantage of class invariants and operation pre-conditions to generate

validation routines in the generated application, enabling the enhancement of the
usability of the generated UI by helping the user in entering valid data into forms, and
by giving feedback identifying invalid data, or by disabling an operation’s start button
while its pre-condition doesn’t hold;

• To make use of an action language to specify the semantic of operations at class level,
and enable the definition of triggers activated either by the invocation of a CRUD
operation or by the holding of a given state condition;

• To allow the usage of a use case model to specify several actors, or user profiles,
enabling the hiding of possible functionality from some of the users;

• To derive a default use case model from an extended domain model, easing the process
of developing a use case model integrated with the system EDM.

8. Conclusions and future work
The presented approach enables a gradual approximation to system modelling towards
business forms-based applications, by being able to derive a default UI and an executable
prototype from a domain model alone, an extended domain model or from an extended
domain model and a use case model. It is also possible to have these initial models in different
levels of abstraction or rigour, and refine them in an incremental and iterative manner.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

57

As depicted in section 3, this approach is able to generate a UI model and prototype from
the system's non-UI submodels, helping the modeller in creating a system model and
facilitating the process of developing a UI for the final interactive system. The approach
derives a default UI and an executable prototype from the system model, which comprises a
domain model or extended domain model and, optionally, a use case model. This approach
turns possible to interactively evaluate the system model with the end users, and to
iteratively evaluate and refine the model. It also allows adding rigour and model elements
to the system model, generating more complete, richer and refined UIs and executable
prototypes that support an evolutionary model-driven development with the close
participation of the end users.
Several benefits can be drawn from using the presented approach, as discussed in the
previous section. Nevertheless, more results can be obtained with future work, namely in
what concerns the flexibility of the generated UI.
The next step will be to support use case relations that recall HCI’s task models, by properly
stereotyping use case relations with «enables», «deactivates» or «choice», which allow the
definition of use cases that are enabled by the execution of other use cases, use cases that are
disabled by the execution of other use cases, and alternative use cases, respectively.
Another future development is the support for use cases that are not associated to an EDM
class or class method, but may be associated to a given class attribute. This kind of use cases,
together with the properly stereotyped use case relations, allows the modeller to define wich
set of attributes must be set first, and which depend on other attributes, or are deactivated
by setting other attributes.
This evolution of the proposed approach enables a higher degree of refinement in the use
case model definition, allowing for greater flexibility in the generated UI model.
Other foreseen developments are the existence of use cases not directly associated to the
EDM. This are parameterized use cases that collect information for session variables, and
that must be aggregated, through «include» relations, in another use case that has access to
all subordinate session variables. The aggregator use case is, then associated to an EDM
operation binding session variables to the operation’s parameters. Without loosing the tigh
relation between use case model and extended domain model, this will enable the highest
degree of flexibility in the use case model definition in order to better define what one wants
to see generated in the UI model.

9. References
Cruz, A.M.R., Faria, J.P. (2007). Automatic generation of user interfaces from domain and

use case models. In Proceedings of the Sixth International Conference on the Quality of
Information and Communication Technology (QUATIC 2007), pp 208-212, Lisboa,
Portugal, September 2007, IEEE.

Cruz, A.M.R., Faria, J.P. (2008). Automatic generation of interactive prototypes for domain
model validation. In Proceedings of the 3rd International Conference on Software
Engineering and Data Technologies (ICSoft 2008), vol. SE/GSDCA/MUSE, pp 206-
213, Porto, Portugal, July 2008, INSTICC Press.

Cruz, A.M.R., Faria, J.P. (2009). Automatic generation of user interface models and
prototypes from domain and use case models. In Proceedings of the 4th International

 User Interfaces

56

7. Results and contributions to the state of art
This section compares the presented approach to the ones surveyed in section 2, and
discusses its similarities and distinguishing features. In table 4 a feature comparison
between the current approaches, presented in section 2, and the approach proposed in this
document is presented.
Unlike XIS, our approach doesn’t demand the stereotyping of every model element, as the
full model package is submitted to the transformation process.
XIS business entities are similar to our derived entities. Like in the XIS smart approach, the
modeller must attach to each use case an Entity (base or derived) from the EDM. The
difference is that, in our approach, relations between entities are inferred from the EDM,
thus not being needed a separate business entities model to provide higher level entities to
the UCM. The relation’s selection provided by the XIS business entities model can be done,
within our approach, in the UCM by modelling use cases for navigating only through the
admitted relations.
Similarly to XIS and the OO-Method, in our approach CRUD operations are predefined.
In our approach user defined operations may be specified using an UML Action Semantics-
based language.
Just like our approach, the OO-Method allows the definition of derived attributes, by
assigning a calculation formula to the attributes.
So, the main contributions of the proposed approach, to the state of art are:
• To make possible to generate an application prototype from an incomplete system

domain model or extended domain model;
• To make use of derived attributes and derived entities (views), in the EDM, to better

specify “boundary” entities;
• To take advantage of class invariants and operation pre-conditions to generate

validation routines in the generated application, enabling the enhancement of the
usability of the generated UI by helping the user in entering valid data into forms, and
by giving feedback identifying invalid data, or by disabling an operation’s start button
while its pre-condition doesn’t hold;

• To make use of an action language to specify the semantic of operations at class level,
and enable the definition of triggers activated either by the invocation of a CRUD
operation or by the holding of a given state condition;

• To allow the usage of a use case model to specify several actors, or user profiles,
enabling the hiding of possible functionality from some of the users;

• To derive a default use case model from an extended domain model, easing the process
of developing a use case model integrated with the system EDM.

8. Conclusions and future work
The presented approach enables a gradual approximation to system modelling towards
business forms-based applications, by being able to derive a default UI and an executable
prototype from a domain model alone, an extended domain model or from an extended
domain model and a use case model. It is also possible to have these initial models in different
levels of abstraction or rigour, and refine them in an incremental and iterative manner.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

57

As depicted in section 3, this approach is able to generate a UI model and prototype from
the system's non-UI submodels, helping the modeller in creating a system model and
facilitating the process of developing a UI for the final interactive system. The approach
derives a default UI and an executable prototype from the system model, which comprises a
domain model or extended domain model and, optionally, a use case model. This approach
turns possible to interactively evaluate the system model with the end users, and to
iteratively evaluate and refine the model. It also allows adding rigour and model elements
to the system model, generating more complete, richer and refined UIs and executable
prototypes that support an evolutionary model-driven development with the close
participation of the end users.
Several benefits can be drawn from using the presented approach, as discussed in the
previous section. Nevertheless, more results can be obtained with future work, namely in
what concerns the flexibility of the generated UI.
The next step will be to support use case relations that recall HCI’s task models, by properly
stereotyping use case relations with «enables», «deactivates» or «choice», which allow the
definition of use cases that are enabled by the execution of other use cases, use cases that are
disabled by the execution of other use cases, and alternative use cases, respectively.
Another future development is the support for use cases that are not associated to an EDM
class or class method, but may be associated to a given class attribute. This kind of use cases,
together with the properly stereotyped use case relations, allows the modeller to define wich
set of attributes must be set first, and which depend on other attributes, or are deactivated
by setting other attributes.
This evolution of the proposed approach enables a higher degree of refinement in the use
case model definition, allowing for greater flexibility in the generated UI model.
Other foreseen developments are the existence of use cases not directly associated to the
EDM. This are parameterized use cases that collect information for session variables, and
that must be aggregated, through «include» relations, in another use case that has access to
all subordinate session variables. The aggregator use case is, then associated to an EDM
operation binding session variables to the operation’s parameters. Without loosing the tigh
relation between use case model and extended domain model, this will enable the highest
degree of flexibility in the use case model definition in order to better define what one wants
to see generated in the UI model.

9. References
Cruz, A.M.R., Faria, J.P. (2007). Automatic generation of user interfaces from domain and

use case models. In Proceedings of the Sixth International Conference on the Quality of
Information and Communication Technology (QUATIC 2007), pp 208-212, Lisboa,
Portugal, September 2007, IEEE.

Cruz, A.M.R., Faria, J.P. (2008). Automatic generation of interactive prototypes for domain
model validation. In Proceedings of the 3rd International Conference on Software
Engineering and Data Technologies (ICSoft 2008), vol. SE/GSDCA/MUSE, pp 206-
213, Porto, Portugal, July 2008, INSTICC Press.

Cruz, A.M.R., Faria, J.P. (2009). Automatic generation of user interface models and
prototypes from domain and use case models. In Proceedings of the 4th International

 User Interfaces

58

Conference on Software Engineering and Data Technologies (ICSoft 2009) , vol. 1, pp
169-176, Sofia, Bulgaria, July 2009, INSTICC Press.

Dix, A., Finlay, J., Abowd, G., Beale, R. (1998). Human-Computer Interaction. Prentice Hall,
2nd edition.

Elkoutbi, M.; Khriss, I.; Keller, R.K. (2006). Automated prototyping of user interfaces
based on UML scenarios. Journal of Automated Software Engineering, 13(1):5-40,
January.

Forbrig, P., Dittmar, A., Reichart, D., Sinnig, D. (2004). From models to interactive systems
tool support and XIML. In Proceedings of the First International Workshop MBUI 2004,
vol. 103-CEUR Workshop Proceedings, Funchal, Portugal. Available at
http://ceur-ws.org.

Jacobson, I., Booch, G., Rumbaugh, J. (1999). The Unified Software Development Process.
Addison-Wesley.

Jia, X., Steele, A., Liu, H., Qin, L., Jones, C. (2005). Using ZOOM approach to support MDD.
In Proceedings of the 2005 International Conference on Software Engineering Research and
Practice (SERP'05), Las Vegas, USA.

Jia, X., Steele, A., Qin, L., Liu, H., Jones, C. (2007). Executable visual software modelling - the
ZOOM approach. Software Quality Control, 15(1):27-51.

Javahery, H., Sinnig, D., Seffah, A., Forbrig, P., Radhakrishnan, T. (2007). Task Models and
Diagrams for Users Interface Design, chapter Pattern-Based UI Design: Adding
Rigor with User and Context Variables, pages 97-108. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg.

Kelly, S., Tolvanen, Juha-Pekka (2008). Domain Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society Press.

Kleppe, A., Warmer, J., Bast, W. (2003). MDA Explained – The Model Driven Architecture:
Practice and Promise. Addison-Wesley Professional.

Martinez, A., Estrada, H., Sánchez, J., Pastor, O. (2002). From early requirements to user
interface prototyping: A methodological approach. In Proceedings of the 17th IEEE
International Conference on A.S.E., pp 257-260.

Molina, P., Pastor, O., Marti, S., Fons, J., Insfrán, E. (2001). Specifying conceptual interface
patterns in an object-oriented method with automatic code generation. In
Proceedings Second International Workshop on User Interfaces in Data Intensive Systems,
UIDIS 2001.

Molina, P.J., Hernández, J. (2003). Just-UI: Using patterns as concepts for IU specification
and code generation. In Perspectives on HCI Patterns: Concepts and Tools
(CHI'2003 Workshop).

Molina, P.J. (2004). User interface generation with Olivanova model execution system. In IUI
'04: Proceedings of the 9th International Conference on Intelligent User Interfaces,
pages 358-359, NY, USA. ACM.

Pastor, O., Insfrán, Pelechano, V., Romero, J., Merseguer, J. (1997). OO-METHOD: An OO
software production environment combining conventional and formal methods. In
CAiSE '97: Proceedings of the 9th International Conference on Advanced Information
Systems Engineering, pages 145-158, London, UK. Springer-Verlag.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

59

Pastor, O., Insfrán, E. (2003). OO-Method, the methodological support for OlivaNova model
execution system. Technical report, Care Technologies. White paper. Available at
http://www.care-t.com.

Pastor, O., Molina, J. (2007). Model-driven Architecture in Practice – A software production
environment based on Conceptual Modeling. Springer-Verlag.

Pastor, O., Molina, J., Iborra, E. (2004). Automated production of fully functional
applications with Olivanova model execution. ERCIM News No. 57,
April 2004. Available at http://www.ercim.org/publication/Ercim
News/enw57/pastor.html.

Paternó, F., 2001. Task Models in Interactive Software Systems. In Handbook of Software
Engineering and Knowledge Engineering, volume I, 2001. World Scientific Publishing
Co. Pte. Ltd., pp. 817–835.

Pinheiro da Silva, P., 2000. User interface declarative models and development
environments: A survey. In Interactive Systems - Design, Specification, and Verification:
7th International Workshop, DSV-IS 2000, Limerick, Ireland, June 2000. Revised Papers,
Springer Berlin / Heidelberg, Lecture Notes in Computer Science vol. 1946, pp. 207–
226.

Pressman, R. S., 2005. Software Engineering – A practitioner’s approach, 6th edition. Mc Graw
Hill.

Reichart, D., Forbrig, P., Dittmar, A. (2004). Task models as basis for requirements
engineering and software execution. In Task Models and Diagrams for User Interface
Design TAMODIA, pages 51-58.

Radeke, F., Forbrig, P., Seffah, A., Sinnig, D. (2007). PIM Tool: Support for pattern-driven
and model-based UI development. In Task Models and Diagrams for User Interface
Design (TAMODIA 2006), volume 4385/2007 of Lecture Notes in Computer Science,
pages 82-96. Springer Berlin/Heidelberg.

Saraiva, J., Silva, A. (2008). The ProjectITStudio. UMLModeler: A tool for the design and
transformation of UML models. In Proceedings of the 3rd Iberian Conference of
Information Technologies and Systems (CISTI 2008), Campus de Ourense, Ourense,
Spain, Universidad de Vigo.

Silva, A. (2003). The XIS approach and principles. In Proceedings of the 29th EUROMICRO
Conference "New Waves in System Architecture" (EUROMICRO '03), IEEE Computer
Society.

Silva, A., Videira, C. (2008). UML, Metodologias e Ferramentas CASE, vol. 2 (in portuguese).
Centro Atlântico, 2nd ed.

Silva, A.R., Saraiva, J., Silva, R., Martins, C. (2007). XIS - UML profile for extreme
modeling interactive systems. In Proceedings of the 4th International Workshop on
Model-based Methodologies for Pervasive and Embedded Software (MOMPES 2007).
IEEE, March.

Wolff, A., Forbrig, P., Dittmar, A., Reichart, D. (2005a). Linking GUI elements to tasks:
supporting an evolutionary design process. In Proceedings of the 4th International
workshop on Task Models and Diagrams for User Interface Design (TAMODIA '05),
pages 27-34, New York, NY, USA, 2005. ACM.

 User Interfaces

58

Conference on Software Engineering and Data Technologies (ICSoft 2009) , vol. 1, pp
169-176, Sofia, Bulgaria, July 2009, INSTICC Press.

Dix, A., Finlay, J., Abowd, G., Beale, R. (1998). Human-Computer Interaction. Prentice Hall,
2nd edition.

Elkoutbi, M.; Khriss, I.; Keller, R.K. (2006). Automated prototyping of user interfaces
based on UML scenarios. Journal of Automated Software Engineering, 13(1):5-40,
January.

Forbrig, P., Dittmar, A., Reichart, D., Sinnig, D. (2004). From models to interactive systems
tool support and XIML. In Proceedings of the First International Workshop MBUI 2004,
vol. 103-CEUR Workshop Proceedings, Funchal, Portugal. Available at
http://ceur-ws.org.

Jacobson, I., Booch, G., Rumbaugh, J. (1999). The Unified Software Development Process.
Addison-Wesley.

Jia, X., Steele, A., Liu, H., Qin, L., Jones, C. (2005). Using ZOOM approach to support MDD.
In Proceedings of the 2005 International Conference on Software Engineering Research and
Practice (SERP'05), Las Vegas, USA.

Jia, X., Steele, A., Qin, L., Liu, H., Jones, C. (2007). Executable visual software modelling - the
ZOOM approach. Software Quality Control, 15(1):27-51.

Javahery, H., Sinnig, D., Seffah, A., Forbrig, P., Radhakrishnan, T. (2007). Task Models and
Diagrams for Users Interface Design, chapter Pattern-Based UI Design: Adding
Rigor with User and Context Variables, pages 97-108. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg.

Kelly, S., Tolvanen, Juha-Pekka (2008). Domain Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society Press.

Kleppe, A., Warmer, J., Bast, W. (2003). MDA Explained – The Model Driven Architecture:
Practice and Promise. Addison-Wesley Professional.

Martinez, A., Estrada, H., Sánchez, J., Pastor, O. (2002). From early requirements to user
interface prototyping: A methodological approach. In Proceedings of the 17th IEEE
International Conference on A.S.E., pp 257-260.

Molina, P., Pastor, O., Marti, S., Fons, J., Insfrán, E. (2001). Specifying conceptual interface
patterns in an object-oriented method with automatic code generation. In
Proceedings Second International Workshop on User Interfaces in Data Intensive Systems,
UIDIS 2001.

Molina, P.J., Hernández, J. (2003). Just-UI: Using patterns as concepts for IU specification
and code generation. In Perspectives on HCI Patterns: Concepts and Tools
(CHI'2003 Workshop).

Molina, P.J. (2004). User interface generation with Olivanova model execution system. In IUI
'04: Proceedings of the 9th International Conference on Intelligent User Interfaces,
pages 358-359, NY, USA. ACM.

Pastor, O., Insfrán, Pelechano, V., Romero, J., Merseguer, J. (1997). OO-METHOD: An OO
software production environment combining conventional and formal methods. In
CAiSE '97: Proceedings of the 9th International Conference on Advanced Information
Systems Engineering, pages 145-158, London, UK. Springer-Verlag.

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

59

Pastor, O., Insfrán, E. (2003). OO-Method, the methodological support for OlivaNova model
execution system. Technical report, Care Technologies. White paper. Available at
http://www.care-t.com.

Pastor, O., Molina, J. (2007). Model-driven Architecture in Practice – A software production
environment based on Conceptual Modeling. Springer-Verlag.

Pastor, O., Molina, J., Iborra, E. (2004). Automated production of fully functional
applications with Olivanova model execution. ERCIM News No. 57,
April 2004. Available at http://www.ercim.org/publication/Ercim
News/enw57/pastor.html.

Paternó, F., 2001. Task Models in Interactive Software Systems. In Handbook of Software
Engineering and Knowledge Engineering, volume I, 2001. World Scientific Publishing
Co. Pte. Ltd., pp. 817–835.

Pinheiro da Silva, P., 2000. User interface declarative models and development
environments: A survey. In Interactive Systems - Design, Specification, and Verification:
7th International Workshop, DSV-IS 2000, Limerick, Ireland, June 2000. Revised Papers,
Springer Berlin / Heidelberg, Lecture Notes in Computer Science vol. 1946, pp. 207–
226.

Pressman, R. S., 2005. Software Engineering – A practitioner’s approach, 6th edition. Mc Graw
Hill.

Reichart, D., Forbrig, P., Dittmar, A. (2004). Task models as basis for requirements
engineering and software execution. In Task Models and Diagrams for User Interface
Design TAMODIA, pages 51-58.

Radeke, F., Forbrig, P., Seffah, A., Sinnig, D. (2007). PIM Tool: Support for pattern-driven
and model-based UI development. In Task Models and Diagrams for User Interface
Design (TAMODIA 2006), volume 4385/2007 of Lecture Notes in Computer Science,
pages 82-96. Springer Berlin/Heidelberg.

Saraiva, J., Silva, A. (2008). The ProjectITStudio. UMLModeler: A tool for the design and
transformation of UML models. In Proceedings of the 3rd Iberian Conference of
Information Technologies and Systems (CISTI 2008), Campus de Ourense, Ourense,
Spain, Universidad de Vigo.

Silva, A. (2003). The XIS approach and principles. In Proceedings of the 29th EUROMICRO
Conference "New Waves in System Architecture" (EUROMICRO '03), IEEE Computer
Society.

Silva, A., Videira, C. (2008). UML, Metodologias e Ferramentas CASE, vol. 2 (in portuguese).
Centro Atlântico, 2nd ed.

Silva, A.R., Saraiva, J., Silva, R., Martins, C. (2007). XIS - UML profile for extreme
modeling interactive systems. In Proceedings of the 4th International Workshop on
Model-based Methodologies for Pervasive and Embedded Software (MOMPES 2007).
IEEE, March.

Wolff, A., Forbrig, P., Dittmar, A., Reichart, D. (2005a). Linking GUI elements to tasks:
supporting an evolutionary design process. In Proceedings of the 4th International
workshop on Task Models and Diagrams for User Interface Design (TAMODIA '05),
pages 27-34, New York, NY, USA, 2005. ACM.

 User Interfaces

60

Wolff, A., Forbrig, P., Reichart, D. (2005b). Tool support for model-based generation of
advanced user-interfaces. In Andreas Pleuss, Jan Van den Bergh, Heinrich
Hussmann, and Stefan Sauer, editors, In Proceedings of the MoDELS'05 Workshop on
Model Driven Development of Advanced User Interfaces, Montego Bay, Jamaica,
October.

5

Considering the Importance of User Profiles
in Interface Design

Yuanhua Liu, Anna-Lisa Osvalder and MariAnne Karlsson
Division Design & Human Factors

Department of Product & Production Development
Chalmers University of Technology

Sweden

1. Background
Human-computer interaction (HCI) is an interdisciplinary research area which concerns the
study of interaction between humans (operators as users) and computers. A widely used
definition interprets this concept as “a discipline concerned with the design, evaluation and
implementation of interactive computing systems for human use and with the study of
major phenomena surrounding them” (ACM SIGCHI, 1992). The reason for stating
‘interdisciplinary’ as the nature of HCI is the involvement of different disciplines
contributing to HCI. Computer science is not the only discipline contributing to HCI; other
disciplines, such as cognitive psychology, human factors, engineering, design, social and
organizational psychology are also considered important and relevant.
In the past for many years, a comprehensive range of research and studies concerning
different aspects of HCI has been conducted or implemented. These studies are diverse, and
include, for instance, dialogue techniques, gestural analysis and multimodal interfaces,
computer graphics, computational linguistics, spatial cognition, robot navigation and
wayfinding, input styles or devices, and monitor screens etc. However, the ultimate goal of
the studies is to contribute to improving the interaction between humans and computer
systems by endowing technical systems with higher usability and satisfaction.
Facilitating the mutual interaction by presenting information on the status of the computer
systems, a user interface normally works as a kind of communication platform or bridge
between human beings and computers during the interaction. However, humans work as
users operating or controlling the system by processing and interpreting the information.
How to design interfaces that assist users in task performance in an optimal manner during
interactions is a major challenge for all design engineers. When users interact with computer
systems, many factors can influence overall performance. These factors cover various issues
from the user side, task side, technical system side, and working environment/context side.
Recently, from the perspective of human factors engineering, Osvalder & Ulfvengren (2009)
have proposed performance-shaping factors (PSFs) as a generic name for those different
influential factors. Furthermore, they have classified the PSFs into three categories: internal
factors, external factors and stressors. The internal factors refer to physical and mental
conditions that are either inbuilt or brought by humans as operators, such as age, vision,

 User Interfaces

60

Wolff, A., Forbrig, P., Reichart, D. (2005b). Tool support for model-based generation of
advanced user-interfaces. In Andreas Pleuss, Jan Van den Bergh, Heinrich
Hussmann, and Stefan Sauer, editors, In Proceedings of the MoDELS'05 Workshop on
Model Driven Development of Advanced User Interfaces, Montego Bay, Jamaica,
October.

5

Considering the Importance of User Profiles
in Interface Design

Yuanhua Liu, Anna-Lisa Osvalder and MariAnne Karlsson
Division Design & Human Factors

Department of Product & Production Development
Chalmers University of Technology

Sweden

1. Background
Human-computer interaction (HCI) is an interdisciplinary research area which concerns the
study of interaction between humans (operators as users) and computers. A widely used
definition interprets this concept as “a discipline concerned with the design, evaluation and
implementation of interactive computing systems for human use and with the study of
major phenomena surrounding them” (ACM SIGCHI, 1992). The reason for stating
‘interdisciplinary’ as the nature of HCI is the involvement of different disciplines
contributing to HCI. Computer science is not the only discipline contributing to HCI; other
disciplines, such as cognitive psychology, human factors, engineering, design, social and
organizational psychology are also considered important and relevant.
In the past for many years, a comprehensive range of research and studies concerning
different aspects of HCI has been conducted or implemented. These studies are diverse, and
include, for instance, dialogue techniques, gestural analysis and multimodal interfaces,
computer graphics, computational linguistics, spatial cognition, robot navigation and
wayfinding, input styles or devices, and monitor screens etc. However, the ultimate goal of
the studies is to contribute to improving the interaction between humans and computer
systems by endowing technical systems with higher usability and satisfaction.
Facilitating the mutual interaction by presenting information on the status of the computer
systems, a user interface normally works as a kind of communication platform or bridge
between human beings and computers during the interaction. However, humans work as
users operating or controlling the system by processing and interpreting the information.
How to design interfaces that assist users in task performance in an optimal manner during
interactions is a major challenge for all design engineers. When users interact with computer
systems, many factors can influence overall performance. These factors cover various issues
from the user side, task side, technical system side, and working environment/context side.
Recently, from the perspective of human factors engineering, Osvalder & Ulfvengren (2009)
have proposed performance-shaping factors (PSFs) as a generic name for those different
influential factors. Furthermore, they have classified the PSFs into three categories: internal
factors, external factors and stressors. The internal factors refer to physical and mental
conditions that are either inbuilt or brought by humans as operators, such as age, vision,

 User Interfaces

62

personality and motivation etc. The external factors refer to latent and operational issues
relevant to working environment and work contexts, such as surrounding environment,
shift rotation, equipment & tools, work procedure and operator interfaces etc. Stressors are
mostly those psychological or physiological pressures affecting the operator’s decision-
making and action either directly or indirectly, such as high workload, high work pace,
pain, exhaustion, long-term stress etc. These performance-shaping factors affect the
operator’s performance either individually or in combination. The purpose of summarizing
and studying different influential factors is to provide useful implications for computer
engineers in order to optimize interaction design.
Consequently, a number of different design methodologies addressing techniques for HCI
design have emerged in recent years. The rationale of most design methodologies is based
on a model illustrating how user, designer and technical systems interact. In the early years,
users’ cognitive processes were regarded as important predictable issues in many design
methodologies. Nowadays, good and efficient communication between users and designers
is viewed as a focus in modern design philosophies, thus urging technical systems to cover
the type of experiences users want to have. User-centered design (UCD) is a very popular
design philosophy aiming to put users at center-stage in the design processes of technical
systems, as well as to give end users’ requirements and limitations extensive attention at
each stage of the design process. User requirements are considered and treated as a focus in
the whole product life cycle. The typical characteristics of the UCD design philosophy are
end users’ active participation in the design process and an iteration of design solutions.
Therefore, designers should not only analyze or foresee how users interact with an interface,
but also test the validity of their assumptions concerning users’ behaviour in real- world
tests with real users. Compared to other interface design philosophies, UCD focuses on
optimizing the user interface around how users can, want, or need to work, rather than
forcing the users to change their mental models or behaviour to accommodate the designers’
approach. In order to achieve this design hypothesis, users, designers and technical
practitioners work together to articulate the wants, needs and limitations of the user and
create a technical system that meets these requirements.
The basic idea of the UCD philosophy is to emphasize good understanding of the user so as
to develop more usable artifacts. Needs diversity involves accommodating users with
expertise difference, knowledge difference, age difference, gender difference, and cultural
difference etc. (Schneiderman, 2000). In order to understand the users and their needs, user
analysis becomes a critical aspect of UCD process. User analysis often means distinguishing
users broadly in terms of age, gender, expertise with technology, educational background,
attitude toward the technology, linguistic ability etc.

2. Users in the HCI
Describing users and work tasks is critical for studies of the HCI system. In the common
sense, users are normally characterized as the class of people who use a technical system
and might not necessarily have complete technical expertise with the system. For quite a
long time, the user concept has become blurred by different schools of thought. Users are
defined differently in different theories: as components of a system in ‘Distributed cognition
theory’, as problem solvers in ‘Information processing theory’, as resourceful individuals in
‘Situated actions theory’, as human actors in ‘Activity theory’, and so on. However, from a
practical perspective, the definition of users is always based on their relation to products or

Considering the Importance of User Profiles in Interface Design

63

artefacts. Karlsson (1996) indicated that the definition of users should be associated with the
use-activity, i.e. the type of human-artifact relation. Thus, the user is defined as the end user,
i.e. “the human being engaged in a use activity” (Karlsson, 1996). Warell (2001) defined a
user as “any individual who, for a certain purpose, interacts with the product or any
realised element (system, part, component, module, feature, etc., manifested in software or
as concrete objects) of the product, at any phase of the product life cycle.” This definition is
more comprehensive and practical from the perspective of product design and
development, since humans’ interaction with the product in the whole product life cycle is
taken into consideration.
Users may be classified in different respects. For instance, many researchers classify users
according to users’ relation to the products or other users. Monö (1974) classified users into
target groups and filter groups. According to Monö (1974), users in the target groups are
the persons for whom the product is developed or design, while the users in the filter
groups may be distributors or purchasers who may influence the target groups’ choice of
product. Buur & Windum (1994) classified users into two categories – primary users and
secondary users. Primary users are those who use the product for its primary purpose, e.g.
dialysis nurses who handle a dialysis machine in a medical treatment, while secondary
users are those who actively use the product but not for what is primarily intended, e.g.
maintenance personnel. Based on Buur & Windum’s (1994) classification, Janhager (2003)
added two other user categories: side-users and co-users. Side-users are “people who are
affected by the product, either negatively or positively, in their daily life but without using
the product”, e.g. patients receiving ventilation treatment, while co-users are “people who
co-operate with a primary or secondary user in some way without using the same product”,
e.g. medical doctors.
However, in HCI, users’ individual differences and their tasks are always indicated as the
two most important issues addressing usability (Nielsen, 1993). Users are not homogeneous;
they differ in many respects, such as gender, age, physical abilities, educational level,
organizational culture, operator skills etc. It is the diversities that make users both different
from each other as individuals and similar as a collective group. The importance of user
characteristics, e.g. age, gender, body dimensions and training, is always stressed, since user
characteristics can influence the use situation and thus have an impact on the product
design (Hedge, 1998; Preece, 2002). Considering that user characteristics define the users’
abilities and limitations in the use situation, many researchers have classified users on the
basis of user characteristics and carried out studies to investigate how these characteristics
influence users’ performance in the interaction with technical systems. For instance, elderly
users were found to have a decline in higher-order cognitive processes, such as attention
(Owsley et al., 1991), and also a slower speed in almost all tasks that stress rapid
performance (Botwinick, 1973; Welford, 1977). Broos (2005) carried out a study on gender
aspects and found that women showed a higher computer anxiety than men, implying that
men are more self-assured and women are more hesitant.
The purpose of user classifications is to identify or investigate users and their performance
or acceptance of product design, thus providing useful information or a basis to designers
for product improvement. Faulkner (2000) and Preece (2002) stressed the importance of
considering users’ use experience of the product. Engelbrektsson (2004) identified three
different types of use experience that result in different enabling effects in user elicitation:
“problem experience enabling through the users having e.g. experienced problems with
existing product design; interaction experience enabling through the users gaining

 User Interfaces

62

personality and motivation etc. The external factors refer to latent and operational issues
relevant to working environment and work contexts, such as surrounding environment,
shift rotation, equipment & tools, work procedure and operator interfaces etc. Stressors are
mostly those psychological or physiological pressures affecting the operator’s decision-
making and action either directly or indirectly, such as high workload, high work pace,
pain, exhaustion, long-term stress etc. These performance-shaping factors affect the
operator’s performance either individually or in combination. The purpose of summarizing
and studying different influential factors is to provide useful implications for computer
engineers in order to optimize interaction design.
Consequently, a number of different design methodologies addressing techniques for HCI
design have emerged in recent years. The rationale of most design methodologies is based
on a model illustrating how user, designer and technical systems interact. In the early years,
users’ cognitive processes were regarded as important predictable issues in many design
methodologies. Nowadays, good and efficient communication between users and designers
is viewed as a focus in modern design philosophies, thus urging technical systems to cover
the type of experiences users want to have. User-centered design (UCD) is a very popular
design philosophy aiming to put users at center-stage in the design processes of technical
systems, as well as to give end users’ requirements and limitations extensive attention at
each stage of the design process. User requirements are considered and treated as a focus in
the whole product life cycle. The typical characteristics of the UCD design philosophy are
end users’ active participation in the design process and an iteration of design solutions.
Therefore, designers should not only analyze or foresee how users interact with an interface,
but also test the validity of their assumptions concerning users’ behaviour in real- world
tests with real users. Compared to other interface design philosophies, UCD focuses on
optimizing the user interface around how users can, want, or need to work, rather than
forcing the users to change their mental models or behaviour to accommodate the designers’
approach. In order to achieve this design hypothesis, users, designers and technical
practitioners work together to articulate the wants, needs and limitations of the user and
create a technical system that meets these requirements.
The basic idea of the UCD philosophy is to emphasize good understanding of the user so as
to develop more usable artifacts. Needs diversity involves accommodating users with
expertise difference, knowledge difference, age difference, gender difference, and cultural
difference etc. (Schneiderman, 2000). In order to understand the users and their needs, user
analysis becomes a critical aspect of UCD process. User analysis often means distinguishing
users broadly in terms of age, gender, expertise with technology, educational background,
attitude toward the technology, linguistic ability etc.

2. Users in the HCI
Describing users and work tasks is critical for studies of the HCI system. In the common
sense, users are normally characterized as the class of people who use a technical system
and might not necessarily have complete technical expertise with the system. For quite a
long time, the user concept has become blurred by different schools of thought. Users are
defined differently in different theories: as components of a system in ‘Distributed cognition
theory’, as problem solvers in ‘Information processing theory’, as resourceful individuals in
‘Situated actions theory’, as human actors in ‘Activity theory’, and so on. However, from a
practical perspective, the definition of users is always based on their relation to products or

Considering the Importance of User Profiles in Interface Design

63

artefacts. Karlsson (1996) indicated that the definition of users should be associated with the
use-activity, i.e. the type of human-artifact relation. Thus, the user is defined as the end user,
i.e. “the human being engaged in a use activity” (Karlsson, 1996). Warell (2001) defined a
user as “any individual who, for a certain purpose, interacts with the product or any
realised element (system, part, component, module, feature, etc., manifested in software or
as concrete objects) of the product, at any phase of the product life cycle.” This definition is
more comprehensive and practical from the perspective of product design and
development, since humans’ interaction with the product in the whole product life cycle is
taken into consideration.
Users may be classified in different respects. For instance, many researchers classify users
according to users’ relation to the products or other users. Monö (1974) classified users into
target groups and filter groups. According to Monö (1974), users in the target groups are
the persons for whom the product is developed or design, while the users in the filter
groups may be distributors or purchasers who may influence the target groups’ choice of
product. Buur & Windum (1994) classified users into two categories – primary users and
secondary users. Primary users are those who use the product for its primary purpose, e.g.
dialysis nurses who handle a dialysis machine in a medical treatment, while secondary
users are those who actively use the product but not for what is primarily intended, e.g.
maintenance personnel. Based on Buur & Windum’s (1994) classification, Janhager (2003)
added two other user categories: side-users and co-users. Side-users are “people who are
affected by the product, either negatively or positively, in their daily life but without using
the product”, e.g. patients receiving ventilation treatment, while co-users are “people who
co-operate with a primary or secondary user in some way without using the same product”,
e.g. medical doctors.
However, in HCI, users’ individual differences and their tasks are always indicated as the
two most important issues addressing usability (Nielsen, 1993). Users are not homogeneous;
they differ in many respects, such as gender, age, physical abilities, educational level,
organizational culture, operator skills etc. It is the diversities that make users both different
from each other as individuals and similar as a collective group. The importance of user
characteristics, e.g. age, gender, body dimensions and training, is always stressed, since user
characteristics can influence the use situation and thus have an impact on the product
design (Hedge, 1998; Preece, 2002). Considering that user characteristics define the users’
abilities and limitations in the use situation, many researchers have classified users on the
basis of user characteristics and carried out studies to investigate how these characteristics
influence users’ performance in the interaction with technical systems. For instance, elderly
users were found to have a decline in higher-order cognitive processes, such as attention
(Owsley et al., 1991), and also a slower speed in almost all tasks that stress rapid
performance (Botwinick, 1973; Welford, 1977). Broos (2005) carried out a study on gender
aspects and found that women showed a higher computer anxiety than men, implying that
men are more self-assured and women are more hesitant.
The purpose of user classifications is to identify or investigate users and their performance
or acceptance of product design, thus providing useful information or a basis to designers
for product improvement. Faulkner (2000) and Preece (2002) stressed the importance of
considering users’ use experience of the product. Engelbrektsson (2004) identified three
different types of use experience that result in different enabling effects in user elicitation:
“problem experience enabling through the users having e.g. experienced problems with
existing product design; interaction experience enabling through the users gaining

 User Interfaces

64

experience of interacting with a user interface and becoming aware of the properties of the
product; and product use experience enabling through the users gaining experience of using
the product in a use activity, i.e. a situation in which the product has become a mediator in
order to reach the user’s goal.” However, considering users’ use experience of the product
from perspectives of product evaluation and interaction, use experience here is classified as
interaction experience and use experience. Interaction experience addresses how users gain
experience of the product by interacting with a user interface in a specific or certain
situation, e.g. usability tests. Use experience refers to the experience that users gain by using
the product in real life.
Janhager (2005) indicated that length of use and education concerning the product, and
frequency of use, are the two bases for defining users’ use experience of the product.
However, apart from length of use and frequency of use, users’ expertise level is a most
direct and precise criterion for determining users’ use experience of the product.

3. User profiles
As a popular term widely used by industrial companies to represent real users, the user
profile is a method of presenting data from studies of user characteristics (Janhager, 2005). It
may also be supplemented with a description of relationships between various users.
Kuniavsky (2003) indicated that the ‘user profile’ is almost the same as a persona, i.e. some
kind of fictitious person as a collection of attributes (e.g. goals, age, attitudes, work, and
skills). In other words, a user profile of the target group contains collective information
about mental, physical and demographic data for the user population as well as other
characteristics. It is possible to make user profiles for one or more fictional individual users
in the form of personas, thus describing the user’s characteristics in the form of knowledge,
abilities and limitations in relation to the product, equipment or system with which the user
will be integrating (Osvalder et al., 2009). The ultimate purpose of using user profiles or
persona is actually to help designers to recognize or learn about the real user by presenting
them with a description of a real user’s attributes, for instance; the user’s gender, age,
educational level, attitude, technical needs and skill level. User profile does not necessarily
mirror or present a complete collection of a whole user population’s attributes. The essence
of user profiles is accurate and simple collection of users’ attributes. In the product design
process, user profiles are normally created early and used as a basis for usability evaluation
and product redesign.

3.1 Age difference
Age is an important issue to bear in mind. Aging has been found to result in a decline in, for
instance, the physiology and neurophysiology of the eye (Darin, et al., 2000); in physical,
sensory and cognitive factors (Craik & Salthous, 2000; Hitchcock et al., 2001; Scialfa et al.,
2004); in higher-order cognitive processes; such as attention (Owsley, et al., 1991), and in a
slower speed in almost all tasks that stress rapid performance (Botwinick, 1973; Welford,
1977). It is generally accepted that, such declines accelerate after individuals reach their mid-
forties (Hawthorn, 2000). At the same time older individuals have been argued to become
more cautious (Okun & Di Vesta, 1976), and therefore more prone to plan before acting,
rather than applying a trial-and-error approach. In computer-based work, it was found that
older people took longer time and made more errors (Czaja & Sharit, 1993; Laberge &

Considering the Importance of User Profiles in Interface Design

65

Scialfa, 2005; Sayer, 2004), as well as showed slower in performance and made more slips in
using input devices (Chaparro et al., 1999; Smith et al., 1999).
Kang and Yoon (2008) made a study comparing the behaviour of younger and middle-aged
adults when interacting with complicated electronic devices. Their results revealed that age
differences meaningfully affected the observed error frequency, the number of interaction
steps, the rigidity of exploration, the success of physical operation methods, and subjective
perception of temporal demand and performance. In contrast, trial-and-error behaviour and
frustration levels were influenced by background knowledge rather than age.
Elderly people were also found to have more usability problems in the use of mobile phones
(Ziefle & Bay, 2005). When investigating elderly people’s use of mobile phones and
characteristics of an aging-friendly mobile phone, Kurniawan (2008) found that elderly
people experience fear of consequences of using unfamiliar technology.

3.2 Gender difference
The significance of considering, for instance, gender has been shown by Belenky et al.
(1986), Philbin et al. (1995), as well as by Sadler-Smith (1999). These studies propose; e.g.
that males tend to be more abstract learners, more intuitive and undirected, while females
are more anxious about results, more analytical and organized. Furthermore, Barret and
Lally (1999) conclude that males behaved more actively than females in a formal on-line
learning environment, e.g. sending more and longer messages. In a recent study by Broos
(2005), it was found that females showed a higher computer anxiety than males, implying
that males are more self-assured and females are more hesitant. Gender differences are also
found in preferred design features, for instance, females focusing on haptic aids and males
on perceptual aids (Kurniawan, 2008).

3.3 Cultural difference
Cross-cultural design of interfaces is currently pervasive in industries and manufacturing.
Such a trend brings up research concerning the validity of cross-cultural design, the impact
of cultural differences on users’ behaviour in interaction, as well as how to incorporate and
accommodate cultural differences in interface design etc. Human beings are always thought
of as having similar basic psychological characteristics, i.e. humans across the world
perceive and reason in the same way (Brown, 1991; Pinker, 2006). Segall et al., (1999) pointed
out that cultural differences influence humans’ application of preferred skills and strategies
to cognitive processes in each particular situation, even though humans share similar basic
cognitive functions. As compelling evidence shows, how people from different demographic
regions in the world perceive objects and situations is shaped by cultural-historical
differences in physical environment, upbringing, education and social structure (Nisbett,
2003; Nisbett et al., 2001).
Linking to usability evaluation methodology, cultural issues are always excluded from the
influential factors group and conceived as non-influential on outcomes of usability
evaluation in most studies (Clemmensen et al., 2009). For many years, studies have been
made to investigate the effect of influential factors on the outcomes of usability evaluation,
such as choice of task scenarios, number of test participants, choice of methodologies, choice
of test places etc. However, less attention is given to cultural effects on the evaluation
process, for instance, whether or how test participants’ cultural background affects
evaluation outcomes, and whether choice of task scenarios and interface heuristics should

 User Interfaces

64

experience of interacting with a user interface and becoming aware of the properties of the
product; and product use experience enabling through the users gaining experience of using
the product in a use activity, i.e. a situation in which the product has become a mediator in
order to reach the user’s goal.” However, considering users’ use experience of the product
from perspectives of product evaluation and interaction, use experience here is classified as
interaction experience and use experience. Interaction experience addresses how users gain
experience of the product by interacting with a user interface in a specific or certain
situation, e.g. usability tests. Use experience refers to the experience that users gain by using
the product in real life.
Janhager (2005) indicated that length of use and education concerning the product, and
frequency of use, are the two bases for defining users’ use experience of the product.
However, apart from length of use and frequency of use, users’ expertise level is a most
direct and precise criterion for determining users’ use experience of the product.

3. User profiles
As a popular term widely used by industrial companies to represent real users, the user
profile is a method of presenting data from studies of user characteristics (Janhager, 2005). It
may also be supplemented with a description of relationships between various users.
Kuniavsky (2003) indicated that the ‘user profile’ is almost the same as a persona, i.e. some
kind of fictitious person as a collection of attributes (e.g. goals, age, attitudes, work, and
skills). In other words, a user profile of the target group contains collective information
about mental, physical and demographic data for the user population as well as other
characteristics. It is possible to make user profiles for one or more fictional individual users
in the form of personas, thus describing the user’s characteristics in the form of knowledge,
abilities and limitations in relation to the product, equipment or system with which the user
will be integrating (Osvalder et al., 2009). The ultimate purpose of using user profiles or
persona is actually to help designers to recognize or learn about the real user by presenting
them with a description of a real user’s attributes, for instance; the user’s gender, age,
educational level, attitude, technical needs and skill level. User profile does not necessarily
mirror or present a complete collection of a whole user population’s attributes. The essence
of user profiles is accurate and simple collection of users’ attributes. In the product design
process, user profiles are normally created early and used as a basis for usability evaluation
and product redesign.

3.1 Age difference
Age is an important issue to bear in mind. Aging has been found to result in a decline in, for
instance, the physiology and neurophysiology of the eye (Darin, et al., 2000); in physical,
sensory and cognitive factors (Craik & Salthous, 2000; Hitchcock et al., 2001; Scialfa et al.,
2004); in higher-order cognitive processes; such as attention (Owsley, et al., 1991), and in a
slower speed in almost all tasks that stress rapid performance (Botwinick, 1973; Welford,
1977). It is generally accepted that, such declines accelerate after individuals reach their mid-
forties (Hawthorn, 2000). At the same time older individuals have been argued to become
more cautious (Okun & Di Vesta, 1976), and therefore more prone to plan before acting,
rather than applying a trial-and-error approach. In computer-based work, it was found that
older people took longer time and made more errors (Czaja & Sharit, 1993; Laberge &

Considering the Importance of User Profiles in Interface Design

65

Scialfa, 2005; Sayer, 2004), as well as showed slower in performance and made more slips in
using input devices (Chaparro et al., 1999; Smith et al., 1999).
Kang and Yoon (2008) made a study comparing the behaviour of younger and middle-aged
adults when interacting with complicated electronic devices. Their results revealed that age
differences meaningfully affected the observed error frequency, the number of interaction
steps, the rigidity of exploration, the success of physical operation methods, and subjective
perception of temporal demand and performance. In contrast, trial-and-error behaviour and
frustration levels were influenced by background knowledge rather than age.
Elderly people were also found to have more usability problems in the use of mobile phones
(Ziefle & Bay, 2005). When investigating elderly people’s use of mobile phones and
characteristics of an aging-friendly mobile phone, Kurniawan (2008) found that elderly
people experience fear of consequences of using unfamiliar technology.

3.2 Gender difference
The significance of considering, for instance, gender has been shown by Belenky et al.
(1986), Philbin et al. (1995), as well as by Sadler-Smith (1999). These studies propose; e.g.
that males tend to be more abstract learners, more intuitive and undirected, while females
are more anxious about results, more analytical and organized. Furthermore, Barret and
Lally (1999) conclude that males behaved more actively than females in a formal on-line
learning environment, e.g. sending more and longer messages. In a recent study by Broos
(2005), it was found that females showed a higher computer anxiety than males, implying
that males are more self-assured and females are more hesitant. Gender differences are also
found in preferred design features, for instance, females focusing on haptic aids and males
on perceptual aids (Kurniawan, 2008).

3.3 Cultural difference
Cross-cultural design of interfaces is currently pervasive in industries and manufacturing.
Such a trend brings up research concerning the validity of cross-cultural design, the impact
of cultural differences on users’ behaviour in interaction, as well as how to incorporate and
accommodate cultural differences in interface design etc. Human beings are always thought
of as having similar basic psychological characteristics, i.e. humans across the world
perceive and reason in the same way (Brown, 1991; Pinker, 2006). Segall et al., (1999) pointed
out that cultural differences influence humans’ application of preferred skills and strategies
to cognitive processes in each particular situation, even though humans share similar basic
cognitive functions. As compelling evidence shows, how people from different demographic
regions in the world perceive objects and situations is shaped by cultural-historical
differences in physical environment, upbringing, education and social structure (Nisbett,
2003; Nisbett et al., 2001).
Linking to usability evaluation methodology, cultural issues are always excluded from the
influential factors group and conceived as non-influential on outcomes of usability
evaluation in most studies (Clemmensen et al., 2009). For many years, studies have been
made to investigate the effect of influential factors on the outcomes of usability evaluation,
such as choice of task scenarios, number of test participants, choice of methodologies, choice
of test places etc. However, less attention is given to cultural effects on the evaluation
process, for instance, whether or how test participants’ cultural background affects
evaluation outcomes, and whether choice of task scenarios and interface heuristics should

 User Interfaces

66

overlook cultural effects. Concerning disagreements between usability studies, discussions
are rarely conducted in terms of cultural effects.
Clemmensen et al. (2009) made a deep analysis of cultural cognition in usability evaluation
and illustrated the impact of cultural cognition on four central elements of the thinking-
aloud method (TA): (1) instructions and tasks; (2) the user’s verbalizations; (3) the
evaluator’s reading of the user, and (4) the overall relationship between user and evaluator.
In conclusion, some important findings are emphasized, such as the importance of matching
the task presentation to users’ cultural background, the different effects of thinking aloud on
task performance between Easterners and Westerners, the differences in nonverbal
behaviour that affect usability problem detection, and the complexity of the overall
relationship between a user and an evaluator with different cultural backgrounds.

3.4 User expertise
In the literature, ‘expertise’ is defined as the mechanism underlying the superior
achievement of an expert, i.e. “one who has acquired special skill in or knowledge of a
particular subject through professional training and practical experience” (Webster's
Dictionary, 1976), or “expert knowledge or skill, especially in a particular field” (Oxford
Advanced Learner’s Dictionary, 1995). However, what we always mean by ‘users’ expertise’
is users’ special skill or knowledge that is acquired by training study, or practice. It is
obvious that users’ expertise is related to their practice or experience with a specific system
or subject, and can be seen as a consequence of the users’ capacity for extensive adaptation
to physical and social environments.
Users’ experience with a specific system or subject is the dimension that is normally referred
to when discussing user expertise (Nielsen, 1993). As a matter of fact, differences in users’
experience are a practical issue in human-machine interaction (HMI) or human-computer
interaction (HCI). The development of users’ expertise often comes about through long
periods of deliberate practice. To a certain extent, users’ experience with a specific system or
subject can greatly facilitate their acquisition of expertise. In many studies, users are
classified into different categories according to the users’ different experience. For instance,
Shneiderman (1992) indicated three common classes of users along the user experience scale:
(1) novice users ― “ users who know the task but have little or no knowledge of the system”;
(2) knowledgeable intermittent users ― “users who know the task but because of infrequent
use may have difficulty remembering the syntactic knowledge of how to carry out their
goals”; and (3) expert frequent users ― “users who have deep knowledge of tasks and
related goals, and the actions required to accomplish the goals”. Nielsen’s (1993)
classification is similar to Shneiderman’s (1992), i.e. users can be classified as either novices
or experts, or somewhere in -between. Comparisons between novice and expert users can
never be overlooked when studying users’ differences in expertise. Although theoretical
definitions of the users’ expertise categories (i.e. novice user, intermittent user, and expert
user) are provided by some researchers, such as Shneiderman (1992) and Nielsen (1993), the
boundaries between the user categories are actually very vague. One reason is that novice
users will evolve into expert users after sometime learning and practice. The development of
expertise is a learning process with progressive acquisition of skill between novices and
experts. This implies that users’ expertise categories are dynamic and status-based. Users’
acquisition of skill is normally proportional to time and practice. However, it is almost
impossible to distinguish the user categories by means of exact date/time or exact amount of
practice. The categorization can only be based on the immediate status of the users’ skill level.

Considering the Importance of User Profiles in Interface Design

67

A common idea is that experts appear to have fewer errors and lower severity of errors than
novices in performance (Larkin, 1983). In addition, experts’ mental models are more abstract
and novices’ models appear more concrete concerning levels of knowledge (DiSessa, 1983;
Doane, 1986; Greeno, 1983; Larkin, 1983). Expert users have been argued to be better at
detecting design defaults (Dreyfus & Dreyfus, 1986), understanding functional relationships
(Chi et al., 1981), and identifying problem-solving strategies (Klein, 1999). The simple
differences between novices and experts can also be found in some objective measures of
performance, such as error rates during task completion, time expenditure during task
completion, problem-solving, decision-making and judgment. Such distinctions can be seen
in many fields. For example, expert programmers can always write computer programs in a
more concise and logical way than novice programmers; expert medical physicians are
almost always better at diagnosing a disease correctly than novice physicians; expert pilots
are generally more skilful at judging the situation precisely and coping with occasional
events than novice pilots.

4. User expertise vs. mental models
In HCI, mental models are frequently mentioned in interface design and tied closely to
usability; this is because of their major role in cognition and decision-making during the
process of interaction. With the help of mental models, designers can get a clear picture of
what users are trying to accomplish, and then align design strategy with users’ behaviour
accordingly and effectively. Mental models are always indicated as psychological or inner
representations of reality that people use to understand specific phenomena. The concept of
‘mental model’ was first formulated by Kenneth Craik (1943) with an assumption that
people rely on mental models in their performance. A mental model reflects the true roots of
human behaviour, philosophies and emotion about how to accomplish tasks. In the light of
Johnson-Laird’s (1983) definition, mental models reveal the process in which humans
handle and tackle tasks of deductive reasoning, and they might not necessarily be more
complex or represent real-life cases. Sasse (1997) pointed out that many existing mental
model theories are supported by the following assumptions: (1) users form a mental model
of the internal workings of the computer systems they are interacting with; (2) the content
and structure of that mental model influence how users interact with a system; (3) selecting
what information about the system is presented to users and how it is presented can
influence the content and structure of a mental model; (4) more detailed knowledge of how
users construct, invoke, and adapt mental models could be used to provide guidance for
user interfaces and user training, which could help users to form appropriate models. A
common view, from the existing theories of mental models, is that humans can build up
mental models by perception, imagination or conversation. Many researchers are devoted to
investigating how mental models are constructed. However, there is no agreement on
exactly how mental models are constructed. Some issues of disagreement are found between
different theories, such as the structure of the mental models how the mental models
influence the interaction between the user and the system, and how the mental models are
constructed (Sasse, 1997). Burns (2000) indicated that mental models traditionally have been
characterised in two ways, i.e. the construction of a mental model in a specific situation, and
as being activated from generalised knowledge. Mental models can be incomplete, simple,
abstract and even general. They can also be continuously evolving. The more detailed and
correct the mental models are, the more success users will achieve when interacting with
machines or devices.

 User Interfaces

66

overlook cultural effects. Concerning disagreements between usability studies, discussions
are rarely conducted in terms of cultural effects.
Clemmensen et al. (2009) made a deep analysis of cultural cognition in usability evaluation
and illustrated the impact of cultural cognition on four central elements of the thinking-
aloud method (TA): (1) instructions and tasks; (2) the user’s verbalizations; (3) the
evaluator’s reading of the user, and (4) the overall relationship between user and evaluator.
In conclusion, some important findings are emphasized, such as the importance of matching
the task presentation to users’ cultural background, the different effects of thinking aloud on
task performance between Easterners and Westerners, the differences in nonverbal
behaviour that affect usability problem detection, and the complexity of the overall
relationship between a user and an evaluator with different cultural backgrounds.

3.4 User expertise
In the literature, ‘expertise’ is defined as the mechanism underlying the superior
achievement of an expert, i.e. “one who has acquired special skill in or knowledge of a
particular subject through professional training and practical experience” (Webster's
Dictionary, 1976), or “expert knowledge or skill, especially in a particular field” (Oxford
Advanced Learner’s Dictionary, 1995). However, what we always mean by ‘users’ expertise’
is users’ special skill or knowledge that is acquired by training study, or practice. It is
obvious that users’ expertise is related to their practice or experience with a specific system
or subject, and can be seen as a consequence of the users’ capacity for extensive adaptation
to physical and social environments.
Users’ experience with a specific system or subject is the dimension that is normally referred
to when discussing user expertise (Nielsen, 1993). As a matter of fact, differences in users’
experience are a practical issue in human-machine interaction (HMI) or human-computer
interaction (HCI). The development of users’ expertise often comes about through long
periods of deliberate practice. To a certain extent, users’ experience with a specific system or
subject can greatly facilitate their acquisition of expertise. In many studies, users are
classified into different categories according to the users’ different experience. For instance,
Shneiderman (1992) indicated three common classes of users along the user experience scale:
(1) novice users ― “ users who know the task but have little or no knowledge of the system”;
(2) knowledgeable intermittent users ― “users who know the task but because of infrequent
use may have difficulty remembering the syntactic knowledge of how to carry out their
goals”; and (3) expert frequent users ― “users who have deep knowledge of tasks and
related goals, and the actions required to accomplish the goals”. Nielsen’s (1993)
classification is similar to Shneiderman’s (1992), i.e. users can be classified as either novices
or experts, or somewhere in -between. Comparisons between novice and expert users can
never be overlooked when studying users’ differences in expertise. Although theoretical
definitions of the users’ expertise categories (i.e. novice user, intermittent user, and expert
user) are provided by some researchers, such as Shneiderman (1992) and Nielsen (1993), the
boundaries between the user categories are actually very vague. One reason is that novice
users will evolve into expert users after sometime learning and practice. The development of
expertise is a learning process with progressive acquisition of skill between novices and
experts. This implies that users’ expertise categories are dynamic and status-based. Users’
acquisition of skill is normally proportional to time and practice. However, it is almost
impossible to distinguish the user categories by means of exact date/time or exact amount of
practice. The categorization can only be based on the immediate status of the users’ skill level.

Considering the Importance of User Profiles in Interface Design

67

A common idea is that experts appear to have fewer errors and lower severity of errors than
novices in performance (Larkin, 1983). In addition, experts’ mental models are more abstract
and novices’ models appear more concrete concerning levels of knowledge (DiSessa, 1983;
Doane, 1986; Greeno, 1983; Larkin, 1983). Expert users have been argued to be better at
detecting design defaults (Dreyfus & Dreyfus, 1986), understanding functional relationships
(Chi et al., 1981), and identifying problem-solving strategies (Klein, 1999). The simple
differences between novices and experts can also be found in some objective measures of
performance, such as error rates during task completion, time expenditure during task
completion, problem-solving, decision-making and judgment. Such distinctions can be seen
in many fields. For example, expert programmers can always write computer programs in a
more concise and logical way than novice programmers; expert medical physicians are
almost always better at diagnosing a disease correctly than novice physicians; expert pilots
are generally more skilful at judging the situation precisely and coping with occasional
events than novice pilots.

4. User expertise vs. mental models
In HCI, mental models are frequently mentioned in interface design and tied closely to
usability; this is because of their major role in cognition and decision-making during the
process of interaction. With the help of mental models, designers can get a clear picture of
what users are trying to accomplish, and then align design strategy with users’ behaviour
accordingly and effectively. Mental models are always indicated as psychological or inner
representations of reality that people use to understand specific phenomena. The concept of
‘mental model’ was first formulated by Kenneth Craik (1943) with an assumption that
people rely on mental models in their performance. A mental model reflects the true roots of
human behaviour, philosophies and emotion about how to accomplish tasks. In the light of
Johnson-Laird’s (1983) definition, mental models reveal the process in which humans
handle and tackle tasks of deductive reasoning, and they might not necessarily be more
complex or represent real-life cases. Sasse (1997) pointed out that many existing mental
model theories are supported by the following assumptions: (1) users form a mental model
of the internal workings of the computer systems they are interacting with; (2) the content
and structure of that mental model influence how users interact with a system; (3) selecting
what information about the system is presented to users and how it is presented can
influence the content and structure of a mental model; (4) more detailed knowledge of how
users construct, invoke, and adapt mental models could be used to provide guidance for
user interfaces and user training, which could help users to form appropriate models. A
common view, from the existing theories of mental models, is that humans can build up
mental models by perception, imagination or conversation. Many researchers are devoted to
investigating how mental models are constructed. However, there is no agreement on
exactly how mental models are constructed. Some issues of disagreement are found between
different theories, such as the structure of the mental models how the mental models
influence the interaction between the user and the system, and how the mental models are
constructed (Sasse, 1997). Burns (2000) indicated that mental models traditionally have been
characterised in two ways, i.e. the construction of a mental model in a specific situation, and
as being activated from generalised knowledge. Mental models can be incomplete, simple,
abstract and even general. They can also be continuously evolving. The more detailed and
correct the mental models are, the more success users will achieve when interacting with
machines or devices.

 User Interfaces

68

Mental model issues are important and helpful to comprehend how humans process
information in various environments. It has long been assumed that users do employ some
type of model when interacting with machines. Norman (1983) indicated that mental models
provide ‘predictive and explanatory power’ for understanding the interaction. Norman
(1983) indicated the designer’s mental model as a conceptual model. A few years later,
Norman (1986) proposed a diagram and distinguished designers’ models (i.e. the design
model) and users’ mental models (i.e. the user’s model). Designers’ models are always
assumed to be an accurate, consistent and complete representation of the target system,
whereas users’ models might be limited and partial mental models of the designers’ models.
On condition that a user’s mental model matches a designer’s model, usability can be
achieved and errors can be reduced.
Many studies have been made to investigate whether users actually have and use mental
models when interacting with devices and systems (Rogers et al., 1992). By observing users’
performance on a system and comparing novice-expert differences in problem-solving
abilities within a particular domain, most of the research infers the existence of mental
models. Users’ mental model will affect the success of their performance. Reason (1990)
stated that inaccurate mental models of more complex systems (e.g. airplanes, nuclear
reactors) can lead to disastrous accidents. Burns (2000) indicated that decision errors are not
actual errors but normal consequences of the operator’s mental model.
Referring to the user expertise issue, a relevant question is whether novice and expert users
have the same or different mental models during the interaction, and how their mental
models facilitate their performance. Larkin (1983) investigated how novices and experts
reason about a physical situation, and found that the novice’s model represents objects in
the world and simulates processes occurring in real time, whereas the expert’s model
represents highly abstract relations and properties. A common idea of many researchers is
that experts’ mental models are more abstract and novices’ models appear more concrete
concerning levels of knowledge (DiSessa, 1983; Doane, 1986; Greeno, 1983; Larkin, 1983).
DiSessa (1983) used the term ‘macro-model’ to describe experts’ richer and more abstract
models. Experts appear to have fewer errors and lower severity of errors than novices in
performance (Larkin, 1983). Concerning problem-solving abilities, novices were paralyzed
by their ability to solve problems, while experts had several strategies for problem-solving
(Stagger & Norcio, 1993). In a study on computer programming, for instance, Davies (1994)
found that expert problem- solvers extracted additional knowledge from their more
complex mental models to solve the tasks, while novice problem-solvers focused on the
surface features of a problem. Novices reason on the basis of mental simulations that call for
the construction of models representing typical sequences of affairs (Kahneman & Tversky,
1982). However, there are still many related issues that are unclear or not solved yet – for
instance, when interacting with an unknown or new system/device, how much help expert
users can get from their existing mental models to construct new mental models, and
whether expert and novice users have different mental models when they navigate the
unknown system/device, neglecting the complex levels of interfaces. Furthermore, whether
expert users’ old mental model can adapt to a new interaction context, how such adaptation
facilitates or affects their interaction performance in the new context, and what external
factors can bring disturbance to the adaptation, are of great concern to researchers.
The different types or brands of a machine/system can either resemble or differ from each
other in some aspects of interface; for instance, in terms of icons, symbols, layout of
information display, menus, and terminology. The resemblance between similar

Considering the Importance of User Profiles in Interface Design

69

machines/systems can lead to confusion for users in the interaction, due to a lack of firm
boundaries between mental models (Norman, 1983). Although the basic underlying theory
of machine handling is more or less the same, there are two typical theoretical views
produced to illustrate how expert users’ mental models facilitate their performance in
navigation during interactions. The difference between the two theoretical views is whether
or not expert users depend on the organization of the interface in their interaction. For
instance, Spiro et al. (1988; 1991) proposed the Cognitive Flexibility Theory (CFT) to
emphasize the adaptation of expert users’ mental models to the new and unknown interface,
implying that expert users outperform novice users due to their mental model’s adaptation
to match the changes of the new or unknown interface/system. However, Vicente and
Wang’s (1998) Constraint Attunement Hypothesis (CAH) theory indicates that expert users’
better performance is tied to the organization of the interface, implying that expert users
will outperform novice users if the new and unknown interface resembles the old interfaces.
In reality, such resemblance and variation in interface organizations are unpredictable and
controlled by manufacturers. Based upon systematic research on users’ expertise in different
interaction situations, it was found that expert users appear to rely on their latest mental
model in problem solving when novice and expert users interact with a new and unknown
type or brand of a simple machine/system (Liu, 2009). This implies that expert users tend to
rely on their old mental models to explore a new and unknown interface. When facing new
terminologies in the interaction, expert users’ efforts to solve the problem appeared to be
based on semantic resemblance, while the novice users’ efforts appeared to be purposeless
(Liu, 2009). What could be learned from the findings of this current research is that expert
users’ navigations are based on their old mental models when interacting with a new and
unknown interface. Novice users chance to explore or navigate the interface without any
existing old mental models. In addition, Liu (2009) indicated the two sides of expert users’
old mental models, i.e. the existing old mental models can both benefit and impede expert
users’ interaction with a new or unknown interface. The positive and negative roles of
experts’ old mental models depend on the amount of resemblance or difference between the
old and the new/unknown interfaces.
On the one hand, expert users could benefit in their interaction when their old mental
models comply with the design of the new interface. On the other hand, when expert users’
old mental models do not comply with the new design, expert users may have problems in
their interaction or confront failures in exploration if they stick too firmly to their old mental
models. In order to avoid this negative effect, it is important for designers and
manufacturers to consider standardization issues in design. Liu and Osvalder (2009) pointed
out that terminology was a serious problem when using the same medical devices from
different manufacturers. Such terminology problems can cause confusion to expert users in
their guessing and exploration, which influenced expert users’ performance in the
interactions. In real medical contexts, it is common to see that the same devices designed
and produced by different manufacturers are used in the same units at hospitals. If there is a
big difference in terminology between the same devices of different brands or types, then
the terminology problem will bring unnecessary annoyance and stress to the medical staff,
and it might even lead to potential risks in their routine work.

5. Model of users’ expertise vs. complexity of medical user interfaces
The effect of users’ expertise difference on users’ performance in the interaction should be
studied together with considering complexity of the interfaces. Until now, there has been no

 User Interfaces

68

Mental model issues are important and helpful to comprehend how humans process
information in various environments. It has long been assumed that users do employ some
type of model when interacting with machines. Norman (1983) indicated that mental models
provide ‘predictive and explanatory power’ for understanding the interaction. Norman
(1983) indicated the designer’s mental model as a conceptual model. A few years later,
Norman (1986) proposed a diagram and distinguished designers’ models (i.e. the design
model) and users’ mental models (i.e. the user’s model). Designers’ models are always
assumed to be an accurate, consistent and complete representation of the target system,
whereas users’ models might be limited and partial mental models of the designers’ models.
On condition that a user’s mental model matches a designer’s model, usability can be
achieved and errors can be reduced.
Many studies have been made to investigate whether users actually have and use mental
models when interacting with devices and systems (Rogers et al., 1992). By observing users’
performance on a system and comparing novice-expert differences in problem-solving
abilities within a particular domain, most of the research infers the existence of mental
models. Users’ mental model will affect the success of their performance. Reason (1990)
stated that inaccurate mental models of more complex systems (e.g. airplanes, nuclear
reactors) can lead to disastrous accidents. Burns (2000) indicated that decision errors are not
actual errors but normal consequences of the operator’s mental model.
Referring to the user expertise issue, a relevant question is whether novice and expert users
have the same or different mental models during the interaction, and how their mental
models facilitate their performance. Larkin (1983) investigated how novices and experts
reason about a physical situation, and found that the novice’s model represents objects in
the world and simulates processes occurring in real time, whereas the expert’s model
represents highly abstract relations and properties. A common idea of many researchers is
that experts’ mental models are more abstract and novices’ models appear more concrete
concerning levels of knowledge (DiSessa, 1983; Doane, 1986; Greeno, 1983; Larkin, 1983).
DiSessa (1983) used the term ‘macro-model’ to describe experts’ richer and more abstract
models. Experts appear to have fewer errors and lower severity of errors than novices in
performance (Larkin, 1983). Concerning problem-solving abilities, novices were paralyzed
by their ability to solve problems, while experts had several strategies for problem-solving
(Stagger & Norcio, 1993). In a study on computer programming, for instance, Davies (1994)
found that expert problem- solvers extracted additional knowledge from their more
complex mental models to solve the tasks, while novice problem-solvers focused on the
surface features of a problem. Novices reason on the basis of mental simulations that call for
the construction of models representing typical sequences of affairs (Kahneman & Tversky,
1982). However, there are still many related issues that are unclear or not solved yet – for
instance, when interacting with an unknown or new system/device, how much help expert
users can get from their existing mental models to construct new mental models, and
whether expert and novice users have different mental models when they navigate the
unknown system/device, neglecting the complex levels of interfaces. Furthermore, whether
expert users’ old mental model can adapt to a new interaction context, how such adaptation
facilitates or affects their interaction performance in the new context, and what external
factors can bring disturbance to the adaptation, are of great concern to researchers.
The different types or brands of a machine/system can either resemble or differ from each
other in some aspects of interface; for instance, in terms of icons, symbols, layout of
information display, menus, and terminology. The resemblance between similar

Considering the Importance of User Profiles in Interface Design

69

machines/systems can lead to confusion for users in the interaction, due to a lack of firm
boundaries between mental models (Norman, 1983). Although the basic underlying theory
of machine handling is more or less the same, there are two typical theoretical views
produced to illustrate how expert users’ mental models facilitate their performance in
navigation during interactions. The difference between the two theoretical views is whether
or not expert users depend on the organization of the interface in their interaction. For
instance, Spiro et al. (1988; 1991) proposed the Cognitive Flexibility Theory (CFT) to
emphasize the adaptation of expert users’ mental models to the new and unknown interface,
implying that expert users outperform novice users due to their mental model’s adaptation
to match the changes of the new or unknown interface/system. However, Vicente and
Wang’s (1998) Constraint Attunement Hypothesis (CAH) theory indicates that expert users’
better performance is tied to the organization of the interface, implying that expert users
will outperform novice users if the new and unknown interface resembles the old interfaces.
In reality, such resemblance and variation in interface organizations are unpredictable and
controlled by manufacturers. Based upon systematic research on users’ expertise in different
interaction situations, it was found that expert users appear to rely on their latest mental
model in problem solving when novice and expert users interact with a new and unknown
type or brand of a simple machine/system (Liu, 2009). This implies that expert users tend to
rely on their old mental models to explore a new and unknown interface. When facing new
terminologies in the interaction, expert users’ efforts to solve the problem appeared to be
based on semantic resemblance, while the novice users’ efforts appeared to be purposeless
(Liu, 2009). What could be learned from the findings of this current research is that expert
users’ navigations are based on their old mental models when interacting with a new and
unknown interface. Novice users chance to explore or navigate the interface without any
existing old mental models. In addition, Liu (2009) indicated the two sides of expert users’
old mental models, i.e. the existing old mental models can both benefit and impede expert
users’ interaction with a new or unknown interface. The positive and negative roles of
experts’ old mental models depend on the amount of resemblance or difference between the
old and the new/unknown interfaces.
On the one hand, expert users could benefit in their interaction when their old mental
models comply with the design of the new interface. On the other hand, when expert users’
old mental models do not comply with the new design, expert users may have problems in
their interaction or confront failures in exploration if they stick too firmly to their old mental
models. In order to avoid this negative effect, it is important for designers and
manufacturers to consider standardization issues in design. Liu and Osvalder (2009) pointed
out that terminology was a serious problem when using the same medical devices from
different manufacturers. Such terminology problems can cause confusion to expert users in
their guessing and exploration, which influenced expert users’ performance in the
interactions. In real medical contexts, it is common to see that the same devices designed
and produced by different manufacturers are used in the same units at hospitals. If there is a
big difference in terminology between the same devices of different brands or types, then
the terminology problem will bring unnecessary annoyance and stress to the medical staff,
and it might even lead to potential risks in their routine work.

5. Model of users’ expertise vs. complexity of medical user interfaces
The effect of users’ expertise difference on users’ performance in the interaction should be
studied together with considering complexity of the interfaces. Until now, there has been no

 User Interfaces

70

definite or widely accepted guideline or principle regarding how to classify or define the
complexity of user interfaces. There could be different ways to classify the complexity levels
of different interfaces. From a practical viewpoint, Liu (2009) proposed a way to define the
complex levels of user interfaces based on five criteria: (1) ease of manipulation, which can
be seen from learning and training; (2) hierarchy of tasks both in broadness and in depth; (3)
amount of information in menu or pop-up windows; (4) number of items in menu and pop-
up windows; and (5) amount of cognitive resources and physical resources required in the
operation. Such a way of categorization is mainly based on amount of functions and sub-
functions, hierarchical levels of menu systems, and training time. The rationale of the
categorization has been successfully used in classifying medical user interfaces in medical
fields which require higher and stricter safety at work. This could be seen in research on the
relationship between differences in users’ expertise and in the complexity of medical user
interfaces (Liu et al., 2007; Liu, 2009). Concerning the effect of users’ expertise on their

Fig. 1. Model of users’ expertise vs. complexity of medical user interfaces

Considering the Importance of User Profiles in Interface Design

71

interaction with medical devices, Liu (2009) proposed a model (Fig.1) illustrating users’
expertise vs. complexity of medical user interfaces.
In the model, Nielsen’s ‘User cube’ (1993) was adopted as the basis to analyze and classify
users’ expertise. The three dimensions that user expertise is classified along are interpreted
as: (1) Interaction knowledge, i.e. the general knowledge about interacting with a specific
machine interface and the relevant elements (e.g., recognizing the function of the menu
system, layout and elements of the interface, buttons, icons, etc.); (2) Task knowledge, i.e.
the knowledge of the task domain addressed by a specific interface/system (e.g.,
terminology); and (3) Domain knowledge, i.e. the theoretical knowledge or underlying
theory about a task completion that is independent of a specific product or system (e.g.,
knowledge of how to act in order to cope with a certain state or task). For user-
(medical)device interaction in the medical field, the three dimensions along which user
expertise is classified are interpreted correspondingly as: interaction knowledge about a
specific medical device, task knowledge addressed by a specific medical device, and domain
knowledge about the specific medical treatment. Thereby, expert users are defined as users
who have rich interaction knowledge, task knowledge and domain knowledge of a specific
system, and are skilful in obtaining and using the knowledge to achieve goals or tasks in the
interaction. Likewise, novice users are defined as users who are naïve about a specific
system, having less use/interaction experience, and appearing unskilful in using and
obtaining knowledge to achieve goals and tasks in the interaction.
One issue illustrated by this model is the relationship between the interface and different
components or dimensions of users’ expertise. An obvious attribute of interfaces affecting
the users’ task knowledge is the terminology used (i.e. names of functions, concepts or
icons). However, the obvious attributes of interfaces affecting the users’ interaction
knowledge appear to be layout and elements (e.g. menu structure and ways of interaction).
Secondly, the model shows that the influence of users’ expertise on users’ behaviour differs
in relation to the complexity levels of medical user interfaces. Such a model provides
information about differences between novice and expert users in the activity dimension.
When interacting with a simple medical user interface, the expert users are not superior to
the novice users in performance. In other words, expert users appear similar to novice users
in terms of task completion. However, the expert users outperformed the novice users when
interacting with a complex medical user interface, implying that the effect of users’ expertise
difference is visible in the activity dimension. The complexity of complex user interfaces
makes it easier for novice users to get lost in the navigation. Liu (2009) indicated that novice
users appear to choose buttons or actions more or less by chance during the navigation,
while expert users base their interaction on reasoning and decision-making reflecting their
professional skill. Although this model was developed on the basis of usability studies in
the medical area, the results and findings can be referred to or applied in other areas as well,
such as process industries which demand high safety and high levels of users’
expertise/skill.

6. Impact of user expertise on usability evaluation
6.1 Users’ expertise issue in usability evaluation
Usability evaluation is an important step in design development and refinement for UCD
and interactive design. For interface design, usability evaluation is needed in various stages
of the whole design process, aiming to avoiding usability problems from the beginning.

 User Interfaces

70

definite or widely accepted guideline or principle regarding how to classify or define the
complexity of user interfaces. There could be different ways to classify the complexity levels
of different interfaces. From a practical viewpoint, Liu (2009) proposed a way to define the
complex levels of user interfaces based on five criteria: (1) ease of manipulation, which can
be seen from learning and training; (2) hierarchy of tasks both in broadness and in depth; (3)
amount of information in menu or pop-up windows; (4) number of items in menu and pop-
up windows; and (5) amount of cognitive resources and physical resources required in the
operation. Such a way of categorization is mainly based on amount of functions and sub-
functions, hierarchical levels of menu systems, and training time. The rationale of the
categorization has been successfully used in classifying medical user interfaces in medical
fields which require higher and stricter safety at work. This could be seen in research on the
relationship between differences in users’ expertise and in the complexity of medical user
interfaces (Liu et al., 2007; Liu, 2009). Concerning the effect of users’ expertise on their

Fig. 1. Model of users’ expertise vs. complexity of medical user interfaces

Considering the Importance of User Profiles in Interface Design

71

interaction with medical devices, Liu (2009) proposed a model (Fig.1) illustrating users’
expertise vs. complexity of medical user interfaces.
In the model, Nielsen’s ‘User cube’ (1993) was adopted as the basis to analyze and classify
users’ expertise. The three dimensions that user expertise is classified along are interpreted
as: (1) Interaction knowledge, i.e. the general knowledge about interacting with a specific
machine interface and the relevant elements (e.g., recognizing the function of the menu
system, layout and elements of the interface, buttons, icons, etc.); (2) Task knowledge, i.e.
the knowledge of the task domain addressed by a specific interface/system (e.g.,
terminology); and (3) Domain knowledge, i.e. the theoretical knowledge or underlying
theory about a task completion that is independent of a specific product or system (e.g.,
knowledge of how to act in order to cope with a certain state or task). For user-
(medical)device interaction in the medical field, the three dimensions along which user
expertise is classified are interpreted correspondingly as: interaction knowledge about a
specific medical device, task knowledge addressed by a specific medical device, and domain
knowledge about the specific medical treatment. Thereby, expert users are defined as users
who have rich interaction knowledge, task knowledge and domain knowledge of a specific
system, and are skilful in obtaining and using the knowledge to achieve goals or tasks in the
interaction. Likewise, novice users are defined as users who are naïve about a specific
system, having less use/interaction experience, and appearing unskilful in using and
obtaining knowledge to achieve goals and tasks in the interaction.
One issue illustrated by this model is the relationship between the interface and different
components or dimensions of users’ expertise. An obvious attribute of interfaces affecting
the users’ task knowledge is the terminology used (i.e. names of functions, concepts or
icons). However, the obvious attributes of interfaces affecting the users’ interaction
knowledge appear to be layout and elements (e.g. menu structure and ways of interaction).
Secondly, the model shows that the influence of users’ expertise on users’ behaviour differs
in relation to the complexity levels of medical user interfaces. Such a model provides
information about differences between novice and expert users in the activity dimension.
When interacting with a simple medical user interface, the expert users are not superior to
the novice users in performance. In other words, expert users appear similar to novice users
in terms of task completion. However, the expert users outperformed the novice users when
interacting with a complex medical user interface, implying that the effect of users’ expertise
difference is visible in the activity dimension. The complexity of complex user interfaces
makes it easier for novice users to get lost in the navigation. Liu (2009) indicated that novice
users appear to choose buttons or actions more or less by chance during the navigation,
while expert users base their interaction on reasoning and decision-making reflecting their
professional skill. Although this model was developed on the basis of usability studies in
the medical area, the results and findings can be referred to or applied in other areas as well,
such as process industries which demand high safety and high levels of users’
expertise/skill.

6. Impact of user expertise on usability evaluation
6.1 Users’ expertise issue in usability evaluation
Usability evaluation is an important step in design development and refinement for UCD
and interactive design. For interface design, usability evaluation is needed in various stages
of the whole design process, aiming to avoiding usability problems from the beginning.

 User Interfaces

72

Usability testing (e.g., Nielsen, 1993; McClelland, 1995) is a commonly used method for
assessing the usability of a product or system. A range of earlier studies has investigated the
effects of different methodological approaches on the result of a usability test. For instance,
different data collection methods have been compared including comparisons between
theoretical and empirical evaluations (e.g. Karat, 1988; Landauer, 1988). Usability tests in
laboratory environments have been contrasted to tests in real-life settings (e.g. Jørgensen,
1989). The effect of the number of subjects in the usability tests has been explored (e.g.
Lewis, 1994; Virzi, 1992), and the outcome of individual versus cooperating users as test
subjects has been investigated (Hackman & Biers, 1992). Also the choice of evaluation tasks
has been evaluated (Held & Biers, 1992; Karat et al., 1992). Furthermore, the level of
experimenter intervention (Held & Biers, 1992) and the evaluator aspect (Jacobsen &
Hertzum, 1998) have been covered. As an increasingly important aspect of usability studies,
the user profile has gained attention. By acquiring knowledge about the intended users’ age
and gender but also, for instance, their education and cultural background, it is considered
possible to better foresee the potential difficulties that users may face when learning and
interacting with the interface.
Computer-based technical devices or machines with different brands or by different
manufacturers provide a possibility for consumers or buyers to choose the options that are
most suitable in terms of either business profits or practical considerations in today’s
marketing. For instance, hospitals have to update or purchase new equipment from time to
time in order to meet the requirements of treatment, and sometimes they have to consider
updating and buying equipment of different brands/―types or perhaps by different
manufacturers. A practical question is whether the expert users can transfer their expertise
to facilitate their interacting with a new brand/type of computer-based systems― that is, if
the expert users are asked to perform their familiarized or routine tasks, whether they can
adapt their performance or capability to new brands/types of computer-based systems. In
addition, how should designers involve users having different expertise levels in the design
process, as well as choose test participants at usability evaluation stage in order to benefit
the design process in an optimum way? Hence, we focus on discussing user expertise and
its impact on usability evaluation in this chapter.
In the traditional rationale of usability testing, novice and experts are always given separate
tests and different tasks; e.g. tests involving novice users focus on learnability while tests
with expert users most often focus on optimal use (Fulkner & Wick, 2005). The difference in
testing focus cannot help but implement comparison across user levels (Faulkner and Wick,
2005). A study by researchers from the Hong Kong University of Science and Technology
suggested that testing and analyzing the performance of novice users against experienced
users in the same test provides an additional layer of information that testing the two
separately does not provide (Goonetileke et al., 2001). Based on examination of usability test
guidelines and recommendations from popular usability handbooks, such as Barnum (2002),
Hackos and Redish (1998), Nielsen (1993), and Rubin (1994), the pervasive view is
confirmed, i.e. testing novices and experts for different reasons and adopting different
information-gathering approaches. In order to gain a picture of its full range of usability, it
is essential to get data from all levels of users. Even though a number of studies argue the
importance of considering users’ expertise in usability tests (e.g. Goonetilleke et al., 2001;
Levenson & Tuner, 1993), few studies have systematically investigated the effect of user
expertise difference on the test results when different user categories have been considered.
What can be expected is that the users’ level of expertise will influence the problems that

Considering the Importance of User Profiles in Interface Design

73

they may face when learning how to interact, or when interacting with, a user interface, so
this same aspect can be assumed to influence the results of a usability test as well.
The most recent study about user expertise issues is an empirical study examining the
impact of user expertise and prototype fidelity on the outcomes of a usability test,
conducted by Sauer et al. (2009). In that study, user expertise (expert vs. novice) and
prototype fidelity (paper prototype, 3D mock-up, and fully operational appliance) were
manipulated as independent variables in a 2 × 3 between-subjects design. The results
revealed that experts had more usability problems but with lower severity level than
novices. Prototypes with reduced fidelity were found basically suitable to predict product
usability of the real products, which gives implications for prototype fidelity issues in
running usability tests.
Liu (2009) analyzed and summarised the impact of user expertise on outcomes of usability
tests when interacting with user interfaces of different complex levels (i.e. simple interface
and complex interface). The contributions of users with different expertise (i.e. novice and
expert users) during the usability tests were analyzed and compared along two dimensions,
i.e. an activity dimension, referring to users’ activity during task completion (e.g. actions,
errors made), and a verbal explanation dimension, referring to users’ verbal explanation or
subjective opinions (such as their presentation of redesign proposals). The information
extracted from the test results, which revealed the contributions of the users with different
expertise, was classified according to these two dimensions. Both quantitative data (e.g.
number of errors and task completion time); and qualitative data (e.g. cause of errors based
on analysis of verbal protocols) were considered in the analysis of the users’ activity, while
only qualitative data (e.g. ways of presenting information, sources of decision-making for
redesign proposals, contents/volume of proposals) were considered in the analysis of users’
verbal explanations.
What has been identified is that a quantitative analysis of; e.g. task completion time and/or
number of errors; reflects only on a fairly superficial level the differences in users’ expertise.
This implies; e.g. that there may be no differences between novice and expert users when
interacting with a simple interface, but that the differences would be evident if interacting
with a more complex interface. However, the findings concerning qualitative analysis of
verbal explanation and causes of errors instead stressed the differences between novice and
expert users by characterizing the basis for decisions underlying certain actions as well as
the presentation of redesign proposals. Therefore, quantitative analysis is insufficient to
investigate and reach an understanding of users’ expertise differences and its impact on the
outcome of a usability test.
Insufficiencies of domain and interaction knowledge are; e.g. consistently identified as
typical causes of errors for novice users. On the other hand, the differences of information
organization between previously experienced user interfaces and the interfaces interacted
with in the usability tests affected expert users’ task completion. Consequently, expert users
made task-related errors due to terminology issues and interaction-related errors due to
their ‘old’ mental model of how to interact with the user interface. Some errors due to a lack
of attention were detected in both user groups. However, expert users made such
unintended errors; due to the negative influence of expert users’ contentment with their
expertise level. Novice users made a few such unintended errors, due to unusual external
factors (e.g. temporary and unpredictable tiredness during the tests).
The qualitative analysis of verbal statements also revealed some typical differences between
novice and expert users in decision-making, presentation and judgement, which implied

 User Interfaces

72

Usability testing (e.g., Nielsen, 1993; McClelland, 1995) is a commonly used method for
assessing the usability of a product or system. A range of earlier studies has investigated the
effects of different methodological approaches on the result of a usability test. For instance,
different data collection methods have been compared including comparisons between
theoretical and empirical evaluations (e.g. Karat, 1988; Landauer, 1988). Usability tests in
laboratory environments have been contrasted to tests in real-life settings (e.g. Jørgensen,
1989). The effect of the number of subjects in the usability tests has been explored (e.g.
Lewis, 1994; Virzi, 1992), and the outcome of individual versus cooperating users as test
subjects has been investigated (Hackman & Biers, 1992). Also the choice of evaluation tasks
has been evaluated (Held & Biers, 1992; Karat et al., 1992). Furthermore, the level of
experimenter intervention (Held & Biers, 1992) and the evaluator aspect (Jacobsen &
Hertzum, 1998) have been covered. As an increasingly important aspect of usability studies,
the user profile has gained attention. By acquiring knowledge about the intended users’ age
and gender but also, for instance, their education and cultural background, it is considered
possible to better foresee the potential difficulties that users may face when learning and
interacting with the interface.
Computer-based technical devices or machines with different brands or by different
manufacturers provide a possibility for consumers or buyers to choose the options that are
most suitable in terms of either business profits or practical considerations in today’s
marketing. For instance, hospitals have to update or purchase new equipment from time to
time in order to meet the requirements of treatment, and sometimes they have to consider
updating and buying equipment of different brands/―types or perhaps by different
manufacturers. A practical question is whether the expert users can transfer their expertise
to facilitate their interacting with a new brand/type of computer-based systems― that is, if
the expert users are asked to perform their familiarized or routine tasks, whether they can
adapt their performance or capability to new brands/types of computer-based systems. In
addition, how should designers involve users having different expertise levels in the design
process, as well as choose test participants at usability evaluation stage in order to benefit
the design process in an optimum way? Hence, we focus on discussing user expertise and
its impact on usability evaluation in this chapter.
In the traditional rationale of usability testing, novice and experts are always given separate
tests and different tasks; e.g. tests involving novice users focus on learnability while tests
with expert users most often focus on optimal use (Fulkner & Wick, 2005). The difference in
testing focus cannot help but implement comparison across user levels (Faulkner and Wick,
2005). A study by researchers from the Hong Kong University of Science and Technology
suggested that testing and analyzing the performance of novice users against experienced
users in the same test provides an additional layer of information that testing the two
separately does not provide (Goonetileke et al., 2001). Based on examination of usability test
guidelines and recommendations from popular usability handbooks, such as Barnum (2002),
Hackos and Redish (1998), Nielsen (1993), and Rubin (1994), the pervasive view is
confirmed, i.e. testing novices and experts for different reasons and adopting different
information-gathering approaches. In order to gain a picture of its full range of usability, it
is essential to get data from all levels of users. Even though a number of studies argue the
importance of considering users’ expertise in usability tests (e.g. Goonetilleke et al., 2001;
Levenson & Tuner, 1993), few studies have systematically investigated the effect of user
expertise difference on the test results when different user categories have been considered.
What can be expected is that the users’ level of expertise will influence the problems that

Considering the Importance of User Profiles in Interface Design

73

they may face when learning how to interact, or when interacting with, a user interface, so
this same aspect can be assumed to influence the results of a usability test as well.
The most recent study about user expertise issues is an empirical study examining the
impact of user expertise and prototype fidelity on the outcomes of a usability test,
conducted by Sauer et al. (2009). In that study, user expertise (expert vs. novice) and
prototype fidelity (paper prototype, 3D mock-up, and fully operational appliance) were
manipulated as independent variables in a 2 × 3 between-subjects design. The results
revealed that experts had more usability problems but with lower severity level than
novices. Prototypes with reduced fidelity were found basically suitable to predict product
usability of the real products, which gives implications for prototype fidelity issues in
running usability tests.
Liu (2009) analyzed and summarised the impact of user expertise on outcomes of usability
tests when interacting with user interfaces of different complex levels (i.e. simple interface
and complex interface). The contributions of users with different expertise (i.e. novice and
expert users) during the usability tests were analyzed and compared along two dimensions,
i.e. an activity dimension, referring to users’ activity during task completion (e.g. actions,
errors made), and a verbal explanation dimension, referring to users’ verbal explanation or
subjective opinions (such as their presentation of redesign proposals). The information
extracted from the test results, which revealed the contributions of the users with different
expertise, was classified according to these two dimensions. Both quantitative data (e.g.
number of errors and task completion time); and qualitative data (e.g. cause of errors based
on analysis of verbal protocols) were considered in the analysis of the users’ activity, while
only qualitative data (e.g. ways of presenting information, sources of decision-making for
redesign proposals, contents/volume of proposals) were considered in the analysis of users’
verbal explanations.
What has been identified is that a quantitative analysis of; e.g. task completion time and/or
number of errors; reflects only on a fairly superficial level the differences in users’ expertise.
This implies; e.g. that there may be no differences between novice and expert users when
interacting with a simple interface, but that the differences would be evident if interacting
with a more complex interface. However, the findings concerning qualitative analysis of
verbal explanation and causes of errors instead stressed the differences between novice and
expert users by characterizing the basis for decisions underlying certain actions as well as
the presentation of redesign proposals. Therefore, quantitative analysis is insufficient to
investigate and reach an understanding of users’ expertise differences and its impact on the
outcome of a usability test.
Insufficiencies of domain and interaction knowledge are; e.g. consistently identified as
typical causes of errors for novice users. On the other hand, the differences of information
organization between previously experienced user interfaces and the interfaces interacted
with in the usability tests affected expert users’ task completion. Consequently, expert users
made task-related errors due to terminology issues and interaction-related errors due to
their ‘old’ mental model of how to interact with the user interface. Some errors due to a lack
of attention were detected in both user groups. However, expert users made such
unintended errors; due to the negative influence of expert users’ contentment with their
expertise level. Novice users made a few such unintended errors, due to unusual external
factors (e.g. temporary and unpredictable tiredness during the tests).
The qualitative analysis of verbal statements also revealed some typical differences between
novice and expert users in decision-making, presentation and judgement, which implied

 User Interfaces

74

that expert users’ use experience and novice users’ interaction experience differ in
contributing to product design and development.

6.2 Implications for choice of test subjects
Most researchers consider it important to understand user requirements when developing
products (e.g. Cooper & Kleinschmidt, 2000; Nielsen, 1993; Ullrich & Eppinger, 1995; Urban
& Hauser, 1993). Users’ involvement in the design process is critical for understanding user
requirements for the products. Engelbrektsson (2004) pointed out that the choice of
participants is a key issue for eliciting user requirements in user studies. There has been a
debate between researchers regarding whether novice or expert users should be chosen for
the design process. For instance, in the traditional scientific view, ‘naïve’ users (users
without any knowledge or use experience about a certain product) are suggested to be
chosen for experimental tests in order to avoid the bias of previous experiences and habits
(e.g. Chapanis, 1959). However, Johnson and Baker (1974) argued that such ‘naïve’ users
could lead to invalidity of the test results in the product development. A study made by
Engelbrektsson et al. (2000) found that users with little or no prior product use experience
based their assessments on interaction experiences made during the product (usability) test
only, while users with long product use experience typically made references also to prior
experiences in their assessments and comments on the product being tested.
In the product development process, a most common question for designers is how to
choose users as test subjects when carrying out usability evaluation on a new, recently
developed product/system. The key point is whether expert users can transfer their
previous expertise or knowledge to facilitate their interacting with an unknown or recently
developed machine/system. Engelbrektsson (2004) classified users’ use experience into
three categories: problem experience (e.g. experiencing problems with existing product
design), interaction experience (e.g. users interact with a user interface during the
development process in an experimental test setting), and product use experience (e.g.
experience gained from use situations). Engelbrektsson et al. (2000) stated that expert users
with long product use experience could combine their previous use experiences and their
interaction experience in their assessments and comments on the new product being
evaluated.
Liu (2009) analyzed the characteristics of novice and expert users’ difference in terms of
redesign proposals and ways of presentation during usability evaluation. The expert users’
proposals appeared to be inductive in character, i.e. the expert users summarized their
redesign suggestions based on long-term practical experience, while the novice users’
proposals appeared to be deductive, i.e. they summarized their redesign suggestions either
based on a few incidents experienced in the short-term period or based on their subjective
reasoning. This implied that users’ subjective comments on redesign proposals and ways of
presentation are related to differences in users’ expertise. Novice users may provide more
useful information on design issues describing how to manipulate a simple interface
(including relevant buttons and menus etc.), while expert users can provide information on
more experienced users’ problems when faced with a new design and can better project
their interaction experience in a controlled test environment to real-use conditions. In terms
of the guessability and learnability of the new interface, novice users’ information originated
from their interaction experience during the test only, while expert users’ information
originated from the combination of their interaction experience during the test and
references also to prior experiences with other types or brands of products.

Considering the Importance of User Profiles in Interface Design

75

Concerning important implications for choice of test subjects in usability tests, a general
point is that choosing expert users as test participants may compensate for the limitations of
usability tests, in that the interaction experience gained during the test can indeed be
weighed against actual use, and use during different use conditions. This has, for instance,
been suggested by Karlsson (1996). Liu (2009) indicated that interaction situations, i.e.
complexity levels of interfaces, should also be considered when choosing test participants
for usability tests. In the case of interacting with simple interfaces, novice and expert users
should be involved in usability tests but for different reasons, i.e. involving novice users for
investigating interaction or interface aspects, and expert users for redesign proposals.
However, in the case of interacting with complex medical user interfaces, expert users are
more suitable for usability tests.
At the user research stage, expert users should be involved, since expert users can benefit
the research with useful and practical information based on their own previous use
experience, problem experience, and collected news of other users’ experience. Evaluation
and conceptual design are two important stages in the iterative design process, where
necessary usability evaluation is requested. At the conceptual design stage, initial concept
products or prototypes are normally created. Due to business commercial and
confidentiality reasons, the analytical evaluation approach by in-house engineers or
usability experts is widely adopted in medical industries for verification of the conceptual
design. Although medical device users should receive special medical training before
starting real use of the devices, ease of learning is always a basic and critical usability
heuristic for device design when considering safety and risk management in the medical
health care system. By taking novice users’ learning experience by exploration into
consideration during the usability inspection process, analysts can successfully predict real
novice users’ performance and their potential problems with the design. At the evaluation
stage, an empirical evaluation approach is normally to be employed on manufactured
machines or devices with full functions. In order to get accurate users’ elicitations, novice
users should be employed in the usability evaluation as test subjects for medical devices
with simple user interfaces, while expert users should be employed in the usability
evaluation as test subjects for medical devices with complex user interfaces.

7. Summary
This chapter shows the importance of user profiles in the interface design process, and
especially aims at updating the current knowledge of research about novice/expert issues
and emphasizes novice and expert users’ difference in various interaction situations, as well
as providing key implications for interface design.
It is indicated that the effect of users’ expertise on the empirical evaluation results may differ
between simple and complex user interfaces. Expert users outperform novice users when
interacting with a complex interface, but not when interacting with a simple interface. The
analysis of redesign proposals has implied that novice and expert users differ in the content
and coverage of information suggested, as well as in ways of presentation. Expert users’
previous use experience can have both positive and negative influence on users’ interaction
with interfaces. On the one hand, previous use experience could benefit expert users
through richer interaction knowledge. On the other hand, expert users appear to rely on
their previous use experience and stick to their old mental models of task completion, which
has a negative influence on their mental models’ adaptation to the interaction with a new or

 User Interfaces

74

that expert users’ use experience and novice users’ interaction experience differ in
contributing to product design and development.

6.2 Implications for choice of test subjects
Most researchers consider it important to understand user requirements when developing
products (e.g. Cooper & Kleinschmidt, 2000; Nielsen, 1993; Ullrich & Eppinger, 1995; Urban
& Hauser, 1993). Users’ involvement in the design process is critical for understanding user
requirements for the products. Engelbrektsson (2004) pointed out that the choice of
participants is a key issue for eliciting user requirements in user studies. There has been a
debate between researchers regarding whether novice or expert users should be chosen for
the design process. For instance, in the traditional scientific view, ‘naïve’ users (users
without any knowledge or use experience about a certain product) are suggested to be
chosen for experimental tests in order to avoid the bias of previous experiences and habits
(e.g. Chapanis, 1959). However, Johnson and Baker (1974) argued that such ‘naïve’ users
could lead to invalidity of the test results in the product development. A study made by
Engelbrektsson et al. (2000) found that users with little or no prior product use experience
based their assessments on interaction experiences made during the product (usability) test
only, while users with long product use experience typically made references also to prior
experiences in their assessments and comments on the product being tested.
In the product development process, a most common question for designers is how to
choose users as test subjects when carrying out usability evaluation on a new, recently
developed product/system. The key point is whether expert users can transfer their
previous expertise or knowledge to facilitate their interacting with an unknown or recently
developed machine/system. Engelbrektsson (2004) classified users’ use experience into
three categories: problem experience (e.g. experiencing problems with existing product
design), interaction experience (e.g. users interact with a user interface during the
development process in an experimental test setting), and product use experience (e.g.
experience gained from use situations). Engelbrektsson et al. (2000) stated that expert users
with long product use experience could combine their previous use experiences and their
interaction experience in their assessments and comments on the new product being
evaluated.
Liu (2009) analyzed the characteristics of novice and expert users’ difference in terms of
redesign proposals and ways of presentation during usability evaluation. The expert users’
proposals appeared to be inductive in character, i.e. the expert users summarized their
redesign suggestions based on long-term practical experience, while the novice users’
proposals appeared to be deductive, i.e. they summarized their redesign suggestions either
based on a few incidents experienced in the short-term period or based on their subjective
reasoning. This implied that users’ subjective comments on redesign proposals and ways of
presentation are related to differences in users’ expertise. Novice users may provide more
useful information on design issues describing how to manipulate a simple interface
(including relevant buttons and menus etc.), while expert users can provide information on
more experienced users’ problems when faced with a new design and can better project
their interaction experience in a controlled test environment to real-use conditions. In terms
of the guessability and learnability of the new interface, novice users’ information originated
from their interaction experience during the test only, while expert users’ information
originated from the combination of their interaction experience during the test and
references also to prior experiences with other types or brands of products.

Considering the Importance of User Profiles in Interface Design

75

Concerning important implications for choice of test subjects in usability tests, a general
point is that choosing expert users as test participants may compensate for the limitations of
usability tests, in that the interaction experience gained during the test can indeed be
weighed against actual use, and use during different use conditions. This has, for instance,
been suggested by Karlsson (1996). Liu (2009) indicated that interaction situations, i.e.
complexity levels of interfaces, should also be considered when choosing test participants
for usability tests. In the case of interacting with simple interfaces, novice and expert users
should be involved in usability tests but for different reasons, i.e. involving novice users for
investigating interaction or interface aspects, and expert users for redesign proposals.
However, in the case of interacting with complex medical user interfaces, expert users are
more suitable for usability tests.
At the user research stage, expert users should be involved, since expert users can benefit
the research with useful and practical information based on their own previous use
experience, problem experience, and collected news of other users’ experience. Evaluation
and conceptual design are two important stages in the iterative design process, where
necessary usability evaluation is requested. At the conceptual design stage, initial concept
products or prototypes are normally created. Due to business commercial and
confidentiality reasons, the analytical evaluation approach by in-house engineers or
usability experts is widely adopted in medical industries for verification of the conceptual
design. Although medical device users should receive special medical training before
starting real use of the devices, ease of learning is always a basic and critical usability
heuristic for device design when considering safety and risk management in the medical
health care system. By taking novice users’ learning experience by exploration into
consideration during the usability inspection process, analysts can successfully predict real
novice users’ performance and their potential problems with the design. At the evaluation
stage, an empirical evaluation approach is normally to be employed on manufactured
machines or devices with full functions. In order to get accurate users’ elicitations, novice
users should be employed in the usability evaluation as test subjects for medical devices
with simple user interfaces, while expert users should be employed in the usability
evaluation as test subjects for medical devices with complex user interfaces.

7. Summary
This chapter shows the importance of user profiles in the interface design process, and
especially aims at updating the current knowledge of research about novice/expert issues
and emphasizes novice and expert users’ difference in various interaction situations, as well
as providing key implications for interface design.
It is indicated that the effect of users’ expertise on the empirical evaluation results may differ
between simple and complex user interfaces. Expert users outperform novice users when
interacting with a complex interface, but not when interacting with a simple interface. The
analysis of redesign proposals has implied that novice and expert users differ in the content
and coverage of information suggested, as well as in ways of presentation. Expert users’
previous use experience can have both positive and negative influence on users’ interaction
with interfaces. On the one hand, previous use experience could benefit expert users
through richer interaction knowledge. On the other hand, expert users appear to rely on
their previous use experience and stick to their old mental models of task completion, which
has a negative influence on their mental models’ adaptation to the interaction with a new or

 User Interfaces

76

unknown interface. Compared with novice users’ proposals, expert users’ proposals
appeared to be more concrete and detailed in content and volume, as well as broader and
deeper in coverage. Novice users proposed redesign suggestions based on their interaction
experience during the test, and on deductive reasoning – while expert users proposed
redesign suggestions based on their interaction experience during the test, and on inductive
reasoning that referred to their prior use experience with other types or brands of products.
Due to lack of experience or practice, personal preferences were found to be a basis of
novice users’ judgments and redesign proposals. Due to more use experience or practice,
expert users appeared to be unbiased in subjective assessments.
When choosing participants for usability tests, it is necessary to consider both users’
expertise difference and the level of complexity of the interface to be tested. For simple user
interfaces, novice users should be involved in usability evaluation for eliciting useful
information about how to manipulate the interface (e.g. menus and buttons), while expert
users should be involved for eliciting constructive information on re-learning issues with a
new design as well as suggesting helpful redesign proposals. For complex medical user
interfaces, expert users should be more suitable to be chosen as test subjects in usability
evaluation due to their constructive redesign proposals as well as the practical usability
problems identified by their performance.
The differences in information organization between the previously used interfaces and a new
or unknown interface interacted with in the tests; can influence expert users’ interaction with
the new or unknown interface. When the information organization of the previously used
interfaces resembles that of the new or unknown interface, expert users can outperform novice
users. When there is a big difference between the previously used interfaces and the new or
unknown interface concerning information organization, expert users’ old mental model or
previous use experience can have negative effects on their interaction.
Although science and technology provide the possibility for the HCI and interface design to
develop rapidly and innovatively, there still exist some challenges for designers and
engineers to go deeper in thinking and studies – for instance, how to deal with innovations
of interface elements (e.g. navigation methods, terminology issues, icons and their
representations) so as to balance the old and new designs and to avoid confusion for users,
how to understand and apply globalization and standardization in interface design, and
how to reach optimal trade-offs when considering different attributes of user profiles. All
these questions urge the necessity and importance of investments in research on user
profiles in the near future.

8. References
ACM SIGCHI, 1992. Curricula for Human-computer Interaction. ACM Special Interest Group

on Computer-Human Interaction Curriculum Development Group, New York.
Barret, E., and Lally, V., 1999. Gender differences in an on-line learning environment.

Journal of Computer Assisted Learning, 15(1), 48-60.
Belenky, M.F., Clinchy, B.M., Goldberger, N.R., and Tarule, J.M., 1986. Women’s ways of

knowing. Basic Books, New York.
Botwinick, J., 1973. Aging and behaviour. Springer, New York.
Broos, A., 2005. Gender and information and communication technologies (ICT) anxiety:

Male self-assurance and female hesitation. Cyber Psychology & Behaviour, 8(1), 21-
31.

Considering the Importance of User Profiles in Interface Design

77

Brown, D.E., 1991. Human Universals. McGraw-Hill, New York.
Burns, K., 2000. Mental models and normal errors in naturalistic decision making.

Proceedings of 5th Conference on Naturalistic Decision Making, Tammsvik.
Buur, J., and Windum, J., 1994. MMI Design – Man-Machine Interface. Danish Design

Centre, Copenhagen, Denmark.
Chaparro, A., Bohan, M., Fernandez, J., Choi, S.D., Kattel, B., 1999. The impact of age on

computer input device use: psychophysical and physiological measures.
International Journal of Industrial Ergonomics, 24, 503-513.

Chapanis, A., 1959. Research techniques in human engineering. John Hopkins University
Press, Baltimore, MA.

Chi, M.T.H., Feltovich, P.J., and Glaser, R., 1981. Categorization and representation of
physics problems by experts and novices. Cognitive Science, 5, 121-152.

Clemmensen, T., Hertzum, M., Hornbæk, Shi, Qx., Yammiyavar, P., 2009. Cultural cognition
in usability evaluation. Interacting with computers, 21, 212-220.

Cooper, R.G., and Kleinschmidt, EmJ., 2000. New Product Performance: What distinguishes
Star products, Australian Journal of Management, 25(1), 17-46.

Craik, K.J.W., 1943. The Nature of Explanation. Cambridge, U.K.: Cambridge University
Press.

Craik, F.I.M., Salthouse, T.A., 2000. The Handbook of Aging and Cognition. 2nd ecition.
Lawrence Erlbaum Associates Inc., New Jersey.

Czaja, S.J., Sharit, J., 1993. Age differences in the performance of computer-based work.
Psychology and Aging, 8(1), 59-67.

Darin, E.R., Meitzler, T.J., Witus, G., Sohn, E., Bryk, D., Goetz, R., and Gerhart, G.R., 2000.
Computational modelling of age-differences in a visually demanding driving task:
vehicle detection. IEEE Transactions on Systems, Man, and Cybernetics, Part A:
Systems and Humans, Vol.30, No.3., 336-346.

Davies, S.P., 1994. Knowledge restructuring and the acquisition of programming expertise.
International Journal of Human-Computer Studies 40, 703-726.DiSessa, A.A. 1983.
Phenomenology and the evolution of intuition. In: D. Gentner and A.L. Sevens
(Eds.), Mental Models. Hillsdale, NJ: Lawrence Erlbaum Associates. 15-34.

Doane, S.M. 1986. A longitudinal study of unix users’ expertise, unix mental models, and
task performance. Doctoral thesis. University of California, Santa Barbara, CA,
USA. Dissertation Abstracts International. 48: 585B.

Dreyfus, H.L., and Dreyfus, S.E., 1986. Mind over machine: The power of human intuition
and expertise in the era of the computer. Free Press, New York.

Engelbrektsson, P., Yesil, Ö, and Karlsson, I.C.M., 2000. Eliciting customer requirements in
focus group interviews: can efficiency be increased? EIASM: The 7th international
product development management conference, May 29-30. 129-141

Engelbrektsson, P., 2004. Enabling the user – Exploring methodological effects on user
requirements elicitation. Doctoral thesis. Chalmers University of Technology,
Gothenburg, Sweden.

Faulkner, X., 2000. Usability Engineering. Palgrave, UK.
Faulkner, L., and Wick, D., 2005. Cross-user analysis: Benefits of skill level comparison in

usability testing. Interacting with Computers, 17, 773-786.
Goonetilleke, R.S., Shih, H.M., Kurniawan, S.H., On, Fritsch, 2001. Effects of training and

representational characteristics in icon design. International Journal of Human-
Computer Studies, 55(5), 741-760.

 User Interfaces

76

unknown interface. Compared with novice users’ proposals, expert users’ proposals
appeared to be more concrete and detailed in content and volume, as well as broader and
deeper in coverage. Novice users proposed redesign suggestions based on their interaction
experience during the test, and on deductive reasoning – while expert users proposed
redesign suggestions based on their interaction experience during the test, and on inductive
reasoning that referred to their prior use experience with other types or brands of products.
Due to lack of experience or practice, personal preferences were found to be a basis of
novice users’ judgments and redesign proposals. Due to more use experience or practice,
expert users appeared to be unbiased in subjective assessments.
When choosing participants for usability tests, it is necessary to consider both users’
expertise difference and the level of complexity of the interface to be tested. For simple user
interfaces, novice users should be involved in usability evaluation for eliciting useful
information about how to manipulate the interface (e.g. menus and buttons), while expert
users should be involved for eliciting constructive information on re-learning issues with a
new design as well as suggesting helpful redesign proposals. For complex medical user
interfaces, expert users should be more suitable to be chosen as test subjects in usability
evaluation due to their constructive redesign proposals as well as the practical usability
problems identified by their performance.
The differences in information organization between the previously used interfaces and a new
or unknown interface interacted with in the tests; can influence expert users’ interaction with
the new or unknown interface. When the information organization of the previously used
interfaces resembles that of the new or unknown interface, expert users can outperform novice
users. When there is a big difference between the previously used interfaces and the new or
unknown interface concerning information organization, expert users’ old mental model or
previous use experience can have negative effects on their interaction.
Although science and technology provide the possibility for the HCI and interface design to
develop rapidly and innovatively, there still exist some challenges for designers and
engineers to go deeper in thinking and studies – for instance, how to deal with innovations
of interface elements (e.g. navigation methods, terminology issues, icons and their
representations) so as to balance the old and new designs and to avoid confusion for users,
how to understand and apply globalization and standardization in interface design, and
how to reach optimal trade-offs when considering different attributes of user profiles. All
these questions urge the necessity and importance of investments in research on user
profiles in the near future.

8. References
ACM SIGCHI, 1992. Curricula for Human-computer Interaction. ACM Special Interest Group

on Computer-Human Interaction Curriculum Development Group, New York.
Barret, E., and Lally, V., 1999. Gender differences in an on-line learning environment.

Journal of Computer Assisted Learning, 15(1), 48-60.
Belenky, M.F., Clinchy, B.M., Goldberger, N.R., and Tarule, J.M., 1986. Women’s ways of

knowing. Basic Books, New York.
Botwinick, J., 1973. Aging and behaviour. Springer, New York.
Broos, A., 2005. Gender and information and communication technologies (ICT) anxiety:

Male self-assurance and female hesitation. Cyber Psychology & Behaviour, 8(1), 21-
31.

Considering the Importance of User Profiles in Interface Design

77

Brown, D.E., 1991. Human Universals. McGraw-Hill, New York.
Burns, K., 2000. Mental models and normal errors in naturalistic decision making.

Proceedings of 5th Conference on Naturalistic Decision Making, Tammsvik.
Buur, J., and Windum, J., 1994. MMI Design – Man-Machine Interface. Danish Design

Centre, Copenhagen, Denmark.
Chaparro, A., Bohan, M., Fernandez, J., Choi, S.D., Kattel, B., 1999. The impact of age on

computer input device use: psychophysical and physiological measures.
International Journal of Industrial Ergonomics, 24, 503-513.

Chapanis, A., 1959. Research techniques in human engineering. John Hopkins University
Press, Baltimore, MA.

Chi, M.T.H., Feltovich, P.J., and Glaser, R., 1981. Categorization and representation of
physics problems by experts and novices. Cognitive Science, 5, 121-152.

Clemmensen, T., Hertzum, M., Hornbæk, Shi, Qx., Yammiyavar, P., 2009. Cultural cognition
in usability evaluation. Interacting with computers, 21, 212-220.

Cooper, R.G., and Kleinschmidt, EmJ., 2000. New Product Performance: What distinguishes
Star products, Australian Journal of Management, 25(1), 17-46.

Craik, K.J.W., 1943. The Nature of Explanation. Cambridge, U.K.: Cambridge University
Press.

Craik, F.I.M., Salthouse, T.A., 2000. The Handbook of Aging and Cognition. 2nd ecition.
Lawrence Erlbaum Associates Inc., New Jersey.

Czaja, S.J., Sharit, J., 1993. Age differences in the performance of computer-based work.
Psychology and Aging, 8(1), 59-67.

Darin, E.R., Meitzler, T.J., Witus, G., Sohn, E., Bryk, D., Goetz, R., and Gerhart, G.R., 2000.
Computational modelling of age-differences in a visually demanding driving task:
vehicle detection. IEEE Transactions on Systems, Man, and Cybernetics, Part A:
Systems and Humans, Vol.30, No.3., 336-346.

Davies, S.P., 1994. Knowledge restructuring and the acquisition of programming expertise.
International Journal of Human-Computer Studies 40, 703-726.DiSessa, A.A. 1983.
Phenomenology and the evolution of intuition. In: D. Gentner and A.L. Sevens
(Eds.), Mental Models. Hillsdale, NJ: Lawrence Erlbaum Associates. 15-34.

Doane, S.M. 1986. A longitudinal study of unix users’ expertise, unix mental models, and
task performance. Doctoral thesis. University of California, Santa Barbara, CA,
USA. Dissertation Abstracts International. 48: 585B.

Dreyfus, H.L., and Dreyfus, S.E., 1986. Mind over machine: The power of human intuition
and expertise in the era of the computer. Free Press, New York.

Engelbrektsson, P., Yesil, Ö, and Karlsson, I.C.M., 2000. Eliciting customer requirements in
focus group interviews: can efficiency be increased? EIASM: The 7th international
product development management conference, May 29-30. 129-141

Engelbrektsson, P., 2004. Enabling the user – Exploring methodological effects on user
requirements elicitation. Doctoral thesis. Chalmers University of Technology,
Gothenburg, Sweden.

Faulkner, X., 2000. Usability Engineering. Palgrave, UK.
Faulkner, L., and Wick, D., 2005. Cross-user analysis: Benefits of skill level comparison in

usability testing. Interacting with Computers, 17, 773-786.
Goonetilleke, R.S., Shih, H.M., Kurniawan, S.H., On, Fritsch, 2001. Effects of training and

representational characteristics in icon design. International Journal of Human-
Computer Studies, 55(5), 741-760.

 User Interfaces

78

Greeno, J.G. 1983. Conceptual entities. In: D.Gentner and A.L. Stevens (Eds.), Mental
Models, Hillsdale, NJ: Lawrence Erlbaum Associates. 227-252.

Hackman, G.S., and Biers, D.W., 1992. Team usability testing: are two heads better than one?
Proceedings of the Human Factors Society 36th Annual Meeting. Santa Monica:
HFS, 1205-1209.

Hackos, J.T., Redish, J.C., 1998. User and task analysis for interface design. Wiley, New York.
Hawthorn, D., 2000. Possible implications of aging for interface designers. Interacting with

computers, 12, 507-528.
Hedge, A., 1998. Design of hand-operated devices. In: N.A. Stanton (Ed.), Human Factors in

Consumer Products. Taylor & Francis Ltd., UK.
Held, J.E., and Biers, D.W., 1992. Software usability testing: Do evaluator intervention and

task structure make any difference? Proceedings of the Human Factors Society 36th
Annual Meeting. Santa Monica: HFS, 1215-1219.

Hitchcock, D.R., Lockyer, S., Cook, S., Quigley, C., 2001. Third age usability and safety: an
ergonomics contribution to design. International Journal of Human-Computer
Studies, 55, 635-643.

Janhager, J., 2003. Classification of users – due to their relation to the product. Proceedings
of the International Conference on Engineering Design, Stockholm, Sweden.

Janhager, J., 2005. User consideration in early stages of product development – Theories and
methods. Doctoral thesis. Royal Institute of Technology, Stockholm, Sweden.

Johnson, E.M., and Baker, J.D., 1974. Field testing. The delicate compromise. Human Factors,
16, 203-214.

Johnson-Laird, P.N., 1983. Mental Models – Towards a Cognitive Science of Language,
Inference and Consciousness. Cambridge MA: Harvard University Press.

Jørgensen, A.H., 1989. Using the thinking-aloud method in system development. In: G..
Salvendy and M.J. Smith (Eds.), Designing and Using Human-Computer Interfaces
and Knowledge Based Systems. Amsterdam: Elsevier Science Publishers, 743-750.

Kahneman, D., and Tversky, A., 1982. The simulation heuristic. In: D. Kahneman, P. Slovic,
and A. Tversky (Eds.), Judgment under Uncertainty Heuristics and Biases.
Cambridge, U.K.: Cambridge University Press.

Kang, N.E., Yoon, W.C., 2008. Age- and experience-related user behavior differences in the
use of complicated electronic devices. International Journal of Human-Computer
Studies, 66, 425-437.

Karat, J., 1988. Software evaluation methodologies. In: M. Helander (Ed.), Handbook of
Human-Computer Interaction, 891-903. Amsterdam: Elsevier.

Karat, C.M., Campbell, R., and Fiegel, T., 1992. Comparison of empirical testing and
walkthrough methods in user interface evaluation. Proceedings of the ACM CHI’92
Conference. Addison-Wesley, Reading, M.A., 397-404.

Karlsson, M.A., 1996. User requirements elicitation – A framework for the study of the
relation between user and artefact. Doctoral thesis. Chalmers University of
Technology, Gothenburg, Sweden.

Held, J.E., and Biers, D.W., 1992. Software usability testing: Do evaluator intervention and
task structure make any difference? Proceedings of the Human Factors Society 36th
Annual Meeting. Santa Monica: HFS, 1215-1219.

Jacobsen, N.E., and Hertzum, M., 1998. The evaluator effect in usability studies: problem
detection and severity judgments. Proceedings of the Human Factors and
Ergonomics Society 42nd Annual Meeting. Santa Monica, CA: HFES, 1336-1340.

Considering the Importance of User Profiles in Interface Design

79

Klein, G., 1999. Sources of power: How people make decisions. MIT Press, London.
Kuniavsky, M., 2003. Observing the User Experience: A Practitioner’s Guide to User

Research. San Francisco: Morgan Kaufmann.
Kurniawan, S., 2008. Older people and mobile phones: A multi-method investigation.

International Journal of Human-Computer Studies, 66, 889-901.
Laberge, J.C., Scialfa, C.T., 2005. Predictors of web navigation performance in a life span

sample of adults. Human Factors, 47(2), 289-302.
Landauer, T.K., 1988. Research methods in Human-Computer Interaction. In: M. Helander

(Ed.), Handbook of Human-Computer Interaction. 905-928. Amsterdam: Elsevier.
Larkin, J.H., 1983. The role of problem representation in physics. In: D. Gentner and A.L.

Stevens (Eds.), Mental Models. Hillsdale, NJ: Erlbaum, 75-98.
Liu, Y., Osvalder, A-L., Karlsson, M., 2007. User’s expertise differences when interacting

with simple medical interfaces. Lecture Notes in Computer Science 4799, Springer,
441-446, ISBN 978-3-540-76804-3.

Liu, Y., 2009. Usability Evaluation of Medical Technology – Investigating the effect of user
background and users’ expertise. Doctoral thesis. Chalmers University of
Technology, Gothenburg, Sweden.

Liu, Y., and Osvalder, A-L., 2009. Usability Tests as a Benchmarking Tool - A Case Study on
Complex Medical Ventilators. Contemporary Ergonomics, 182-188.

McClelland, I., 1995. Product assessment and user trials. In: Wilson, J.R., Corlett, E.N. (Eds.),
Evaluation of Human Work. Taylor & Francis Ltd., London.

Monö, R., 1974. Analys och värdering av designfunktioner. Sveriges Mekaniksförbund.
Nielsen, J., 1993. Usability engineering. San Francisco: Morgan Kaufmann.
Nisbett, R.E., Peng, K.P., Choi, I., Norenzayan, A., 2001. Culture and systems of thought:

holistic versus analytic cognition. Psychological Review 108 (2), 291-310.
Nisbett, R.E., 2003. The geography of thought: How Asians and Westerners think differently

– and Why. Brealey, London.
Norman, D. A., 1983. Some observations on mental models. In: D. Gentner and A.L., Stevens

(Eds.), Mental models. Hillsdale, NJ: Lawrence Erlbaum Assoc.
Norman, D. A., and Draper, S. W., 1986. User centered system design: New perspectives on

human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.
Okun, M.A., and Di Vesta, F.J., 1976. Cautiousness in adulthood as a function of age and

instructions. Journal of Gerontology, 31(5), 571-576.
Osvalder, A-L., and Ulfvengren, P., 2009. Human-technology systems. In Bhgard, G et al.

(Eds.) Work and technology on human terms, Prevent, Sweden.
Osvalder, A-L., Rose, L., and Karlsson, S., 2009. Methods. In Bhgard, G et al. (Eds.) Work

and technology on human terms, Prevent, Sweden.
Owsley, C., Ball, K., Sloane, M.E., Roenker, D.L., and Bruni, J.R., 1991. Visual/cognitive

correlates of vehicle accidents in older drivers. Psychology and Aging, 6(3), 403-
415.

Oxford Advanced Learner’s Dictionary, 1995. Oxford University Press; 5th edition, UK.
Philbin, M., Meier, E., Huffman, S., and Boverie, P., 1995. A survey of gender and learning

styles. Sex Roles, 32(7/8), 485-494.
Pinker, S., 2006. The blank slate. The general psychologist, 41(1), 1-8.
Preece, J., 2002. Interaction Design – beyond human-computer interaction. John Wiley &

Sons, Inc., USA.

 User Interfaces

78

Greeno, J.G. 1983. Conceptual entities. In: D.Gentner and A.L. Stevens (Eds.), Mental
Models, Hillsdale, NJ: Lawrence Erlbaum Associates. 227-252.

Hackman, G.S., and Biers, D.W., 1992. Team usability testing: are two heads better than one?
Proceedings of the Human Factors Society 36th Annual Meeting. Santa Monica:
HFS, 1205-1209.

Hackos, J.T., Redish, J.C., 1998. User and task analysis for interface design. Wiley, New York.
Hawthorn, D., 2000. Possible implications of aging for interface designers. Interacting with

computers, 12, 507-528.
Hedge, A., 1998. Design of hand-operated devices. In: N.A. Stanton (Ed.), Human Factors in

Consumer Products. Taylor & Francis Ltd., UK.
Held, J.E., and Biers, D.W., 1992. Software usability testing: Do evaluator intervention and

task structure make any difference? Proceedings of the Human Factors Society 36th
Annual Meeting. Santa Monica: HFS, 1215-1219.

Hitchcock, D.R., Lockyer, S., Cook, S., Quigley, C., 2001. Third age usability and safety: an
ergonomics contribution to design. International Journal of Human-Computer
Studies, 55, 635-643.

Janhager, J., 2003. Classification of users – due to their relation to the product. Proceedings
of the International Conference on Engineering Design, Stockholm, Sweden.

Janhager, J., 2005. User consideration in early stages of product development – Theories and
methods. Doctoral thesis. Royal Institute of Technology, Stockholm, Sweden.

Johnson, E.M., and Baker, J.D., 1974. Field testing. The delicate compromise. Human Factors,
16, 203-214.

Johnson-Laird, P.N., 1983. Mental Models – Towards a Cognitive Science of Language,
Inference and Consciousness. Cambridge MA: Harvard University Press.

Jørgensen, A.H., 1989. Using the thinking-aloud method in system development. In: G..
Salvendy and M.J. Smith (Eds.), Designing and Using Human-Computer Interfaces
and Knowledge Based Systems. Amsterdam: Elsevier Science Publishers, 743-750.

Kahneman, D., and Tversky, A., 1982. The simulation heuristic. In: D. Kahneman, P. Slovic,
and A. Tversky (Eds.), Judgment under Uncertainty Heuristics and Biases.
Cambridge, U.K.: Cambridge University Press.

Kang, N.E., Yoon, W.C., 2008. Age- and experience-related user behavior differences in the
use of complicated electronic devices. International Journal of Human-Computer
Studies, 66, 425-437.

Karat, J., 1988. Software evaluation methodologies. In: M. Helander (Ed.), Handbook of
Human-Computer Interaction, 891-903. Amsterdam: Elsevier.

Karat, C.M., Campbell, R., and Fiegel, T., 1992. Comparison of empirical testing and
walkthrough methods in user interface evaluation. Proceedings of the ACM CHI’92
Conference. Addison-Wesley, Reading, M.A., 397-404.

Karlsson, M.A., 1996. User requirements elicitation – A framework for the study of the
relation between user and artefact. Doctoral thesis. Chalmers University of
Technology, Gothenburg, Sweden.

Held, J.E., and Biers, D.W., 1992. Software usability testing: Do evaluator intervention and
task structure make any difference? Proceedings of the Human Factors Society 36th
Annual Meeting. Santa Monica: HFS, 1215-1219.

Jacobsen, N.E., and Hertzum, M., 1998. The evaluator effect in usability studies: problem
detection and severity judgments. Proceedings of the Human Factors and
Ergonomics Society 42nd Annual Meeting. Santa Monica, CA: HFES, 1336-1340.

Considering the Importance of User Profiles in Interface Design

79

Klein, G., 1999. Sources of power: How people make decisions. MIT Press, London.
Kuniavsky, M., 2003. Observing the User Experience: A Practitioner’s Guide to User

Research. San Francisco: Morgan Kaufmann.
Kurniawan, S., 2008. Older people and mobile phones: A multi-method investigation.

International Journal of Human-Computer Studies, 66, 889-901.
Laberge, J.C., Scialfa, C.T., 2005. Predictors of web navigation performance in a life span

sample of adults. Human Factors, 47(2), 289-302.
Landauer, T.K., 1988. Research methods in Human-Computer Interaction. In: M. Helander

(Ed.), Handbook of Human-Computer Interaction. 905-928. Amsterdam: Elsevier.
Larkin, J.H., 1983. The role of problem representation in physics. In: D. Gentner and A.L.

Stevens (Eds.), Mental Models. Hillsdale, NJ: Erlbaum, 75-98.
Liu, Y., Osvalder, A-L., Karlsson, M., 2007. User’s expertise differences when interacting

with simple medical interfaces. Lecture Notes in Computer Science 4799, Springer,
441-446, ISBN 978-3-540-76804-3.

Liu, Y., 2009. Usability Evaluation of Medical Technology – Investigating the effect of user
background and users’ expertise. Doctoral thesis. Chalmers University of
Technology, Gothenburg, Sweden.

Liu, Y., and Osvalder, A-L., 2009. Usability Tests as a Benchmarking Tool - A Case Study on
Complex Medical Ventilators. Contemporary Ergonomics, 182-188.

McClelland, I., 1995. Product assessment and user trials. In: Wilson, J.R., Corlett, E.N. (Eds.),
Evaluation of Human Work. Taylor & Francis Ltd., London.

Monö, R., 1974. Analys och värdering av designfunktioner. Sveriges Mekaniksförbund.
Nielsen, J., 1993. Usability engineering. San Francisco: Morgan Kaufmann.
Nisbett, R.E., Peng, K.P., Choi, I., Norenzayan, A., 2001. Culture and systems of thought:

holistic versus analytic cognition. Psychological Review 108 (2), 291-310.
Nisbett, R.E., 2003. The geography of thought: How Asians and Westerners think differently

– and Why. Brealey, London.
Norman, D. A., 1983. Some observations on mental models. In: D. Gentner and A.L., Stevens

(Eds.), Mental models. Hillsdale, NJ: Lawrence Erlbaum Assoc.
Norman, D. A., and Draper, S. W., 1986. User centered system design: New perspectives on

human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.
Okun, M.A., and Di Vesta, F.J., 1976. Cautiousness in adulthood as a function of age and

instructions. Journal of Gerontology, 31(5), 571-576.
Osvalder, A-L., and Ulfvengren, P., 2009. Human-technology systems. In Bhgard, G et al.

(Eds.) Work and technology on human terms, Prevent, Sweden.
Osvalder, A-L., Rose, L., and Karlsson, S., 2009. Methods. In Bhgard, G et al. (Eds.) Work

and technology on human terms, Prevent, Sweden.
Owsley, C., Ball, K., Sloane, M.E., Roenker, D.L., and Bruni, J.R., 1991. Visual/cognitive

correlates of vehicle accidents in older drivers. Psychology and Aging, 6(3), 403-
415.

Oxford Advanced Learner’s Dictionary, 1995. Oxford University Press; 5th edition, UK.
Philbin, M., Meier, E., Huffman, S., and Boverie, P., 1995. A survey of gender and learning

styles. Sex Roles, 32(7/8), 485-494.
Pinker, S., 2006. The blank slate. The general psychologist, 41(1), 1-8.
Preece, J., 2002. Interaction Design – beyond human-computer interaction. John Wiley &

Sons, Inc., USA.

 User Interfaces

80

Reason, J., 1990. Human Error. Cambridge, UK: Cambridge University Press.
Rogers, Y., Rutherford, A., and Bibby, P., 1992. Models in the Mind – Theory, Perspective,

and Application. London: Academic Press.
Rubin, J., 1994. Handbook of Usability Testing: How to plan, design, and conduct effective

tests. Wiley, New York.
Sadler-Smith, E., 1999. Intuition-analysis style and approaches to studying. Educational

Studies, 25(2), 159.
Sasse, M.A., 1997. Eliciting and describing users’ models of computer systems. School of

Computer Science, Birmingham, University of Birmingham.
Sauer, J., Seibel, K., and Bruno Rüttinger, B., 2009. The influence of user expertise and

prototype fidelity in usability tests. Applied Ergonomics, 41(1), 130-140.
 Schneiderman, B., 2000. Universal usability. Communication. ACM 43(5), 85-91.
Shneiderman, B., 1992. Designing the user interface: Strategies for effective human-

computer interaction. 2nd edition. Reading, MA: Addison-Wesley.
Scialfa, C., Ho, G., Laberge, J., 2004. Perceptual aspects of gerotechnology. In: Burdick, D.C.

Kwon, S. (Eds.), Gerotechnology. Springer Publishing Company, New York, 18-41.
Segall, M.H., Dasen, P.R., Berry, J.W., Poortinga, Y.H., 1999. Human behaviour in global

perspective: An introduction to cross-cultural psychology, 2nd edition. Simon &
Schuster, M.A.

Smith, M.W., Sharit, J., Czaja, S.J., 1999. Aging, motor control, and the performance of
computer mouse tasks. Human Factors, 41(3), 389-396.

Spiro, R.J., Coulson, R.L., Feltovich, P.J., and Anderson, D.K., 1988. Cognitive flexibility
theory: advanced knowledge acquisition in ill-structure domains. In: Proceedings
of the 10th Annual Conference of the Cognitive Science Society. Hillsdale, NJ:
Lawrence Erlbaum Associates. 375-383.

Spiro, R.J., Feltovich, P.J., Jacobson, M.J., and Coulson, R.L., 1991. Cognitive flexibility,
constructivism and hypertext: random access instruction for advanced knowledge
acquisition in ill-structured domains. Educational Technology 31, 24-33.

Ullrich, K.T., and Eppinger, D.E., 1995. Product Design and Development, McGraw-Hill
Inc., Singapore. ISBN 0-07-113742-4.

Urban, G.L., and Hauser, J.R., 1993. Design and marketing of new products, Prentice-Hall
Inc., N.J. ISBN 0-13-201567-6.

Vicente, K.J., and Wang, J.H., 1998. An ecological theory of expertise effects in memory
recall. Psychological Review, 105, 33-57.

Virzi, R.A., 1992. Refining the test phase of usability evaluation: How many subjects is
enough? Human Factors, 34(4), 457-468.

Warell, A., 2001. Design syntactics: A functional approach to visual product form – Theory,
models, and methods. Doctoral thesis. Chalmers University of Technology,
Gothenburg, Sweden.

Webster's Third New International Dictionary, 1976. Springfield, MA: Merriam
Welford, A.T., 1977. Motor performance, In: Birren, J.E., Schaie, K.W. (Eds.), Handbook of

the psychology of aging. Van Nostrand Reinhold Co., New York.
Ziefle, M., Bay, S., 2005. How older adults meet complexity: aging effects on the usability of

different mobile phones. Behaviour and Information Technology, 24(5), 375-389.

6

Graphical User Interface
for PON Network Management System

Boonchuan Ng, Mohammad Syuhaimi Ab-Rahman and Kasmiran Jumari
Universiti Kebangsaan Malaysia (UKM)

Malaysia

1. Introduction
Optical diagnosis, performance monitoring, and characterization are essential for ensuring
the high quality operation of any lightwave systems. In fact, an efficient and reliable optical
network, such as passive optical network (PON), depends on appropriate testing and
measurement. An optical measurement and management system tool named Smart Access
Network _ Testing, Analyzing and Database (SANTAD) is designed and developed as a
measurement strategy with improved performance for in-service transmission surveillance
applications in PON. Visual Basic is used as programming language in the applications that
allow the remote personal computer (PC) to interact with optical time domain reflectometer
(OTDR). A microcontroller based system has been developed to be located at middle of the
network system for handling the centralized line detection from central office (CO). The
hardware system responsible in diverting the 1625 nm OTDR testing signal to bypass the
filter and connect to each optical network (ONU). As a result, the lines’ status can be
observed and monitored at static point where the OTDR injecting the signal. The OTDR is
accomplished to remote PC through the 10/100 Ethernet port running using Microsoft
Visual Basic 2008 platform. The Ethernet remote interface allowed the users to access the
OTDR test module over any Internet-connected PC.
The design and implementation of this integrated hardware/software system enable all the
OTDR measurements can be transmitted into PC easily. The key idea is to accumulate all
OTDR measurement to be displayed on a PC screen for centralized monitoring and
advanced analyzing. SANTAD is focused on providing survivability through event
identification against degradation/losses and failures. Any occurrence of fault in the
network system can be identified by a drastic drop of optical power level. The failure
information will be sent to field engineers through the mobile phone or Wi-Fi/Internet
computer using wireless technology for repairing and maintenance operation. The analysis
results will then stored in database, all kinds of additional information can be easily
accessed and queried later. The lab prototype of SANTAD is implemented in PON and the
beneficial and contribution of the proposed approach is highly achieved the Operation,
Administration, and Maintenance (OAM) features. The experimental results show the
system accurately detects and locates fiber degradations/failures, and alerts the field
engineers with the details of failures/faults within 30 seconds. The system database allows
the network operators to assess long term network performance. The main advantages of

 User Interfaces

80

Reason, J., 1990. Human Error. Cambridge, UK: Cambridge University Press.
Rogers, Y., Rutherford, A., and Bibby, P., 1992. Models in the Mind – Theory, Perspective,

and Application. London: Academic Press.
Rubin, J., 1994. Handbook of Usability Testing: How to plan, design, and conduct effective

tests. Wiley, New York.
Sadler-Smith, E., 1999. Intuition-analysis style and approaches to studying. Educational

Studies, 25(2), 159.
Sasse, M.A., 1997. Eliciting and describing users’ models of computer systems. School of

Computer Science, Birmingham, University of Birmingham.
Sauer, J., Seibel, K., and Bruno Rüttinger, B., 2009. The influence of user expertise and

prototype fidelity in usability tests. Applied Ergonomics, 41(1), 130-140.
 Schneiderman, B., 2000. Universal usability. Communication. ACM 43(5), 85-91.
Shneiderman, B., 1992. Designing the user interface: Strategies for effective human-

computer interaction. 2nd edition. Reading, MA: Addison-Wesley.
Scialfa, C., Ho, G., Laberge, J., 2004. Perceptual aspects of gerotechnology. In: Burdick, D.C.

Kwon, S. (Eds.), Gerotechnology. Springer Publishing Company, New York, 18-41.
Segall, M.H., Dasen, P.R., Berry, J.W., Poortinga, Y.H., 1999. Human behaviour in global

perspective: An introduction to cross-cultural psychology, 2nd edition. Simon &
Schuster, M.A.

Smith, M.W., Sharit, J., Czaja, S.J., 1999. Aging, motor control, and the performance of
computer mouse tasks. Human Factors, 41(3), 389-396.

Spiro, R.J., Coulson, R.L., Feltovich, P.J., and Anderson, D.K., 1988. Cognitive flexibility
theory: advanced knowledge acquisition in ill-structure domains. In: Proceedings
of the 10th Annual Conference of the Cognitive Science Society. Hillsdale, NJ:
Lawrence Erlbaum Associates. 375-383.

Spiro, R.J., Feltovich, P.J., Jacobson, M.J., and Coulson, R.L., 1991. Cognitive flexibility,
constructivism and hypertext: random access instruction for advanced knowledge
acquisition in ill-structured domains. Educational Technology 31, 24-33.

Ullrich, K.T., and Eppinger, D.E., 1995. Product Design and Development, McGraw-Hill
Inc., Singapore. ISBN 0-07-113742-4.

Urban, G.L., and Hauser, J.R., 1993. Design and marketing of new products, Prentice-Hall
Inc., N.J. ISBN 0-13-201567-6.

Vicente, K.J., and Wang, J.H., 1998. An ecological theory of expertise effects in memory
recall. Psychological Review, 105, 33-57.

Virzi, R.A., 1992. Refining the test phase of usability evaluation: How many subjects is
enough? Human Factors, 34(4), 457-468.

Warell, A., 2001. Design syntactics: A functional approach to visual product form – Theory,
models, and methods. Doctoral thesis. Chalmers University of Technology,
Gothenburg, Sweden.

Webster's Third New International Dictionary, 1976. Springfield, MA: Merriam
Welford, A.T., 1977. Motor performance, In: Birren, J.E., Schaie, K.W. (Eds.), Handbook of

the psychology of aging. Van Nostrand Reinhold Co., New York.
Ziefle, M., Bay, S., 2005. How older adults meet complexity: aging effects on the usability of

different mobile phones. Behaviour and Information Technology, 24(5), 375-389.

6

Graphical User Interface
for PON Network Management System

Boonchuan Ng, Mohammad Syuhaimi Ab-Rahman and Kasmiran Jumari
Universiti Kebangsaan Malaysia (UKM)

Malaysia

1. Introduction
Optical diagnosis, performance monitoring, and characterization are essential for ensuring
the high quality operation of any lightwave systems. In fact, an efficient and reliable optical
network, such as passive optical network (PON), depends on appropriate testing and
measurement. An optical measurement and management system tool named Smart Access
Network _ Testing, Analyzing and Database (SANTAD) is designed and developed as a
measurement strategy with improved performance for in-service transmission surveillance
applications in PON. Visual Basic is used as programming language in the applications that
allow the remote personal computer (PC) to interact with optical time domain reflectometer
(OTDR). A microcontroller based system has been developed to be located at middle of the
network system for handling the centralized line detection from central office (CO). The
hardware system responsible in diverting the 1625 nm OTDR testing signal to bypass the
filter and connect to each optical network (ONU). As a result, the lines’ status can be
observed and monitored at static point where the OTDR injecting the signal. The OTDR is
accomplished to remote PC through the 10/100 Ethernet port running using Microsoft
Visual Basic 2008 platform. The Ethernet remote interface allowed the users to access the
OTDR test module over any Internet-connected PC.
The design and implementation of this integrated hardware/software system enable all the
OTDR measurements can be transmitted into PC easily. The key idea is to accumulate all
OTDR measurement to be displayed on a PC screen for centralized monitoring and
advanced analyzing. SANTAD is focused on providing survivability through event
identification against degradation/losses and failures. Any occurrence of fault in the
network system can be identified by a drastic drop of optical power level. The failure
information will be sent to field engineers through the mobile phone or Wi-Fi/Internet
computer using wireless technology for repairing and maintenance operation. The analysis
results will then stored in database, all kinds of additional information can be easily
accessed and queried later. The lab prototype of SANTAD is implemented in PON and the
beneficial and contribution of the proposed approach is highly achieved the Operation,
Administration, and Maintenance (OAM) features. The experimental results show the
system accurately detects and locates fiber degradations/failures, and alerts the field
engineers with the details of failures/faults within 30 seconds. The system database allows
the network operators to assess long term network performance. The main advantages of

 User Interfaces

82

this work is to improve the survivability and efficiency of PON, while reduce the hands on
workload as well as maintenance cost and time.

2. Passive Optical Network (PON)
PON is one among several architectures that can be used in fiber-to-the-home (FTTH). PON
has been early described for FTTH as early as 1986. PON is today the main choice of many
network services providers and operators since it breaks through the economic barrier of
traditional point-to-point (P2P) solutions. PON provides a powerful point-to-multipoint
(P2MP) solution to satisfy the increasing demand in the access part of the communication
infrastructures between CO and customers sides (Skubic et al., 2009). The installations as can
be seen in Figure 1

Fig. 1. Cumulative global growth of FTTH for the years 2005-2012

PON is a technology viewed by many as an attractive solution to the first mile problem; a
PON minimizes the number of optical transceivers, CO terminations, and fiber deployment.
A PON is a P2MP optical network with no active elements in the signal path from source to
destination. The only interior elements used in a PON are passive optical components, such
as optical fiber, splices, and splitters (see Figure 2). A PON employs a passive device (i.e.,
optical splitter/branching device, etc, that not requiring any power) to split an optical signal
signals from multiple fibers into one. PON is capable of delivering triple-play (data, voice,
and voice) services at long reach up to 20 km between CO and customer sides. All
transmission in a PON is performed between an optical line terminal (OLT) and ONUs. OLT
resides at CO; while ONU is located at the end-user location (Mukherjee, 2006).
Nowadays, PON is commonly deployed as it can offer a cost-efficient and scalable solution
to provide huge-capacity optical access (Prat, 2007). The cost effectiveness of PON depends
on numbers of ONUs per OLT optical transceiver, the cost of fiber and its installation, the
cost of the digital subscriber line (DSL) transceivers at ONU and subscriber premise
equipments, the overall cost of powering ONU, and the real estate cost of placing the ONU
(Gorshe, 2006). Fixed network and exchange costs are shared among all subscribers. This
reduces the key cost per subscriber metric. The PON solution benefits from having no

Graphical User Interface for PON Network Management System

83

outside-plant electronic to reduce the network complexity and life-cycle costs, while
improving the reliability of FTTH (Corning, 2005).

Fig. 2. Conventional PON architecture

2.1 Fiber fault in PON
The introduction of PON allows the network to transport huge amounts of data and provide
communication services that play a very important role in many of our daily social and
economical activities. Network reliability is an issue of deep concern to network operators
being eager to deploy high capacity fiber networks, since a single failure in the network
could result in significant losses of revenue. The importance of network reliability will keep
pace with the steadily increasing network capacity. For very-high-capacity future optical
networks, carrying multitudes of 10 Gbps channels per fiber strand, a failure of optical
connection will interrupt a vast amount of services running on-line, making the connection
availability a factor of great significance (Wosinska et al., 2009).
Communication networks can be subject to both unintentional failures, caused by natural
disasters, wear out and overload, software bugs, human errors, etc and intentional
interruptions due to maintenance. As core communication networks also play a vital
military role, key telecommunication nodes were favored targets during the Gulf War, and
could become a likely target for terrorist activity. For business customers, disruption of
communication can suspend critical operations, which may cause a significant loss of
revenue, to be reclaimed from the telecommunications provider. In fact, availability
agreements now form an important component of Service Level Agreements (SLAs)
between providers and customers. In the cutthroat world of modern telecommunications,
network operators need a reliable and maintainable network in order to hold a leading edge
over the competition (Wosinska et al., 2009).
Troubleshooting a PON involves locating and identifying the source of an optical problem
in what may be a complex optical network topology that includes several OLT, optical

 User Interfaces

82

this work is to improve the survivability and efficiency of PON, while reduce the hands on
workload as well as maintenance cost and time.

2. Passive Optical Network (PON)
PON is one among several architectures that can be used in fiber-to-the-home (FTTH). PON
has been early described for FTTH as early as 1986. PON is today the main choice of many
network services providers and operators since it breaks through the economic barrier of
traditional point-to-point (P2P) solutions. PON provides a powerful point-to-multipoint
(P2MP) solution to satisfy the increasing demand in the access part of the communication
infrastructures between CO and customers sides (Skubic et al., 2009). The installations as can
be seen in Figure 1

Fig. 1. Cumulative global growth of FTTH for the years 2005-2012

PON is a technology viewed by many as an attractive solution to the first mile problem; a
PON minimizes the number of optical transceivers, CO terminations, and fiber deployment.
A PON is a P2MP optical network with no active elements in the signal path from source to
destination. The only interior elements used in a PON are passive optical components, such
as optical fiber, splices, and splitters (see Figure 2). A PON employs a passive device (i.e.,
optical splitter/branching device, etc, that not requiring any power) to split an optical signal
signals from multiple fibers into one. PON is capable of delivering triple-play (data, voice,
and voice) services at long reach up to 20 km between CO and customer sides. All
transmission in a PON is performed between an optical line terminal (OLT) and ONUs. OLT
resides at CO; while ONU is located at the end-user location (Mukherjee, 2006).
Nowadays, PON is commonly deployed as it can offer a cost-efficient and scalable solution
to provide huge-capacity optical access (Prat, 2007). The cost effectiveness of PON depends
on numbers of ONUs per OLT optical transceiver, the cost of fiber and its installation, the
cost of the digital subscriber line (DSL) transceivers at ONU and subscriber premise
equipments, the overall cost of powering ONU, and the real estate cost of placing the ONU
(Gorshe, 2006). Fixed network and exchange costs are shared among all subscribers. This
reduces the key cost per subscriber metric. The PON solution benefits from having no

Graphical User Interface for PON Network Management System

83

outside-plant electronic to reduce the network complexity and life-cycle costs, while
improving the reliability of FTTH (Corning, 2005).

Fig. 2. Conventional PON architecture

2.1 Fiber fault in PON
The introduction of PON allows the network to transport huge amounts of data and provide
communication services that play a very important role in many of our daily social and
economical activities. Network reliability is an issue of deep concern to network operators
being eager to deploy high capacity fiber networks, since a single failure in the network
could result in significant losses of revenue. The importance of network reliability will keep
pace with the steadily increasing network capacity. For very-high-capacity future optical
networks, carrying multitudes of 10 Gbps channels per fiber strand, a failure of optical
connection will interrupt a vast amount of services running on-line, making the connection
availability a factor of great significance (Wosinska et al., 2009).
Communication networks can be subject to both unintentional failures, caused by natural
disasters, wear out and overload, software bugs, human errors, etc and intentional
interruptions due to maintenance. As core communication networks also play a vital
military role, key telecommunication nodes were favored targets during the Gulf War, and
could become a likely target for terrorist activity. For business customers, disruption of
communication can suspend critical operations, which may cause a significant loss of
revenue, to be reclaimed from the telecommunications provider. In fact, availability
agreements now form an important component of Service Level Agreements (SLAs)
between providers and customers. In the cutthroat world of modern telecommunications,
network operators need a reliable and maintainable network in order to hold a leading edge
over the competition (Wosinska et al., 2009).
Troubleshooting a PON involves locating and identifying the source of an optical problem
in what may be a complex optical network topology that includes several OLT, optical

 User Interfaces

84

splitter, fibers, and ONUs. Since most components in the network are passive, a large part of
the issues are due to dirty/damaged/misaligned connectors or breaks/macrobends in the
optical fiber cables. These will affect one, some or all subscribers on the network, depending
on the location of the problem. If a break occurs in the feeder region (from OLT to optical
splitter), all downstream signals toward ONUs will be affected. However, if a problem such
as macrobending or dirty connector causes optical power to be lost somewhere in the
network, only a number of ONUs may be affected. Since the attenuation in optical fiber
cables is proportional to length, distant ONUs received a weaker downstream signal than
closer ones. The upstream signals received at CO from more distant ONUs are also weaker
and the OLT will detect such decreased performance (EXFO 2008).
A network failure due to fiber break in current optical communication systems network
could make the network services providers and operators very difficult to restore their
system back to normal. They would face major problems locating the faulty cable and the
break point along the optical cable. According to the cases reported to the Federal
Communication Commission (FCC) in US, more than one-third of service disruptions are
due to fiber cable problems. This kind of problem usually take longer time to resolve
compared to the transmission equipment failure (Bakar et al., 2007). Since the PON can
accommodate a large number of subscribers, when any occurrence of fiber cut/fault, the
access network will be breakdown/terminated. Due to the large transport capacity achieved
by optical access network, failures caused huge losses of data and greatly influence upon a
large number of users over a wide area. Any service outage due to a fiber break can be
translated into tremendous financial loss in business for the network service providers
(Chan et al., 1999).

2.2 PON network monitoring and troubleshooting with OTDR
Fiber fault within PON becomes more significant due to the increasing demand for reliable
service delivery. Several developed test gears are invented to locate a fiber fault in an optical
fiber, such as fault locator and OTDR (Bakar et al., 2007). OTDR was first reported in 1976
(Barnoki & Jensen, 1976) as a telecommunications application and became an established
technique for attenuation monitoring and fault location in optical fiber network within the
telecommunications industry (King et al., 2004). OTDR is an instrument that used to
measure parameters such as attenuation, length, connector and splice losses, reflectance
level, and locating faults with in an optical link (Keiser 2000). It injects a short, intense laser
pulse into optical fiber and measures the backscatter and reflection of light as a function of
time. The reflected light characteristics are analyzed to determine the location of any optical
fiber fault/break or splice loss. Modern OTDRs can locate and evaluate the losses of fusion
splices and connectors and can even report whether each location and loss is within certain
specification tolerances (Anderson et al., 2004).
Therefore, in order to facilitate effective and prompt network protection and restoration, it is
highly desirable to perform network survivability measures in the optical layer. This can be
achieved by simple fiber link or equipment duplication with protection switching or some
other intelligent schemes with minimal resource duplication or reservation for protection. For
PON applications, equipment failure at either OLT or ONU can be easily remedied by having
a backup unit in the controlled environment. However, for any fiber cut, it would take a
relatively long time to perform the repair. Therefore, it is highly desirable to have survivable
PON architectures with protection switching against any fiber cut survivability (Chan, 2007).

Graphical User Interface for PON Network Management System

85

3. Smart Access Network _ Testing, Analyzing and Database (SANTAD)
A real time optical network monitoring and management system tool named SANTAD is
developed for monitoring the network performance and managing the PON network
system more efficiency. SANTAD is a centralized access control and surveillance system
that enables the network operators and field engineers to view traffic flow and detect
breakdown as well as other circumstances that may require some appropriate action with
the graphical user interface (GUI) processing capabilities of Microsoft Visual Basic 2008
(VB9) programming.
SANTAD combines remote controlling, centralized monitoring and troubleshooting, fault
detection, optical switching as well as protection and restoration apparatus to deliver high
quality of service (QoS) for PON network system. Microsoft Visual Basic 2008 programming
is chosen as software development tool in developing the access control program of this
work; while the hardware development is divided into 3 main parts: (i) Network testing and
troubleshooting with OTDR, (ii) Interfacing OTDR test module with remote workstation,
and (iii) Centralized monitoring and advanced data analyzing.
The system architecture of SANTAD consists of 4 phases, which are optical monitoring,
interface and data communication, advanced data analyzing, and failure notification. The
system design is very simple, it required a commercially available OTDR, router, and a
remote workstation (PC/laptop) with Microsoft Visual Basic 2008 programming. Figure 3
explains briefly the entire work.
The functionalities of SANTAD can be generally classified into pre-configured protection
and post-fault restoration, which can assist the network operators and field engineers to
perform the following activities in PON network system:
• Events/data recording
• Further processing of controlling/monitoring information for preventive maintenance
• Presentation of surveillance image (visual feedback)
• Provide a control function to intercom all subscribers with CO
• Monitor and control the network performance
• Detect degradations before a fiber fault occurs for preventive maintenance
• Detect any fiber failure/fault/cut that occurs in the network system and troubleshoot it

for post-fault maintenance
Performance monitoring and network troubleshooting are important in providing a high
efficiency and reliability access network for the subscribers. Therefore, the network
operators and field engineers are full-time concern for managing the optical network and
devices/equipments. By using SANTAD, the network operators and field engineers are able
to keep an eye on their works at all times. This capability drastically reduces the time it takes
to identify and analyze the cause of fault as well as the maintenance and repairing time,
which leads to customers’ satisfaction.

3.1 System design
Due to the U-band (ultra long wavelength band; 1625-1675 nm) light is different from the
wide communication band (1260-1600 nm) and has been reserved for standard PON
monitoring, the network system can perform in-service testing by using 1625 nm light
source with no degradation to the transmission quality and interruption, therefore has no
impact on the data traffic. Modern OTDR often offer capabilities in the fourth window
region at 1625 nm (EXFO, 2008).

 User Interfaces

84

splitter, fibers, and ONUs. Since most components in the network are passive, a large part of
the issues are due to dirty/damaged/misaligned connectors or breaks/macrobends in the
optical fiber cables. These will affect one, some or all subscribers on the network, depending
on the location of the problem. If a break occurs in the feeder region (from OLT to optical
splitter), all downstream signals toward ONUs will be affected. However, if a problem such
as macrobending or dirty connector causes optical power to be lost somewhere in the
network, only a number of ONUs may be affected. Since the attenuation in optical fiber
cables is proportional to length, distant ONUs received a weaker downstream signal than
closer ones. The upstream signals received at CO from more distant ONUs are also weaker
and the OLT will detect such decreased performance (EXFO 2008).
A network failure due to fiber break in current optical communication systems network
could make the network services providers and operators very difficult to restore their
system back to normal. They would face major problems locating the faulty cable and the
break point along the optical cable. According to the cases reported to the Federal
Communication Commission (FCC) in US, more than one-third of service disruptions are
due to fiber cable problems. This kind of problem usually take longer time to resolve
compared to the transmission equipment failure (Bakar et al., 2007). Since the PON can
accommodate a large number of subscribers, when any occurrence of fiber cut/fault, the
access network will be breakdown/terminated. Due to the large transport capacity achieved
by optical access network, failures caused huge losses of data and greatly influence upon a
large number of users over a wide area. Any service outage due to a fiber break can be
translated into tremendous financial loss in business for the network service providers
(Chan et al., 1999).

2.2 PON network monitoring and troubleshooting with OTDR
Fiber fault within PON becomes more significant due to the increasing demand for reliable
service delivery. Several developed test gears are invented to locate a fiber fault in an optical
fiber, such as fault locator and OTDR (Bakar et al., 2007). OTDR was first reported in 1976
(Barnoki & Jensen, 1976) as a telecommunications application and became an established
technique for attenuation monitoring and fault location in optical fiber network within the
telecommunications industry (King et al., 2004). OTDR is an instrument that used to
measure parameters such as attenuation, length, connector and splice losses, reflectance
level, and locating faults with in an optical link (Keiser 2000). It injects a short, intense laser
pulse into optical fiber and measures the backscatter and reflection of light as a function of
time. The reflected light characteristics are analyzed to determine the location of any optical
fiber fault/break or splice loss. Modern OTDRs can locate and evaluate the losses of fusion
splices and connectors and can even report whether each location and loss is within certain
specification tolerances (Anderson et al., 2004).
Therefore, in order to facilitate effective and prompt network protection and restoration, it is
highly desirable to perform network survivability measures in the optical layer. This can be
achieved by simple fiber link or equipment duplication with protection switching or some
other intelligent schemes with minimal resource duplication or reservation for protection. For
PON applications, equipment failure at either OLT or ONU can be easily remedied by having
a backup unit in the controlled environment. However, for any fiber cut, it would take a
relatively long time to perform the repair. Therefore, it is highly desirable to have survivable
PON architectures with protection switching against any fiber cut survivability (Chan, 2007).

Graphical User Interface for PON Network Management System

85

3. Smart Access Network _ Testing, Analyzing and Database (SANTAD)
A real time optical network monitoring and management system tool named SANTAD is
developed for monitoring the network performance and managing the PON network
system more efficiency. SANTAD is a centralized access control and surveillance system
that enables the network operators and field engineers to view traffic flow and detect
breakdown as well as other circumstances that may require some appropriate action with
the graphical user interface (GUI) processing capabilities of Microsoft Visual Basic 2008
(VB9) programming.
SANTAD combines remote controlling, centralized monitoring and troubleshooting, fault
detection, optical switching as well as protection and restoration apparatus to deliver high
quality of service (QoS) for PON network system. Microsoft Visual Basic 2008 programming
is chosen as software development tool in developing the access control program of this
work; while the hardware development is divided into 3 main parts: (i) Network testing and
troubleshooting with OTDR, (ii) Interfacing OTDR test module with remote workstation,
and (iii) Centralized monitoring and advanced data analyzing.
The system architecture of SANTAD consists of 4 phases, which are optical monitoring,
interface and data communication, advanced data analyzing, and failure notification. The
system design is very simple, it required a commercially available OTDR, router, and a
remote workstation (PC/laptop) with Microsoft Visual Basic 2008 programming. Figure 3
explains briefly the entire work.
The functionalities of SANTAD can be generally classified into pre-configured protection
and post-fault restoration, which can assist the network operators and field engineers to
perform the following activities in PON network system:
• Events/data recording
• Further processing of controlling/monitoring information for preventive maintenance
• Presentation of surveillance image (visual feedback)
• Provide a control function to intercom all subscribers with CO
• Monitor and control the network performance
• Detect degradations before a fiber fault occurs for preventive maintenance
• Detect any fiber failure/fault/cut that occurs in the network system and troubleshoot it

for post-fault maintenance
Performance monitoring and network troubleshooting are important in providing a high
efficiency and reliability access network for the subscribers. Therefore, the network
operators and field engineers are full-time concern for managing the optical network and
devices/equipments. By using SANTAD, the network operators and field engineers are able
to keep an eye on their works at all times. This capability drastically reduces the time it takes
to identify and analyze the cause of fault as well as the maintenance and repairing time,
which leads to customers’ satisfaction.

3.1 System design
Due to the U-band (ultra long wavelength band; 1625-1675 nm) light is different from the
wide communication band (1260-1600 nm) and has been reserved for standard PON
monitoring, the network system can perform in-service testing by using 1625 nm light
source with no degradation to the transmission quality and interruption, therefore has no
impact on the data traffic. Modern OTDR often offer capabilities in the fourth window
region at 1625 nm (EXFO, 2008).

 User Interfaces

86

Fig. 3. System architecture of optical network monitoring and management system for PON

As illustrated in Figure 3, the triple-play signals (1310 nm, 1490 nm, and 1550 nm) are
multiplexed (combined) with 1625 nm OTDR testing signal. A tapper circuit is designed to
allow the OTDR testing signal to bypass the optical splitter in a conventional PON when
emitted in downstream direction (from CO towards multiple customer residential
locations). When 4 kinds of signals are distributed, the testing signal will be split up by the
wavelength selective coupler (WSC), which is installed before the optical splitter. The WSC
coupler only allow the 1625 nm signal to enter into the tapper circuit and filter all unwanted
signals that contaminate the OTDR measurement. The downstream signal will go through
the WSC, which in turn connected to the optical splitter before it reaches the multiple ONUs
at different customer residential locations. On the other hand, the 1625 nm signal which is
demultiplexed by WSC coupler will be split up again in power ratio 99:1 by using

ACS

OS

To users
From CO

Traffic

OTDR Troubleshooting Signal

ACS diverting the OTDR
testing signal to each line
connected to the ONUs

SANTAD accumulate all
the OTDR test results

onto a computer screen
for further analysis

Graphical User Interface for PON Network Management System

87

directional coupler (DC) to activate the microprocessor system. The 99% 1625 nm signal will
then be configured by using optical splitter which each output is connected to single line of
ONU. The operational of optical switch is controlled by microprocessor system that is
activated by 1% of 1625 nm testing signal.
In order to enable wavelength splitting (demultiplexing) and combining (multiplexing) in
the tapper circuit, WSC coupler is designed for the optical signals having different light
wavelengths can be separated or combined to transmit in single optical fiber as shown in
Figure 4. WSC coupler is actually a demultiplexer but with limited to 2 output ports. It is an
optical device that functions to split out the signal according to their frequencies but each
output arms are not limited only to 1 wavelength as applied in demultiplexer. The WSC
coupler is designed on silica substrate with compliance of PON wavelengths. The designed
WSC coupler is used as a router for specific wavelength in order to detect any optical line
failure in PON application. The triple-play signals enter the waveguide in port 1 and OTDR
testing signal enters the waveguide at port 3. The 1625 nm testing signal generated by the
OTDR will be used to scan the status of PON. All the wavelengths must flow out through
port 2. In reverse mode, the device is applicable to split the 1625 nm testing signal from
triple-play signals (Rahman et al., 2008).
There are 2 reasons to setup a tapper circuit to bypass the 1625 nm testing signal from the
conventional PON system architecture. First, the WSC only allow the 1625 nm testing signal
to enter into the tapper circuit and filter all unwanted signals that contaminate the OTDR
measurement. Second is to reduce the large loss of optical splitter, which limits the OTDR’s
ability to test far after passing the optical splitter. The performance of the device was
modeled and simulated using Beam Propagation Method (BPM-Cad). It shows that the
insertion loss of each WSC port is 0.0391 dB (Rahman et al., 2008); however the loss of
optical splitter 1x8 is 9.0 dB (10%).

Fig. 4. Structure of WSC coupler which operate the wavelength used in PON application

3.2 Principle enhancement of SANTAD
3.2.1 Path monitoring control with Access Control System (ACS)
Access Control System (ACS) has been developed as a supported device in our proposed
system. ACS is a functional tool for monitoring, testing, and analyzing as well as activates
the protection switch in the restoration process for PON network system as presented in
Figure 5. ACS is the core of proposed design. It locates at the middle of the network system
for controlling the devices/components in feeder region and drop region and responsible in

 User Interfaces

86

Fig. 3. System architecture of optical network monitoring and management system for PON

As illustrated in Figure 3, the triple-play signals (1310 nm, 1490 nm, and 1550 nm) are
multiplexed (combined) with 1625 nm OTDR testing signal. A tapper circuit is designed to
allow the OTDR testing signal to bypass the optical splitter in a conventional PON when
emitted in downstream direction (from CO towards multiple customer residential
locations). When 4 kinds of signals are distributed, the testing signal will be split up by the
wavelength selective coupler (WSC), which is installed before the optical splitter. The WSC
coupler only allow the 1625 nm signal to enter into the tapper circuit and filter all unwanted
signals that contaminate the OTDR measurement. The downstream signal will go through
the WSC, which in turn connected to the optical splitter before it reaches the multiple ONUs
at different customer residential locations. On the other hand, the 1625 nm signal which is
demultiplexed by WSC coupler will be split up again in power ratio 99:1 by using

ACS

OS

To users
From CO

Traffic

OTDR Troubleshooting Signal

ACS diverting the OTDR
testing signal to each line
connected to the ONUs

SANTAD accumulate all
the OTDR test results

onto a computer screen
for further analysis

Graphical User Interface for PON Network Management System

87

directional coupler (DC) to activate the microprocessor system. The 99% 1625 nm signal will
then be configured by using optical splitter which each output is connected to single line of
ONU. The operational of optical switch is controlled by microprocessor system that is
activated by 1% of 1625 nm testing signal.
In order to enable wavelength splitting (demultiplexing) and combining (multiplexing) in
the tapper circuit, WSC coupler is designed for the optical signals having different light
wavelengths can be separated or combined to transmit in single optical fiber as shown in
Figure 4. WSC coupler is actually a demultiplexer but with limited to 2 output ports. It is an
optical device that functions to split out the signal according to their frequencies but each
output arms are not limited only to 1 wavelength as applied in demultiplexer. The WSC
coupler is designed on silica substrate with compliance of PON wavelengths. The designed
WSC coupler is used as a router for specific wavelength in order to detect any optical line
failure in PON application. The triple-play signals enter the waveguide in port 1 and OTDR
testing signal enters the waveguide at port 3. The 1625 nm testing signal generated by the
OTDR will be used to scan the status of PON. All the wavelengths must flow out through
port 2. In reverse mode, the device is applicable to split the 1625 nm testing signal from
triple-play signals (Rahman et al., 2008).
There are 2 reasons to setup a tapper circuit to bypass the 1625 nm testing signal from the
conventional PON system architecture. First, the WSC only allow the 1625 nm testing signal
to enter into the tapper circuit and filter all unwanted signals that contaminate the OTDR
measurement. Second is to reduce the large loss of optical splitter, which limits the OTDR’s
ability to test far after passing the optical splitter. The performance of the device was
modeled and simulated using Beam Propagation Method (BPM-Cad). It shows that the
insertion loss of each WSC port is 0.0391 dB (Rahman et al., 2008); however the loss of
optical splitter 1x8 is 9.0 dB (10%).

Fig. 4. Structure of WSC coupler which operate the wavelength used in PON application

3.2 Principle enhancement of SANTAD
3.2.1 Path monitoring control with Access Control System (ACS)
Access Control System (ACS) has been developed as a supported device in our proposed
system. ACS is a functional tool for monitoring, testing, and analyzing as well as activates
the protection switch in the restoration process for PON network system as presented in
Figure 5. ACS is the core of proposed design. It locates at the middle of the network system
for controlling the devices/components in feeder region and drop region and responsible in

 User Interfaces

88

routing the OTDR to the specific line to enable them be monitored from CO. It becomes an
intelligent control centre that used as an intermediate medium for controlling the
monitoring and protection system in the access network. The system architecture of ACS is
structured into 2 major parts: (i) Path monitoring control and (ii) Protection and restoration
scheme activation. ACS consists of a microcontroller system, 1x8 optical switch, Centralized
Failure Troubleshooting System (CFTS), Multi Access Detection System (MADS), Multi
Ratio Optical Splitter (MROS), and Smart Restoration Scheme (SRS).

Fig. 5. Access Control System (ACS), (a) Lab prototype, (b) PIC18F97J60 microcontroller and
(c) Experimental setup for diverting OTDR testing signal

Fig. 6. The integration of PON and ADSL network

Graphical User Interface for PON Network Management System

89

In the proposed system design, the optical network system (PON) is collaterally together with
conventional asymmetric digital subscriber line (ADSL) network as illustrated in Figure 6. The
PON used fiber to carry the information signal; meanwhile the ADSL used metallic wire to
carry the control signal. The ADSL used the access control network to activate installed
devices/elements in the network system. Also, if the optical network goes down.
CFTS is focusing on path routing for monitoring the network’s status and detecting the
failure; while MADS is a monitoring system that use to detect any occurrence of fault in the
drop region. The ACS will receive signal from CFTS to identify the operation made; either
routing the OTDR’s signal to a specific line for detection scheme or still continue for the
monitoring scheme performed by MADS. The detection scheme through CFTS offers 2
operation modes, (i) Automatic control and (ii) Manual control. Automatic control routes
the OTDR’s signal periodically line by line. Meanwhile, the manual control will use the code
send by the network operator to route the signal to a specific line.
ACS controls the status of any optical switch device that connected to it and transmits its
status to the PIC18F97J60 microcontroller. Its then arranges the information in the form of a
packet and transmits it over the local access network (LAN) using embedded Ethernet
system. ACS is equipped with state-of-the art fiber fault identification equipment to
detecting the cause of any failure.

(a)

(b) (c)

Fig. 7. (a) The MROS as a component in ACS is located at the center of PON to optimize the
signal power distribution to each number of users enable the distance can be extended more
than 20 km from the OLT, (b) The signal propagates in 1x4 MROS, and (c) The characteristic
of optimized output power associated with the device length.

 User Interfaces

88

routing the OTDR to the specific line to enable them be monitored from CO. It becomes an
intelligent control centre that used as an intermediate medium for controlling the
monitoring and protection system in the access network. The system architecture of ACS is
structured into 2 major parts: (i) Path monitoring control and (ii) Protection and restoration
scheme activation. ACS consists of a microcontroller system, 1x8 optical switch, Centralized
Failure Troubleshooting System (CFTS), Multi Access Detection System (MADS), Multi
Ratio Optical Splitter (MROS), and Smart Restoration Scheme (SRS).

Fig. 5. Access Control System (ACS), (a) Lab prototype, (b) PIC18F97J60 microcontroller and
(c) Experimental setup for diverting OTDR testing signal

Fig. 6. The integration of PON and ADSL network

Graphical User Interface for PON Network Management System

89

In the proposed system design, the optical network system (PON) is collaterally together with
conventional asymmetric digital subscriber line (ADSL) network as illustrated in Figure 6. The
PON used fiber to carry the information signal; meanwhile the ADSL used metallic wire to
carry the control signal. The ADSL used the access control network to activate installed
devices/elements in the network system. Also, if the optical network goes down.
CFTS is focusing on path routing for monitoring the network’s status and detecting the
failure; while MADS is a monitoring system that use to detect any occurrence of fault in the
drop region. The ACS will receive signal from CFTS to identify the operation made; either
routing the OTDR’s signal to a specific line for detection scheme or still continue for the
monitoring scheme performed by MADS. The detection scheme through CFTS offers 2
operation modes, (i) Automatic control and (ii) Manual control. Automatic control routes
the OTDR’s signal periodically line by line. Meanwhile, the manual control will use the code
send by the network operator to route the signal to a specific line.
ACS controls the status of any optical switch device that connected to it and transmits its
status to the PIC18F97J60 microcontroller. Its then arranges the information in the form of a
packet and transmits it over the local access network (LAN) using embedded Ethernet
system. ACS is equipped with state-of-the art fiber fault identification equipment to
detecting the cause of any failure.

(a)

(b) (c)

Fig. 7. (a) The MROS as a component in ACS is located at the center of PON to optimize the
signal power distribution to each number of users enable the distance can be extended more
than 20 km from the OLT, (b) The signal propagates in 1x4 MROS, and (c) The characteristic
of optimized output power associated with the device length.

 User Interfaces

90

Tapping 3% of the downstream and upstream signal by using coupler, ACS can recognize
the status of feeder section and drop section. If breakdown occurs in feeder section, ACS
will send a signal to activate the dedicated protection scheme. But if the breakdown is the
detected in drop section, ACS will recognize the related access line by the 3% tapped signal
that is connected to every access line. The activation signal is then sent to active the
dedicated protection scheme. But if fault is still not restored, the shared protection scheme
will be activated. The monitoring signal section is responsible for sensing fault and its
location whereas generation of activation of signal is sent by activation section in ACS.

 (a) (b)

 (c) (d)

Fig. 8. The eye diagram of Q-factor for MROS with multiple splitting ratio, (a) 10 %, (b) 20 %,
(c) 30 %, and (d) 40 %

Graphical User Interface for PON Network Management System

91

Splitting Ratio Maximum Distance Q-factor BER
10 % 51 km 6.27631 1.7213 x 10-10
20 % 60 km 6 9.33852 x 10-10
30 % 69 km 5.99 1.003919 x 10-9
40 % 76 km 6.0242 8.431 x 10-10

Table 1. The maximum distance, Q-factor, and BER for MROS with different splitting ratios

3.2.2 Long reach distance with Multi Ratio Optical Splitter (MROS)
ACS contains a new optical splitting device named MROS for improving the efficiency of
data delivery to the customer premises/subscribers through optimizing the magnitude
power distribute to each line connected to ONU (see Figure 7). In the real condition, the
optical line for every home is terminated unevenly; therefore this device is designed to
overcome such problem. MROS splits the input power to output power with ratio 10%, 20%,
30%, and 40%. It reduces the losses during data transmission because the optical power of
input signal is distributed according to the distance between the MORS and ONU sides.
Apart from that, various usage of this device does not require any amplifier to amplify the
optical power of sharing signal to different distance. With MROS, the maximum achievable
distance of the network system (from OLT to ONUs) can be expanding more than 20 km as
compared to the conventional PON which uses the homogeneity splitting splitter (Rahman
et al., 2009).
From the simulation using the OptiSystem CAD program by Optiwave System Inc, with 40
% output power from the MROS, the maximum distance that can be achieved is 76 km. For
30 %, 20 %, and 10 % splitting ratios, the maximum distance are 69 km, 60 km, and 51 km,
respectively. The system sensitivity is set at - 35 dBm, the eye diagram of Q-factor for MROS
with different splitting ratios is depicted in Figure 8 and the details can be seen in Table 1.

3.2.3 Remote access control for OTDR test module
FTB-400 Universal Test System provided courtesy of EXFO Electro-Optical Engineering Inc
uses as an OTDR in this study. FTB-400 is chosen due to low cost and high dynamic range

Fig. 9. Ethernet remote interface

OTDR Router Controlled PC
Ethernet TCP/IP

SCPI Commands
and Queries

 User Interfaces

90

Tapping 3% of the downstream and upstream signal by using coupler, ACS can recognize
the status of feeder section and drop section. If breakdown occurs in feeder section, ACS
will send a signal to activate the dedicated protection scheme. But if the breakdown is the
detected in drop section, ACS will recognize the related access line by the 3% tapped signal
that is connected to every access line. The activation signal is then sent to active the
dedicated protection scheme. But if fault is still not restored, the shared protection scheme
will be activated. The monitoring signal section is responsible for sensing fault and its
location whereas generation of activation of signal is sent by activation section in ACS.

 (a) (b)

 (c) (d)

Fig. 8. The eye diagram of Q-factor for MROS with multiple splitting ratio, (a) 10 %, (b) 20 %,
(c) 30 %, and (d) 40 %

Graphical User Interface for PON Network Management System

91

Splitting Ratio Maximum Distance Q-factor BER
10 % 51 km 6.27631 1.7213 x 10-10
20 % 60 km 6 9.33852 x 10-10
30 % 69 km 5.99 1.003919 x 10-9
40 % 76 km 6.0242 8.431 x 10-10

Table 1. The maximum distance, Q-factor, and BER for MROS with different splitting ratios

3.2.2 Long reach distance with Multi Ratio Optical Splitter (MROS)
ACS contains a new optical splitting device named MROS for improving the efficiency of
data delivery to the customer premises/subscribers through optimizing the magnitude
power distribute to each line connected to ONU (see Figure 7). In the real condition, the
optical line for every home is terminated unevenly; therefore this device is designed to
overcome such problem. MROS splits the input power to output power with ratio 10%, 20%,
30%, and 40%. It reduces the losses during data transmission because the optical power of
input signal is distributed according to the distance between the MORS and ONU sides.
Apart from that, various usage of this device does not require any amplifier to amplify the
optical power of sharing signal to different distance. With MROS, the maximum achievable
distance of the network system (from OLT to ONUs) can be expanding more than 20 km as
compared to the conventional PON which uses the homogeneity splitting splitter (Rahman
et al., 2009).
From the simulation using the OptiSystem CAD program by Optiwave System Inc, with 40
% output power from the MROS, the maximum distance that can be achieved is 76 km. For
30 %, 20 %, and 10 % splitting ratios, the maximum distance are 69 km, 60 km, and 51 km,
respectively. The system sensitivity is set at - 35 dBm, the eye diagram of Q-factor for MROS
with different splitting ratios is depicted in Figure 8 and the details can be seen in Table 1.

3.2.3 Remote access control for OTDR test module
FTB-400 Universal Test System provided courtesy of EXFO Electro-Optical Engineering Inc
uses as an OTDR in this study. FTB-400 is chosen due to low cost and high dynamic range

Fig. 9. Ethernet remote interface

OTDR Router Controlled PC
Ethernet TCP/IP

SCPI Commands
and Queries

 User Interfaces

92

up to 45 dB that ideal for long-haul networks. The OTDR test module is accomplished to an
operator’s remote workstation (PC/laptop) through the 10/100 Ethernet port running using
Microsoft Visual Basic 2008 platform. The Ethernet remote interface allowed the users to
access (connect) the OTDR test module over any Internet-connected PC as depicted in
Figure 9. Integrated in an Ethernet LAN, such instrument can directly exchange data with
various documentation tools or be remotely controlled. This enable the users to run and
operate the OTDR test module from a remote PC/laptop at CO, point of link control (remote
site), or distant monitoring easily in real time anywhere at any time without on-site
personnel.

3.2.4 Acquisition configuration
SANTAD is automatically set the acquisition configuration (testing parameters) of FTB-400
when emitting the OTDR pulse; however it may be necessary to manually set the testing
parameters in order to obtain the desired results. Besides the 1625 nm testing signal is
reserved for live network monitoring, there are another three parameters as described
below:
1. Distance range - Determine the maximum distance at which the OTDR will detect an

event.
2. Pulse width - Determine the time width (duration) of the pulse that is send by OTDR. A

longer pulse travels further down the fiber and improves the signal-to-noise ratio
(SNR), but results in less resolution, making it more difficultly to separate closely
spaced event. A longer pulse also results in longer dead zones. In contrast, a shorter
pulse width provides higher resolution and shorter dead zones, but less distance range
and lower SNR. Generally, it is preferable to select the shortest possible pulse width,
enabling to see everything and then proceed to make further adjustments for
optimization. When testing downstream in FTTH, the optical power of the OTDR pulse
must be large enough to go through the splitter and the dynamic range must be high.

3. Acquisition time - Longer acquisition times (time period during which test results are
averaged) produce cleaner traces (especially with long distance traces) due to the fact
that as the acquisition times increases, more of the noise is averaged out; this averaging
increases the SNR and the ability of the OTDR to detect small and closely spaced
events. When performing a quick test, in order to locate a major fault, such as a break, a
short acquisition time should be used (e.g., 10 s). To fully characterize a link with
optimal precision and to make sure the end-to-end loss budget is respected, a longer
acquisition time (45 s to 3 min) is preferable (EXFO, 2006 & EXFO, 2008).

3.2.5 Centralized monitoring and advanced data analyzing
The principle enhancement of SANTAD detection is best explained in Figure 10. In order to
execute the distinctive management operations, all the OTDR measurement are recorded in
database and then loaded into the developed program for further analyzing. SANTAD
accumulated all OTDR measurement into a single PC screen for centralized monitoring and
advanced data analyzing. Every 8 OTDR measurements will be displayed in Centralized
Monitoring form for centralized monitoring and advanced data analyzing. SANTAD is
focusing on providing survivability through event identification against losses and failures.
A failure notification “Line x FAILURE at z km from CO!” will be displayed and send to the
field engineers if SANTAD detect any occurrence of fiber failures/faults in the network

Graphical User Interface for PON Network Management System

93

Fig. 10. System’s flow diagram for mechanism of failure detection and restoration

system. By monitoring such parameters, any occurrence of fault in the network system can
be identified by a drastic drop of optical power level. The failure status in the network
system will be sent to the field engineers via free e-mail service.
To obtain further details on the performance of specific line in the network system, every
measurement results obtained from the network testing are analyzed in the Line’s Detail
form. The developed program is able to identify and present the parameters of each optical
fiber line such as the line’s status, the magnitude of attenuation as well as the location, and
other details (breakdown location, line’s parameter such as return loss, crosstalk, etc.) are
shown in the computer screen. By monitoring such parameters, SANTAD can distinguish
failures, thus eliminating unnecessary field trips for maintenance. The advantage of this
feature as compared to the OTDR and computer-based emulation software is SANTAD
displayed every status for the testing line in the Line’s Detail form which display onto one
screen board. A “Good condition” or “Decreasing y dB at z km” message displays at the line’s
status panel in a working condition. However in a failure condition, a failure message “Line

 User Interfaces

92

up to 45 dB that ideal for long-haul networks. The OTDR test module is accomplished to an
operator’s remote workstation (PC/laptop) through the 10/100 Ethernet port running using
Microsoft Visual Basic 2008 platform. The Ethernet remote interface allowed the users to
access (connect) the OTDR test module over any Internet-connected PC as depicted in
Figure 9. Integrated in an Ethernet LAN, such instrument can directly exchange data with
various documentation tools or be remotely controlled. This enable the users to run and
operate the OTDR test module from a remote PC/laptop at CO, point of link control (remote
site), or distant monitoring easily in real time anywhere at any time without on-site
personnel.

3.2.4 Acquisition configuration
SANTAD is automatically set the acquisition configuration (testing parameters) of FTB-400
when emitting the OTDR pulse; however it may be necessary to manually set the testing
parameters in order to obtain the desired results. Besides the 1625 nm testing signal is
reserved for live network monitoring, there are another three parameters as described
below:
1. Distance range - Determine the maximum distance at which the OTDR will detect an

event.
2. Pulse width - Determine the time width (duration) of the pulse that is send by OTDR. A

longer pulse travels further down the fiber and improves the signal-to-noise ratio
(SNR), but results in less resolution, making it more difficultly to separate closely
spaced event. A longer pulse also results in longer dead zones. In contrast, a shorter
pulse width provides higher resolution and shorter dead zones, but less distance range
and lower SNR. Generally, it is preferable to select the shortest possible pulse width,
enabling to see everything and then proceed to make further adjustments for
optimization. When testing downstream in FTTH, the optical power of the OTDR pulse
must be large enough to go through the splitter and the dynamic range must be high.

3. Acquisition time - Longer acquisition times (time period during which test results are
averaged) produce cleaner traces (especially with long distance traces) due to the fact
that as the acquisition times increases, more of the noise is averaged out; this averaging
increases the SNR and the ability of the OTDR to detect small and closely spaced
events. When performing a quick test, in order to locate a major fault, such as a break, a
short acquisition time should be used (e.g., 10 s). To fully characterize a link with
optimal precision and to make sure the end-to-end loss budget is respected, a longer
acquisition time (45 s to 3 min) is preferable (EXFO, 2006 & EXFO, 2008).

3.2.5 Centralized monitoring and advanced data analyzing
The principle enhancement of SANTAD detection is best explained in Figure 10. In order to
execute the distinctive management operations, all the OTDR measurement are recorded in
database and then loaded into the developed program for further analyzing. SANTAD
accumulated all OTDR measurement into a single PC screen for centralized monitoring and
advanced data analyzing. Every 8 OTDR measurements will be displayed in Centralized
Monitoring form for centralized monitoring and advanced data analyzing. SANTAD is
focusing on providing survivability through event identification against losses and failures.
A failure notification “Line x FAILURE at z km from CO!” will be displayed and send to the
field engineers if SANTAD detect any occurrence of fiber failures/faults in the network

Graphical User Interface for PON Network Management System

93

Fig. 10. System’s flow diagram for mechanism of failure detection and restoration

system. By monitoring such parameters, any occurrence of fault in the network system can
be identified by a drastic drop of optical power level. The failure status in the network
system will be sent to the field engineers via free e-mail service.
To obtain further details on the performance of specific line in the network system, every
measurement results obtained from the network testing are analyzed in the Line’s Detail
form. The developed program is able to identify and present the parameters of each optical
fiber line such as the line’s status, the magnitude of attenuation as well as the location, and
other details (breakdown location, line’s parameter such as return loss, crosstalk, etc.) are
shown in the computer screen. By monitoring such parameters, SANTAD can distinguish
failures, thus eliminating unnecessary field trips for maintenance. The advantage of this
feature as compared to the OTDR and computer-based emulation software is SANTAD
displayed every status for the testing line in the Line’s Detail form which display onto one
screen board. A “Good condition” or “Decreasing y dB at z km” message displays at the line’s
status panel in a working condition. However in a failure condition, a failure message “Line

 User Interfaces

94

x FAILURE at z km from CO!” displays to show the exact failure location in the network
system It is flexible and easily to use for those who are inexperience in the optical fiber
testing by just reading the information gain from the messages.

3.3 Prototype implementation
The lab prototype of SANTAD is implemented in PON network at Universiti Kebangsaan
Malaysia (UKM) composed by 20 km fiber as depicted in Figure 11 for analyzing the
network performance. The length of feeder fiber is 15 km. The fiber link in distribution
region between the optical splitter and each ONU is about 5 km. In normal operation, both
the upstream and downstream signals travel through a transmission distance of 20 km from
OLT towards each ONU.

Fig. 11. Photographic view of the prototype implementation of SANTAD in PON network

We conducted an experiment for evaluating our in-service fault localization methodology as
an appreciate technique in our proposed design. Here we are specially focusing on
identifying the link failures in the network system. As a first step, no default was introduced
in the network system and OTDR measurements are performed. In this research, the
characterization measurements will be analyzed base on different connections in the drop
region. The fiber link between the optical splitter and the ONU is intentionally disconnected
to represent a fiber break scenario at distance 15 km. It visualized the actual break point of
an optical line at that distance in a real condition.
Our in-service fault localization results are presented in Figure 12. Figure 12a depicts the
capability of SANTAD to configure the optical signal level and attenuation/losses through
event identification method. The failure location is identified by a drastic drop of optical
power level. Figure 12b and 12c illustrates the further details of the specific testing line in
the network system. The analysis results will then stored in text file acting as a database
with certain attributes such as date and time, network failure rate, failure location, etc. All
kinds of additional information can be easily accessed and queried later. The database
system enable the history of network scanning process be analyzed and studied by the field
engineers, as illustrated in Figure 13, which may require some promptly actions.

Graphical User Interface for PON Network Management System

95

(a)

(b) (c)

Fig. 12. (a) Execution display in Centralized Monitoring form, (b) An example of normal
condition, and (c) An example of failure condition in Line’s Detail form

The interface between network service providers or operators and field engineers is
customized web browser (see Figure 14). This web page allows network operators and field
engineers to test and troubleshoot any leg of PON by accessing an OTDR test module by just
connect a laptop or personnel digital assistant (PDA) to a LAN or web browser tools such as
Internet Explorer or Firefox to access this applications The status of each line is
automatically updated to a web server by ACS which can access by remote monitor via
Internet or LAN. The website is stored in the PIC18F97J60 microcontroller, besides this, for
the display of the real-time system, the web browser is also of vital importance, as it can be
only accessed via Internet. The network operators and field engineers can read and identify
the status of each fiber line timely from CO or remote site without making a site visit before
taking some appropriate actions. The field engineers can remote controlling the operation of
the optical switching for switching the traffic or routing the optical signals in supporting
devices from this web page. Once the instruction from the web page received, the
microcontroller in the supporting devices will run is the specific algorithm to control the
optical switch either in manual mode or automatic mode.

 User Interfaces

94

x FAILURE at z km from CO!” displays to show the exact failure location in the network
system It is flexible and easily to use for those who are inexperience in the optical fiber
testing by just reading the information gain from the messages.

3.3 Prototype implementation
The lab prototype of SANTAD is implemented in PON network at Universiti Kebangsaan
Malaysia (UKM) composed by 20 km fiber as depicted in Figure 11 for analyzing the
network performance. The length of feeder fiber is 15 km. The fiber link in distribution
region between the optical splitter and each ONU is about 5 km. In normal operation, both
the upstream and downstream signals travel through a transmission distance of 20 km from
OLT towards each ONU.

Fig. 11. Photographic view of the prototype implementation of SANTAD in PON network

We conducted an experiment for evaluating our in-service fault localization methodology as
an appreciate technique in our proposed design. Here we are specially focusing on
identifying the link failures in the network system. As a first step, no default was introduced
in the network system and OTDR measurements are performed. In this research, the
characterization measurements will be analyzed base on different connections in the drop
region. The fiber link between the optical splitter and the ONU is intentionally disconnected
to represent a fiber break scenario at distance 15 km. It visualized the actual break point of
an optical line at that distance in a real condition.
Our in-service fault localization results are presented in Figure 12. Figure 12a depicts the
capability of SANTAD to configure the optical signal level and attenuation/losses through
event identification method. The failure location is identified by a drastic drop of optical
power level. Figure 12b and 12c illustrates the further details of the specific testing line in
the network system. The analysis results will then stored in text file acting as a database
with certain attributes such as date and time, network failure rate, failure location, etc. All
kinds of additional information can be easily accessed and queried later. The database
system enable the history of network scanning process be analyzed and studied by the field
engineers, as illustrated in Figure 13, which may require some promptly actions.

Graphical User Interface for PON Network Management System

95

(a)

(b) (c)

Fig. 12. (a) Execution display in Centralized Monitoring form, (b) An example of normal
condition, and (c) An example of failure condition in Line’s Detail form

The interface between network service providers or operators and field engineers is
customized web browser (see Figure 14). This web page allows network operators and field
engineers to test and troubleshoot any leg of PON by accessing an OTDR test module by just
connect a laptop or personnel digital assistant (PDA) to a LAN or web browser tools such as
Internet Explorer or Firefox to access this applications The status of each line is
automatically updated to a web server by ACS which can access by remote monitor via
Internet or LAN. The website is stored in the PIC18F97J60 microcontroller, besides this, for
the display of the real-time system, the web browser is also of vital importance, as it can be
only accessed via Internet. The network operators and field engineers can read and identify
the status of each fiber line timely from CO or remote site without making a site visit before
taking some appropriate actions. The field engineers can remote controlling the operation of
the optical switching for switching the traffic or routing the optical signals in supporting
devices from this web page. Once the instruction from the web page received, the
microcontroller in the supporting devices will run is the specific algorithm to control the
optical switch either in manual mode or automatic mode.

 User Interfaces

96

(a)

(b) (c)

Fig. 13. Analysis of the relationship between network failure rate and network performance;
(a) Daily network performance, (b) Weekly network performance, and (c) Monthly network
performance

4. Smart Drop Protection Scheme (SDPS)
Smart Drop Protection Scheme (SDPS) is implemented in the drop region of PON to provide
self-protection and restoration capabilities against fiber failures/faults. Link failures are the
most common and occur when a fiber cable is accidentally cut when digging in an area
through which fiber cables pass. Protection can be performed at the level of an individual
light path or at the level of a single fiber. Path protection denotes schemes for the restoration
of a light path, and link protection denotes schemes for the restoration of a single fiber
(Perros, 2005). In our SDPS design, the transmission link in drop region is protected in a
non-dedicated 1:1 manner. An additional fiber is connected together with the drop fibers
between the optical splitter at the remote node (RN) and ONUs at customer sites as
protection line (backup line). SDPS utilizes different routing mechanisms to divert the
distributed signals from failure line to protection line or neighbor line according to the types
of failure condition and location. The protection switching in SDPS is carried out using an
additional device named Customer Access Protection Unit (CAPU).

Graphical User Interface for PON Network Management System

97

Fig. 14. (a) Web service application for multi interfacing, (b) Web-based remote control and
monitoring applications for ACS, and (c) Web-based remote control and monitoring
applications for CAPU

4.1 Failure detection with Multi Access Detection System (MADS)
In our proposed system, 2 supported devices have been developed; ACS and MADS. MADS
is used to identify the faulty line by tapping a small ratio of traffic flow. The status of each
transmission link is sent to the assemble point in the ACS by using radio frequency (RF)
signal. Any damage traced by SANTAD would be referred with MADS before restoration
scheme grew. The activated restoration scheme is depend to the failure location and the
activation signal is sent through the ADSL line to each optical switch which involved of the
particular scheme.
The MADS system model is shown in Figure 15. Since the triple-play signals are combined
at CO, therefore these signals are required to be split according to their respective
wavelengths (1310 nm and 1480 nm for data and voice signals and 1550 nm for video signal)
by using passive components configuration for monitoring purposes. In this configuration,
the video signal will be split again into a 90:10 ratio. The 90% video signal will recombine
with 1310 nm and 1480 nm signals, and transmitted to ONU before distributed to the users;
while an optical-to-electrical (O/E) converter is used to convert the other 10% signal to
electrical signal. In the next stage, CATV electrical signal will be sent to max7461 module.
This module is able to convert the video signal to 1-bit signal. The 1-bit signal from every
wireless transmitter will be sent to wireless receiver at the assembly point in ACS. ACS will

 User Interfaces

96

(a)

(b) (c)

Fig. 13. Analysis of the relationship between network failure rate and network performance;
(a) Daily network performance, (b) Weekly network performance, and (c) Monthly network
performance

4. Smart Drop Protection Scheme (SDPS)
Smart Drop Protection Scheme (SDPS) is implemented in the drop region of PON to provide
self-protection and restoration capabilities against fiber failures/faults. Link failures are the
most common and occur when a fiber cable is accidentally cut when digging in an area
through which fiber cables pass. Protection can be performed at the level of an individual
light path or at the level of a single fiber. Path protection denotes schemes for the restoration
of a light path, and link protection denotes schemes for the restoration of a single fiber
(Perros, 2005). In our SDPS design, the transmission link in drop region is protected in a
non-dedicated 1:1 manner. An additional fiber is connected together with the drop fibers
between the optical splitter at the remote node (RN) and ONUs at customer sites as
protection line (backup line). SDPS utilizes different routing mechanisms to divert the
distributed signals from failure line to protection line or neighbor line according to the types
of failure condition and location. The protection switching in SDPS is carried out using an
additional device named Customer Access Protection Unit (CAPU).

Graphical User Interface for PON Network Management System

97

Fig. 14. (a) Web service application for multi interfacing, (b) Web-based remote control and
monitoring applications for ACS, and (c) Web-based remote control and monitoring
applications for CAPU

4.1 Failure detection with Multi Access Detection System (MADS)
In our proposed system, 2 supported devices have been developed; ACS and MADS. MADS
is used to identify the faulty line by tapping a small ratio of traffic flow. The status of each
transmission link is sent to the assemble point in the ACS by using radio frequency (RF)
signal. Any damage traced by SANTAD would be referred with MADS before restoration
scheme grew. The activated restoration scheme is depend to the failure location and the
activation signal is sent through the ADSL line to each optical switch which involved of the
particular scheme.
The MADS system model is shown in Figure 15. Since the triple-play signals are combined
at CO, therefore these signals are required to be split according to their respective
wavelengths (1310 nm and 1480 nm for data and voice signals and 1550 nm for video signal)
by using passive components configuration for monitoring purposes. In this configuration,
the video signal will be split again into a 90:10 ratio. The 90% video signal will recombine
with 1310 nm and 1480 nm signals, and transmitted to ONU before distributed to the users;
while an optical-to-electrical (O/E) converter is used to convert the other 10% signal to
electrical signal. In the next stage, CATV electrical signal will be sent to max7461 module.
This module is able to convert the video signal to 1-bit signal. The 1-bit signal from every
wireless transmitter will be sent to wireless receiver at the assembly point in ACS. ACS will

 User Interfaces

98

Fig. 15. Multi Access Detection System (MADS) system model

Fig. 16. Experimental set up for indentifying the propagation signal (the video signal is fed
into the MADS to represent the video signal transmission in PON)

Graphical User Interface for PON Network Management System

99

translate the failure into codes, which is specified by the failure type and the suitable
restoration scheme to be activated. Then the codes are sent to the respective ONUs to
perform the restoration scheme. The experimental set up for MADS is illustrated in Figure
16. Figure 17 represents the successful failure detection by using MADS. The computer
plays a warning sound (alarm) if there is failure occur in the PON network system.

Fig. 17. The status of each transmission line is displayed on a computer screen, red circle
indicates failure occurs in the specific line; (a) Both video players are “On”, (b) Video player
1 is “Off” and 2 is “On”, (c) Video player 1 is “On” and 2 is “Off, and (d) Both video players
are “Off”

4.2 Failure link recovery with Customer Access Protection Unit (CAPU)
CAPU is an optical programmable switch device (OPSD) designed as a package that offered
for the ease of customers to perform security and self restoration at the end-users side.
CAPU comprises of 1x2 and 2x2 optical switches as well as a microcontroller system
switching the distributed signals to the protection line or neighbor line when failure occurs
in the working line (see Figure 18). Two optical switches are allocated in the transmission
fiber link as optical selector; one is designated to switch the distributed signals from failure
line to the protection line or transmission line nearby, while another will switch the signals
back to the original path after bypass the failure point. Both optical switches are coupled
with an ADSL copper wire from the CO through ACS.

(a) (b)

Fig. 18. Customer Access Protection Unit (CAPU), (a) Lab prototype and (b) Schematic diagram

 User Interfaces

98

Fig. 15. Multi Access Detection System (MADS) system model

Fig. 16. Experimental set up for indentifying the propagation signal (the video signal is fed
into the MADS to represent the video signal transmission in PON)

Graphical User Interface for PON Network Management System

99

translate the failure into codes, which is specified by the failure type and the suitable
restoration scheme to be activated. Then the codes are sent to the respective ONUs to
perform the restoration scheme. The experimental set up for MADS is illustrated in Figure
16. Figure 17 represents the successful failure detection by using MADS. The computer
plays a warning sound (alarm) if there is failure occur in the PON network system.

Fig. 17. The status of each transmission line is displayed on a computer screen, red circle
indicates failure occurs in the specific line; (a) Both video players are “On”, (b) Video player
1 is “Off” and 2 is “On”, (c) Video player 1 is “On” and 2 is “Off, and (d) Both video players
are “Off”

4.2 Failure link recovery with Customer Access Protection Unit (CAPU)
CAPU is an optical programmable switch device (OPSD) designed as a package that offered
for the ease of customers to perform security and self restoration at the end-users side.
CAPU comprises of 1x2 and 2x2 optical switches as well as a microcontroller system
switching the distributed signals to the protection line or neighbor line when failure occurs
in the working line (see Figure 18). Two optical switches are allocated in the transmission
fiber link as optical selector; one is designated to switch the distributed signals from failure
line to the protection line or transmission line nearby, while another will switch the signals
back to the original path after bypass the failure point. Both optical switches are coupled
with an ADSL copper wire from the CO through ACS.

(a) (b)

Fig. 18. Customer Access Protection Unit (CAPU), (a) Lab prototype and (b) Schematic diagram

 User Interfaces

100

ACS controls the optical switch device for path selective in normal operation and failure
condition. In normal condition, the upstream and downstream signals of each ONU are
transmitted through their corresponding fiber. However, in case of SANTAD detects any
occurrence of fiber fault or transmission failure in the drop region by monitoring the optical
power, losses, and attenuation from CO, it will identify the faulty line and address the
failure location. Then ACS recognizes the types of failure and sends the activation signals to
the microcontroller to trigger the related optical switches to transfer the disrupted signals to
the other fiber link according to the activated protection mechanisms. The route depends on
the restoration mechanism that is activated according to the types of failure as depicted in
Figure 19.

Fig. 19. Protection mechanisms in PON

4.3 Simulation results in -34 dBm receiver sensitivity
The PON based network design is modelled and simulated using the Optisystem CAD
program by Optiwave System, Inc. All figures below depict the protection mechanism design
for PON network system. The downstream optical signals (with λ1 = 1480 nm and λ2 = 1550
nm) will be transmitted from CO trough the feeder region and then entered the distribution
region after passing the optical splitter. The optical signals will be divided into 8 route signals

Graphical User Interface for PON Network Management System

101

evenly in the distribution region. For this simulation, we set the receiver sensitivity at -34 dBm
and other parameters as listed in Table 2 by using the SPO optimization. Our results are
obtained by observing bit error rates (BERs), eye diagrams, optical power levels, and
dispersion levels. Figure 20 till 23 present the eye diagrams with Max Q factor and Min BER at
each ONU for the 1550 nm, 1480 nm, and 1310 nm signals, respectively.

Component Parameter Type Value

PBRS Generator Upstream Bit Rate (Gbps)
Downstream Bit Rate (Gbps)

1.25
1.25 (symmetrical)

Electrical Generator Rise Time/ Fall Time 0.05 bit

Light Source Downstream Wavelength(nm)
Upstream Wavelength (nm)

1480, 1550
1310

Modulator Modulation Format NRZ
Multiplexer/Demultiplexer Insertion Loss (dB) 0.5
Bidirectional Splitter (1:8) Insertion Loss (dB) 5
Circulator Bidirectional Insertion Loss (dB) 1

Bidirectional Optical Fiber Attenuation Constant (dB/km) 0.25

Table 2. Simulation parameters

 Max Q Factor = 34.3021 Max Q Factor = 14.7599 Max Q Factor = 8.12329
 Min BER = 3.55272e-258 Min BER = 1.32657e-049 Min BER = 2.65955e-017
 (a) (b) (c)

Fig. 20. Max Q factor and Min BER at ONU 1 for (a) 1550 nm downstream signal, (b) 1480
nm downstream signal (c) 1310 nm upstream signal in condition A

 Max Q Factor = 20.8805 Max Q Factor = 21.0841
 Min BER = 3.9805e-097 Min BER = 5.54117e-099
 (a) (b)

Fig. 21. Max Q factor and Min BER at ONU 2 for (a) 1550 nm downstream signal and (b)
1480 nm downstream signal in condition B

 User Interfaces

100

ACS controls the optical switch device for path selective in normal operation and failure
condition. In normal condition, the upstream and downstream signals of each ONU are
transmitted through their corresponding fiber. However, in case of SANTAD detects any
occurrence of fiber fault or transmission failure in the drop region by monitoring the optical
power, losses, and attenuation from CO, it will identify the faulty line and address the
failure location. Then ACS recognizes the types of failure and sends the activation signals to
the microcontroller to trigger the related optical switches to transfer the disrupted signals to
the other fiber link according to the activated protection mechanisms. The route depends on
the restoration mechanism that is activated according to the types of failure as depicted in
Figure 19.

Fig. 19. Protection mechanisms in PON

4.3 Simulation results in -34 dBm receiver sensitivity
The PON based network design is modelled and simulated using the Optisystem CAD
program by Optiwave System, Inc. All figures below depict the protection mechanism design
for PON network system. The downstream optical signals (with λ1 = 1480 nm and λ2 = 1550
nm) will be transmitted from CO trough the feeder region and then entered the distribution
region after passing the optical splitter. The optical signals will be divided into 8 route signals

Graphical User Interface for PON Network Management System

101

evenly in the distribution region. For this simulation, we set the receiver sensitivity at -34 dBm
and other parameters as listed in Table 2 by using the SPO optimization. Our results are
obtained by observing bit error rates (BERs), eye diagrams, optical power levels, and
dispersion levels. Figure 20 till 23 present the eye diagrams with Max Q factor and Min BER at
each ONU for the 1550 nm, 1480 nm, and 1310 nm signals, respectively.

Component Parameter Type Value

PBRS Generator Upstream Bit Rate (Gbps)
Downstream Bit Rate (Gbps)

1.25
1.25 (symmetrical)

Electrical Generator Rise Time/ Fall Time 0.05 bit

Light Source Downstream Wavelength(nm)
Upstream Wavelength (nm)

1480, 1550
1310

Modulator Modulation Format NRZ
Multiplexer/Demultiplexer Insertion Loss (dB) 0.5
Bidirectional Splitter (1:8) Insertion Loss (dB) 5
Circulator Bidirectional Insertion Loss (dB) 1

Bidirectional Optical Fiber Attenuation Constant (dB/km) 0.25

Table 2. Simulation parameters

 Max Q Factor = 34.3021 Max Q Factor = 14.7599 Max Q Factor = 8.12329
 Min BER = 3.55272e-258 Min BER = 1.32657e-049 Min BER = 2.65955e-017
 (a) (b) (c)

Fig. 20. Max Q factor and Min BER at ONU 1 for (a) 1550 nm downstream signal, (b) 1480
nm downstream signal (c) 1310 nm upstream signal in condition A

 Max Q Factor = 20.8805 Max Q Factor = 21.0841
 Min BER = 3.9805e-097 Min BER = 5.54117e-099
 (a) (b)

Fig. 21. Max Q factor and Min BER at ONU 2 for (a) 1550 nm downstream signal and (b)
1480 nm downstream signal in condition B

 User Interfaces

102

 Max Q Factor = 17.404 Max Q Factor = 16.8249
 Min BER = 3.83741e-068 Min BER = 7.98462e-064
 (a) (b)

Fig. 22. Max Q factor and Min BER at ONU 3 for (a) 1550 nm downstream signal and (b)
1480 nm downstream signal in condition C

 Max Q Factor = 17.404 Max Q Factor = 16.8249
 Min BER = 3.83741e-068 Min BER = 7.98462e-064
 (a) (b)

Fig. 23. Max Q factor and Min BER at ONU 4 for (a) 1550 nm downstream signal and (b)
1480 nm downstream signal in condition C

5. Conclusions
Locating fiber degradation or failures/faults within PON becomes more significant due to
the increasing demand for reliable service delivery. An appreciate approach is proposed in
this paper as a measurement strategy PON with improved performance. The experimental
results show the proposed approach is very feasible and efficiency to be implemented in
PON as an appreciate technique for detecting any fiber degradation or failures/faults and
details regarding faults, such as faulty line and failure location, are provided to the field
engineers and technicians within 30 seconds. This enhancement is contributed to:
• Testing a live network
• Help to prevent, identify and address problem
• Set-up a mechanism of interactive connection between CO and customers/end users
• Overcome the monitoring issues in PON by using conventional OTDR upwardly or

downwardly
• Reduce/save time and cost
• Increase survivability, efficiency, and flexibility of PON with tree topology or P2MP

configuration

Graphical User Interface for PON Network Management System

103

The main advantages of this work are to assists the network operators to manage the PON
network system more efficiently, facilitate the network management through centralized
monitoring and troubleshooting from CO, increase the workforce productivity, reduce
hands on workload, minimize network downtime, and rapidly restore failed services when
problems are detected and diagnosed.

6. Acknowledgement
This research work is supported by Ministry of Science, Technology and Innovation
(MOSTI), Government of Malaysia, through the National Science Fund (e-Science) 01-01-02-
SF0493. The authors would like to appreciate Aswir Premadi, Mohamad Najib Mohd.
Saupe, Siti Asma Che Aziz, Siti Rahayu Hassan, and Mastang for their valuable contribution
and technical support in this research.

7. References
Anderson, D.R.; Johnson, L. & Bell, F.G. (2004). Troubleshooting Optical Fiber Networks

Understanding and Using Optical Time-domain Reflectometers, Academic Press,
Elsevier, California, US, ISBN: 1417537205

Bakar, A.A.A.; Jamaludin, M.Z.; Abdullah, F.; Yaacob, M.H.; Mahdi, M.A. & Abdullah, M.K.
(2007). A New Technique of Real-time Monitoring of Fiber Optic Cable Networks
Transmission. Optics and Lasers in Engineering, Vol. 45, (2007) 126-130, ISSN: 0143-
8166

Barnoki, M.K. & Jensen, S.N. (1976). Fiber Waveguides: a Novel Technique for Investigating
Attenuation Characteristics. Applied Optics, Vol. 15, (1976) 2112-2115, ISSN: 0003-
6935

Chan, C.K.; Tong, F.; Chen, L.K.; Ho, K.P. & Lam, D. (1999). Fiber-fault identification for
branched access networks using a wavelength-sweeping monitoring source. IEEE
Photonics Technology Letters, Vol. 11, No. 5, (1999) 614-616, ISSN: 1041-1135

Chan, C.K. (2007). Chapter 6: Protection Architectures for Passive Optical Networks, Passive
Optical Networks Principles and Practice, Academic Press, Elsevier, 243-266

Corning. (2005). Broadband Technology Overview, Available:
http://www.corning.com/docs/opticalfiber/wp6321.pdf

EXFO. (2006). FTB-400 Universal Test System User Guide, EXFO Electro-Optical Engineering
Inc, Quebec City, Canada

EXFO. (2008). FTTx PON Guide Testing Passive Optical Networks, EXFO Electro-Optical
Engineering Inc, Quebec City, Canada

EXFO. (2008). Guide to WDM Technology and Testing, 3rd ed., ISSN: 1-55342-000-4, EXFO
Electro-Optical Engineering Inc, Quebec City, Canada

Gorshe, S.S. (2006). FTTH Technologies and Standards Industrial Highlights, Available:
www.ezcom.cn/English/digital%20library/200612/13.pdf

Keiser, G. (2000). Optical Fiber Communication, 3rd ed., McGraw Hill, New York, ISBN:1661-
8211

King, D.; Lyons, W.B.; Flanagan, C. & Lewis, E. (2004). Interpreting Complex Data from a
Three-sensor Multipoint Optical Fiber Ethanol Concentration Sensor System using
Artificial Neural Network Pattern Recognition. Measurement Science Technology, Vol.
15, (2004) 1560-1567, ISBN: 0957-0233

 User Interfaces

102

 Max Q Factor = 17.404 Max Q Factor = 16.8249
 Min BER = 3.83741e-068 Min BER = 7.98462e-064
 (a) (b)

Fig. 22. Max Q factor and Min BER at ONU 3 for (a) 1550 nm downstream signal and (b)
1480 nm downstream signal in condition C

 Max Q Factor = 17.404 Max Q Factor = 16.8249
 Min BER = 3.83741e-068 Min BER = 7.98462e-064
 (a) (b)

Fig. 23. Max Q factor and Min BER at ONU 4 for (a) 1550 nm downstream signal and (b)
1480 nm downstream signal in condition C

5. Conclusions
Locating fiber degradation or failures/faults within PON becomes more significant due to
the increasing demand for reliable service delivery. An appreciate approach is proposed in
this paper as a measurement strategy PON with improved performance. The experimental
results show the proposed approach is very feasible and efficiency to be implemented in
PON as an appreciate technique for detecting any fiber degradation or failures/faults and
details regarding faults, such as faulty line and failure location, are provided to the field
engineers and technicians within 30 seconds. This enhancement is contributed to:
• Testing a live network
• Help to prevent, identify and address problem
• Set-up a mechanism of interactive connection between CO and customers/end users
• Overcome the monitoring issues in PON by using conventional OTDR upwardly or

downwardly
• Reduce/save time and cost
• Increase survivability, efficiency, and flexibility of PON with tree topology or P2MP

configuration

Graphical User Interface for PON Network Management System

103

The main advantages of this work are to assists the network operators to manage the PON
network system more efficiently, facilitate the network management through centralized
monitoring and troubleshooting from CO, increase the workforce productivity, reduce
hands on workload, minimize network downtime, and rapidly restore failed services when
problems are detected and diagnosed.

6. Acknowledgement
This research work is supported by Ministry of Science, Technology and Innovation
(MOSTI), Government of Malaysia, through the National Science Fund (e-Science) 01-01-02-
SF0493. The authors would like to appreciate Aswir Premadi, Mohamad Najib Mohd.
Saupe, Siti Asma Che Aziz, Siti Rahayu Hassan, and Mastang for their valuable contribution
and technical support in this research.

7. References
Anderson, D.R.; Johnson, L. & Bell, F.G. (2004). Troubleshooting Optical Fiber Networks

Understanding and Using Optical Time-domain Reflectometers, Academic Press,
Elsevier, California, US, ISBN: 1417537205

Bakar, A.A.A.; Jamaludin, M.Z.; Abdullah, F.; Yaacob, M.H.; Mahdi, M.A. & Abdullah, M.K.
(2007). A New Technique of Real-time Monitoring of Fiber Optic Cable Networks
Transmission. Optics and Lasers in Engineering, Vol. 45, (2007) 126-130, ISSN: 0143-
8166

Barnoki, M.K. & Jensen, S.N. (1976). Fiber Waveguides: a Novel Technique for Investigating
Attenuation Characteristics. Applied Optics, Vol. 15, (1976) 2112-2115, ISSN: 0003-
6935

Chan, C.K.; Tong, F.; Chen, L.K.; Ho, K.P. & Lam, D. (1999). Fiber-fault identification for
branched access networks using a wavelength-sweeping monitoring source. IEEE
Photonics Technology Letters, Vol. 11, No. 5, (1999) 614-616, ISSN: 1041-1135

Chan, C.K. (2007). Chapter 6: Protection Architectures for Passive Optical Networks, Passive
Optical Networks Principles and Practice, Academic Press, Elsevier, 243-266

Corning. (2005). Broadband Technology Overview, Available:
http://www.corning.com/docs/opticalfiber/wp6321.pdf

EXFO. (2006). FTB-400 Universal Test System User Guide, EXFO Electro-Optical Engineering
Inc, Quebec City, Canada

EXFO. (2008). FTTx PON Guide Testing Passive Optical Networks, EXFO Electro-Optical
Engineering Inc, Quebec City, Canada

EXFO. (2008). Guide to WDM Technology and Testing, 3rd ed., ISSN: 1-55342-000-4, EXFO
Electro-Optical Engineering Inc, Quebec City, Canada

Gorshe, S.S. (2006). FTTH Technologies and Standards Industrial Highlights, Available:
www.ezcom.cn/English/digital%20library/200612/13.pdf

Keiser, G. (2000). Optical Fiber Communication, 3rd ed., McGraw Hill, New York, ISBN:1661-
8211

King, D.; Lyons, W.B.; Flanagan, C. & Lewis, E. (2004). Interpreting Complex Data from a
Three-sensor Multipoint Optical Fiber Ethanol Concentration Sensor System using
Artificial Neural Network Pattern Recognition. Measurement Science Technology, Vol.
15, (2004) 1560-1567, ISBN: 0957-0233

 User Interfaces

104

Mukherjee, B. (2006). Optical WDM Networks (Optical Networks), Springer, ISBN: 978-0-387-
29055-3.

Perros, H.G. (2005). Connection-oriented Network SONET/SDH, ATM, MPLS and Optical
Networks, John Wiley & Sons Ltd, England.

Prat, J. (2007). Optical Networks: Towards Bandwidth Manageability and Cost Efficiency,
Available: http://www.e-photon-
one.org/ephotonplus/servlet/Utils.MostrarFitxerPublic?fitxer=D_VD-
A_3.pdf&pathRelatiu=E-Photon+One+%2B%2FPublic%2FPublic+Deliverables%2F

Rahman, M.S.A.; Md-Zain, N.; Baharuddin, A. & Jumari, K. (2009). Multi Ratio Optical
Splitter (MROS) based on planar waveguide. Proceedings of Asia Pacific Conference on
Defence & Security Technology (DSTC 2009), paper DSTC-081, Kuala Lumpur,
Malaysia, 6-7 October 2009

Rahman, M.S.A.; Rashid A.R.A.; Ehsan A.A. & Shaari, S. (2008). The Characterization of
FTTH Wavelength Selective Coupler. Proceedings of 2008 IEEE International
Conference on Semiconductor Electronics (ICSE 2008), pp. 302-305, Johor Bahru,
Malaysia, 25-27 November 2008

Skubic, B.; Chen, J.; Ahmed, J.; Wosinka, L. & Mukherjee, B. (2009). A Comparison of
Dynamic Bandwidth Allocation for EPON, GPON, and Next Generation TDM
PON. IEEE Communications Magazine, Vol. 47, No. 3, (March 2009) S40-S48, ISSN:
0163-6804

Wosinska, L.; Colle, D.; Demeester, P.; Katrinis, K.; Lackovic, M.; Lapcevic, O.; Lievens, I.;
Markidis, G.; Mikac, B.; Pickavet, M.; Puype, B.; Skorin-Kapov, N.; Staessens, D. &
Tzanakaki, A. (2009). Chapter 9: Network Resilience in Future Optical Networks,
Towards Digital Optical Networks. Springer Berlin / Heidelberg, 253-284, ISBN: 978-
3-642-01523-6

7

Graphical User Interface
of System Identification Toolbox

for MATLAB
Hiroyuki Takanashi1 and Shuichi Adachi2

1Akita Prefectural University
2Keio University

Japan

1. Introduction
This chapter describes a Graphical User Interface (GUI) of a system identification device
used with MATLAB. MATLAB is a well-known software package that is widely used for
control system design, signal processing, system identification, etc. However, users who are
not familiar with MATLAB commands and system identification theory sometimes find it
difficult to use, typically because there are many different approaches to system
identification. We propose using a GUI, which is especially suitable for beginners, to
provide system identification procedures. The difficulties encountered by beginners in
performing system identification might be reduced by using a GUI. The effectiveness of a
GUI is illustrated using demonstration data in MATLAB.
Modeling of a plant is one of the most important tasks in control system design. There are
two main approaches to modeling: white-box modeling based on first principles and black-
box modeling based on input and output (I/O) data of a plant. The former is referred to as
first principle modeling, while the latter is termed system identification.
Computers have become powerful and useful tools in control system design. Several
sophisticated software packages (e.g., MATLAB, SCILAB, Octave and MaTX) have been
developed and are used for control system design and analysis.
MATLAB is a well-known software package that is widely used not only in engineering
fields but also in other fields, including economic and biomechanical systems. MATLAB has
many advantages for control system design and analysis. Important features include
toolboxes for specific applications and a user-friendly programming environment.
A toolbox is a collection of functions that are appropriate for specific objectives. In particular,
the system identification toolbox (SITB) (Ljung, 1995) provides useful functions for system
identification. In the application of system identification theory to black-box modeling, using
the SITB can dramatically reduce the user workload. However, because MATLAB interacts
with the user via a command window, the user needs to know MATLAB commands.
MATLAB has user-friendly programming environment since variables need not be declared
prior to being assigned and multidimensional arrays can be used as well as scalar variables.
In contrast, C-language, Fortran and other programming languages require variables to be
declared and arrays to be assigned.

 User Interfaces

104

Mukherjee, B. (2006). Optical WDM Networks (Optical Networks), Springer, ISBN: 978-0-387-
29055-3.

Perros, H.G. (2005). Connection-oriented Network SONET/SDH, ATM, MPLS and Optical
Networks, John Wiley & Sons Ltd, England.

Prat, J. (2007). Optical Networks: Towards Bandwidth Manageability and Cost Efficiency,
Available: http://www.e-photon-
one.org/ephotonplus/servlet/Utils.MostrarFitxerPublic?fitxer=D_VD-
A_3.pdf&pathRelatiu=E-Photon+One+%2B%2FPublic%2FPublic+Deliverables%2F

Rahman, M.S.A.; Md-Zain, N.; Baharuddin, A. & Jumari, K. (2009). Multi Ratio Optical
Splitter (MROS) based on planar waveguide. Proceedings of Asia Pacific Conference on
Defence & Security Technology (DSTC 2009), paper DSTC-081, Kuala Lumpur,
Malaysia, 6-7 October 2009

Rahman, M.S.A.; Rashid A.R.A.; Ehsan A.A. & Shaari, S. (2008). The Characterization of
FTTH Wavelength Selective Coupler. Proceedings of 2008 IEEE International
Conference on Semiconductor Electronics (ICSE 2008), pp. 302-305, Johor Bahru,
Malaysia, 25-27 November 2008

Skubic, B.; Chen, J.; Ahmed, J.; Wosinka, L. & Mukherjee, B. (2009). A Comparison of
Dynamic Bandwidth Allocation for EPON, GPON, and Next Generation TDM
PON. IEEE Communications Magazine, Vol. 47, No. 3, (March 2009) S40-S48, ISSN:
0163-6804

Wosinska, L.; Colle, D.; Demeester, P.; Katrinis, K.; Lackovic, M.; Lapcevic, O.; Lievens, I.;
Markidis, G.; Mikac, B.; Pickavet, M.; Puype, B.; Skorin-Kapov, N.; Staessens, D. &
Tzanakaki, A. (2009). Chapter 9: Network Resilience in Future Optical Networks,
Towards Digital Optical Networks. Springer Berlin / Heidelberg, 253-284, ISBN: 978-
3-642-01523-6

7

Graphical User Interface
of System Identification Toolbox

for MATLAB
Hiroyuki Takanashi1 and Shuichi Adachi2

1Akita Prefectural University
2Keio University

Japan

1. Introduction
This chapter describes a Graphical User Interface (GUI) of a system identification device
used with MATLAB. MATLAB is a well-known software package that is widely used for
control system design, signal processing, system identification, etc. However, users who are
not familiar with MATLAB commands and system identification theory sometimes find it
difficult to use, typically because there are many different approaches to system
identification. We propose using a GUI, which is especially suitable for beginners, to
provide system identification procedures. The difficulties encountered by beginners in
performing system identification might be reduced by using a GUI. The effectiveness of a
GUI is illustrated using demonstration data in MATLAB.
Modeling of a plant is one of the most important tasks in control system design. There are
two main approaches to modeling: white-box modeling based on first principles and black-
box modeling based on input and output (I/O) data of a plant. The former is referred to as
first principle modeling, while the latter is termed system identification.
Computers have become powerful and useful tools in control system design. Several
sophisticated software packages (e.g., MATLAB, SCILAB, Octave and MaTX) have been
developed and are used for control system design and analysis.
MATLAB is a well-known software package that is widely used not only in engineering
fields but also in other fields, including economic and biomechanical systems. MATLAB has
many advantages for control system design and analysis. Important features include
toolboxes for specific applications and a user-friendly programming environment.
A toolbox is a collection of functions that are appropriate for specific objectives. In particular,
the system identification toolbox (SITB) (Ljung, 1995) provides useful functions for system
identification. In the application of system identification theory to black-box modeling, using
the SITB can dramatically reduce the user workload. However, because MATLAB interacts
with the user via a command window, the user needs to know MATLAB commands.
MATLAB has user-friendly programming environment since variables need not be declared
prior to being assigned and multidimensional arrays can be used as well as scalar variables.
In contrast, C-language, Fortran and other programming languages require variables to be
declared and arrays to be assigned.

 User Interfaces

106

System identification procedures for real plants consist of many steps, such as generating
identification input signals for the plant, collecting I/O data, preprocessing and
conditioning these data, executing a system identification algorithm and verifying the
identification results (Adachi, 1996). Table 1 shows a standard system identification step and
representative processing.

Step 1 Design of experiment
Determination of
input signal,
sampling frequency, etc.

Step 2 Identification experiment Collecting I/O signals

Step 3 Preprocessing
Signal processing.
Eliminating biases, trends,
outliers, etc.

Step 4 Structural identification Selection of model structure,
model order, etc.

Step 5 Parameter estimation Executing an identification
algorithm

Step 6 Validation of the model Comparison of output,
pole-zero cancellation, etc.

Table 1. Several steps of system identification.

However, the accuracy of the estimated models depends on which procedures are used and
the technical experience of the user. It is also difficult for beginners to judge to what extent
the estimated model reflects the physical phenomenon. As a result, beginners in system
identification find it difficult to apply the theory, so they are apt to avoid using it.
If the software were to provide a standard procedure for executing system identification,
beginners might find the procedures easier. A GUI environment has the capability to
provide such an environment. Moreover, if there was a device that could handle system
identification processes automatically (or semi-automatically), similar to the way in which
FFT analyzers or servo analyzers function, system identification theory might be more
extensively used in engineering fields.
The purpose of this study is to develop a system identification device that can provide a
structured framework to assist the user in performing system identification tasks. In particular,
we develop a GUI environment for system identification based on the SITB (GUI-SITB).
The remainder of this chapter is organized as follows. Section 2 gives an overview of
MATLAB software and system identification. Section 3 introduces the GUI for the SITB. The
key topics of GUIs are described. Finally, Section 4 summarizes the chapter and describes
open problems associated with the proposed GUI-SITB.

2. What is MATLAB and system identification?
This section first introduces the general aspects of MATLAB software. Then, an overview of
system identification and the system identification toolbox are given.

2.1 MATLAB software
MATLAB is one of the most famous numerical computation software. It is widely used not
only in control engineering communities but also in other research communities. MATLAB

Graphical User Interface of System Identification Toolbox for MATLAB

107

has a C-like programming environment, but it has three distinctive features (Higham &
Higham, 2000):
• Automatic storage allocation:

Variables in MATLAB need not be declared prior to being assigned. Moreover,
MATLAB expands the dimensions of arrays in order for assignments to make sense.

• Functions with variable arguments lists:
MATLAB contains a large collection of functions. They take zero or more input
arguments and return zero or more output arguments. MATLAB enforces a clear
distinction between input and output. Functions can support a variable number of
input and output arguments, so that on a given call not all arguments need be supplied.

• Complex arrays and arithmetic:
The fundamental data type is a multi-dimensional array of complex numbers.
Important special cases are matrices, vectors and scalars. All computation in MATLAB
is performed in floating-point arithmetic, and complex arithmetic is automatically used
when the data is complex.

2.2 System identification and MATLAB toolbox
One of the most popular modeling methods is first principle modeling. This method is
sometimes called white-box modeling because it depends on the dynamical structure of the
system under study. The dynamical structure is represented by physical laws, chemical
laws, and so on. Thus, the structure of the system must be clear.
However, not all the dynamical structure of a system is always clear. System identification is
a method for inferring dynamical models from observations of the system under study.
System identification is sometimes called black-box modeling. The models are constructed
under the assumption that the system structure is unknown. White-box and black-box
modeling represent very different approaches, but they complement each other.
Fig. 1 illustrates some representative models and their relations. The relations allow the user
to produce models according to their purposes and the situation of the system under study.

Impulse responseTransfer function Frequency transfer
function

State-space model

Step response

Laplace
transform

Fourier
transform

Non-parametric model

Parametric model Inverse
Fourier

transform

Inverse
Laplace
transform

Realization

Curve fitting

IntegralDifferential

Fig. 1. Relations of parametric and non-parametric models.

To obtain an accurate model, the systems should be excited by an input signal because the
model represents dynamical properties. White noise or a pseudo random binary signal

 User Interfaces

106

System identification procedures for real plants consist of many steps, such as generating
identification input signals for the plant, collecting I/O data, preprocessing and
conditioning these data, executing a system identification algorithm and verifying the
identification results (Adachi, 1996). Table 1 shows a standard system identification step and
representative processing.

Step 1 Design of experiment
Determination of
input signal,
sampling frequency, etc.

Step 2 Identification experiment Collecting I/O signals

Step 3 Preprocessing
Signal processing.
Eliminating biases, trends,
outliers, etc.

Step 4 Structural identification Selection of model structure,
model order, etc.

Step 5 Parameter estimation Executing an identification
algorithm

Step 6 Validation of the model Comparison of output,
pole-zero cancellation, etc.

Table 1. Several steps of system identification.

However, the accuracy of the estimated models depends on which procedures are used and
the technical experience of the user. It is also difficult for beginners to judge to what extent
the estimated model reflects the physical phenomenon. As a result, beginners in system
identification find it difficult to apply the theory, so they are apt to avoid using it.
If the software were to provide a standard procedure for executing system identification,
beginners might find the procedures easier. A GUI environment has the capability to
provide such an environment. Moreover, if there was a device that could handle system
identification processes automatically (or semi-automatically), similar to the way in which
FFT analyzers or servo analyzers function, system identification theory might be more
extensively used in engineering fields.
The purpose of this study is to develop a system identification device that can provide a
structured framework to assist the user in performing system identification tasks. In particular,
we develop a GUI environment for system identification based on the SITB (GUI-SITB).
The remainder of this chapter is organized as follows. Section 2 gives an overview of
MATLAB software and system identification. Section 3 introduces the GUI for the SITB. The
key topics of GUIs are described. Finally, Section 4 summarizes the chapter and describes
open problems associated with the proposed GUI-SITB.

2. What is MATLAB and system identification?
This section first introduces the general aspects of MATLAB software. Then, an overview of
system identification and the system identification toolbox are given.

2.1 MATLAB software
MATLAB is one of the most famous numerical computation software. It is widely used not
only in control engineering communities but also in other research communities. MATLAB

Graphical User Interface of System Identification Toolbox for MATLAB

107

has a C-like programming environment, but it has three distinctive features (Higham &
Higham, 2000):
• Automatic storage allocation:

Variables in MATLAB need not be declared prior to being assigned. Moreover,
MATLAB expands the dimensions of arrays in order for assignments to make sense.

• Functions with variable arguments lists:
MATLAB contains a large collection of functions. They take zero or more input
arguments and return zero or more output arguments. MATLAB enforces a clear
distinction between input and output. Functions can support a variable number of
input and output arguments, so that on a given call not all arguments need be supplied.

• Complex arrays and arithmetic:
The fundamental data type is a multi-dimensional array of complex numbers.
Important special cases are matrices, vectors and scalars. All computation in MATLAB
is performed in floating-point arithmetic, and complex arithmetic is automatically used
when the data is complex.

2.2 System identification and MATLAB toolbox
One of the most popular modeling methods is first principle modeling. This method is
sometimes called white-box modeling because it depends on the dynamical structure of the
system under study. The dynamical structure is represented by physical laws, chemical
laws, and so on. Thus, the structure of the system must be clear.
However, not all the dynamical structure of a system is always clear. System identification is
a method for inferring dynamical models from observations of the system under study.
System identification is sometimes called black-box modeling. The models are constructed
under the assumption that the system structure is unknown. White-box and black-box
modeling represent very different approaches, but they complement each other.
Fig. 1 illustrates some representative models and their relations. The relations allow the user
to produce models according to their purposes and the situation of the system under study.

Impulse responseTransfer function Frequency transfer
function

State-space model

Step response

Laplace
transform

Fourier
transform

Non-parametric model

Parametric model Inverse
Fourier

transform

Inverse
Laplace
transform

Realization

Curve fitting

IntegralDifferential

Fig. 1. Relations of parametric and non-parametric models.

To obtain an accurate model, the systems should be excited by an input signal because the
model represents dynamical properties. White noise or a pseudo random binary signal

 User Interfaces

108

(PRBS) are representative input signals for system identification experiments. Systems
should be excited sufficiently for system identification. On the other hand, systems should
not be excited for control.
After performing system identification experiments, the raw data needs to be preprocessed
to obtain accurate models. This step greatly influences the accuracy and quality of the
model, because the raw data contains unnecessary frequency components, biases, trends,
outliers, etc. These unnecessary components have a detrimental influence on models.
The remaining steps (Steps 4−6) are repeatedly executed. Thus, estimating the parameters
and evaluating the model should be performed as successive processes.
MATLAB supports the above-mentioned steps. MATLAB includes some toolboxes that are
designed for special objectives. Users can add any toolbox to their own environment. The
SITB is based on system identification theory developed by L. Ljung (Ljung, 1995).
However, the user requires experience to obtain a high-quality model by system
identification.

3. Graphical user interface for system identification toolbox
3.1 Basic concept of GUI-SITB
For system identification methods to be widely used in practical engineering fields, it is
desirable for the underlying theory to be as tractable as possible. Since system identification
theory is based on statistical theory, signal processing, etc., the user needs a priori
knowledge about these topics. However, if system identification theory could be realized in
a measurement device, engineers could conduct system identification without needing to
consider the theory.
The ultimate goal of this research is to produce a measurement device that performs system
identification, that functions in a similar manner to FFT analyzers or servo analyzers and
that is based on the underlying theory. One of the most important requirements of the
measurement device is that everyone must be able to obtain the same results using it.
Therefore, it is necessary to standardize system identification procedures in such a way that
different users obtain the same result for the same problem if they follow the standard
procedure.
Fig. 2 illustrates the basic elements of a system identification device. The simplest structure
for the device consists of a personal computer (PC) running MATLAB with AD/DA
converters attached. Ideally, MATLAB would perform all the processing.
System identification algorithms can utilize many types of model. To obtain a more accurate
model, I/O signals must be processed before executing the system identification algorithm.
Thus, the accuracy of the estimated model depends on the preprocessing and the models
utilized.
For these reasons, it is difficult for beginners in system identification to obtain accurate and
reliable models without considerable trial and error. However, if system identification and
preprocessing procedures could be made very clear, there would be more likelihood that
everyone would obtain the same models.
The first step in such a clarification is to establish an environment for system identification
that consists of a set of standard procedures. Using a GUI is an effective strategy for
realizing such an environment. Thus, in this chapter, we discuss the development of a GUI-
based system identification toolbox (GUI-SITB) within MATLAB.

Graphical User Interface of System Identification Toolbox for MATLAB

109

PC with
MATLAB

AD/DA

Input Signal Output SignalPlant
to be modeled

System Identification Device

Execute all processing
necessary for

system identification

PC with
MATLAB

AD/DA

Input Signal Output SignalPlant
to be modeled

System Identification Device

Execute all processing
necessary for

system identification

Fig. 2. Composition of a system identification device.

The SITB already contains a GUI environment called by the command “ident”, which
operates on preprocessing and system identification operations. However, the GUI-SITB in
this study also supports other procedures, such as generating input signals and system
identification experiments. Moreover, it provides identification procedures in a controlled
stepwise manner by utilizing typical GUI features.

3.2 Features of GUI-SITB
In this section, we describe the features and functions of the GUI-SITB in detail. The GUI-
SITB performs the following functions:
• generating input signals
• collecting I/O signals (system identification experiment)
• preprocessing I/O signals
• executing the system identification algorithm
• designing control systems
These functions and their sequences of application have been selected from a set of general
system identification procedures. Although control system design is not strictly part of
system identification, one of the main purposes of system identification is “modeling for
control system design”, thus it is natural to include control system design within system
identification procedures.
Fig. 3 shows the main screen of the GUI-SITB that has been developed. Although the main
screen shows a menu of five push-button functions, only certain operation sequences are
allowed. In the following subsections, we describe the first four functions in detail.
Table 2 summarizes the software environment. Some of the following results have been
obtained using the data used in the MATLAB demonstration program “iddemo1” (Ljung,
1999).

3.3 Generating input signals
In system identification experiments, input signals that contain many frequency
components are required, since all dynamics of the plant must be excited. In the GUI-SITB,
input signals are generated using the MATLAB command “idinput”. This command
generates several types of signals:

 User Interfaces

108

(PRBS) are representative input signals for system identification experiments. Systems
should be excited sufficiently for system identification. On the other hand, systems should
not be excited for control.
After performing system identification experiments, the raw data needs to be preprocessed
to obtain accurate models. This step greatly influences the accuracy and quality of the
model, because the raw data contains unnecessary frequency components, biases, trends,
outliers, etc. These unnecessary components have a detrimental influence on models.
The remaining steps (Steps 4−6) are repeatedly executed. Thus, estimating the parameters
and evaluating the model should be performed as successive processes.
MATLAB supports the above-mentioned steps. MATLAB includes some toolboxes that are
designed for special objectives. Users can add any toolbox to their own environment. The
SITB is based on system identification theory developed by L. Ljung (Ljung, 1995).
However, the user requires experience to obtain a high-quality model by system
identification.

3. Graphical user interface for system identification toolbox
3.1 Basic concept of GUI-SITB
For system identification methods to be widely used in practical engineering fields, it is
desirable for the underlying theory to be as tractable as possible. Since system identification
theory is based on statistical theory, signal processing, etc., the user needs a priori
knowledge about these topics. However, if system identification theory could be realized in
a measurement device, engineers could conduct system identification without needing to
consider the theory.
The ultimate goal of this research is to produce a measurement device that performs system
identification, that functions in a similar manner to FFT analyzers or servo analyzers and
that is based on the underlying theory. One of the most important requirements of the
measurement device is that everyone must be able to obtain the same results using it.
Therefore, it is necessary to standardize system identification procedures in such a way that
different users obtain the same result for the same problem if they follow the standard
procedure.
Fig. 2 illustrates the basic elements of a system identification device. The simplest structure
for the device consists of a personal computer (PC) running MATLAB with AD/DA
converters attached. Ideally, MATLAB would perform all the processing.
System identification algorithms can utilize many types of model. To obtain a more accurate
model, I/O signals must be processed before executing the system identification algorithm.
Thus, the accuracy of the estimated model depends on the preprocessing and the models
utilized.
For these reasons, it is difficult for beginners in system identification to obtain accurate and
reliable models without considerable trial and error. However, if system identification and
preprocessing procedures could be made very clear, there would be more likelihood that
everyone would obtain the same models.
The first step in such a clarification is to establish an environment for system identification
that consists of a set of standard procedures. Using a GUI is an effective strategy for
realizing such an environment. Thus, in this chapter, we discuss the development of a GUI-
based system identification toolbox (GUI-SITB) within MATLAB.

Graphical User Interface of System Identification Toolbox for MATLAB

109

PC with
MATLAB

AD/DA

Input Signal Output SignalPlant
to be modeled

System Identification Device

Execute all processing
necessary for

system identification

PC with
MATLAB

AD/DA

Input Signal Output SignalPlant
to be modeled

System Identification Device

Execute all processing
necessary for

system identification

Fig. 2. Composition of a system identification device.

The SITB already contains a GUI environment called by the command “ident”, which
operates on preprocessing and system identification operations. However, the GUI-SITB in
this study also supports other procedures, such as generating input signals and system
identification experiments. Moreover, it provides identification procedures in a controlled
stepwise manner by utilizing typical GUI features.

3.2 Features of GUI-SITB
In this section, we describe the features and functions of the GUI-SITB in detail. The GUI-
SITB performs the following functions:
• generating input signals
• collecting I/O signals (system identification experiment)
• preprocessing I/O signals
• executing the system identification algorithm
• designing control systems
These functions and their sequences of application have been selected from a set of general
system identification procedures. Although control system design is not strictly part of
system identification, one of the main purposes of system identification is “modeling for
control system design”, thus it is natural to include control system design within system
identification procedures.
Fig. 3 shows the main screen of the GUI-SITB that has been developed. Although the main
screen shows a menu of five push-button functions, only certain operation sequences are
allowed. In the following subsections, we describe the first four functions in detail.
Table 2 summarizes the software environment. Some of the following results have been
obtained using the data used in the MATLAB demonstration program “iddemo1” (Ljung,
1999).

3.3 Generating input signals
In system identification experiments, input signals that contain many frequency
components are required, since all dynamics of the plant must be excited. In the GUI-SITB,
input signals are generated using the MATLAB command “idinput”. This command
generates several types of signals:

 User Interfaces

110

Fig. 3. Main screen of GUI-SITB.

Software Version
Operating System Windows 2000 (SP4)
MATLAB 6.5 (R13) SP1
System Identification Toolbox 5.0.2
Signal Processing Toolbox 6.1
Simulink 5.1

Table 2. Software environment.

• PRBS
• Gaussian random signal
• random binary signal
• sinusoidal signal
The minimum number of frequency components is defined by the persistently exciting (PE)
condition. If the order of the plant to be identified is n, the order of the PE should be greater
than or equal to 2n. It is preferable for the input signal to contain as many frequency
components as possible. From this viewpoint, a white noise signal would be ideal, although
physically impossible to realize. As a result, the ideal input signal for linear system
identification experiments is considered to be a PRBS.
There are some user-definable parameters when generating input signals using the GUI-
SITB, including the number of samples, the maximum and minimum amplitudes, the upper
and lower frequencies, the number of signals, and other parameters that depend on the type
of signal.
Fig. 4 shows an example of a generated input signal. The figure shows some characteristics
of the MATLAB subplot style, but each subplot can also be individually displayed by
clicking the “View” option on the menu bar, as indicated in the figure.
For multiple input signals, only the first input signal is displayed and cross-correlation
functions are also calculated. Since multiple-input system identification experiments require
uncorrelated input signals, cross-correlation functions are calculated for all input signal
pairs, and the results for correlations between the first input signal and each of the other
input signals are displayed graphically.

Graphical User Interface of System Identification Toolbox for MATLAB

111

Switch between
individual figures
Switch between

individual figures

Fig. 4. An example of an input signal and its characteristics (upper left: input signal; upper
right: power spectral density; lower left: histogram; lower right: auto-correlation function).

3.4 Collecting I/O signal (identification experiment)
Ordinarily, system identification experiments are carried out for real plants. Since one of the
most important purposes of the GUI-SITB is to assist the user to learn the process of system
identification, it includes an option of performing system identification experiments by
simulations. A virtual environment is prepared for simulations.
The experimental environment in the GUI-SITB uses Simulink. A few Simulink models have
been prepared for system identification experiments in the toolbox. The difference between
using real plants and Simulink models is the target; the basic procedures and functions of
the toolbox are the same.

Main Window

Subwindow

Experimental
Parameters

Main Window

Subwindow

Experimental
Parameters

Fig. 5. System identification experiment window.

 User Interfaces

110

Fig. 3. Main screen of GUI-SITB.

Software Version
Operating System Windows 2000 (SP4)
MATLAB 6.5 (R13) SP1
System Identification Toolbox 5.0.2
Signal Processing Toolbox 6.1
Simulink 5.1

Table 2. Software environment.

• PRBS
• Gaussian random signal
• random binary signal
• sinusoidal signal
The minimum number of frequency components is defined by the persistently exciting (PE)
condition. If the order of the plant to be identified is n, the order of the PE should be greater
than or equal to 2n. It is preferable for the input signal to contain as many frequency
components as possible. From this viewpoint, a white noise signal would be ideal, although
physically impossible to realize. As a result, the ideal input signal for linear system
identification experiments is considered to be a PRBS.
There are some user-definable parameters when generating input signals using the GUI-
SITB, including the number of samples, the maximum and minimum amplitudes, the upper
and lower frequencies, the number of signals, and other parameters that depend on the type
of signal.
Fig. 4 shows an example of a generated input signal. The figure shows some characteristics
of the MATLAB subplot style, but each subplot can also be individually displayed by
clicking the “View” option on the menu bar, as indicated in the figure.
For multiple input signals, only the first input signal is displayed and cross-correlation
functions are also calculated. Since multiple-input system identification experiments require
uncorrelated input signals, cross-correlation functions are calculated for all input signal
pairs, and the results for correlations between the first input signal and each of the other
input signals are displayed graphically.

Graphical User Interface of System Identification Toolbox for MATLAB

111

Switch between
individual figures
Switch between

individual figures

Fig. 4. An example of an input signal and its characteristics (upper left: input signal; upper
right: power spectral density; lower left: histogram; lower right: auto-correlation function).

3.4 Collecting I/O signal (identification experiment)
Ordinarily, system identification experiments are carried out for real plants. Since one of the
most important purposes of the GUI-SITB is to assist the user to learn the process of system
identification, it includes an option of performing system identification experiments by
simulations. A virtual environment is prepared for simulations.
The experimental environment in the GUI-SITB uses Simulink. A few Simulink models have
been prepared for system identification experiments in the toolbox. The difference between
using real plants and Simulink models is the target; the basic procedures and functions of
the toolbox are the same.

Main Window

Subwindow

Experimental
Parameters

Main Window

Subwindow

Experimental
Parameters

Fig. 5. System identification experiment window.

 User Interfaces

112

Fig. 5 shows the window for system identification experiments using Simulink models. The
user selects a Simulink model from the left subwindow and then, in the main window,
specifies the input signals (which have been saved as a mat file), the sampling frequency, the
experimental time and the name of the output signal. After specifying these parameters, the
“START” button is pressed. The output signal of the plant is then displayed and the I/O
signals are saved as separate mat files. System identification experiments for real plants are
currently being developed.

3.5 Preprocessing I/O signals
Preprocessing of I/O signals must be performed subsequent to system identification
experiments. The raw data is contaminated with trend, drift and noise. Consequently,
estimating the model operations will fail (i.e., it will give bad estimates) if the identification
algorithm is applied directly to the raw data. Therefore preprocessing is an essential
prerequisite for system identification. Applying appropriate signal processing (The
MathWorks Inc., 1998) will give an accurate model.
Typical preprocessing tasks are
• removing trends and biases
• resampling (decimation and interpolation)
• scaling
• filtering (enhancement of frequency ranges)
The trend removal procedure eliminates bias and any linear trends from the data. Time and
frequency domain data are useful for this purpose.
In the system identification experiments, the I/O data is collected at an appropriate
sampling frequency, which is usually determined based on information about the plant (e.g.,
the band width of the closed-loop system and the rise time of the step response). However,
when the information about the plant is unknown, it is desirable that the data collected over
as short an interval as possible. After collecting the data, resampling can be applied to
convert the sampling frequency.
The filtering procedure employs three types of filter: low-pass, high-pass, and band-pass
filters. In the filtering process, the user specifies the frequency range (which is normalized
by the sampling frequency) and the order of the filter. A Butterworth filter is then utilized
for which the user specifies the order.
Several processing methods are listed in a drop-down menu. After the user selects one of
these processing methods, the effect of preprocessing is displayed in both the time domain
(as illustrated in Fig. 6) and the frequency domain. The upper part of Fig. 6 shows the
unprocessed data, while the lower part shows the data after processing has been used to
remove a trend.
Other preprocessing methods are also necessary sometimes. For example, treatment of
missing data is one of the most important advanced preprocessing tasks (Adachi, 2004). The
GUI-SITB cannot currently handle missing data, but there is a MATLAB command
(“misdata”) available via the command line.

3.6 Executing system identification algorithm and evaluation of the model
There are several model structures in system identification. However, basic system
identification can be performed using only a few model structures. In this study,
representative parametric model structures are prepared.

Graphical User Interface of System Identification Toolbox for MATLAB

113

Fig. 6. An example of preprocessing of output signal (upper subplot: before processing,
lower subplot: after processing).

Fig. 7. I/O data for identification and their characteristics (left subplots: input and output
signals; upper right subplot: coherence function of I/O; lower right subplot: impulse
response estimate via correlation method).

 User Interfaces

112

Fig. 5 shows the window for system identification experiments using Simulink models. The
user selects a Simulink model from the left subwindow and then, in the main window,
specifies the input signals (which have been saved as a mat file), the sampling frequency, the
experimental time and the name of the output signal. After specifying these parameters, the
“START” button is pressed. The output signal of the plant is then displayed and the I/O
signals are saved as separate mat files. System identification experiments for real plants are
currently being developed.

3.5 Preprocessing I/O signals
Preprocessing of I/O signals must be performed subsequent to system identification
experiments. The raw data is contaminated with trend, drift and noise. Consequently,
estimating the model operations will fail (i.e., it will give bad estimates) if the identification
algorithm is applied directly to the raw data. Therefore preprocessing is an essential
prerequisite for system identification. Applying appropriate signal processing (The
MathWorks Inc., 1998) will give an accurate model.
Typical preprocessing tasks are
• removing trends and biases
• resampling (decimation and interpolation)
• scaling
• filtering (enhancement of frequency ranges)
The trend removal procedure eliminates bias and any linear trends from the data. Time and
frequency domain data are useful for this purpose.
In the system identification experiments, the I/O data is collected at an appropriate
sampling frequency, which is usually determined based on information about the plant (e.g.,
the band width of the closed-loop system and the rise time of the step response). However,
when the information about the plant is unknown, it is desirable that the data collected over
as short an interval as possible. After collecting the data, resampling can be applied to
convert the sampling frequency.
The filtering procedure employs three types of filter: low-pass, high-pass, and band-pass
filters. In the filtering process, the user specifies the frequency range (which is normalized
by the sampling frequency) and the order of the filter. A Butterworth filter is then utilized
for which the user specifies the order.
Several processing methods are listed in a drop-down menu. After the user selects one of
these processing methods, the effect of preprocessing is displayed in both the time domain
(as illustrated in Fig. 6) and the frequency domain. The upper part of Fig. 6 shows the
unprocessed data, while the lower part shows the data after processing has been used to
remove a trend.
Other preprocessing methods are also necessary sometimes. For example, treatment of
missing data is one of the most important advanced preprocessing tasks (Adachi, 2004). The
GUI-SITB cannot currently handle missing data, but there is a MATLAB command
(“misdata”) available via the command line.

3.6 Executing system identification algorithm and evaluation of the model
There are several model structures in system identification. However, basic system
identification can be performed using only a few model structures. In this study,
representative parametric model structures are prepared.

Graphical User Interface of System Identification Toolbox for MATLAB

113

Fig. 6. An example of preprocessing of output signal (upper subplot: before processing,
lower subplot: after processing).

Fig. 7. I/O data for identification and their characteristics (left subplots: input and output
signals; upper right subplot: coherence function of I/O; lower right subplot: impulse
response estimate via correlation method).

 User Interfaces

114

The most basic parametric model structure is the ARX (auto-regressive exogenous) or a
least-squares (LS) model. Other models include the ARMAX (auto-regressive moving
average exogenous), OE (output error), and state-space models.
After the user has loaded the I/O data, this data and some of its characteristics are
displayed as in Fig. 7. The I/O data, coherence functions of the I/O data, and impulse
response estimate by the correlation method are illustrated. The number of samples for
estimation is a user-definable parameter. In the default setting, if either the number of
samples for estimation or the validation is not specified, the first half of the data is used for
model estimation and the latter half is used for validation. When all the data is specified for
estimation, the same data set is used for model validation. However, the low number of
samples for the estimation results in poor estimates.
The available model structures in the GUI-SITB are
• ARX model via least squares and IV (instrumental variable) method,
• ARMAX model,
• OE model, and
• State-space model via the subspace method (Overschee, 1994; Viberg, 1995).
The user specifies the model order and the time delays for each model. The term “model
order” refers to the orders of polynomials for the ARX, ARMAX and OE models and the
number of states for the state-space model. Time delays can be estimated from the impulse
response estimates, as shown in Fig. 7. In the bottom right figure, the dashed lines indicate a
99% confidence interval. The number of impulses within the confidence interval, starting
from lag-0, is used estimate the time delay of the system.
Fig. 8 shows the frequency characteristics of the estimated ARX model, Fig. 9 shows a
comparison of the outputs and Fig. 10 shows a pole-zero map. The frequency characteristics

Switch between
individual figures
Switch between

individual figures

Fig. 8. Bode diagram of estimated model and non-parametric models.

Graphical User Interface of System Identification Toolbox for MATLAB

115

Fig. 9. Comparison of model output and measured output (validation data).

Fig. 10. Pole and zero locations of estimated model with range.

in Fig. 8 can be compared with the spectral analysis (MATLAB command “spa”) model and
empirical transfer function estimates (MATLAB command “etfe”) (Ljung, 1999).

 User Interfaces

114

The most basic parametric model structure is the ARX (auto-regressive exogenous) or a
least-squares (LS) model. Other models include the ARMAX (auto-regressive moving
average exogenous), OE (output error), and state-space models.
After the user has loaded the I/O data, this data and some of its characteristics are
displayed as in Fig. 7. The I/O data, coherence functions of the I/O data, and impulse
response estimate by the correlation method are illustrated. The number of samples for
estimation is a user-definable parameter. In the default setting, if either the number of
samples for estimation or the validation is not specified, the first half of the data is used for
model estimation and the latter half is used for validation. When all the data is specified for
estimation, the same data set is used for model validation. However, the low number of
samples for the estimation results in poor estimates.
The available model structures in the GUI-SITB are
• ARX model via least squares and IV (instrumental variable) method,
• ARMAX model,
• OE model, and
• State-space model via the subspace method (Overschee, 1994; Viberg, 1995).
The user specifies the model order and the time delays for each model. The term “model
order” refers to the orders of polynomials for the ARX, ARMAX and OE models and the
number of states for the state-space model. Time delays can be estimated from the impulse
response estimates, as shown in Fig. 7. In the bottom right figure, the dashed lines indicate a
99% confidence interval. The number of impulses within the confidence interval, starting
from lag-0, is used estimate the time delay of the system.
Fig. 8 shows the frequency characteristics of the estimated ARX model, Fig. 9 shows a
comparison of the outputs and Fig. 10 shows a pole-zero map. The frequency characteristics

Switch between
individual figures
Switch between

individual figures

Fig. 8. Bode diagram of estimated model and non-parametric models.

Graphical User Interface of System Identification Toolbox for MATLAB

115

Fig. 9. Comparison of model output and measured output (validation data).

Fig. 10. Pole and zero locations of estimated model with range.

in Fig. 8 can be compared with the spectral analysis (MATLAB command “spa”) model and
empirical transfer function estimates (MATLAB command “etfe”) (Ljung, 1999).

 User Interfaces

116

The models generated by the “spa” and “etfe” commands are used as references for the
identified model. Fig. 9 shows cross validation, while Fig. 10 illustrates pole-zero map with
a range.
These figures are switched by clicking the “View” menu in the figure window.
• Bode diagram,
• comparison of the output, and
• pole-zero map within a range of , where is the standard deviation.
The fit rate in Fig. 9 is the mean square fitting (MSF) of the output and is computed by

(1)

Where, is the model output, is the measured output and is the mean of the
measured output, which is defined by

(2)

Currently, the accuracy of the estimated model is evaluated using the function given in Eq.
(1) only. The MSF is calculated using all the validation data. A function for evaluating the
model in the frequency domain, similar to the function defined by Eq. (1) for the time
domain, is also required.
In the system identification operations, some parameters should be determined by the user,
including the model structure, the model order and the sampling frequency for I/O signals.
Model structures are determined from the system under study. The sampling frequency for
I/O signals depend on that of the measurement system and the region of interest, which are
determined in the experimental design step.
Sampling theory states that the sampled signal should contain more than 2Fs [Hz] frequency
components if some signal that contains up to Fs [Hz] is reconstructed from the sampled
data. In other words, the sampled signal with a sampling frequency of 2Fs [Hz] is sufficient
to recover information of a signal with a frequency less than Fs [Hz]. The upper frequency of
the region of interest is determined based on this theory. However, none of the region below
Fs [Hz] can be recovered from the sampled signal. In system identification, the lower
frequency limit is determined empirically. For example, the LS method provides reliable
models between 0.01Fs − 0.2Fs [Hz] (Goodwin, 1988).
The model order should be determined based on the system structure. Users can obtain the
model order using the SITB, e.g., AIC (Akaike Information Criteria), MDL (Minimum
Description Length) and singular value decomposition. When the system under study is a
vibration structure, the model consists of a sum of second-order models. Consequently, the
model order should be set as the product of second order and the number of degrees of
freedom of the system.
The real order of the system is generally very high and the model describes the
characteristics of interest. Since the above-mentioned guideline for the model order does not

Graphical User Interface of System Identification Toolbox for MATLAB

117

account for the effects of disturbance, users may need to set a higher model order to obtain
an accurate model.
The estimated model is saved in theta format as a mat file. Since the theta format contains
information about the estimated model, including polynomial coefficients, the loss function,
the final prediction error (FPE) and the sampling time, it contains sufficient information to
reproduce the Bode diagram or pole-zero maps of the estimated model.

4. Conclusions and future work
In this chapter, we have described the advantages of using a GUI environment in system
identification and the development of a GUI-SITB. The effectiveness of the toolbox was
demonstrated by a simple example.
We confirmed the operation of the GUI-SITB only on MATLAB for a Windows platform.
The GUI-SITB has been developed using MATLAB R13. The GUI-SITB may operate on the
latest MATLAB version (R14 or later) with slight modification of the programs.
Since evaluation of the identification results is one of the most important parts in system
identification, the evaluation method and of the system identification algorithm need to be
extended to achieve this. Because the GUI-SITB currently displays results only graphically
(as illustrated in Figs. 8-10), it would be desirable to implement numerical evaluation
methods, one of which would display parameters of the estimated model in an appropriate
format.
Furthermore, currently incomplete functions, such as the identification experiments for real
plants and control system design, need to be rapidly developed. A part of the MIMO system
identification procedure has been realized, but it is not yet complete.

5. References
MATLAB. http://www.mathworks.com/products/matlab/ [September, 2009]
Scilab. http://www.scilab.org/ [September, 2009]
Octave. http://www.gnu.org/software/octave/ [September, 2009]
MaTX. http://www.matx.org/ [September, 2009]
Ljung, L. (1995), System Identification Toolbox – For Use with MATLAB (Third Printing), The

MathWorks Inc.
Adachi S. (1996). System Identification for Control Systems with MATLAB (in Japanese), Tokyo

Denki University Press.
Higham D. J. and Higham N. J. (2000). MATLAB Guide, Society for Industrial and Applied

Mathematics.
Ljung L. (1999). System Identification - Theory for the User (2nd Ed.), Prentice Hall PTR,

Englewood Cliffs, NJ.
The MathWorks Inc. (1998). Signal Processing Toolbox User's Guide, The MathWorks Inc.
Adachi S. (2004). Advanced System Identification for Control Systems with MATLAB (in

Japanese), Tokyo Denki University Press.
Van Overschee, P. and De Moor, M. (1994). N4SID: Subspace algorithm for the identification

of combined deterministic-stochastic system, Automatica, Vol.30, pp.75-93.

 User Interfaces

116

The models generated by the “spa” and “etfe” commands are used as references for the
identified model. Fig. 9 shows cross validation, while Fig. 10 illustrates pole-zero map with
a range.
These figures are switched by clicking the “View” menu in the figure window.
• Bode diagram,
• comparison of the output, and
• pole-zero map within a range of , where is the standard deviation.
The fit rate in Fig. 9 is the mean square fitting (MSF) of the output and is computed by

(1)

Where, is the model output, is the measured output and is the mean of the
measured output, which is defined by

(2)

Currently, the accuracy of the estimated model is evaluated using the function given in Eq.
(1) only. The MSF is calculated using all the validation data. A function for evaluating the
model in the frequency domain, similar to the function defined by Eq. (1) for the time
domain, is also required.
In the system identification operations, some parameters should be determined by the user,
including the model structure, the model order and the sampling frequency for I/O signals.
Model structures are determined from the system under study. The sampling frequency for
I/O signals depend on that of the measurement system and the region of interest, which are
determined in the experimental design step.
Sampling theory states that the sampled signal should contain more than 2Fs [Hz] frequency
components if some signal that contains up to Fs [Hz] is reconstructed from the sampled
data. In other words, the sampled signal with a sampling frequency of 2Fs [Hz] is sufficient
to recover information of a signal with a frequency less than Fs [Hz]. The upper frequency of
the region of interest is determined based on this theory. However, none of the region below
Fs [Hz] can be recovered from the sampled signal. In system identification, the lower
frequency limit is determined empirically. For example, the LS method provides reliable
models between 0.01Fs − 0.2Fs [Hz] (Goodwin, 1988).
The model order should be determined based on the system structure. Users can obtain the
model order using the SITB, e.g., AIC (Akaike Information Criteria), MDL (Minimum
Description Length) and singular value decomposition. When the system under study is a
vibration structure, the model consists of a sum of second-order models. Consequently, the
model order should be set as the product of second order and the number of degrees of
freedom of the system.
The real order of the system is generally very high and the model describes the
characteristics of interest. Since the above-mentioned guideline for the model order does not

Graphical User Interface of System Identification Toolbox for MATLAB

117

account for the effects of disturbance, users may need to set a higher model order to obtain
an accurate model.
The estimated model is saved in theta format as a mat file. Since the theta format contains
information about the estimated model, including polynomial coefficients, the loss function,
the final prediction error (FPE) and the sampling time, it contains sufficient information to
reproduce the Bode diagram or pole-zero maps of the estimated model.

4. Conclusions and future work
In this chapter, we have described the advantages of using a GUI environment in system
identification and the development of a GUI-SITB. The effectiveness of the toolbox was
demonstrated by a simple example.
We confirmed the operation of the GUI-SITB only on MATLAB for a Windows platform.
The GUI-SITB has been developed using MATLAB R13. The GUI-SITB may operate on the
latest MATLAB version (R14 or later) with slight modification of the programs.
Since evaluation of the identification results is one of the most important parts in system
identification, the evaluation method and of the system identification algorithm need to be
extended to achieve this. Because the GUI-SITB currently displays results only graphically
(as illustrated in Figs. 8-10), it would be desirable to implement numerical evaluation
methods, one of which would display parameters of the estimated model in an appropriate
format.
Furthermore, currently incomplete functions, such as the identification experiments for real
plants and control system design, need to be rapidly developed. A part of the MIMO system
identification procedure has been realized, but it is not yet complete.

5. References
MATLAB. http://www.mathworks.com/products/matlab/ [September, 2009]
Scilab. http://www.scilab.org/ [September, 2009]
Octave. http://www.gnu.org/software/octave/ [September, 2009]
MaTX. http://www.matx.org/ [September, 2009]
Ljung, L. (1995), System Identification Toolbox – For Use with MATLAB (Third Printing), The

MathWorks Inc.
Adachi S. (1996). System Identification for Control Systems with MATLAB (in Japanese), Tokyo

Denki University Press.
Higham D. J. and Higham N. J. (2000). MATLAB Guide, Society for Industrial and Applied

Mathematics.
Ljung L. (1999). System Identification - Theory for the User (2nd Ed.), Prentice Hall PTR,

Englewood Cliffs, NJ.
The MathWorks Inc. (1998). Signal Processing Toolbox User's Guide, The MathWorks Inc.
Adachi S. (2004). Advanced System Identification for Control Systems with MATLAB (in

Japanese), Tokyo Denki University Press.
Van Overschee, P. and De Moor, M. (1994). N4SID: Subspace algorithm for the identification

of combined deterministic-stochastic system, Automatica, Vol.30, pp.75-93.

 User Interfaces

118

Viberg, M. (1995). Subspace-based methods for the identification of linear time-invariant
systems, Automatica, Vol.31, pp.1835-1851.

Goodwin C. G., M. E. Salgado and R. H. Middleton. (1988). Indirect Adaptive Control -An
Integrated Approach, Proceedings of American Control Conference, pp.2440-2445.

8

GUIs without Pain – the Declarative Way
Mariusz Trzaska

Polish Japanese Institute of Information Technology
Poland

1. Introduction
Graphical User Interfaces (GUIs) are required by almost all modern applications. Generally,
developers utilize three main approaches to creating them:
• Defining GUIs using manually written source code. Every popular programming

language has its own dedicated libraries. In case of Java it could be Swing (Walrath,
2004) or SWT (Guojie, 2005). C# developers have WinForms (Sells, 2006);

• Utilizing dedicated visual editors (designers) which allow for “drawing” a GUI and for
generating an appropriate source code. The quality of such generators varies
considerably. Some of them allow for round-trip engineering (i.e. (Jigloo, 2009)). In
contrast, there are also solutions which act as pure generators;

• Using a special declarative approach. The idea is to focus on “what to do” rather than
“how to do it”. A recent, commercially used example of such an approach is MS XAML.
Particular GUI items are defined using a dedicated programming language (or a
description language).

Unfortunately, most of the presented approaches require quite serious involvement from the
programmer. The first one, is definitely the most time-consuming and also needs specified
knowledge. The second one, saves some time but needs a lot of attention during designing
process. The last one utilizes probably the easiest approach for having a decent user
communication layer in an application. Following the declarative way, a programmer
focuses on what to do rather than how to do it. Such a method saves time and ensures less
programming errors in the final product.
In this chapter we would like to:
• Present existing declarative solutions,
• Briefly describe our previous proposal for the Java language: the senseGUI library

(Trzaska, 2008) and fully discuss the new one called the GCL language.
Both of them have been implemented and are publicly available (together with source
codes) using the following addresses: http://go.mtrzaska.com/?sensegui and http://gcl-
dsl.googlecode.com/.
The first prototype called the senseGUI utilizes annotations existing in the Java language
(they also exist in other programming languages like MS C#). The annotations allow the
programmer for marking particular parts of a source code defining class structures. Using
such simple annotations, the programmer can describe basic properties of the desired GUI.
In the simplest form it is enough just to mark attributes (or methods) in an ordinary Java
class for which widgets should be created. There is also a way to define more detailed

 User Interfaces

118

Viberg, M. (1995). Subspace-based methods for the identification of linear time-invariant
systems, Automatica, Vol.31, pp.1835-1851.

Goodwin C. G., M. E. Salgado and R. H. Middleton. (1988). Indirect Adaptive Control -An
Integrated Approach, Proceedings of American Control Conference, pp.2440-2445.

8

GUIs without Pain – the Declarative Way
Mariusz Trzaska

Polish Japanese Institute of Information Technology
Poland

1. Introduction
Graphical User Interfaces (GUIs) are required by almost all modern applications. Generally,
developers utilize three main approaches to creating them:
• Defining GUIs using manually written source code. Every popular programming

language has its own dedicated libraries. In case of Java it could be Swing (Walrath,
2004) or SWT (Guojie, 2005). C# developers have WinForms (Sells, 2006);

• Utilizing dedicated visual editors (designers) which allow for “drawing” a GUI and for
generating an appropriate source code. The quality of such generators varies
considerably. Some of them allow for round-trip engineering (i.e. (Jigloo, 2009)). In
contrast, there are also solutions which act as pure generators;

• Using a special declarative approach. The idea is to focus on “what to do” rather than
“how to do it”. A recent, commercially used example of such an approach is MS XAML.
Particular GUI items are defined using a dedicated programming language (or a
description language).

Unfortunately, most of the presented approaches require quite serious involvement from the
programmer. The first one, is definitely the most time-consuming and also needs specified
knowledge. The second one, saves some time but needs a lot of attention during designing
process. The last one utilizes probably the easiest approach for having a decent user
communication layer in an application. Following the declarative way, a programmer
focuses on what to do rather than how to do it. Such a method saves time and ensures less
programming errors in the final product.
In this chapter we would like to:
• Present existing declarative solutions,
• Briefly describe our previous proposal for the Java language: the senseGUI library

(Trzaska, 2008) and fully discuss the new one called the GCL language.
Both of them have been implemented and are publicly available (together with source
codes) using the following addresses: http://go.mtrzaska.com/?sensegui and http://gcl-
dsl.googlecode.com/.
The first prototype called the senseGUI utilizes annotations existing in the Java language
(they also exist in other programming languages like MS C#). The annotations allow the
programmer for marking particular parts of a source code defining class structures. Using
such simple annotations, the programmer can describe basic properties of the desired GUI.
In the simplest form it is enough just to mark attributes (or methods) in an ordinary Java
class for which widgets should be created. There is also a way to define more detailed

 User Interfaces

120

descriptions including labels, the order of items, different widgets for particular data items,
etc. Using a generated form, the application user can create, edit and see instances of data
objects.
Our newest proposal is a Domain Specific Language (DSL) called GCL. The language has
been implemented as a library which mimics syntax of another language. We took into
account our experiences gathered during design and implementation of the senseGUI
library. As a result the new library is much more flexible and does not require modifications
(marking with annotations) of the source (model/data) code. Hence it is possible to use it
even with Java programs for which we do not have source code.
It is also worth mention that both solutions could be easy ported to other popular languages
like Microsoft C#.
The rest of the chapter is organized as follows. To fully understand our motivation and
approach some related solutions are presented in Section 2. The next section briefly
introduces the concept of Domain Specific Language, which has been utilized for the GCL.
The 4-th and 5-th sections describes the GCL functionalities and sample utilizations. The last
one concludes the chapter.

2. Related solutions
2.1 The typical way
In general terms, an ordinary application’s user needs a Graphical User Interface as an:
• Input. To fill a data (model) elements with some content. To achieve this, a programmer

creates widgets (i.e. text box) and connects them with data. When a user enters some
data to the widget, a dedicated part of the program, writes them to the model;

• Output. To show a content of data or a model. To accomplish this, a programmer writes
a code which reads a part of the application’s model and writes it to a widget.

The most common way of fulfilment input/output needs is utilizing a GUI library delivered
with a given programming language. Most of Java’s GUIs are implemented using Swing
(Walrath, 2004) or SWT (Guojie, 2005) libraries.

public class Person {
 private String firstName;
 private String lastName;
 private Date birthDate;
 private boolean higherEducation;
 private String remarks;
 private int SSN;
 private double annualIncome;
 public int getAge() {// [...]}
}

Listing 1. A sample Java class

Let’s consider a simple Java class presented on Listing 1. In case of creating GUI for the
class, we need to write a source code performing the following steps (aside adding
necessary “model” methods):
• Create an empty form;
• Add a layout manager;
• For each needed attribute add a widget which will show its content and will allow

edition;

GUIs without Pain – the Declarative Way

121

• For each widget add a describing label;
• For each widget add a code which will read the value of a particular attribute and will

put it into the widget;
• Add “Accept” button which will read widgets’ contents, update appropriate attributes

and will hide the form;
• Add “Cancel” button hiding the form.
Implementing the above steps means writing a few tenths lines of code (7 attributes
multiplied by 5 to 10 lines per widget plus handling layout, control buttons, etc), which are
quite similar to each other.
Different approach has been utilized in the GUI editors concept. One of them is Jigloo GUI
Builder working with the Eclipse IDE platform. Using the editor one can visually draw a
form by placing appropriate widgets. An example, for our sample Person class, is presented
on Figure 1. For the figure, the editor has generated 105 lines of Java code. This number is
without a code needed to read/write values from/to the data instance, which should be
written manually. Comparing to hand coding GUI, using an editor is a big facilitation.
However, the programmer has to spend some time on placing widgets in a window, adding
“data code” and handling resizing the window (which is not always easy to achieve).

Fig. 1. A sample form designed using Jigloo GUI editor

We believe that, in the case of typical graphical user interfaces, i.e. forms for editing or
entering data, the most promising approach is the declarative one. The reason is that a
programmer focuses on defining what he/she would like to achieve, rather than how to do
it.

2.2 The declarative way
In our opinion the most useful declarative solutions are those which raise the level of
abstraction. Such an approach considerably simplifies a programmer’s job and decreases
the number of errors. However, the common side effect is some kind of similarity of the
generated GUIs. This is caused by the fact that the majority of the GUI appearance and
behaviour is defined inside the library and the programmer only “guides” the tool with
some details. Of course, it is possible to create much more customizable library.

 User Interfaces

120

descriptions including labels, the order of items, different widgets for particular data items,
etc. Using a generated form, the application user can create, edit and see instances of data
objects.
Our newest proposal is a Domain Specific Language (DSL) called GCL. The language has
been implemented as a library which mimics syntax of another language. We took into
account our experiences gathered during design and implementation of the senseGUI
library. As a result the new library is much more flexible and does not require modifications
(marking with annotations) of the source (model/data) code. Hence it is possible to use it
even with Java programs for which we do not have source code.
It is also worth mention that both solutions could be easy ported to other popular languages
like Microsoft C#.
The rest of the chapter is organized as follows. To fully understand our motivation and
approach some related solutions are presented in Section 2. The next section briefly
introduces the concept of Domain Specific Language, which has been utilized for the GCL.
The 4-th and 5-th sections describes the GCL functionalities and sample utilizations. The last
one concludes the chapter.

2. Related solutions
2.1 The typical way
In general terms, an ordinary application’s user needs a Graphical User Interface as an:
• Input. To fill a data (model) elements with some content. To achieve this, a programmer

creates widgets (i.e. text box) and connects them with data. When a user enters some
data to the widget, a dedicated part of the program, writes them to the model;

• Output. To show a content of data or a model. To accomplish this, a programmer writes
a code which reads a part of the application’s model and writes it to a widget.

The most common way of fulfilment input/output needs is utilizing a GUI library delivered
with a given programming language. Most of Java’s GUIs are implemented using Swing
(Walrath, 2004) or SWT (Guojie, 2005) libraries.

public class Person {
 private String firstName;
 private String lastName;
 private Date birthDate;
 private boolean higherEducation;
 private String remarks;
 private int SSN;
 private double annualIncome;
 public int getAge() {// [...]}
}

Listing 1. A sample Java class

Let’s consider a simple Java class presented on Listing 1. In case of creating GUI for the
class, we need to write a source code performing the following steps (aside adding
necessary “model” methods):
• Create an empty form;
• Add a layout manager;
• For each needed attribute add a widget which will show its content and will allow

edition;

GUIs without Pain – the Declarative Way

121

• For each widget add a describing label;
• For each widget add a code which will read the value of a particular attribute and will

put it into the widget;
• Add “Accept” button which will read widgets’ contents, update appropriate attributes

and will hide the form;
• Add “Cancel” button hiding the form.
Implementing the above steps means writing a few tenths lines of code (7 attributes
multiplied by 5 to 10 lines per widget plus handling layout, control buttons, etc), which are
quite similar to each other.
Different approach has been utilized in the GUI editors concept. One of them is Jigloo GUI
Builder working with the Eclipse IDE platform. Using the editor one can visually draw a
form by placing appropriate widgets. An example, for our sample Person class, is presented
on Figure 1. For the figure, the editor has generated 105 lines of Java code. This number is
without a code needed to read/write values from/to the data instance, which should be
written manually. Comparing to hand coding GUI, using an editor is a big facilitation.
However, the programmer has to spend some time on placing widgets in a window, adding
“data code” and handling resizing the window (which is not always easy to achieve).

Fig. 1. A sample form designed using Jigloo GUI editor

We believe that, in the case of typical graphical user interfaces, i.e. forms for editing or
entering data, the most promising approach is the declarative one. The reason is that a
programmer focuses on defining what he/she would like to achieve, rather than how to do
it.

2.2 The declarative way
In our opinion the most useful declarative solutions are those which raise the level of
abstraction. Such an approach considerably simplifies a programmer’s job and decreases
the number of errors. However, the common side effect is some kind of similarity of the
generated GUIs. This is caused by the fact that the majority of the GUI appearance and
behaviour is defined inside the library and the programmer only “guides” the tool with
some details. Of course, it is possible to create much more customizable library.

 User Interfaces

122

Unfortunately that means providing a lot of details by a programmer, which could cause
complexity similar to the classical methods.
In most cases utilizing a declarative approach means introducing some kind of a Domain
Specific Language (DSL). The DSLs are quite extensive area (much bigger than just GUIs)
thus they deserve a dedicated section.

3. Domain specific languages
According to the (Deursen, 2000) Domain Specific Languages (DSLs) offer an expressiveness
power usually focused on a particular application or technical domain. They utilize a special
syntax, semantics and work on a quite high level of abstraction. DSLs often employ a
declarative approach which means specifying the job to do rather than describing how it
should be done. As a result, a person using a DSL expects improvement in the process of
developing software. The improvement could mean saving a programmer’s effort, better
quality of the system, shorter time to market, fewer errors, and, last but not least, less
typing.
The DSL concept is not quite new. In (Visser, 2008) we can find information about roots of
the DSLs in Fortran language in late 1950s. Even one of the most successful examples of the
idea, the SQL query language has been defined in 1970s but is still widely used nowadays.
Since the 2000s we can observe the rising popularity of DSL languages in a wide range of
fields and utilizations:
• as visualization tools. An interesting example developed within the purely functional

language Haskell is described in the (Borgo, 2008). The language provides a set of
primitives and other structures combing them into bigger structures. As a result, it is
possible to create different post-processing of images together with animations;

• to specify content and behavior of advanced HMIs (Human – Machine - Interactions).
The language described in the (Bock, 2006) has been designed to generate prototypes
especially for testing usability. Thanks to the simple visual syntax and semantics the
DSL acts as a common layer for all members of an interdisciplinary software production
team allowing them to understand major aspects of the application;

• to develop distributed Web-based applications. The paper (Nussbaumer, 2006) presents
a system where domain experts directly contribute to the development process by
utilizing dedicated DSLs. Hence the web application was composed from various
blocks which behaviour were specified with the languages;

• to test software. In the case of the system described in the (Freeman, 2006), the DSL has
been used for the “mocking” process. It means mimicking the behaviour of some real
objects linked with tested objects;

• to create Graphical User Interfaces. Some of them are described in the following
paragraphs.

The (Bravenboer, 2004) introduces an interesting DSL called SWUL (Swing User-interface
Language). The language has been developed using MetaBorg which provides concrete
syntax for domain abstractions. It utilizes a preprocessor concept: a programmer utilizes a
dedicated tool to transform a defined DSL language into a “real” language, which is further
compiled using its native tools. Listing 2 presents a sample SWUL code.
The readability of the code is much better than the Java with the Swing components. The
structure of the GUI is more explicit and roles of particular constructs are self-explanatory.
However, the level of abstraction is quite similar to the one represented by Java. A

GUIs without Pain – the Declarative Way

123

programmer who would like to implement a typical GUI – model interaction
(Create/Retrieve/Update/Delete) has to write a similar amount of code like in pure Java.
Another disadvantage is the special pre-compiler which has to be utilized every time before
the “real” Java compilation occurs.

JFrame frame = frame {
 title = " Welcome !"
 content = panel of border layout {
 center = label { text = " Hello World " }
 south = panel of grid layout {
 row = {
 button { text = " cancel " }
 button { text = "ok" }
 }
 }
 }
};

Listing 2. A simple SWUL code

group(customerInfo, <nameInput, ageInput>).
group(nameInput, <customerLabel, customerInputField>).
group(ageInput, <ageLabel, ageInputField>).
above(customerInfo, shoppingBag).
above(shoppingBag, checkOutButton).
oneColumn(nameInput).
oneColumn(ageInput).
oneRow(<nameInput, ageInput>).

Listing 3. Definition of component relations in DEUCE

The (Goderis, 2007) describes the DEUCE framework which utilizes another DSL called
SOUL defined on top of Smalltalk. The two languages are used to implement the entire
structure and behaviour of an application. The system allows for defining rules which could
concern different aspects including an automatically generated GUI. For instance Listing 3
shows rules describing some components relations among customers and a shop.
The idea is interesting but requires further research. Especially, considering performance for
real-world applications. Another unsure aspect is the ability and usefulness to describe the
whole system using just rules.
There is also a big group of solutions introducing different DSLs based mostly on the XML
syntax. Interesting examples are Aria (Aria , 2009) (the successor of the XUI), the Swing
JavaBuilder (The Swing JavaBuilder, 2009), eFace (eFace, 2009). They utilize a dedicated file
containing a definition of the GUI which is created during run-time by the library. In most
cases there is also support for data-binding which connects parts of the model and a widget.
Listing 4 contains sample code in the YAML (YAML , 2009) and Figure 2 presents generated
dialog window. Notice a dedicated section for binding names with GUI controls and
validators.
There are also two commercial technologies worth mentioning: JavaFX (Topley, 2010) and
WPF (with XAML for the MS C# language) (Nathan, 2006). Both of them claims to be
declarative and are based on similar idea. Created GUI is defined using a separate file and a
special syntax. Although syntaxes are different, semantics and amount of information
provided by a programmer are similar. Roughly speaking even with a data binding
technology a programmer has to write quite a lot of source code.

 User Interfaces

122

Unfortunately that means providing a lot of details by a programmer, which could cause
complexity similar to the classical methods.
In most cases utilizing a declarative approach means introducing some kind of a Domain
Specific Language (DSL). The DSLs are quite extensive area (much bigger than just GUIs)
thus they deserve a dedicated section.

3. Domain specific languages
According to the (Deursen, 2000) Domain Specific Languages (DSLs) offer an expressiveness
power usually focused on a particular application or technical domain. They utilize a special
syntax, semantics and work on a quite high level of abstraction. DSLs often employ a
declarative approach which means specifying the job to do rather than describing how it
should be done. As a result, a person using a DSL expects improvement in the process of
developing software. The improvement could mean saving a programmer’s effort, better
quality of the system, shorter time to market, fewer errors, and, last but not least, less
typing.
The DSL concept is not quite new. In (Visser, 2008) we can find information about roots of
the DSLs in Fortran language in late 1950s. Even one of the most successful examples of the
idea, the SQL query language has been defined in 1970s but is still widely used nowadays.
Since the 2000s we can observe the rising popularity of DSL languages in a wide range of
fields and utilizations:
• as visualization tools. An interesting example developed within the purely functional

language Haskell is described in the (Borgo, 2008). The language provides a set of
primitives and other structures combing them into bigger structures. As a result, it is
possible to create different post-processing of images together with animations;

• to specify content and behavior of advanced HMIs (Human – Machine - Interactions).
The language described in the (Bock, 2006) has been designed to generate prototypes
especially for testing usability. Thanks to the simple visual syntax and semantics the
DSL acts as a common layer for all members of an interdisciplinary software production
team allowing them to understand major aspects of the application;

• to develop distributed Web-based applications. The paper (Nussbaumer, 2006) presents
a system where domain experts directly contribute to the development process by
utilizing dedicated DSLs. Hence the web application was composed from various
blocks which behaviour were specified with the languages;

• to test software. In the case of the system described in the (Freeman, 2006), the DSL has
been used for the “mocking” process. It means mimicking the behaviour of some real
objects linked with tested objects;

• to create Graphical User Interfaces. Some of them are described in the following
paragraphs.

The (Bravenboer, 2004) introduces an interesting DSL called SWUL (Swing User-interface
Language). The language has been developed using MetaBorg which provides concrete
syntax for domain abstractions. It utilizes a preprocessor concept: a programmer utilizes a
dedicated tool to transform a defined DSL language into a “real” language, which is further
compiled using its native tools. Listing 2 presents a sample SWUL code.
The readability of the code is much better than the Java with the Swing components. The
structure of the GUI is more explicit and roles of particular constructs are self-explanatory.
However, the level of abstraction is quite similar to the one represented by Java. A

GUIs without Pain – the Declarative Way

123

programmer who would like to implement a typical GUI – model interaction
(Create/Retrieve/Update/Delete) has to write a similar amount of code like in pure Java.
Another disadvantage is the special pre-compiler which has to be utilized every time before
the “real” Java compilation occurs.

JFrame frame = frame {
 title = " Welcome !"
 content = panel of border layout {
 center = label { text = " Hello World " }
 south = panel of grid layout {
 row = {
 button { text = " cancel " }
 button { text = "ok" }
 }
 }
 }
};

Listing 2. A simple SWUL code

group(customerInfo, <nameInput, ageInput>).
group(nameInput, <customerLabel, customerInputField>).
group(ageInput, <ageLabel, ageInputField>).
above(customerInfo, shoppingBag).
above(shoppingBag, checkOutButton).
oneColumn(nameInput).
oneColumn(ageInput).
oneRow(<nameInput, ageInput>).

Listing 3. Definition of component relations in DEUCE

The (Goderis, 2007) describes the DEUCE framework which utilizes another DSL called
SOUL defined on top of Smalltalk. The two languages are used to implement the entire
structure and behaviour of an application. The system allows for defining rules which could
concern different aspects including an automatically generated GUI. For instance Listing 3
shows rules describing some components relations among customers and a shop.
The idea is interesting but requires further research. Especially, considering performance for
real-world applications. Another unsure aspect is the ability and usefulness to describe the
whole system using just rules.
There is also a big group of solutions introducing different DSLs based mostly on the XML
syntax. Interesting examples are Aria (Aria , 2009) (the successor of the XUI), the Swing
JavaBuilder (The Swing JavaBuilder, 2009), eFace (eFace, 2009). They utilize a dedicated file
containing a definition of the GUI which is created during run-time by the library. In most
cases there is also support for data-binding which connects parts of the model and a widget.
Listing 4 contains sample code in the YAML (YAML , 2009) and Figure 2 presents generated
dialog window. Notice a dedicated section for binding names with GUI controls and
validators.
There are also two commercial technologies worth mentioning: JavaFX (Topley, 2010) and
WPF (with XAML for the MS C# language) (Nathan, 2006). Both of them claims to be
declarative and are based on similar idea. Created GUI is defined using a separate file and a
special syntax. Although syntaxes are different, semantics and amount of information
provided by a programmer are similar. Roughly speaking even with a data binding
technology a programmer has to write quite a lot of source code.

 User Interfaces

124

JFrame(name=frame, title=frame.title, size=packed,
defaultCloseOperation=exitOnClose):
- JLabel(name=fNameLbl, text=label.firstName)
- JLabel(name=lNameLbl, text=label.lastName)
- JLabel(name=emailLbl, text=label.email)
- JTextField(name=fName)
- JTextField(name=lName)
- JTextField(name=email)
- JButton(name=save, text=button.save,
onAction=($validate,save,done))
- JButton(name=cancel, text=button.cancel,
onAction=($confirm,cancel))
- MigLayout: |
[pref] [grow,100] [pref] [grow,100]
fNameLbl fName lNameLbl lName
emailLbl email+*
>save+*=1,cancel=1
bind:
- fName.text: this.person.firstName
- lName.text: this.person.lastName
- email.text: this.person.emailAddress
validate:
- fName.text: {mandatory: true, label: label.firstName}
- lName.text: {mandatory: true, label: label.lastName}
- email.text: {mandatory: true, emailAddress: true, label:
label.email}

Listing 4. Sample code in the YAML (Swing JavaBuilder).

Fig. 2. The dialog window generated by the code from Listing 4

The above solutions are useful and in some cases provide higher level of abstraction than
pure Java. But, even using such DSLs, a programmer has to spend a lot of time on GUI
creation. We believe that our approach is sometimes a bit less powerful but much more
simpler.

GUIs without Pain – the Declarative Way

125

4. The design and implementation
Our first attempt at declarative user interfaces (see the senseGUI library described in the
(Trzaska, 2008)) was not based on a DSL. It utilized annotations of the Java programming
language. The implemented library, based on the annotated model (Java classes), was able
to generate different types of GUIs (frames, dialogs, panels). In our current proposal, also
for Java, we have decided to use a dedicated DSL rather than marking source code. Such a
change is very useful for a programmer:
• The process of defining the GUI takes place in one location: the GCL statement. In the

senseGUI library it was split between a model definition and a library’s method call;
• There is no need for modifying (marking with annotations) model (data) source code by

a programmer. The code is not always accessible (it could be shipped as i.e. Java jar file)
and even if it is, modifications should be avoided wherever possible.

During the design process of the language we tried to make it as simple, yet powerful.
Hence we defined the following general requirements:
• The number of different constructs has to be minimized,
• Most of the customization information has to be optional. It could be achieved using

some (carefully chosen) default values,
• Orthogonality and reuse wherever possible, i.e. embedded fields should be defined

using “ordinary” fields properties.
• Support for important GUIs facilities like internationalization (i18n), validators.
Such an approach significantly reduces the number of special cases and thus the size of
documentation.
The overall goal of the GCL language is saving a programmer’s time by generating a GUI.
The library automatically creates necessary controls based on the given model. The model is
defined by ordinary Java classes. A programmer passes a model’s instance (a Java object),
optionally customizes it and the library generates a widget. Using the widget, an end user of
the application is able to see the object’s content and modify it. The design is language
independent and could be implemented for any language which supports reflection.

Create ComponentType for DataInstance containing (Field01Type
Field01Descriptor, Field02Type Field02Descriptor, ...)

Listing 4. The GCL root statement

Listing 4 presents the root statement of the GCL language. The containing part is optional; if
it is omitted, then only default values will be used. Below are descriptions of all parts of the
statement:
• The ComponentType could be one of the following:

• frame – an instance of the JFrame class,
• internalFrame – an instance of the JInternalFrame class (same as ‘frame’ but

utilized in the MDI applications),
• panel – an instance of the JPanel class; a panel could be embedded in any other

Java GUI,
• dialog – an instance of the modal JDialog class.

• The DataInstance is just the Java object for which we need a GUI;
• The FieldType is one of the following:

• attribute - describes a given attribute, i.e. attribute("firstName"),

 User Interfaces

124

JFrame(name=frame, title=frame.title, size=packed,
defaultCloseOperation=exitOnClose):
- JLabel(name=fNameLbl, text=label.firstName)
- JLabel(name=lNameLbl, text=label.lastName)
- JLabel(name=emailLbl, text=label.email)
- JTextField(name=fName)
- JTextField(name=lName)
- JTextField(name=email)
- JButton(name=save, text=button.save,
onAction=($validate,save,done))
- JButton(name=cancel, text=button.cancel,
onAction=($confirm,cancel))
- MigLayout: |
[pref] [grow,100] [pref] [grow,100]
fNameLbl fName lNameLbl lName
emailLbl email+*
>save+*=1,cancel=1
bind:
- fName.text: this.person.firstName
- lName.text: this.person.lastName
- email.text: this.person.emailAddress
validate:
- fName.text: {mandatory: true, label: label.firstName}
- lName.text: {mandatory: true, label: label.lastName}
- email.text: {mandatory: true, emailAddress: true, label:
label.email}

Listing 4. Sample code in the YAML (Swing JavaBuilder).

Fig. 2. The dialog window generated by the code from Listing 4

The above solutions are useful and in some cases provide higher level of abstraction than
pure Java. But, even using such DSLs, a programmer has to spend a lot of time on GUI
creation. We believe that our approach is sometimes a bit less powerful but much more
simpler.

GUIs without Pain – the Declarative Way

125

4. The design and implementation
Our first attempt at declarative user interfaces (see the senseGUI library described in the
(Trzaska, 2008)) was not based on a DSL. It utilized annotations of the Java programming
language. The implemented library, based on the annotated model (Java classes), was able
to generate different types of GUIs (frames, dialogs, panels). In our current proposal, also
for Java, we have decided to use a dedicated DSL rather than marking source code. Such a
change is very useful for a programmer:
• The process of defining the GUI takes place in one location: the GCL statement. In the

senseGUI library it was split between a model definition and a library’s method call;
• There is no need for modifying (marking with annotations) model (data) source code by

a programmer. The code is not always accessible (it could be shipped as i.e. Java jar file)
and even if it is, modifications should be avoided wherever possible.

During the design process of the language we tried to make it as simple, yet powerful.
Hence we defined the following general requirements:
• The number of different constructs has to be minimized,
• Most of the customization information has to be optional. It could be achieved using

some (carefully chosen) default values,
• Orthogonality and reuse wherever possible, i.e. embedded fields should be defined

using “ordinary” fields properties.
• Support for important GUIs facilities like internationalization (i18n), validators.
Such an approach significantly reduces the number of special cases and thus the size of
documentation.
The overall goal of the GCL language is saving a programmer’s time by generating a GUI.
The library automatically creates necessary controls based on the given model. The model is
defined by ordinary Java classes. A programmer passes a model’s instance (a Java object),
optionally customizes it and the library generates a widget. Using the widget, an end user of
the application is able to see the object’s content and modify it. The design is language
independent and could be implemented for any language which supports reflection.

Create ComponentType for DataInstance containing (Field01Type
Field01Descriptor, Field02Type Field02Descriptor, ...)

Listing 4. The GCL root statement

Listing 4 presents the root statement of the GCL language. The containing part is optional; if
it is omitted, then only default values will be used. Below are descriptions of all parts of the
statement:
• The ComponentType could be one of the following:

• frame – an instance of the JFrame class,
• internalFrame – an instance of the JInternalFrame class (same as ‘frame’ but

utilized in the MDI applications),
• panel – an instance of the JPanel class; a panel could be embedded in any other

Java GUI,
• dialog – an instance of the modal JDialog class.

• The DataInstance is just the Java object for which we need a GUI;
• The FieldType is one of the following:

• attribute - describes a given attribute, i.e. attribute("firstName"),

 User Interfaces

126

• method - describes a given method, i.e. method("getAge"),
• The FieldDescription is a combination of the following modifiers:

• resizeWidget(boolean) - Sets the widget's resizing behavior wherever it should
be resized horizontally and vertically,

• setMethod(String) - Sets the method used to modify the item's value (with the
String parameter),

• as(String) – Sets a label for the item. It could be achieved directly by providing
the text or taking into account i18n by giving a key in a language bundle (standard
Java approach),

• asComplex(Field01Description, Field02Description, ...) - Treats the item
as a complex one (a field embedded in a field) and allows passing additional
information about an internal widget.

• order(int) - Sets an order for the item,
• usingWidget(String) - Sets a name of the Java class (with a full package) which

will be used as a widget for showing the item,
• validate(Validator) - Sets a validator for the item,
• readOnly(boolean) - Indicates if the item should be read-only,
• value(String) - Sets the default value. Used by Ad Hoc GUI (see further). Ignored

in GUIs based on existing data models,
• type(Class<?>) - Sets type of the field (in the case of attributes it is the attribute's

type; for methods type of the returned valued). Normally, the type is read from the
structure of the data object. Hence, this method is useful in Ad Hoc GUIs where
there is no data object connected,

• getMethod(String) - Gets the method,
• buttons(MultiObjectsListButton...) - Defines additional buttons for multi-

objects list. Ignored in other cases.
In the case of popular programming languages like Java or MS C#, a DSL could be
implemented using one of the following approaches:
• String-based. All DSL constructs are passed to a library as strings. This way most

implementations of the SQL (including JDBC) work. Obvious disadvantages include:
lack of type-control, no context-sensitive help, no compilation time errors checking, etc.;

• API-based. The idea makes use of a special design of the library providing a DSL:
classes, methods, interfaces. All of them have special names which read separately
sound quite strange, but after connecting them together emulate statements of the DSL
language. All the concepts and constructs are described in the (Fowler, 2010).

We believe that the second approach is more useful for a programmer, hence we have
implemented our GCL that way. Sample statement in the Java implementation could look
like the code in Listing 5 (the right side of the equal character).

JFrame frame = create.frame.using(person).containing();

Listing 5. Sample GCL statement in the API-based implementation

It is worth noting that:
• As we mentioned earlier, particular parts of the API have quite strange names, i.e. the

containing method, but reading the whole statement makes them sensible;
• Due to the Java restrictions we had to change a bit our syntax. The “for” keyword had

to be replaced with something else (using);

GUIs without Pain – the Declarative Way

127

• Another problem was caused by the fact that the return value type of the whole
statement (in the API-based implementation – the containing method) is determined
by the second part – the type of the widget (i.e. frame). In terms of the Java API it
means that the return type of the last method (containing) should be determined by
another element of the language. To solve the issue we introduced different “paths” –
each for every returned type;

This section described details specific to the design and implementation of the DSL part of
the library. General information about analyzing business class structures, generating GUI,
etc. could be found in the (Trzaska, 2008).

5. Sample utilizations
Below we present a few sample utilizations of the GCL language, together with short
descriptions and snapshots of the generated GUIs (the person is an instance of the typical
business Person class). All of them are available on the project page (http://gcl-
dsl.googlecode.com/).
• The simplest possible utilization of the GCL. A generated widget (in this case a

frame/window) is totally based on default values (Listing 6 and Figure 3). The
usingOnly statement is a shortcut for the using(person).containing() (Listing 5)
with an empty containing part.

JFrame frame1 = create.frame.usingOnly(person);

Listing 6. Simplest GCL utilization #1

Fig. 3. The window generated by the code from Listing 6

• A customized frame for the same Person object with a validator (Listing 7 and Figure 4).
Thanks to the Orthogonality principle utilized during the design process, validators
could be applied to any filed in the same manner like other modifiers.

• A default frame showing automatically generated content for the given instance of the
Company class is presented on Figure 5 and the code on Listing 8. One of the Company
class attribute called employees is a list with references to employees. This case is
reflected in the frame as an automatically generated (and populated) list box with

 User Interfaces

126

• method - describes a given method, i.e. method("getAge"),
• The FieldDescription is a combination of the following modifiers:

• resizeWidget(boolean) - Sets the widget's resizing behavior wherever it should
be resized horizontally and vertically,

• setMethod(String) - Sets the method used to modify the item's value (with the
String parameter),

• as(String) – Sets a label for the item. It could be achieved directly by providing
the text or taking into account i18n by giving a key in a language bundle (standard
Java approach),

• asComplex(Field01Description, Field02Description, ...) - Treats the item
as a complex one (a field embedded in a field) and allows passing additional
information about an internal widget.

• order(int) - Sets an order for the item,
• usingWidget(String) - Sets a name of the Java class (with a full package) which

will be used as a widget for showing the item,
• validate(Validator) - Sets a validator for the item,
• readOnly(boolean) - Indicates if the item should be read-only,
• value(String) - Sets the default value. Used by Ad Hoc GUI (see further). Ignored

in GUIs based on existing data models,
• type(Class<?>) - Sets type of the field (in the case of attributes it is the attribute's

type; for methods type of the returned valued). Normally, the type is read from the
structure of the data object. Hence, this method is useful in Ad Hoc GUIs where
there is no data object connected,

• getMethod(String) - Gets the method,
• buttons(MultiObjectsListButton...) - Defines additional buttons for multi-

objects list. Ignored in other cases.
In the case of popular programming languages like Java or MS C#, a DSL could be
implemented using one of the following approaches:
• String-based. All DSL constructs are passed to a library as strings. This way most

implementations of the SQL (including JDBC) work. Obvious disadvantages include:
lack of type-control, no context-sensitive help, no compilation time errors checking, etc.;

• API-based. The idea makes use of a special design of the library providing a DSL:
classes, methods, interfaces. All of them have special names which read separately
sound quite strange, but after connecting them together emulate statements of the DSL
language. All the concepts and constructs are described in the (Fowler, 2010).

We believe that the second approach is more useful for a programmer, hence we have
implemented our GCL that way. Sample statement in the Java implementation could look
like the code in Listing 5 (the right side of the equal character).

JFrame frame = create.frame.using(person).containing();

Listing 5. Sample GCL statement in the API-based implementation

It is worth noting that:
• As we mentioned earlier, particular parts of the API have quite strange names, i.e. the

containing method, but reading the whole statement makes them sensible;
• Due to the Java restrictions we had to change a bit our syntax. The “for” keyword had

to be replaced with something else (using);

GUIs without Pain – the Declarative Way

127

• Another problem was caused by the fact that the return value type of the whole
statement (in the API-based implementation – the containing method) is determined
by the second part – the type of the widget (i.e. frame). In terms of the Java API it
means that the return type of the last method (containing) should be determined by
another element of the language. To solve the issue we introduced different “paths” –
each for every returned type;

This section described details specific to the design and implementation of the DSL part of
the library. General information about analyzing business class structures, generating GUI,
etc. could be found in the (Trzaska, 2008).

5. Sample utilizations
Below we present a few sample utilizations of the GCL language, together with short
descriptions and snapshots of the generated GUIs (the person is an instance of the typical
business Person class). All of them are available on the project page (http://gcl-
dsl.googlecode.com/).
• The simplest possible utilization of the GCL. A generated widget (in this case a

frame/window) is totally based on default values (Listing 6 and Figure 3). The
usingOnly statement is a shortcut for the using(person).containing() (Listing 5)
with an empty containing part.

JFrame frame1 = create.frame.usingOnly(person);

Listing 6. Simplest GCL utilization #1

Fig. 3. The window generated by the code from Listing 6

• A customized frame for the same Person object with a validator (Listing 7 and Figure 4).
Thanks to the Orthogonality principle utilized during the design process, validators
could be applied to any filed in the same manner like other modifiers.

• A default frame showing automatically generated content for the given instance of the
Company class is presented on Figure 5 and the code on Listing 8. One of the Company
class attribute called employees is a list with references to employees. This case is
reflected in the frame as an automatically generated (and populated) list box with

 User Interfaces

128

buttons. Two of them are provided by the library and allows editing or removing linked
objects. A programmer is also able to define custom buttons with various actions, i.e.
creating another employee.

JFrame frame = create.
 frame.
 using(person).
 containing(
 attribute("firstName").as("First name"),
 attribute("lastName").validate(new
ValidatorNotEmpty()),
 attribute("higherEducation"),
 method("getAge").as("Age"));

Listing 7. Sample GCL utilization #2

Fig. 4. The window generated by the code from Listing 7

JFrame frame = create.
 frame.
 using(company).
 containing(
 attribute("name").as("Name"),
 attribute("income"),
 attribute("employees"));

Listing 8. Sample GCL utilization #3

Fig. 5. The window generated by the code from Listing 8

GUIs without Pain – the Declarative Way

129

• Ad Hoc GUIs. Aside of GUIs required by existing data structures (i.e. Person class), a
typical business application also needs different dialogs and windows which do not
have explicit data structures. For instance a login dialog or a database connection
wizard usually do not utilize a dedicated data (model) class. Such cases could be
processed by the GCL functionality called Ad Hoc GUIs. A user creates a statement
which generates a widget according to the given definition. Of course it is possible to
use all GCL constructs like validators or many types of customizations. An example is
presented on Listing 9 and Figure 6. Note that:
• Interface AdHocActionPerformed gives a possibility of executing a custom method

when a user clicks the OK button.
• It is possible to provide default values,
• Different data types are processed using different widgets (i.e. an enum with a

combo box – the Colors class in the example).

AdHocActionPerformed processAccept = new AdHocActionPerformed(){
 @Override
 public void Accept(Map<String, String> enteredData) {
 // Do something with the fields...
 }
 };
 frame = create.
 frame("Data", processAccept, "OK").
 containing(
 attribute("firstName").as("First
name").value("Martin"),
 attribute("lastName").validate(new
ValidatorNotEmpty()),
 attribute("higherEducation").type(boolean.class),
 attribute("values").type(Colors.class));

Listing 9. Sample GCL utilization#4

Fig. 6. The window generated by the code from Listing 9

• This sample is very similar to the one presented on Listing 7 but supports
internationalization (I18n): An internationalized (using the Java message bundle) and
customized frame for the Person object with a validator (Listing 10 and Figure 7).

• The last sample is similar to the one presented on Listing 8 but provides a custom
button. Listing 11 contains appropriate GCL code (notice the buttons modifier) and
Figure 8 the generated window. The buttons modifier expects an object implementing

 User Interfaces

128

buttons. Two of them are provided by the library and allows editing or removing linked
objects. A programmer is also able to define custom buttons with various actions, i.e.
creating another employee.

JFrame frame = create.
 frame.
 using(person).
 containing(
 attribute("firstName").as("First name"),
 attribute("lastName").validate(new
ValidatorNotEmpty()),
 attribute("higherEducation"),
 method("getAge").as("Age"));

Listing 7. Sample GCL utilization #2

Fig. 4. The window generated by the code from Listing 7

JFrame frame = create.
 frame.
 using(company).
 containing(
 attribute("name").as("Name"),
 attribute("income"),
 attribute("employees"));

Listing 8. Sample GCL utilization #3

Fig. 5. The window generated by the code from Listing 8

GUIs without Pain – the Declarative Way

129

• Ad Hoc GUIs. Aside of GUIs required by existing data structures (i.e. Person class), a
typical business application also needs different dialogs and windows which do not
have explicit data structures. For instance a login dialog or a database connection
wizard usually do not utilize a dedicated data (model) class. Such cases could be
processed by the GCL functionality called Ad Hoc GUIs. A user creates a statement
which generates a widget according to the given definition. Of course it is possible to
use all GCL constructs like validators or many types of customizations. An example is
presented on Listing 9 and Figure 6. Note that:
• Interface AdHocActionPerformed gives a possibility of executing a custom method

when a user clicks the OK button.
• It is possible to provide default values,
• Different data types are processed using different widgets (i.e. an enum with a

combo box – the Colors class in the example).

AdHocActionPerformed processAccept = new AdHocActionPerformed(){
 @Override
 public void Accept(Map<String, String> enteredData) {
 // Do something with the fields...
 }
 };
 frame = create.
 frame("Data", processAccept, "OK").
 containing(
 attribute("firstName").as("First
name").value("Martin"),
 attribute("lastName").validate(new
ValidatorNotEmpty()),
 attribute("higherEducation").type(boolean.class),
 attribute("values").type(Colors.class));

Listing 9. Sample GCL utilization#4

Fig. 6. The window generated by the code from Listing 9

• This sample is very similar to the one presented on Listing 7 but supports
internationalization (I18n): An internationalized (using the Java message bundle) and
customized frame for the Person object with a validator (Listing 10 and Figure 7).

• The last sample is similar to the one presented on Listing 8 but provides a custom
button. Listing 11 contains appropriate GCL code (notice the buttons modifier) and
Figure 8 the generated window. The buttons modifier expects an object implementing

 User Interfaces

130

the MultiObjectsListButton interface (containing just 2 methods). Listing 12 presents
the utilized (partial) implementation which creates a new employee and connects him
with the company. Notice that the implementation uses the GCL itself to get the new
employee data.

dialog = create.
 dialog.
 using(person).
 containing(resourceBundle,
 attribute("firstName").as("Person.firstName"),
 attribute("lastName").as("Person.lastName").
validate(new ValidatorNotEmpty()),
 attribute("higherEducation").
 as("Person.higherEducation"),
 method("getAge").as("Person.getAge"));

Listing 10. Sample GCL utilization #5

Fig. 7. The window generated by the code from Listing 10 (with i18n)

frame = create.
 frame.
 using(company).
 containing(
 attribute("name").as("Name"),
 attribute("income"),
 attribute("employees").
 buttons(new ButtonCreateEmployee()).asComplex(
 attribute("lastName").as("Last name")
)
);

Listing 11. Sample GCL utilization #6

6. Conclusions and future work
We have presented a Domain Specific Language called GCL. The purpose of the language is
to facilitate creation of Graphical User Interfaces. Our research has been supported by the
working implementation for the Java platform. However, utilized approach and design are
generic enough to create the language for other platforms (like MS .NET and C#).
To our best knowledge, the GCL is the only solution offering such a high level of
automation in creating typical, business-oriented GUIs. In the simplest case, a programmer,

GUIs without Pain – the Declarative Way

131

Fig. 8. The window generated by the code from Listing 11

class ButtonCreateEmployee implements MultiObjectsListButton {
 public String getButtonLabel() {
 return "Create";
 }

 public void process(JList multiObjectsList, Collection<Object>
objects) {
 Employee emp = new Employee();
 dialog = create.
 dialog.
 using(emp).
 containing(attribute("firstName"),
 attribute("lastName"));
 // [...]
 }
}

Listing 12. Sample implementation of the MultiObjectsListButton interface.

using just one GCL statement, is able to generate a working widget (a window, a dialog or a
panel) for a given data instance (a typical Java class). Such an approach does not impose
utilizing complex, hard-to-use libraries or modifications of business source codes.
We believe that Domain Specific Languages will gain in popularity because of their
simplicity and usefulness. Hence we would like to continue our research in the field of DSLs
and, especially, GUIs creation.

7. References
Aria - a framework for building Java and XML based applications. http://www.formaria.org/
Basnyat S., Bastide R., Palanque P.: Extending the Boundaries of Model-Based Development

to Account for Errors. MDDAUI '05. 2005.
Bock C., Gorlich D., Zuhlke D.: Using Domain-Specic Languages in the Design of HMIs:

Experiences and Lessons Learned. Proceedings of the MoDELS'06 Workshop on
Model Driven Development of Advanced User Interfaces. Genova, Italy. 2006.

 User Interfaces

130

the MultiObjectsListButton interface (containing just 2 methods). Listing 12 presents
the utilized (partial) implementation which creates a new employee and connects him
with the company. Notice that the implementation uses the GCL itself to get the new
employee data.

dialog = create.
 dialog.
 using(person).
 containing(resourceBundle,
 attribute("firstName").as("Person.firstName"),
 attribute("lastName").as("Person.lastName").
validate(new ValidatorNotEmpty()),
 attribute("higherEducation").
 as("Person.higherEducation"),
 method("getAge").as("Person.getAge"));

Listing 10. Sample GCL utilization #5

Fig. 7. The window generated by the code from Listing 10 (with i18n)

frame = create.
 frame.
 using(company).
 containing(
 attribute("name").as("Name"),
 attribute("income"),
 attribute("employees").
 buttons(new ButtonCreateEmployee()).asComplex(
 attribute("lastName").as("Last name")
)
);

Listing 11. Sample GCL utilization #6

6. Conclusions and future work
We have presented a Domain Specific Language called GCL. The purpose of the language is
to facilitate creation of Graphical User Interfaces. Our research has been supported by the
working implementation for the Java platform. However, utilized approach and design are
generic enough to create the language for other platforms (like MS .NET and C#).
To our best knowledge, the GCL is the only solution offering such a high level of
automation in creating typical, business-oriented GUIs. In the simplest case, a programmer,

GUIs without Pain – the Declarative Way

131

Fig. 8. The window generated by the code from Listing 11

class ButtonCreateEmployee implements MultiObjectsListButton {
 public String getButtonLabel() {
 return "Create";
 }

 public void process(JList multiObjectsList, Collection<Object>
objects) {
 Employee emp = new Employee();
 dialog = create.
 dialog.
 using(emp).
 containing(attribute("firstName"),
 attribute("lastName"));
 // [...]
 }
}

Listing 12. Sample implementation of the MultiObjectsListButton interface.

using just one GCL statement, is able to generate a working widget (a window, a dialog or a
panel) for a given data instance (a typical Java class). Such an approach does not impose
utilizing complex, hard-to-use libraries or modifications of business source codes.
We believe that Domain Specific Languages will gain in popularity because of their
simplicity and usefulness. Hence we would like to continue our research in the field of DSLs
and, especially, GUIs creation.

7. References
Aria - a framework for building Java and XML based applications. http://www.formaria.org/
Basnyat S., Bastide R., Palanque P.: Extending the Boundaries of Model-Based Development

to Account for Errors. MDDAUI '05. 2005.
Bock C., Gorlich D., Zuhlke D.: Using Domain-Specic Languages in the Design of HMIs:

Experiences and Lessons Learned. Proceedings of the MoDELS'06 Workshop on
Model Driven Development of Advanced User Interfaces. Genova, Italy. 2006.

 User Interfaces

132

Borgo R., Duke D., Runciman C., Wallace M.: The 2008 Visualization Design Contest: A
Functional DSL for Multield Data. Manuscript submitted August 1 2008 for IEEE
Visualization Design Contest.

Bravenboer M., Visser E.: Concrete syntax for objects: domain-specific language embedding
and assimilation without restrictions. Proceedings of the 19th annual ACM
SIGPLAN Conference on Object-oriented programming, systems, languages, and
applications OOPSLA '04. October 24-28, 2004. Vancouver, Canada. ISBN
1581138319. pp 365-383.

da Silva P.: User interface declarative models and development environments: a survey.
Proceedings of DSVIS 2000, 2000,pp. 207–226.

Deursen A.V., Klint P., Visser J: Domain-Specific Languages: An Annotated Bibliography.
ACM SIGPLAN Notices, 2000. 35(6): p. 26-36.

eFace - XAML/WPF for Java. http://www.soyatec.com/eface/.
Fowler M. Domain Specific Languages (work in progress). http://martinfowler.com/ /dslwip
Freeman S., Pryce N.: Evolving an Embedded Domain-Specific Language in Java. 21st ACM

SIGPLAN symposium on Object-oriented programming systems, languages, and
applications. October 22-26, 2006. Portland, Oregon, USA. ISBN:1-59593-491-X. pp
855-865.

Gajos K., Weld D.: SUPPLE: Automatically Generating User Interfaces, in Proceedings of
IUI'04, Funchal, Portugal,2004, pp.83-100.

Goderis S., Deridder D., Van Paesschen E., D’Hondt T.: DEUCE - A Declarative Framework
for Extricating User Interface Concerns, in Journal of Object Technology, Special
Issue: TOOLS Europe 2007, vol. 6, no. 9, October 2007, pages 87-104.

Guojie J. L.: Professional Java Native Interfaces with SWT/JFace. ISBN: 978-0470094594.
Wrox. 2005.

Jigloo SWT/Swing GUI Builder: http://www.cloudgarden.com/jigloo/.
Molina P., Meliá S., Pastor O.: JUST-UI: A User Interface Specification Mode, in Proceedings

of CADUI 2002, Valenciennes, France, 2002, pp.63-74.
Mori G., Paterno F., Santoro C.: Design and Development of Multidevice User Interfaces

through Multiple Logical Descriptions, IEEE ToSE, 30(8), 2004, pp.1-14.
Nathan A., Windows Presentation Foundation Unleashed (Sams, 2006).
Nussbaumer M., Freudenstein P., Gaedke M.: The Impact of Domain-Specific Languages for

Assembling Web Applications. Engineering Letters Journal. Volume 13, Issue 3.
2006. ISSN: 1816-093X.

Sells Ch., Weinhardt M.: Windows Forms 2.0 Programming. ISBN: 978-0-321-26796-2.
AWPddison Wesley Professional. 2006.

The Swing JavaBuilder. http://code.google.com/p/javabuilders/.
Topley K., JavaFX Developer's Guide (Addison-Wesley Professional, 2010).
Trzaska M.: Automatically Creating Graphical User Interfaces Using Extended senseGUI

Library. Proceedings of the Ninth IASTED International Conference on Software
Engineering and Applications (SEA’08). November 16 – 18, 2008, Orlando, Florida,
USA. ISBN: 978-0-88986-776-5. pp. 112-117.

Visser E.: WebDSL: A Case Study in Domain-Specific Language Engineering. Lecture Notes
in Computer Science 5235:291--373. 2008.

Walrath K., Campione M., Huml A., Zakhour S.: The JFC Swing Tutorial (2nd Edition). ISBN
0201914670. Prentice Hall. 2004.

YAML: http://en.wikipedia.org/wiki/YAML.

9

Automatic Hand-Pose Trajectory Tracking
System Using Video Sequences

Yuan-Hsiang Chang and Chen-Ming Chang
Department of Information and Computer Engineering, Chung Yuan Christian University

Taiwan, Republic of China

1. Introduction
1.1 Background
Hand-pose is one of the most important communication tools in human’s daily life. In a
situation when people from different countries are trying to communicate, they may be able
to roughly express their thought through hand-poses or hand-gestures. During an oral
presentation, a presenter may use hand-poses as an auxiliary tool to convey his or her idea
for technical communication. In practice, the use of “sign language” is a typical example that
provides an effective mechanism for exchanging information among deaf people and the
hearing society. In essence, “sign language” can be considered as a combination of many
hand-poses that define the actual information.
With the continuous advances of speech, image, and video processing techniques, human-
machine interaction is constantly making progress over the past decades. For example,
speech recognition systems (Cooke et al., 2001; Gales, 1998) are designed to recognize and
translate human’s speech to text. Handwritten recognition systems (Liu et al., 2003; Palacios
& Gupta, 2002; Zhai & Kristensson, 2003) are designed to recognize and translate human’s
handwritten to text. A palmprint identification system (Zhang et al. 2003) is a biometric
approach to recognize human’s palmprint for personal identification. A safety vehicle
system (Trivedi et al., 2007) can be used to estimate the situation around a vehicle and
convey information to warn the driver for potential dangers such that the vehicle safety
could be improved. In summary, many of these systems have been found to be feasible in
enhancing the human-machine interaction and integrated in daily applications (e.g., cell
phones, notebooks, security system, etc.).

1.2 Related research
During the past years, researchers have proposed novel methods for the classification or
recognition of hand-poses or hand-gestures. The techniques can be divided into two main
categories: image-based approaches and glove-based approaches. The image-based
approaches are generally designed to use images as inputs to the system for the hand-pose
recognition. In contrary, the glove-based approaches are designed with a special hardware
installment and/or sensors (e.g., a data glove) as inputs to the system for the hand-pose
recognition. The two approaches can be described as follows.

 User Interfaces

132

Borgo R., Duke D., Runciman C., Wallace M.: The 2008 Visualization Design Contest: A
Functional DSL for Multield Data. Manuscript submitted August 1 2008 for IEEE
Visualization Design Contest.

Bravenboer M., Visser E.: Concrete syntax for objects: domain-specific language embedding
and assimilation without restrictions. Proceedings of the 19th annual ACM
SIGPLAN Conference on Object-oriented programming, systems, languages, and
applications OOPSLA '04. October 24-28, 2004. Vancouver, Canada. ISBN
1581138319. pp 365-383.

da Silva P.: User interface declarative models and development environments: a survey.
Proceedings of DSVIS 2000, 2000,pp. 207–226.

Deursen A.V., Klint P., Visser J: Domain-Specific Languages: An Annotated Bibliography.
ACM SIGPLAN Notices, 2000. 35(6): p. 26-36.

eFace - XAML/WPF for Java. http://www.soyatec.com/eface/.
Fowler M. Domain Specific Languages (work in progress). http://martinfowler.com/ /dslwip
Freeman S., Pryce N.: Evolving an Embedded Domain-Specific Language in Java. 21st ACM

SIGPLAN symposium on Object-oriented programming systems, languages, and
applications. October 22-26, 2006. Portland, Oregon, USA. ISBN:1-59593-491-X. pp
855-865.

Gajos K., Weld D.: SUPPLE: Automatically Generating User Interfaces, in Proceedings of
IUI'04, Funchal, Portugal,2004, pp.83-100.

Goderis S., Deridder D., Van Paesschen E., D’Hondt T.: DEUCE - A Declarative Framework
for Extricating User Interface Concerns, in Journal of Object Technology, Special
Issue: TOOLS Europe 2007, vol. 6, no. 9, October 2007, pages 87-104.

Guojie J. L.: Professional Java Native Interfaces with SWT/JFace. ISBN: 978-0470094594.
Wrox. 2005.

Jigloo SWT/Swing GUI Builder: http://www.cloudgarden.com/jigloo/.
Molina P., Meliá S., Pastor O.: JUST-UI: A User Interface Specification Mode, in Proceedings

of CADUI 2002, Valenciennes, France, 2002, pp.63-74.
Mori G., Paterno F., Santoro C.: Design and Development of Multidevice User Interfaces

through Multiple Logical Descriptions, IEEE ToSE, 30(8), 2004, pp.1-14.
Nathan A., Windows Presentation Foundation Unleashed (Sams, 2006).
Nussbaumer M., Freudenstein P., Gaedke M.: The Impact of Domain-Specific Languages for

Assembling Web Applications. Engineering Letters Journal. Volume 13, Issue 3.
2006. ISSN: 1816-093X.

Sells Ch., Weinhardt M.: Windows Forms 2.0 Programming. ISBN: 978-0-321-26796-2.
AWPddison Wesley Professional. 2006.

The Swing JavaBuilder. http://code.google.com/p/javabuilders/.
Topley K., JavaFX Developer's Guide (Addison-Wesley Professional, 2010).
Trzaska M.: Automatically Creating Graphical User Interfaces Using Extended senseGUI

Library. Proceedings of the Ninth IASTED International Conference on Software
Engineering and Applications (SEA’08). November 16 – 18, 2008, Orlando, Florida,
USA. ISBN: 978-0-88986-776-5. pp. 112-117.

Visser E.: WebDSL: A Case Study in Domain-Specific Language Engineering. Lecture Notes
in Computer Science 5235:291--373. 2008.

Walrath K., Campione M., Huml A., Zakhour S.: The JFC Swing Tutorial (2nd Edition). ISBN
0201914670. Prentice Hall. 2004.

YAML: http://en.wikipedia.org/wiki/YAML.

9

Automatic Hand-Pose Trajectory Tracking
System Using Video Sequences

Yuan-Hsiang Chang and Chen-Ming Chang
Department of Information and Computer Engineering, Chung Yuan Christian University

Taiwan, Republic of China

1. Introduction
1.1 Background
Hand-pose is one of the most important communication tools in human’s daily life. In a
situation when people from different countries are trying to communicate, they may be able
to roughly express their thought through hand-poses or hand-gestures. During an oral
presentation, a presenter may use hand-poses as an auxiliary tool to convey his or her idea
for technical communication. In practice, the use of “sign language” is a typical example that
provides an effective mechanism for exchanging information among deaf people and the
hearing society. In essence, “sign language” can be considered as a combination of many
hand-poses that define the actual information.
With the continuous advances of speech, image, and video processing techniques, human-
machine interaction is constantly making progress over the past decades. For example,
speech recognition systems (Cooke et al., 2001; Gales, 1998) are designed to recognize and
translate human’s speech to text. Handwritten recognition systems (Liu et al., 2003; Palacios
& Gupta, 2002; Zhai & Kristensson, 2003) are designed to recognize and translate human’s
handwritten to text. A palmprint identification system (Zhang et al. 2003) is a biometric
approach to recognize human’s palmprint for personal identification. A safety vehicle
system (Trivedi et al., 2007) can be used to estimate the situation around a vehicle and
convey information to warn the driver for potential dangers such that the vehicle safety
could be improved. In summary, many of these systems have been found to be feasible in
enhancing the human-machine interaction and integrated in daily applications (e.g., cell
phones, notebooks, security system, etc.).

1.2 Related research
During the past years, researchers have proposed novel methods for the classification or
recognition of hand-poses or hand-gestures. The techniques can be divided into two main
categories: image-based approaches and glove-based approaches. The image-based
approaches are generally designed to use images as inputs to the system for the hand-pose
recognition. In contrary, the glove-based approaches are designed with a special hardware
installment and/or sensors (e.g., a data glove) as inputs to the system for the hand-pose
recognition. The two approaches can be described as follows.

 User Interfaces

134

1.2.1 Image-based approaches
Athitsos and Sclaroff presented an appearance-based framework for hand shape
classification (Athitsos & Sclaroff, 2002). Given an input image of a segmented hand, the
objective was to classify hand shapes by finding the most similar matches using a large
database of synthetic hand images. Wachs et al. described the issue of reconfigure ability of
a hand-gesture recognition system (Wachs et al., 2005). They addressed the difficult problem
of simultaneous calibration of the parameters of image processing and fuzzy C-means
(FCM) components of a hand-gesture recognition system. Froba & Ernst proposed a method
based on the Modified Census Transform (MCT) for face detection (Froba & Ernst, 2004).
Their method was further applied by Just et al. to the hand posture classification and
recognition tasks with success (Just et al. 2006). Malima et al. proposed a fast algorithm for
automatically recognizing a limited set of gestures from hand images for a robot control
application (Malima et al., 2006). Their approach contained steps for segmenting the hand
region, locating the fingers, and finally classifying the gesture. Argyros and Lourakis
presented a vision-based interface for controlling a computer mouse via two-dimensional
(2D) and three-dimensional (3D) hand gestures (Argyros & Lourakis, 2006). In their
research, 2D and 3D vocabularies were based on intuitiveness, ergonomics, and ease of
recognition criteria. However, only the first two factors were included with the authors’
own consideration. Chen and Chang presented an image-based hand-pose recognition
system (Chen & Chang, 2007). Their system combined both the shift-distances and the Fast
Fourier transform (FFT) features to recognize a set of different hand-poses. Furthermore,
both weak and strong classifiers were used to improve the classification accuracy.

1.2.2 Glove-based approaches
Fang et al. used the CyberGlove and presented an additional layer to enhance the hidden
Markov models (HMM) architecture with self-organizing feature maps (SOFM), while
introducing a fuzzy decision tree in an attempt to reduce the search space of recognition
classes without loss of accuracy (Fang et al., 2004). Gao et al. used the CyberGlove and
presented a SOFM/SRN/HMM model for signer-independent continuous sign language
recognition (SLR) (Gao et al., 2004). This model applied the improved simple recurrent
network (SRN) to segment continuous sign language in terms of transformed SOFM
representations, and the outputs of SRN were taken as the HMM states in which the lattice
Viterbi algorithm was employed to search for the best matched word sequence. Su et al.
created a new data glove and presented a SOMART system for the recognition of hand
gestures (Su et al., 2006). In addition, the concept of SOMART system could also be applied
to hand movement trajectory recognition. Heumer et al. presented a comparison of various
classification methods for the problem of recognizing grasp types involved in object
manipulations (Heumer et al., 2007).
Because of the flexible structure of human hands, the implied information can be very
different in terms of shapes of hand-poses, locations of human hands, or trajectory. The
aforementioned systems focused on recognizing hand-postures by extracting features such
as hand-shapes from single image with success. However, single hand-pose may not be
sufficient for fully interpreting the dynamic information of the human user. In this regard, a
number of researches have also been investigated for hand tracking (Chen et al., 2003; Shan
et al., 2004; Stenger et al., 2006). Instead of using single image for hand-pose recognition, the
techniques could be used for capturing the dynamic information by tracing the locations of
human hands in a sequence of images (i.e., video).

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

135

1.3 Motivation and objective
To date, personal computers are mainly designed to use a mouse or a keyboard as the input
device to interact with human users. Home television or entertainment system often
requires a remote control as the input device to receive control commands from human
users. We anticipate that human-machine interaction could be greatly improved using a
video device (e.g., a webcam) as the sole input device that automatically captures the
human’s motion (e.g., hand-poses or gestures) and interprets the implied information of the
human user. The design is typically aimed for the goal that the input device could be free of
direct contact with the human user to improve the convenience (Graetzel et al., 2004).
In this content, we propose an “automatic hand-pose trajectory tracking system using video
sequences.” The objective is to automatically determine the hand-pose trajectory using
image and video processing techniques. The system can be used to input video data and
analyze the hand-pose in each frame, quantitatively characterize the hand-pose, and
determine the hand-pose trajectory of fingertips with the assumption that the hand-pose
remains invariant. Furthermore, the system is designed with an attempt to determine the
hand-pose trajectory using video sequences such that the human user does not need to wear
special motion sensors or markers. As a result, the hand-pose trajectory could ultimately be
used as an input to a user-interface that is able to interpret the given information for
computer or machine control.

2. Method
Our system is designed to process two-dimensional (2D) video sequence with single video
camera. The system hypotheses include the following:
1. The human hand must be the dominant object in images (frames) of the video sequence;
2. The hand-pose can be formed by either front or back of the palm, but without

overlapping or crossing fingers;
3. Hand-pose is defined with a bare hand and not occluded by other objects; and
4. A still video camera is required with sufficient environment illumination.
Fig. 1 shows an example of the automatic hand-pose trajectory tracking yielded by our
system. The hand-pose trajectory is defined as the motion path of the fingertip (index finger)
with the assumption that the hand-pose remains invariant during motion.
Fig. 2 shows the terminology of a human hand used in our system. In general, the human
hand consists of the arm, the palm, and the fingers in a hand image. Hand-pose is defined as
the hand shape formed by the palm and fingers only, regardless of the arm. The palm is
located at the interior region, while the fingers are located at the exterior region of the
human hand. The center axis is defined as the straight line passing through the geometric
center of the hand-pose. In addition, a hand-pose trajectory is defined as the motion path of
a fingertip. Therefore, multiple fingertips can generate multiple hand-pose trajectories.
Fig. 3 shows a simplified flow chart of our “automatic hand-pose trajectory tracking system
using video sequences”. The main processes include preprocessing, segmentation of palm
and fingers, feature extraction, and trajectory tracking. The preprocessing is used to
determine the location of the hand-pose, while removing irrelevant information (e.g., noise,
background, and arm). A rule-based approach is then proposed for the segmentation of
palm and fingers in an attempt to isolate each finger from the palm. In addition, the hand-
pose is further characterized with a set of features (e.g., number of fingers, fingertip’s
coordinates, etc.). Finally, if the hand-pose remains invariant during motion, the system is

 User Interfaces

134

1.2.1 Image-based approaches
Athitsos and Sclaroff presented an appearance-based framework for hand shape
classification (Athitsos & Sclaroff, 2002). Given an input image of a segmented hand, the
objective was to classify hand shapes by finding the most similar matches using a large
database of synthetic hand images. Wachs et al. described the issue of reconfigure ability of
a hand-gesture recognition system (Wachs et al., 2005). They addressed the difficult problem
of simultaneous calibration of the parameters of image processing and fuzzy C-means
(FCM) components of a hand-gesture recognition system. Froba & Ernst proposed a method
based on the Modified Census Transform (MCT) for face detection (Froba & Ernst, 2004).
Their method was further applied by Just et al. to the hand posture classification and
recognition tasks with success (Just et al. 2006). Malima et al. proposed a fast algorithm for
automatically recognizing a limited set of gestures from hand images for a robot control
application (Malima et al., 2006). Their approach contained steps for segmenting the hand
region, locating the fingers, and finally classifying the gesture. Argyros and Lourakis
presented a vision-based interface for controlling a computer mouse via two-dimensional
(2D) and three-dimensional (3D) hand gestures (Argyros & Lourakis, 2006). In their
research, 2D and 3D vocabularies were based on intuitiveness, ergonomics, and ease of
recognition criteria. However, only the first two factors were included with the authors’
own consideration. Chen and Chang presented an image-based hand-pose recognition
system (Chen & Chang, 2007). Their system combined both the shift-distances and the Fast
Fourier transform (FFT) features to recognize a set of different hand-poses. Furthermore,
both weak and strong classifiers were used to improve the classification accuracy.

1.2.2 Glove-based approaches
Fang et al. used the CyberGlove and presented an additional layer to enhance the hidden
Markov models (HMM) architecture with self-organizing feature maps (SOFM), while
introducing a fuzzy decision tree in an attempt to reduce the search space of recognition
classes without loss of accuracy (Fang et al., 2004). Gao et al. used the CyberGlove and
presented a SOFM/SRN/HMM model for signer-independent continuous sign language
recognition (SLR) (Gao et al., 2004). This model applied the improved simple recurrent
network (SRN) to segment continuous sign language in terms of transformed SOFM
representations, and the outputs of SRN were taken as the HMM states in which the lattice
Viterbi algorithm was employed to search for the best matched word sequence. Su et al.
created a new data glove and presented a SOMART system for the recognition of hand
gestures (Su et al., 2006). In addition, the concept of SOMART system could also be applied
to hand movement trajectory recognition. Heumer et al. presented a comparison of various
classification methods for the problem of recognizing grasp types involved in object
manipulations (Heumer et al., 2007).
Because of the flexible structure of human hands, the implied information can be very
different in terms of shapes of hand-poses, locations of human hands, or trajectory. The
aforementioned systems focused on recognizing hand-postures by extracting features such
as hand-shapes from single image with success. However, single hand-pose may not be
sufficient for fully interpreting the dynamic information of the human user. In this regard, a
number of researches have also been investigated for hand tracking (Chen et al., 2003; Shan
et al., 2004; Stenger et al., 2006). Instead of using single image for hand-pose recognition, the
techniques could be used for capturing the dynamic information by tracing the locations of
human hands in a sequence of images (i.e., video).

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

135

1.3 Motivation and objective
To date, personal computers are mainly designed to use a mouse or a keyboard as the input
device to interact with human users. Home television or entertainment system often
requires a remote control as the input device to receive control commands from human
users. We anticipate that human-machine interaction could be greatly improved using a
video device (e.g., a webcam) as the sole input device that automatically captures the
human’s motion (e.g., hand-poses or gestures) and interprets the implied information of the
human user. The design is typically aimed for the goal that the input device could be free of
direct contact with the human user to improve the convenience (Graetzel et al., 2004).
In this content, we propose an “automatic hand-pose trajectory tracking system using video
sequences.” The objective is to automatically determine the hand-pose trajectory using
image and video processing techniques. The system can be used to input video data and
analyze the hand-pose in each frame, quantitatively characterize the hand-pose, and
determine the hand-pose trajectory of fingertips with the assumption that the hand-pose
remains invariant. Furthermore, the system is designed with an attempt to determine the
hand-pose trajectory using video sequences such that the human user does not need to wear
special motion sensors or markers. As a result, the hand-pose trajectory could ultimately be
used as an input to a user-interface that is able to interpret the given information for
computer or machine control.

2. Method
Our system is designed to process two-dimensional (2D) video sequence with single video
camera. The system hypotheses include the following:
1. The human hand must be the dominant object in images (frames) of the video sequence;
2. The hand-pose can be formed by either front or back of the palm, but without

overlapping or crossing fingers;
3. Hand-pose is defined with a bare hand and not occluded by other objects; and
4. A still video camera is required with sufficient environment illumination.
Fig. 1 shows an example of the automatic hand-pose trajectory tracking yielded by our
system. The hand-pose trajectory is defined as the motion path of the fingertip (index finger)
with the assumption that the hand-pose remains invariant during motion.
Fig. 2 shows the terminology of a human hand used in our system. In general, the human
hand consists of the arm, the palm, and the fingers in a hand image. Hand-pose is defined as
the hand shape formed by the palm and fingers only, regardless of the arm. The palm is
located at the interior region, while the fingers are located at the exterior region of the
human hand. The center axis is defined as the straight line passing through the geometric
center of the hand-pose. In addition, a hand-pose trajectory is defined as the motion path of
a fingertip. Therefore, multiple fingertips can generate multiple hand-pose trajectories.
Fig. 3 shows a simplified flow chart of our “automatic hand-pose trajectory tracking system
using video sequences”. The main processes include preprocessing, segmentation of palm
and fingers, feature extraction, and trajectory tracking. The preprocessing is used to
determine the location of the hand-pose, while removing irrelevant information (e.g., noise,
background, and arm). A rule-based approach is then proposed for the segmentation of
palm and fingers in an attempt to isolate each finger from the palm. In addition, the hand-
pose is further characterized with a set of features (e.g., number of fingers, fingertip’s
coordinates, etc.). Finally, if the hand-pose remains invariant during motion, the system is

 User Interfaces

136

(a)

(b)

Fig. 1. An example of the hand-pose trajectory tracking yielded by our system. (a) Original
video sequence with a human hand in motion; (b) Resulting hand-pose trajectory as defined
by the motion path of the fingertip (index finger) with the assumption that the hand-pose
remains invariant during motion.

Arm

Palm

Fingers

Center Axis

Fingertips

Fig. 2. Terminology of a human hand used in our system, where the human hand consists of
the arm, the palm, and the fingers, respectively.

aimed to trace the hand-pose trajectory of the fingertip. In our system, the three processes
(i.e., the preprocessing, the segmentation of palm and fingers, and the feature extraction) are
performed in a frame-by-frame basis, while the trajectory tracking is performed to record
the hand-pose trajectory in the whole video sequence.

2.1 Preprocessing
The objective of the preprocessing is to identify the hand-pose region in a hand image
(frame), while removing irrelevant information (e.g., noise, background, and arm). The
processes include gray-level transformation, smoothing, edge detection, hand-pose contour

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

137

Trajectory Tracking

Segmentation of Palm & Fingers

Preprocessing

Feature Extraction

Video Sequence

Hand-Pose Trajectory

Fig. 3. A simplified flow chart of the automatic hand-pose trajectory tracking system using
video sequences.

search, and arm removal. Fig. 4 shows an example of the preprocessing, where (a) is the
original image, (b) is the image after gray-level transformation, (c) is the resulting image
after smoothing and edge detection, (d) is the resulting human hand region after hand-pose
contour search, and (e) is the identified hand-pose region.

 (a) (b) (c) (d) (e)

Fig. 4. An example of the preprocessing. (a) Original image; (b) The image after gray-level
transformation; (c) The resulting image after smoothing and edge detection; (d) The
resulting human hand region after hand-pose contour search; (e) The identified hand-pose
region.

2.1.1 Gray-level transformation
The original color image is converted to gray-level image using the following equation:

 Y = 0.299R + 0.587G + 0.114B (1)

 User Interfaces

136

(a)

(b)

Fig. 1. An example of the hand-pose trajectory tracking yielded by our system. (a) Original
video sequence with a human hand in motion; (b) Resulting hand-pose trajectory as defined
by the motion path of the fingertip (index finger) with the assumption that the hand-pose
remains invariant during motion.

Arm

Palm

Fingers

Center Axis

Fingertips

Fig. 2. Terminology of a human hand used in our system, where the human hand consists of
the arm, the palm, and the fingers, respectively.

aimed to trace the hand-pose trajectory of the fingertip. In our system, the three processes
(i.e., the preprocessing, the segmentation of palm and fingers, and the feature extraction) are
performed in a frame-by-frame basis, while the trajectory tracking is performed to record
the hand-pose trajectory in the whole video sequence.

2.1 Preprocessing
The objective of the preprocessing is to identify the hand-pose region in a hand image
(frame), while removing irrelevant information (e.g., noise, background, and arm). The
processes include gray-level transformation, smoothing, edge detection, hand-pose contour

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

137

Trajectory Tracking

Segmentation of Palm & Fingers

Preprocessing

Feature Extraction

Video Sequence

Hand-Pose Trajectory

Fig. 3. A simplified flow chart of the automatic hand-pose trajectory tracking system using
video sequences.

search, and arm removal. Fig. 4 shows an example of the preprocessing, where (a) is the
original image, (b) is the image after gray-level transformation, (c) is the resulting image
after smoothing and edge detection, (d) is the resulting human hand region after hand-pose
contour search, and (e) is the identified hand-pose region.

 (a) (b) (c) (d) (e)

Fig. 4. An example of the preprocessing. (a) Original image; (b) The image after gray-level
transformation; (c) The resulting image after smoothing and edge detection; (d) The
resulting human hand region after hand-pose contour search; (e) The identified hand-pose
region.

2.1.1 Gray-level transformation
The original color image is converted to gray-level image using the following equation:

 Y = 0.299R + 0.587G + 0.114B (1)

 User Interfaces

138

where Y is the intensity of the gray-level image; R, G, and B are the color components of the
color image.

2.1.2 Smoothing
Smoothing is applied to remove image noise. The technique of “averaging with rotating
masks” (Sonka 2007) is used in an attempt to enhance boundaries of the human hand in
images, while removing image noise.

2.1.3 Edge detection
After smoothing, edge detection is applied by the system to detect edges or boundaries of
the human hand. The Canny edge detection (Canny, 1986) is selected for the purpose. After
the edge detection, the morphological processing (Gonzalez, 2008) is applied to refine the
boundaries.

2.1.4 Hand-pose contour search
With the assumption that a human hand is the dominant object in the image, the hand-pose
contour search is applied to extract the dominant object (main region) associated with the
human hand. The process starts by filling the interior of each closed region, and then selects
the region of the largest area (number of pixels) as the human hand region.

2.1.5 Arm removal
During the image acquisition, a human hand typically includes the arm that is irrelevant to
the hand-pose recognition. This process is aimed to remove the arm and identify the hand-
pose region for further processes. Fig. 5 shows an example of the arm removal. The system

 (a) (b) (c)

 (d) (e)

Fig. 5. An example of the arm removal. (a) The identified human hand region; (b) The
center-axis for the human hand; (c) Normal lines (yellow) with respect to the center-axis and
the measured arm widths (red); (d) Identified boundary for the arm and the palm; (e) The
identified hand-pose region.

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

139

design for the arm removal includes the following procedures: (1) Detection of the center-
axis; (2) Identification of the arm and palm boundary; and (3) Segmentation of the arm and
hand-pose regions. Detail description of the technique follows.
Detection of the center-axis – Given the image with the identified human hand region (Fig.
5(a)), the objective is to detect the center-axis (Fig. 5(b)) that best represents the orientation of
the human hand region. In practice, the least-square approximation (Cormen, 2001) is used
to fit all the pixels (xi, yi), i = 1…N in the human hand region. If the least-square line is
defined as y = r0 + r1x, then the vector r can be solved using the following equations:

 0 1

1
()T Tr

r
−⎡ ⎤

= =⎢ ⎥
⎣ ⎦

r A A A b (2)

where

1

2

1
1

and

1 N

x
x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

1

2

N

y
y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b (3)

Identification of the arm and palm boundary – Based on the center-axis of the human hand
region, the objective is to identify the arm and palm boundary. Our system is designed with
the following two assumptions: (1) the boundary is perpendicular to the center-axis; and (2)
the boundary can be located where the measured arm widths change dramatically. In
practice, the system starts by locating the initial pixel at the image boundary and defines a
set of normal lines that are perpendicular to the center-axis (Fig. 5(c)). Let (xi, yi) denote the
pixel coordinates on the center-axis y = r0 + r1x, the normal line equation can be defined as:

 () ()i iy y m x x− = − (4)
where

1

1 .m
r

= − (5)

Let Wj denote the measured widths of the j-th normal line, starting from the n-th normal
line, we compute the variance V of the measured widths of K normal lines along the center-
axis by:

211 ()

n K

j
j n

V W W
K

+ −

=

= −∑ (6)

where

11 .

n K

j
j n

W W
K

+ −

=

= ∑ (7)

The arm and palm boundary can be located where the variance V exceeds a pre-defined
threshold Tv.

 User Interfaces

138

where Y is the intensity of the gray-level image; R, G, and B are the color components of the
color image.

2.1.2 Smoothing
Smoothing is applied to remove image noise. The technique of “averaging with rotating
masks” (Sonka 2007) is used in an attempt to enhance boundaries of the human hand in
images, while removing image noise.

2.1.3 Edge detection
After smoothing, edge detection is applied by the system to detect edges or boundaries of
the human hand. The Canny edge detection (Canny, 1986) is selected for the purpose. After
the edge detection, the morphological processing (Gonzalez, 2008) is applied to refine the
boundaries.

2.1.4 Hand-pose contour search
With the assumption that a human hand is the dominant object in the image, the hand-pose
contour search is applied to extract the dominant object (main region) associated with the
human hand. The process starts by filling the interior of each closed region, and then selects
the region of the largest area (number of pixels) as the human hand region.

2.1.5 Arm removal
During the image acquisition, a human hand typically includes the arm that is irrelevant to
the hand-pose recognition. This process is aimed to remove the arm and identify the hand-
pose region for further processes. Fig. 5 shows an example of the arm removal. The system

 (a) (b) (c)

 (d) (e)

Fig. 5. An example of the arm removal. (a) The identified human hand region; (b) The
center-axis for the human hand; (c) Normal lines (yellow) with respect to the center-axis and
the measured arm widths (red); (d) Identified boundary for the arm and the palm; (e) The
identified hand-pose region.

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

139

design for the arm removal includes the following procedures: (1) Detection of the center-
axis; (2) Identification of the arm and palm boundary; and (3) Segmentation of the arm and
hand-pose regions. Detail description of the technique follows.
Detection of the center-axis – Given the image with the identified human hand region (Fig.
5(a)), the objective is to detect the center-axis (Fig. 5(b)) that best represents the orientation of
the human hand region. In practice, the least-square approximation (Cormen, 2001) is used
to fit all the pixels (xi, yi), i = 1…N in the human hand region. If the least-square line is
defined as y = r0 + r1x, then the vector r can be solved using the following equations:

 0 1

1
()T Tr

r
−⎡ ⎤

= =⎢ ⎥
⎣ ⎦

r A A A b (2)

where

1

2

1
1

and

1 N

x
x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

1

2

N

y
y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b (3)

Identification of the arm and palm boundary – Based on the center-axis of the human hand
region, the objective is to identify the arm and palm boundary. Our system is designed with
the following two assumptions: (1) the boundary is perpendicular to the center-axis; and (2)
the boundary can be located where the measured arm widths change dramatically. In
practice, the system starts by locating the initial pixel at the image boundary and defines a
set of normal lines that are perpendicular to the center-axis (Fig. 5(c)). Let (xi, yi) denote the
pixel coordinates on the center-axis y = r0 + r1x, the normal line equation can be defined as:

 () ()i iy y m x x− = − (4)
where

1

1 .m
r

= − (5)

Let Wj denote the measured widths of the j-th normal line, starting from the n-th normal
line, we compute the variance V of the measured widths of K normal lines along the center-
axis by:

211 ()

n K

j
j n

V W W
K

+ −

=

= −∑ (6)

where

11 .

n K

j
j n

W W
K

+ −

=

= ∑ (7)

The arm and palm boundary can be located where the variance V exceeds a pre-defined
threshold Tv.

 User Interfaces

140

Segmentation of the arm and hand-pose regions – After the arm and palm boundary is found, the
segmentation is straightforward. If the line equation of the boundary is defined as y = ax + b.
All foreground pixels can thus be classified as either in the hand-pose region or in the arm
region by simply examining if y ≥ ax + b or y < ax + b (Fig. 5(d)). As a result, the hand-pose
region can be identified by setting all foreground pixels in the arm region as the
background, resulting in the hand-pose region (Fig. 5(e)).

2.2 Segmentation of palm & fingers
In this content, the hand-pose is defined as the hand shape formed by palm and fingers
only. Here, we propose a method for the segmentation of palm and fingers in hand images.
The objective is to further segment the hand-pose region into palm region and finger
region(s). Fig. 6 shows a simplified flow chart for the segmentation of palm and fingers in
hand images. The method can be described in three processes: (1) Definition of centroid &
quadrants; (2) Rule-based radius search; and (3) Region correction.

2.2.1 Definition of centroid & quadrants
Ideally, the system is aimed to identify the palm region first and segment finger regions
from the palm region. In practice, we define the centroid P(xmid, ymid) that is close to the
actual center of the palm by:

 () 1 1, ,mid mid i ix y x y
M M

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑ (8)

where (xi, yi) ∈ R and R is the hand-pose region. M is the number of pixels in the hand-pose
region. Fig. 7 shows an example of the identified centroid P(xmid, ymid) given the hand-pose
region. Using the centroid as the origin in the polar coordinate system, the hand-pose region
can be further partitioned into four quadrants I, II, III, and IV, respectively.

Definition of Centroid & Quadrants

Rule-based Radius Search

Region Correction

Finger RegionsPalm Region

Fig. 6. A simplified flow chart for the segmentation of palm and fingers in hand images.

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

141

Fig. 7. Definition of the centroid P and the four quadrants for the hand-pose region.

2.2.2 Rule-based radius search
In this step, the system design is based on the assumption that the palm is located at the
interior region, while the fingers are located at the exterior region of the hand-pose region.
Because of the complex structure of human hands and various hand-poses, segmentation of
palm and fingers is not an easy task. To overcome the problem, the system is designed to
find a radius and draw a one-quarter circle for each of the four quadrants. As a result, in
each quadrant, the interior of the circle is identified as the palm region, while the exterior of
the circle is identified as the finger regions.
Given the polar coordinate system, the method is similar to the concept of “signatures” used
in boundary description for object recognition (Gonzalez, 2008). Fig. 8 shows an example of
the distance-versus-angle signatures r(θ) used to simplify the 2D hand shape in each
quadrant into 1D signatures. The contour distance r is selected at the furthest point from the
centroid, while the angle θ ranges from 0 ~ 90. The corresponding 1D signatures are shown
in Fig. 9.

Fig. 8. Distance-versus angle signatures using the polar coordinate system for the hand-pose
region.

 User Interfaces

140

Segmentation of the arm and hand-pose regions – After the arm and palm boundary is found, the
segmentation is straightforward. If the line equation of the boundary is defined as y = ax + b.
All foreground pixels can thus be classified as either in the hand-pose region or in the arm
region by simply examining if y ≥ ax + b or y < ax + b (Fig. 5(d)). As a result, the hand-pose
region can be identified by setting all foreground pixels in the arm region as the
background, resulting in the hand-pose region (Fig. 5(e)).

2.2 Segmentation of palm & fingers
In this content, the hand-pose is defined as the hand shape formed by palm and fingers
only. Here, we propose a method for the segmentation of palm and fingers in hand images.
The objective is to further segment the hand-pose region into palm region and finger
region(s). Fig. 6 shows a simplified flow chart for the segmentation of palm and fingers in
hand images. The method can be described in three processes: (1) Definition of centroid &
quadrants; (2) Rule-based radius search; and (3) Region correction.

2.2.1 Definition of centroid & quadrants
Ideally, the system is aimed to identify the palm region first and segment finger regions
from the palm region. In practice, we define the centroid P(xmid, ymid) that is close to the
actual center of the palm by:

 () 1 1, ,mid mid i ix y x y
M M

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑ (8)

where (xi, yi) ∈ R and R is the hand-pose region. M is the number of pixels in the hand-pose
region. Fig. 7 shows an example of the identified centroid P(xmid, ymid) given the hand-pose
region. Using the centroid as the origin in the polar coordinate system, the hand-pose region
can be further partitioned into four quadrants I, II, III, and IV, respectively.

Definition of Centroid & Quadrants

Rule-based Radius Search

Region Correction

Finger RegionsPalm Region

Fig. 6. A simplified flow chart for the segmentation of palm and fingers in hand images.

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

141

Fig. 7. Definition of the centroid P and the four quadrants for the hand-pose region.

2.2.2 Rule-based radius search
In this step, the system design is based on the assumption that the palm is located at the
interior region, while the fingers are located at the exterior region of the hand-pose region.
Because of the complex structure of human hands and various hand-poses, segmentation of
palm and fingers is not an easy task. To overcome the problem, the system is designed to
find a radius and draw a one-quarter circle for each of the four quadrants. As a result, in
each quadrant, the interior of the circle is identified as the palm region, while the exterior of
the circle is identified as the finger regions.
Given the polar coordinate system, the method is similar to the concept of “signatures” used
in boundary description for object recognition (Gonzalez, 2008). Fig. 8 shows an example of
the distance-versus-angle signatures r(θ) used to simplify the 2D hand shape in each
quadrant into 1D signatures. The contour distance r is selected at the furthest point from the
centroid, while the angle θ ranges from 0 ~ 90. The corresponding 1D signatures are shown
in Fig. 9.

Fig. 8. Distance-versus angle signatures using the polar coordinate system for the hand-pose
region.

 User Interfaces

142

 Quadrant II Quadrant I

 Quadrant III Quadrant IV
Fig. 9. The computed 1D signatures for the hand-pose region in Fig. 8. For each of the
quadrant I, II, III, or IV, the contour distance r given the angle θ = 0 ~ 90 is determined.

From the 1D signatures for the hand-pose region, the following properties can be observed:
1. The distances from boundary pixels of the fingers to the centroid are generally larger;
2. The distances from boundary pixels of the palm to the centroid are generally smaller;
3. At least one quadrant contains no fingers, or belongs to the palm region.
Based on the 1D signatures, the system then computes the maximum (MAX), the minimum
(MIN), and the average (AVERAGE), respectively. In addition, the three values X, Y, and Z
are computed as:

= -
=
=

X MAX AVERGE
Y AVERAGE - MIN
Z MAX - MIN

⎧
⎪
⎨
⎪
⎩

 (9)

Therefore, the relationship X + Y = Z holds (Fig. 10).

Y X

Z

MIN MAXAVERAGE
Fig. 10. The relationship of X, Y, and Z. Therefore, X + Y = Z.

Following the aforementioned three observed properties, a rule-based approach is presented
for the segmentation of palm and fingers. In practice, the system finds a radius for each
quadrant using the five rules given below:
1. Rule 1 - The quadrant with the minimum Z. Because the distances from the boundary

pixels of palm to the centroid are generally smaller, this quadrant is most likely to
contain the palm region with no fingers. The system selects MAX as the radius.

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

143

2. Rule 2 - The quadrant with the maximum Z. Because the value Z stands for the difference
between MAX and MIN, this quadrant is most likely to contain the finger regions. The
system selects 90 × Y/Z samples with the smaller distances (more likely to be the palm
boundaries) and compute the average as the radius.

3. Rule 3 - The remaining quadrant with X : Y > 2 : 1. Because the value X is larger than the
value Y, this quadrant is most likely to contain a small portion of the finger regions. The
system removes 90 × Y/Z × X/Z samples with larger distances (more likely to be the
finger boundaries) and compute the average of the remaining sample as the radius.

 Rule 1 Rule 2

MAX

AVERAGE

MIN

Total
Data = 90

Radius = MAX

MAX

AVERAGE

MIN

Radius = Retain
90×(Y/Z) Data

then Find Average

MAXAA

Remove
90×(X/Z) Data

Total
Data = 90

 Rule 3 Rule 4

MAX

AVERAGE

MIN

Radius = Retain
90 - [(90×X/Z)×(X/Y)]
Data then Find Average

Remove
 (90×X/Z)×(X/Y) Data

Total
Data = 90

MAXAA

MAX

AVERAGE

MIN

Radius = Retain
90 - [(90×Y/Z)×(Y/X)]
Data then Find Average

Remove
 (90×Y/Z)×(Y/X) Data

Total
Data = 90

MINII

 Rule 5

MAX

AVERAGE

MIN

Total
Data = 90

Radius = MAX

Radius = AVERAGE

or

Fig. 11. Graphical demonstration of the five rules used for the rule-based radius search.

 User Interfaces

142

 Quadrant II Quadrant I

 Quadrant III Quadrant IV
Fig. 9. The computed 1D signatures for the hand-pose region in Fig. 8. For each of the
quadrant I, II, III, or IV, the contour distance r given the angle θ = 0 ~ 90 is determined.

From the 1D signatures for the hand-pose region, the following properties can be observed:
1. The distances from boundary pixels of the fingers to the centroid are generally larger;
2. The distances from boundary pixels of the palm to the centroid are generally smaller;
3. At least one quadrant contains no fingers, or belongs to the palm region.
Based on the 1D signatures, the system then computes the maximum (MAX), the minimum
(MIN), and the average (AVERAGE), respectively. In addition, the three values X, Y, and Z
are computed as:

= -
=
=

X MAX AVERGE
Y AVERAGE - MIN
Z MAX - MIN

⎧
⎪
⎨
⎪
⎩

 (9)

Therefore, the relationship X + Y = Z holds (Fig. 10).

Y X

Z

MIN MAXAVERAGE
Fig. 10. The relationship of X, Y, and Z. Therefore, X + Y = Z.

Following the aforementioned three observed properties, a rule-based approach is presented
for the segmentation of palm and fingers. In practice, the system finds a radius for each
quadrant using the five rules given below:
1. Rule 1 - The quadrant with the minimum Z. Because the distances from the boundary

pixels of palm to the centroid are generally smaller, this quadrant is most likely to
contain the palm region with no fingers. The system selects MAX as the radius.

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

143

2. Rule 2 - The quadrant with the maximum Z. Because the value Z stands for the difference
between MAX and MIN, this quadrant is most likely to contain the finger regions. The
system selects 90 × Y/Z samples with the smaller distances (more likely to be the palm
boundaries) and compute the average as the radius.

3. Rule 3 - The remaining quadrant with X : Y > 2 : 1. Because the value X is larger than the
value Y, this quadrant is most likely to contain a small portion of the finger regions. The
system removes 90 × Y/Z × X/Z samples with larger distances (more likely to be the
finger boundaries) and compute the average of the remaining sample as the radius.

 Rule 1 Rule 2

MAX

AVERAGE

MIN

Total
Data = 90

Radius = MAX

MAX

AVERAGE

MIN

Radius = Retain
90×(Y/Z) Data

then Find Average

MAXAA

Remove
90×(X/Z) Data

Total
Data = 90

 Rule 3 Rule 4

MAX

AVERAGE

MIN

Radius = Retain
90 - [(90×X/Z)×(X/Y)]
Data then Find Average

Remove
 (90×X/Z)×(X/Y) Data

Total
Data = 90

MAXAA

MAX

AVERAGE

MIN

Radius = Retain
90 - [(90×Y/Z)×(Y/X)]
Data then Find Average

Remove
 (90×Y/Z)×(Y/X) Data

Total
Data = 90

MINII

 Rule 5

MAX

AVERAGE

MIN

Total
Data = 90

Radius = MAX

Radius = AVERAGE

or

Fig. 11. Graphical demonstration of the five rules used for the rule-based radius search.

 User Interfaces

144

4. Rule 4 - The remaining quadrant with X : Y > 1 : 2. In contrary to the Rule 3, this quadrant
is most likely to contain a large portion of the finger regions. The system removes 90 ×
Y/Z × X/Z samples with smaller distances (more likely to be the palm boundaries) and
compute the average of the remaining sample as the radius.

5. Rule 5 - The remaining quadrant not satisfying the Rule 1 through 4. This quadrant is most
likely to contain the palm region in hand-poses with few fingers (e.g., fist). If the
quadrant is adjacent to the quadrant with minimum Z, the system selects MAX as the
radius. Otherwise, the system selects AVERAGE as the radius.

A graphical demonstration of the five rules is given in Fig. 11.
Given the hand-pose region in Fig. 7, the rule-based radius search is applied for each of the
four quadrants and the result is shown in Fig. 12. The interior of the one-quarter circle is
classified as the palm region, while the exterior of the one-quarter circle is classified as the
finger regions. As a result, the initial segmentation of palm and fingers is achieved. In this
example, the quadrant I satisfies the Rule 2; the quadrant II satisfies the Rule 1; and the
quadrant III and IV satisfy the Rule 5, respectively.

Fig. 12. An example of the rule-based radius search for the initial segmentation of palm and
fingers.

2.2.3 Region correction
The objective of region correction is to verify if the initial segmentation of palm and fingers
is correct. This process will retain misclassifications of the palm and finger regions if
necessary. Region correction can be described in two steps: palm correction and finger
correction.
Palm correction – Fig. 13 shows an example of the hand-pose image after the palm correction.
In this example, the quadrant I satisfies the Rule 4, the quadrant II satisfies the Rule 2, the
quadrant III satisfies the Rule 1, and the quadrant IV satisfies the Rule 5. As seen in the
quadrant III, the thumb is not correctly classified as the finger region. Based on the
assumption that palm region is a connected region in the hand-pose region, palm correction
is applied to verify if the straight line as extended from the centroid to the boundary
remains inside the hand-pose region. If so, the pixels are still classified as the palm region.
Otherwise, the pixels are classified as the finger region instead.
Finger correction – The objective is to verify if each of the remaining regions is correctly
identified as the finger region. Fig. 14 shows an example of the finger correction, where the

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

145

Fig. 13. An example of the palm correction. In the quadrant III, the thumb is misclassified as
the palm region. After the palm correction, the thumb is re-classified as the finger region.
region is correctly classified as the finger region and the region is initially misclassified.
Here, the system determines the center-axis using the least-square approximation for each of
the remaining region. Then, the lengths either inside the palm region (green) or outside the
palm region (yellow) are compared. If the green line is longer than the yellow line, the
region remains. Otherwise, the region is re-classified as the palm region.

1

2

1

2

 (a) (b)
Fig. 14. An example of the finger correction. (a) The region is correctly classified and the
region is initially misclassified; (b) The system determines the center-axis of each
remaining region and the lengths either inside the palm region (green) or outside the palm
region (yellow). After the finger correction, the region is re-classified as the palm region.
In summary, Fig. 15 shows an example of the segmentation of palm and fingers. In this
example, the original hand-pose region (Fig. 15(a)) is segmented into two regions: the palm
region (Fig. 15(b)) and the finger region (Fig. 15(c)), respectively.

2.3 Feature extraction
The objective of the feature extraction is to quantitatively determine several features using
the hand-pose region. In our system, the following features are computed:
1. Number of fingers: The number of identified finger regions is used as the number of

fingers;

 User Interfaces

144

4. Rule 4 - The remaining quadrant with X : Y > 1 : 2. In contrary to the Rule 3, this quadrant
is most likely to contain a large portion of the finger regions. The system removes 90 ×
Y/Z × X/Z samples with smaller distances (more likely to be the palm boundaries) and
compute the average of the remaining sample as the radius.

5. Rule 5 - The remaining quadrant not satisfying the Rule 1 through 4. This quadrant is most
likely to contain the palm region in hand-poses with few fingers (e.g., fist). If the
quadrant is adjacent to the quadrant with minimum Z, the system selects MAX as the
radius. Otherwise, the system selects AVERAGE as the radius.

A graphical demonstration of the five rules is given in Fig. 11.
Given the hand-pose region in Fig. 7, the rule-based radius search is applied for each of the
four quadrants and the result is shown in Fig. 12. The interior of the one-quarter circle is
classified as the palm region, while the exterior of the one-quarter circle is classified as the
finger regions. As a result, the initial segmentation of palm and fingers is achieved. In this
example, the quadrant I satisfies the Rule 2; the quadrant II satisfies the Rule 1; and the
quadrant III and IV satisfy the Rule 5, respectively.

Fig. 12. An example of the rule-based radius search for the initial segmentation of palm and
fingers.

2.2.3 Region correction
The objective of region correction is to verify if the initial segmentation of palm and fingers
is correct. This process will retain misclassifications of the palm and finger regions if
necessary. Region correction can be described in two steps: palm correction and finger
correction.
Palm correction – Fig. 13 shows an example of the hand-pose image after the palm correction.
In this example, the quadrant I satisfies the Rule 4, the quadrant II satisfies the Rule 2, the
quadrant III satisfies the Rule 1, and the quadrant IV satisfies the Rule 5. As seen in the
quadrant III, the thumb is not correctly classified as the finger region. Based on the
assumption that palm region is a connected region in the hand-pose region, palm correction
is applied to verify if the straight line as extended from the centroid to the boundary
remains inside the hand-pose region. If so, the pixels are still classified as the palm region.
Otherwise, the pixels are classified as the finger region instead.
Finger correction – The objective is to verify if each of the remaining regions is correctly
identified as the finger region. Fig. 14 shows an example of the finger correction, where the

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

145

Fig. 13. An example of the palm correction. In the quadrant III, the thumb is misclassified as
the palm region. After the palm correction, the thumb is re-classified as the finger region.
region is correctly classified as the finger region and the region is initially misclassified.
Here, the system determines the center-axis using the least-square approximation for each of
the remaining region. Then, the lengths either inside the palm region (green) or outside the
palm region (yellow) are compared. If the green line is longer than the yellow line, the
region remains. Otherwise, the region is re-classified as the palm region.

1

2

1

2

 (a) (b)
Fig. 14. An example of the finger correction. (a) The region is correctly classified and the
region is initially misclassified; (b) The system determines the center-axis of each
remaining region and the lengths either inside the palm region (green) or outside the palm
region (yellow). After the finger correction, the region is re-classified as the palm region.
In summary, Fig. 15 shows an example of the segmentation of palm and fingers. In this
example, the original hand-pose region (Fig. 15(a)) is segmented into two regions: the palm
region (Fig. 15(b)) and the finger region (Fig. 15(c)), respectively.

2.3 Feature extraction
The objective of the feature extraction is to quantitatively determine several features using
the hand-pose region. In our system, the following features are computed:
1. Number of fingers: The number of identified finger regions is used as the number of

fingers;

 User Interfaces

146

 (a) (b) (c)
Fig. 15. An example of the segmentation of palm fingers, where (a) is the original hand-pose
region, (b) is the segmented palm region, and (c) is the segmented finger region.
2. Fingertip’s coordinate: Based on the center-axis of each finger region (following the finger

correction), the (x, y) coordinate on the center-axis that is farthest from the centroid is
recorded as the fingertip’s coordinate;

3. Fingertip-centroid distance: The fingertip-centroid distance is calculated as the Euclidean
distance from the fingertip to the centroid;

4. Angle of two fingertips: If multiple fingers are identified, the angle of two fingertips is
also determined. Here, only the maximum angle is computed as the hand-pose feature.

Fig. 16 shows an example of the feature extraction. In this example, the number of finger is
1, the fingertip’s coordinate is recorded as (91, 195), the fingertip-centroid distance is 118
(pixels), and the angle of two fingertips is 0° (only 1 finger identified).

Number of finger is 1 (91,195)

118

 (a) (b) (c)
Fig. 16. An example of the feature extraction. (a) Number of fingers; (b) Fingertip’s
coordinate; (c) Finger-centroid distance.

2.4 Trajectory tracking
In this step, the system objective is to determine the hand-pose trajectory automatically. Our
system is designed to trace changes of the fingertip’s position with the assumption that the
hand-pose remains invariant. Fig. 17 shows the flow chart of the system processes for the
hand-pose trajectory. Here, the frame told is the old frame (or the anchor frame), while the
frame tnew is the new frame (or the target frame). The system processes can be described as
follows.

2.4.1 Hand-pose size-error
The first indication if the hand-pose remains invariant is that the hand-pose size remains
approximately the same. Here, the system determines the hand-pose size (number of pixels
in the hand-pose region) for both frames and calculates the hand-pose size-error ε by:

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

147

Hand-Pose
Features

(Frame tnew)

Hand-Pose
Features

(Frame told)

Hand-Pose
Size-Error ε

ε < T ?

told ← tnew

tnew ← tnew+1

Feature Matching

Same
Hand-Pose?

Trajectory Update

YES

NO

YES

NO

told ← tnew

tnew ← tnew+1

told ← told

tnew ← told+1

Fig. 17. A flow chart of the system processes for hand-pose trajectory. The main processes
include: (1) Hand-pose size-error; (2) Feature matching; and (3) Trajectory update.

 User Interfaces

146

 (a) (b) (c)
Fig. 15. An example of the segmentation of palm fingers, where (a) is the original hand-pose
region, (b) is the segmented palm region, and (c) is the segmented finger region.
2. Fingertip’s coordinate: Based on the center-axis of each finger region (following the finger

correction), the (x, y) coordinate on the center-axis that is farthest from the centroid is
recorded as the fingertip’s coordinate;

3. Fingertip-centroid distance: The fingertip-centroid distance is calculated as the Euclidean
distance from the fingertip to the centroid;

4. Angle of two fingertips: If multiple fingers are identified, the angle of two fingertips is
also determined. Here, only the maximum angle is computed as the hand-pose feature.

Fig. 16 shows an example of the feature extraction. In this example, the number of finger is
1, the fingertip’s coordinate is recorded as (91, 195), the fingertip-centroid distance is 118
(pixels), and the angle of two fingertips is 0° (only 1 finger identified).

Number of finger is 1 (91,195)

118

 (a) (b) (c)
Fig. 16. An example of the feature extraction. (a) Number of fingers; (b) Fingertip’s
coordinate; (c) Finger-centroid distance.

2.4 Trajectory tracking
In this step, the system objective is to determine the hand-pose trajectory automatically. Our
system is designed to trace changes of the fingertip’s position with the assumption that the
hand-pose remains invariant. Fig. 17 shows the flow chart of the system processes for the
hand-pose trajectory. Here, the frame told is the old frame (or the anchor frame), while the
frame tnew is the new frame (or the target frame). The system processes can be described as
follows.

2.4.1 Hand-pose size-error
The first indication if the hand-pose remains invariant is that the hand-pose size remains
approximately the same. Here, the system determines the hand-pose size (number of pixels
in the hand-pose region) for both frames and calculates the hand-pose size-error ε by:

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

147

Hand-Pose
Features

(Frame tnew)

Hand-Pose
Features

(Frame told)

Hand-Pose
Size-Error ε

ε < T ?

told ← tnew

tnew ← tnew+1

Feature Matching

Same
Hand-Pose?

Trajectory Update

YES

NO

YES

NO

told ← tnew

tnew ← tnew+1

told ← told

tnew ← told+1

Fig. 17. A flow chart of the system processes for hand-pose trajectory. The main processes
include: (1) Hand-pose size-error; (2) Feature matching; and (3) Trajectory update.

 User Interfaces

148

 100%old new

old

S S
S

ε
−

= × (10)

where Sold and Snew is the hand-pose size in the old frame and the new frame, respectively. If
the hand-pose size-error ε is less than a pre-defined threshold T (T = 75% was empirically
selected), the hand-pose is presumed to remain invariant. Further feature matching is
applied. Otherwise, the system assumes that the hand-pose has changed and stops tracing
the hand-pose trajectory temporarily.

2.4.2 Feature matching
The second indication if the hand-pose remains invariant is that the features (i.e., number of
fingers, fingertip-centroid distance, and angle of two fingertips) remain approximately the
same. The system assumes that the hand-pose has changed between the two frames if any of
the following conditions occur: (1) the number of fingers has changed; (2) a ±10% change in
the fingertip-centroid distances; or (3) a ± 3° change in the angle of two fingertips.

2.4.3 Trajectory update
If the hand-pose remains invariant between two frames, the system updates the hand-pose
trajectory by recording the fingertip’s coordinate as determined in the new frame.
Otherwise, the system stops tracing the hand-pose trajectory.

3. Results
In this section, system results of the automatic hand-pose trajectory tracking are
demonstrated. In our experimental design, the video camera NICON D90 was used to
capture the video, and the Microsoft AVI file format was used for storage. All the
experiments were carried out using the personal computer Intel Core Duo T5500 1.66G,
RAM 2G. Software development included the Microsoft Visual Studio 2005 with the
OpenCV 1.1 pre as the auxiliary software. In addition, all the hand-pose video data were
acquired to meet the system hypotheses as described in Section 2.
Fig. 18 shows the results of the hand-pose trajectory of single fingertip (index finger) that
forms a “D”. Fig. 19 shows the results of the hand-pose trajectories of multiple fingertips (all
five fingers) that form a “Scratch”. Fig. 20 shows the results of the hand-pose trajectories in
which the hand-pose has changed from single finger to double fingers.

Fig. 18. Results of the hand-pose trajectory of single fingertip (index finger) that forms a
“D”.

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

149

Fig. 19. Results of the hand-pose trajectories of multiple fingertips (all five fingers) that form
a “Scratch”.

Fig. 20. Results of the hand-pose trajectories in which the hand-pose has changed from
single finger to double fingers. Initially, only single hand-pose trajectory was traced. During
the changes of the hand-poses, the system stopped tracing the hand-pose trajectory
temporarily. Once the hand-pose remains invariant (double fingers), the system retained the
tracing and double hand-pose trajectories were traced instead.

4. Conclusion
In this content, an automatic hand-pose trajectory tracking system using video sequences is
presented. The results demonstrated that our system could reasonably trace the hand-pose
trajectory with the assumption that the hand-pose remains invariant during motion. The
techniques were based on the rule-based approach in segmenting palm and finger regions.
In addition, feature extraction and matching were applied to trace the fingertip’s position
and determine if the hand-pose remains invariant. Even in a situation when the hand-pose
changed, our system was demonstrated to be able to re-trace the hand-pose trajectories in
the video sequences.
In essence, the objective of our system was very different from other hand-pose recognition
systems with the primary goal to recognize various hand-poses. Instead, our system was
designed to trace the hand-pose trajectory. Therefore, only a limited set of hand-poses were
tested. Ultimately, our system could be integrated with the hand-pose recognition system if
the tracing of hand-pose trajectory is limited in pre-defined hand-poses only (e.g., specific
user-controlled commands) to enhance the functionality of a user-interface.
At present, our system was designed in an attempt to process in a frame-by-frame basis
which is still time-consuming. For real-time applications, the system performance must be

 User Interfaces

148

 100%old new

old

S S
S

ε
−

= × (10)

where Sold and Snew is the hand-pose size in the old frame and the new frame, respectively. If
the hand-pose size-error ε is less than a pre-defined threshold T (T = 75% was empirically
selected), the hand-pose is presumed to remain invariant. Further feature matching is
applied. Otherwise, the system assumes that the hand-pose has changed and stops tracing
the hand-pose trajectory temporarily.

2.4.2 Feature matching
The second indication if the hand-pose remains invariant is that the features (i.e., number of
fingers, fingertip-centroid distance, and angle of two fingertips) remain approximately the
same. The system assumes that the hand-pose has changed between the two frames if any of
the following conditions occur: (1) the number of fingers has changed; (2) a ±10% change in
the fingertip-centroid distances; or (3) a ± 3° change in the angle of two fingertips.

2.4.3 Trajectory update
If the hand-pose remains invariant between two frames, the system updates the hand-pose
trajectory by recording the fingertip’s coordinate as determined in the new frame.
Otherwise, the system stops tracing the hand-pose trajectory.

3. Results
In this section, system results of the automatic hand-pose trajectory tracking are
demonstrated. In our experimental design, the video camera NICON D90 was used to
capture the video, and the Microsoft AVI file format was used for storage. All the
experiments were carried out using the personal computer Intel Core Duo T5500 1.66G,
RAM 2G. Software development included the Microsoft Visual Studio 2005 with the
OpenCV 1.1 pre as the auxiliary software. In addition, all the hand-pose video data were
acquired to meet the system hypotheses as described in Section 2.
Fig. 18 shows the results of the hand-pose trajectory of single fingertip (index finger) that
forms a “D”. Fig. 19 shows the results of the hand-pose trajectories of multiple fingertips (all
five fingers) that form a “Scratch”. Fig. 20 shows the results of the hand-pose trajectories in
which the hand-pose has changed from single finger to double fingers.

Fig. 18. Results of the hand-pose trajectory of single fingertip (index finger) that forms a
“D”.

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

149

Fig. 19. Results of the hand-pose trajectories of multiple fingertips (all five fingers) that form
a “Scratch”.

Fig. 20. Results of the hand-pose trajectories in which the hand-pose has changed from
single finger to double fingers. Initially, only single hand-pose trajectory was traced. During
the changes of the hand-poses, the system stopped tracing the hand-pose trajectory
temporarily. Once the hand-pose remains invariant (double fingers), the system retained the
tracing and double hand-pose trajectories were traced instead.

4. Conclusion
In this content, an automatic hand-pose trajectory tracking system using video sequences is
presented. The results demonstrated that our system could reasonably trace the hand-pose
trajectory with the assumption that the hand-pose remains invariant during motion. The
techniques were based on the rule-based approach in segmenting palm and finger regions.
In addition, feature extraction and matching were applied to trace the fingertip’s position
and determine if the hand-pose remains invariant. Even in a situation when the hand-pose
changed, our system was demonstrated to be able to re-trace the hand-pose trajectories in
the video sequences.
In essence, the objective of our system was very different from other hand-pose recognition
systems with the primary goal to recognize various hand-poses. Instead, our system was
designed to trace the hand-pose trajectory. Therefore, only a limited set of hand-poses were
tested. Ultimately, our system could be integrated with the hand-pose recognition system if
the tracing of hand-pose trajectory is limited in pre-defined hand-poses only (e.g., specific
user-controlled commands) to enhance the functionality of a user-interface.
At present, our system was designed in an attempt to process in a frame-by-frame basis
which is still time-consuming. For real-time applications, the system performance must be

 User Interfaces

150

further improved in terms of effectiveness and efficiency. A hardware implementation of
the techniques could offer a potential solution to the problem. However, our system shows
encouraging results that clearly define the future potentials in developing a convenient user-
interface.

5. Acknowledgment
This research was supported in part by the National Science Council, Taiwan, under
contracts NSC 97-2221-E-033-051 and NSC 98-2221-E-033-057.

6. References
Argyros, A. A. & Lourakis, M. I. A. (2006). Vision-based Interpretation of Hand Gestures for

Remote Control of a Computer Mouse, In Computer Vision in Human-computer
Interaction: Eccv 2006 Workshop on HCI, pp.40-51, 978-3-540-34202-1, Austria, May
2006, Springer-Verlag, Graz

Athitsos, V. & Sclaroff, S. (2002). An appearance-based framework for 3D hand shape
classification and camera viewpoint estimation, Proceedings of Fifth IEEE international
Conference on Automatic Face and Gesture Recognition, 0-7695-1602-5, USA, May 2002,
Institute of Electrical and Electronics Engineers, Washington D.C.

Canny, J. F. (1986). A computational approach to edge detection, IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-8, Nov. 1986, pp. 679-698, 0162-8828

Chen, F.; Fu, C. & Huang, C. (2003). Hand gesture recognition using a real-time tracking
method and Hidden Markov Models, Image and Video Computing, vol. 21, no. 8,
August 2003, pp. 745-758, 0262-8856

Chen, J. Y. & Chang, Y. H. (2007). A hand-Pose recognition system using a combined
classifier of shift distances and Fourier features, Computer Vision, Graphics and Image
Processing Conference, August 2007

Cooke, M. P.; Green, P. D.; Josifovski, L. & Vizinho, A. (2001). Robust automatic speech
recognition with missing and unreliable acoustic data, Speech Communication, vol.
34, pp. 267-285, 0167-6393, June 2001, Elsevier

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; & Stein, C. (2001). Introduction to Algorithms,
Second Edition, MIT Press, 0-262-03293-7, Cambridge, Massachusetts

Fang, G.; Gao, W. & Zhao, D. (2004). Large vocabulary sign language recognition based on
fuzzy decision trees, IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, vol. 34, no.3, May 2004, pp. 305-314, 1083-4427

Froba, B. & Ernst, A. (2004). Face detection with the modified census transform, Proceedings
of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition,
pp. 91-96, 0-7695-2122-3, Korea, May 2004, Institute of Electrical and Electronics
Engineers, Seoul

Gales, M. J. F. (1998). Maximum Likelihood Linear Transformations for HMM-Based
Speech Recognition, Computer Speech and Language, January 1998, pp. 75-98, 0885-
2308

Gao, W.; Fang, G.; Zhao, D. & Chen, Y. (2004). A Chinese sign language recognition system
based on SOFM/SRN/HMM, Pattern Recognition, vol. 37, pp. 2389-2402, 0031-3203

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

151

Gonzalez, R. C. & Woods, R. E. (2008). Digital Image Processing, 3rd Edition, Prentice Hall,
9780131687288, New York

Graetzel, C.; Fong, T.; Grange, S. & Baur, C. (2004). A Non-Contact Mouse for Surgeon-
Computer Interaction, Technology and Health Care, vol. 12, no. 3, pp. 245-257, 0928-
7329

Heumer, G.; Amor, H. B.; Weber, M. & Jung, B. (2007). Grasp Recognition with Uncalibrated
Data Gloves - A Comparison of Classification Methods, Virtual Reality Conference,
2007. VR '07. IEEE, March 2007, pp. 19-26, 1-4244-0905-5

Just, A.; Rodriguez, Y. & Marcel, S. (2006). Hand posture classification and recognition using
the modified census transform, In 7th International Conference on Automatic Face and
Gesture Recognition, pp. 351-356, 0-7695-2503-2, UK, April 2006, Institute of
Electrical and Electronics Engineers, Southampton

Liu, C.-L.; Nakashima, K.; Sako, H. & Fujisawa, H. (2003). Handwritten digit recognition:
benchmarking of state-of-the-art techniques, Pattern Recognition, vol. 36, pp. 2271-
2285, 0031-3203

Malima, A.; Ozgur, E. & Cetin, M. (2006). A Fast Algorithm for Vision-Based Hand Gesture
Recognition for Robot Control, Signal Processing and Communications Applications,
2006 IEEE 14th, pp. 1-4, 1-4244-0238-7, Turkey, April 2006, Institute of Electrical and
Electronics Engineers, Antalya

Palacios, R. & Gupta, A. (2002). A system for processing handwritten bank checks
automatically, Image and Vision Computing, vol.26, no. 10, Feb. 2002, pp. 1297-1313,
0262-8856

Shan, C.; Wei, Y.; Tan, T. & Ojardias, F. (2004). Real Time Hand Tracking by Combining
Particle Filtering and Mean Shift, In Sixth IEEE International Conference on Automatic
Face and Gesture Recognition, pp. 669-674, 0-7695-2122-3, Korea, May 2004, Institute
of Electrical and Electronics Engineers, Seoul

Sonka, M.; Hlavac, V. & Boyle, R. (2007). Image processing, analysis and machine vision, 3rd
Edition, Cengage-Engineering, 049508252X, Florence, KY

Stenger, B.; Thayananthan, A.; Torr, P. H. & Cipolla, R. (2006). Model-based hand tracking
using a hierarchical Bayesian filter, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 9, Sept. 2006, pp.1372-1385, 0162-8828

Su, M. C.; Hung, C. H. & Zhao, Y. X. (2006). A SOMART System for gesture Recognition,
WSEAS Transactions on Computers, vol. 5, July 2006, pp. 2764-2771, 1109-2750

Trivedi, M. M.; Gandhi, T. & McCall, J. (2007). Looking-In and Looking-Out of a
Vehicle:Computer-Vision-Based Enhanced Vehicle Safety, Transactions on Intelligent
Transportation Systems, vol. 8, no. 1, March 2007, pp. 108–120, 1524-9050

Wachs, J. P.; Stern, H. & Edan, Y. (2005). Cluster Labeling and Parameter Estimation for the
Automated Setup of a Hand-Gesture Recognition System, IEEE Transactions on
Systems, Man, and Cybernetics—Part A: System and Humans, vol. 35, no. 6, November
2005, pp. 932-944, 0018-9472

Zhai, S. & Kristensson, P. (2003). Shorthand writing on stylus keyboard, In CHI ’03 :
Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 97-
104, 1-58113-630-7, USA, April 2003, ACM Press., Ft. Lauderdale, Florida

 User Interfaces

150

further improved in terms of effectiveness and efficiency. A hardware implementation of
the techniques could offer a potential solution to the problem. However, our system shows
encouraging results that clearly define the future potentials in developing a convenient user-
interface.

5. Acknowledgment
This research was supported in part by the National Science Council, Taiwan, under
contracts NSC 97-2221-E-033-051 and NSC 98-2221-E-033-057.

6. References
Argyros, A. A. & Lourakis, M. I. A. (2006). Vision-based Interpretation of Hand Gestures for

Remote Control of a Computer Mouse, In Computer Vision in Human-computer
Interaction: Eccv 2006 Workshop on HCI, pp.40-51, 978-3-540-34202-1, Austria, May
2006, Springer-Verlag, Graz

Athitsos, V. & Sclaroff, S. (2002). An appearance-based framework for 3D hand shape
classification and camera viewpoint estimation, Proceedings of Fifth IEEE international
Conference on Automatic Face and Gesture Recognition, 0-7695-1602-5, USA, May 2002,
Institute of Electrical and Electronics Engineers, Washington D.C.

Canny, J. F. (1986). A computational approach to edge detection, IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-8, Nov. 1986, pp. 679-698, 0162-8828

Chen, F.; Fu, C. & Huang, C. (2003). Hand gesture recognition using a real-time tracking
method and Hidden Markov Models, Image and Video Computing, vol. 21, no. 8,
August 2003, pp. 745-758, 0262-8856

Chen, J. Y. & Chang, Y. H. (2007). A hand-Pose recognition system using a combined
classifier of shift distances and Fourier features, Computer Vision, Graphics and Image
Processing Conference, August 2007

Cooke, M. P.; Green, P. D.; Josifovski, L. & Vizinho, A. (2001). Robust automatic speech
recognition with missing and unreliable acoustic data, Speech Communication, vol.
34, pp. 267-285, 0167-6393, June 2001, Elsevier

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; & Stein, C. (2001). Introduction to Algorithms,
Second Edition, MIT Press, 0-262-03293-7, Cambridge, Massachusetts

Fang, G.; Gao, W. & Zhao, D. (2004). Large vocabulary sign language recognition based on
fuzzy decision trees, IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, vol. 34, no.3, May 2004, pp. 305-314, 1083-4427

Froba, B. & Ernst, A. (2004). Face detection with the modified census transform, Proceedings
of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition,
pp. 91-96, 0-7695-2122-3, Korea, May 2004, Institute of Electrical and Electronics
Engineers, Seoul

Gales, M. J. F. (1998). Maximum Likelihood Linear Transformations for HMM-Based
Speech Recognition, Computer Speech and Language, January 1998, pp. 75-98, 0885-
2308

Gao, W.; Fang, G.; Zhao, D. & Chen, Y. (2004). A Chinese sign language recognition system
based on SOFM/SRN/HMM, Pattern Recognition, vol. 37, pp. 2389-2402, 0031-3203

Automatic Hand-Pose Trajectory Tracking System Using Video Sequences

151

Gonzalez, R. C. & Woods, R. E. (2008). Digital Image Processing, 3rd Edition, Prentice Hall,
9780131687288, New York

Graetzel, C.; Fong, T.; Grange, S. & Baur, C. (2004). A Non-Contact Mouse for Surgeon-
Computer Interaction, Technology and Health Care, vol. 12, no. 3, pp. 245-257, 0928-
7329

Heumer, G.; Amor, H. B.; Weber, M. & Jung, B. (2007). Grasp Recognition with Uncalibrated
Data Gloves - A Comparison of Classification Methods, Virtual Reality Conference,
2007. VR '07. IEEE, March 2007, pp. 19-26, 1-4244-0905-5

Just, A.; Rodriguez, Y. & Marcel, S. (2006). Hand posture classification and recognition using
the modified census transform, In 7th International Conference on Automatic Face and
Gesture Recognition, pp. 351-356, 0-7695-2503-2, UK, April 2006, Institute of
Electrical and Electronics Engineers, Southampton

Liu, C.-L.; Nakashima, K.; Sako, H. & Fujisawa, H. (2003). Handwritten digit recognition:
benchmarking of state-of-the-art techniques, Pattern Recognition, vol. 36, pp. 2271-
2285, 0031-3203

Malima, A.; Ozgur, E. & Cetin, M. (2006). A Fast Algorithm for Vision-Based Hand Gesture
Recognition for Robot Control, Signal Processing and Communications Applications,
2006 IEEE 14th, pp. 1-4, 1-4244-0238-7, Turkey, April 2006, Institute of Electrical and
Electronics Engineers, Antalya

Palacios, R. & Gupta, A. (2002). A system for processing handwritten bank checks
automatically, Image and Vision Computing, vol.26, no. 10, Feb. 2002, pp. 1297-1313,
0262-8856

Shan, C.; Wei, Y.; Tan, T. & Ojardias, F. (2004). Real Time Hand Tracking by Combining
Particle Filtering and Mean Shift, In Sixth IEEE International Conference on Automatic
Face and Gesture Recognition, pp. 669-674, 0-7695-2122-3, Korea, May 2004, Institute
of Electrical and Electronics Engineers, Seoul

Sonka, M.; Hlavac, V. & Boyle, R. (2007). Image processing, analysis and machine vision, 3rd
Edition, Cengage-Engineering, 049508252X, Florence, KY

Stenger, B.; Thayananthan, A.; Torr, P. H. & Cipolla, R. (2006). Model-based hand tracking
using a hierarchical Bayesian filter, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 9, Sept. 2006, pp.1372-1385, 0162-8828

Su, M. C.; Hung, C. H. & Zhao, Y. X. (2006). A SOMART System for gesture Recognition,
WSEAS Transactions on Computers, vol. 5, July 2006, pp. 2764-2771, 1109-2750

Trivedi, M. M.; Gandhi, T. & McCall, J. (2007). Looking-In and Looking-Out of a
Vehicle:Computer-Vision-Based Enhanced Vehicle Safety, Transactions on Intelligent
Transportation Systems, vol. 8, no. 1, March 2007, pp. 108–120, 1524-9050

Wachs, J. P.; Stern, H. & Edan, Y. (2005). Cluster Labeling and Parameter Estimation for the
Automated Setup of a Hand-Gesture Recognition System, IEEE Transactions on
Systems, Man, and Cybernetics—Part A: System and Humans, vol. 35, no. 6, November
2005, pp. 932-944, 0018-9472

Zhai, S. & Kristensson, P. (2003). Shorthand writing on stylus keyboard, In CHI ’03 :
Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 97-
104, 1-58113-630-7, USA, April 2003, ACM Press., Ft. Lauderdale, Florida

 User Interfaces

152

Zhang, D.; Kong, W. K.; You, J. & Wong, M. (2003). Online Palmprint Identification, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, Sept. 2003, pp.
1041-1050, 0162-8828

10

An Empirical Approach for the Evaluation
of Voice User Interfaces

Valéria Farinazzo1, Martins Salvador1,
André Luiz S. Kawamoto2 and João Soares de Oliveira Neto3

1Mackenzie Presbyterian University – São Paulo
2Federal University of Technology - Paraná – Campus Campo Mourão,

3Mackenzie Presbyterian University – São Paulo
Brazil

1. Introduction
Nowadays, the convergence of devices, electronic computing, and massive media produces
huge volumes of information, which demands the need for faster and more efficient
interaction between users and information. How to make information access manageable,
efficient, and easy becomes the major challenge for Human-Computer Interaction (HCI)
researchers. The different types of computing devices, such as PDAs (personal digital
assistants), tablet PCs, desktops, game consoles, and the next generation phones, provide
many different modalities for information access. This makes it possible to dynamically
adapt application user interfaces to the changing context. However, as applications go more
and more pervasive, these devices show theirs limited input/output capacity caused by
small visual displays, use of hands to operate buttons and the lack of an alphanumeric
keyboard and mouse (Gu & Gilbert, 2004).
Voice User Interface (VUI) systems are capable of, besides recognizing the voice of their
users, to understand voice commands, and to provide responses to them, usually, in real
time. The state-of-the-art in speech technology already allows the development of automatic
systems designed to work in real conditions. VUI is perhaps the most critical factor in the
success of any automated speech recognition (ASR) system, determining whether the user
experience will be satisfying or frustrating, or even whether the customer will remain one.
This chapter describes a practical methodology for creating an effective VUI design. The
methodology is scientifically based on principles in linguistics, psychology, and language
technology (Cohen et al. 2004; San-Segundo et al., 2005).
Given the limited input/output capabilities of mobile devices, speech presents an excellent
way to enter and retrieve information either alone or in combination with other modalities.
Furthermore, people with disabilities should be provided with a wide range of alternative
interaction modalities other than the traditional screen-mouse based desktop computing
devices. Whether the disability is temporary or permanent, people with reading difficulty,
visual impairment, and/or any difficulty using a keyboard, or mouse can rely on speech as
an alternate approach for information access.

 User Interfaces

152

Zhang, D.; Kong, W. K.; You, J. & Wong, M. (2003). Online Palmprint Identification, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, Sept. 2003, pp.
1041-1050, 0162-8828

10

An Empirical Approach for the Evaluation
of Voice User Interfaces

Valéria Farinazzo1, Martins Salvador1,
André Luiz S. Kawamoto2 and João Soares de Oliveira Neto3

1Mackenzie Presbyterian University – São Paulo
2Federal University of Technology - Paraná – Campus Campo Mourão,

3Mackenzie Presbyterian University – São Paulo
Brazil

1. Introduction
Nowadays, the convergence of devices, electronic computing, and massive media produces
huge volumes of information, which demands the need for faster and more efficient
interaction between users and information. How to make information access manageable,
efficient, and easy becomes the major challenge for Human-Computer Interaction (HCI)
researchers. The different types of computing devices, such as PDAs (personal digital
assistants), tablet PCs, desktops, game consoles, and the next generation phones, provide
many different modalities for information access. This makes it possible to dynamically
adapt application user interfaces to the changing context. However, as applications go more
and more pervasive, these devices show theirs limited input/output capacity caused by
small visual displays, use of hands to operate buttons and the lack of an alphanumeric
keyboard and mouse (Gu & Gilbert, 2004).
Voice User Interface (VUI) systems are capable of, besides recognizing the voice of their
users, to understand voice commands, and to provide responses to them, usually, in real
time. The state-of-the-art in speech technology already allows the development of automatic
systems designed to work in real conditions. VUI is perhaps the most critical factor in the
success of any automated speech recognition (ASR) system, determining whether the user
experience will be satisfying or frustrating, or even whether the customer will remain one.
This chapter describes a practical methodology for creating an effective VUI design. The
methodology is scientifically based on principles in linguistics, psychology, and language
technology (Cohen et al. 2004; San-Segundo et al., 2005).
Given the limited input/output capabilities of mobile devices, speech presents an excellent
way to enter and retrieve information either alone or in combination with other modalities.
Furthermore, people with disabilities should be provided with a wide range of alternative
interaction modalities other than the traditional screen-mouse based desktop computing
devices. Whether the disability is temporary or permanent, people with reading difficulty,
visual impairment, and/or any difficulty using a keyboard, or mouse can rely on speech as
an alternate approach for information access.

 User Interfaces

154

The current knowledge on VUI comes from small contributions of research projects which
propose an assessment for the systems developed in these projects, and attempt to
generalize and make recommendations for the evaluation of VUIs, such as PARADISE,
EAGLES and DISC (Walker et al., 1997; Gibbon & Moore, 1997; Dybkjaer & Bernsen, 2000). It
is important to point out that developing VUI applications is very different from developing
GUI applications. The differences include visibility, transience, bandwidth asymmetry,
temporality and concurrency (Hunt; Walker, 2000). Hence, it is necessary to review the
developing process of VUI applications based on an interface approach, aiming to adapt
some peculiar characteristics, starting on non-functional requirements.

2. Requirements of VUI
Graphical User Interfaces (GUI) requirements can be, most of the time, also considered for
VUI applications, since usability and feedback must be considered for every human-
machine interface. However, there are specific requirements for VUI applications. These
requirements come from some basic differences that must be pointed out, especially due to
the transient attribute of the voice – while graphical interfaces are persistent. Thus, non-
functional requirements were classified as: requirements related to the representation of the
information, and requirements related to the data input.

2.1 Non-functional requirements related to the representation of the information
Non-functional requirements of VUI applications related to the representation of the
information basically indicate the format that the interaction must assume in order to enable
the system to deal with user inputs. These requirements are explained next. (Dybkjaer &
Bersen, 2001; Salvador et al., 2008).
Consistency, which is considered one of the most important attributes concerning interface
usability (Nielsen, 2000). It controls the unexpected behaviour of the system, reducing the
user frustration.
Most of the tasks in VUI systems use only the voice for information input and output.
However, the voice is not indicated for all types of application, especially when the user
must supply security codes (for example, in a bank system). Thus, sometimes it is
convenient to integrate the voice with other interaction modes (Appropriate modes of
interaction). The Case Study presented in this chapter integrates two interface modes: Voice
for both input and output, and a Graphical interface for output.
It is important, in any type of communication that the feedback provided to be suitable.
Computer interaction requires a planned feedback (Foley & Van Dan, 1990). A suitable
feedback implies that the user can feel that he is in control of the interaction. The user must
feel confident that the system really understood his commands and is working for providing
answers to the commands.
There are three levels of feedback: hardware level, which indicates whether the user inputs
were successful (for voice inputs, it indicates that the system has actually captured what was
said); sequence level, which indicates that a input was accepted (in VUI, it indicates that the
system understood that input as an action that has to be performed); and functional level,
which indicates that the system is working in order to provide an answer (messages like
“please, wait a moment” delivered to the user).
The VUI must support all classes of users, being able to identify each one of them and adapt
itself to the user, adapting both content and presentation according to the User Model. A

An Empirical Approach for the Evaluation of Voice User Interfaces

155

few strategies can be used, for instance, providing barge-in and more detailed information
to expert users, whereas providing more concise and superficial information, besides
sentences at the end of the dialogue to novice users (Komatani et al., 2003).
The VUI must minimize the cognitive effort the user has to do in order to perform the tasks.
Mixed initiative dialogues and sentences at the end of the dialogue may be provided to
guide the user towards a suitable utilization of the system.
The content of the system outputs must be correct, relevant and informative enough, without
providing and overload of information to the user. The way the system expresses itself must
be unambiguous and clear, with suitable language and terminology familiar to the user.
According to the user point of view, the quality of the output voice is related to questions of
clarity and intelligibility (proper intonation, emotion, rhythm). There are three types of
voice output in a system: entire phrases are recorded and played (used when the
information is not dynamic); concatenation of recorded phrases or words; or text-to-speech
(TTS), ie. The system synthesizes voice in real-time.

2.2 Requirements related to data input
Dybkjaer & Bersen (2001) and Salvador et al. (2008) defined a set of usability evaluation
criteria for VUI systems related to the user access. The criteria are explained next.
According the user point of view, an appropriate recognition means that the system rarely
misunderstands the user inputs. However, that depends on several environment factors
(whether the environment is noisy or not), on user factors (sex, age, accent, voice tone), and
on the quality of the sound received by the system.
It is necessary to manage inputs so that the user feels that the speech is natural. If limitations
imposed by the task are satisfied, and the system manages to control the input language,
users can feel that the dialogue is natural.
In order to support natural interaction, it is necessary to establish a reasonable dialogue
initiative between the system and the user. That depends on the level of knowledge the user
has about the system. Dialogues directed by the system may work well for tasks that require
that the user provide specific parts of the information, especially when users are new to the
system. Aiming to satisfy expert users, who are used to manage large amounts of
information, the system must adapt itself and accept dialogues directed by the user.
It is important that the dialogue structure defined by the developer is natural to the user,
reflecting his expectations, mostly in dialogues directed by the system, where the user is not
able to interfere. When unnatural dialogue structures are used, the users usually try to take
the dialogue initiative, and the system sometimes is not prepared to answer such attempts.
It is necessary to provide instructions enough to the user, so he can feel that he controls the
interaction. Speech is not suitable for providing complex instructions to novice users. On the
other hand, it is necessary to consider expert users and all the issues related to satisfy all the
levels of expertise, such as turn taking versus barge-in; help facilities and output for
unobvious behaviour of the system.
Covering tasks and domain is also a crucial requirement for the natural interaction. Even if
the user is not familiar to a VUI system, usually it is preferable to provide detailed
information about the services the system can provide.
Also, when users are aware that they are actually talking to a primitive interlocutor, they
tend to assume the system is able to perform small pieces of reasoning that human beings
do without even thinking about, and which are intrinsically related to the natural dialogue
of the task.

 User Interfaces

154

The current knowledge on VUI comes from small contributions of research projects which
propose an assessment for the systems developed in these projects, and attempt to
generalize and make recommendations for the evaluation of VUIs, such as PARADISE,
EAGLES and DISC (Walker et al., 1997; Gibbon & Moore, 1997; Dybkjaer & Bernsen, 2000). It
is important to point out that developing VUI applications is very different from developing
GUI applications. The differences include visibility, transience, bandwidth asymmetry,
temporality and concurrency (Hunt; Walker, 2000). Hence, it is necessary to review the
developing process of VUI applications based on an interface approach, aiming to adapt
some peculiar characteristics, starting on non-functional requirements.

2. Requirements of VUI
Graphical User Interfaces (GUI) requirements can be, most of the time, also considered for
VUI applications, since usability and feedback must be considered for every human-
machine interface. However, there are specific requirements for VUI applications. These
requirements come from some basic differences that must be pointed out, especially due to
the transient attribute of the voice – while graphical interfaces are persistent. Thus, non-
functional requirements were classified as: requirements related to the representation of the
information, and requirements related to the data input.

2.1 Non-functional requirements related to the representation of the information
Non-functional requirements of VUI applications related to the representation of the
information basically indicate the format that the interaction must assume in order to enable
the system to deal with user inputs. These requirements are explained next. (Dybkjaer &
Bersen, 2001; Salvador et al., 2008).
Consistency, which is considered one of the most important attributes concerning interface
usability (Nielsen, 2000). It controls the unexpected behaviour of the system, reducing the
user frustration.
Most of the tasks in VUI systems use only the voice for information input and output.
However, the voice is not indicated for all types of application, especially when the user
must supply security codes (for example, in a bank system). Thus, sometimes it is
convenient to integrate the voice with other interaction modes (Appropriate modes of
interaction). The Case Study presented in this chapter integrates two interface modes: Voice
for both input and output, and a Graphical interface for output.
It is important, in any type of communication that the feedback provided to be suitable.
Computer interaction requires a planned feedback (Foley & Van Dan, 1990). A suitable
feedback implies that the user can feel that he is in control of the interaction. The user must
feel confident that the system really understood his commands and is working for providing
answers to the commands.
There are three levels of feedback: hardware level, which indicates whether the user inputs
were successful (for voice inputs, it indicates that the system has actually captured what was
said); sequence level, which indicates that a input was accepted (in VUI, it indicates that the
system understood that input as an action that has to be performed); and functional level,
which indicates that the system is working in order to provide an answer (messages like
“please, wait a moment” delivered to the user).
The VUI must support all classes of users, being able to identify each one of them and adapt
itself to the user, adapting both content and presentation according to the User Model. A

An Empirical Approach for the Evaluation of Voice User Interfaces

155

few strategies can be used, for instance, providing barge-in and more detailed information
to expert users, whereas providing more concise and superficial information, besides
sentences at the end of the dialogue to novice users (Komatani et al., 2003).
The VUI must minimize the cognitive effort the user has to do in order to perform the tasks.
Mixed initiative dialogues and sentences at the end of the dialogue may be provided to
guide the user towards a suitable utilization of the system.
The content of the system outputs must be correct, relevant and informative enough, without
providing and overload of information to the user. The way the system expresses itself must
be unambiguous and clear, with suitable language and terminology familiar to the user.
According to the user point of view, the quality of the output voice is related to questions of
clarity and intelligibility (proper intonation, emotion, rhythm). There are three types of
voice output in a system: entire phrases are recorded and played (used when the
information is not dynamic); concatenation of recorded phrases or words; or text-to-speech
(TTS), ie. The system synthesizes voice in real-time.

2.2 Requirements related to data input
Dybkjaer & Bersen (2001) and Salvador et al. (2008) defined a set of usability evaluation
criteria for VUI systems related to the user access. The criteria are explained next.
According the user point of view, an appropriate recognition means that the system rarely
misunderstands the user inputs. However, that depends on several environment factors
(whether the environment is noisy or not), on user factors (sex, age, accent, voice tone), and
on the quality of the sound received by the system.
It is necessary to manage inputs so that the user feels that the speech is natural. If limitations
imposed by the task are satisfied, and the system manages to control the input language,
users can feel that the dialogue is natural.
In order to support natural interaction, it is necessary to establish a reasonable dialogue
initiative between the system and the user. That depends on the level of knowledge the user
has about the system. Dialogues directed by the system may work well for tasks that require
that the user provide specific parts of the information, especially when users are new to the
system. Aiming to satisfy expert users, who are used to manage large amounts of
information, the system must adapt itself and accept dialogues directed by the user.
It is important that the dialogue structure defined by the developer is natural to the user,
reflecting his expectations, mostly in dialogues directed by the system, where the user is not
able to interfere. When unnatural dialogue structures are used, the users usually try to take
the dialogue initiative, and the system sometimes is not prepared to answer such attempts.
It is necessary to provide instructions enough to the user, so he can feel that he controls the
interaction. Speech is not suitable for providing complex instructions to novice users. On the
other hand, it is necessary to consider expert users and all the issues related to satisfy all the
levels of expertise, such as turn taking versus barge-in; help facilities and output for
unobvious behaviour of the system.
Covering tasks and domain is also a crucial requirement for the natural interaction. Even if
the user is not familiar to a VUI system, usually it is preferable to provide detailed
information about the services the system can provide.
Also, when users are aware that they are actually talking to a primitive interlocutor, they
tend to assume the system is able to perform small pieces of reasoning that human beings
do without even thinking about, and which are intrinsically related to the natural dialogue
of the task.

 User Interfaces

156

The interface must provide a help mechanism whenever it is required or when the user is in
a difficult situation. For VUI, a dialogue must provide a list of possible actions the user can
take in the system every time the user does not take the initiative of the dialogue. Strategies
of dialogue confirmation may also be used.
A good interface is able to prevent user from committing errors. In VUI, the interface can try
to guide the user to quickly reach his goals. For instance, the control of the dialogue can be
transferred to the system whenever the user is in difficulty, or the system can provide
additional sentences in the end of each dialogue, alerting the user about the next steps that
can be taken in the system.
A good interface is able to quickly correct inputs, increasing the productivity of the users
and stimulating them to explore the system. VUIs can attend this requirement by adopting
mixed initiative dialogues, confirmation techniques and, in telephony systems, transferring
the call to a human attendant. It is possible to divide the error treatment into four classes:
• Repair the system initiative: necessary when the system is not able to understand or is

not sure whether the user input was correctly understood. The system can ask the user
to repeat the input, to speak louder, to change the mode the input is being done, or even
repeat what was understood and ask the user to correct or confirm the input. If this
does not solve the problem, the system can change the interaction to a simpler mode, or
even transfer the control to a human operator;

• Repair the user initiative: some systems require the use of specific keywords. This is not
natural and sometimes it is hard for the user to remember these keywords. Another
possibility is to adopt the eraser principle, where the user simply repeats the inputs
until the system accept the message;

• Explication asked by the system: when the user input is inconsistent or ambiguous, the
system asks an explication to the user;

• Explication asked by the user: happens when the system produces inconsistent or
ambiguous outputs, or when the user is not familiar with the terms used in the
communication;

The lack of cooperativity in the system output can be diagnosed from the occurrence of
communication problems in real or simulated interactions between user and system. The
issue related to capturing and analysing these data is that this activity requires high
expenses, especially because a large amount of data is necessary in order to solve most of
the communication problems caused in the system. Avoiding such interaction problems
more efficiently requires the application of an evaluation methodology already in the project
system phase.
A subjective measure of usability derived from personal preferences and contextual factors
is the User Satisfaction. This measure can be obtained from quizzes and interviews with
users.

2.3 Technical issues
According to Alapetite et al. (2009) and Deng & Huang (2004), when a VUI application is
developed, there are a few questions which cannot be underestimated for the application
success. Those questions are explained next.
The size of the vocabulary and the domain coverage affects voice recognition. Thus, large
vocabularies with good domain coverage are more attractive, due to the fact they are able to
recognize more words. However, smaller vocabularies increase the level of correctness in the
recognition process. Besides, transcription systems work better when using restricted domains.

An Empirical Approach for the Evaluation of Voice User Interfaces

157

Voice recognition is affected by the clarity, consistency and the accent of users. User-
dependant systems have a recognition rate higher than systems that do not depend on
users. However, user-dependant systems require training sessions – considering that the
system adapts its acoustic model to the user – and may be more sensible to noise,
microphone and voice variations (for example, if the user has a cold). Besides, non-native
speakers in the system language should be trained, as well as recognition rates for children
and elder people should be considered.
Noisy environments affect voice recognition in two ways: voice signal distortions imply in
higher difficulty to distinguish the spoken words; and when there is noise, the users usually
change their voices and, thus, distort the speech signal.
Every VUI system is based on statistical patterns principles. However, despite their
similarities, systems differ from each other in the parameterization of their voice signal,
acoustic model of each phoneme, and the language model used for choosing the words
more appropriately. Thus, systems can generate different error recognition rates, even if
their recognition rates are similar.

3. Criteria and guidelines for the evaluation of VUI
Traditional methodologies for evaluating GUI can be used for VUI systems. However, there
are substantial differences, since, as mentioned before, the voice is a transient type of
information, while the image is persistent. The challenges for evaluating VUI systems are:
• Which interface requirements may be, or may be not considered for VUI;
• What are the general requirements and what are the specific VUI requirements that

must be considered;
• Which requirements, among the several discussed are said to be fundamental and,

hence, must be considered;
• How to measure each fundamental requirement
• How to evaluate the systems in a viable way, with cost and time acceptable to the

application domain;
• Which techniques to use for the evaluation, when evaluate and, moreover, if the final

user should be involved.

3.1 How to evaluate voice recognition systems
According to Dybkjaer & Bernsen (2001), in order to evaluate a voice recognition system, it
is necessary to adopt templates which contain the following questions:
• What is being evaluated (for example, appropriate feedback);
• Which part of the system is being evaluated, for example, the dialogue management;
• What is the evaluation type , for example, qualitative;
• The evaluation method, for example, user observation;
• Symptoms to be checked, for example, if the system help is consistent;
• The importance of the evaluation, for instance, crucial;
• The level of difficulty of the evaluation, for example, easy;
• The support tools, i.e. the tool used to measure the time a task takes to be accomplished.
The idea is to provide a set of tools enough to the evaluator so that, following this template,
the VUI can be evaluated effectively and efficiently. We must also consider that the
importance of the criteria for evaluation of a VUI depends on the application and user, or
group of users of this system.

 User Interfaces

156

The interface must provide a help mechanism whenever it is required or when the user is in
a difficult situation. For VUI, a dialogue must provide a list of possible actions the user can
take in the system every time the user does not take the initiative of the dialogue. Strategies
of dialogue confirmation may also be used.
A good interface is able to prevent user from committing errors. In VUI, the interface can try
to guide the user to quickly reach his goals. For instance, the control of the dialogue can be
transferred to the system whenever the user is in difficulty, or the system can provide
additional sentences in the end of each dialogue, alerting the user about the next steps that
can be taken in the system.
A good interface is able to quickly correct inputs, increasing the productivity of the users
and stimulating them to explore the system. VUIs can attend this requirement by adopting
mixed initiative dialogues, confirmation techniques and, in telephony systems, transferring
the call to a human attendant. It is possible to divide the error treatment into four classes:
• Repair the system initiative: necessary when the system is not able to understand or is

not sure whether the user input was correctly understood. The system can ask the user
to repeat the input, to speak louder, to change the mode the input is being done, or even
repeat what was understood and ask the user to correct or confirm the input. If this
does not solve the problem, the system can change the interaction to a simpler mode, or
even transfer the control to a human operator;

• Repair the user initiative: some systems require the use of specific keywords. This is not
natural and sometimes it is hard for the user to remember these keywords. Another
possibility is to adopt the eraser principle, where the user simply repeats the inputs
until the system accept the message;

• Explication asked by the system: when the user input is inconsistent or ambiguous, the
system asks an explication to the user;

• Explication asked by the user: happens when the system produces inconsistent or
ambiguous outputs, or when the user is not familiar with the terms used in the
communication;

The lack of cooperativity in the system output can be diagnosed from the occurrence of
communication problems in real or simulated interactions between user and system. The
issue related to capturing and analysing these data is that this activity requires high
expenses, especially because a large amount of data is necessary in order to solve most of
the communication problems caused in the system. Avoiding such interaction problems
more efficiently requires the application of an evaluation methodology already in the project
system phase.
A subjective measure of usability derived from personal preferences and contextual factors
is the User Satisfaction. This measure can be obtained from quizzes and interviews with
users.

2.3 Technical issues
According to Alapetite et al. (2009) and Deng & Huang (2004), when a VUI application is
developed, there are a few questions which cannot be underestimated for the application
success. Those questions are explained next.
The size of the vocabulary and the domain coverage affects voice recognition. Thus, large
vocabularies with good domain coverage are more attractive, due to the fact they are able to
recognize more words. However, smaller vocabularies increase the level of correctness in the
recognition process. Besides, transcription systems work better when using restricted domains.

An Empirical Approach for the Evaluation of Voice User Interfaces

157

Voice recognition is affected by the clarity, consistency and the accent of users. User-
dependant systems have a recognition rate higher than systems that do not depend on
users. However, user-dependant systems require training sessions – considering that the
system adapts its acoustic model to the user – and may be more sensible to noise,
microphone and voice variations (for example, if the user has a cold). Besides, non-native
speakers in the system language should be trained, as well as recognition rates for children
and elder people should be considered.
Noisy environments affect voice recognition in two ways: voice signal distortions imply in
higher difficulty to distinguish the spoken words; and when there is noise, the users usually
change their voices and, thus, distort the speech signal.
Every VUI system is based on statistical patterns principles. However, despite their
similarities, systems differ from each other in the parameterization of their voice signal,
acoustic model of each phoneme, and the language model used for choosing the words
more appropriately. Thus, systems can generate different error recognition rates, even if
their recognition rates are similar.

3. Criteria and guidelines for the evaluation of VUI
Traditional methodologies for evaluating GUI can be used for VUI systems. However, there
are substantial differences, since, as mentioned before, the voice is a transient type of
information, while the image is persistent. The challenges for evaluating VUI systems are:
• Which interface requirements may be, or may be not considered for VUI;
• What are the general requirements and what are the specific VUI requirements that

must be considered;
• Which requirements, among the several discussed are said to be fundamental and,

hence, must be considered;
• How to measure each fundamental requirement
• How to evaluate the systems in a viable way, with cost and time acceptable to the

application domain;
• Which techniques to use for the evaluation, when evaluate and, moreover, if the final

user should be involved.

3.1 How to evaluate voice recognition systems
According to Dybkjaer & Bernsen (2001), in order to evaluate a voice recognition system, it
is necessary to adopt templates which contain the following questions:
• What is being evaluated (for example, appropriate feedback);
• Which part of the system is being evaluated, for example, the dialogue management;
• What is the evaluation type , for example, qualitative;
• The evaluation method, for example, user observation;
• Symptoms to be checked, for example, if the system help is consistent;
• The importance of the evaluation, for instance, crucial;
• The level of difficulty of the evaluation, for example, easy;
• The support tools, i.e. the tool used to measure the time a task takes to be accomplished.
The idea is to provide a set of tools enough to the evaluator so that, following this template,
the VUI can be evaluated effectively and efficiently. We must also consider that the
importance of the criteria for evaluation of a VUI depends on the application and user, or
group of users of this system.

 User Interfaces

158

4. Case study
4.1 System for improving pronounce skills
The case study was designed for improving the pronounce skills of non-native English
speakers. This application works as follows: random words are shown in the screen to the
user, who needs to pronounce them as accurately as possible (Figure 1). Each voice input is
analyzed by the application, which verifies which level of correctness (recognition) the
engine supplies for that input. If the result coming from the engine and the word displayed
in the screen do not match, or if the level of recognition is defined as “low”, the user is
requested to repeat the word. When the number of attempts reaches three, the word is
synthesized to the user (so he or she can hear the correct pronounce), and the word is
marked as “not recognized”.
In the case of the word is correctly spoken and, therefore, recognized, the application
randomly picks another word for the pronounce evaluation. When ten words are spoken,
whether recognized or not, a report is generated and presented to the user.
The main features of this application are the recognition of words that are spoken by the user,
and the text to speech conversion. The application was developed using the Microsoft Speech
Recognition Sample Engine for English (Microsoft SAPI, 2009). This engine uses the Hidden-
Markov models (Gales, 2008), which are statistical models based on probability for the speech
recognition, and the Text-to-Speech Concatenative Syntehisys technique (Braga, 2008).

Fig. 1. GUI Interface of the VUI Application

4.2 Implementation issues
The application was implemented using Borland Delphi IDE (Borland Delphi, 2009) and the
Microsoft Speech API (SAPI) Version 5.1 (Microsoft SAPI, 2009).
SAPI is middleware that provides an API and a device driver interface (DDI) for speech
engines to implement. The speech engines are either speech recognizers or synthesizers.
Each speech engine is language specific. The SAPI Architecture is presented in the Figure 2.
A few issues were reported during the implementation. First, it was necessary to stablish a
way to suspend and resume the recognition engine. The engine attempts to recognize every

An Empirical Approach for the Evaluation of Voice User Interfaces

159

Fig. 2. Speech API Engine (font: http://msdn.microsoft.com/en-us/library/bb756992.aspx)

input that is recorded. This was done by inserting a flag indicating whether the system
might accept or not the engine results.
Enabling the application to correctly work on different Operational Systems was another
issue, because Speech Recognition is a built-in feature in Microsoft Vista for English
Language, but in other OS it must be installed and properly configured. This issue still
causes a little concern when the system needs to be installed for a different range of users.
Programming issues were not reported, due to very comprehensive guide available in the
Internet for the SAPI, and due to the large number of similar applications available in the
Internet. The authors must point out that the system is relatively simple, because it was
developed only to support the evaluation of usability proposed.

4.3 Methodology
In order to evaluate the usability of the developed application, we have employed the
heuristic evaluation, a type of usability inspection method. We used a checklist based on the
heuristics presented in Table 1. These heuristics are based on re-interpretations (Nielsen,
1993), on the study of non-functional requirements for VUIs, and on the good practices of
development pointed out by (Dybkjaer & Bersen, 2001), (Salvador et al., 2008) and
(Komatani et al., 2003). In order to perform the evaluation satisfactorily, three evaluators
were invited to participate. These specialists that participated in this application evaluation
are experienced HCI researchers, as well as experts on the VUI applications development
process. These specialists are also skilled on heuristic evaluation. They used the checklist
presented in section 4.3.1.

 User Interfaces

158

4. Case study
4.1 System for improving pronounce skills
The case study was designed for improving the pronounce skills of non-native English
speakers. This application works as follows: random words are shown in the screen to the
user, who needs to pronounce them as accurately as possible (Figure 1). Each voice input is
analyzed by the application, which verifies which level of correctness (recognition) the
engine supplies for that input. If the result coming from the engine and the word displayed
in the screen do not match, or if the level of recognition is defined as “low”, the user is
requested to repeat the word. When the number of attempts reaches three, the word is
synthesized to the user (so he or she can hear the correct pronounce), and the word is
marked as “not recognized”.
In the case of the word is correctly spoken and, therefore, recognized, the application
randomly picks another word for the pronounce evaluation. When ten words are spoken,
whether recognized or not, a report is generated and presented to the user.
The main features of this application are the recognition of words that are spoken by the user,
and the text to speech conversion. The application was developed using the Microsoft Speech
Recognition Sample Engine for English (Microsoft SAPI, 2009). This engine uses the Hidden-
Markov models (Gales, 2008), which are statistical models based on probability for the speech
recognition, and the Text-to-Speech Concatenative Syntehisys technique (Braga, 2008).

Fig. 1. GUI Interface of the VUI Application

4.2 Implementation issues
The application was implemented using Borland Delphi IDE (Borland Delphi, 2009) and the
Microsoft Speech API (SAPI) Version 5.1 (Microsoft SAPI, 2009).
SAPI is middleware that provides an API and a device driver interface (DDI) for speech
engines to implement. The speech engines are either speech recognizers or synthesizers.
Each speech engine is language specific. The SAPI Architecture is presented in the Figure 2.
A few issues were reported during the implementation. First, it was necessary to stablish a
way to suspend and resume the recognition engine. The engine attempts to recognize every

An Empirical Approach for the Evaluation of Voice User Interfaces

159

Fig. 2. Speech API Engine (font: http://msdn.microsoft.com/en-us/library/bb756992.aspx)

input that is recorded. This was done by inserting a flag indicating whether the system
might accept or not the engine results.
Enabling the application to correctly work on different Operational Systems was another
issue, because Speech Recognition is a built-in feature in Microsoft Vista for English
Language, but in other OS it must be installed and properly configured. This issue still
causes a little concern when the system needs to be installed for a different range of users.
Programming issues were not reported, due to very comprehensive guide available in the
Internet for the SAPI, and due to the large number of similar applications available in the
Internet. The authors must point out that the system is relatively simple, because it was
developed only to support the evaluation of usability proposed.

4.3 Methodology
In order to evaluate the usability of the developed application, we have employed the
heuristic evaluation, a type of usability inspection method. We used a checklist based on the
heuristics presented in Table 1. These heuristics are based on re-interpretations (Nielsen,
1993), on the study of non-functional requirements for VUIs, and on the good practices of
development pointed out by (Dybkjaer & Bersen, 2001), (Salvador et al., 2008) and
(Komatani et al., 2003). In order to perform the evaluation satisfactorily, three evaluators
were invited to participate. These specialists that participated in this application evaluation
are experienced HCI researchers, as well as experts on the VUI applications development
process. These specialists are also skilled on heuristic evaluation. They used the checklist
presented in section 4.3.1.

 User Interfaces

160

For this evaluation task, two scenarios were generated:
• user reads the words, but maybe (s)he know or not the right pronunciation. (S)he is in a

quiet environment;
• user is in a noisy environment (probably at work/school), and (s)he, probably, knows

or not the right pronunciation of each word.
So, the application evaluation was composed by the following steps:
• Elaborating the evaluation form that should be fulfilled by specialists. The design of this form

was based on requirements presented in section 2. The final version of the form has
three fields: Requirement; Classification (whom eligible values are “Yes”, “No”, or “Not
applicable”); and, Remarks. Fig. 3 shows a template of this form with just one heuristics
category – i.e. Appropriate modality. The complete list with all heuristics and their
categories are presented in section 4.3.1;

APPROPRIATE MODALITY

 YES NO NOT APPLICABLE
In addiction to using voice, user can use other
modalities to interact with the application?

The use of keyboard or mouse is appropriate to
the application?

REMARKS

Fig. 3. Form template that should be fulfilled by specialists – Heuristics category
“Appropriate modality”

• Specialists perform evaluation. Each specialist evaluates the applications verifying
whether the principles of our approach were observed, reporting faults and the fault
level, concerning the usability principle commitment, found in the application;

• Results compilation. An evaluation summary is created based on collected the results
collected by specialist.

4.3.1 Heuristics-based usability checklist
The heuristics-based usability checklist built by the authors is listed below:
• Suitable Feedback

• Does the application provide feedback to every user’s action?
• If the application takes a long processing time, becoming not available, due to

user’s data input, does the system inform the user about its current status and also
for how long the user must wait?

• Does the system inform the user about successful, or not, word recognition?
• User diversity and user perception

• In the case of a system designed for wide range of users, does the application
provide suitable messages that match the level of each user?

• Are the dialog styles appropriate to users capabilities, allowing step-by-step actions
for novices and more complex inputs to advanced users?

• Does the application provide shortcuts?
• Minimizing memorization efforts

• Does the system force the use of key-words?
• Appropriate output sentences

An Empirical Approach for the Evaluation of Voice User Interfaces

161

• Does the system have outputs with adequacy information?
• Are the system outputs correct?
• Are the system outputs relevant?
• Are the systems outputs really instructive?
• Does the system outputs cause information overload to the user?
• Is the output terminology well-know and easily recognized by user?

• Output Voice Quality
• Is the system output clear?
• Has the system a right intonation?
• Has the system an appropriate rhythm?
• Does the system make the user feel good concerning to listening?

• Proper entry recognition
• Does the system rarely misunderstand the user input?

• Natural user speech
• Does the system provide an easy (and natural) interaction human-computer by

voice?
• Appropriate dialog start out and adequate instruction about how to interact with the

application
• In the point of view of novice users, does the system conduce, in a well-done way,

the dialog?
• In the point of view of advance users, does the system allow a big amount of input

data at a once?
• Natural dialog structure

• Concerning to the dialog, is it natural to user, accomplishing the user’s
expectations, specially in the cases when the dialog is conducted by the system, and
user is not allowing to interfere on the dialog structure

• Sufficiency of interface guidance
• Does the user feel himself as the controller of the interaction?

• Help tool
• Does the application provide a complete and extensive help to aid the users?
• Are there different help levels suitable to the complexity of the demanded

information?
• Does the system use dialog strategies based on confirmation?

• Error prevention
• Does the system emit appropriate sounds when input data problems occur?
• Does the system provide a feedback to the user when the input information has not

been understood?
• Does the system force the use of key-words?
• When the user input is inconsistent or ambiguous, does the system request more

information?
• Handling errors

• Error messages help to solve the problem, giving precisely the right location, the
specific or general reason, as well as the right actions that user should perform to
solve the problem

• Are the error messages neutral and polite?

 User Interfaces

160

For this evaluation task, two scenarios were generated:
• user reads the words, but maybe (s)he know or not the right pronunciation. (S)he is in a

quiet environment;
• user is in a noisy environment (probably at work/school), and (s)he, probably, knows

or not the right pronunciation of each word.
So, the application evaluation was composed by the following steps:
• Elaborating the evaluation form that should be fulfilled by specialists. The design of this form

was based on requirements presented in section 2. The final version of the form has
three fields: Requirement; Classification (whom eligible values are “Yes”, “No”, or “Not
applicable”); and, Remarks. Fig. 3 shows a template of this form with just one heuristics
category – i.e. Appropriate modality. The complete list with all heuristics and their
categories are presented in section 4.3.1;

APPROPRIATE MODALITY

 YES NO NOT APPLICABLE
In addiction to using voice, user can use other
modalities to interact with the application?

The use of keyboard or mouse is appropriate to
the application?

REMARKS

Fig. 3. Form template that should be fulfilled by specialists – Heuristics category
“Appropriate modality”

• Specialists perform evaluation. Each specialist evaluates the applications verifying
whether the principles of our approach were observed, reporting faults and the fault
level, concerning the usability principle commitment, found in the application;

• Results compilation. An evaluation summary is created based on collected the results
collected by specialist.

4.3.1 Heuristics-based usability checklist
The heuristics-based usability checklist built by the authors is listed below:
• Suitable Feedback

• Does the application provide feedback to every user’s action?
• If the application takes a long processing time, becoming not available, due to

user’s data input, does the system inform the user about its current status and also
for how long the user must wait?

• Does the system inform the user about successful, or not, word recognition?
• User diversity and user perception

• In the case of a system designed for wide range of users, does the application
provide suitable messages that match the level of each user?

• Are the dialog styles appropriate to users capabilities, allowing step-by-step actions
for novices and more complex inputs to advanced users?

• Does the application provide shortcuts?
• Minimizing memorization efforts

• Does the system force the use of key-words?
• Appropriate output sentences

An Empirical Approach for the Evaluation of Voice User Interfaces

161

• Does the system have outputs with adequacy information?
• Are the system outputs correct?
• Are the system outputs relevant?
• Are the systems outputs really instructive?
• Does the system outputs cause information overload to the user?
• Is the output terminology well-know and easily recognized by user?

• Output Voice Quality
• Is the system output clear?
• Has the system a right intonation?
• Has the system an appropriate rhythm?
• Does the system make the user feel good concerning to listening?

• Proper entry recognition
• Does the system rarely misunderstand the user input?

• Natural user speech
• Does the system provide an easy (and natural) interaction human-computer by

voice?
• Appropriate dialog start out and adequate instruction about how to interact with the

application
• In the point of view of novice users, does the system conduce, in a well-done way,

the dialog?
• In the point of view of advance users, does the system allow a big amount of input

data at a once?
• Natural dialog structure

• Concerning to the dialog, is it natural to user, accomplishing the user’s
expectations, specially in the cases when the dialog is conducted by the system, and
user is not allowing to interfere on the dialog structure

• Sufficiency of interface guidance
• Does the user feel himself as the controller of the interaction?

• Help tool
• Does the application provide a complete and extensive help to aid the users?
• Are there different help levels suitable to the complexity of the demanded

information?
• Does the system use dialog strategies based on confirmation?

• Error prevention
• Does the system emit appropriate sounds when input data problems occur?
• Does the system provide a feedback to the user when the input information has not

been understood?
• Does the system force the use of key-words?
• When the user input is inconsistent or ambiguous, does the system request more

information?
• Handling errors

• Error messages help to solve the problem, giving precisely the right location, the
specific or general reason, as well as the right actions that user should perform to
solve the problem

• Are the error messages neutral and polite?

 User Interfaces

162

• Are the error messages short and elaborated with few words and well-known?
• Are the error messages free of abbreviations or specific codes generated by the

operational system?
• Are the message contents updated when users produce the same error

consecutively?

4.4 Results
Based on the checklist proposed by authors, the usability evaluation was performed by three
VUI experts. The main results are listed below:

1. Appropriate modality: three different modalities are employed for user interaction:
keyboard, mouse and voice, which seems to be very enriching for VUI systems.;

2. Suitable Feedback: the application does not point out clearly when the recognition task
fails, even for the third attempt of recognition. The system just repeats the word with
the correct pronunciation;

3. User diversity and user perception: the application, even in its initial prototype, does
not consider the variety of user types (beginners, intermediates and experts) that
interacts with the system;

4. Appropriate phrases out: although the content of the output is correct and relevant, and
the used terminology is appropriate, there is a lack of information that should be
provided to the user about the pronunciation approval or disapproval;

5. Output Voice Quality: as the system pronounce just one word-a-time, some features
such as intonation, rhythm and pleasure of hearing can not be evaluated;

6. Proper entry recognition: if the user previously does not perform the voice training
task, the system hardly will recognize the user’s inputs. As the application can be run
without this training phase, user should be informed about the consequence of not
performing the voice training task;

7. Appropriate dialog start out and adequate instruction about how to interact with the
application: the system could present more introductory information for novices about
what would happen as result of user’s action. On the very first time interacting with the
application, user could face some misunderstandings, since the system is starting to
count the time waiting that the user pronounces the word that is highlighted on the
screen.

8. Help tool: due the evaluated application is in its prototype phase, the system does not
provide a complete help system, nor different levels of help;

9. Error prevention: the feedback provided when the system does not understand what
the user has pronounced could be better explained. The feedback current can induce
user to error;

10. Handling errors: the error messages are free of abbreviations and/or codes generated
by the operating system, which often cause confusion for the user. However, they could
be clearer, saying how many times the user has tried to pronounce the proposed word.
In the third attempt, for example, the system should announce the correct
pronunciation and inform that this word would be considered as a bad pronunciation;

Concerning to the two proposed scenarios considered in our evaluation process, when the
evaluation was applied for the scenario 2 (noisy environment), the recognition rate
decreased (it is less than 20%), then, the system becomes inappropriate to use.

An Empirical Approach for the Evaluation of Voice User Interfaces

163

5. Conclusions
This chapter aimed to present the evaluation of VUIs applications. A specific evaluation
plan was proposed and used to test the application by three experts. This plan included
inspection tests (checklist method), based on heuristic evaluation.
Our premise is that voice recognition applied to language teaching may improve the users’
pronunciation. This will be verified when this application be applied for final users. Then,
the prototype will be improved and other teaching levels will be included, enabling the
application to be able to be used and tested by final users. One issue to be worked on is
related to the low recognition rate. It is necessary to investigate why this is happening.
These heuristic rules were adapted to cover the case study. It is important to verify if these
rules are sufficient for other case studies.
Future work will involve the development of others VUI tools to improve the user’s
listening and grammar for foreign students. Besides, a study about improving the
recognition level when the application is executed in noisy environments should be
delivered.

6. References
Alapetite, A.; Boje, A. H. & Morten, H. (2009). Acceptance of speech recognition by

physicians: A survey of expectations, experiences, and social influence, International
journal of human-computer studies, vol. 67, n. 1, pp. 36-49.

Borland Delphi IDE http://www.borland.com/br/products/delphi/index.html
Braga, D. Algoritmos de Processamento da Linguagem Natural para Sistemas de Conversão

Texto Fala em Português. PhD Thesis. University of A Coruña, A Coruña, Spain.
(2008)

Cohen M; Giangola J. & Balogh J. (2004). Voice User Interface Design. New York: Addison
Wesley.

Deng, L. & Huang, X. 2004. Challenges in adopting speech recognition. Commun. ACM 47,
1, pp 69--75, (2004)

Dybkjaer, L. & Bernsen N.O.: Usability Issues in Spoken Language Dialogue Systems.
Natural Language Engineering, Special Issue on Best Practice in Spoken Language
Dialogue System Engineering, Vol. 6 Parts 3 & 4, 243-272, (2000).

Dybkjaer, L. & Bernsen, N. O. (2001). Usability Evaluation in Spoken Language Dialogue
Systems, Proceedings of the ACL 2001 Workshop on Evaluation Methodologies fro
Language and Dialogue Systems.

Foley, J. D. & Van Dan, A. (1990). Computer Graphics: Principle and Practice. Reading: Addison
Wesley.

Gales, M. The Application of Hidden Markov Models in Speech Recognition, ISBN
9781601981202, Now Pub, 2008.

Gibbon, D. & Moore, R., WINSKI, R. (Eds.): Handbook of Standards and Resources for
Spoken Language Systems. Mouton de Gruyter, Berlin, New York, (1997)

Gu, Y. & Gilbert, J. E. (2004). The development of a Voice System that interacts with a
student information database. In Proceedings of the 42nd Annual Southeast Regional
Conference (Huntsville, Alabama, April 02 - 03, 2004). ACM-SE 42. ACM, New York,
NY, 248-252.

 User Interfaces

162

• Are the error messages short and elaborated with few words and well-known?
• Are the error messages free of abbreviations or specific codes generated by the

operational system?
• Are the message contents updated when users produce the same error

consecutively?

4.4 Results
Based on the checklist proposed by authors, the usability evaluation was performed by three
VUI experts. The main results are listed below:

1. Appropriate modality: three different modalities are employed for user interaction:
keyboard, mouse and voice, which seems to be very enriching for VUI systems.;

2. Suitable Feedback: the application does not point out clearly when the recognition task
fails, even for the third attempt of recognition. The system just repeats the word with
the correct pronunciation;

3. User diversity and user perception: the application, even in its initial prototype, does
not consider the variety of user types (beginners, intermediates and experts) that
interacts with the system;

4. Appropriate phrases out: although the content of the output is correct and relevant, and
the used terminology is appropriate, there is a lack of information that should be
provided to the user about the pronunciation approval or disapproval;

5. Output Voice Quality: as the system pronounce just one word-a-time, some features
such as intonation, rhythm and pleasure of hearing can not be evaluated;

6. Proper entry recognition: if the user previously does not perform the voice training
task, the system hardly will recognize the user’s inputs. As the application can be run
without this training phase, user should be informed about the consequence of not
performing the voice training task;

7. Appropriate dialog start out and adequate instruction about how to interact with the
application: the system could present more introductory information for novices about
what would happen as result of user’s action. On the very first time interacting with the
application, user could face some misunderstandings, since the system is starting to
count the time waiting that the user pronounces the word that is highlighted on the
screen.

8. Help tool: due the evaluated application is in its prototype phase, the system does not
provide a complete help system, nor different levels of help;

9. Error prevention: the feedback provided when the system does not understand what
the user has pronounced could be better explained. The feedback current can induce
user to error;

10. Handling errors: the error messages are free of abbreviations and/or codes generated
by the operating system, which often cause confusion for the user. However, they could
be clearer, saying how many times the user has tried to pronounce the proposed word.
In the third attempt, for example, the system should announce the correct
pronunciation and inform that this word would be considered as a bad pronunciation;

Concerning to the two proposed scenarios considered in our evaluation process, when the
evaluation was applied for the scenario 2 (noisy environment), the recognition rate
decreased (it is less than 20%), then, the system becomes inappropriate to use.

An Empirical Approach for the Evaluation of Voice User Interfaces

163

5. Conclusions
This chapter aimed to present the evaluation of VUIs applications. A specific evaluation
plan was proposed and used to test the application by three experts. This plan included
inspection tests (checklist method), based on heuristic evaluation.
Our premise is that voice recognition applied to language teaching may improve the users’
pronunciation. This will be verified when this application be applied for final users. Then,
the prototype will be improved and other teaching levels will be included, enabling the
application to be able to be used and tested by final users. One issue to be worked on is
related to the low recognition rate. It is necessary to investigate why this is happening.
These heuristic rules were adapted to cover the case study. It is important to verify if these
rules are sufficient for other case studies.
Future work will involve the development of others VUI tools to improve the user’s
listening and grammar for foreign students. Besides, a study about improving the
recognition level when the application is executed in noisy environments should be
delivered.

6. References
Alapetite, A.; Boje, A. H. & Morten, H. (2009). Acceptance of speech recognition by

physicians: A survey of expectations, experiences, and social influence, International
journal of human-computer studies, vol. 67, n. 1, pp. 36-49.

Borland Delphi IDE http://www.borland.com/br/products/delphi/index.html
Braga, D. Algoritmos de Processamento da Linguagem Natural para Sistemas de Conversão

Texto Fala em Português. PhD Thesis. University of A Coruña, A Coruña, Spain.
(2008)

Cohen M; Giangola J. & Balogh J. (2004). Voice User Interface Design. New York: Addison
Wesley.

Deng, L. & Huang, X. 2004. Challenges in adopting speech recognition. Commun. ACM 47,
1, pp 69--75, (2004)

Dybkjaer, L. & Bernsen N.O.: Usability Issues in Spoken Language Dialogue Systems.
Natural Language Engineering, Special Issue on Best Practice in Spoken Language
Dialogue System Engineering, Vol. 6 Parts 3 & 4, 243-272, (2000).

Dybkjaer, L. & Bernsen, N. O. (2001). Usability Evaluation in Spoken Language Dialogue
Systems, Proceedings of the ACL 2001 Workshop on Evaluation Methodologies fro
Language and Dialogue Systems.

Foley, J. D. & Van Dan, A. (1990). Computer Graphics: Principle and Practice. Reading: Addison
Wesley.

Gales, M. The Application of Hidden Markov Models in Speech Recognition, ISBN
9781601981202, Now Pub, 2008.

Gibbon, D. & Moore, R., WINSKI, R. (Eds.): Handbook of Standards and Resources for
Spoken Language Systems. Mouton de Gruyter, Berlin, New York, (1997)

Gu, Y. & Gilbert, J. E. (2004). The development of a Voice System that interacts with a
student information database. In Proceedings of the 42nd Annual Southeast Regional
Conference (Huntsville, Alabama, April 02 - 03, 2004). ACM-SE 42. ACM, New York,
NY, 248-252.

 User Interfaces

164

Hunt, A. & Walker, W.: A fine Grained Component Architecture for Speech Application
Development, SUN Research, Project: SMLI TR-. 2000-86, June (2000).

Komatani, K.; Ueno S.; Kawahara, T. & Okuno, H. G. (2003). Flexible Guidance Generation
using User Model in Spoken Dialogue Systems, Proceedings of the 4lst Annual
Meeting of the Association for Computational Linguistics, pp. 256-263.

Microsoft Speech API (SAPI) Version 5.1. http://msdn.microsoft.com/en-us/speech
/dd380587.aspx

Nielsen, J. (1993). Usability Enginnering. Academic Press, Cambridge, MA.
Nielsen, J. (2000). Designing web usability. Indianapolis: News Riders Publishing.
Rubin, J. (1994) Handbook of Usability Testing - How to plan, design and conduct effective tests.

New York: Wiley.
Salvador, V. F. M.; Oliveira Neto, J. S. & Kawamoto, A. L. (2008). Requirement Engineering

Contributions to Voice User Interface. Proceedings of the First International Conference
on Advances in Computer-Human Interaction, 2008, Sainte Luce. First International
Conference on Advances in Computer-Human Interaction, p. 309-314.

San-Segundo, R.; Montero, J. M.; Macías-Guarasa, J.; Ferreiros, J. & Pardo, J. M.: Knowledge-
Combining Methodology for Dialogue Design in Spoken Language Systems,
International Journal of Speech Technology 8, 45-66, Springer Science + Business
Media (2005)

Walker, M.; Litman, D.; Kamm, C. & Abella, A.: PARADISE: A Framework for Evaluating
Spoken Dialogue Agents. Proc. of the Association of Computational Linguistics
(ACL), pp 271—280, (1997)

11

Embedded User Interface for Mobile
Applications to Satisfy Design for All Principles

Evangelos Bekiaris, Maria Gemou and Kostantinos Kalogirou
C.E.R.T.H./Hellenic Institute of Transport

Hellas

1. Introduction
This chapter describes the existing Java U.I. libraries available in the market. Some of them
are under the GPL/LGPL license and some other are commercial and a license is required to
be purchased. There are also many others that are provided by the mobile device vendors.
This document separates these types of libraries, analyses each of them by elaborating their
features and specifications. CERTH/HIT tested most of the libraries included in this
document. These evaluation tests have been taken place both on emulation environment
and on mobile devices. Thus, the Sun Wireless Toolkit version 2.5.2 and Java ME SDK
Device Manager emulator tools and also the following three mobile devices were used:
• Sony Ericsson C905 (Java platform Operating System)
• Nokia N82 and Nokia 95 8G (Symbian Operating System)
• HTC TyN II (Windows Mobile 6.x OS with IBM WEME(J9) version 6.1.1 with the

support of Personal Profile 1.1)
The examples were run on the above devices are either samples provided by the company
that support the particular library or they have created by CERTH/HIT.

2. GPL/LGPL license UI libraries
2.1 AWT
The AWT stands for The Abstract Window Toolkit (AWT). It is the Java's original platform-
independent windowing, graphics, and user-interface widget toolkit.
The AWT is now part of the Java Foundation Classes (JFC) — the standard API for
providing a graphical user interface (GUI) for a Java program. AWT is supported by
number of Java ME profiles such as the Connected Device Configuration with Personal
Basis Profile or Personal Profile, which is the minimum requirement. The core package is the
java.awt. Some of its features are:
• The rich set of user interface components;
• The robust event-handling model;
• Graphics and imaging tools, including shape, color, and font classes;
• Layout managers, for flexible window layouts that don't depend on a particular

window size or screen resolution;
• Data transfer classes, for cut-and-paste through the native platform clipboard.

 User Interfaces

164

Hunt, A. & Walker, W.: A fine Grained Component Architecture for Speech Application
Development, SUN Research, Project: SMLI TR-. 2000-86, June (2000).

Komatani, K.; Ueno S.; Kawahara, T. & Okuno, H. G. (2003). Flexible Guidance Generation
using User Model in Spoken Dialogue Systems, Proceedings of the 4lst Annual
Meeting of the Association for Computational Linguistics, pp. 256-263.

Microsoft Speech API (SAPI) Version 5.1. http://msdn.microsoft.com/en-us/speech
/dd380587.aspx

Nielsen, J. (1993). Usability Enginnering. Academic Press, Cambridge, MA.
Nielsen, J. (2000). Designing web usability. Indianapolis: News Riders Publishing.
Rubin, J. (1994) Handbook of Usability Testing - How to plan, design and conduct effective tests.

New York: Wiley.
Salvador, V. F. M.; Oliveira Neto, J. S. & Kawamoto, A. L. (2008). Requirement Engineering

Contributions to Voice User Interface. Proceedings of the First International Conference
on Advances in Computer-Human Interaction, 2008, Sainte Luce. First International
Conference on Advances in Computer-Human Interaction, p. 309-314.

San-Segundo, R.; Montero, J. M.; Macías-Guarasa, J.; Ferreiros, J. & Pardo, J. M.: Knowledge-
Combining Methodology for Dialogue Design in Spoken Language Systems,
International Journal of Speech Technology 8, 45-66, Springer Science + Business
Media (2005)

Walker, M.; Litman, D.; Kamm, C. & Abella, A.: PARADISE: A Framework for Evaluating
Spoken Dialogue Agents. Proc. of the Association of Computational Linguistics
(ACL), pp 271—280, (1997)

11

Embedded User Interface for Mobile
Applications to Satisfy Design for All Principles

Evangelos Bekiaris, Maria Gemou and Kostantinos Kalogirou
C.E.R.T.H./Hellenic Institute of Transport

Hellas

1. Introduction
This chapter describes the existing Java U.I. libraries available in the market. Some of them
are under the GPL/LGPL license and some other are commercial and a license is required to
be purchased. There are also many others that are provided by the mobile device vendors.
This document separates these types of libraries, analyses each of them by elaborating their
features and specifications. CERTH/HIT tested most of the libraries included in this
document. These evaluation tests have been taken place both on emulation environment
and on mobile devices. Thus, the Sun Wireless Toolkit version 2.5.2 and Java ME SDK
Device Manager emulator tools and also the following three mobile devices were used:
• Sony Ericsson C905 (Java platform Operating System)
• Nokia N82 and Nokia 95 8G (Symbian Operating System)
• HTC TyN II (Windows Mobile 6.x OS with IBM WEME(J9) version 6.1.1 with the

support of Personal Profile 1.1)
The examples were run on the above devices are either samples provided by the company
that support the particular library or they have created by CERTH/HIT.

2. GPL/LGPL license UI libraries
2.1 AWT
The AWT stands for The Abstract Window Toolkit (AWT). It is the Java's original platform-
independent windowing, graphics, and user-interface widget toolkit.
The AWT is now part of the Java Foundation Classes (JFC) — the standard API for
providing a graphical user interface (GUI) for a Java program. AWT is supported by
number of Java ME profiles such as the Connected Device Configuration with Personal
Basis Profile or Personal Profile, which is the minimum requirement. The core package is the
java.awt. Some of its features are:
• The rich set of user interface components;
• The robust event-handling model;
• Graphics and imaging tools, including shape, color, and font classes;
• Layout managers, for flexible window layouts that don't depend on a particular

window size or screen resolution;
• Data transfer classes, for cut-and-paste through the native platform clipboard.

 User Interfaces

166

The following GUI components are supported by AWT:
• Button (java.awt.Button)
• Canvas (java.awt.Canvas)
• Checkbox (java.awt.Checkbox)
• Choice - Radio button (java.awt.Choice)
• Label (java.awt.Label)
• List (java.awt.List)
• Scrollbar (java.awt.Scrollbar)
• Text area (java.awt.TextArea)
• Text field (java.awt.TextField)
• Panel (java.awt.Panel)
• Frame (java.awt.Frame)
• Dialog (java.awt.Dialog)
• Popup menus (java.awt.PopupMenu)

Fig. 1. AWT GUI components

The whole API of AWT can be found at the http://java.sun.com/javase/6/docs/api. AWT
widgets provided a thin level of abstraction over the underlying native user interface. For
example, creating an AWT check box would cause AWT directly to call the underlying
native subroutine that created a check box. However, a check box on Microsoft Windows is
not exactly the same as a check box on Mac OS or on the various types of UNIX and Linux
distributions. Some application developers prefer this model because it provides a high
degree of fidelity to the underlying native windowing toolkit and seamless integration with
native applications. In other words, a GUI program written using AWT looks like a native
Microsoft Windows application when run on Windows, but the same program looks like a
native Apple Macintosh application when run on a Mac. However, some application
developers dislike this model because they prefer their applications to look exactly the same
on every platform.(Wikipedia , 2009)

2.2 LWUIT
“LWUIT is a UI library that is bundled together with applications and helps content
developers in creating compelling and consistent Java ME applications. LWUIT supports
visual components and other UI goodies such as theming, transitions, animation and more.
The Lightweight UI Toolkit is a lightweight widget library inspired by Swing but designed
for constrained devices such as mobile phones and set-top boxes. Lightweight UI Toolkit
supports pluggable theme-ability, a component and container hierarchy, and abstraction of
the underlying GUI toolkit. The term lightweight indicates that the widgets in the library
draw their state in Java source without native peer rendering. Internal interfaces and
abstract classes provide abstraction of interfaces and APIs in the underlying profile. This

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

167

allows portability and a migration path for both current and future devices and profiles. For
example, Graphics would be an abstraction of the graphics object in the underlying profile.
The Lightweight UI Toolkit library tries to avoid the "lowest common denominator"
mentality by implementing some features missing in the low-end platforms and taking
better advantage of high-end platforms. The following figure shows the widget class
hierarchy”(Sun Microsystems, 2008).

Fig. 2. LWUIT Widget library class hierarchy

Moreover, the Lightweight UI Toolkit library completely handles and encapsulates UI
threading in order to increase compatibility. It has a single main thread referred to as the
"EDT"(inspired by the Event Dispatch Thread in Swing and AWT). All events and (paint)
calls are dispatched using this thread. This guarantees that event and paint calls are
serialized and do not risk causing a threading issue. The following figure shows a screen
dump of a LWUIT sample.

Fig. 3. LWUI sample

 User Interfaces

166

The following GUI components are supported by AWT:
• Button (java.awt.Button)
• Canvas (java.awt.Canvas)
• Checkbox (java.awt.Checkbox)
• Choice - Radio button (java.awt.Choice)
• Label (java.awt.Label)
• List (java.awt.List)
• Scrollbar (java.awt.Scrollbar)
• Text area (java.awt.TextArea)
• Text field (java.awt.TextField)
• Panel (java.awt.Panel)
• Frame (java.awt.Frame)
• Dialog (java.awt.Dialog)
• Popup menus (java.awt.PopupMenu)

Fig. 1. AWT GUI components

The whole API of AWT can be found at the http://java.sun.com/javase/6/docs/api. AWT
widgets provided a thin level of abstraction over the underlying native user interface. For
example, creating an AWT check box would cause AWT directly to call the underlying
native subroutine that created a check box. However, a check box on Microsoft Windows is
not exactly the same as a check box on Mac OS or on the various types of UNIX and Linux
distributions. Some application developers prefer this model because it provides a high
degree of fidelity to the underlying native windowing toolkit and seamless integration with
native applications. In other words, a GUI program written using AWT looks like a native
Microsoft Windows application when run on Windows, but the same program looks like a
native Apple Macintosh application when run on a Mac. However, some application
developers dislike this model because they prefer their applications to look exactly the same
on every platform.(Wikipedia , 2009)

2.2 LWUIT
“LWUIT is a UI library that is bundled together with applications and helps content
developers in creating compelling and consistent Java ME applications. LWUIT supports
visual components and other UI goodies such as theming, transitions, animation and more.
The Lightweight UI Toolkit is a lightweight widget library inspired by Swing but designed
for constrained devices such as mobile phones and set-top boxes. Lightweight UI Toolkit
supports pluggable theme-ability, a component and container hierarchy, and abstraction of
the underlying GUI toolkit. The term lightweight indicates that the widgets in the library
draw their state in Java source without native peer rendering. Internal interfaces and
abstract classes provide abstraction of interfaces and APIs in the underlying profile. This

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

167

allows portability and a migration path for both current and future devices and profiles. For
example, Graphics would be an abstraction of the graphics object in the underlying profile.
The Lightweight UI Toolkit library tries to avoid the "lowest common denominator"
mentality by implementing some features missing in the low-end platforms and taking
better advantage of high-end platforms. The following figure shows the widget class
hierarchy”(Sun Microsystems, 2008).

Fig. 2. LWUIT Widget library class hierarchy

Moreover, the Lightweight UI Toolkit library completely handles and encapsulates UI
threading in order to increase compatibility. It has a single main thread referred to as the
"EDT"(inspired by the Event Dispatch Thread in Swing and AWT). All events and (paint)
calls are dispatched using this thread. This guarantees that event and paint calls are
serialized and do not risk causing a threading issue. The following figure shows a screen
dump of a LWUIT sample.

Fig. 3. LWUI sample

 User Interfaces

168

2.3 Light weight Visual Component Library (LwVCL)
The LwVCL library was created in order to support Graphical User Interfaces in different
platforms. The LwVCL consists of the following:
• JSE LwVCL: Use it for desktop systems - Windows, UNIX, Mac OS, everywhere java

can be installed. This is the base implementation of the library that is the "master"
branch for all others. All new features come here first and after that are applied to other
versions.

• JME Personal Profile (Personal Java) LwVCL: Use it for PDAs like to have the same
capabilities as you have on the desktop systems. This version doesn't differ from JSE
LwVCL

• .NET LwVCL: This version has the same JSE LwVCL capabilities.
• SWT LwVCL
• JME MIDP LwVCL Use it for the resources limited devices. This version is under

development now.
Some of library's powerful characteristics are the following (lwvcl.com, 2007):
• Layered architecture.

This library has a layered architecture where UI components set has minimal
dependencies on a concrete platform. The LwVCL components are abstract as much as
it is possible to be easily adapted to any other platforms and languages. See the library
basic ideas page.

• Small size.
The library packages are very small. The core Java package is about 160 Kb (the .NET
DLL is about 200 Kb).

• Provides about 30 various GUI components.
In spite of the small size of the library, LwVCL provides a huge number of UI
components. In addition to simple components, you will get a grid, tree, tree grid, and
other complex, flexible components.

• Dynamic and thrifty to system resources usage (CPU/Memory/Disk Space).
The library is very fast and takes care of use of system resources.

• MVC (Model-View-Controller) compliance.
The library components are designed according to the MVC concept that allows
separating data models, views, and business logic.

• Flexible and customizable.
The library is customizable. It is very easy to extend the library with new components, or
change its behavior according to your requirements.

2.4 Synclast
It is an extensible toolkit for creating colourful custom user interfaces on Java-enabled
handheld devices. It is compatible with any MIDP 1.0 device, and is fully open source. It
provides the same GUI components as the LCDUI library plus the following:
• Box
• Button
• Checkbox
• Colored Widget
• Flow
• Input

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

169

• Label
• Menu
• Popup
• Radio Button
• Radio Group
• Style Sheet
• Styled
• Synclast Canvas
• Synclast Full Canvas
• Synclast Image
• SynclastManager
• Synclast Task
• Table
• Tap Input Adapter
• Widget
Synclast was used mainly for creating games. The following figures shows the demo
Synclast application running on Sun WTK.

Fig. 4. Synclast sample applications

2.5 Thinlet
Thinlet is a GUI toolkit based on XML structure. It supports both JME profiles, Personal and
MID Profiles. Porsche Engineering developed a version of Thinlet based on MIDP.
“It is a single Java class, parses the hierarchy and properties of the GUI, handles user
interaction, and calls business logic. Separates the graphic presentation (described in an
XML file) and the application methods (written as Java code).Its compressed size is 39KB,
and it is LGPL licensed. Thinlet runs with Java 1.1 (IE's default JVM) to 1.4, Personal Java,
and Personal (Basis) Profile. Swing isn't required.”(Robert Bajzat, 2002-2006) PDA
application and mobile application GUI were built using Thinlet for the purposes of
IM@GINE-IT European project. The following figures show some applications that uses
Thinlet library.

 User Interfaces

168

2.3 Light weight Visual Component Library (LwVCL)
The LwVCL library was created in order to support Graphical User Interfaces in different
platforms. The LwVCL consists of the following:
• JSE LwVCL: Use it for desktop systems - Windows, UNIX, Mac OS, everywhere java

can be installed. This is the base implementation of the library that is the "master"
branch for all others. All new features come here first and after that are applied to other
versions.

• JME Personal Profile (Personal Java) LwVCL: Use it for PDAs like to have the same
capabilities as you have on the desktop systems. This version doesn't differ from JSE
LwVCL

• .NET LwVCL: This version has the same JSE LwVCL capabilities.
• SWT LwVCL
• JME MIDP LwVCL Use it for the resources limited devices. This version is under

development now.
Some of library's powerful characteristics are the following (lwvcl.com, 2007):
• Layered architecture.

This library has a layered architecture where UI components set has minimal
dependencies on a concrete platform. The LwVCL components are abstract as much as
it is possible to be easily adapted to any other platforms and languages. See the library
basic ideas page.

• Small size.
The library packages are very small. The core Java package is about 160 Kb (the .NET
DLL is about 200 Kb).

• Provides about 30 various GUI components.
In spite of the small size of the library, LwVCL provides a huge number of UI
components. In addition to simple components, you will get a grid, tree, tree grid, and
other complex, flexible components.

• Dynamic and thrifty to system resources usage (CPU/Memory/Disk Space).
The library is very fast and takes care of use of system resources.

• MVC (Model-View-Controller) compliance.
The library components are designed according to the MVC concept that allows
separating data models, views, and business logic.

• Flexible and customizable.
The library is customizable. It is very easy to extend the library with new components, or
change its behavior according to your requirements.

2.4 Synclast
It is an extensible toolkit for creating colourful custom user interfaces on Java-enabled
handheld devices. It is compatible with any MIDP 1.0 device, and is fully open source. It
provides the same GUI components as the LCDUI library plus the following:
• Box
• Button
• Checkbox
• Colored Widget
• Flow
• Input

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

169

• Label
• Menu
• Popup
• Radio Button
• Radio Group
• Style Sheet
• Styled
• Synclast Canvas
• Synclast Full Canvas
• Synclast Image
• SynclastManager
• Synclast Task
• Table
• Tap Input Adapter
• Widget
Synclast was used mainly for creating games. The following figures shows the demo
Synclast application running on Sun WTK.

Fig. 4. Synclast sample applications

2.5 Thinlet
Thinlet is a GUI toolkit based on XML structure. It supports both JME profiles, Personal and
MID Profiles. Porsche Engineering developed a version of Thinlet based on MIDP.
“It is a single Java class, parses the hierarchy and properties of the GUI, handles user
interaction, and calls business logic. Separates the graphic presentation (described in an
XML file) and the application methods (written as Java code).Its compressed size is 39KB,
and it is LGPL licensed. Thinlet runs with Java 1.1 (IE's default JVM) to 1.4, Personal Java,
and Personal (Basis) Profile. Swing isn't required.”(Robert Bajzat, 2002-2006) PDA
application and mobile application GUI were built using Thinlet for the purposes of
IM@GINE-IT European project. The following figures show some applications that uses
Thinlet library.

 User Interfaces

170

Fig. 5. Applications using Thinlet library

Fig. 6. Apime samples

2.6 Apime
“Apime is a framework to offer more functionality to mobile with Java enabled (JME). The
core is the user interface, with basics components to make applications, and with possibility to

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

171

create news adapting to what each developer requires. Also it includes classes for file manage
and customization (skins, internationalization, keyboards for different languages and mobiles.
It is whole compatible with MIDP 1.0, although exists a version for MIDP 2.0 and other for
Nokia, to use the full screen feature than MIDP 1.0 no offers. For all this it allow make
different kind of applications easier and faster.” (JAVA4EVER, 2005)

2.7 F.I.R.E (Flexible Interface Rendering Engine)
The basic set of Fire components offer all the functionality of the Java ME GUI components
provided in the MIDP 2.0 profile (Forms, Items etc.) plus a much more appealing user
interface, themes, animations, popup menus, and better component layout. The library can
be downloaded from the http://sourceforge.net/projects/fire-j2me/

Fig. 7. F.I.R.E. examples

2.8 Kuix
Kuix is an extensible and fully customizable JavaME UI framework that enables high end
application development. The Kuix library provides wide device compatibility. From the
beginning, maximizing compatibility level has lead the development of Kuix and it results
today in a wide range of supported devices. Kuix is compliant with CLDC 1.0 and MIDP 2.0.
Besides, it supports fast and easy application development. Forms and widgets components
are organized through an XML approach that combined with CSS file, allow the
programmers to build applications even faster. Kuix is an open source project licensed
under GPL. As a strong copy left license, it requires that all derived works to be available
under the same license. For professional developers that do not want to release their
applications under GPL, it is invited to purchase a commercial license. The demo-sample
was successfully downloaded and run on mobile devices. It is very interesting that is based
on XML and CSS file approaches. However, this licensing may not meet the needs of
professional developers; so for that reason Kalmeo release a commercial License to allow the
non-disclosure of their source code. (http://www.kalmeo.com/products/kuix). The
following figures show the examples on Sun's WTK simulator.

 User Interfaces

170

Fig. 5. Applications using Thinlet library

Fig. 6. Apime samples

2.6 Apime
“Apime is a framework to offer more functionality to mobile with Java enabled (JME). The
core is the user interface, with basics components to make applications, and with possibility to

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

171

create news adapting to what each developer requires. Also it includes classes for file manage
and customization (skins, internationalization, keyboards for different languages and mobiles.
It is whole compatible with MIDP 1.0, although exists a version for MIDP 2.0 and other for
Nokia, to use the full screen feature than MIDP 1.0 no offers. For all this it allow make
different kind of applications easier and faster.” (JAVA4EVER, 2005)

2.7 F.I.R.E (Flexible Interface Rendering Engine)
The basic set of Fire components offer all the functionality of the Java ME GUI components
provided in the MIDP 2.0 profile (Forms, Items etc.) plus a much more appealing user
interface, themes, animations, popup menus, and better component layout. The library can
be downloaded from the http://sourceforge.net/projects/fire-j2me/

Fig. 7. F.I.R.E. examples

2.8 Kuix
Kuix is an extensible and fully customizable JavaME UI framework that enables high end
application development. The Kuix library provides wide device compatibility. From the
beginning, maximizing compatibility level has lead the development of Kuix and it results
today in a wide range of supported devices. Kuix is compliant with CLDC 1.0 and MIDP 2.0.
Besides, it supports fast and easy application development. Forms and widgets components
are organized through an XML approach that combined with CSS file, allow the
programmers to build applications even faster. Kuix is an open source project licensed
under GPL. As a strong copy left license, it requires that all derived works to be available
under the same license. For professional developers that do not want to release their
applications under GPL, it is invited to purchase a commercial license. The demo-sample
was successfully downloaded and run on mobile devices. It is very interesting that is based
on XML and CSS file approaches. However, this licensing may not meet the needs of
professional developers; so for that reason Kalmeo release a commercial License to allow the
non-disclosure of their source code. (http://www.kalmeo.com/products/kuix). The
following figures show the examples on Sun's WTK simulator.

 User Interfaces

172

Fig. 8. Kuix samples

2.9 MWT (Micro Window Toolkit)
It is inspired by its UI big brothers as AWT, Swing and SWT, MWT comes into the scene
providing an UI framework designed and optimized for small devices. The MIDP high-level
UI API was designed for applications portability, employing a high level of abstraction,
however it provides very little control over look and feel, and sometimes, this is very
important.
In the other hand, the low-level UI API provides a good control over graphics and input
events, but the API lacks of UI components. The Java UI's (AWT) would be a solution, but it
was not included because it was designed and optimized for desktop computers. MWT
comes into the scene providing an UI framework designed and optimized for small
devices.”(J2ME-MWT Team, 2005-2007)
MWT is not one of these frameworks that takes control over your application. It was
inspired by his UI big brothers as AWT, Swing and SWT and it was designed and optimized
for small devices. MWT only requires the MIDP1 and CLDC1 APIs, so it's completely
portable. The sample applications from MWT were tested on mobile devices and it is
noticed that the user interface capabilities were limited.

2.10 OpenBaseMovil
In addition to database and scripting engine, OpenBaseMovil contains a declarative view
definition language. With an XML file you can generate all of your views, and they are
script and data aware: you can browse a set of results with less than ten lines of code. In case
an application is released under the GNU GPL license, the OpenBaseMovil library can be

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

173

used freely with no limitations other than imposed by the GNU GPL license. Otherwise, a
license must be purchased (http://www.openbasemovil.org/licensing/).

2.11 Swing ME
A Java ME implementation of Swing GUI, with Layouts, Borders, Renderers and lots of
components including inline TextField, Buttons, Window, TabbedPane and many others. All
visual and behavioural aspects can be fully customised of ANY component.”(Yura.net,
2008).
The following figures show some features of the sample applications from yura.net.

Fig. 9. SwingME examples

Some of the most interesting graphical features provided by SwingME are the border and
Layouts (Border test example), the scroll bar component, the ability of using tab panels
(Scroll Pane examples) and finally there are available themes for Menus.

3. Commercial UI libraries
3.1 TinyLine (Tinyline, 2002-2009)
TinyLine SVG implements an SVG Tiny 1.1+ engine for Android and Java platform (JME
CLDC/MIDP, CDC/PP, JSE). TinyLine SVG allows incorporating SVG Tiny 1.1+ graphics

 User Interfaces

172

Fig. 8. Kuix samples

2.9 MWT (Micro Window Toolkit)
It is inspired by its UI big brothers as AWT, Swing and SWT, MWT comes into the scene
providing an UI framework designed and optimized for small devices. The MIDP high-level
UI API was designed for applications portability, employing a high level of abstraction,
however it provides very little control over look and feel, and sometimes, this is very
important.
In the other hand, the low-level UI API provides a good control over graphics and input
events, but the API lacks of UI components. The Java UI's (AWT) would be a solution, but it
was not included because it was designed and optimized for desktop computers. MWT
comes into the scene providing an UI framework designed and optimized for small
devices.”(J2ME-MWT Team, 2005-2007)
MWT is not one of these frameworks that takes control over your application. It was
inspired by his UI big brothers as AWT, Swing and SWT and it was designed and optimized
for small devices. MWT only requires the MIDP1 and CLDC1 APIs, so it's completely
portable. The sample applications from MWT were tested on mobile devices and it is
noticed that the user interface capabilities were limited.

2.10 OpenBaseMovil
In addition to database and scripting engine, OpenBaseMovil contains a declarative view
definition language. With an XML file you can generate all of your views, and they are
script and data aware: you can browse a set of results with less than ten lines of code. In case
an application is released under the GNU GPL license, the OpenBaseMovil library can be

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

173

used freely with no limitations other than imposed by the GNU GPL license. Otherwise, a
license must be purchased (http://www.openbasemovil.org/licensing/).

2.11 Swing ME
A Java ME implementation of Swing GUI, with Layouts, Borders, Renderers and lots of
components including inline TextField, Buttons, Window, TabbedPane and many others. All
visual and behavioural aspects can be fully customised of ANY component.”(Yura.net,
2008).
The following figures show some features of the sample applications from yura.net.

Fig. 9. SwingME examples

Some of the most interesting graphical features provided by SwingME are the border and
Layouts (Border test example), the scroll bar component, the ability of using tab panels
(Scroll Pane examples) and finally there are available themes for Menus.

3. Commercial UI libraries
3.1 TinyLine (Tinyline, 2002-2009)
TinyLine SVG implements an SVG Tiny 1.1+ engine for Android and Java platform (JME
CLDC/MIDP, CDC/PP, JSE). TinyLine SVG allows incorporating SVG Tiny 1.1+ graphics

 User Interfaces

174

into Android and Java applications. The Tiny line SDK provides two products; TinyLine 2D
(current version 2.1) and TinyLine SVG (current version 2.1). Each of them applies to
different device platforms.
The TinyLine 2D implements a mobile 2D graphics engine for Java platform (JME
CLDC/MIDP, CDC/PP, JOSÉ). Developers are easily able to incorporate high quality,
scalable and platform-independent graphics into their Java applications. Some of its main
features are:
• Small footprint (around 40K in jar file)
• Fast fixed-point numbers mathematics
• Paths, basic shapes and texts drawings
• Hit tests for paths and texts
• Solid colour, bitmap, pattern, gradient (radial and linear) paints
• Fill, stroke and dash
• Affine transformations
• Outline fonts
• Left-to-right, right-to-left and vertical text layouts
• Ant aliasing
• Opacity

Fig. 10. TinyLine examples

On the other hand, the TinyLine SVG implements an SVG Tiny 1.1+ engine for Android and
Java platform (JME CLDC/MIDP, CDC/PP, and JSE). TinyLine SVG allows incorporating
SVG Tiny 1.1+ graphics into Android and Java applications. It provides the following
features:
• SVG Tiny 1.1+ engine
• Supports SVG fonts, raster image and text elements, paths
• Supports SMILE animations and events

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

175

• Allows both textual and gzipped SAG streams
• Compact code (around 100K in jar file)
• Easy to use API
The TinyLine library used to be free for JME until version 1.9. The screen dumps come from
the sample of that version. From version 2.0, a license is needed to be purchased. However,
it is free for Android platform. The examples from version 1.9 were tested successfully on
real devices as well.

3.2 TWUIK
TWUIK Rich Media Engine is a technology that combines graphics, animation, rich-media
user experience and interactivity for seamless deployment across an ever-wider range of
supported JME devices. It supports the following platforms:
• JavaME CLDC 1.0/1.1 MIDP 2.0
• BREW 3.1
• Windows Mobile 5 and 6
• Symbian UIQ & Series 60
• DoCoMo Java 4.x & 5.x
“TWUIK™ Rich Media Engine (RME) is an UI technology that brings dazzling graphics,
vibrant animation, engaging rich-media user experience and advanced interactivity to
mobile application development for seamless deployment across an ever-wider range of
supported JME devices. TWUIK™ enhances navigation, graphical display, and device
functionality - all while reducing development cost and speeding time-to-market of new
applications. TWUIK™ powered application makes your content and services available to
the widest range of handsets without having to specifically re-develop for each specific
handset, thereby reducing the cost of the development.
TWUIK™ is developed for JME devices and purposely optimized for the constrained
environment of mobile devices. TWUIK’s unique, flexible, modular architecture allows it to
be easily integrated with low-level hardware, operating system, and software functionality.
TWUIK’s cross-platform capabilities bridge the gap between different makes and models of
handsets, making it possible for wireless operators and handset OEMs to enrich service
offerings, maximizes expressiveness, and creates a customized, branded user experience
that is uniform across all devices. This in turn simplifies the user experience, enables easy
discovery of content & services, encourages consumption, promotes brand identity, and
creates service/device differentiation. By providing rich and visually appealing UI and
more compelling mobile consumer experience, TWUIK™ dramatically boosts the
consumption and stickiness of mobile content and applications.” (Tricast Solutions Ltd.,
2005-2007)

3.3 Paxmodept JavaME framework
“In Java ME the native MIDP GUI elements are ugly and inflexible. In order to create decent
looking user interfaces for MIDP applications, developers must either write their own
custom low level GUI components or use those from an existing library. The process of
writing these components from scratch is a time consuming and expensive process and
needs to take device fragmentation and variable screen sizes into account from the very
beginning.

 User Interfaces

174

into Android and Java applications. The Tiny line SDK provides two products; TinyLine 2D
(current version 2.1) and TinyLine SVG (current version 2.1). Each of them applies to
different device platforms.
The TinyLine 2D implements a mobile 2D graphics engine for Java platform (JME
CLDC/MIDP, CDC/PP, JOSÉ). Developers are easily able to incorporate high quality,
scalable and platform-independent graphics into their Java applications. Some of its main
features are:
• Small footprint (around 40K in jar file)
• Fast fixed-point numbers mathematics
• Paths, basic shapes and texts drawings
• Hit tests for paths and texts
• Solid colour, bitmap, pattern, gradient (radial and linear) paints
• Fill, stroke and dash
• Affine transformations
• Outline fonts
• Left-to-right, right-to-left and vertical text layouts
• Ant aliasing
• Opacity

Fig. 10. TinyLine examples

On the other hand, the TinyLine SVG implements an SVG Tiny 1.1+ engine for Android and
Java platform (JME CLDC/MIDP, CDC/PP, and JSE). TinyLine SVG allows incorporating
SVG Tiny 1.1+ graphics into Android and Java applications. It provides the following
features:
• SVG Tiny 1.1+ engine
• Supports SVG fonts, raster image and text elements, paths
• Supports SMILE animations and events

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

175

• Allows both textual and gzipped SAG streams
• Compact code (around 100K in jar file)
• Easy to use API
The TinyLine library used to be free for JME until version 1.9. The screen dumps come from
the sample of that version. From version 2.0, a license is needed to be purchased. However,
it is free for Android platform. The examples from version 1.9 were tested successfully on
real devices as well.

3.2 TWUIK
TWUIK Rich Media Engine is a technology that combines graphics, animation, rich-media
user experience and interactivity for seamless deployment across an ever-wider range of
supported JME devices. It supports the following platforms:
• JavaME CLDC 1.0/1.1 MIDP 2.0
• BREW 3.1
• Windows Mobile 5 and 6
• Symbian UIQ & Series 60
• DoCoMo Java 4.x & 5.x
“TWUIK™ Rich Media Engine (RME) is an UI technology that brings dazzling graphics,
vibrant animation, engaging rich-media user experience and advanced interactivity to
mobile application development for seamless deployment across an ever-wider range of
supported JME devices. TWUIK™ enhances navigation, graphical display, and device
functionality - all while reducing development cost and speeding time-to-market of new
applications. TWUIK™ powered application makes your content and services available to
the widest range of handsets without having to specifically re-develop for each specific
handset, thereby reducing the cost of the development.
TWUIK™ is developed for JME devices and purposely optimized for the constrained
environment of mobile devices. TWUIK’s unique, flexible, modular architecture allows it to
be easily integrated with low-level hardware, operating system, and software functionality.
TWUIK’s cross-platform capabilities bridge the gap between different makes and models of
handsets, making it possible for wireless operators and handset OEMs to enrich service
offerings, maximizes expressiveness, and creates a customized, branded user experience
that is uniform across all devices. This in turn simplifies the user experience, enables easy
discovery of content & services, encourages consumption, promotes brand identity, and
creates service/device differentiation. By providing rich and visually appealing UI and
more compelling mobile consumer experience, TWUIK™ dramatically boosts the
consumption and stickiness of mobile content and applications.” (Tricast Solutions Ltd.,
2005-2007)

3.3 Paxmodept JavaME framework
“In Java ME the native MIDP GUI elements are ugly and inflexible. In order to create decent
looking user interfaces for MIDP applications, developers must either write their own
custom low level GUI components or use those from an existing library. The process of
writing these components from scratch is a time consuming and expensive process and
needs to take device fragmentation and variable screen sizes into account from the very
beginning.

 User Interfaces

176

Fig. 11. TWUIK samples

Fig. 12. Paxmodept GUI components

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

177

“The Paxmodept GUI library is intended for use on most Java ME capable devices and it has
taken into account various device idiosyncrasies like screen size, keyboard mappings and
input modes. The library has been designed to function much like existing Swing
components so Java developers will feel very comfortable using the API programmatically”
(Paxmodept, 2009). The library can be easily used in any IDE, such as Netbeans and Eclipse.
It is provided a flexible layout manager which has support for a variety of different layout
styles (Flow, Border and Grid) but also, allows developers to combine different layout styles
on the same screen. In conjunction with this powerful layout manager there is a wide
selection of GUI components which can act as either widgets or containers and be added to
each other at, based on standard component tree architecture. Furthermore, the most
important feature of the Paxmodept library is its speed and performance. It has been
designed and optimized to work across a huge range of devices ensuring that the
performance of every GUI component is lightning fast even on the most basic MIDP 2.0
devices. The following figure shows the Paxmodept GUI components and applications that
uses these.

Fig. 13. Paxmodept sample (1)

Fig. 14. Paxmodept sample (2)

 User Interfaces

176

Fig. 11. TWUIK samples

Fig. 12. Paxmodept GUI components

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

177

“The Paxmodept GUI library is intended for use on most Java ME capable devices and it has
taken into account various device idiosyncrasies like screen size, keyboard mappings and
input modes. The library has been designed to function much like existing Swing
components so Java developers will feel very comfortable using the API programmatically”
(Paxmodept, 2009). The library can be easily used in any IDE, such as Netbeans and Eclipse.
It is provided a flexible layout manager which has support for a variety of different layout
styles (Flow, Border and Grid) but also, allows developers to combine different layout styles
on the same screen. In conjunction with this powerful layout manager there is a wide
selection of GUI components which can act as either widgets or containers and be added to
each other at, based on standard component tree architecture. Furthermore, the most
important feature of the Paxmodept library is its speed and performance. It has been
designed and optimized to work across a huge range of devices ensuring that the
performance of every GUI component is lightning fast even on the most basic MIDP 2.0
devices. The following figure shows the Paxmodept GUI components and applications that
uses these.

Fig. 13. Paxmodept sample (1)

Fig. 14. Paxmodept sample (2)

 User Interfaces

178

4. Device manufacturer’s UI libraries
4.1 Advanced GUI (JSR 209)
AGUI is an optional package that sits on top of CDC at Foundation and Personal Basis
Profile (PBP). PBP is supported on many CDC-based devices/platforms. The current JME
platforms such as Personal Profile and Personal Basis Profile are generally limited to the
graphics and UI facilities found in only the core of AWT, as present in JDK 1.1.8. AGUI
migrates the core APIs for advanced graphics and user interface facilities from the JSE
platform to the JME platform. These facilities will include: Swing, Java 2D Graphics and
Imaging, Image I/O, and Input Method Framework.
Currently, there are not many devices supporting AGUI. However, JavaFX Mobile will fully
support AGUI. The AGUI examples provided by Java ME SDK Device Manager emulator
are displayed in the following figures.

Fig. 15. AGUI samples

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

179

4.2 LCDUI
The MIDP UI is composed of two core APIs, the high-level and the low-level. The high-level
API is designed for business applications whose client parts run on MIDlets. For these
applications, portability across devices is important. To achieve this portability, the high-
level API employs a high level of abstraction and provides very little control over look and
feel. The actual drawing to the MIDlet's display is performed by the implementation.
Applications do not define the visual appearance (e.g., shape, color, font, etc.) of the
components. Navigation, scrolling, and other primitive interaction are encapsulated by the
implementation, and the application is not aware of these interactions. Applications cannot
access concrete input devices like specific individual keys.
The low-level API, on the other hand, provides very little abstraction. This API is designed
for applications that need precise placement and control of graphic elements, as well as
access to low-level input events. Some applications also need to access special, device-
specific features. A typical example of such an application would be a game.
On the other hand, using the low-level API, an application can have full control of what is
drawn on the display, can listen for primitive events like key presses and releases access
concrete keys and other input devices. The LCDUI library can be used by devices which are
compatible with the CLDC configuration.

Fig. 16. JME examaples using LCDUI library

4.3 SWT
SWT stands for “Standard Widget Toolkit”. SWT is an open source widget toolkit for Java
designed to provide efficient, portable access to the user-interface facilities of the operating
systems on which it is implemented. SWT is under Eclipse responsibility. Some screen
dumps of SWT examples are appeared below.

 User Interfaces

178

4. Device manufacturer’s UI libraries
4.1 Advanced GUI (JSR 209)
AGUI is an optional package that sits on top of CDC at Foundation and Personal Basis
Profile (PBP). PBP is supported on many CDC-based devices/platforms. The current JME
platforms such as Personal Profile and Personal Basis Profile are generally limited to the
graphics and UI facilities found in only the core of AWT, as present in JDK 1.1.8. AGUI
migrates the core APIs for advanced graphics and user interface facilities from the JSE
platform to the JME platform. These facilities will include: Swing, Java 2D Graphics and
Imaging, Image I/O, and Input Method Framework.
Currently, there are not many devices supporting AGUI. However, JavaFX Mobile will fully
support AGUI. The AGUI examples provided by Java ME SDK Device Manager emulator
are displayed in the following figures.

Fig. 15. AGUI samples

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

179

4.2 LCDUI
The MIDP UI is composed of two core APIs, the high-level and the low-level. The high-level
API is designed for business applications whose client parts run on MIDlets. For these
applications, portability across devices is important. To achieve this portability, the high-
level API employs a high level of abstraction and provides very little control over look and
feel. The actual drawing to the MIDlet's display is performed by the implementation.
Applications do not define the visual appearance (e.g., shape, color, font, etc.) of the
components. Navigation, scrolling, and other primitive interaction are encapsulated by the
implementation, and the application is not aware of these interactions. Applications cannot
access concrete input devices like specific individual keys.
The low-level API, on the other hand, provides very little abstraction. This API is designed
for applications that need precise placement and control of graphic elements, as well as
access to low-level input events. Some applications also need to access special, device-
specific features. A typical example of such an application would be a game.
On the other hand, using the low-level API, an application can have full control of what is
drawn on the display, can listen for primitive events like key presses and releases access
concrete keys and other input devices. The LCDUI library can be used by devices which are
compatible with the CLDC configuration.

Fig. 16. JME examaples using LCDUI library

4.3 SWT
SWT stands for “Standard Widget Toolkit”. SWT is an open source widget toolkit for Java
designed to provide efficient, portable access to the user-interface facilities of the operating
systems on which it is implemented. SWT is under Eclipse responsibility. Some screen
dumps of SWT examples are appeared below.

 User Interfaces

180

Fig. 17. SWT in deifferent platforms

Some of the SWT examples were successfully evaluated on Mobile Windows 6.0 devices, in
which WEME (J9) JVM version 6.1.1 has been installed. Moreover, there is also a subset
version of SWT, the eSWT library, which it is optimized for devices.

4.4 SVG
The SVG (JSR 226) defines an API for rendering scalable 2D vector graphics, including
image files in W3C Scalable Vector Graphics (SVG) format. The API is targeted for JME
platform, with primary emphasis on MIDP. The main use cases for this API are map
visualization, scalable icons, and other advanced graphics applications. The SVG API
includes:
• Ability to load and render external 2D vector images, stored in the W3C SVG Tiny

format.
• Rendering of 2D images that are scalable to different display resolutions and aspect

ratios.
The JSR 287 is package for rendering enhanced 2D vector graphics and rich media content
based on select features from SVG Mobile 1.2 for Java ME platform, with primary emphasis
on MIDP. This API will be designed as an extension to JSR 226, and therefore must remain
to be fully backwards compatible with JSR 226 applications and Scalable Vector Graphics
(SVG) rendering model. The scope of the API should include the following:
• Extend Features in JSR 226
• Support for select SVG Mobile 1.2 features

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

181

Fig. 18. SVG samples

4.5 Open GL ES
“The OpenGL ARB and the Khronos Group have long collaborated to ensure consistency in
the OpenGL, OpenGL ES, OpenML, COLLADA and OpenGL SC standards. As a result of
this transition all OpenGL- related activities will now occur under the single Khronos
participation framework to enable fully- integrated cooperation between these related
standards activities so that OpenGL may form the foundation for a coherent set of standards
to bring advanced 3D graphics to all hardware platforms and operating systems - from
supercomputers to jet fighters to cell phones. OpenGL® for Embedded System (ES) is a
royalty-free, cross-platform API for full-function 2D and 3D graphics on embedded systems
- including consoles, phones, appliances and vehicles. It consists of well-defined subsets of
desktop OpenGL, creating a flexible and powerful low-level interface between software and
graphics acceleration. OpenGL ES includes profiles for floating-point and fixed-point
systems and the EGL™ specification for portably binding to native windowing systems.
OpenGL ES 1.X is for fixed function hardware and offers acceleration, image quality and
performance. OpenGL ES 2.X enables full programmable 3D graphics. OpenGL SC is tuned
for the safety critical market.”(Khronos Group, 1997 – 2009)]
OpenGL ES (OpenGL for Embedded Systems) is a subset of the OpenGL 3D graphics API
designed for embedded devices such as mobile phones, PDAs, and video game consoles.
OpenGL ES is managed by the not-for-profit technology consortium, the Khronos Group,
Inc. (Wikipedia, 2009)]

 User Interfaces

180

Fig. 17. SWT in deifferent platforms

Some of the SWT examples were successfully evaluated on Mobile Windows 6.0 devices, in
which WEME (J9) JVM version 6.1.1 has been installed. Moreover, there is also a subset
version of SWT, the eSWT library, which it is optimized for devices.

4.4 SVG
The SVG (JSR 226) defines an API for rendering scalable 2D vector graphics, including
image files in W3C Scalable Vector Graphics (SVG) format. The API is targeted for JME
platform, with primary emphasis on MIDP. The main use cases for this API are map
visualization, scalable icons, and other advanced graphics applications. The SVG API
includes:
• Ability to load and render external 2D vector images, stored in the W3C SVG Tiny

format.
• Rendering of 2D images that are scalable to different display resolutions and aspect

ratios.
The JSR 287 is package for rendering enhanced 2D vector graphics and rich media content
based on select features from SVG Mobile 1.2 for Java ME platform, with primary emphasis
on MIDP. This API will be designed as an extension to JSR 226, and therefore must remain
to be fully backwards compatible with JSR 226 applications and Scalable Vector Graphics
(SVG) rendering model. The scope of the API should include the following:
• Extend Features in JSR 226
• Support for select SVG Mobile 1.2 features

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

181

Fig. 18. SVG samples

4.5 Open GL ES
“The OpenGL ARB and the Khronos Group have long collaborated to ensure consistency in
the OpenGL, OpenGL ES, OpenML, COLLADA and OpenGL SC standards. As a result of
this transition all OpenGL- related activities will now occur under the single Khronos
participation framework to enable fully- integrated cooperation between these related
standards activities so that OpenGL may form the foundation for a coherent set of standards
to bring advanced 3D graphics to all hardware platforms and operating systems - from
supercomputers to jet fighters to cell phones. OpenGL® for Embedded System (ES) is a
royalty-free, cross-platform API for full-function 2D and 3D graphics on embedded systems
- including consoles, phones, appliances and vehicles. It consists of well-defined subsets of
desktop OpenGL, creating a flexible and powerful low-level interface between software and
graphics acceleration. OpenGL ES includes profiles for floating-point and fixed-point
systems and the EGL™ specification for portably binding to native windowing systems.
OpenGL ES 1.X is for fixed function hardware and offers acceleration, image quality and
performance. OpenGL ES 2.X enables full programmable 3D graphics. OpenGL SC is tuned
for the safety critical market.”(Khronos Group, 1997 – 2009)]
OpenGL ES (OpenGL for Embedded Systems) is a subset of the OpenGL 3D graphics API
designed for embedded devices such as mobile phones, PDAs, and video game consoles.
OpenGL ES is managed by the not-for-profit technology consortium, the Khronos Group,
Inc. (Wikipedia, 2009)]

 User Interfaces

182

Fig. 19. Open GL example

4.6 JSR 184 Mobile 3D Graphics
The Mobile 3D Graphics API (M3G), is a specification defining an API for writing Java
programs that produce 3D computer graphics. “It extends the capabilities of the Java
Platform, Micro Edition, a version of the Java platform tailored for embedded devices such
as mobile phones and PDAs. The object-oriented interface consists of 30 classes that can be
used to draw complex animated three-dimensional scenes. M3G was developed under the
Java Community Process as JSR 184. As of 2007, the current version of M3G is 1.1, but
version 2.0 is in development as JSR 297. M3G was designed to meet the specific needs of
mobile devices, which are constricted in terms of memory, and processing power, and
which often lack an FPU and graphics hardware such as a GPU. The API's architecture
allows it to be implemented completely inside software or to take advantage of the
hardware present on the device.
M3G should not be mistaken for Java 3D, which extends the capabilities of the Java
Platform, Standard Edition. Java 3D is designed for PCs that have more memory and greater
processing power than mobile devices. M3G and Java 3D are two separate and incompatible
APIs designed for different purposes. M3G provides two ways for developers to draw 3D
graphics: immediate mode and retained mode.

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

183

In immediate mode, graphics commands are issued directly into the graphics pipeline and
the rendering engine executes them immediately. When using this method, the developer
must write code that specifically tells the rendering engine what to draw for each animation
frame. A camera, and set of lights is also associated with the scene, but is not necessarily
part of it. In immediate mode it is possible to display single objects, as well as entire scenes
(or worlds, with a camera, lights, and background as parts of the scene).
Retained mode always uses a scene graph that links all geometric objects in the 3D world in
a tree structure, and also specifies the camera, lights, and background. Higher-level
information about each object — such as its geometric structure, position, and appearance —
is retained from frame to frame.”(Wikipedia, 2009)

Fig. 20. 3D applications

4.7 JSR 135 Mobile Media API
The Mobile Media API (MMAPI) is an API specification for the Java ME platform CDC and
CLDC devices such as mobile phones. These APIs allow applications to play and record
sounds and video, and to capture still images, depending on how it's implemented. It was
developed under the Java Community Process as JSR 135. “The Multimedia Java API is
based on the following types of classes from the javax.microedition.media package:
Manager, Player, PlayerListener and various types of Control. Developers wishing to use
JSR 135 would first make use of the static methods of the Manager class. Although there are
other methods such as playTone, the main method used is createPlayer. This takes either a
URI or an InputStream, or a MIME type. In most cases, URIs are used. The common URI
protocols that are used, include: file, resource (which may extract a file from within the JAR
of the MIDlet, but is implementation-dependent), http, rtsp, capture (used for recording
audio or video).The MIME type is optional.

 User Interfaces

182

Fig. 19. Open GL example

4.6 JSR 184 Mobile 3D Graphics
The Mobile 3D Graphics API (M3G), is a specification defining an API for writing Java
programs that produce 3D computer graphics. “It extends the capabilities of the Java
Platform, Micro Edition, a version of the Java platform tailored for embedded devices such
as mobile phones and PDAs. The object-oriented interface consists of 30 classes that can be
used to draw complex animated three-dimensional scenes. M3G was developed under the
Java Community Process as JSR 184. As of 2007, the current version of M3G is 1.1, but
version 2.0 is in development as JSR 297. M3G was designed to meet the specific needs of
mobile devices, which are constricted in terms of memory, and processing power, and
which often lack an FPU and graphics hardware such as a GPU. The API's architecture
allows it to be implemented completely inside software or to take advantage of the
hardware present on the device.
M3G should not be mistaken for Java 3D, which extends the capabilities of the Java
Platform, Standard Edition. Java 3D is designed for PCs that have more memory and greater
processing power than mobile devices. M3G and Java 3D are two separate and incompatible
APIs designed for different purposes. M3G provides two ways for developers to draw 3D
graphics: immediate mode and retained mode.

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

183

In immediate mode, graphics commands are issued directly into the graphics pipeline and
the rendering engine executes them immediately. When using this method, the developer
must write code that specifically tells the rendering engine what to draw for each animation
frame. A camera, and set of lights is also associated with the scene, but is not necessarily
part of it. In immediate mode it is possible to display single objects, as well as entire scenes
(or worlds, with a camera, lights, and background as parts of the scene).
Retained mode always uses a scene graph that links all geometric objects in the 3D world in
a tree structure, and also specifies the camera, lights, and background. Higher-level
information about each object — such as its geometric structure, position, and appearance —
is retained from frame to frame.”(Wikipedia, 2009)

Fig. 20. 3D applications

4.7 JSR 135 Mobile Media API
The Mobile Media API (MMAPI) is an API specification for the Java ME platform CDC and
CLDC devices such as mobile phones. These APIs allow applications to play and record
sounds and video, and to capture still images, depending on how it's implemented. It was
developed under the Java Community Process as JSR 135. “The Multimedia Java API is
based on the following types of classes from the javax.microedition.media package:
Manager, Player, PlayerListener and various types of Control. Developers wishing to use
JSR 135 would first make use of the static methods of the Manager class. Although there are
other methods such as playTone, the main method used is createPlayer. This takes either a
URI or an InputStream, or a MIME type. In most cases, URIs are used. The common URI
protocols that are used, include: file, resource (which may extract a file from within the JAR
of the MIDlet, but is implementation-dependent), http, rtsp, capture (used for recording
audio or video).The MIME type is optional.

 User Interfaces

184

Fig. 21. Sun’s Wireless Toolkit samples using JSR 135

4.8 JSR 234: Advanced Multimedia Supplements (AMMS)
The Advanced Multimedia Supplements (JSR-234 or AMMS) is an API specification for the
Java ME platform. It is an extension to JSR 135 Mobile Media API providing new features,
such as positional 3D audio processing, audio and video effects processing, better controls
for digital camera, and better support for analog radio tuner including Radio Data System. It
was developed under the Java Community Process as JSR 234.
JSR-234 defines six feature sets (Media Capabilities), and each of them defines minimum
implementation requirements in order to try to avoid fragmentation and to define a
common minimal base line for the implementations. Every JSR-234 implementation must
support at least one Media Capability. These are music, 3D audio, camera, image encoding,
image ports processing and tuner capabilities. It is noticed that many limitations such as
taking snapshots were found while JSR 234 samples were evaluated on mobile devices.

4.9 BlackBerry UI library
“BlackBerry is a line of wireless handheld devices that was introduced in 1999 as a two-way
pager. In 2002, the more commonly known as smart phone BlackBerry was released, which
supports push e-mail, mobile telephone, text messaging, internet faxing, web browsing and
other wireless information services as well as a multi-touch interface.”(Wikipedia, 2009)
BlackBerry includes the net.rim.device.api.ui.accessibility package to allow a BlackBerry
device application that uses custom UI components to send information to an assistive
technology application. When a custom UI component changes, an assistive technology
application receives a notification about the change and can obtain more information about
the change from the custom UI component. For example, if a BlackBerry device application
uses a class called myTextField that extends the TextField class, when a BlackBerry device

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

185

Fig. 22. AMMS samples
user changes the text in a myTextField instance, an assistive technology application receives
notification of the change and can retrieve data such as the text that the user selects or
changes. The notification contains the information such as the name of the custom UI
component and the type of event. For example, a change in the cursor position, or a change
in the name of the custom UI component, a value of a custom UI component before the
event, the value of a custom UI component after the event has taken place.
Moreover, UI component can support the usual and common states, such as focused,
focusable, expanded, expandable, collapsed, selected, selectable, pushed, checked and more
other.

Fig. 23. Samples on BlackBerry Java Development Environment

 User Interfaces

184

Fig. 21. Sun’s Wireless Toolkit samples using JSR 135

4.8 JSR 234: Advanced Multimedia Supplements (AMMS)
The Advanced Multimedia Supplements (JSR-234 or AMMS) is an API specification for the
Java ME platform. It is an extension to JSR 135 Mobile Media API providing new features,
such as positional 3D audio processing, audio and video effects processing, better controls
for digital camera, and better support for analog radio tuner including Radio Data System. It
was developed under the Java Community Process as JSR 234.
JSR-234 defines six feature sets (Media Capabilities), and each of them defines minimum
implementation requirements in order to try to avoid fragmentation and to define a
common minimal base line for the implementations. Every JSR-234 implementation must
support at least one Media Capability. These are music, 3D audio, camera, image encoding,
image ports processing and tuner capabilities. It is noticed that many limitations such as
taking snapshots were found while JSR 234 samples were evaluated on mobile devices.

4.9 BlackBerry UI library
“BlackBerry is a line of wireless handheld devices that was introduced in 1999 as a two-way
pager. In 2002, the more commonly known as smart phone BlackBerry was released, which
supports push e-mail, mobile telephone, text messaging, internet faxing, web browsing and
other wireless information services as well as a multi-touch interface.”(Wikipedia, 2009)
BlackBerry includes the net.rim.device.api.ui.accessibility package to allow a BlackBerry
device application that uses custom UI components to send information to an assistive
technology application. When a custom UI component changes, an assistive technology
application receives a notification about the change and can obtain more information about
the change from the custom UI component. For example, if a BlackBerry device application
uses a class called myTextField that extends the TextField class, when a BlackBerry device

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

185

Fig. 22. AMMS samples
user changes the text in a myTextField instance, an assistive technology application receives
notification of the change and can retrieve data such as the text that the user selects or
changes. The notification contains the information such as the name of the custom UI
component and the type of event. For example, a change in the cursor position, or a change
in the name of the custom UI component, a value of a custom UI component before the
event, the value of a custom UI component after the event has taken place.
Moreover, UI component can support the usual and common states, such as focused,
focusable, expanded, expandable, collapsed, selected, selectable, pushed, checked and more
other.

Fig. 23. Samples on BlackBerry Java Development Environment

 User Interfaces

186

4.10 Java Speech API 2.0 (JSR 113)
The Java Speech API allows you to incorporate speech technology into user interfaces for
your applets and applications based on Java technology. The Java Speech API specifies a
cross-platform interface to support command and control recognizers, dictation systems and
speech synthesizers. Although JSAPI defines an interface only, there are several
implementations created by third parties, for example FreeTTS. This JSR extends the work of
the Java Speech API 1.0 which was principally targeted at Java servers. Also, it targets
embedded Java devices, and allows developers to incorporate speech technology into user
interfaces for their Java programming language applets and applications.
The different classes and interfaces that form the Java Speech API are grouped into the
following three packages:
• javax.speech: Contains classes and interfaces for a generic speech engine.
• javax.speech.synthesis: Contains classes and interfaces for speech synthesis.
• javax.speech.recognition: Contains classes and interfaces for speech recognition.
“The Central class is like a factory class that all Java Speech API applications use. It provides
static methods to enable the access of speech synthesis and speech recognition engines. The
Engine interface encapsulates the generic operations that a Java Speech API-compliant
speech engine should provide for speech applications.
Speech applications can primarily use methods to perform actions such as retrieving the
properties and state of the speech engine and allocating and deallocating resources for a
speech engine. In addition, the Engine interface exposes mechanisms to pause and resume
the audio stream generated or processed by the speech engine. The Engine interface is
subclassed by the Synthesizer and Recognizer interfaces, which define additional speech
synthesis and speech recognition functionality. The Synthesizer interface encapsulates the
operations that a Java Speech API-compliant speech synthesis engine should provide for
speech applications.
The Java Speech API is based on the event-handling model of AWT components. Events
generated by the speech engine can be identified and handled as required. There are two
ways to handle speech engine events: through the EngineListener interface or through the
EngineAdapter class.”(Wikipedia, 2009)
At Java One Conference 2008, there was a successful demonstration of JSR113 under a
commercial version WEME (J9) JVM at HP PDA device. However, the demonstration was
taken place for short sentences (e.g. “Open Agenda”, “Call Kostas”). Currently, it is not
aware if any mobile phone supports that API.

4.11 Java FX Mobile
JavaFX Mobile is the JavaFX application platform for mobile devices and a part of JavaFX
platform. JavaFX Mobile applications can be developed in the same language, JavaFX Script,
as JavaFX applications for browser or desktop, and using the same tools: JavaFX SDK and
the JavaFX Production Suite. This concept makes it possible to share code-base and graphics
assets for desktop and mobile applications. Through integration with Java ME, the JavaFX
applications have access to capabilities of the underlying handset, such the file system,
camera, GPS, bluetooth or accelerometer.
An independent application platform built on Java, JavaFX Mobile is capable of running on
multiple mobile operating systems, including Android, Windows Mobile, and proprietary
real-time operating systems.

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

187

JavaFX Mobile running on an Android was demonstrated at JavaOne 2008 and selected
partnerships (incl. LG Electronics, Sony Ericsson) have been announced at the JavaFX
Mobile launch in February, 2009. Sony Ericsson XPERIA X1 also runs JavaFX mobile
platform including also CLDC 1.1, WMA (JSR-120), MMAPI (JSR-135) and File/PIM(JSR-75).
Some JavaFX Mobile samples were also tested on with Windows Mobile 6.x devices. The
following figure shows some samples of JavaFX Mobile platform.

Fig. 24. JavaFX examples on Windows Mobile OS device

5. Conclusions
This chapter covers the existing UI libraries which are compatible with JME platform
(CLDC and CDC configurations). Due to the big amount of existing UI libraries, they were
divided into three categories, GPL/LGPL, commercial and device's OEMs.
Most of the GPL/LGP and commercial libraries were built as a separate software layers on
top of device UI managers. They take advantage of UI manager's features and usually not of
the Operating System’s capabilities.
The UI libraries are provided by device manufacturer, they can be supported only by
specific type of devices due to their specific Operating System features or due to some
specific hardware capabilities. The level of support can be also provided by an external or
by an integrated Java Virtual Machine within the device. For example, the IBM's WEME (or
J9) virtual machine for Mobile Information Device Profile (MIDP) and Personal Profile (PP),
the Jbed, crEMe and JBlend Java Virtual Machines. Unfortunately, these types of libraries
offer the most appropriate and the most common solutions. They do not often support core
features such as sound or localisation APIs.
The mobile device vendors try to cover and serve as much as possible a large area of
customers; from simple-users to game-users and from elderly or disabled users to business
users. For that reason, they focus to follow some standard (JSRs) and compatible libraries
features which are available in the market. Such of these examples are the SVG (Scalable 2D
Vector Graphics API- JSR 226) and OpenGL for ES libraries (Java Binding for the OpenGL®
API – JSR 231).

 User Interfaces

186

4.10 Java Speech API 2.0 (JSR 113)
The Java Speech API allows you to incorporate speech technology into user interfaces for
your applets and applications based on Java technology. The Java Speech API specifies a
cross-platform interface to support command and control recognizers, dictation systems and
speech synthesizers. Although JSAPI defines an interface only, there are several
implementations created by third parties, for example FreeTTS. This JSR extends the work of
the Java Speech API 1.0 which was principally targeted at Java servers. Also, it targets
embedded Java devices, and allows developers to incorporate speech technology into user
interfaces for their Java programming language applets and applications.
The different classes and interfaces that form the Java Speech API are grouped into the
following three packages:
• javax.speech: Contains classes and interfaces for a generic speech engine.
• javax.speech.synthesis: Contains classes and interfaces for speech synthesis.
• javax.speech.recognition: Contains classes and interfaces for speech recognition.
“The Central class is like a factory class that all Java Speech API applications use. It provides
static methods to enable the access of speech synthesis and speech recognition engines. The
Engine interface encapsulates the generic operations that a Java Speech API-compliant
speech engine should provide for speech applications.
Speech applications can primarily use methods to perform actions such as retrieving the
properties and state of the speech engine and allocating and deallocating resources for a
speech engine. In addition, the Engine interface exposes mechanisms to pause and resume
the audio stream generated or processed by the speech engine. The Engine interface is
subclassed by the Synthesizer and Recognizer interfaces, which define additional speech
synthesis and speech recognition functionality. The Synthesizer interface encapsulates the
operations that a Java Speech API-compliant speech synthesis engine should provide for
speech applications.
The Java Speech API is based on the event-handling model of AWT components. Events
generated by the speech engine can be identified and handled as required. There are two
ways to handle speech engine events: through the EngineListener interface or through the
EngineAdapter class.”(Wikipedia, 2009)
At Java One Conference 2008, there was a successful demonstration of JSR113 under a
commercial version WEME (J9) JVM at HP PDA device. However, the demonstration was
taken place for short sentences (e.g. “Open Agenda”, “Call Kostas”). Currently, it is not
aware if any mobile phone supports that API.

4.11 Java FX Mobile
JavaFX Mobile is the JavaFX application platform for mobile devices and a part of JavaFX
platform. JavaFX Mobile applications can be developed in the same language, JavaFX Script,
as JavaFX applications for browser or desktop, and using the same tools: JavaFX SDK and
the JavaFX Production Suite. This concept makes it possible to share code-base and graphics
assets for desktop and mobile applications. Through integration with Java ME, the JavaFX
applications have access to capabilities of the underlying handset, such the file system,
camera, GPS, bluetooth or accelerometer.
An independent application platform built on Java, JavaFX Mobile is capable of running on
multiple mobile operating systems, including Android, Windows Mobile, and proprietary
real-time operating systems.

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

187

JavaFX Mobile running on an Android was demonstrated at JavaOne 2008 and selected
partnerships (incl. LG Electronics, Sony Ericsson) have been announced at the JavaFX
Mobile launch in February, 2009. Sony Ericsson XPERIA X1 also runs JavaFX mobile
platform including also CLDC 1.1, WMA (JSR-120), MMAPI (JSR-135) and File/PIM(JSR-75).
Some JavaFX Mobile samples were also tested on with Windows Mobile 6.x devices. The
following figure shows some samples of JavaFX Mobile platform.

Fig. 24. JavaFX examples on Windows Mobile OS device

5. Conclusions
This chapter covers the existing UI libraries which are compatible with JME platform
(CLDC and CDC configurations). Due to the big amount of existing UI libraries, they were
divided into three categories, GPL/LGPL, commercial and device's OEMs.
Most of the GPL/LGP and commercial libraries were built as a separate software layers on
top of device UI managers. They take advantage of UI manager's features and usually not of
the Operating System’s capabilities.
The UI libraries are provided by device manufacturer, they can be supported only by
specific type of devices due to their specific Operating System features or due to some
specific hardware capabilities. The level of support can be also provided by an external or
by an integrated Java Virtual Machine within the device. For example, the IBM's WEME (or
J9) virtual machine for Mobile Information Device Profile (MIDP) and Personal Profile (PP),
the Jbed, crEMe and JBlend Java Virtual Machines. Unfortunately, these types of libraries
offer the most appropriate and the most common solutions. They do not often support core
features such as sound or localisation APIs.
The mobile device vendors try to cover and serve as much as possible a large area of
customers; from simple-users to game-users and from elderly or disabled users to business
users. For that reason, they focus to follow some standard (JSRs) and compatible libraries
features which are available in the market. Such of these examples are the SVG (Scalable 2D
Vector Graphics API- JSR 226) and OpenGL for ES libraries (Java Binding for the OpenGL®
API – JSR 231).

 User Interfaces

188

However, additional effort is needed for these JSRs while they are deployed (“build”
process) into specific device model due to its different Operating System and hardware
demands. For that reason, some applications which do support specific UI standards can
run successfully in one device and they can fail “partially” to run in other devices. Many UI
libraries were tested in order to validate their consistency and their execution on devices
and their UI features were examined. Some of them may be used for future research; some
of these may need to be re-defined and re-implemented taking into account standard
device's hardware capabilities and Operating System native features (advanced “hidden”
facilities?). This approach is very close to define a new JSR, or update existing one as it is
displayed in the following figures.

Fig. 25. Native Operating System

Fig. 26. Accessibility framework on top of JVM (as framework)

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

189

Alternatively, new additional bridge layers which reside on top of Operating Systems, are
needed to expose both the simple and the complex accessible cross-platform applications to
UI capabilities and moreover to native assistive technologies. The following figure shows
the approach that will be used for the AEGIS European project in order to facilitate the
accessibility support on various levels. Besides, this approach will take advantage of pre-
built-in Java capabilities.

Fig. 27. CDC and CLDC with ÆGIS - accessibility API exposure to AT

6. References
JAVA4EVER (2005), Apime,
 http://www.java4ever.com/index.php?section=j2me&project=apime&menu=main
J2ME-MWT Team (2005-2007), microWindowToolkit: The open source framework for developing

user interfaces in J2ME, http://j2me-mwt.sourceforge.net/
Khronos Group (1997 – 2009), OpenGL, http://www.opengl.org/about/arb/
lwvcl.com (2007), Light weight Visual Component Library, http://lwvcl.com/index.php
Paxmodept (2009), Pax Java ME (J2ME) Framework,
 http://www.paxmodept.com/paxmodept/products.htm

 User Interfaces

188

However, additional effort is needed for these JSRs while they are deployed (“build”
process) into specific device model due to its different Operating System and hardware
demands. For that reason, some applications which do support specific UI standards can
run successfully in one device and they can fail “partially” to run in other devices. Many UI
libraries were tested in order to validate their consistency and their execution on devices
and their UI features were examined. Some of them may be used for future research; some
of these may need to be re-defined and re-implemented taking into account standard
device's hardware capabilities and Operating System native features (advanced “hidden”
facilities?). This approach is very close to define a new JSR, or update existing one as it is
displayed in the following figures.

Fig. 25. Native Operating System

Fig. 26. Accessibility framework on top of JVM (as framework)

Embedded User Interface for Mobile Applications to Satisfy Design for All Principles

189

Alternatively, new additional bridge layers which reside on top of Operating Systems, are
needed to expose both the simple and the complex accessible cross-platform applications to
UI capabilities and moreover to native assistive technologies. The following figure shows
the approach that will be used for the AEGIS European project in order to facilitate the
accessibility support on various levels. Besides, this approach will take advantage of pre-
built-in Java capabilities.

Fig. 27. CDC and CLDC with ÆGIS - accessibility API exposure to AT

6. References
JAVA4EVER (2005), Apime,
 http://www.java4ever.com/index.php?section=j2me&project=apime&menu=main
J2ME-MWT Team (2005-2007), microWindowToolkit: The open source framework for developing

user interfaces in J2ME, http://j2me-mwt.sourceforge.net/
Khronos Group (1997 – 2009), OpenGL, http://www.opengl.org/about/arb/
lwvcl.com (2007), Light weight Visual Component Library, http://lwvcl.com/index.php
Paxmodept (2009), Pax Java ME (J2ME) Framework,
 http://www.paxmodept.com/paxmodept/products.htm

 User Interfaces

190

Robert Bajzat (2002-2006), Thinlet,
 http://www.gplpedia.com/referlink.php?id=1583&act=demo&referlink=http:

//thinlet.sourceforge.net/demo.html
Sun Microsystems (2008), Developer's Guide: Lightweight UI Toolkit, page 13-16, Sun

Microsystems, Santa Clara, California
TinyLine (2002-2009), TinyLine 2.1 SDK Features, http://www.tinyline.com/products.html
Tricast Solutions Ltd.(2005-2007), TWUIK, http://www.tricastmedia.com/twuik/
Wikipedia (2009), Abstract Window Toolkit
 http://en.wikipedia.org/wiki/Abstract_Window_Toolkit
Wikipedia (2009), Open GL ES, http://en.wikipedia.org/wiki/OpenGL_ES
Wikipedia (2009), Mobile 3D Graphics,
 http://en.wikipedia.org/wiki/Mobile_3D_Graphics_API
Wikipedia (2009), BlackBerry , http://en.wikipedia.org/wiki/BlackBerry
Wikipedia (2009), Java Speech API, http://en.wikipedia.org/wiki/Java_Speech_API
Yura.net (2008), Swing ME, http://swingme.sourceforge.net/

12

Mixed Reality on Mobile Devices
Jayashree Karlekar, Steven ZhiYing Zhou,Weiquan Lu,

Yuta Nakayama and Daniel Hii
Interactive Multimedia Lab.,

Dept. of ECE National University of Singapore
Singapore

1. Introduction
The evolution of mobile-computing, location sensing and wireless networking has created a
new class of computing: context-aware computing. Mobile computing devices such as PDAs
have access to information processing and communication capabilities but do not
necessarily have any awareness of the context in which they operate. Context-aware
computing describes the special capability of an information infrastructure to recognize and
react to the real-world context. Context here could mean many things, e.g. current physical
location, weather conditions etc. The most critical aspects of context are location and
identity. Location-aware computing systems respond to user’s location, either
spontaneously (e.g. warning of nearby hazard) or when activated by user request. Immense
potential of this area is already envisaged by the mobile manufactures as many of them have
started providing GPS (Global Positioning System) receivers in their mobile devices
enabling them location aware too.
One such context-aware technology is mobile mixed reality (MMR). As mentioned, the most
important aspect of MMR system is to identify the location and orientation of the user to
retrieve the context so as to present him/her with context-aware information thereby
enhancing the general awareness of the surrounding. This chapter focuses on different
approaches for user-localization to trigger MMR based application. The chapter outlines
system architecture, enabling technologies and challenges to make the MMR ubiquitous.
Particularly, we are interested in the role of computer vision which can make this
imaginative area a reality. This section outlines general definitions and requirements of
MMR. Applications (Section 2), System Architecture (3), Challenges (Section 4), Tracking
and registration (Section 5) are described in subsequent sections.

1.1 Mixed reality
Context-aware services augment contextual information (virtual data) in the user’s view
(real data). Depending on what is virtual and what is real we get augmented reality (AR) or
augmented virtuality, combinely termed as mixed reality (MR). In augmented reality, a user’s
view of the real world context is augmented with additional virtual information (e.g. textual
labels, images, graphical models etc.) whereas in augmented virtuality user (i.e. reality) is
completely immersed in the virtual world.
• Augmented Reality: Virtual information is augmented on real context.

 User Interfaces

190

Robert Bajzat (2002-2006), Thinlet,
 http://www.gplpedia.com/referlink.php?id=1583&act=demo&referlink=http:

//thinlet.sourceforge.net/demo.html
Sun Microsystems (2008), Developer's Guide: Lightweight UI Toolkit, page 13-16, Sun

Microsystems, Santa Clara, California
TinyLine (2002-2009), TinyLine 2.1 SDK Features, http://www.tinyline.com/products.html
Tricast Solutions Ltd.(2005-2007), TWUIK, http://www.tricastmedia.com/twuik/
Wikipedia (2009), Abstract Window Toolkit
 http://en.wikipedia.org/wiki/Abstract_Window_Toolkit
Wikipedia (2009), Open GL ES, http://en.wikipedia.org/wiki/OpenGL_ES
Wikipedia (2009), Mobile 3D Graphics,
 http://en.wikipedia.org/wiki/Mobile_3D_Graphics_API
Wikipedia (2009), BlackBerry , http://en.wikipedia.org/wiki/BlackBerry
Wikipedia (2009), Java Speech API, http://en.wikipedia.org/wiki/Java_Speech_API
Yura.net (2008), Swing ME, http://swingme.sourceforge.net/

12

Mixed Reality on Mobile Devices
Jayashree Karlekar, Steven ZhiYing Zhou,Weiquan Lu,

Yuta Nakayama and Daniel Hii
Interactive Multimedia Lab.,

Dept. of ECE National University of Singapore
Singapore

1. Introduction
The evolution of mobile-computing, location sensing and wireless networking has created a
new class of computing: context-aware computing. Mobile computing devices such as PDAs
have access to information processing and communication capabilities but do not
necessarily have any awareness of the context in which they operate. Context-aware
computing describes the special capability of an information infrastructure to recognize and
react to the real-world context. Context here could mean many things, e.g. current physical
location, weather conditions etc. The most critical aspects of context are location and
identity. Location-aware computing systems respond to user’s location, either
spontaneously (e.g. warning of nearby hazard) or when activated by user request. Immense
potential of this area is already envisaged by the mobile manufactures as many of them have
started providing GPS (Global Positioning System) receivers in their mobile devices
enabling them location aware too.
One such context-aware technology is mobile mixed reality (MMR). As mentioned, the most
important aspect of MMR system is to identify the location and orientation of the user to
retrieve the context so as to present him/her with context-aware information thereby
enhancing the general awareness of the surrounding. This chapter focuses on different
approaches for user-localization to trigger MMR based application. The chapter outlines
system architecture, enabling technologies and challenges to make the MMR ubiquitous.
Particularly, we are interested in the role of computer vision which can make this
imaginative area a reality. This section outlines general definitions and requirements of
MMR. Applications (Section 2), System Architecture (3), Challenges (Section 4), Tracking
and registration (Section 5) are described in subsequent sections.

1.1 Mixed reality
Context-aware services augment contextual information (virtual data) in the user’s view
(real data). Depending on what is virtual and what is real we get augmented reality (AR) or
augmented virtuality, combinely termed as mixed reality (MR). In augmented reality, a user’s
view of the real world context is augmented with additional virtual information (e.g. textual
labels, images, graphical models etc.) whereas in augmented virtuality user (i.e. reality) is
completely immersed in the virtual world.
• Augmented Reality: Virtual information is augmented on real context.

 User Interfaces

192

• Augmented Virtuality: Real information is augmented on virtual context.
A successful mixed reality system must enhance situational awareness and should have the
following attributes as encapsulated by (Azuma et al., 2001):
• Runs interactively and in real time
• Combines real and virtual worlds
• Aligns real and virtual objects
These requirements make mixed reality very challenging to build. With ubiquitous
availability of high-end mobile devices having access to high-resolution digital cameras,
displays, graphical capabilities and broadband connectivity can take this area out of small
workspaces giving rise to mobile mixed reality.

1.2 Mobile mixed reality
Mobile mixed reality combines a user’s view of real world with location specific
information. Such information could be in the form of simple text, image, multimedia or 3D
graphics. Augmentation of location specific information in graphical format in the user’s
view enhances the real world experience beyond normal. Possible applications of mobile
mixed reality comprise architectural walkthroughs, tourism, exploration etc. Excellent
historical updates on Handheld Augmented Reality are maintained at the site (History of Mobile
Augmented Reality at Christian Doppler Laboratory, 2009).
To enhance situational awareness of a user, MMR systems must run interactively and in real
time. Estimating camera position and orientation in global space accurately is the most
important to provide such mixed illusion. Lack of accuracy can cause complete failure of
coexistence of real and virtual world. However, ubiquitous availability of high-end mobile
devices with high-resolution digital cameras, displays, graphical capabilities and broadband
connectivity has made this achievable. Such free roaming and mixed realism are feasible
with external tracking devices such as GPS and orientation sensors. GPS provide geo-
referencing of the location whereas inertial sensors provide instantaneous 3D orientation
information of the camera (now onwards will be referred as camera pose). These sensors
together provide 6 DoF (degrees of freedom) camera pose at interactive rates. However,
accuracy, sensitivity and resolution provided by these sensors is of great concern. In some
MMR applications, inadequate accuracy/resolution of these devices may be sufficient
whereas in others it is less than desired for true visual merging.
Computer vision based tracking techniques also provide camera pose at slow rates. The
pose so obtained is accurate, however, is relative with respect to starting position. These
systems need initialization of the starting position to map local pose to global coordinates.
Robust camera pose is then obtained by fusing the data from different sensors such as
camera, GPS and inertial devices to achieve global, accurate positioning. Inertial sensors
provide fast but inaccurate orientation estimate under large motions whereas camera data is
more reliable under medium speeds. Hybrid approaches are normally employed which try
to combine strengths of each individual sensor to compensate for others limitation. These
systems utilize data of inertial sensors as a rough estimate of the camera pose which vision
system refines further. The paper describes overview of hybrid approaches for outdoor
mixed reality applications for handheld devices.
One ideal scenario of mobile mixed reality is depicted in Fig. 1, wherein the explorer
equipped with mobile and sensing (positioning and orientation) devices is exploring the
campus, thereby triggering the location aware services in which graphical model of the
building pops up on his display. Such kind of augmentation supplements, enhances,

Mixed Reality on Mobile Devices

193

Fig. 1. Mobile mixed reality: Ideal scenario.
improves and can even modify the real information. Examples of location aware computing
by text annotations are illustrated in Fig. 2.
Excellent review articles focusing on overall aspects of augmented/mixed reality are
published by (Azuma et al., 2001), (Hollerer & Feiner, 2004), Papagiannakis et al. (2008) and
(Zhou et al., 2008).

2. Applications of MMR systems
Many applications of mixed reality are envisaged. Here we present some applications,
particularly interested in outdoor ones which could get greatly impacted by this technology.
Medicine, entertainment, education, assembly and construction are some other indoor
application areas of MR which will be greatly benefited.

Fig. 2. Examples of augmented reality wherein live video is annotated with information
such as neraby eateries, taxi stand, house on sale etc.

 User Interfaces

192

• Augmented Virtuality: Real information is augmented on virtual context.
A successful mixed reality system must enhance situational awareness and should have the
following attributes as encapsulated by (Azuma et al., 2001):
• Runs interactively and in real time
• Combines real and virtual worlds
• Aligns real and virtual objects
These requirements make mixed reality very challenging to build. With ubiquitous
availability of high-end mobile devices having access to high-resolution digital cameras,
displays, graphical capabilities and broadband connectivity can take this area out of small
workspaces giving rise to mobile mixed reality.

1.2 Mobile mixed reality
Mobile mixed reality combines a user’s view of real world with location specific
information. Such information could be in the form of simple text, image, multimedia or 3D
graphics. Augmentation of location specific information in graphical format in the user’s
view enhances the real world experience beyond normal. Possible applications of mobile
mixed reality comprise architectural walkthroughs, tourism, exploration etc. Excellent
historical updates on Handheld Augmented Reality are maintained at the site (History of Mobile
Augmented Reality at Christian Doppler Laboratory, 2009).
To enhance situational awareness of a user, MMR systems must run interactively and in real
time. Estimating camera position and orientation in global space accurately is the most
important to provide such mixed illusion. Lack of accuracy can cause complete failure of
coexistence of real and virtual world. However, ubiquitous availability of high-end mobile
devices with high-resolution digital cameras, displays, graphical capabilities and broadband
connectivity has made this achievable. Such free roaming and mixed realism are feasible
with external tracking devices such as GPS and orientation sensors. GPS provide geo-
referencing of the location whereas inertial sensors provide instantaneous 3D orientation
information of the camera (now onwards will be referred as camera pose). These sensors
together provide 6 DoF (degrees of freedom) camera pose at interactive rates. However,
accuracy, sensitivity and resolution provided by these sensors is of great concern. In some
MMR applications, inadequate accuracy/resolution of these devices may be sufficient
whereas in others it is less than desired for true visual merging.
Computer vision based tracking techniques also provide camera pose at slow rates. The
pose so obtained is accurate, however, is relative with respect to starting position. These
systems need initialization of the starting position to map local pose to global coordinates.
Robust camera pose is then obtained by fusing the data from different sensors such as
camera, GPS and inertial devices to achieve global, accurate positioning. Inertial sensors
provide fast but inaccurate orientation estimate under large motions whereas camera data is
more reliable under medium speeds. Hybrid approaches are normally employed which try
to combine strengths of each individual sensor to compensate for others limitation. These
systems utilize data of inertial sensors as a rough estimate of the camera pose which vision
system refines further. The paper describes overview of hybrid approaches for outdoor
mixed reality applications for handheld devices.
One ideal scenario of mobile mixed reality is depicted in Fig. 1, wherein the explorer
equipped with mobile and sensing (positioning and orientation) devices is exploring the
campus, thereby triggering the location aware services in which graphical model of the
building pops up on his display. Such kind of augmentation supplements, enhances,

Mixed Reality on Mobile Devices

193

Fig. 1. Mobile mixed reality: Ideal scenario.
improves and can even modify the real information. Examples of location aware computing
by text annotations are illustrated in Fig. 2.
Excellent review articles focusing on overall aspects of augmented/mixed reality are
published by (Azuma et al., 2001), (Hollerer & Feiner, 2004), Papagiannakis et al. (2008) and
(Zhou et al., 2008).

2. Applications of MMR systems
Many applications of mixed reality are envisaged. Here we present some applications,
particularly interested in outdoor ones which could get greatly impacted by this technology.
Medicine, entertainment, education, assembly and construction are some other indoor
application areas of MR which will be greatly benefited.

Fig. 2. Examples of augmented reality wherein live video is annotated with information
such as neraby eateries, taxi stand, house on sale etc.

 User Interfaces

194

2.1 Tourism
MMR systems for tourism is like traveler is walking with his/her own tourist guide,
exploring historic monuments as per his/her interest. In such cases, MMR systems can
identify the destination, display information like 3D models of related art or architecture,
life and work of architect or architectural changes over the centuries etc. in the form of
images, textual information, voice or graphical representation. Such applications are only
limited by the extent of content and the capabilities of hardware. Not only architectures,
same philosophy can be extended to anything that traveler wishes to explore and something
which catches his/her fancy like nearby restaurants, menus served there, approach paths to
different locations, their addresses, phone number etc. (Papagiannakis et al., 2005) had build
one such example in ancient Pompeii to visualize ancient Roman characters reenacting
historical stories.

2.2 Architecture and cultural heritage
MMR systems enable to view past and future information in the context of present visual
information available via camera data to the viewer. Past information preserved in e-
cultural heritage can be presented to the viewer which otherwise can only see the ruins of
them. Architects can benefit by merging their designs (building, bridged etc.) about to be
constructed on a particular site for better visualization of the future. (Vlahakis et al., 2002)
developed AR guides in the site of ancient Olympia, Greece in order to visualize the non-
existing ancient temple edifices.

2.3 Navigation and path finding
MMR systems have potential application as a navigational aid for explorers. While
traversing physical buildings or outdoor locations, approach roads behind the occluding
buildings or directional annotations etc. can be overlaid on real visual camera data for
assistance. (You et al., 2008) have developed treasure hunt game based on navigation and
path finding using mixed reality.

2.4 Collaborative working
MMR systems allow multiple geographically distributed workers to collaborate, design and
assemble the information according to their locations and knowledge saving time and
design cost. (Santos et al., 2007) presents example of collaborative working for designing
and reviewing of 3D architectures or automotive parts by dispersed users with mobile
mixed reality.

2.5 Maintenance and inspection
MMR system is well suited for situations where direct visibility is not possible and
capability to see through solid structures for maintenance and inspection is required.
Assistance is provided to maintenance worker via MMR system which overlays the hidden
structures such as cable connection within the walls of a building, or pipe layout beneath the
road to provide direct visualization of the problem area for inspection before carrying out
maintenance task. On-site mobile augmentation for industry professionals was
demonstrated by (Makri et al., 2005). (Schall et al., 2007) shows prototype for subsurface
infrastructure visualization (e.g. water mains, electricity lines etc.) for urban environment.

Mixed Reality on Mobile Devices

195

Fig. 3. Mobile mixed reality: Interaction of mobile device with backend AR server with
wireless coneectivity.

2.6 Military training and combat
MMR systems for military warriors could be very useful as they often face unexplored
territories. By projecting maps and view of battle scenes, additional information can be
provided to them easily which otherwise could be difficult to communicate. Mission
planning information and reconnaissance data obtained/prepared from other sources could
be conveyed to update the situation. (Tappert et al., 2001) presented application of wearable
computers and augmented reality for military.

3. MMR system architecture
This section presents enabling technologies, basic components and infrastructure requirements
for making MMR systems a true reality. As illustrated in Fig. 1 and 3, these technologies are
mobile devices, displays, sensors for tracking and registration, modeling/content-creation of
environment, wireless communication and interaction techniques. Brief overview of each of
them and their current state of the art is summarized below.

3.1 Mobile devices
Numerous mobile devices ranging from PDAs (personal digital assistants) weighing few
grams to backpacks weighing few kilograms have been employed by AR researchers for
variety of applications.

 User Interfaces

194

2.1 Tourism
MMR systems for tourism is like traveler is walking with his/her own tourist guide,
exploring historic monuments as per his/her interest. In such cases, MMR systems can
identify the destination, display information like 3D models of related art or architecture,
life and work of architect or architectural changes over the centuries etc. in the form of
images, textual information, voice or graphical representation. Such applications are only
limited by the extent of content and the capabilities of hardware. Not only architectures,
same philosophy can be extended to anything that traveler wishes to explore and something
which catches his/her fancy like nearby restaurants, menus served there, approach paths to
different locations, their addresses, phone number etc. (Papagiannakis et al., 2005) had build
one such example in ancient Pompeii to visualize ancient Roman characters reenacting
historical stories.

2.2 Architecture and cultural heritage
MMR systems enable to view past and future information in the context of present visual
information available via camera data to the viewer. Past information preserved in e-
cultural heritage can be presented to the viewer which otherwise can only see the ruins of
them. Architects can benefit by merging their designs (building, bridged etc.) about to be
constructed on a particular site for better visualization of the future. (Vlahakis et al., 2002)
developed AR guides in the site of ancient Olympia, Greece in order to visualize the non-
existing ancient temple edifices.

2.3 Navigation and path finding
MMR systems have potential application as a navigational aid for explorers. While
traversing physical buildings or outdoor locations, approach roads behind the occluding
buildings or directional annotations etc. can be overlaid on real visual camera data for
assistance. (You et al., 2008) have developed treasure hunt game based on navigation and
path finding using mixed reality.

2.4 Collaborative working
MMR systems allow multiple geographically distributed workers to collaborate, design and
assemble the information according to their locations and knowledge saving time and
design cost. (Santos et al., 2007) presents example of collaborative working for designing
and reviewing of 3D architectures or automotive parts by dispersed users with mobile
mixed reality.

2.5 Maintenance and inspection
MMR system is well suited for situations where direct visibility is not possible and
capability to see through solid structures for maintenance and inspection is required.
Assistance is provided to maintenance worker via MMR system which overlays the hidden
structures such as cable connection within the walls of a building, or pipe layout beneath the
road to provide direct visualization of the problem area for inspection before carrying out
maintenance task. On-site mobile augmentation for industry professionals was
demonstrated by (Makri et al., 2005). (Schall et al., 2007) shows prototype for subsurface
infrastructure visualization (e.g. water mains, electricity lines etc.) for urban environment.

Mixed Reality on Mobile Devices

195

Fig. 3. Mobile mixed reality: Interaction of mobile device with backend AR server with
wireless coneectivity.

2.6 Military training and combat
MMR systems for military warriors could be very useful as they often face unexplored
territories. By projecting maps and view of battle scenes, additional information can be
provided to them easily which otherwise could be difficult to communicate. Mission
planning information and reconnaissance data obtained/prepared from other sources could
be conveyed to update the situation. (Tappert et al., 2001) presented application of wearable
computers and augmented reality for military.

3. MMR system architecture
This section presents enabling technologies, basic components and infrastructure requirements
for making MMR systems a true reality. As illustrated in Fig. 1 and 3, these technologies are
mobile devices, displays, sensors for tracking and registration, modeling/content-creation of
environment, wireless communication and interaction techniques. Brief overview of each of
them and their current state of the art is summarized below.

3.1 Mobile devices
Numerous mobile devices ranging from PDAs (personal digital assistants) weighing few
grams to backpacks weighing few kilograms have been employed by AR researchers for
variety of applications.

 User Interfaces

196

Fig. 4. Mobile devices.

PDAs were the earliest light-weight mobile devices available for AR research. PDAs are
often equipped with color displays, wireless connectivity, and GPS sensors. However, their
limited computational capability, like lack of 3D rendering engines and floating-point
support makes their use difficult for AR.
High end notebooks in the form of backpacks coupled with HMDs (head mounted displays)
do not have computational constraint as that of PDAs but weight and size makes them
highly inconvinient posing ergonomic issues.
Tablet PC, a notebook size mobile computer with touch screen offers a more convenient way
of interaction with no ergonomic issues associated with backpacks and equally
computationally rich as compared to PDAs.
Ultra mobile PCs (UMPCs) also provide all the computational capabilities of backpacks and
mobility of PDAs without much of ergonomic constraints. Their small form factors
compared to tablet-PC makes them the obvious choice for outdoor applications. However,
interaction is by more conventional keyboards.

3.2 Displays
There are numerous approaches to present visual information to mobile user with variety of
display technologies, such as hand-held, wrist-worn or head-worn displays, projection on
arbitrary surface etc. Displays used in MMR systems can be categorized into two: optical
see-through displays with which the user views the real world directly and video see-
through displays with which the user observes the real world in a video image as acquired
from a mounted camera. Issues associated with them are field of view, cost, perception,
latency, human factors etc.

3.3 Data storage
In MMR systems, client needs to connect to multiple distributed data servers in order to
obtain information relevant to the current environment and situation. Such systems require
georeferenced data to present world-registered overlays. Typical data needed by client
could be geometric models of the environment, annotation material as well as conceptual
information that allows the client to make decisions about the best ways to present the data.
Unified framework is needed to express, maintain, deliver, store and present such meta-
knowledge. (Schmalstieg et al., 2007) presented one possible model and a family of
techniques to address these needs.

Mixed Reality on Mobile Devices

197

For interactive applications, as is the case with MMR systems, as much as possible the data
to be needed should be cached on the local client computer to take care of unreliable
connectivity. This raises the question of how to upload and page in information about new
environments that the mobile user is ready to explore. Such information can be loaded
preemptively from distributed databases in batches of relative geographical closure.

3.4 Networking
Issues associated with wireless networking such as latency, limited bandwidth, bandwidth
fluctuations and availability directly impact the performance and quality of MMR systems
based applications. Practical mobile AR systems demand low latency and sufficient data
rate as and when user wants. Different types of networks have been tested for applications
demanding different coverage areas. The wireless wide area networks (WWANs) are ideal
for MMR systems that need to support large-scale mobility e.g. location-based services.
Wireless local area networks (WLANs) typically support much higher data rates and lower
latency than WWANs but limited by mobility. Depending on the applications, appropriate
network can be used by MMR systems.

3.5 Modeling of the environment
Geometric models of the physical environment in which MMR systems to be deployed are
often needed. For example,
• to augment user’s view by overlaying hidden/underground structures or
• for detecting occlusion with respect to user’s point of view or
• for model-based vision tracking approaches etc.
Creating 3D model of large environments is a research challenge. Depending on the task at
hand, models could be photorealistic or simple 3D point clouds. Complexity of the problem
increases depending on the details that need to be modeled. For example, complete
modeling of large urban area, down to the level of water pipes and electric circuits in
building walls is quiet complex and time consuming. Fully automatic, semiautomatic and
manual modeling techniques are often employed depending on the required accuracy.
Bigger challenge lies in maintaining these geometric models as real environments are
dynamic and models also need to be dynamically updated to reflect changes in the real
environments like construction or destruction of any structure etc.

3.6 User Interfaces (UI)
Effective and efficient user interaction in MMR systems is another open research area. The
desktop UI metaphor is not suitable for mobile and wearable computing as it places
unreasonable attention demands of mobile users as it is interacting with mobile world.
Providing user interfaces for MMR system applications is challenging as care had to be
taken not to divide the user attention between physical world and interaction methodology.
Mobile UIs should try to minimize encumbrance caused by UI devices. Ultimate aim is to
have a free-to-walk, eyes-free and hands-free UI with miniature computing devices which
are easy to carry. This ideal UI cannot be accomplished with current mobile computing and
UI technology. Some devices, e.g. auditory UIs, nicely meet the size and ergonomic
constraints of mobility. However, standalone audio UI cannot offer the best possible
solution for every situation and more general audio-visual-touch based UI need to be
developed.

 User Interfaces

196

Fig. 4. Mobile devices.

PDAs were the earliest light-weight mobile devices available for AR research. PDAs are
often equipped with color displays, wireless connectivity, and GPS sensors. However, their
limited computational capability, like lack of 3D rendering engines and floating-point
support makes their use difficult for AR.
High end notebooks in the form of backpacks coupled with HMDs (head mounted displays)
do not have computational constraint as that of PDAs but weight and size makes them
highly inconvinient posing ergonomic issues.
Tablet PC, a notebook size mobile computer with touch screen offers a more convenient way
of interaction with no ergonomic issues associated with backpacks and equally
computationally rich as compared to PDAs.
Ultra mobile PCs (UMPCs) also provide all the computational capabilities of backpacks and
mobility of PDAs without much of ergonomic constraints. Their small form factors
compared to tablet-PC makes them the obvious choice for outdoor applications. However,
interaction is by more conventional keyboards.

3.2 Displays
There are numerous approaches to present visual information to mobile user with variety of
display technologies, such as hand-held, wrist-worn or head-worn displays, projection on
arbitrary surface etc. Displays used in MMR systems can be categorized into two: optical
see-through displays with which the user views the real world directly and video see-
through displays with which the user observes the real world in a video image as acquired
from a mounted camera. Issues associated with them are field of view, cost, perception,
latency, human factors etc.

3.3 Data storage
In MMR systems, client needs to connect to multiple distributed data servers in order to
obtain information relevant to the current environment and situation. Such systems require
georeferenced data to present world-registered overlays. Typical data needed by client
could be geometric models of the environment, annotation material as well as conceptual
information that allows the client to make decisions about the best ways to present the data.
Unified framework is needed to express, maintain, deliver, store and present such meta-
knowledge. (Schmalstieg et al., 2007) presented one possible model and a family of
techniques to address these needs.

Mixed Reality on Mobile Devices

197

For interactive applications, as is the case with MMR systems, as much as possible the data
to be needed should be cached on the local client computer to take care of unreliable
connectivity. This raises the question of how to upload and page in information about new
environments that the mobile user is ready to explore. Such information can be loaded
preemptively from distributed databases in batches of relative geographical closure.

3.4 Networking
Issues associated with wireless networking such as latency, limited bandwidth, bandwidth
fluctuations and availability directly impact the performance and quality of MMR systems
based applications. Practical mobile AR systems demand low latency and sufficient data
rate as and when user wants. Different types of networks have been tested for applications
demanding different coverage areas. The wireless wide area networks (WWANs) are ideal
for MMR systems that need to support large-scale mobility e.g. location-based services.
Wireless local area networks (WLANs) typically support much higher data rates and lower
latency than WWANs but limited by mobility. Depending on the applications, appropriate
network can be used by MMR systems.

3.5 Modeling of the environment
Geometric models of the physical environment in which MMR systems to be deployed are
often needed. For example,
• to augment user’s view by overlaying hidden/underground structures or
• for detecting occlusion with respect to user’s point of view or
• for model-based vision tracking approaches etc.
Creating 3D model of large environments is a research challenge. Depending on the task at
hand, models could be photorealistic or simple 3D point clouds. Complexity of the problem
increases depending on the details that need to be modeled. For example, complete
modeling of large urban area, down to the level of water pipes and electric circuits in
building walls is quiet complex and time consuming. Fully automatic, semiautomatic and
manual modeling techniques are often employed depending on the required accuracy.
Bigger challenge lies in maintaining these geometric models as real environments are
dynamic and models also need to be dynamically updated to reflect changes in the real
environments like construction or destruction of any structure etc.

3.6 User Interfaces (UI)
Effective and efficient user interaction in MMR systems is another open research area. The
desktop UI metaphor is not suitable for mobile and wearable computing as it places
unreasonable attention demands of mobile users as it is interacting with mobile world.
Providing user interfaces for MMR system applications is challenging as care had to be
taken not to divide the user attention between physical world and interaction methodology.
Mobile UIs should try to minimize encumbrance caused by UI devices. Ultimate aim is to
have a free-to-walk, eyes-free and hands-free UI with miniature computing devices which
are easy to carry. This ideal UI cannot be accomplished with current mobile computing and
UI technology. Some devices, e.g. auditory UIs, nicely meet the size and ergonomic
constraints of mobility. However, standalone audio UI cannot offer the best possible
solution for every situation and more general audio-visual-touch based UI need to be
developed.

 User Interfaces

198

3.7 User tracking/localization
Apart from above mentioned technological challenges, the single most important
technological challenge of MMR systems is user localization in outdoor environments. In
small, controlled indoor places user/camera tracking has been successfully implemented
with sufficient accuracy, low latency and high update rates by (Klein & Murray, 2007).
Doing the same in general mobile setting is much more challenging as one cannot rely on
any kind of tracking infrastructure in the environment. In Section 5 we explore technological
advancements in the area of tracking and registration in general environments.

3.8 Software architecture
AR software system architecture should be plug-in type to allow prototyping of different
AR components separately and heterogeneously as opposed to single monolithic piece of
software. That way different components can be updated independently as per the
technological advancements in that particular area without affecting other components.

4. Challenges to MMR systems
In spite of potential foreseeable applications of MMR system, the research has been
exclusively confined to prototype applications. Technology is not yet ripe for
commercialization as it is exposed to wide range of operating conditions. Apart from that,
technological constraints as explained below do not make it viable at present.
• Resource poor: While mobile devices have outgrown over last years, with increased

reliability in communication, computational power, storage, battery life etc., however
they are still small brothers of desktop computers. Moreover, they should be light
weight, small, powerful and have longer battery life. High end processors have high
power consumption which present challenge for their deployment in mobile devices.
Ruggedness is also required as sensitive electronic equipment could get damaged
easily.

• Graphical capabilities: Special effects seamlessly merge computer generated data with
real images. Such efforts are very time consuming and do carefully handcrafted
integration of the virtual data into real footage. In MMR systems, rendering needs to be
performed in real time, also decision of what and where to merge the virtual data needs
to be determined automatically and on the fly. Making the visuals as informative and
realistic as possible, rendering with the correct lighting to provide a seamless
experience is an open-ended challenge. Absence of dedicated 3D processing units in
mobile devices is the limiting factor for rich content creation. Such capabilities are now
available on devices such as UMPCs.

• Communication: Ever increasing bandwidth has spurred new audiovisual networked
media applications and MMR systems can build on them. Efforts need to be put in to
standardize accessing mechanism which retrieves data from databases and exchanging
them reliably with mobile client. Content adaptation, sharing and personalized
interfaces between users and databases need to be addressed.

• Content creation: Depending on the tracking technology, AR systems need to have
access to model of the environment that they are suppose to work in and creating
accurate modeling could be a challenging task. Database of the environment paired
with accessing it with location needs to be created and maintained. For reliable and
accurate service, maintaining the content up to date is also time consuming.

Mixed Reality on Mobile Devices

199

• Tracking and Registration: Tracking deals with localizing the user in outdoor
environment so as to trigger other location specific queries. In registration, the desired
information is accessed, seamlessly merged with camera data and ultimately presented
to the client. Localizing with sub-meter accuracy for seamless integration, single sensor
such as camera, GPS or gyroscope alone is not sufficient. The current trend shows the
combination of them can provide more reliable results than individual sensor. Tracking
in unprepared environments is still elusive. This chapter looks at the current
technologies pertaining to tracking, registration, sensor fusion and hybrid techniques in
next section.

• Social Acceptance: Wearable MMR systems must be as unencumbered as possible.
Contrary, current MMR systems are bulky and intrusive. Social acceptance of these
systems is very important for their successful deployment.

5. Tracking and registration for MMR
MMR systems require very accurate position and orientation information of the user camera
in order to align virtual information with the physical objects. In absence of correct
localization, merging of virtual and physical objects will be out of sync and seamless
integration will be completely lost. As observed by (Zhou et al., 2008), over last couple of
years largest group of papers have been published on tracking as it is one of the
fundamental enabling technologies for AR. Still, the problem is unsolved with many fertile
areas for research. This section reviews different methodologies that have been proposed for
estimating/tracking camera pose.
An important criterion of these approaches is how much tracking devices are present on the
user’s body and in the environment. In truly outdoor explorations, the goal is to wear as
little equipment as possible without engineering the environment. GPS is ideal for such
applications, although environment is prepared in this case on a global scale rather than on
local scale by satellite constellation around the earth. Vision based approaches require some
knowledge about the environment in the form of 3D model or training image database for
successful tracking and registration.
General requirements for tracking can be summarized as:
• no engineering of the environment
• less user preparation
• highly accurate and robust
• driftless and
• instantaneous
This section presents different camera pose estimation approaches. Generally, tracking devices
used must be light in weight and insensitive to any kind of external disturbances. They should
have fairly wide operating range under varying environments. Currently there does not exist a
perfect tracking solution for all scenarios. Different approaches were developed keeping in
mind some specific application needs and may make them unsuitable for other scenarios.
Earlier tracking was purely sensor based, however with ubiquitous availability of video
capture capability, camera data is also used for tracking and registration purposes.

5.1 Tracking with position and orientation sensors
Position tracking with GPS receiver is a natural choice for outdoor environments since it is
globally accessible. Only constraint is, at least signals from four satellites should be visible at

 User Interfaces

198

3.7 User tracking/localization
Apart from above mentioned technological challenges, the single most important
technological challenge of MMR systems is user localization in outdoor environments. In
small, controlled indoor places user/camera tracking has been successfully implemented
with sufficient accuracy, low latency and high update rates by (Klein & Murray, 2007).
Doing the same in general mobile setting is much more challenging as one cannot rely on
any kind of tracking infrastructure in the environment. In Section 5 we explore technological
advancements in the area of tracking and registration in general environments.

3.8 Software architecture
AR software system architecture should be plug-in type to allow prototyping of different
AR components separately and heterogeneously as opposed to single monolithic piece of
software. That way different components can be updated independently as per the
technological advancements in that particular area without affecting other components.

4. Challenges to MMR systems
In spite of potential foreseeable applications of MMR system, the research has been
exclusively confined to prototype applications. Technology is not yet ripe for
commercialization as it is exposed to wide range of operating conditions. Apart from that,
technological constraints as explained below do not make it viable at present.
• Resource poor: While mobile devices have outgrown over last years, with increased

reliability in communication, computational power, storage, battery life etc., however
they are still small brothers of desktop computers. Moreover, they should be light
weight, small, powerful and have longer battery life. High end processors have high
power consumption which present challenge for their deployment in mobile devices.
Ruggedness is also required as sensitive electronic equipment could get damaged
easily.

• Graphical capabilities: Special effects seamlessly merge computer generated data with
real images. Such efforts are very time consuming and do carefully handcrafted
integration of the virtual data into real footage. In MMR systems, rendering needs to be
performed in real time, also decision of what and where to merge the virtual data needs
to be determined automatically and on the fly. Making the visuals as informative and
realistic as possible, rendering with the correct lighting to provide a seamless
experience is an open-ended challenge. Absence of dedicated 3D processing units in
mobile devices is the limiting factor for rich content creation. Such capabilities are now
available on devices such as UMPCs.

• Communication: Ever increasing bandwidth has spurred new audiovisual networked
media applications and MMR systems can build on them. Efforts need to be put in to
standardize accessing mechanism which retrieves data from databases and exchanging
them reliably with mobile client. Content adaptation, sharing and personalized
interfaces between users and databases need to be addressed.

• Content creation: Depending on the tracking technology, AR systems need to have
access to model of the environment that they are suppose to work in and creating
accurate modeling could be a challenging task. Database of the environment paired
with accessing it with location needs to be created and maintained. For reliable and
accurate service, maintaining the content up to date is also time consuming.

Mixed Reality on Mobile Devices

199

• Tracking and Registration: Tracking deals with localizing the user in outdoor
environment so as to trigger other location specific queries. In registration, the desired
information is accessed, seamlessly merged with camera data and ultimately presented
to the client. Localizing with sub-meter accuracy for seamless integration, single sensor
such as camera, GPS or gyroscope alone is not sufficient. The current trend shows the
combination of them can provide more reliable results than individual sensor. Tracking
in unprepared environments is still elusive. This chapter looks at the current
technologies pertaining to tracking, registration, sensor fusion and hybrid techniques in
next section.

• Social Acceptance: Wearable MMR systems must be as unencumbered as possible.
Contrary, current MMR systems are bulky and intrusive. Social acceptance of these
systems is very important for their successful deployment.

5. Tracking and registration for MMR
MMR systems require very accurate position and orientation information of the user camera
in order to align virtual information with the physical objects. In absence of correct
localization, merging of virtual and physical objects will be out of sync and seamless
integration will be completely lost. As observed by (Zhou et al., 2008), over last couple of
years largest group of papers have been published on tracking as it is one of the
fundamental enabling technologies for AR. Still, the problem is unsolved with many fertile
areas for research. This section reviews different methodologies that have been proposed for
estimating/tracking camera pose.
An important criterion of these approaches is how much tracking devices are present on the
user’s body and in the environment. In truly outdoor explorations, the goal is to wear as
little equipment as possible without engineering the environment. GPS is ideal for such
applications, although environment is prepared in this case on a global scale rather than on
local scale by satellite constellation around the earth. Vision based approaches require some
knowledge about the environment in the form of 3D model or training image database for
successful tracking and registration.
General requirements for tracking can be summarized as:
• no engineering of the environment
• less user preparation
• highly accurate and robust
• driftless and
• instantaneous
This section presents different camera pose estimation approaches. Generally, tracking devices
used must be light in weight and insensitive to any kind of external disturbances. They should
have fairly wide operating range under varying environments. Currently there does not exist a
perfect tracking solution for all scenarios. Different approaches were developed keeping in
mind some specific application needs and may make them unsuitable for other scenarios.
Earlier tracking was purely sensor based, however with ubiquitous availability of video
capture capability, camera data is also used for tracking and registration purposes.

5.1 Tracking with position and orientation sensors
Position tracking with GPS receiver is a natural choice for outdoor environments since it is
globally accessible. Only constraint is, at least signals from four satellites should be visible at

 User Interfaces

200

 HOLUX M-1000 GPS position receiver OS5000-S 3D Rotational sensor

Fig. 5. Position and orientation sensors to estimate user pose.

user location. They generally provide accuracy between 5-10 meters in urban environments
depending on the satellite connection. Position accuracy can be increased with assisted-GPS
depending on the other technologies available in that country/area. GPS receivers are
getting inexpensive and finding their places in high-end consumer devices such as PDAs
and mobile phones.
Data obtained from gyroscopes and accelerometers provide absolute, but rough estimate of
orientation and normally used for initialization. However, they suffer from drift and
jittering effects over time. As accelerometer data is integrated twice with respect to time to
recover correct angle. Small errors in them lead to rapidly increasing errors in the resulting
orientation estimates causing large drifts. In spite of using Kalman Filter to stabilize the
output, jittering effects are still present due to external interference. Typical GPS and
gyroscope devices are illustrated in Fig. 5.
First outdoor MMR system was created by (Feiner et al., 1997) with GPS and orientation
sensors. Approach presented by (Azuma et al., 1999a) tried to stabilize the sensitivity of
these sensors in outdoor AR environments. Similar approach was used by (Schmeil & Broll,
2006) to build outdoor companion. Approach presented by (Pustka & Klinker, 2008)
employs mobile and stationary sensors apart from gyroscope to increase the robustness of
overall localization.
These inertial sensor based tracking systems are analogous to open loop systems with errors
and no mechanism to estimate and correct them.

5.2 Marker tracking
A common approach for AR applications is to make use of fiducials, easily recognizable
markers. Markers are of different types (see Fig. 6 for their illustration):
• infrared (IR) markers such as passive (made from retroreflective material) or active

(infrared LEDs) which are tracked by IR cameras
• black and white (B/W) and grayscale visual markers tracked via optical cameras

5.2.1 Infrared markers
Both active and passive infrared markers reflect light in narrow band which is captured by
IR cameras tuned to that narrow band thereby completely blocking out the visual spectrum
providing clean, noise free binary images for tracking. Due to their robustness, they have
been used in commercially available tracking systems and real tracking applications.

Mixed Reality on Mobile Devices

201

 B/W Marker Passive retro-reflective markers

 General grayscale marker Active infrared LED markers

Fig. 6. Different Markers.

Nonavailability of IR cameras in consumer mobile devices and engineering of the
environment with markers makes them unsuitable for outdoor AR applications.

5.2.2 Visual markers
Black and white visual markers with square frame, proposed by (Kato & Billinghurst, 1999),
are the most popular visual markers used for indoor AR applications. They can be tracked
using freely available ARToolkit systems with normal inexpensive cameras. Their peculiar
structure makes them easily identifiable in cluttered scenes. Vision based techniques have
been developed by (Lowe, 2004), Ozuysal et al. (2007) to track highly textured general
grayscale marker surfaces. In absence of square frame, these approaches rely on natural
features present in the image to track the general surfaces. Recently, (Wagner et al., 2008)
ported these approaches on mobile phones. Both B/W and grayscale marker based tracking
provides very robust and drift free estimation of the camera pose.
Even though visual marker tracking approaches are cheap and robust, applicability of them
to outdoor AR is infeasible as one has to prepare the environments.

5.3 Visual markerless tracking
Availability of low-cost video capture capabilities in recent years has spurred the use of
video camera as a means for tracking position and orientation of a user. Model based vision
approaches are a viable option for 6 DoF pose estimation as observed by (Klinker, 2000).
These vision techniques use natural features such as fiducial points/corners, lines, edges
present in video data to track camera pose. Frame by frame tracking of video data provides
closed loop tracking which is helpful for removing mismatches and drifts associated with
inertial sensors. However, these model-based vision techniques need accurate model of the
environment with known landmarks for object recognition and automatic registration.
Commercially available match-moving software tracks feature points in the image sequence,

 User Interfaces

200

 HOLUX M-1000 GPS position receiver OS5000-S 3D Rotational sensor

Fig. 5. Position and orientation sensors to estimate user pose.

user location. They generally provide accuracy between 5-10 meters in urban environments
depending on the satellite connection. Position accuracy can be increased with assisted-GPS
depending on the other technologies available in that country/area. GPS receivers are
getting inexpensive and finding their places in high-end consumer devices such as PDAs
and mobile phones.
Data obtained from gyroscopes and accelerometers provide absolute, but rough estimate of
orientation and normally used for initialization. However, they suffer from drift and
jittering effects over time. As accelerometer data is integrated twice with respect to time to
recover correct angle. Small errors in them lead to rapidly increasing errors in the resulting
orientation estimates causing large drifts. In spite of using Kalman Filter to stabilize the
output, jittering effects are still present due to external interference. Typical GPS and
gyroscope devices are illustrated in Fig. 5.
First outdoor MMR system was created by (Feiner et al., 1997) with GPS and orientation
sensors. Approach presented by (Azuma et al., 1999a) tried to stabilize the sensitivity of
these sensors in outdoor AR environments. Similar approach was used by (Schmeil & Broll,
2006) to build outdoor companion. Approach presented by (Pustka & Klinker, 2008)
employs mobile and stationary sensors apart from gyroscope to increase the robustness of
overall localization.
These inertial sensor based tracking systems are analogous to open loop systems with errors
and no mechanism to estimate and correct them.

5.2 Marker tracking
A common approach for AR applications is to make use of fiducials, easily recognizable
markers. Markers are of different types (see Fig. 6 for their illustration):
• infrared (IR) markers such as passive (made from retroreflective material) or active

(infrared LEDs) which are tracked by IR cameras
• black and white (B/W) and grayscale visual markers tracked via optical cameras

5.2.1 Infrared markers
Both active and passive infrared markers reflect light in narrow band which is captured by
IR cameras tuned to that narrow band thereby completely blocking out the visual spectrum
providing clean, noise free binary images for tracking. Due to their robustness, they have
been used in commercially available tracking systems and real tracking applications.

Mixed Reality on Mobile Devices

201

 B/W Marker Passive retro-reflective markers

 General grayscale marker Active infrared LED markers

Fig. 6. Different Markers.

Nonavailability of IR cameras in consumer mobile devices and engineering of the
environment with markers makes them unsuitable for outdoor AR applications.

5.2.2 Visual markers
Black and white visual markers with square frame, proposed by (Kato & Billinghurst, 1999),
are the most popular visual markers used for indoor AR applications. They can be tracked
using freely available ARToolkit systems with normal inexpensive cameras. Their peculiar
structure makes them easily identifiable in cluttered scenes. Vision based techniques have
been developed by (Lowe, 2004), Ozuysal et al. (2007) to track highly textured general
grayscale marker surfaces. In absence of square frame, these approaches rely on natural
features present in the image to track the general surfaces. Recently, (Wagner et al., 2008)
ported these approaches on mobile phones. Both B/W and grayscale marker based tracking
provides very robust and drift free estimation of the camera pose.
Even though visual marker tracking approaches are cheap and robust, applicability of them
to outdoor AR is infeasible as one has to prepare the environments.

5.3 Visual markerless tracking
Availability of low-cost video capture capabilities in recent years has spurred the use of
video camera as a means for tracking position and orientation of a user. Model based vision
approaches are a viable option for 6 DoF pose estimation as observed by (Klinker, 2000).
These vision techniques use natural features such as fiducial points/corners, lines, edges
present in video data to track camera pose. Frame by frame tracking of video data provides
closed loop tracking which is helpful for removing mismatches and drifts associated with
inertial sensors. However, these model-based vision techniques need accurate model of the
environment with known landmarks for object recognition and automatic registration.
Commercially available match-moving software tracks feature points in the image sequence,

 User Interfaces

202

leading to relative, rather than absolute tracking solution. Such systems need manual
initialization of the data, prone to drifting due to tracking errors and are computationally
heavy. (Lepetit & Fua, 2005) presents excellent review of model based vision tracking
approaches.
Future vision approaches could be based on image databases in which images are tagged by
position and orientation with respect to some common global coordinates. Such systems use
content-based image retrieval (CBIR) techniques to extract the reference image with respect
to current view query image. Feature based tracking in then employed between current
query image and retrieved reference image to estimate camera pose. (Ta et al., 2009) have
proposed one such prototype on mobile phones. Such approaches provide automatic
identification and tracking providing complete 6 DoF camera pose without manual
initialization.
Another approach could be similar to that of SLAM (simultaneous localization and
mapping), primarily developed for robot navigation. As robot navigates in unexplored
territories, SLAM constructs models of the surrounding on the fly without any prior
knowledge of the world. PTAM (parallel tracking and mapping) approach, similar to SLAM,
has been proposed by (Klein & Murray, 2007) for small AR workspaces. However, scaling it
to general and big AR spaces is very challenging.
In summary, pure vision based algorithms still lack robustness and requires high amount of
computational power making them not yet viable option for real-time tracking. Currently,
hybrid techniques combining vision based tracking and other sensing technologies show the
biggest promise.

5.4 Hybrid techniques
No single technology/sensor provides absolute 6 DoF tracking in unprepared outdoor
environments. Comparison of GPS, gyroscope and camera based tracking with respect to
requirements listed in Section 5 is presented in Table 1. Table reveal shortcomings of each
sensor used for tracking with no clear winner.

Sensor Engineering of
the Environment

User
Preparation

Tracking
Time

Tracking
Errors

Tracking
Drifts

GPS
Gyroscope

Camera

Yes
No

Depends

No
No

Depends

Few miliseconds
Few miliseconds
Few miliseconds
to few seconds

Large
Medium

Small

Driftless
Large

Medium

Table 1. Comparison of Different Tracking Devices
To overcome the practical limitations of these different modalities in the context of mobile
clients, hybrid approaches are normally employed for estimating the camera pose. These
hybrid approaches generally employ vision based closed loop tracking fused with open loop
inertial sensors to estimate position and orientation for general AR scenario. They use their
complementary nature to compensate for each others limitations. Vision based techniques
have low tracking errors, but drastic motions often leads to tracking failures. However,
inertial sensors are fast and robust under rapid motions. Optimum solution is to use inertial
sensors for initialization as they provide absolute registration while intermediate tracking is
carried out by vision tracking technique.

Mixed Reality on Mobile Devices

203

Over last couple of years variety of hybrid approaches have been presented in the literature.
These approaches mainly differ by:
• which sensors are used for fusion,
• how fusion is accomplished,
• how many degrees of camera pose are estimated and
• which vision technique is employed for tracking natural features.
Table 2 outlines comparison of hybrid approaches presented in literature for outdoor
augmented reality applications based on above criterions. Many flavours have been
proposed with none of them actually satisfying criterions listed by (Azuma et al., 2001) for
practical MMR systems. Main difficulties in coming up with general purpose solution are:
• Vision techniques are sensitive to occlusion and outliers
• Gyroscopes are prone to drifts and often need calibration
• Poor resolution of GPS receivers in urban environments etc.

Publication GPS
Sensor

Orientation
Sensor DoF Vision

Algorithm
(You et al., 1999) - 3 Point Tracking
(Azuma et al., 1999b) 3/5/6 Point Tracking
(Satoh et al., 2001) - 3 Point Tracking
(Behringer et al., 2002) 6 Point/Edge Tracking
(Jiang et al., 2004) 6 Line Tracking
(Hu & Uchimura, 2006) 6 Model Tracking
(Reitmayr & Drummond, 2006) - 6 Edge Tracking
(Honkamaa et al., 2007) - 6 Point Tracking
(Zhou et al., 2009) 6 Silhouette Tracking

Table 2. Hybrid Tracking Techniques for Outdoor AR

6. Summary
This chapter has presented brief overview of mixed reality systems adapted to mobile
devices for outdoor clients. The chapter presented potential applications of MMR systems,
challenges faced by them and enabling technologies that can make MMR systems
practicable. Overview of these enabling technologies was also presented. In particular, the
most fundamental and the core enabling technology for MMR is tracking and registration.
Research carried out over last couple of years and current state of the art was emphasized in
this chapter.
Truly deployable MMR systems are possible by convergence of following independent
technologies:
• User localization and tracking
• Location aware computing
• Geospatial databases and data mining
• Human interaction with geospatial information
• High-quality geospatial information
• Hardware support (displays, sensors etc.)

 User Interfaces

202

leading to relative, rather than absolute tracking solution. Such systems need manual
initialization of the data, prone to drifting due to tracking errors and are computationally
heavy. (Lepetit & Fua, 2005) presents excellent review of model based vision tracking
approaches.
Future vision approaches could be based on image databases in which images are tagged by
position and orientation with respect to some common global coordinates. Such systems use
content-based image retrieval (CBIR) techniques to extract the reference image with respect
to current view query image. Feature based tracking in then employed between current
query image and retrieved reference image to estimate camera pose. (Ta et al., 2009) have
proposed one such prototype on mobile phones. Such approaches provide automatic
identification and tracking providing complete 6 DoF camera pose without manual
initialization.
Another approach could be similar to that of SLAM (simultaneous localization and
mapping), primarily developed for robot navigation. As robot navigates in unexplored
territories, SLAM constructs models of the surrounding on the fly without any prior
knowledge of the world. PTAM (parallel tracking and mapping) approach, similar to SLAM,
has been proposed by (Klein & Murray, 2007) for small AR workspaces. However, scaling it
to general and big AR spaces is very challenging.
In summary, pure vision based algorithms still lack robustness and requires high amount of
computational power making them not yet viable option for real-time tracking. Currently,
hybrid techniques combining vision based tracking and other sensing technologies show the
biggest promise.

5.4 Hybrid techniques
No single technology/sensor provides absolute 6 DoF tracking in unprepared outdoor
environments. Comparison of GPS, gyroscope and camera based tracking with respect to
requirements listed in Section 5 is presented in Table 1. Table reveal shortcomings of each
sensor used for tracking with no clear winner.

Sensor Engineering of
the Environment

User
Preparation

Tracking
Time

Tracking
Errors

Tracking
Drifts

GPS
Gyroscope

Camera

Yes
No

Depends

No
No

Depends

Few miliseconds
Few miliseconds
Few miliseconds
to few seconds

Large
Medium

Small

Driftless
Large

Medium

Table 1. Comparison of Different Tracking Devices
To overcome the practical limitations of these different modalities in the context of mobile
clients, hybrid approaches are normally employed for estimating the camera pose. These
hybrid approaches generally employ vision based closed loop tracking fused with open loop
inertial sensors to estimate position and orientation for general AR scenario. They use their
complementary nature to compensate for each others limitations. Vision based techniques
have low tracking errors, but drastic motions often leads to tracking failures. However,
inertial sensors are fast and robust under rapid motions. Optimum solution is to use inertial
sensors for initialization as they provide absolute registration while intermediate tracking is
carried out by vision tracking technique.

Mixed Reality on Mobile Devices

203

Over last couple of years variety of hybrid approaches have been presented in the literature.
These approaches mainly differ by:
• which sensors are used for fusion,
• how fusion is accomplished,
• how many degrees of camera pose are estimated and
• which vision technique is employed for tracking natural features.
Table 2 outlines comparison of hybrid approaches presented in literature for outdoor
augmented reality applications based on above criterions. Many flavours have been
proposed with none of them actually satisfying criterions listed by (Azuma et al., 2001) for
practical MMR systems. Main difficulties in coming up with general purpose solution are:
• Vision techniques are sensitive to occlusion and outliers
• Gyroscopes are prone to drifts and often need calibration
• Poor resolution of GPS receivers in urban environments etc.

Publication GPS
Sensor

Orientation
Sensor DoF Vision

Algorithm
(You et al., 1999) - 3 Point Tracking
(Azuma et al., 1999b) 3/5/6 Point Tracking
(Satoh et al., 2001) - 3 Point Tracking
(Behringer et al., 2002) 6 Point/Edge Tracking
(Jiang et al., 2004) 6 Line Tracking
(Hu & Uchimura, 2006) 6 Model Tracking
(Reitmayr & Drummond, 2006) - 6 Edge Tracking
(Honkamaa et al., 2007) - 6 Point Tracking
(Zhou et al., 2009) 6 Silhouette Tracking

Table 2. Hybrid Tracking Techniques for Outdoor AR

6. Summary
This chapter has presented brief overview of mixed reality systems adapted to mobile
devices for outdoor clients. The chapter presented potential applications of MMR systems,
challenges faced by them and enabling technologies that can make MMR systems
practicable. Overview of these enabling technologies was also presented. In particular, the
most fundamental and the core enabling technology for MMR is tracking and registration.
Research carried out over last couple of years and current state of the art was emphasized in
this chapter.
Truly deployable MMR systems are possible by convergence of following independent
technologies:
• User localization and tracking
• Location aware computing
• Geospatial databases and data mining
• Human interaction with geospatial information
• High-quality geospatial information
• Hardware support (displays, sensors etc.)

 User Interfaces

204

Technological advances in these areas have the potential to make this imaginative future a
reality. Challenge lies in convergence, coexistence and seamless integration of these
technologies to deploy a truly practical MMR system.

7. Acknowledgements
The presented work is funded by Singapore A*Star Project No. 062-130-0054 (WBS R-263-
000- 458-305): i-Explore Interactive Exploration of Cityscapes through Space and Time.

8. References
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S. & MacIntyre, B. (2001). Recent

advances in augmented reality, IEEE Computer Graphics and Applications pp. 34–47.
Azuma, R., Hoff, B., Neely, H. & Sarfaty, R. (1999a). A motion-stabilized outdoor augmented

reality system, In Proc. IEEE Int. Conf. on Virtual Reality (VR 1999) pp. 252–259.
Azuma, R., Lee, J., Jiang, B., Park, J., You, S. & Neumann, U. (1999b). Tracking in

unprepared environments for augmented reality systems, Computers and Graphics
23(6): 787–793.

Behringer, R., Park, J. & Sundareswaran, V. (2002). Model-based visual tracking for outdoor
augmented reality applications, Proceedings of IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR 2002).

Feiner, S., MacIntyre, B., Hollerer, T. & Webster, A. (1997). Touring machine: Prototyping 3d
mobile augmented reality systems for exploring the urban environment, In Proc.
International Symposium on Wearable Computers (ISWC 1997) pp. 74–81.

History of Mobile Augmented Reality at Christian Doppler Laboratory (2009).
https://www.icg.tugraz.at/˜daniel/HistoryOfMobileAR/.

Hollerer, T. H. & Feiner, S. K. (2004). Mobile augmented reality, in H. Karimi & A. Hammad
(eds), Telegeoinformatics: Location-Based Computing and Services, Taylor & Francis
Books Ltd, chapter 9, pp. 221–260.

Honkamaa, P., Siltanen, S., Jappinen, J., Woodward, C. & Korkalo, O. (2007). Interactive
outdoor mobile augmentation using markerless tracking and gps, In Proc. IEEE Int.
Conf. on Virtual Reality (VR 2007).

Hu, Z. & Uchimura, K. (2006). Fusion of vision, gps and 3d gyro data in solving camera
registration problem for direct visual navigation, Int. Journal of ITS Research 4(1).

Jiang, B., Neumann, U. & You, S. (2004). A robust hybrid tracking system for outdoor
augmented reality, In Proc. IEEE Int. Conf. on Virtual Reality (VR 2004).

Kato, H. & Billinghurst, M. (1999). Marker tracking and hmd calibration for a video-based
augmented reality conferencing system, Proceedings of International Workshop on
Augmented Reality (IWAR 1999).

Klein, G. & Murray, D. (2007). Parallel tracking and mapping for small ar workspaces,
Proceedings of IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR 2007).

Klinker, G. (2000). Augmented reality: A problem in need of many computer vision based
solutions, in A. L. et al (ed.), Confluence of Computer Vision and Computer Graphics,
Kluwer Academic, Netherlands, chapter 15, pp. 267–284.

Lepetit, V. & Fua, P. (2005). Monocular model-based 3d tracking of rigid objects: A survey,
Foundations and Trends in Computer Graphics and Vision 1: 1–89.

Mixed Reality on Mobile Devices

205

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints, Int. journal of
Computer Vision 60: 91–110.

Makri, A., Arsenijevic, D., Weidenhausen, J., Eschler, P., Stricker, D., Machui, O., Fernandes,
C., Maria, S., Voss, G. & Ioannidis, N. (2005). Ultra: An augmented reality system
for handheld platforms, targeting industrial maintenance applications, In Proc.
International Conference on Virtual Systems and Multimedia.

Ozuysal, M., Fua, P. & Lepetit, V. (2007). Fast keypoint recognition in ten lines of code, In
Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR 2007) .

Papagiannakis, G., Schertenleib, S., O’Kennedy, B., Arevalo-Poizat, M., Magnenat-
Thalmann, N., Stoddart, A. & Thalmann, D. (2005). Mixing virtual and real scenes
in the site of ancient pompeii, Computer Animation and Virtual Worlds 16(1): 11–24.

Papagiannakis, G., Singh, G. & Magnenat-Thalmann, N. (2008). A survey of mobile and
wireless technologies for augmented reality systems, Computer Animation and
Virtual Worlds 19(1): 3–22.

Pustka, D. & Klinker, G. (2008). Dynamic gyroscope fusion in ubiquitous tracking
environments, Proceedings of IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR 2008).

Reitmayr, G. & Drummond, T. (2006). Going out: Robust model-based tracking for outdoor
augmented reality, Proceedings of IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR 2006). pp. 109–118.

Santos, P., Stork, A., Gierlinger, T., Pagani, A., Paloc, C., Conti, I. B. G., DeAmicis, R., Witzel,
M., Machui, O., Jimenez, J. M., Araujo, B., Jorge, J. & Bodammer, G. (2007).
Improve: An innovative application for collaborative mobile mixed reality design
review, International Journal on Interactive Design and Manufacturing 1(2): 115–126.

Satoh, K., Anabuki, M., Yamamoto, H. & Tamura, H. (2001). A hybrid registration method
for outdoor augmented reality, Proceedings of International Symposium on Augmented
Reality (ISAR 2001) pp. 67–76.

Schall, G., Mendez, E., Junghanns, S. & Schmalstieg, D. (2007). Urban 3d models: What’s
underneath? handheld augmented reality for subsurface infrastructure
visualization, Proceedings of Ubiquitous Computing (UbiComp 2007).

Schmalstieg, D., Schall, G.,Wagner, D., Barakonyi, I., Reitmayr, G., Newman, J. &
Ledermann, F. (2007). Managing complex augmented reality models, IEEE
Computer Society Magazine pp. 48–57.

Schmeil, A. & Broll, W. (2006). Mara-an augmented personal assistant and companion, ACM
SIGGRAPH Sketch.

Ta, D.-N., Chen, W.-C., Gelfand, N. & Pulli, K. (2009). Surftrac: Efficient tracking and
continuous object recognition using local feature descriptors, In Proc. IEEE Int. Conf.
on Computer Vision and Pattern Recognition (CVPR 2009).

Tappert, C. C., Ruocco, A. S., Langdorf, K. A., Mabry, F. J., Heineman, K. J., Brick, T. A.,
Cross, D. M. & Pellissier, S. V. (2001). Military applications for wearable computers
and augmented reality, in W. Barfield & T. Caudell (eds), Fundamentals of Wearable
Computers and Augumented Reality, Lawrence Erlbaum Assoc., Mahwah, NJ., pp.
625–647.

Vlahakis, V., Ioannidis, N., Karigiannis, J., Tsotros, M., Gounaris, M., Stricker, D., Gleue, T.,
Daehne, P. & Almeida, L. (2002). Archeoguide: An augmented reality guide for
archaeological sites, IEEE Computer Graphics and Applications 22(5): 52–60.

 User Interfaces

204

Technological advances in these areas have the potential to make this imaginative future a
reality. Challenge lies in convergence, coexistence and seamless integration of these
technologies to deploy a truly practical MMR system.

7. Acknowledgements
The presented work is funded by Singapore A*Star Project No. 062-130-0054 (WBS R-263-
000- 458-305): i-Explore Interactive Exploration of Cityscapes through Space and Time.

8. References
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S. & MacIntyre, B. (2001). Recent

advances in augmented reality, IEEE Computer Graphics and Applications pp. 34–47.
Azuma, R., Hoff, B., Neely, H. & Sarfaty, R. (1999a). A motion-stabilized outdoor augmented

reality system, In Proc. IEEE Int. Conf. on Virtual Reality (VR 1999) pp. 252–259.
Azuma, R., Lee, J., Jiang, B., Park, J., You, S. & Neumann, U. (1999b). Tracking in

unprepared environments for augmented reality systems, Computers and Graphics
23(6): 787–793.

Behringer, R., Park, J. & Sundareswaran, V. (2002). Model-based visual tracking for outdoor
augmented reality applications, Proceedings of IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR 2002).

Feiner, S., MacIntyre, B., Hollerer, T. & Webster, A. (1997). Touring machine: Prototyping 3d
mobile augmented reality systems for exploring the urban environment, In Proc.
International Symposium on Wearable Computers (ISWC 1997) pp. 74–81.

History of Mobile Augmented Reality at Christian Doppler Laboratory (2009).
https://www.icg.tugraz.at/˜daniel/HistoryOfMobileAR/.

Hollerer, T. H. & Feiner, S. K. (2004). Mobile augmented reality, in H. Karimi & A. Hammad
(eds), Telegeoinformatics: Location-Based Computing and Services, Taylor & Francis
Books Ltd, chapter 9, pp. 221–260.

Honkamaa, P., Siltanen, S., Jappinen, J., Woodward, C. & Korkalo, O. (2007). Interactive
outdoor mobile augmentation using markerless tracking and gps, In Proc. IEEE Int.
Conf. on Virtual Reality (VR 2007).

Hu, Z. & Uchimura, K. (2006). Fusion of vision, gps and 3d gyro data in solving camera
registration problem for direct visual navigation, Int. Journal of ITS Research 4(1).

Jiang, B., Neumann, U. & You, S. (2004). A robust hybrid tracking system for outdoor
augmented reality, In Proc. IEEE Int. Conf. on Virtual Reality (VR 2004).

Kato, H. & Billinghurst, M. (1999). Marker tracking and hmd calibration for a video-based
augmented reality conferencing system, Proceedings of International Workshop on
Augmented Reality (IWAR 1999).

Klein, G. & Murray, D. (2007). Parallel tracking and mapping for small ar workspaces,
Proceedings of IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR 2007).

Klinker, G. (2000). Augmented reality: A problem in need of many computer vision based
solutions, in A. L. et al (ed.), Confluence of Computer Vision and Computer Graphics,
Kluwer Academic, Netherlands, chapter 15, pp. 267–284.

Lepetit, V. & Fua, P. (2005). Monocular model-based 3d tracking of rigid objects: A survey,
Foundations and Trends in Computer Graphics and Vision 1: 1–89.

Mixed Reality on Mobile Devices

205

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints, Int. journal of
Computer Vision 60: 91–110.

Makri, A., Arsenijevic, D., Weidenhausen, J., Eschler, P., Stricker, D., Machui, O., Fernandes,
C., Maria, S., Voss, G. & Ioannidis, N. (2005). Ultra: An augmented reality system
for handheld platforms, targeting industrial maintenance applications, In Proc.
International Conference on Virtual Systems and Multimedia.

Ozuysal, M., Fua, P. & Lepetit, V. (2007). Fast keypoint recognition in ten lines of code, In
Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR 2007) .

Papagiannakis, G., Schertenleib, S., O’Kennedy, B., Arevalo-Poizat, M., Magnenat-
Thalmann, N., Stoddart, A. & Thalmann, D. (2005). Mixing virtual and real scenes
in the site of ancient pompeii, Computer Animation and Virtual Worlds 16(1): 11–24.

Papagiannakis, G., Singh, G. & Magnenat-Thalmann, N. (2008). A survey of mobile and
wireless technologies for augmented reality systems, Computer Animation and
Virtual Worlds 19(1): 3–22.

Pustka, D. & Klinker, G. (2008). Dynamic gyroscope fusion in ubiquitous tracking
environments, Proceedings of IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR 2008).

Reitmayr, G. & Drummond, T. (2006). Going out: Robust model-based tracking for outdoor
augmented reality, Proceedings of IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR 2006). pp. 109–118.

Santos, P., Stork, A., Gierlinger, T., Pagani, A., Paloc, C., Conti, I. B. G., DeAmicis, R., Witzel,
M., Machui, O., Jimenez, J. M., Araujo, B., Jorge, J. & Bodammer, G. (2007).
Improve: An innovative application for collaborative mobile mixed reality design
review, International Journal on Interactive Design and Manufacturing 1(2): 115–126.

Satoh, K., Anabuki, M., Yamamoto, H. & Tamura, H. (2001). A hybrid registration method
for outdoor augmented reality, Proceedings of International Symposium on Augmented
Reality (ISAR 2001) pp. 67–76.

Schall, G., Mendez, E., Junghanns, S. & Schmalstieg, D. (2007). Urban 3d models: What’s
underneath? handheld augmented reality for subsurface infrastructure
visualization, Proceedings of Ubiquitous Computing (UbiComp 2007).

Schmalstieg, D., Schall, G.,Wagner, D., Barakonyi, I., Reitmayr, G., Newman, J. &
Ledermann, F. (2007). Managing complex augmented reality models, IEEE
Computer Society Magazine pp. 48–57.

Schmeil, A. & Broll, W. (2006). Mara-an augmented personal assistant and companion, ACM
SIGGRAPH Sketch.

Ta, D.-N., Chen, W.-C., Gelfand, N. & Pulli, K. (2009). Surftrac: Efficient tracking and
continuous object recognition using local feature descriptors, In Proc. IEEE Int. Conf.
on Computer Vision and Pattern Recognition (CVPR 2009).

Tappert, C. C., Ruocco, A. S., Langdorf, K. A., Mabry, F. J., Heineman, K. J., Brick, T. A.,
Cross, D. M. & Pellissier, S. V. (2001). Military applications for wearable computers
and augmented reality, in W. Barfield & T. Caudell (eds), Fundamentals of Wearable
Computers and Augumented Reality, Lawrence Erlbaum Assoc., Mahwah, NJ., pp.
625–647.

Vlahakis, V., Ioannidis, N., Karigiannis, J., Tsotros, M., Gounaris, M., Stricker, D., Gleue, T.,
Daehne, P. & Almeida, L. (2002). Archeoguide: An augmented reality guide for
archaeological sites, IEEE Computer Graphics and Applications 22(5): 52–60.

 User Interfaces

206

Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T. & Schmalstieg, D. (2008). Pose
tracking from natural features on mobile phones, Proceedings of IEEE and ACM
International Symposium on Mixed and Augmented Reality (ISMAR 2008).

You, S., Neumann, U. & Azuma, R. (1999). Hybrid inertial and vision tracking for
augmented reality registration, In Proc. IEEE Int. Conf. on Virtual Reality (VR 1999).

You, Y., Chin, T. J., Lim, J. H., Chevallet, J.-P., Coutrix, C. & Nigay, L. (2008). Deploying and
evaluating a mixed reality mobile treasure hunt: Snap2play, ACM Proc. of
MobileHCI 2008.

Zhou, F., Duh, H. B.-L. & Billinghurst, M. (2008). Trends in augmented reality tracking,
interaction and display: A review of ten years of ismar, Proceedings of IEEE and
ACM International Symposium on Mixed and Augmented Reality (ISMAR 2008).

Zhou, Z., Karlekar, J., Hii, D., Schneider, M., Lu,W. &Wittkopf, S. (2009). Robust pose
estimation for outdoor mixed reality with sensor fusion, In Proc. Human Computer
Interaction International (HCII 2009).

13

Multimodal Interfaces to Mobile Terminals
– A Design-For-All Approach

Knut Kvale and Narada Dilp Warakagoda
Telenor Group Business Development & Research

Norway

1. Introduction
Multimodal human-computer user interfaces are able to combine different input signals,
extract the combined meaning from them, find requested information and present the
response in the most appropriate format. Hence, a multimodal human-computer interface
offers the users an opportunity to choose the most natural interaction pattern for the actual
application and context of use. If the preferred mode fails in a certain context or task, users
may switch to a more appropriate mode or they can combine modalities.
Around thirty years ago Bolt presented the “Put That There” concept demonstrator, which
processed speech in parallel with manual pointing during object manipulation (Bolt, 1980).
Since then major advances have been made in automatic speech recognition (ASR)
algorithms and natural language processing (NLP), in handwriting and gesture recognition,
as well as in speed, processing power and memory capacity of computers. Today’s
multimodal systems are capable of recognizing and combining a wide variety of signals
such as speech, touch, manual gestures, gaze tracking, facial expressions, head and body
movements. The response can be presented by e.g. facial animation in the form of human-
like presentation agents on the screen in a multimedia system. These advanced systems
need various sensors and a lot of processing power and memory. They are therefore best
suited for interaction with computers and in kiosk applications, as demonstrated in e.g.
(Oviatt, 2000); (Gustafson et al., 2000); (Wahlster, 2001); (Beskow, et al. 2002); (Karpov, 2006);
(Smartkom, 2007).
Modern mobile terminals are now portable computers where the traditional audio user
interfaces, microphones and speakers, are accompanied with touch screens, cameras,
accelerometers and gyroscopes etc. These enriched user interfaces combined with the ever
increasing capacity of processors, access to mobile networks with increasing bandwidths
and functionality as global positioning system (GPS) and near field communication (NFC)
will make mobile terminals well suited for developing user-friendly multimodal interfaces
in the years to come.
However, the multimodal functionality on mobile terminals is still restricted to two input
modes: speech (audio) and touch, and two output modes: audio and vision. This type of
multimodality, sometimes called tap & talk (or point & speak), is essentially speech centric,
and will be explored further in this chapter.
We will investigate the hypothesis that multimodal interfaces offer a freedom of choice in
interaction pattern for all users. For normal able-bodied users this implies enhanced user-

 User Interfaces

206

Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T. & Schmalstieg, D. (2008). Pose
tracking from natural features on mobile phones, Proceedings of IEEE and ACM
International Symposium on Mixed and Augmented Reality (ISMAR 2008).

You, S., Neumann, U. & Azuma, R. (1999). Hybrid inertial and vision tracking for
augmented reality registration, In Proc. IEEE Int. Conf. on Virtual Reality (VR 1999).

You, Y., Chin, T. J., Lim, J. H., Chevallet, J.-P., Coutrix, C. & Nigay, L. (2008). Deploying and
evaluating a mixed reality mobile treasure hunt: Snap2play, ACM Proc. of
MobileHCI 2008.

Zhou, F., Duh, H. B.-L. & Billinghurst, M. (2008). Trends in augmented reality tracking,
interaction and display: A review of ten years of ismar, Proceedings of IEEE and
ACM International Symposium on Mixed and Augmented Reality (ISMAR 2008).

Zhou, Z., Karlekar, J., Hii, D., Schneider, M., Lu,W. &Wittkopf, S. (2009). Robust pose
estimation for outdoor mixed reality with sensor fusion, In Proc. Human Computer
Interaction International (HCII 2009).

13

Multimodal Interfaces to Mobile Terminals
– A Design-For-All Approach

Knut Kvale and Narada Dilp Warakagoda
Telenor Group Business Development & Research

Norway

1. Introduction
Multimodal human-computer user interfaces are able to combine different input signals,
extract the combined meaning from them, find requested information and present the
response in the most appropriate format. Hence, a multimodal human-computer interface
offers the users an opportunity to choose the most natural interaction pattern for the actual
application and context of use. If the preferred mode fails in a certain context or task, users
may switch to a more appropriate mode or they can combine modalities.
Around thirty years ago Bolt presented the “Put That There” concept demonstrator, which
processed speech in parallel with manual pointing during object manipulation (Bolt, 1980).
Since then major advances have been made in automatic speech recognition (ASR)
algorithms and natural language processing (NLP), in handwriting and gesture recognition,
as well as in speed, processing power and memory capacity of computers. Today’s
multimodal systems are capable of recognizing and combining a wide variety of signals
such as speech, touch, manual gestures, gaze tracking, facial expressions, head and body
movements. The response can be presented by e.g. facial animation in the form of human-
like presentation agents on the screen in a multimedia system. These advanced systems
need various sensors and a lot of processing power and memory. They are therefore best
suited for interaction with computers and in kiosk applications, as demonstrated in e.g.
(Oviatt, 2000); (Gustafson et al., 2000); (Wahlster, 2001); (Beskow, et al. 2002); (Karpov, 2006);
(Smartkom, 2007).
Modern mobile terminals are now portable computers where the traditional audio user
interfaces, microphones and speakers, are accompanied with touch screens, cameras,
accelerometers and gyroscopes etc. These enriched user interfaces combined with the ever
increasing capacity of processors, access to mobile networks with increasing bandwidths
and functionality as global positioning system (GPS) and near field communication (NFC)
will make mobile terminals well suited for developing user-friendly multimodal interfaces
in the years to come.
However, the multimodal functionality on mobile terminals is still restricted to two input
modes: speech (audio) and touch, and two output modes: audio and vision. This type of
multimodality, sometimes called tap & talk (or point & speak), is essentially speech centric,
and will be explored further in this chapter.
We will investigate the hypothesis that multimodal interfaces offer a freedom of choice in
interaction pattern for all users. For normal able-bodied users this implies enhanced user-

 User Interfaces

208

friendliness and flexibility in the use of the services, whereas for the disabled users this is a
means by which they can compensate for their impaired communication mode.
The outline of this chapter is as follows: Section 2 first defines multimodal interaction and
discusses various forms of multimodality. Then we confine ourselves to speech centric
multimodal interfaces for mobile terminals and demonstrate the advantages of this
functionality in two form-fillings applications. Section 3 relates the principles of Design for
All to multimodal user interfaces. Section 4 presents a generic system architecture for
multimodal interfaces, whereas Section 5 provides more details of our implementation of a
public web-based bus-route information service. Section 6 describes the user evaluations of
our system by five test persons with different impairments, as well as a dyslectic and an
aphasic test user.

2. Various forms of multimodality
2.1 Multimodal versus multimedia
The term modality refers to a form of sensory perception: hearing, vision, touch, taste and
smell. For our research on human-machine interaction, we define modality as a
communication channel between the user and the device. The modes above can be
combined in a multimodal interface, containing audio (e.g. in the form of speech), vision
(e.g. in the form of text and graphics, or moving video), and touch (e.g. touch sensitive
screens). We do not consider services using one particular input mode, e.g. speech, and
another output mode, e.g. text/graphics as multimodal services. We distinguish between
multimode and multimedia; that is, media is the representation format for the information
or content in a certain mode. For example, speech and music are two media formats in the
auditory mode. Text, graphics and video are examples of media types in the visual mode.

2.2 Combining multiple modalities
Multiple input and output modalities can be combined in several ways. We may distinguish
between combining the multimodal inputs sequentially or simultaneously. In a sequential
multimodal system inputs from different modalities are interpreted separately. For each
dialogue state, there is only one input mode available, but in the whole interaction more
than one input mode may be used. Sequential multimodal input is often used in system-
driven applications. Some systems may offer several parallel input modes that are active at
the same time. This means that the users can choose the input mode they prefer at each
dialogue stage. However, only one of the input channels is interpreted (e.g. the first input).
In a simultaneous multimodal system, also called composite multimodality, all inputs
within a given time window are interpreted jointly depending on the fusion of the partial
information from the different input channels. Composite multimodality is probably the
most natural way of interacting with computers, but it is by far the most complicated
scenario to implement.
On the output side the difference between sequential and simultaneous use of modes may
be less apparent, because the graphical display is static: it remains visible during times when
speech is played (and the graphical image cannot be changed). In coordinated simultaneous
multimodal output, information may be conferred by means of a spoken message that
coincides with changes in the graphical display and perhaps also with gestures of an on-
screen presentation agent.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

209

2.3 Mobile terminals and multimodality
The first generation of small mobile terminals used for mobile communication purposes had
only a handful of input and output modalities: e.g.: speech and a small key pad on the input
side and a small black and white character display and audio on the output side. The
simplicity of the task they were meant to be used for, namely to make or answer a call had
probably justified such a very simple user interface. But the tasks of the mobile terminals
quickly started to get more complex and the need for more sophisticated user interfaces
started to grow. This need has been addressed to a certain extent by the technological
development in the past decade or so, even though the user interfaces could never keep up
with the development of the functionalities of the mobile terminals.
One significant development in user interfaces of the mobile terminal is its screen. Presently
almost all small mobile devices are equipped with high resolution colour screens capable of
rendering advanced graphics. While this is a huge boost of the user interface on the output
side, another property of the screens, namely touch sensitivity, contributed heavily to
improving the input side. In 2002/2003 high end mobile terminals with touch sensitive
screens appeared in the market (e.g. Sony Ericsson P800 (GSM, 2009)). But now the touch
screen is a common feature of even mid-range mobile devices.
In the latter part of this decade, several other user interface components integrated in mobile
terminals became very common. One such component is the camera. This can provide the
basis for implementation of input modalities such as object recognition, face recognition and
gaze tracking etc.
Another common integrated component in modern terminals is the Global Positioning
System (GPS) receiver module, which can provide the location information, essentially an
input modality. So-called Near Field Communication (NFC) technology which is expected
to be a common feature of mobile terminals in the next two to three years is another way of
getting location information. NFC is often considered to be a technology supporting the
pointing modality and can be used in novel multimodal applications as voice-enabled
mobile commerce (Warakagoda et al., 2008).
Even though most of the above mentioned user interface technologies have existed in a
sufficiently mature state for a fairly long time, there hasn’t been any breakthrough in the
user interfaces of mobile terminals until Apple’s iPhone was introduced in 2007 (GSM,
2009). Worldwide success of this product was mainly due to its attractive user interface
combining several technologies mentioned above. The iPhone exploits the touch sensitive
screen in a clever way, not only to support pointing but also touch gestures. In addition, the
iPhone makes use of microelectromechanical systems (MEMS) technology such as
accelerometers and gyroscopes to create completely new modalities like acceleration and
orientation.
Inspired by the success of iPhone, a wave of similar devices has been released into the
market by the rivalling manufacturers. The result is that now we have a large number of
mobile device models which include user interface modules such as touch screens, GPS,
cameras, accelerometers and gyroscopes etc. We should not forget that the traditional audio
devices, microphones and speakers are still there and the mass market NFC is just around
the corner. On top of all these, the modern mobile devices are equipped with high capacity
processors and network interfaces such as Universal Mobile Telephony System (UMTS) and
High Speed Packet Data Access (HSPA). All those factors make today’s mobile terminals an
ideal platform for developing multimodal interfaces.

 User Interfaces

208

friendliness and flexibility in the use of the services, whereas for the disabled users this is a
means by which they can compensate for their impaired communication mode.
The outline of this chapter is as follows: Section 2 first defines multimodal interaction and
discusses various forms of multimodality. Then we confine ourselves to speech centric
multimodal interfaces for mobile terminals and demonstrate the advantages of this
functionality in two form-fillings applications. Section 3 relates the principles of Design for
All to multimodal user interfaces. Section 4 presents a generic system architecture for
multimodal interfaces, whereas Section 5 provides more details of our implementation of a
public web-based bus-route information service. Section 6 describes the user evaluations of
our system by five test persons with different impairments, as well as a dyslectic and an
aphasic test user.

2. Various forms of multimodality
2.1 Multimodal versus multimedia
The term modality refers to a form of sensory perception: hearing, vision, touch, taste and
smell. For our research on human-machine interaction, we define modality as a
communication channel between the user and the device. The modes above can be
combined in a multimodal interface, containing audio (e.g. in the form of speech), vision
(e.g. in the form of text and graphics, or moving video), and touch (e.g. touch sensitive
screens). We do not consider services using one particular input mode, e.g. speech, and
another output mode, e.g. text/graphics as multimodal services. We distinguish between
multimode and multimedia; that is, media is the representation format for the information
or content in a certain mode. For example, speech and music are two media formats in the
auditory mode. Text, graphics and video are examples of media types in the visual mode.

2.2 Combining multiple modalities
Multiple input and output modalities can be combined in several ways. We may distinguish
between combining the multimodal inputs sequentially or simultaneously. In a sequential
multimodal system inputs from different modalities are interpreted separately. For each
dialogue state, there is only one input mode available, but in the whole interaction more
than one input mode may be used. Sequential multimodal input is often used in system-
driven applications. Some systems may offer several parallel input modes that are active at
the same time. This means that the users can choose the input mode they prefer at each
dialogue stage. However, only one of the input channels is interpreted (e.g. the first input).
In a simultaneous multimodal system, also called composite multimodality, all inputs
within a given time window are interpreted jointly depending on the fusion of the partial
information from the different input channels. Composite multimodality is probably the
most natural way of interacting with computers, but it is by far the most complicated
scenario to implement.
On the output side the difference between sequential and simultaneous use of modes may
be less apparent, because the graphical display is static: it remains visible during times when
speech is played (and the graphical image cannot be changed). In coordinated simultaneous
multimodal output, information may be conferred by means of a spoken message that
coincides with changes in the graphical display and perhaps also with gestures of an on-
screen presentation agent.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

209

2.3 Mobile terminals and multimodality
The first generation of small mobile terminals used for mobile communication purposes had
only a handful of input and output modalities: e.g.: speech and a small key pad on the input
side and a small black and white character display and audio on the output side. The
simplicity of the task they were meant to be used for, namely to make or answer a call had
probably justified such a very simple user interface. But the tasks of the mobile terminals
quickly started to get more complex and the need for more sophisticated user interfaces
started to grow. This need has been addressed to a certain extent by the technological
development in the past decade or so, even though the user interfaces could never keep up
with the development of the functionalities of the mobile terminals.
One significant development in user interfaces of the mobile terminal is its screen. Presently
almost all small mobile devices are equipped with high resolution colour screens capable of
rendering advanced graphics. While this is a huge boost of the user interface on the output
side, another property of the screens, namely touch sensitivity, contributed heavily to
improving the input side. In 2002/2003 high end mobile terminals with touch sensitive
screens appeared in the market (e.g. Sony Ericsson P800 (GSM, 2009)). But now the touch
screen is a common feature of even mid-range mobile devices.
In the latter part of this decade, several other user interface components integrated in mobile
terminals became very common. One such component is the camera. This can provide the
basis for implementation of input modalities such as object recognition, face recognition and
gaze tracking etc.
Another common integrated component in modern terminals is the Global Positioning
System (GPS) receiver module, which can provide the location information, essentially an
input modality. So-called Near Field Communication (NFC) technology which is expected
to be a common feature of mobile terminals in the next two to three years is another way of
getting location information. NFC is often considered to be a technology supporting the
pointing modality and can be used in novel multimodal applications as voice-enabled
mobile commerce (Warakagoda et al., 2008).
Even though most of the above mentioned user interface technologies have existed in a
sufficiently mature state for a fairly long time, there hasn’t been any breakthrough in the
user interfaces of mobile terminals until Apple’s iPhone was introduced in 2007 (GSM,
2009). Worldwide success of this product was mainly due to its attractive user interface
combining several technologies mentioned above. The iPhone exploits the touch sensitive
screen in a clever way, not only to support pointing but also touch gestures. In addition, the
iPhone makes use of microelectromechanical systems (MEMS) technology such as
accelerometers and gyroscopes to create completely new modalities like acceleration and
orientation.
Inspired by the success of iPhone, a wave of similar devices has been released into the
market by the rivalling manufacturers. The result is that now we have a large number of
mobile device models which include user interface modules such as touch screens, GPS,
cameras, accelerometers and gyroscopes etc. We should not forget that the traditional audio
devices, microphones and speakers are still there and the mass market NFC is just around
the corner. On top of all these, the modern mobile devices are equipped with high capacity
processors and network interfaces such as Universal Mobile Telephony System (UMTS) and
High Speed Packet Data Access (HSPA). All those factors make today’s mobile terminals an
ideal platform for developing multimodal interfaces.

 User Interfaces

210

2.4 Speech centric multimodality
The full potential of all the functionality described in section 2.3 above is not exploited yet.
The multimodal functionality on mobile terminals is still usually restricted to two input
modes: speech (audio) and touch, and two output modes: audio and vision. This type of
multimodality, sometimes called tap & talk (or point & speak), is essentially speech centric,
and will be explored further in this chapter.
In most speech centric multimodal interfaces on mobile terminals, the input combines and
interprets spoken utterances and pen gestures such as pointing, circling and strokes on a
touch sensitive screen. The output information is either speech (synthetic or pre-recorded)
or text and graphics.
Speech centric multimodality utilises the fact that the pen/screen and speech are
complementary. The advantage of pen input and screen output is typically the weakness of
speech, and vice versa: Spoken interaction is temporal, whereas visual interaction is spatial.
With speech it is natural to ask one question containing several key words, but it may be
tedious to listen to all information read aloud because speech is inherently sequential. With
pen and graphics interfaces only, it may be hard to enter queries, but it is easy to get a quick
overview of the information on the screen, as summarised in Table 1.

Only pen input, screen output Pure speech input/output
Hands and eyes busy – difficult to
perform other tasks Hands and eyes free to perform other tasks

Simple actions Complex actions
Visual feedback – spatial Oral feedback – temporal
No reference ambiguity Reference ambiguity
Refers only to items on screen Natural to refer also to invisible items

No problem with background noise Recognition rate degrades in noisy
environments

Table 1. Comparison of the two complementary user interfaces: Pen only input and screen
output versus a pure speech based input and output interface.
Hence, systems combining the pen and speech (tap & talk) input may lead to a more
efficient human-computer dialogue:
• The users can express their intentions using fewer words and selecting the input mode

they judge to be less prone to error, or switch modes after system errors and thus
facilitate error recovery.

• The system offers better error avoidance, error correction and error recovery.
Speech centric multimodal interfaces for mobile terminals can be utilised in many different
applications. In e.g. (Watanabe et al., 2007), the complementary merits of speech and pen are
utilised for entering long sentences into mobile terminals. With this interface, a user speaks
while writing, where the two modes complement one another to improve the recognition
performance. However, the two most promising mobile applications with speech centric
multimodality are form-filling and map-based systems.

2.5 Speech centric multimodality for form-filling
In this section we exemplify the benefits of speech centric multimodality in two form-filling
applications on a wireless personal digital assistant (PDA) with touch sensitive screen: A
public train timetable information retrieval service and a public “yellow pages” service.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

211

Figure 1 below shows the graphical user interface (GUI) in three dialogue steps of the
service for a Norwegian train timetable information retrieval application:
1. This entry page appears on the screen when the service is called up. Below the text

heading: “Where do you want to go?” there are five input form fields: Arrival and
departure station, date and time of arrival and the number of tickets. The questions are
also read aloud by text-to-speech synthesis (TTS).

2. This screen shows the result of the user request in natural language: “I want to go from
Kristiansand to Bodø next Friday at seven o’clock”. The key words in the utterance
were recognised correctly and the corresponding fields filled in, giving the user an
immediate feedback on the screen. The call was made on June 10, so “next Friday” was
correctly interpreted as June 15.
Since all the information in the form fields on the screen is correct the user confirms by
pushing the ‘OK’ button, and the system gets the requested information from the
railway company web portal.

3. The result of the web request is presented on the screen. Usually three or four realistic
alternatives are depicted on the screen. The user may then tap on the preferred travel
alternative, or say the alternative number. Then the dialogue goes on asking “how
many tickets” the customer wants for the selected trip and this demonstrator service
ends.

Fig. 1. The GUI for the train timetable information retrieval application

In the example in figure 1, all the words were correctly recognised and understood and the
visual presentation of information was much more efficient than audio feedback. Therefore the
customer obtained efficiently what she wanted. However, in real world speech-enabled
telephony applications ASR-errors will unavoidably occur. Correcting ASR-errors in speech
only mode (no visual feedback) is very difficult and reduces the user satisfaction. But, with a
speech centric multimodal interface it is rather easy to correct ASR-errors in these form-filling
services. If some of the information on the screen is wrong, the user corrects it by clicking on
the field with wrong words and then either saying the correct word once more or tapping on
the correct word from the N-best list, which occurs on the right hand side of the field.

 User Interfaces

210

2.4 Speech centric multimodality
The full potential of all the functionality described in section 2.3 above is not exploited yet.
The multimodal functionality on mobile terminals is still usually restricted to two input
modes: speech (audio) and touch, and two output modes: audio and vision. This type of
multimodality, sometimes called tap & talk (or point & speak), is essentially speech centric,
and will be explored further in this chapter.
In most speech centric multimodal interfaces on mobile terminals, the input combines and
interprets spoken utterances and pen gestures such as pointing, circling and strokes on a
touch sensitive screen. The output information is either speech (synthetic or pre-recorded)
or text and graphics.
Speech centric multimodality utilises the fact that the pen/screen and speech are
complementary. The advantage of pen input and screen output is typically the weakness of
speech, and vice versa: Spoken interaction is temporal, whereas visual interaction is spatial.
With speech it is natural to ask one question containing several key words, but it may be
tedious to listen to all information read aloud because speech is inherently sequential. With
pen and graphics interfaces only, it may be hard to enter queries, but it is easy to get a quick
overview of the information on the screen, as summarised in Table 1.

Only pen input, screen output Pure speech input/output
Hands and eyes busy – difficult to
perform other tasks Hands and eyes free to perform other tasks

Simple actions Complex actions
Visual feedback – spatial Oral feedback – temporal
No reference ambiguity Reference ambiguity
Refers only to items on screen Natural to refer also to invisible items

No problem with background noise Recognition rate degrades in noisy
environments

Table 1. Comparison of the two complementary user interfaces: Pen only input and screen
output versus a pure speech based input and output interface.
Hence, systems combining the pen and speech (tap & talk) input may lead to a more
efficient human-computer dialogue:
• The users can express their intentions using fewer words and selecting the input mode

they judge to be less prone to error, or switch modes after system errors and thus
facilitate error recovery.

• The system offers better error avoidance, error correction and error recovery.
Speech centric multimodal interfaces for mobile terminals can be utilised in many different
applications. In e.g. (Watanabe et al., 2007), the complementary merits of speech and pen are
utilised for entering long sentences into mobile terminals. With this interface, a user speaks
while writing, where the two modes complement one another to improve the recognition
performance. However, the two most promising mobile applications with speech centric
multimodality are form-filling and map-based systems.

2.5 Speech centric multimodality for form-filling
In this section we exemplify the benefits of speech centric multimodality in two form-filling
applications on a wireless personal digital assistant (PDA) with touch sensitive screen: A
public train timetable information retrieval service and a public “yellow pages” service.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

211

Figure 1 below shows the graphical user interface (GUI) in three dialogue steps of the
service for a Norwegian train timetable information retrieval application:
1. This entry page appears on the screen when the service is called up. Below the text

heading: “Where do you want to go?” there are five input form fields: Arrival and
departure station, date and time of arrival and the number of tickets. The questions are
also read aloud by text-to-speech synthesis (TTS).

2. This screen shows the result of the user request in natural language: “I want to go from
Kristiansand to Bodø next Friday at seven o’clock”. The key words in the utterance
were recognised correctly and the corresponding fields filled in, giving the user an
immediate feedback on the screen. The call was made on June 10, so “next Friday” was
correctly interpreted as June 15.
Since all the information in the form fields on the screen is correct the user confirms by
pushing the ‘OK’ button, and the system gets the requested information from the
railway company web portal.

3. The result of the web request is presented on the screen. Usually three or four realistic
alternatives are depicted on the screen. The user may then tap on the preferred travel
alternative, or say the alternative number. Then the dialogue goes on asking “how
many tickets” the customer wants for the selected trip and this demonstrator service
ends.

Fig. 1. The GUI for the train timetable information retrieval application

In the example in figure 1, all the words were correctly recognised and understood and the
visual presentation of information was much more efficient than audio feedback. Therefore the
customer obtained efficiently what she wanted. However, in real world speech-enabled
telephony applications ASR-errors will unavoidably occur. Correcting ASR-errors in speech
only mode (no visual feedback) is very difficult and reduces the user satisfaction. But, with a
speech centric multimodal interface it is rather easy to correct ASR-errors in these form-filling
services. If some of the information on the screen is wrong, the user corrects it by clicking on
the field with wrong words and then either saying the correct word once more or tapping on
the correct word from the N-best list, which occurs on the right hand side of the field.

 User Interfaces

212

Figure 2 illustrates this situation in the “yellow pages” application:
1. The entry page that appears on the screen when the service is called up:

Below the text heading: “Welcome to Yellow pages” there are two input form fields:
Business sector and municipal (Norwegian: “Bransje” and “sted”)

2. When the user has asked in natural language: “I want bakeries in Oslo”. The ASR
recognised the key words in the utterance and filled in the corresponding fields, giving
the user an immediate feedback on the screen. Note that the N-best list on the right
hand side of the sector field contains the alternative “Batteries”. That is, the word
“batteries” has the second best confidence score.
Since all the information in the form fields on the screen is correct the user pushes the
‘OK’-button, and the system gets the requested information from the service provider.

3. The requested information is displayed on the screen. There are 25 bakeries in this
listing which would have been rather tedious listening to. Here, the user easily gets a
quick overview and clicks on the preferred baker.

Fig. 2. The GUI for the Yellow pages application
The actions and benefits of speech centric multimodality in the form-filling applications are
summarized in table 2.

User actions Benefits of multimodality
Natural language input, asking for
several different pieces of
information in one sentence.

Speech is most natural for asking this type of
questions. Speech is much faster than typing and
faster than selecting in a hierarchical menu.

Reads information shown on the
screen.

The user gets a quick overview – much quicker than
with aural feedback reading sentence by sentence.

Taps in the field where the ASR-
error occur, and taps at the correct
alternative in the N-best list.

Much easier to correct ASR-errors or understanding
rejections than with complicated speech-only
dialogues. Better error control and disambiguation
strategies (e.g. when there are multiple matching
listings for the user query).

Table 2. Benefits of speech centric multimodality in form-filling applications.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

213

2.6 Speech centric multimodality for map-based applications
Combining speech and pen gestures as inputs to mobile terminals has proven particularly
useful for navigation in maps. Typically, this kind of speech centric multimodal mobile
applications provides easy access to useful city information, for instance restaurant and
subway information for New York City (Johnston et al., 2001), (Johnston et al., 2002), a
tourist guide for Paris (Almeida et al., 2002a), (Almeida et al., 2002b), (Kvale et al., 2003b),
bus information system for the Oslo area (Kvale et al., 2004), (Kvale et al., 2005),
(Warakagoda et al., 2003) navigational inquiries in the Beijing area (Hui & Meng, 2006), trip
planning and guidance while walking or driving car (Bühler & Minker, 2005), various
maptasks with “QuickSet” (Oviatt, 2000) and services aimed at public transportation
commuters (Hurtig, 2006). Task analysis of map interfaces have shown that multimodal
interaction with tap and talk is natural during spatial location and selection commands such
as: “What’s the distance from here to here?” <while tapping at actual locations in the map>,
or “Zoom in this area” <while tapping at the area on the map>.
Our bus information system for the Oslo area fits into these kinds of applications and will be
discussed further in Section 5 and 6.

3. Multimodal interfaces are useful for all
Tim Berners-Lee, one of the inventors of the World Wide Web, stated in 1997 that “The
power of the Web is in its universality. Access by everyone regardless of disability is an
essential aspect”. However, accessibility to web based information services is still limited for
many people with sensory impairments. A main obstacle is that the input and output
channels of the services support one modality only. The European Telecommunications
Standards Institute has claimed that the missing access to environments, services and
adequate training contributes more to the social exclusion of disabled people than their
living in institutions (ETSI, 2003).
There are two different approaches to solving this problem. One is to develop special
assistive technology devices that compensate for or relieve the different disabilities. Another
solution is to design services and products to be usable by everybody, to the greatest extent
possible, without the need for specialized adaptation; a so-called Design-for-All approach.
Design for All (DfA), also called Universal Design, is a user-centred design approach which
addresses the possible range of human abilities, skills, requirements, and preferences. There
exist a lot of guidelines and principles for DfA, as for instance the seven principles for
universal design proposed by the Centre for Universal Design North Carolina State
University (NC, 1997), and the Web Content Accessibility Guidelines (WCAG) developed by
W3C (WCAG, 2008). Following these guidelines will not only make Web content more
accessible to a wider range of people with disabilities, it will also often make the Web
content more usable and provide all users with a better user experience.
The core of these guidelines and recommendations is to accommodate a wide range of
individual preferences and abilities by offering alternative interaction modes and
redundancy in the presentations. In our opinion, multimodal human-computer user
interfaces have the potential to fulfil the requirements for universal design. Multimodal
interfaces are able to combine different input signals, extract the combined meaning from
them, find requested information and present the response in the most appropriate format.
Hence, a multimodal human-computer interface offers the users an opportunity to choose
the most natural interaction pattern depending on the actual task to be accomplished, the

 User Interfaces

212

Figure 2 illustrates this situation in the “yellow pages” application:
1. The entry page that appears on the screen when the service is called up:

Below the text heading: “Welcome to Yellow pages” there are two input form fields:
Business sector and municipal (Norwegian: “Bransje” and “sted”)

2. When the user has asked in natural language: “I want bakeries in Oslo”. The ASR
recognised the key words in the utterance and filled in the corresponding fields, giving
the user an immediate feedback on the screen. Note that the N-best list on the right
hand side of the sector field contains the alternative “Batteries”. That is, the word
“batteries” has the second best confidence score.
Since all the information in the form fields on the screen is correct the user pushes the
‘OK’-button, and the system gets the requested information from the service provider.

3. The requested information is displayed on the screen. There are 25 bakeries in this
listing which would have been rather tedious listening to. Here, the user easily gets a
quick overview and clicks on the preferred baker.

Fig. 2. The GUI for the Yellow pages application
The actions and benefits of speech centric multimodality in the form-filling applications are
summarized in table 2.

User actions Benefits of multimodality
Natural language input, asking for
several different pieces of
information in one sentence.

Speech is most natural for asking this type of
questions. Speech is much faster than typing and
faster than selecting in a hierarchical menu.

Reads information shown on the
screen.

The user gets a quick overview – much quicker than
with aural feedback reading sentence by sentence.

Taps in the field where the ASR-
error occur, and taps at the correct
alternative in the N-best list.

Much easier to correct ASR-errors or understanding
rejections than with complicated speech-only
dialogues. Better error control and disambiguation
strategies (e.g. when there are multiple matching
listings for the user query).

Table 2. Benefits of speech centric multimodality in form-filling applications.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

213

2.6 Speech centric multimodality for map-based applications
Combining speech and pen gestures as inputs to mobile terminals has proven particularly
useful for navigation in maps. Typically, this kind of speech centric multimodal mobile
applications provides easy access to useful city information, for instance restaurant and
subway information for New York City (Johnston et al., 2001), (Johnston et al., 2002), a
tourist guide for Paris (Almeida et al., 2002a), (Almeida et al., 2002b), (Kvale et al., 2003b),
bus information system for the Oslo area (Kvale et al., 2004), (Kvale et al., 2005),
(Warakagoda et al., 2003) navigational inquiries in the Beijing area (Hui & Meng, 2006), trip
planning and guidance while walking or driving car (Bühler & Minker, 2005), various
maptasks with “QuickSet” (Oviatt, 2000) and services aimed at public transportation
commuters (Hurtig, 2006). Task analysis of map interfaces have shown that multimodal
interaction with tap and talk is natural during spatial location and selection commands such
as: “What’s the distance from here to here?” <while tapping at actual locations in the map>,
or “Zoom in this area” <while tapping at the area on the map>.
Our bus information system for the Oslo area fits into these kinds of applications and will be
discussed further in Section 5 and 6.

3. Multimodal interfaces are useful for all
Tim Berners-Lee, one of the inventors of the World Wide Web, stated in 1997 that “The
power of the Web is in its universality. Access by everyone regardless of disability is an
essential aspect”. However, accessibility to web based information services is still limited for
many people with sensory impairments. A main obstacle is that the input and output
channels of the services support one modality only. The European Telecommunications
Standards Institute has claimed that the missing access to environments, services and
adequate training contributes more to the social exclusion of disabled people than their
living in institutions (ETSI, 2003).
There are two different approaches to solving this problem. One is to develop special
assistive technology devices that compensate for or relieve the different disabilities. Another
solution is to design services and products to be usable by everybody, to the greatest extent
possible, without the need for specialized adaptation; a so-called Design-for-All approach.
Design for All (DfA), also called Universal Design, is a user-centred design approach which
addresses the possible range of human abilities, skills, requirements, and preferences. There
exist a lot of guidelines and principles for DfA, as for instance the seven principles for
universal design proposed by the Centre for Universal Design North Carolina State
University (NC, 1997), and the Web Content Accessibility Guidelines (WCAG) developed by
W3C (WCAG, 2008). Following these guidelines will not only make Web content more
accessible to a wider range of people with disabilities, it will also often make the Web
content more usable and provide all users with a better user experience.
The core of these guidelines and recommendations is to accommodate a wide range of
individual preferences and abilities by offering alternative interaction modes and
redundancy in the presentations. In our opinion, multimodal human-computer user
interfaces have the potential to fulfil the requirements for universal design. Multimodal
interfaces are able to combine different input signals, extract the combined meaning from
them, find requested information and present the response in the most appropriate format.
Hence, a multimodal human-computer interface offers the users an opportunity to choose
the most natural interaction pattern depending on the actual task to be accomplished, the

 User Interfaces

214

context, and their own preferences and abilities. If the preferred mode fails in a certain
context or task, users may switch to a more appropriate mode or they can combine
modalities.
We believe that multimodal interfaces offer a freedom of choice of interaction pattern which
is useful for all users. For able-bodied users this implies enhanced user-friendliness and
flexibility in the use of the services, see e.g. (Kvale et al. (2003b), (Oviatt et al., 2004), whereas
for the disabled users this is a means by which they can compensate for their not-well-
functioning communication mode.
To test the hypothesis that multimodal inputs and outputs really are useful for disabled
people, we have developed a flexible speech centric multimodal interface on mobile
terminals to a public web-based bus-route information service for the Oslo area.

4. General implementation aspects of multimodal systems
Figure 3 shows a typical multimodal system architecture. This is essentially an input-output
system where multiple inputs are integrated and the result is used to determine the outputs.
Inputs can be integrated either before or after they are recognized and semantics are extracted.
The former and latter cases are known as early fusion and late fusion respectively. The dialogue
manager functional module generates the response using this fused input and the current
context. The response planner module determines how the response is presented to the user
by splitting up the semantic stream coming out of the dialogue manager into appropriate
modalities. This process is also known as fission. Both multimodal integration and response
planner typically make use of context information to control their actions. In the following sub-
sections the functionalities of the most important modules in figure 3 are explained.

Fig. 3. A generic multimodal dialogue system architecture

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

215

4.1 Recognition
This is one of the most important operations in multimodal systems. In recognition an input
data stream is classified into a predefined number of classes and the resulting class labels
are mapped on to a vector of semantic units. The position of each element of this vector
corresponds to a semantic concept and the element itself is the value of the corresponding
semantic concept. Often, recognition is a statistically based process and therefore the
outcome of recognition is not a single concept vector, but a list of vectors where each of
these vectors is associated with a probabilistic score or likelihood. For example, suppose that
the input is a speech signal and the recognizer is designed to recognise utterances such as “I
would like to take a bus from Oslo to Fornebu 10 o’clock today”. Then a suitable set of
semantic concepts would be (<FROM_PLACE>, <TO_PLACE>, <DEPARTURE_TIME>). If
the user has actually uttered the above sentence, and we limit the output to three concept
vectors, examples of output can be:
• (Oslo, Fornebu, 1000) with probabilistic score 0.18
• (Oslo, Fornebu, 1300) with probabilistic score 0.11
• (Oslo, Fornbuveien, 1000) with probabilistic score 0.09

4.2 Fusion and fission
Since a multimodal system has more than one input and/or output channel, there must be
mechanisms to map:
• Several input channels to a single semantic stream, i.e. fusion
• Single semantic stream to several output channels, i.e. fission.
From a technical point of view, fusion, also called multimodal integration, deserves a higher
attention than fission, because a good fusion strategy can help reduce the recognition errors.
Usually, fusion is classified into two classes, early fusion and late fusion. Early fusion means
integration of the input channels at an early stage of processing. Often, this means
integration of feature vectors before they are sent through the recogniser(s). Late fusion
means integration of the recogniser outputs, usually at a semantic interpretation level. Late
fusion seems to have attracted more interest than early fusion, probably because it only
needs the recogniser outputs, and no changes of existing modules (such as feature
extractors, recognisers) are required.
In one of its simplest forms, late fusion can be performed by simple table look-ups. For
example, assume that we have two input channels. Then we can maintain a two
dimensional table, whose rows and columns correspond to alternative outcomes of the
recognisers acting on channel 1 and channel 2 respectively. Each cell of the table can be
marked 1 or 0, indicating whether this particular corresponding combination is valid or
invalid. Then the fusion procedure for a given pair of recogniser output lists would be to
scan the (recogniser) output combinations in decreasing order of likelihood or probabilistic
score and find the first valid combination by consulting the table.
 In the above procedure, likelihood is derived from the joint probability of the recogniser
outputs from the two channels. One simple approach of computing these joint probabilities
is to assume that two recognition streams are statistically independent. However, the fusion
performance (i.e. multimodal recognition performance) can be enhanced by dropping this
assumption in favour of more realistic assumptions (Wu et al., 1999).
Table look-up based fusion is not very convenient when the semantic information to be
integrated is complicated. In such cases typed feature structures can be used. This data

 User Interfaces

214

context, and their own preferences and abilities. If the preferred mode fails in a certain
context or task, users may switch to a more appropriate mode or they can combine
modalities.
We believe that multimodal interfaces offer a freedom of choice of interaction pattern which
is useful for all users. For able-bodied users this implies enhanced user-friendliness and
flexibility in the use of the services, see e.g. (Kvale et al. (2003b), (Oviatt et al., 2004), whereas
for the disabled users this is a means by which they can compensate for their not-well-
functioning communication mode.
To test the hypothesis that multimodal inputs and outputs really are useful for disabled
people, we have developed a flexible speech centric multimodal interface on mobile
terminals to a public web-based bus-route information service for the Oslo area.

4. General implementation aspects of multimodal systems
Figure 3 shows a typical multimodal system architecture. This is essentially an input-output
system where multiple inputs are integrated and the result is used to determine the outputs.
Inputs can be integrated either before or after they are recognized and semantics are extracted.
The former and latter cases are known as early fusion and late fusion respectively. The dialogue
manager functional module generates the response using this fused input and the current
context. The response planner module determines how the response is presented to the user
by splitting up the semantic stream coming out of the dialogue manager into appropriate
modalities. This process is also known as fission. Both multimodal integration and response
planner typically make use of context information to control their actions. In the following sub-
sections the functionalities of the most important modules in figure 3 are explained.

Fig. 3. A generic multimodal dialogue system architecture

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

215

4.1 Recognition
This is one of the most important operations in multimodal systems. In recognition an input
data stream is classified into a predefined number of classes and the resulting class labels
are mapped on to a vector of semantic units. The position of each element of this vector
corresponds to a semantic concept and the element itself is the value of the corresponding
semantic concept. Often, recognition is a statistically based process and therefore the
outcome of recognition is not a single concept vector, but a list of vectors where each of
these vectors is associated with a probabilistic score or likelihood. For example, suppose that
the input is a speech signal and the recognizer is designed to recognise utterances such as “I
would like to take a bus from Oslo to Fornebu 10 o’clock today”. Then a suitable set of
semantic concepts would be (<FROM_PLACE>, <TO_PLACE>, <DEPARTURE_TIME>). If
the user has actually uttered the above sentence, and we limit the output to three concept
vectors, examples of output can be:
• (Oslo, Fornebu, 1000) with probabilistic score 0.18
• (Oslo, Fornebu, 1300) with probabilistic score 0.11
• (Oslo, Fornbuveien, 1000) with probabilistic score 0.09

4.2 Fusion and fission
Since a multimodal system has more than one input and/or output channel, there must be
mechanisms to map:
• Several input channels to a single semantic stream, i.e. fusion
• Single semantic stream to several output channels, i.e. fission.
From a technical point of view, fusion, also called multimodal integration, deserves a higher
attention than fission, because a good fusion strategy can help reduce the recognition errors.
Usually, fusion is classified into two classes, early fusion and late fusion. Early fusion means
integration of the input channels at an early stage of processing. Often, this means
integration of feature vectors before they are sent through the recogniser(s). Late fusion
means integration of the recogniser outputs, usually at a semantic interpretation level. Late
fusion seems to have attracted more interest than early fusion, probably because it only
needs the recogniser outputs, and no changes of existing modules (such as feature
extractors, recognisers) are required.
In one of its simplest forms, late fusion can be performed by simple table look-ups. For
example, assume that we have two input channels. Then we can maintain a two
dimensional table, whose rows and columns correspond to alternative outcomes of the
recognisers acting on channel 1 and channel 2 respectively. Each cell of the table can be
marked 1 or 0, indicating whether this particular corresponding combination is valid or
invalid. Then the fusion procedure for a given pair of recogniser output lists would be to
scan the (recogniser) output combinations in decreasing order of likelihood or probabilistic
score and find the first valid combination by consulting the table.
 In the above procedure, likelihood is derived from the joint probability of the recogniser
outputs from the two channels. One simple approach of computing these joint probabilities
is to assume that two recognition streams are statistically independent. However, the fusion
performance (i.e. multimodal recognition performance) can be enhanced by dropping this
assumption in favour of more realistic assumptions (Wu et al., 1999).
Table look-up based fusion is not very convenient when the semantic information to be
integrated is complicated. In such cases typed feature structures can be used. This data

 User Interfaces

216

structure can be considered as an extended, recursive version of attribute-value type data
structures, where a value can in turn be a feature structure. Typed feature structures can be
used for representing meaning as well as fusion rules. Integration of two or several feature
structures can be achieved through a widely studied algorithm called feature-structure
unification (Oviatt et al., 2000).
In fusion, temporal relationships between different input channels are also very important.
This issue is usually known as synchronization. In most of the systems reported in the
literature, synchronization is achieved by considering all input contents that lie within a pre-
defined time window. One can do this very easily by employing timers and relying on the
real arriving times of the input signals to the module responsible for performing fusion.
However, a more accurate synchronization can be obtained by time-stamping all inputs as
soon as they are generated since this approach will remove the errors due to transit delays.
Note however, that input synchronization is meaningful only for coordinated
multimodality.

4.3 Dialogue management
The dialogue manager is usually modelled as a finite state machine (FSM), where a given
state St represents the current context. One problem of this modelling approach is the
potentially large number of states even for a relatively simple application. This can be
brought to a fairly controllable level by considering a hierarchical structure. In such a
structure there are only a few states at the top level. But each of these states is thought to be
consisting of several sub states that lie in the next level. This can go on until the model is
powerful enough to describe the application concerned.
When the user generates an event, a state transition can occur in the FSM describing the
dialogue. The route of the transition is dependent upon the input. This means that state
transition is defined by the tuple (St, It), where St is the current state and It is the current user
input. Each state transition has a well-defined end state St+1 and an output Ot. In other
words, the building-block-operation of the dialogue manager is the following:
1. Wait for input (It)
2. Act according to (St, It), for example by looking-up a database and getting the result (Rt)
3. Generate the output according to (St, It , Rt)
4. Set next state St+1 according to (St, It)
The user input (It) is a vector which is a representation of the structure called concept table.
This structure consists of an array of concepts and the values of each of these concepts. For
example in a travel planning dialogue system the concept table can look as follows:

Concept Value
<FROM_PLACE> Oslo
<TO_PLACE> Fornebu
<DEPARTURE_TIME> 1600

The column “value” of the concept table is filled using the values output by the recognisers
operating on the input modalities (e.g.: speech and GUI tap recogniser). Late fusion
completes the filling operation by resolving input ambiguities and ensuring a concept table
of the highest likelihood. Once filled, the concept table defines the current input It. More
specifically, if the values in the concept table are It(1), It(2) , … … It(n), then the N-tuple (It(1), It(2),
… … It(n)) is the current input It. The number of different inputs can be prohibitively large,

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

217

even if the length of the concept table (M) and the number of values a given concept can
take (K) are moderate. This implies that a given state in the dialogue FSM has a large
number of possible transitions.
A possible remedy for this problem is to employ a clever many-to-one mapping from the
original input space to a new smaller sized input space, which exploits the fact that there are
many don’t-care concept values.

4.4 Internal information flow
In advanced multimodal systems, several input/output channels can be active
simultaneously. In order to cope with this kind of multimodality, an architectural support
for simultaneous information flow is necessary. Furthermore, it is desirable to run different
functional modules separately (often on different machines), in order to deal with the
system’s complexity more effectively. The so-called distributed processing paradigm
matches these requirements quite nicely, and therefore most of the multimodal system
architectures are based on this paradigm.
There are many different approaches to implementing a distributed software system.
Examples are Parallel Virtual Machine (PVM), Message Passing Interface (MPI), RPC-XML
and SOAP, CORBA, DCOM, JINI and RMI (Kvale et al., 2003a). However, a more attractive
approach to implementation of multimodal systems is based on co-operative software
agents. They represent a very high level abstraction of distributed processing and offer a
very flexible communication interface.
There are several agent architectures that have been used to build multimodal systems, for
instance GALAXY Communicator from MITRE (Galaxy, 2007), Open Agent Architecture
(OAA) from SRI international (OAA, 2009) and Adaptive Agent Architecture (AAA) from
Oregon Graduate Institute (Kumar et al., 2000). In these architectures a set of specialized
agents are employed to get different tasks performed. Two given agents can communicate
(indirectly) with each other through a special agent called facilitator.
We found that GALAXY Communicator is the most suitable agent-based platform for our
purpose. A more detailed description of this is given in section 5. The GALAXY
Communicator has a hub-spoke type architecture and allows easier asynchronous and
simultaneous message exchange between modules than for example a serial architecture
does. One drawback of GALAXY Communicator, however, is its dependency on a single
facilitator whose failure will cause a complete system breakdown. In AAA this problem has
been addressed by introducing many facilitators.
Another aspect of information flow between different modules is the format in which
information is packaged during transition. In Galaxy Communicator an attribute-value type
of format is used. The advantage of this approach is that this format is very similar to the
concept table format used in multimodal integration and dialogue management. This issue
has attracted the attention of standard developing organizations too. Especially, the W3C
Multimodal Interaction Working Group which develops specifications to enable access to
the Web using multimodal interaction has addressed this issue in their Extensible
MultiModal Annotation markup language (EMMA) standard. In 2009 the W3C
Recommendation for EMMA was launched (W3C, 2009). EMMA markup language is
intended for use by systems that provide semantic interpretations for a variety of inputs,
including but not necessarily limited to, speech, natural language text, GUI and ink input.
According to W3C it is expected that EMMA will be used primarily as a standard data

 User Interfaces

216

structure can be considered as an extended, recursive version of attribute-value type data
structures, where a value can in turn be a feature structure. Typed feature structures can be
used for representing meaning as well as fusion rules. Integration of two or several feature
structures can be achieved through a widely studied algorithm called feature-structure
unification (Oviatt et al., 2000).
In fusion, temporal relationships between different input channels are also very important.
This issue is usually known as synchronization. In most of the systems reported in the
literature, synchronization is achieved by considering all input contents that lie within a pre-
defined time window. One can do this very easily by employing timers and relying on the
real arriving times of the input signals to the module responsible for performing fusion.
However, a more accurate synchronization can be obtained by time-stamping all inputs as
soon as they are generated since this approach will remove the errors due to transit delays.
Note however, that input synchronization is meaningful only for coordinated
multimodality.

4.3 Dialogue management
The dialogue manager is usually modelled as a finite state machine (FSM), where a given
state St represents the current context. One problem of this modelling approach is the
potentially large number of states even for a relatively simple application. This can be
brought to a fairly controllable level by considering a hierarchical structure. In such a
structure there are only a few states at the top level. But each of these states is thought to be
consisting of several sub states that lie in the next level. This can go on until the model is
powerful enough to describe the application concerned.
When the user generates an event, a state transition can occur in the FSM describing the
dialogue. The route of the transition is dependent upon the input. This means that state
transition is defined by the tuple (St, It), where St is the current state and It is the current user
input. Each state transition has a well-defined end state St+1 and an output Ot. In other
words, the building-block-operation of the dialogue manager is the following:
1. Wait for input (It)
2. Act according to (St, It), for example by looking-up a database and getting the result (Rt)
3. Generate the output according to (St, It , Rt)
4. Set next state St+1 according to (St, It)
The user input (It) is a vector which is a representation of the structure called concept table.
This structure consists of an array of concepts and the values of each of these concepts. For
example in a travel planning dialogue system the concept table can look as follows:

Concept Value
<FROM_PLACE> Oslo
<TO_PLACE> Fornebu
<DEPARTURE_TIME> 1600

The column “value” of the concept table is filled using the values output by the recognisers
operating on the input modalities (e.g.: speech and GUI tap recogniser). Late fusion
completes the filling operation by resolving input ambiguities and ensuring a concept table
of the highest likelihood. Once filled, the concept table defines the current input It. More
specifically, if the values in the concept table are It(1), It(2) , … … It(n), then the N-tuple (It(1), It(2),
… … It(n)) is the current input It. The number of different inputs can be prohibitively large,

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

217

even if the length of the concept table (M) and the number of values a given concept can
take (K) are moderate. This implies that a given state in the dialogue FSM has a large
number of possible transitions.
A possible remedy for this problem is to employ a clever many-to-one mapping from the
original input space to a new smaller sized input space, which exploits the fact that there are
many don’t-care concept values.

4.4 Internal information flow
In advanced multimodal systems, several input/output channels can be active
simultaneously. In order to cope with this kind of multimodality, an architectural support
for simultaneous information flow is necessary. Furthermore, it is desirable to run different
functional modules separately (often on different machines), in order to deal with the
system’s complexity more effectively. The so-called distributed processing paradigm
matches these requirements quite nicely, and therefore most of the multimodal system
architectures are based on this paradigm.
There are many different approaches to implementing a distributed software system.
Examples are Parallel Virtual Machine (PVM), Message Passing Interface (MPI), RPC-XML
and SOAP, CORBA, DCOM, JINI and RMI (Kvale et al., 2003a). However, a more attractive
approach to implementation of multimodal systems is based on co-operative software
agents. They represent a very high level abstraction of distributed processing and offer a
very flexible communication interface.
There are several agent architectures that have been used to build multimodal systems, for
instance GALAXY Communicator from MITRE (Galaxy, 2007), Open Agent Architecture
(OAA) from SRI international (OAA, 2009) and Adaptive Agent Architecture (AAA) from
Oregon Graduate Institute (Kumar et al., 2000). In these architectures a set of specialized
agents are employed to get different tasks performed. Two given agents can communicate
(indirectly) with each other through a special agent called facilitator.
We found that GALAXY Communicator is the most suitable agent-based platform for our
purpose. A more detailed description of this is given in section 5. The GALAXY
Communicator has a hub-spoke type architecture and allows easier asynchronous and
simultaneous message exchange between modules than for example a serial architecture
does. One drawback of GALAXY Communicator, however, is its dependency on a single
facilitator whose failure will cause a complete system breakdown. In AAA this problem has
been addressed by introducing many facilitators.
Another aspect of information flow between different modules is the format in which
information is packaged during transition. In Galaxy Communicator an attribute-value type
of format is used. The advantage of this approach is that this format is very similar to the
concept table format used in multimodal integration and dialogue management. This issue
has attracted the attention of standard developing organizations too. Especially, the W3C
Multimodal Interaction Working Group which develops specifications to enable access to
the Web using multimodal interaction has addressed this issue in their Extensible
MultiModal Annotation markup language (EMMA) standard. In 2009 the W3C
Recommendation for EMMA was launched (W3C, 2009). EMMA markup language is
intended for use by systems that provide semantic interpretations for a variety of inputs,
including but not necessarily limited to, speech, natural language text, GUI and ink input.
According to W3C it is expected that EMMA will be used primarily as a standard data

 User Interfaces

218

interchange format between the components of a multimodal system; in particular, it will
normally be automatically generated by recognition/interpretation components to represent
the semantics of users’ inputs, not directly authored by developers.

5. Our speech centric multimodal system
Our multimodal bus information system implements the functional architecture described
in section 4 through a set of software modules. Our implementation consists of a server and
a thin client (i.e. the Mobile Terminal) as shown in Figure 4. The client server architecture is
based on the Galaxy communicator (Galaxy, 2007). The server side comprises five main
autonomous modules which inter-communicate via a central facilitator module (HUB) as
shown in figure 4. All the server side modules including the automatic speech recogniser
(ASR) and the text to speech synthesizer (TTS) run on a PC, while the client runs on a mobile
terminal, in this case a Qtek 9000. The client consists of two main components handling
voice and graphical (GUI) modalities. It communicates with the server over an Internet
Protocol (IP) network such as wireless local area network (WLAN) based on the IEEE
802.11b protocol, or a 3G/UMTS data network. The server communicates with a public web
service called “Trafikanten” through the Internet to get the necessary bus route information
(Trafikanten, 2009). The “Trafikanten” service is text based (i.e. unimodal). That is, the users
have to write the names of the arrival and departure bus stops to get the route information,
which in turn is presented as text. Our multimodal interface at the mobile client converts the
web service to a map-based multimodal service supporting speech, graphic/text and
pointing modalities as inputs. Thus the users can choose whether to use speech or point on

Fig. 4. Multimodal dialogue system software architecture

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

219

the map, or even use pointing and talking simultaneously (so-called composite
multimodality) to specify the arrival and departure bus stops. The response from the system
is presented as both speech and text. More details about the system implementation can be
found in (Kvale, et al. 2003b), (Warakagoda, et al. 2003), (Kvale, et al. 2004), (Schie, 2006).
When the client of our multimodal service is started and connected to the server, the main
page of the server is presented to the user. This is an overview map of the Oslo area where
different sub-areas can be zoomed into, as shown in Figure 5.
Once zoomed, it is possible to get the bus stops in the area displayed. The user has to select
a departure bus stop and an arrival bus stop to get the bus route information. The users are
not strictly required to follow the steps sequentially. They can for example combine several
of them, whenever it makes sense to do so.

Fig. 5. A typical screen sequence for a user with reduced speaking ability. 1) Overview map:
The user taps on the submap (the square) for Fornebu. 2) The user says ”next bus here
Jernbanetorget” and taps on bus stop Telenor. 3) The system does not recognize the arrival
bus stop. Therefore the user selects it by using pen. But first the user taps on the zoom-out
button to open the overview map. 4) The user taps on the submap where the bus stop
Jernbanetorget lies. 5) The user taps on the bus stop Jernbanetorget. 6) The user can read the
bus information.

 User Interfaces

218

interchange format between the components of a multimodal system; in particular, it will
normally be automatically generated by recognition/interpretation components to represent
the semantics of users’ inputs, not directly authored by developers.

5. Our speech centric multimodal system
Our multimodal bus information system implements the functional architecture described
in section 4 through a set of software modules. Our implementation consists of a server and
a thin client (i.e. the Mobile Terminal) as shown in Figure 4. The client server architecture is
based on the Galaxy communicator (Galaxy, 2007). The server side comprises five main
autonomous modules which inter-communicate via a central facilitator module (HUB) as
shown in figure 4. All the server side modules including the automatic speech recogniser
(ASR) and the text to speech synthesizer (TTS) run on a PC, while the client runs on a mobile
terminal, in this case a Qtek 9000. The client consists of two main components handling
voice and graphical (GUI) modalities. It communicates with the server over an Internet
Protocol (IP) network such as wireless local area network (WLAN) based on the IEEE
802.11b protocol, or a 3G/UMTS data network. The server communicates with a public web
service called “Trafikanten” through the Internet to get the necessary bus route information
(Trafikanten, 2009). The “Trafikanten” service is text based (i.e. unimodal). That is, the users
have to write the names of the arrival and departure bus stops to get the route information,
which in turn is presented as text. Our multimodal interface at the mobile client converts the
web service to a map-based multimodal service supporting speech, graphic/text and
pointing modalities as inputs. Thus the users can choose whether to use speech or point on

Fig. 4. Multimodal dialogue system software architecture

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

219

the map, or even use pointing and talking simultaneously (so-called composite
multimodality) to specify the arrival and departure bus stops. The response from the system
is presented as both speech and text. More details about the system implementation can be
found in (Kvale, et al. 2003b), (Warakagoda, et al. 2003), (Kvale, et al. 2004), (Schie, 2006).
When the client of our multimodal service is started and connected to the server, the main
page of the server is presented to the user. This is an overview map of the Oslo area where
different sub-areas can be zoomed into, as shown in Figure 5.
Once zoomed, it is possible to get the bus stops in the area displayed. The user has to select
a departure bus stop and an arrival bus stop to get the bus route information. The users are
not strictly required to follow the steps sequentially. They can for example combine several
of them, whenever it makes sense to do so.

Fig. 5. A typical screen sequence for a user with reduced speaking ability. 1) Overview map:
The user taps on the submap (the square) for Fornebu. 2) The user says ”next bus here
Jernbanetorget” and taps on bus stop Telenor. 3) The system does not recognize the arrival
bus stop. Therefore the user selects it by using pen. But first the user taps on the zoom-out
button to open the overview map. 4) The user taps on the submap where the bus stop
Jernbanetorget lies. 5) The user taps on the bus stop Jernbanetorget. 6) The user can read the
bus information.

 User Interfaces

220

Both tapping and speech can be used in all operations including navigation and selecting
bus stops. Thus the user scenarios can embrace all the possible combinations of pointing and
speech input. The received bus route information is presented to the user as text in a textbox
and this text is also read aloud by synthetic speech, as illustrated in figure 5.
Our service provides both non-coordinated simultaneous inputs (i.e. the speech and
pointing inputs are interpreted one after the other in the order that they are received) and
composite inputs (i.e. the speech and pointing inputs at the “same time” are treated as a
single, integrated compound input by downstream processes), as defined by World Wide
Web Consortium (W3C, 2003). Users can also communicate with our service monomodally,
i.e. by merely tapping on the touch sensitive screen or by speech only. The multimodal
inputs can be combined in several ways, for instance:
• The user utters the name of the arrival bus stop and points at another bus stop on the

map, e.g.: “I want to go from Jernbanetorget to here”
• The user points at two places on the screen while saying: ”When does the next bus leave

from here to here”.
In both scenarios above the users point at a bus stop within the same time window as they
utter the underlined word, “here”. In order to handle such inputs, we defined an
asymmetric time window within which speech and tapping are treated as a composite input
if:
A. ASR is completed within 3 seconds after a tapping is registered (Δttap = 3 s)
B. Pointing is registered within 0.85 second after ASR is completed (Δttap = 0.85 s)
where registration of tapping is instantaneous and the speech recognition is completed at
the end point of the speech signal, as illustrated in Figure 6.
In order to handle two taps on the screen within the same utterance, an integration
algorithm that uses two such time windows is employed (Warakagoda, et al. 2003).

Fig. 6. Example of composite tap and speech inputs. At time Ts the end point of the speech
signal is detected and ASR is completed. The blue area illustrates the asymmetric time
window around Ts where a tap is interpreted as composite with speech. In case A a tap
within a timeframe of maximum 3 seconds before Ts is composite with speech. In case B a
tap within 0.85 seconds after Ts is composite with speech.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

221

6. User evaluations
Since the multimodal system gives the users a range of possible input and output
alternatives we expect that the service will prove useful for normal-functioning users as well
as for many different types of disabled users, such as:
• Persons with impaired hearing or speaking problems who will prefer the pointing

interaction.
• Blind persons who will only use the pure speech-based interface
• Users with reduced speaking ability who will use a reduced vocabulary while pointing

at the screen.

6.1 Introducing the multimodal for new users
The multimodal interaction pattern was new to the test users and it was necessary to explain
this functionality to them. In a user experiment with able-bodied persons we discovered that
different introduction formats (video versus text) had a noticeable effect on user behaviour
and how new users actually interacted with the multimodal service (Kvale, et al., 2003b).
Users who had seen a video demonstration used simultaneous pen and speech input more
often than users who had had a text only introduction even if the same information was
present in both formats. In our user experiments, 9 out of 14 subjects who had seen the
video demo applied simultaneous pen and speech input instantly.
We therefore applied two different strategies in the introduction for the disabled test
persons:
• For the scenario-based evaluation we produced an introduction video showing the

three different interaction patterns: Pointing only, speaking only, and a combination of
pointing and speaking. We did not subtitle the video, so deaf people had to read the
information on a text sheet.

• For the in-depth evaluation of the dyslectic user and the aphasic user we applied so-
called model based learning, where a trusted supervisor first showed how he used the
service and carefully explained the functionality.

Since disabled users often have low self confidence we tried to create a relaxed atmosphere
and we spent some time having an informal conversation before the persons tried out the
multimodal service. In the scenario-based evaluations only the experiment leader and the
test person were present. The in-depth evaluations were performed in cooperation with
Bredtvet Resource Centre, a Norwegian national resource centre for special education,
representing interdisciplinary expertise within the field of speech, language and
communication disorders (Bredtvet, 2009). In the in-depth evaluations the test persons
brought relatives with them.
The dyslectic user had his parents with him, while the aphasic user was accompanied by his
wife. The evaluation situation may still have been perceived as stressful for them since two
evaluators and two speech therapists were watching. This stress factor was especially
noticeable in the young dyslectic.

6.2 Scenario-based evaluation
A qualitative scenario-based evaluation followed by a questionnaire was carried out for five
disabled users. The goal was to study the acceptance of the multimodal service by the
disabled users.

 User Interfaces

220

Both tapping and speech can be used in all operations including navigation and selecting
bus stops. Thus the user scenarios can embrace all the possible combinations of pointing and
speech input. The received bus route information is presented to the user as text in a textbox
and this text is also read aloud by synthetic speech, as illustrated in figure 5.
Our service provides both non-coordinated simultaneous inputs (i.e. the speech and
pointing inputs are interpreted one after the other in the order that they are received) and
composite inputs (i.e. the speech and pointing inputs at the “same time” are treated as a
single, integrated compound input by downstream processes), as defined by World Wide
Web Consortium (W3C, 2003). Users can also communicate with our service monomodally,
i.e. by merely tapping on the touch sensitive screen or by speech only. The multimodal
inputs can be combined in several ways, for instance:
• The user utters the name of the arrival bus stop and points at another bus stop on the

map, e.g.: “I want to go from Jernbanetorget to here”
• The user points at two places on the screen while saying: ”When does the next bus leave

from here to here”.
In both scenarios above the users point at a bus stop within the same time window as they
utter the underlined word, “here”. In order to handle such inputs, we defined an
asymmetric time window within which speech and tapping are treated as a composite input
if:
A. ASR is completed within 3 seconds after a tapping is registered (Δttap = 3 s)
B. Pointing is registered within 0.85 second after ASR is completed (Δttap = 0.85 s)
where registration of tapping is instantaneous and the speech recognition is completed at
the end point of the speech signal, as illustrated in Figure 6.
In order to handle two taps on the screen within the same utterance, an integration
algorithm that uses two such time windows is employed (Warakagoda, et al. 2003).

Fig. 6. Example of composite tap and speech inputs. At time Ts the end point of the speech
signal is detected and ASR is completed. The blue area illustrates the asymmetric time
window around Ts where a tap is interpreted as composite with speech. In case A a tap
within a timeframe of maximum 3 seconds before Ts is composite with speech. In case B a
tap within 0.85 seconds after Ts is composite with speech.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

221

6. User evaluations
Since the multimodal system gives the users a range of possible input and output
alternatives we expect that the service will prove useful for normal-functioning users as well
as for many different types of disabled users, such as:
• Persons with impaired hearing or speaking problems who will prefer the pointing

interaction.
• Blind persons who will only use the pure speech-based interface
• Users with reduced speaking ability who will use a reduced vocabulary while pointing

at the screen.

6.1 Introducing the multimodal for new users
The multimodal interaction pattern was new to the test users and it was necessary to explain
this functionality to them. In a user experiment with able-bodied persons we discovered that
different introduction formats (video versus text) had a noticeable effect on user behaviour
and how new users actually interacted with the multimodal service (Kvale, et al., 2003b).
Users who had seen a video demonstration used simultaneous pen and speech input more
often than users who had had a text only introduction even if the same information was
present in both formats. In our user experiments, 9 out of 14 subjects who had seen the
video demo applied simultaneous pen and speech input instantly.
We therefore applied two different strategies in the introduction for the disabled test
persons:
• For the scenario-based evaluation we produced an introduction video showing the

three different interaction patterns: Pointing only, speaking only, and a combination of
pointing and speaking. We did not subtitle the video, so deaf people had to read the
information on a text sheet.

• For the in-depth evaluation of the dyslectic user and the aphasic user we applied so-
called model based learning, where a trusted supervisor first showed how he used the
service and carefully explained the functionality.

Since disabled users often have low self confidence we tried to create a relaxed atmosphere
and we spent some time having an informal conversation before the persons tried out the
multimodal service. In the scenario-based evaluations only the experiment leader and the
test person were present. The in-depth evaluations were performed in cooperation with
Bredtvet Resource Centre, a Norwegian national resource centre for special education,
representing interdisciplinary expertise within the field of speech, language and
communication disorders (Bredtvet, 2009). In the in-depth evaluations the test persons
brought relatives with them.
The dyslectic user had his parents with him, while the aphasic user was accompanied by his
wife. The evaluation situation may still have been perceived as stressful for them since two
evaluators and two speech therapists were watching. This stress factor was especially
noticeable in the young dyslectic.

6.2 Scenario-based evaluation
A qualitative scenario-based evaluation followed by a questionnaire was carried out for five
disabled users. The goal was to study the acceptance of the multimodal service by the
disabled users.

 User Interfaces

222

The users were recruited from “Telenor Open Mind”, which is a job training programme
offering physically disabled people a unique chance for employment (Telenor, 2009). They
were in their twenties with an education of 12 years or more. The disabilities of the five
users are:
• Muscle weaknesses in hands
• Severe hearing defect and a mild speaking disfluency
• Wheelchair user with muscular atrophy affecting the right hand and the tongue
• Low vision
• Motor control disorder and speech disfluency.
The scenario selected for this evaluation involved finding bus route information for two
given bus stops. The users had to complete the task in three different manners: By using pen
only, speech only and by using both pen and speech. The tests were carried out in a quiet
room with one user at a time. All the test persons were able to complete the tasks in at least
one manner:
• They were used to pen-based interaction with PDAs so the pen-only interaction was

easy to understand and the test users accomplished the task easily. Persons with muscle
weaknesses in hands or with motor control disorder demanded the possibility of
pointing at a bigger area around the bus stops. They also suggested that it might be
more natural to select objects by drawing small circles than by making a tap, see also
(Kvale et al., 2005). The person with hearing defects and speaking disfluency preferred
the pen only interaction.

• The speech only interaction did not work properly, partly because of technical
problems with the microphone and speech recogniser and partly due to user behaviour
such as low volume and unclear articulation.

• The multimodal interaction was the last scenario in the evaluation. Hence some persons
had to have this functionality explained to them again before trying to perform this
task. The persons with muscular atrophy combined with some minor speaking
problems had great benefit from speaking short commands or phrases while pointing at
the maps.

In the subsequent interviews all users expressed a very positive attitude to the multimodal
system and they recognized the advantages and the potential of such systems (Kristiansen,
2004), (Kvale & Warakagoda, 2005), (Kvale et al. 2005), (Kvale & Warakagoda, 2008).

6.3 In-depth evaluation of a severe dyslectic test user
Dyslexia causes difficulties learning to read, write and spell. Short-term memory,
concentration, personal organisation and sequencing may be affected. About 10% of the
population may have some form of dyslexia, and about 4% are regarded as severely dyslexic
(Dyslexia, 2009).
Our dyslectic test person was fifteen years old and had severe dyslexia. He could, for
instance, not read the destination names on the buses. Therefore he was very uncertain and
had low self-confidence. He was not familiar with the Oslo area. Thus we spent more than
an hour discussing, explaining and playing with the multimodal system. The dyslectic sat
beside his trusted supervisor/speech therapist who showed him how to ask by speech only
for bus information to travel from “Telenor” to “Jernbanetorget”. The speech therapist
repeated and rephrased the query: “Bus from “Telenor” to Jernbanetorget” at least five
times, and the dyslectic was attentive.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

223

However, when we asked the dyslectic test person to utter the same query, he did not
remember what to ask for. Therefore we told him to just say the names of the two bus stops:
“From Telenor to Jernbanetorget”. He had, however, huge problems remembering and
pronouncing these names, especially “Jernbanetorget” because it is a long word. Hence we
simplified the task to asking for the bus route information: “From Telenor to Tøyen”, which
was easier for him. But he still had to practise a couple of times to manage to remember and
pronounce the names of these two bus stops.
Then he learned to operate the PDA and service with pointing only. After some training, he
had no problem using this modality. He quickly learned to navigate between the maps by
pointing at the “zoom”-button. The buttons marked F and T (see figure 5) were intuitively
recognised as From station and To station respectively.
Then we told him that it was unnecessary to formulate full sentences when talking to the
system, one word or a short phrase was enough to trigger the dialogue system. He then
hesitatingly said “Telenor”. The system responded with “Is Telenor your from bus stop?”,
and he answered “yes”. In situations where the system did not understand his confirmation
input, “yes”, he immediately switched to pointing at the “yes” alternative on the screen (he
had no problem reading short words). If the bus stop had a long name he would find it on
the map and select it by pen instead of trying to use speech.
Finally we introduced the composite multimodal input functionality. We demonstrated
queries as: “from here to here” simultaneously tapping the touch screen and saying “here”.
The dyslectic then said “from here” and pointed at a bus stop shortly afterwards. Then he
touched the ‘zoom out’ button and changed map. In this map he pointed at a bus stop and
then said: “to here”. This request was correctly interpreted by the system which responded
with the bus route information. Both the speech therapists and the parents were really
surprised by how well the young severe dyslectic boy managed to use and navigate this
system. His father concluded: “When my son learned to use this navigation system so
quickly – it must be really simple!”

6.4 In-depth evaluation of an aphasic test user
Aphasia refers to a disorder of language following acquired brain damage, for example, a
stroke. Aphasia denotes a communication problem, which means that people with aphasia
have difficulty expressing thoughts and understanding spoken words, and they may also
have trouble reading, writing, using numbers or making appropriate gestures.
About one million Americans suffer from aphasia (Brody, 1992). There is no official statistics
for the number of aphasic persons in Norway. Approximately 12000 people suffer a stroke
every year and it is estimated that about one third of these result in aphasia. In addition,
accidents, tumours and inflammations may lead to aphasia, giving a total of about 4000-5000
new aphasia patients every year in Norway.
Our test person suffered a stroke five years ago. Subsequently he could only speak a few
words and had paresis in his right arm and leg. During the first two years he had the
diagnosis global aphasia, which is the most severe form of aphasia. Usually this term
applies to persons who can only say a few recognizable words and understand little or no
spoken language. Our test person is no longer a typical global aphasic. He has made great
progress, and now he speaks with a clear pronunciation and prosody. However, his
vocabulary and sentence structure are still restricted, and he often misses the meaningful
words – particularly numbers, important verbs and nouns, such as names of places and

 User Interfaces

222

The users were recruited from “Telenor Open Mind”, which is a job training programme
offering physically disabled people a unique chance for employment (Telenor, 2009). They
were in their twenties with an education of 12 years or more. The disabilities of the five
users are:
• Muscle weaknesses in hands
• Severe hearing defect and a mild speaking disfluency
• Wheelchair user with muscular atrophy affecting the right hand and the tongue
• Low vision
• Motor control disorder and speech disfluency.
The scenario selected for this evaluation involved finding bus route information for two
given bus stops. The users had to complete the task in three different manners: By using pen
only, speech only and by using both pen and speech. The tests were carried out in a quiet
room with one user at a time. All the test persons were able to complete the tasks in at least
one manner:
• They were used to pen-based interaction with PDAs so the pen-only interaction was

easy to understand and the test users accomplished the task easily. Persons with muscle
weaknesses in hands or with motor control disorder demanded the possibility of
pointing at a bigger area around the bus stops. They also suggested that it might be
more natural to select objects by drawing small circles than by making a tap, see also
(Kvale et al., 2005). The person with hearing defects and speaking disfluency preferred
the pen only interaction.

• The speech only interaction did not work properly, partly because of technical
problems with the microphone and speech recogniser and partly due to user behaviour
such as low volume and unclear articulation.

• The multimodal interaction was the last scenario in the evaluation. Hence some persons
had to have this functionality explained to them again before trying to perform this
task. The persons with muscular atrophy combined with some minor speaking
problems had great benefit from speaking short commands or phrases while pointing at
the maps.

In the subsequent interviews all users expressed a very positive attitude to the multimodal
system and they recognized the advantages and the potential of such systems (Kristiansen,
2004), (Kvale & Warakagoda, 2005), (Kvale et al. 2005), (Kvale & Warakagoda, 2008).

6.3 In-depth evaluation of a severe dyslectic test user
Dyslexia causes difficulties learning to read, write and spell. Short-term memory,
concentration, personal organisation and sequencing may be affected. About 10% of the
population may have some form of dyslexia, and about 4% are regarded as severely dyslexic
(Dyslexia, 2009).
Our dyslectic test person was fifteen years old and had severe dyslexia. He could, for
instance, not read the destination names on the buses. Therefore he was very uncertain and
had low self-confidence. He was not familiar with the Oslo area. Thus we spent more than
an hour discussing, explaining and playing with the multimodal system. The dyslectic sat
beside his trusted supervisor/speech therapist who showed him how to ask by speech only
for bus information to travel from “Telenor” to “Jernbanetorget”. The speech therapist
repeated and rephrased the query: “Bus from “Telenor” to Jernbanetorget” at least five
times, and the dyslectic was attentive.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

223

However, when we asked the dyslectic test person to utter the same query, he did not
remember what to ask for. Therefore we told him to just say the names of the two bus stops:
“From Telenor to Jernbanetorget”. He had, however, huge problems remembering and
pronouncing these names, especially “Jernbanetorget” because it is a long word. Hence we
simplified the task to asking for the bus route information: “From Telenor to Tøyen”, which
was easier for him. But he still had to practise a couple of times to manage to remember and
pronounce the names of these two bus stops.
Then he learned to operate the PDA and service with pointing only. After some training, he
had no problem using this modality. He quickly learned to navigate between the maps by
pointing at the “zoom”-button. The buttons marked F and T (see figure 5) were intuitively
recognised as From station and To station respectively.
Then we told him that it was unnecessary to formulate full sentences when talking to the
system, one word or a short phrase was enough to trigger the dialogue system. He then
hesitatingly said “Telenor”. The system responded with “Is Telenor your from bus stop?”,
and he answered “yes”. In situations where the system did not understand his confirmation
input, “yes”, he immediately switched to pointing at the “yes” alternative on the screen (he
had no problem reading short words). If the bus stop had a long name he would find it on
the map and select it by pen instead of trying to use speech.
Finally we introduced the composite multimodal input functionality. We demonstrated
queries as: “from here to here” simultaneously tapping the touch screen and saying “here”.
The dyslectic then said “from here” and pointed at a bus stop shortly afterwards. Then he
touched the ‘zoom out’ button and changed map. In this map he pointed at a bus stop and
then said: “to here”. This request was correctly interpreted by the system which responded
with the bus route information. Both the speech therapists and the parents were really
surprised by how well the young severe dyslectic boy managed to use and navigate this
system. His father concluded: “When my son learned to use this navigation system so
quickly – it must be really simple!”

6.4 In-depth evaluation of an aphasic test user
Aphasia refers to a disorder of language following acquired brain damage, for example, a
stroke. Aphasia denotes a communication problem, which means that people with aphasia
have difficulty expressing thoughts and understanding spoken words, and they may also
have trouble reading, writing, using numbers or making appropriate gestures.
About one million Americans suffer from aphasia (Brody, 1992). There is no official statistics
for the number of aphasic persons in Norway. Approximately 12000 people suffer a stroke
every year and it is estimated that about one third of these result in aphasia. In addition,
accidents, tumours and inflammations may lead to aphasia, giving a total of about 4000-5000
new aphasia patients every year in Norway.
Our test person suffered a stroke five years ago. Subsequently he could only speak a few
words and had paresis in his right arm and leg. During the first two years he had the
diagnosis global aphasia, which is the most severe form of aphasia. Usually this term
applies to persons who can only say a few recognizable words and understand little or no
spoken language. Our test person is no longer a typical global aphasic. He has made great
progress, and now he speaks with a clear pronunciation and prosody. However, his
vocabulary and sentence structure are still restricted, and he often misses the meaningful
words – particularly numbers, important verbs and nouns, such as names of places and

 User Interfaces

224

persons. He compensates for this problem by a creative use of body language and by
writing numbers. He sometimes writes the first letter(s) of the missing word and lets the
listener guess what he wants to express. This strategy worked well in our communication.
He understands speech well, but has problems interpreting composite instructions. He is
much better at reading and comprehending text than at expressing what he has read.
Because of his disfluent speech, characterized by short phrases, simplified syntactic
structure, and word finding problems, he can be classified as a Broca's aphasic, although his
clear articulation does not completely fit this classification.
He is interested in technology and has used a text-scanner with text-to-speech synthesis for
a while. He knew Oslo well and was used to reading maps. He very easily learned to
navigate with the pen pointing. He also managed to read the bus information appearing in
the text box on the screen, but he thought that the text-to-speech reading of the text helped
his comprehension.
His first task in the evaluation was to get bus information for the next bus from “Telenor” to
“Tøyen” by speaking to the service. These bus stops are on different maps and the route
implies changing buses. Therefore, for a normal user, it is much more efficient to ask the
question than pointing through many maps and zooming in and out. But he did not manage
to remember and pronounce these words one after the other.
However, when demonstrated, he found the composite multimodal functionality of the
service appealing. He started to point at the from-station while saying “this”. Then he
continued to point while saying “and this” each time he pointed – not only at the bus stops
but also at function buttons such as “zoom in” and when shifting maps. It was obviously
natural for him to talk and tap simultaneously. Notice that this interaction pattern may not
be classified as a composite multimodal input as defined by W3C, because he provided
exactly the same information with speech and pointing. We believe, however, that if we had
spent more time in explaining the composite multimodal functionality he would have taken
advantage of it.
He also tried to use the public bus information service on the web. He was asked to go from
“Telenor” to “Tøyen”. He tried, but did not manage to write the names of the bus stops. He
claimed that he might have managed to find the names in a list of alternatives, but he would
probably not be able to use this service anyway due to all the problems with reading and
writing. The telephone service was not an alternative for him at all because he was not able
to pronounce the bus stop names. But he liked the multimodal tap and talk interface very
much and spontaneously characterised it as ”Best!”, i.e. the best alternative for him to get
the information needed.

7. Discussion
In this chapter we have shown that multimodal human-computer interfaces offer the users
the opportunity to choose the most natural interaction pattern for the actual application and
context of use. If the preferred mode fails in a certain context or task, users may switch to a
more appropriate mode or they can combine modalities. For able-bodied users multimodal
interfaces imply enhanced user-friendliness and flexibility in the use of the services, whereas
for the disabled users this is a means by which they can compensate for their impaired
communication mode.
We have developed a flexible speech centric composite multimodal interface to a map-based
information service on handheld mobile terminals such as wireless personal digital assistant

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

225

(PDA) devices and 3rd generation mobile phones (3G/UMTS/HSPA). Both tapping and
speech can be used in all operations including navigation and selecting bus stations. To the
best of our knowledge, our multimodal interface is still the only system with the capability
of handling composite inputs consisting of two taps within same spoken utterance.
This user interface proved to be useful for people with different types of disabilities, from
muscular atrophy combined with some minor speaking problems, to dyslexia and aphasia.
The severe dyslectic and aphasic could neither use the public service by speaking and taking
notes in the telephone-based service nor by writing names in the text-based web service. But
they could easily point at a map while uttering simple commands. Thus, the multimodal
interface is the only alternative for these users to get web information.
These qualitative evaluations of how users with reduced ability interacted with the
multimodal interface are by no means statistically significant. We are aware that there is a
wide variation among aphasics, and even the performance of the same person may vary
from one day to the next. Still, it seems reasonable to generalise from our observations and
claim that for severe dyslectics and certain groups of aphasics a multimodal interface can be
the only useful interface to public information services such as bus timetables. Since most
aphasics have severe speaking problems they probably will prefer to use the pointing
option, but our experiment indicates that they may also benefit from the composite
multimodality since they can point at the screen while uttering simple supplementary
words.
Our speech-centric multimodal service allowing all combinations of speech and pointing has
therefore the potential of benefiting non-disabled as well as disabled users, and thereby
achieving the goal of a common design for all.

8. Conclusion
In this chapter we have demonstrated how multimodal human-computer interfaces are able
to combine different input signals, extract the combined meaning from them, find requested
information and present the response in the most appropriate format. Multimodal interfaces
offer the users an opportunity to choose the most natural interaction pattern depending on
the actual task to be accomplished, the context, and their own preferences and abilities.
Hence, multimodal user interfaces have the potential to fulfil the requirements and
guidelines for Universal Design.

9. Acknowledgements
We would like to express our thanks to Tone Finne, Eli Qvenild and Bjørgulv Høigaard at
Bredtvet Resource Centre for helping us with the user evaluation and for valuable
discussions and cooperation. We are grateful to our colleagues Ragnhild Halvorsrud, Jon
Emil Natvig and Gunhild Luke at Telenor for their inspiration and help.

10. References
Almeida, L. et al. (2002 a). Implementing and evaluating a multimodal and multilingual

tourist guide. In: Proc. International CLASS Workshop on Natural, Intelligent and
Effective Interaction in Multimodal Dialogue Systems, van Kuppevelt, J. et al. (eds.)
2002., pp. 1–7, Copenhagen, Denmark

 User Interfaces

224

persons. He compensates for this problem by a creative use of body language and by
writing numbers. He sometimes writes the first letter(s) of the missing word and lets the
listener guess what he wants to express. This strategy worked well in our communication.
He understands speech well, but has problems interpreting composite instructions. He is
much better at reading and comprehending text than at expressing what he has read.
Because of his disfluent speech, characterized by short phrases, simplified syntactic
structure, and word finding problems, he can be classified as a Broca's aphasic, although his
clear articulation does not completely fit this classification.
He is interested in technology and has used a text-scanner with text-to-speech synthesis for
a while. He knew Oslo well and was used to reading maps. He very easily learned to
navigate with the pen pointing. He also managed to read the bus information appearing in
the text box on the screen, but he thought that the text-to-speech reading of the text helped
his comprehension.
His first task in the evaluation was to get bus information for the next bus from “Telenor” to
“Tøyen” by speaking to the service. These bus stops are on different maps and the route
implies changing buses. Therefore, for a normal user, it is much more efficient to ask the
question than pointing through many maps and zooming in and out. But he did not manage
to remember and pronounce these words one after the other.
However, when demonstrated, he found the composite multimodal functionality of the
service appealing. He started to point at the from-station while saying “this”. Then he
continued to point while saying “and this” each time he pointed – not only at the bus stops
but also at function buttons such as “zoom in” and when shifting maps. It was obviously
natural for him to talk and tap simultaneously. Notice that this interaction pattern may not
be classified as a composite multimodal input as defined by W3C, because he provided
exactly the same information with speech and pointing. We believe, however, that if we had
spent more time in explaining the composite multimodal functionality he would have taken
advantage of it.
He also tried to use the public bus information service on the web. He was asked to go from
“Telenor” to “Tøyen”. He tried, but did not manage to write the names of the bus stops. He
claimed that he might have managed to find the names in a list of alternatives, but he would
probably not be able to use this service anyway due to all the problems with reading and
writing. The telephone service was not an alternative for him at all because he was not able
to pronounce the bus stop names. But he liked the multimodal tap and talk interface very
much and spontaneously characterised it as ”Best!”, i.e. the best alternative for him to get
the information needed.

7. Discussion
In this chapter we have shown that multimodal human-computer interfaces offer the users
the opportunity to choose the most natural interaction pattern for the actual application and
context of use. If the preferred mode fails in a certain context or task, users may switch to a
more appropriate mode or they can combine modalities. For able-bodied users multimodal
interfaces imply enhanced user-friendliness and flexibility in the use of the services, whereas
for the disabled users this is a means by which they can compensate for their impaired
communication mode.
We have developed a flexible speech centric composite multimodal interface to a map-based
information service on handheld mobile terminals such as wireless personal digital assistant

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

225

(PDA) devices and 3rd generation mobile phones (3G/UMTS/HSPA). Both tapping and
speech can be used in all operations including navigation and selecting bus stations. To the
best of our knowledge, our multimodal interface is still the only system with the capability
of handling composite inputs consisting of two taps within same spoken utterance.
This user interface proved to be useful for people with different types of disabilities, from
muscular atrophy combined with some minor speaking problems, to dyslexia and aphasia.
The severe dyslectic and aphasic could neither use the public service by speaking and taking
notes in the telephone-based service nor by writing names in the text-based web service. But
they could easily point at a map while uttering simple commands. Thus, the multimodal
interface is the only alternative for these users to get web information.
These qualitative evaluations of how users with reduced ability interacted with the
multimodal interface are by no means statistically significant. We are aware that there is a
wide variation among aphasics, and even the performance of the same person may vary
from one day to the next. Still, it seems reasonable to generalise from our observations and
claim that for severe dyslectics and certain groups of aphasics a multimodal interface can be
the only useful interface to public information services such as bus timetables. Since most
aphasics have severe speaking problems they probably will prefer to use the pointing
option, but our experiment indicates that they may also benefit from the composite
multimodality since they can point at the screen while uttering simple supplementary
words.
Our speech-centric multimodal service allowing all combinations of speech and pointing has
therefore the potential of benefiting non-disabled as well as disabled users, and thereby
achieving the goal of a common design for all.

8. Conclusion
In this chapter we have demonstrated how multimodal human-computer interfaces are able
to combine different input signals, extract the combined meaning from them, find requested
information and present the response in the most appropriate format. Multimodal interfaces
offer the users an opportunity to choose the most natural interaction pattern depending on
the actual task to be accomplished, the context, and their own preferences and abilities.
Hence, multimodal user interfaces have the potential to fulfil the requirements and
guidelines for Universal Design.

9. Acknowledgements
We would like to express our thanks to Tone Finne, Eli Qvenild and Bjørgulv Høigaard at
Bredtvet Resource Centre for helping us with the user evaluation and for valuable
discussions and cooperation. We are grateful to our colleagues Ragnhild Halvorsrud, Jon
Emil Natvig and Gunhild Luke at Telenor for their inspiration and help.

10. References
Almeida, L. et al. (2002 a). Implementing and evaluating a multimodal and multilingual

tourist guide. In: Proc. International CLASS Workshop on Natural, Intelligent and
Effective Interaction in Multimodal Dialogue Systems, van Kuppevelt, J. et al. (eds.)
2002., pp. 1–7, Copenhagen, Denmark

 User Interfaces

226

Almeida, L. et al, (2002 b). The MUST guide to Paris., Implementation and expert evaluation
of a multimodal tourist guide to Paris, In: Proc. ISCA (International Speech
Communication Association) tutorial and research workshop on Multi-modal dialogue in
Mobile environments (IDS2002), Kloster Isree, Germany

Bolt, R. A. (1980). Put That There: Voice and Gesture at the Graphics Interface, Proceedings of
the 7th annual conference on Computer graphics and interactive techniques, 14(3), pp 262-
270. ISBN:0-89791-021-4. Seattle, Washington, United States.

Beskow, J. et al. (2002), Specification and Realisation of Multimodal Output in Dialogue
System, Proceedings of the 7th International Conference on Spoken Language Processing
(ICSLP 2002), pp.181-184. Denver, USA, 2002

Bredtvet (2009). Bredtvet Resource Centre. URL, http://www.statped.no/bredtvet,
Accessed: 01.11.2009

Brody, J.E. (1992). When brain damage disrupts speech, In: The New York Times Health
Section, p. C13, June 10, 1992.

Bühler D. & Minker, W. (2005). The SmartKom Mobile Car Prototype System for Flexible
Human-Machine Communication, In: Spoken Multimodal Human-Computer Dialogue
in Mobile Environments, Springer, Dordrecht (The Netherlands), 2005

Dyslexia Action, URL, http://www.dyslexiaaction.org.uk/, Accessed: 01.11.2009
ETSI (2003). Human Factors (HF); Multimodal interaction, communication and navigation

guidelines. Sophia Antipolis, 2003. The European Telecommunications Standards
Institute (ETSI EG 202 191).

ETSI (2009). Human Factors (HF); Guidelines for ICT products and services; “Design for
all”, The European Telecommunications Standards Institute (ETSI) EG 202 191
v1.2.2., (2009-03)

Galaxy (2007). Galaxy communicator. URL, http://communicator.sourceforge.net/,
Accessed 24.05.2007.

GSM (2009). GSM Arena, URL, http://www.gsmarena.com/, Accessed: 01.11.2009
Gustafson, J. et al. (2000). Adapt- A Multimodal Conversational Dialogue System In An

Apartment Domain, Proceedings of the 6th International Conference on Spoken Language
Processing (ICSLP 2000), Vol. II, pp.134-137. Beijing, China.

Hui, P.Y. &. Meng, H.M. (2006). Joint Interpretation of Input Speech and Pen Gestures for
Multimodal Human Computer Interaction, Proceedings of. INTERSPEECH –
ICSLP’2006, pp. 1197-1200. Pittsburgh, USA.

Hurtig, T. (2006). A Mobile Multimodal Dialogue System for Public Transportation
Navigation Evaluated, Proceedings of the MobileHCI’06, September, 12–15, 2006,
Helsinki, Finland.

Johnston, M.; Srinivas, B. & Gunaranjan, V. (2001). MATCH: multimodal access to city help.
Proceedings of the Automatic Speech Recognition and Understanding Workshop,
Madonna Di Campiglio, Trento, Italy

Johnston, M. et al. (2002). Multimodal language processing for mobile information access,
Proceedings of the ICSLP-2002, pp. 2237-2240. 2002.

Karpov, A.; Ronzhin, A. & Cadiou, A. (2006). A Multi-Modal System ICANDO: Intellectual
Computer AssistaNt for Disabled Operators, Proceedings of INTERSPEECH - ICSLP
2006, pp. 1998-2001, Pittsburgh, USA

Kristiansen, M. (2004). Evaluering og tilpasning av et multimodalt system på en mobil
enhet, Master thesis NTNU (in Norwegian), 2004.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

227

Kumar, S.; Cohen, P.R. & Levesque, H.J. (2000). The adaptive agent architecture: achieving
fault-tolerance using persistent broker teams, Proceedings of the Fourth International
Conference on MultiAgent Systems, pp. 159-166. 2000.

Kvale, K; Warakagoda, N.D. & Knudsen, J.E. (2003a), Speech centric multimodal interfaces
for mobile communication systems, In: Telektronikk. Vol. 99. No. 2, pp. 104-117.
ISSN 0085-7130

Kvale, K.; Rugelbak J. & Amdal, I. (2003b). How do non-expert users exploit simultaneous
inputs in multimodal interaction?, Proceedings of International Symposium on Human
Factors in Telecommunication, pp.169-176, Berlin, Germany.

Kvale, K.; Knudsen, J.E. & Rugelbak, J. (2004). A Multimodal Corpus Collection System for
Mobile Applications, Proceedings of Multimodal Corpora - Models of Human Behaviour
for the Specification and Evaluation of Multimodal Input and Output Interfaces, pp. 9-12,
Lisbon, Portugal.

Kvale, K.; Warakagoda N.D. & Kristiansen, M. (2005). Evaluation of a mobile multimodal
service for disabled users, Proceedings of the 2nd Nordic conference on multimodal
communication, pp. 242-255. Gothenburg, Sweden

Kvale, K. & Warakagoda N.D. (2005). A Speech Centric Mobile Multimodal Service useful
for Dyslectics and Aphasics, Proceedings of the INTERSPEECH -
EUROSPEECH’2005, pp. 461-464. Lisbon, Portugal

Kvale, K. & Warakagoda, N.D., (2008). Speech centric multimodal interfaces for disabled
users, In: Technology and Disability, Special Issue: Electronic speech processing for
persons with disabilities. AAATE (Association for the advancement of Assistive
Technology in Europe). IOS Press Amsterdam, Washington, DC, Tokyo, Volume
20, No. 2, 2008.pp. 87-95, ISSN 1055-4181

NC, (1997). The Principles of Universal Design, Version 2.0. Raleigh. North Carolina State
University. URL,
http://www.design.ncsu.edu/cud/about_ud/docs/use_guidelines.pdf, Accessed:
30/10/09

OOA (2009). OAA, Open Agent Architecture, URL, http://www.ai.sri.com/~oaa, Accessed:
30.10.2009

Oviatt, S. et al. (2000). Designing the user interface for multimodal speech and gesture
applications: State-of-the-art systems and research direction, In: Human Computer
Interaction, vol. 15, no. 4, pp. 263-322. 2000.

Oviatt, S. (2000). Multimodal system processing in mobile environment, In: Proc. of the
Thirteenth Annual ACM Symposium on User Interface Software Technology
(UIST'2000), ACM: New York, N.Y., 21-30. 2000.

Oviatt, S.; Coulston R. & Lunsford, R. (2004). When Do We Interact Multimodally?
Cognitive Load and Multimodal Communication Patterns. In: Proc. of ICMI, 2004.

Smartkom, (2007). SMARTCOM – Dialog-based Human-Technology Interaction by
Coordinated Analysis and Generation of Multiple Modalities, URL,
http://www.smartkom.org/start_en.html, Accessed: 27.10.2009

Schie, T. (2006). Mobile Multimodal Service for a 3G-terminal, M.S. thesis, Norwegian
University of Science and Technology, 2006.

Trafikanten (2009). “Trafikanten Reiseplanleggeren”, URL, http://www.trafikanten.no,
Accessed: 27.10.2009

 User Interfaces

226

Almeida, L. et al, (2002 b). The MUST guide to Paris., Implementation and expert evaluation
of a multimodal tourist guide to Paris, In: Proc. ISCA (International Speech
Communication Association) tutorial and research workshop on Multi-modal dialogue in
Mobile environments (IDS2002), Kloster Isree, Germany

Bolt, R. A. (1980). Put That There: Voice and Gesture at the Graphics Interface, Proceedings of
the 7th annual conference on Computer graphics and interactive techniques, 14(3), pp 262-
270. ISBN:0-89791-021-4. Seattle, Washington, United States.

Beskow, J. et al. (2002), Specification and Realisation of Multimodal Output in Dialogue
System, Proceedings of the 7th International Conference on Spoken Language Processing
(ICSLP 2002), pp.181-184. Denver, USA, 2002

Bredtvet (2009). Bredtvet Resource Centre. URL, http://www.statped.no/bredtvet,
Accessed: 01.11.2009

Brody, J.E. (1992). When brain damage disrupts speech, In: The New York Times Health
Section, p. C13, June 10, 1992.

Bühler D. & Minker, W. (2005). The SmartKom Mobile Car Prototype System for Flexible
Human-Machine Communication, In: Spoken Multimodal Human-Computer Dialogue
in Mobile Environments, Springer, Dordrecht (The Netherlands), 2005

Dyslexia Action, URL, http://www.dyslexiaaction.org.uk/, Accessed: 01.11.2009
ETSI (2003). Human Factors (HF); Multimodal interaction, communication and navigation

guidelines. Sophia Antipolis, 2003. The European Telecommunications Standards
Institute (ETSI EG 202 191).

ETSI (2009). Human Factors (HF); Guidelines for ICT products and services; “Design for
all”, The European Telecommunications Standards Institute (ETSI) EG 202 191
v1.2.2., (2009-03)

Galaxy (2007). Galaxy communicator. URL, http://communicator.sourceforge.net/,
Accessed 24.05.2007.

GSM (2009). GSM Arena, URL, http://www.gsmarena.com/, Accessed: 01.11.2009
Gustafson, J. et al. (2000). Adapt- A Multimodal Conversational Dialogue System In An

Apartment Domain, Proceedings of the 6th International Conference on Spoken Language
Processing (ICSLP 2000), Vol. II, pp.134-137. Beijing, China.

Hui, P.Y. &. Meng, H.M. (2006). Joint Interpretation of Input Speech and Pen Gestures for
Multimodal Human Computer Interaction, Proceedings of. INTERSPEECH –
ICSLP’2006, pp. 1197-1200. Pittsburgh, USA.

Hurtig, T. (2006). A Mobile Multimodal Dialogue System for Public Transportation
Navigation Evaluated, Proceedings of the MobileHCI’06, September, 12–15, 2006,
Helsinki, Finland.

Johnston, M.; Srinivas, B. & Gunaranjan, V. (2001). MATCH: multimodal access to city help.
Proceedings of the Automatic Speech Recognition and Understanding Workshop,
Madonna Di Campiglio, Trento, Italy

Johnston, M. et al. (2002). Multimodal language processing for mobile information access,
Proceedings of the ICSLP-2002, pp. 2237-2240. 2002.

Karpov, A.; Ronzhin, A. & Cadiou, A. (2006). A Multi-Modal System ICANDO: Intellectual
Computer AssistaNt for Disabled Operators, Proceedings of INTERSPEECH - ICSLP
2006, pp. 1998-2001, Pittsburgh, USA

Kristiansen, M. (2004). Evaluering og tilpasning av et multimodalt system på en mobil
enhet, Master thesis NTNU (in Norwegian), 2004.

Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach

227

Kumar, S.; Cohen, P.R. & Levesque, H.J. (2000). The adaptive agent architecture: achieving
fault-tolerance using persistent broker teams, Proceedings of the Fourth International
Conference on MultiAgent Systems, pp. 159-166. 2000.

Kvale, K; Warakagoda, N.D. & Knudsen, J.E. (2003a), Speech centric multimodal interfaces
for mobile communication systems, In: Telektronikk. Vol. 99. No. 2, pp. 104-117.
ISSN 0085-7130

Kvale, K.; Rugelbak J. & Amdal, I. (2003b). How do non-expert users exploit simultaneous
inputs in multimodal interaction?, Proceedings of International Symposium on Human
Factors in Telecommunication, pp.169-176, Berlin, Germany.

Kvale, K.; Knudsen, J.E. & Rugelbak, J. (2004). A Multimodal Corpus Collection System for
Mobile Applications, Proceedings of Multimodal Corpora - Models of Human Behaviour
for the Specification and Evaluation of Multimodal Input and Output Interfaces, pp. 9-12,
Lisbon, Portugal.

Kvale, K.; Warakagoda N.D. & Kristiansen, M. (2005). Evaluation of a mobile multimodal
service for disabled users, Proceedings of the 2nd Nordic conference on multimodal
communication, pp. 242-255. Gothenburg, Sweden

Kvale, K. & Warakagoda N.D. (2005). A Speech Centric Mobile Multimodal Service useful
for Dyslectics and Aphasics, Proceedings of the INTERSPEECH -
EUROSPEECH’2005, pp. 461-464. Lisbon, Portugal

Kvale, K. & Warakagoda, N.D., (2008). Speech centric multimodal interfaces for disabled
users, In: Technology and Disability, Special Issue: Electronic speech processing for
persons with disabilities. AAATE (Association for the advancement of Assistive
Technology in Europe). IOS Press Amsterdam, Washington, DC, Tokyo, Volume
20, No. 2, 2008.pp. 87-95, ISSN 1055-4181

NC, (1997). The Principles of Universal Design, Version 2.0. Raleigh. North Carolina State
University. URL,
http://www.design.ncsu.edu/cud/about_ud/docs/use_guidelines.pdf, Accessed:
30/10/09

OOA (2009). OAA, Open Agent Architecture, URL, http://www.ai.sri.com/~oaa, Accessed:
30.10.2009

Oviatt, S. et al. (2000). Designing the user interface for multimodal speech and gesture
applications: State-of-the-art systems and research direction, In: Human Computer
Interaction, vol. 15, no. 4, pp. 263-322. 2000.

Oviatt, S. (2000). Multimodal system processing in mobile environment, In: Proc. of the
Thirteenth Annual ACM Symposium on User Interface Software Technology
(UIST'2000), ACM: New York, N.Y., 21-30. 2000.

Oviatt, S.; Coulston R. & Lunsford, R. (2004). When Do We Interact Multimodally?
Cognitive Load and Multimodal Communication Patterns. In: Proc. of ICMI, 2004.

Smartkom, (2007). SMARTCOM – Dialog-based Human-Technology Interaction by
Coordinated Analysis and Generation of Multiple Modalities, URL,
http://www.smartkom.org/start_en.html, Accessed: 27.10.2009

Schie, T. (2006). Mobile Multimodal Service for a 3G-terminal, M.S. thesis, Norwegian
University of Science and Technology, 2006.

Trafikanten (2009). “Trafikanten Reiseplanleggeren”, URL, http://www.trafikanten.no,
Accessed: 27.10.2009

 User Interfaces

228

Telenor (2009). Telenor Open Mind, URL, http://www.telenor.com/en/people-and-
opportunities/programme-for-the-physically-challenged/, Accessed: 27.10.2009

Wahlster, W. et al. (2001). “SmartKom: Multimodal Communication with a Life-Like
Character”, Proceedings of the EUROSPEECH-2001, pp 1547–1550. Aalborg,
Denmark

Warakagoda, N. D.; Lium, A.S. & Knudsen, J.E. (2003). Implementation of simultaneous co-
ordinated multimodality for mobile terminals, In: The 1st Nordic Symposium on
Multimodal Communication, Copenhagen, Denmark, 2003.

Warakagoda N. D., Lopez J. C. L. and Kvale K, (2008). VOICE TICKETING - Method and
system for performing an e-commerce transaction., PCT application publication
WO/2008/103054, URL, http://www.wipo.int/pctdb/en/wo.jsp?wo=2008103054,
Accessed: 30/10/09

W3C, (2003). Multimodal Interaction Requirements, NOTE 8 January 2003, URL,
http://www.w3.org/TR/2003/NOTE-mmi-reqs-20030108/, Accessed: 27.10.2009.

W3C, (2009). EMMA: Extensible MultiModal Annotation markup language, W3C
Recommendation 10 February 2009. URL, http://www.w3.org/TR/emma/,
Accessed: 27.10.2009

WCAG, (2008). Web Content Accessibility Guidelines (WCAG) 2.0. W3C Recommendation
11 December 2008. URL, http://www.w3.org/TR/WCAG20/, Accessed:
02.10.2009

Wang, Ye-Yi. (2001). Robust language understanding in MiPad, Proceedings of the
EUROSPEECH-2001, pp 1555–1558, Aalborg, Denmark, 2001.

Watanabe, Y. et al. (2007). Semi-synchronous speech and pen input, Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 2007, pp.
IV. 409-412.

Wu, L.; Oviatt, S.L. & Cohen, P. R. (1999). Multimodal Integration – A Statistical View. IEEE
Trans. on Multimedia, 1 (4), 1999. pp. 334–341. ISSN: 1520-9210

14

Fitts’ Law Index of Difficulty Evaluated and
Extended for Screen Size Variations

Hidehiko Okada and Takayuki Akiba
Kyoto Sangyo University

Japan

1. Introduction
It is well-known as Fitts’ law that the time for a user to point a target can be modelled as a
linear function of “index of difficulty (ID)”, where ID is formulated as a function of the
target size and distance (Fitts, 1954; MacKenzie, 1992).

 t = a + b ∗ ID (1)

 ID = log2(A/W+1) (2)

In Eqs. (1-2), t is the pointing time, A is the amplitude (distance) to the target, W is the target
size and a, b are constants that depend on experiment conditions. ID is larger as A is larger
and/or W is smaller. Values of a and b in Eq. (1) are determined by sampling (A, W, t) data
and applying the linear regression analysis to the data. Eq. (2) shows that ID values are the
same for (A, W) and (nA, nW) where n > 0.
This research is motivated by recent smart phones that employ touch UIs. Compared with
other touch screen devices such as tablet PCs, mobile phones have smaller screens so that
widgets on mobile phone screens are likely to be smaller. Widgets can be designed for
devices with various screen sizes so that theoretical ID values in Eq. (2) are consistent
among the devices: larger/smaller sizes & distances for larger/smaller screens. If ID in Eq.
(2) is an appropriate index of actual pointing difficulty independently of screen sizes, users’
pointing performances on the same device are consistent among widget designs (A, W) and
(nA, nW): note that a, b in Eq. (1) are constant (independent to ID) so that a, b must be the
same for two data sets sampled with the two widget designs (A, W) and (nA, nW). The aim
of this research is to investigate whether the above is true: appropriateness of the ID
formulation in Eq. (2) is evaluated from the viewpoint of dependency on screen sizes, by
experiments with participants.
Limitations of Fitts’ law have been researched and extensions have been proposed. For
example, an extension for 2D pointing tasks was proposed (MacKenzie & Buxton, 1992). Our
research aims at investigating possible limitations on screen sizes. A related research was
previously reported (Oehl et al., 2007). They investigated how display size influenced
pointing performances on a touch UI and reported that in large displays a fast and
comparably accurate execution was chosen in contrast to a very inaccurate and time-
consuming style in small displays. In their research the size of small screen was 6.5”, and
only a large screen touch UI device was utilized for user experiments: screen sizes were

 User Interfaces

228

Telenor (2009). Telenor Open Mind, URL, http://www.telenor.com/en/people-and-
opportunities/programme-for-the-physically-challenged/, Accessed: 27.10.2009

Wahlster, W. et al. (2001). “SmartKom: Multimodal Communication with a Life-Like
Character”, Proceedings of the EUROSPEECH-2001, pp 1547–1550. Aalborg,
Denmark

Warakagoda, N. D.; Lium, A.S. & Knudsen, J.E. (2003). Implementation of simultaneous co-
ordinated multimodality for mobile terminals, In: The 1st Nordic Symposium on
Multimodal Communication, Copenhagen, Denmark, 2003.

Warakagoda N. D., Lopez J. C. L. and Kvale K, (2008). VOICE TICKETING - Method and
system for performing an e-commerce transaction., PCT application publication
WO/2008/103054, URL, http://www.wipo.int/pctdb/en/wo.jsp?wo=2008103054,
Accessed: 30/10/09

W3C, (2003). Multimodal Interaction Requirements, NOTE 8 January 2003, URL,
http://www.w3.org/TR/2003/NOTE-mmi-reqs-20030108/, Accessed: 27.10.2009.

W3C, (2009). EMMA: Extensible MultiModal Annotation markup language, W3C
Recommendation 10 February 2009. URL, http://www.w3.org/TR/emma/,
Accessed: 27.10.2009

WCAG, (2008). Web Content Accessibility Guidelines (WCAG) 2.0. W3C Recommendation
11 December 2008. URL, http://www.w3.org/TR/WCAG20/, Accessed:
02.10.2009

Wang, Ye-Yi. (2001). Robust language understanding in MiPad, Proceedings of the
EUROSPEECH-2001, pp 1555–1558, Aalborg, Denmark, 2001.

Watanabe, Y. et al. (2007). Semi-synchronous speech and pen input, Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 2007, pp.
IV. 409-412.

Wu, L.; Oviatt, S.L. & Cohen, P. R. (1999). Multimodal Integration – A Statistical View. IEEE
Trans. on Multimedia, 1 (4), 1999. pp. 334–341. ISSN: 1520-9210

14

Fitts’ Law Index of Difficulty Evaluated and
Extended for Screen Size Variations

Hidehiko Okada and Takayuki Akiba
Kyoto Sangyo University

Japan

1. Introduction
It is well-known as Fitts’ law that the time for a user to point a target can be modelled as a
linear function of “index of difficulty (ID)”, where ID is formulated as a function of the
target size and distance (Fitts, 1954; MacKenzie, 1992).

 t = a + b ∗ ID (1)

 ID = log2(A/W+1) (2)

In Eqs. (1-2), t is the pointing time, A is the amplitude (distance) to the target, W is the target
size and a, b are constants that depend on experiment conditions. ID is larger as A is larger
and/or W is smaller. Values of a and b in Eq. (1) are determined by sampling (A, W, t) data
and applying the linear regression analysis to the data. Eq. (2) shows that ID values are the
same for (A, W) and (nA, nW) where n > 0.
This research is motivated by recent smart phones that employ touch UIs. Compared with
other touch screen devices such as tablet PCs, mobile phones have smaller screens so that
widgets on mobile phone screens are likely to be smaller. Widgets can be designed for
devices with various screen sizes so that theoretical ID values in Eq. (2) are consistent
among the devices: larger/smaller sizes & distances for larger/smaller screens. If ID in Eq.
(2) is an appropriate index of actual pointing difficulty independently of screen sizes, users’
pointing performances on the same device are consistent among widget designs (A, W) and
(nA, nW): note that a, b in Eq. (1) are constant (independent to ID) so that a, b must be the
same for two data sets sampled with the two widget designs (A, W) and (nA, nW). The aim
of this research is to investigate whether the above is true: appropriateness of the ID
formulation in Eq. (2) is evaluated from the viewpoint of dependency on screen sizes, by
experiments with participants.
Limitations of Fitts’ law have been researched and extensions have been proposed. For
example, an extension for 2D pointing tasks was proposed (MacKenzie & Buxton, 1992). Our
research aims at investigating possible limitations on screen sizes. A related research was
previously reported (Oehl et al., 2007). They investigated how display size influenced
pointing performances on a touch UI and reported that in large displays a fast and
comparably accurate execution was chosen in contrast to a very inaccurate and time-
consuming style in small displays. In their research the size of small screen was 6.5”, and
only a large screen touch UI device was utilized for user experiments: screen sizes were

 User Interfaces

230

controlled by means of software program as virtual screens on the device display. In our
research, the size of small screen is less than 3”, and a commercial smaller-screen mobile
device is utilized.

2. Experiments
2.1 Test tasks
Participants were asked to point targets on a screen. A test task consisted of pointing two
rectangle targets (target 1, 2) in a predefined order. An “attempt” was the two successive
pointings of target 1 and 2, and a test task consisted of a predefined number set of the
attempts. For each combination of experiment conditions, each participant was asked to
perform a predefined set of the tasks. The pointing operations were logged for later analyses
of pointing speed and accuracy.

2.2 Conditions
2.2.1 Devices
Three commercial devices were used in our experiment: two tablet PCs and a PDA which
have a {10.2”, 6.0”, 2.8”} touch screen respectively. The PDA was selected because several
recent smart phones have such small touch screens (i.e., the PDA was used as a substitute
for the recent smart phones). Screen sizes of the devices were relatively
larger/middle/smaller. In this paper, these devices are denoted as devices L/M/S
respectively. Participants performed test tasks by using a stylus attached to each of the three
devices1.

2.2.2 Target sizes & distances
For each of the three devices, two sets of targets were designed so that ID values in Eq. (2)
were consistent between the two sets. Targets in one of the two sets were designed with
larger sizes and distances, and those in the other were designed with smaller ones. Specific
designs of the two target sets are described later. In this paper, these two target sets are
denoted as targets L/S respectively.

2.2.3 Errors
Pointing speed and accuracy are usually a trade-off (Plamondon & Alimi, 1997). Participants
performed tasks under each of two error conditions: errors acceptable or not. In a test task
where errors were acceptable, a participant could continue the task even if s/he made an
error (mispointing), and the task was complete when the count of no-error attempts reached
to a predefined number. In a condition where errors were not acceptable, a test task was
cancelled by an error and the task was retried until the count of no-error attempts reached to
a predefined number. The error condition was told to each participant before performing
each task: s/he had to try a task more carefully in the “errors not acceptable” condition.

1 Differences in stylus designs may affect pointing performances (Ren & Mizobuchi, 2005). It
is assumed in our research that the stylus attached to each device is designed optimal for the
device so that the stylus contributes to achieve better performances on the device than other
styluses.

Fitts’ Law Index of Difficulty Evaluated and Extended for Screen Size Variations

231

2.3 Pointing target designs
Table 1 shows the design of target sizes and distances. Values for the device {M,L} were
determined as [values for the device S] ∗ [the ratio of screen sizes, i.e., 6.0/2.8 for the device
M and 10.2/2.8 for the device L]. ID values were designed to range in [2.00, 3.50]
consistently among the devices {S,M,L} and the targets {S,L}. The size of target 1 was fixed to
6.0mm, empirically found to be easy enough to point first, for all conditions. Positions of
targets 1 and 2 were randomly determined for each attempt under the following two
constraints.
• All areas of both targets were inside the device screen.
• Distance between center points of the two targets was a predefined value.

 Device S Device M Device L
 Targets S Targets L Targets S Targets L Targets S Targets L

ID W A W A W A W A W A W A
2.00 4.00 12.00 12.00 36.00 8.53 25.60 25.60 76.80 14.61 43.82 43.82 131.45
2.15 3.80 13.07 11.40 39.20 8.11 27.87 24.32 83.62 13.88 47.71 41.63 143.12
2.30 3.60 14.13 10.80 42.39 7.68 30.14 23.04 90.42 13.15 51.59 39.44 154.77
2.45 3.40 15.18 10.20 45.53 7.25 32.38 21.76 97.14 12.41 55.42 37.24 166.26
2.60 3.20 16.20 9.60 48.60 6.83 34.56 20.48 103.69 11.68 59.16 35.05 177.47
2.75 3.00 17.18 9.00 51.54 6.40 36.65 19.20 109.96 10.95 62.74 32.86 188.21
2.90 2.80 18.10 8.40 54.30 5.97 38.61 17.92 115.84 10.22 66.09 30.67 198.27
3.05 2.60 18.93 7.80 56.80 5.55 40.39 16.64 121.17 9.49 69.13 28.48 207.40
3.20 2.40 19.66 7.20 58.97 5.12 41.93 15.36 125.79 8.76 71.77 26.29 215.31
3.35 2.20 20.23 6.60 60.70 4.69 43.16 14.08 129.49 8.03 73.88 24.10 221.63
3.50 2.00 20.63 6.00 61.88 4.27 44.01 12.80 132.02 7.30 75.32 21.91 225.96

 (ID: bits, W&A: mm)
Table 1. Target sizes and distances

Fig. 1 shows a screenshot of targets 1 and 2 for the device M and the targets L. The targets 1
and 2 are the black and white rectangles respectively (the target colors were consistent for
all the devices). The two targets were shown at the same time, and each participant was
asked to find both targets before s/he pointed the target 1. This was because visual search
time should not be included in the pointing time interval. After an attempt of pointing
targets 1 and 2, new targets were shown for the next attempt.

2.4 Methods of experiments
Condition combinations were 12 in total: {the devices S, M, L} ∗ {the targets S, L} ∗ {errors
“acceptable”, “not acceptable”}. Each participant was asked to perform four trials of a task
under each of the 12 condition combinations.
The number of attempts in a task trial was 11 (of which ID=2.00-3.50 shown in Table 1) for
the “errors not acceptable” condition: none of the 11 attempts had to be an error. For the
“errors acceptable” condition, a task trial included 11 successful attempts for the 11 IDs
respectively in Table 1 and 0+ error attempts.
Each participant first performed a training task trial under each of the 12 condition
combinations (thus, 12 training trials), and then performed tasks in a random order of the 12
condition combinations. The order of the 11 IDs in a trial was also randomized for each trial.

 User Interfaces

230

controlled by means of software program as virtual screens on the device display. In our
research, the size of small screen is less than 3”, and a commercial smaller-screen mobile
device is utilized.

2. Experiments
2.1 Test tasks
Participants were asked to point targets on a screen. A test task consisted of pointing two
rectangle targets (target 1, 2) in a predefined order. An “attempt” was the two successive
pointings of target 1 and 2, and a test task consisted of a predefined number set of the
attempts. For each combination of experiment conditions, each participant was asked to
perform a predefined set of the tasks. The pointing operations were logged for later analyses
of pointing speed and accuracy.

2.2 Conditions
2.2.1 Devices
Three commercial devices were used in our experiment: two tablet PCs and a PDA which
have a {10.2”, 6.0”, 2.8”} touch screen respectively. The PDA was selected because several
recent smart phones have such small touch screens (i.e., the PDA was used as a substitute
for the recent smart phones). Screen sizes of the devices were relatively
larger/middle/smaller. In this paper, these devices are denoted as devices L/M/S
respectively. Participants performed test tasks by using a stylus attached to each of the three
devices1.

2.2.2 Target sizes & distances
For each of the three devices, two sets of targets were designed so that ID values in Eq. (2)
were consistent between the two sets. Targets in one of the two sets were designed with
larger sizes and distances, and those in the other were designed with smaller ones. Specific
designs of the two target sets are described later. In this paper, these two target sets are
denoted as targets L/S respectively.

2.2.3 Errors
Pointing speed and accuracy are usually a trade-off (Plamondon & Alimi, 1997). Participants
performed tasks under each of two error conditions: errors acceptable or not. In a test task
where errors were acceptable, a participant could continue the task even if s/he made an
error (mispointing), and the task was complete when the count of no-error attempts reached
to a predefined number. In a condition where errors were not acceptable, a test task was
cancelled by an error and the task was retried until the count of no-error attempts reached to
a predefined number. The error condition was told to each participant before performing
each task: s/he had to try a task more carefully in the “errors not acceptable” condition.

1 Differences in stylus designs may affect pointing performances (Ren & Mizobuchi, 2005). It
is assumed in our research that the stylus attached to each device is designed optimal for the
device so that the stylus contributes to achieve better performances on the device than other
styluses.

Fitts’ Law Index of Difficulty Evaluated and Extended for Screen Size Variations

231

2.3 Pointing target designs
Table 1 shows the design of target sizes and distances. Values for the device {M,L} were
determined as [values for the device S] ∗ [the ratio of screen sizes, i.e., 6.0/2.8 for the device
M and 10.2/2.8 for the device L]. ID values were designed to range in [2.00, 3.50]
consistently among the devices {S,M,L} and the targets {S,L}. The size of target 1 was fixed to
6.0mm, empirically found to be easy enough to point first, for all conditions. Positions of
targets 1 and 2 were randomly determined for each attempt under the following two
constraints.
• All areas of both targets were inside the device screen.
• Distance between center points of the two targets was a predefined value.

 Device S Device M Device L
 Targets S Targets L Targets S Targets L Targets S Targets L

ID W A W A W A W A W A W A
2.00 4.00 12.00 12.00 36.00 8.53 25.60 25.60 76.80 14.61 43.82 43.82 131.45
2.15 3.80 13.07 11.40 39.20 8.11 27.87 24.32 83.62 13.88 47.71 41.63 143.12
2.30 3.60 14.13 10.80 42.39 7.68 30.14 23.04 90.42 13.15 51.59 39.44 154.77
2.45 3.40 15.18 10.20 45.53 7.25 32.38 21.76 97.14 12.41 55.42 37.24 166.26
2.60 3.20 16.20 9.60 48.60 6.83 34.56 20.48 103.69 11.68 59.16 35.05 177.47
2.75 3.00 17.18 9.00 51.54 6.40 36.65 19.20 109.96 10.95 62.74 32.86 188.21
2.90 2.80 18.10 8.40 54.30 5.97 38.61 17.92 115.84 10.22 66.09 30.67 198.27
3.05 2.60 18.93 7.80 56.80 5.55 40.39 16.64 121.17 9.49 69.13 28.48 207.40
3.20 2.40 19.66 7.20 58.97 5.12 41.93 15.36 125.79 8.76 71.77 26.29 215.31
3.35 2.20 20.23 6.60 60.70 4.69 43.16 14.08 129.49 8.03 73.88 24.10 221.63
3.50 2.00 20.63 6.00 61.88 4.27 44.01 12.80 132.02 7.30 75.32 21.91 225.96

 (ID: bits, W&A: mm)
Table 1. Target sizes and distances

Fig. 1 shows a screenshot of targets 1 and 2 for the device M and the targets L. The targets 1
and 2 are the black and white rectangles respectively (the target colors were consistent for
all the devices). The two targets were shown at the same time, and each participant was
asked to find both targets before s/he pointed the target 1. This was because visual search
time should not be included in the pointing time interval. After an attempt of pointing
targets 1 and 2, new targets were shown for the next attempt.

2.4 Methods of experiments
Condition combinations were 12 in total: {the devices S, M, L} ∗ {the targets S, L} ∗ {errors
“acceptable”, “not acceptable”}. Each participant was asked to perform four trials of a task
under each of the 12 condition combinations.
The number of attempts in a task trial was 11 (of which ID=2.00-3.50 shown in Table 1) for
the “errors not acceptable” condition: none of the 11 attempts had to be an error. For the
“errors acceptable” condition, a task trial included 11 successful attempts for the 11 IDs
respectively in Table 1 and 0+ error attempts.
Each participant first performed a training task trial under each of the 12 condition
combinations (thus, 12 training trials), and then performed tasks in a random order of the 12
condition combinations. The order of the 11 IDs in a trial was also randomized for each trial.

 User Interfaces

232

Fig. 1. Screenshot for target pointing tasks

2.5 Participants
Twelve subjects participated in the experiment, but 3 of the 12 subjects could for the devices
S and L only due to the experiment schedule. Thus, users’ pointing log data set (A, W, t)
were collected with 12 subjects for the devices S and L but 9 subjects for the device M. The
12 participants were university graduate or undergraduate students. They were all novices
in using devices with touch-by-stylus UIs, but they had no trouble in performing test tasks
after the 12 training trials.

2.6 Logging pointing operations
The following data was recorded for each pointing (each tap by a stylus) into log files.
• Target: 1 or 2
• Target position: (x, y) values
• Target width and height: pixels
• Tapped position: (x, y) values
• Tap time: msec
• Error: Yes or No
The tapped position and the tap time were logged when the stylus was landed on the
screen, and the pointing was judged as an error or not based on the tapped position. No
attempt was observed for which the stylus was landed on the target 1, moved into the target
2 and left off.

3. Data analyses and findings
Pointing speed and accuracy were measured by throughput (ISO 9241, 2000) and error rate
respectively. In this research, t is the interval from the target 1 tap time to the target 2 tap
time, A is the Euclid distance between the tapped points for targets 1 and 2, and W is the
target width (= height). Throughput is defined as ID/t in Eqs. (1-2). (ID, t) could be observed
for each attempt, so a throughput value could also be obtained for each attempt. To measure
pointing accuracy, error rate was defined.

 Error rate = (#error attempts in a task trial)/(#total attempts in the trial) (3)

Error rate could be calculated for only the condition “errors acceptable” because the data
under the condition “errors not acceptable” didn’t include any error attempt (if an error was

Fitts’ Law Index of Difficulty Evaluated and Extended for Screen Size Variations

233

occurred in a trial under the condition “errors not acceptable”, the trial was cancelled and
retried).
Mean and standard deviation (SD) values of the throughput and the error rate were
calculated to compare user performances on targets S to those on targets L. Throughput
mean and SD values were calculated from the data of { tp(s, t, a) } for all of the subjects, the
task trials and the attempts in a task: tp(s, t, a) denotes the throughput value for the s-th
subject, t-th task and the a-th attempt in the t-th task by the s-th subject. Error rate mean and
SD values were calculated from the data of { er(s, t) } for all of the subject and the task trials:
er(s, t) denotes the error rate value for the s-th subject and the t-th task.
In addition, it was tested by t-test whether there was a significant difference between
population mean values of throughput and error rate for the two conditions of targets S&L.
It should be noted that error attempts were included in the data under the condition “errors
acceptable”. Error attempts might be faster (of larger throughput values) than successful
attempts. In the following of this chapter, throughput values were calculated with both of
successful and error attempt data.
Table 2 shows mean and SD values of the throughput, and Table 3 shows those of the error
rate. Tables 4 & 5 show t-test results for throughput and error rate respectively. In Tables
4&5, **-marked t-scores are those with p<0.01, and non-marked t-scores are those with
p>0.05.

Device S Device M Device L
Targets S Targets L Targets S Targets L Targets S Targets L

Mean 5.73 5.73 5.86 5.76 5.52 4.76 Acceptable
SD 1.37 1.14 1.30 1.80 1.34 0.87

Mean 5.15 5.57 5.69 5.63 5.32 4.60 Not acceptable
SD 1.20 1.21 1.30 1.78 1.23 0.97

Table 2. Mean and SD values of throughput (bit/sec)

 Device S Device M Device L
 Targets S Targets L Targets S Targets L Targets S Targets L

Mean 11.23 0.52 0.93 0.69 1.56 0.52 Acceptable
SD 10.35 2.04 2.66 2.34 3.29 2.04

Table 3. Mean and SD values of error rate (%)

 Device S Device M Device L

 Acceptable Not
acceptable Acceptable Not

acceptable Acceptable Not
acceptable

Targets S/L t=3.65∗10-3 t=-5.74** t=0.875 t=0.514 t=11.04** t=10.66**

Table 4. T-test for throughput

 Acceptable
 Device S Device M Device L

Targets S/L t=7.03** t=0.393 t=1.87

Table 5. T-test for error rate

 User Interfaces

232

Fig. 1. Screenshot for target pointing tasks

2.5 Participants
Twelve subjects participated in the experiment, but 3 of the 12 subjects could for the devices
S and L only due to the experiment schedule. Thus, users’ pointing log data set (A, W, t)
were collected with 12 subjects for the devices S and L but 9 subjects for the device M. The
12 participants were university graduate or undergraduate students. They were all novices
in using devices with touch-by-stylus UIs, but they had no trouble in performing test tasks
after the 12 training trials.

2.6 Logging pointing operations
The following data was recorded for each pointing (each tap by a stylus) into log files.
• Target: 1 or 2
• Target position: (x, y) values
• Target width and height: pixels
• Tapped position: (x, y) values
• Tap time: msec
• Error: Yes or No
The tapped position and the tap time were logged when the stylus was landed on the
screen, and the pointing was judged as an error or not based on the tapped position. No
attempt was observed for which the stylus was landed on the target 1, moved into the target
2 and left off.

3. Data analyses and findings
Pointing speed and accuracy were measured by throughput (ISO 9241, 2000) and error rate
respectively. In this research, t is the interval from the target 1 tap time to the target 2 tap
time, A is the Euclid distance between the tapped points for targets 1 and 2, and W is the
target width (= height). Throughput is defined as ID/t in Eqs. (1-2). (ID, t) could be observed
for each attempt, so a throughput value could also be obtained for each attempt. To measure
pointing accuracy, error rate was defined.

 Error rate = (#error attempts in a task trial)/(#total attempts in the trial) (3)

Error rate could be calculated for only the condition “errors acceptable” because the data
under the condition “errors not acceptable” didn’t include any error attempt (if an error was

Fitts’ Law Index of Difficulty Evaluated and Extended for Screen Size Variations

233

occurred in a trial under the condition “errors not acceptable”, the trial was cancelled and
retried).
Mean and standard deviation (SD) values of the throughput and the error rate were
calculated to compare user performances on targets S to those on targets L. Throughput
mean and SD values were calculated from the data of { tp(s, t, a) } for all of the subjects, the
task trials and the attempts in a task: tp(s, t, a) denotes the throughput value for the s-th
subject, t-th task and the a-th attempt in the t-th task by the s-th subject. Error rate mean and
SD values were calculated from the data of { er(s, t) } for all of the subject and the task trials:
er(s, t) denotes the error rate value for the s-th subject and the t-th task.
In addition, it was tested by t-test whether there was a significant difference between
population mean values of throughput and error rate for the two conditions of targets S&L.
It should be noted that error attempts were included in the data under the condition “errors
acceptable”. Error attempts might be faster (of larger throughput values) than successful
attempts. In the following of this chapter, throughput values were calculated with both of
successful and error attempt data.
Table 2 shows mean and SD values of the throughput, and Table 3 shows those of the error
rate. Tables 4 & 5 show t-test results for throughput and error rate respectively. In Tables
4&5, **-marked t-scores are those with p<0.01, and non-marked t-scores are those with
p>0.05.

Device S Device M Device L
Targets S Targets L Targets S Targets L Targets S Targets L

Mean 5.73 5.73 5.86 5.76 5.52 4.76 Acceptable
SD 1.37 1.14 1.30 1.80 1.34 0.87

Mean 5.15 5.57 5.69 5.63 5.32 4.60 Not acceptable
SD 1.20 1.21 1.30 1.78 1.23 0.97

Table 2. Mean and SD values of throughput (bit/sec)

 Device S Device M Device L
 Targets S Targets L Targets S Targets L Targets S Targets L

Mean 11.23 0.52 0.93 0.69 1.56 0.52 Acceptable
SD 10.35 2.04 2.66 2.34 3.29 2.04

Table 3. Mean and SD values of error rate (%)

 Device S Device M Device L

 Acceptable Not
acceptable Acceptable Not

acceptable Acceptable Not
acceptable

Targets S/L t=3.65∗10-3 t=-5.74** t=0.875 t=0.514 t=11.04** t=10.66**

Table 4. T-test for throughput

 Acceptable
 Device S Device M Device L

Targets S/L t=7.03** t=0.393 t=1.87

Table 5. T-test for error rate

 User Interfaces

234

These tables revealed the followings.
• On the device L participants could point targets S significantly faster than targets L, but

on the devices S&M they couldn’t. Instead, on the device S, they could point targets L
significantly faster than targets S under the condition “errors not acceptable”. This
result indicates that, even though ID values by Eq. (2) are designed consistently among
targets S&L, users’ pointing speeds will not be consistent: faster for larger/smaller
size&distance widgets on smaller/larger screen devices, respectively.

• On the devices M&L no significant difference was observed in the pointing accuracy
among targets S&L, but on the device S participants could point targets L significantly
more accurately than targets S. This result indicates that, even though ID values by Eq.
(2) are designed consistently among targets S&L, users’ pointing accuracies will not be
consistent too: more accurate for larger size&distance widgets on smaller screen
devices.

Thus, it is found that the ID definition in Eq. (2) may not consistently capture actual
pointing difficulty among target designs. The result of our experiment shows that, on a
smaller/larger screen, targets with smaller/larger sizes&distances are actually more
difficult to point than those with larger/smaller ones. A/W in Eq. (2) is not appropriate in
terms of screen size variations because the term caused the observed inconsistency.
In the following two sections, the authors investigate better formulation of ID.

3. Fitness evaluation of multiple regression model
Based on the finding reported in the last section, the authors 1) evaluate the applicability of
possible models other than the Fitts’ one and 2) make an attempt to improve the definition
of ID in the Fitts’ model, i.e., Eq. (2). The finding implies that a model in which A and W
independently affect the pointing time t may capture the effect of device screen size more
appropriately: such a model may be able to represent that A (W) affects more than W (A)
where device screen sizes are larger (smaller). For example, a power function model was
previously proposed (Kvalseth, 1980).

 t = a ∗ Ab ∗ Wc (4)

 log2t = a + b ∗ log2A + c ∗ log2W (4’)

The following model has also been investigated (MacKenzie, 1992).

 t = a + b ∗ log2A + c ∗ log2W (5)

Based on these previous researches, the authors evaluate fitness of multiple regression
models in Eqs. (4’) and (5) by applying the model to the data collected by user experiments
in our research.
By normalizing the data of t, log2t, log2A and log2W respectively, a=0 and the value of b can
be directly compared with the value of c.

 t’ = b ∗ log2A’ + c ∗ log2W’ (5’)

 log2t' = b ∗ log2A’ + c ∗ log2W’ (4”)

In Eqs (5’) and (4’’), t’, log2t’, log2A’ and log2W’ are normalized ones respectively.

Fitts’ Law Index of Difficulty Evaluated and Extended for Screen Size Variations

235

Table 6 shows values of b and c for the model in Eq. (5’) obtained by applying the multiple
regression analysis to the data of (t’, log2A’, log2W’).

(i) Errors acceptable
 Device L Device S
 Targets L Targets S Targets L Targets S

b 0.13 0.23 0.10 0.04
c -0.33 -0.18 -0.39 -0.37

(ii) Errors not acceptable
 Device L Device S
 Targets L Targets S Targets L Targets S

b 0.004 0.21 0.16 0.14
c -0.42 -0.23 -0.35 -0.32

Table 6. Values of b and c in Eq. (5’)

Table 7 shows values of b and c for the model in Eq. (4’’) obtained by applying the multiple
regression analysis to the data of (log2t’, log2A’, log2W’).

(i) Errors acceptable
 Device L Device S
 Targets L Targets S Targets L Targets S

b 0.16 0.26 0.19 0.14
c -0.30 -0.15 -0.33 -0.32

(ii) Errors not acceptable
 Device L Device S
 Targets L Targets S Targets L Targets S

b 0.07 0.27 0.22 0.25
c -0.36 -0.16 -0.28 -0.25

Table 7. Values of b and c in Eq. (4’’)

Tables 6 and 7 revealed the followings.
• Values of b are all positive, and those of c are all negative. Thus, the models by Eqs. (5’)

and (4’’) appropriately represent that the pointing time becomes larger (smaller) as the
target distance A (the target size W) becomes larger.

• For the device S, |b| < |c| in both tables so that the target size W affects the pointing
time more than the target distance A. This is consistent with the result reported in the
last section.

• For the device L, |b| > |c| in some condition combinations (e.g., Table 6(i), the targets S)
so that the target distance A affects the pointing time more than the target size W. This is
also consistent with the result reported in the last section. However, |b| < |c| for the
other condition combinations (e.g., Table 6(i), the targets L), which is not consistent with
the result. This inconsistency should be further investigated in our future work.

This result shows the multiple regression models by Eqs. (5’) and (4’’) well represent the
effects of target sizes and distances on the pointing time, especially for the small screen
device and partially for the large screen device.

 User Interfaces

234

These tables revealed the followings.
• On the device L participants could point targets S significantly faster than targets L, but

on the devices S&M they couldn’t. Instead, on the device S, they could point targets L
significantly faster than targets S under the condition “errors not acceptable”. This
result indicates that, even though ID values by Eq. (2) are designed consistently among
targets S&L, users’ pointing speeds will not be consistent: faster for larger/smaller
size&distance widgets on smaller/larger screen devices, respectively.

• On the devices M&L no significant difference was observed in the pointing accuracy
among targets S&L, but on the device S participants could point targets L significantly
more accurately than targets S. This result indicates that, even though ID values by Eq.
(2) are designed consistently among targets S&L, users’ pointing accuracies will not be
consistent too: more accurate for larger size&distance widgets on smaller screen
devices.

Thus, it is found that the ID definition in Eq. (2) may not consistently capture actual
pointing difficulty among target designs. The result of our experiment shows that, on a
smaller/larger screen, targets with smaller/larger sizes&distances are actually more
difficult to point than those with larger/smaller ones. A/W in Eq. (2) is not appropriate in
terms of screen size variations because the term caused the observed inconsistency.
In the following two sections, the authors investigate better formulation of ID.

3. Fitness evaluation of multiple regression model
Based on the finding reported in the last section, the authors 1) evaluate the applicability of
possible models other than the Fitts’ one and 2) make an attempt to improve the definition
of ID in the Fitts’ model, i.e., Eq. (2). The finding implies that a model in which A and W
independently affect the pointing time t may capture the effect of device screen size more
appropriately: such a model may be able to represent that A (W) affects more than W (A)
where device screen sizes are larger (smaller). For example, a power function model was
previously proposed (Kvalseth, 1980).

 t = a ∗ Ab ∗ Wc (4)

 log2t = a + b ∗ log2A + c ∗ log2W (4’)

The following model has also been investigated (MacKenzie, 1992).

 t = a + b ∗ log2A + c ∗ log2W (5)

Based on these previous researches, the authors evaluate fitness of multiple regression
models in Eqs. (4’) and (5) by applying the model to the data collected by user experiments
in our research.
By normalizing the data of t, log2t, log2A and log2W respectively, a=0 and the value of b can
be directly compared with the value of c.

 t’ = b ∗ log2A’ + c ∗ log2W’ (5’)

 log2t' = b ∗ log2A’ + c ∗ log2W’ (4”)

In Eqs (5’) and (4’’), t’, log2t’, log2A’ and log2W’ are normalized ones respectively.

Fitts’ Law Index of Difficulty Evaluated and Extended for Screen Size Variations

235

Table 6 shows values of b and c for the model in Eq. (5’) obtained by applying the multiple
regression analysis to the data of (t’, log2A’, log2W’).

(i) Errors acceptable
 Device L Device S
 Targets L Targets S Targets L Targets S

b 0.13 0.23 0.10 0.04
c -0.33 -0.18 -0.39 -0.37

(ii) Errors not acceptable
 Device L Device S
 Targets L Targets S Targets L Targets S

b 0.004 0.21 0.16 0.14
c -0.42 -0.23 -0.35 -0.32

Table 6. Values of b and c in Eq. (5’)

Table 7 shows values of b and c for the model in Eq. (4’’) obtained by applying the multiple
regression analysis to the data of (log2t’, log2A’, log2W’).

(i) Errors acceptable
 Device L Device S
 Targets L Targets S Targets L Targets S

b 0.16 0.26 0.19 0.14
c -0.30 -0.15 -0.33 -0.32

(ii) Errors not acceptable
 Device L Device S
 Targets L Targets S Targets L Targets S

b 0.07 0.27 0.22 0.25
c -0.36 -0.16 -0.28 -0.25

Table 7. Values of b and c in Eq. (4’’)

Tables 6 and 7 revealed the followings.
• Values of b are all positive, and those of c are all negative. Thus, the models by Eqs. (5’)

and (4’’) appropriately represent that the pointing time becomes larger (smaller) as the
target distance A (the target size W) becomes larger.

• For the device S, |b| < |c| in both tables so that the target size W affects the pointing
time more than the target distance A. This is consistent with the result reported in the
last section.

• For the device L, |b| > |c| in some condition combinations (e.g., Table 6(i), the targets S)
so that the target distance A affects the pointing time more than the target size W. This is
also consistent with the result reported in the last section. However, |b| < |c| for the
other condition combinations (e.g., Table 6(i), the targets L), which is not consistent with
the result. This inconsistency should be further investigated in our future work.

This result shows the multiple regression models by Eqs. (5’) and (4’’) well represent the
effects of target sizes and distances on the pointing time, especially for the small screen
device and partially for the large screen device.

 User Interfaces

236

4. Improvement in Fitts’ law ID formulation
The authors next investigate an improvement to the definition of ID in the Fitts’ model. The
advantage of multiple regression models was shown in Section 3, but a drawback of the
models is that users’ pointing throughput values cannot be calculated. This is because a
single index of difficulty is not defined in the case of the multiple regression models.
Our idea for the improvement is to raise A or W depending on the screen size as shown in
Eqs. (6) and (7).

 ID = log2(Aα/W + 1), α>1 (6)

 ID = log2(A/Wβ + 1), β>1 (7)

Eq. (6) is employed for larger screen devices and Eq. (7) for smaller ones.
The modified model was applied to the collected data. Appropriate values of α and β in Eqs.
(6) and (7) are explored by the bisection method so that there was no significant difference
between population mean values of throughputs for the targets S and L (i.e., the
throughputs were consistent between the two target sets) on the same device.
It is found that the modified model well fits to the data where α=1.61, 1.62 for the device L
and β=1.00, 1.15 for the device S (Tables 8-11): under these values of α and β, no significant
difference is observed between population mean values of throughputs for the targets S and
L. Thus, the modified indexes of difficulties by Eqs. (6) and (7) well represent actual
pointing difficulties for users so that users’ pointing throughputs become consistent on the
same device among target design variations (c.f., was inconsistent in the case of traditional
ID, Eq. (2)).

 Device L
 Targets S Targets L

Mean 12.5 12.5 Errors acceptable
(α=1.62) SD 2.89 1.91

Mean 11.9 11.9 Errors not acceptable
(α=1.61) SD 2.60 2.25

Table 8. Throughput values (ID by Eq. (6))

 Device L
 Errors acceptable Errors not acceptable

Targets
S vs. L

t=-5.75 ∗ 10-11
(α=1.62)

t=4.17 ∗ 10-12
(α=1.61)

Table 9. T-test for throughput (ID by Eq. (6))

 Device S
 Targets S Targets L

Mean 5.73 5.73 Errors acceptable
(β=1.00) SD 1.37 1.14

Mean 4.78 4.78 Errors not acceptable
(β=1.15) SD 1.15 1.09

Table 10. Throughput values (ID by Eq. (7))

Fitts’ Law Index of Difficulty Evaluated and Extended for Screen Size Variations

237

 Device S
 Errors acceptable Errors not acceptable

Targets
S vs. L

t=-2.68 ∗ 10-11
(β=1.00)

t=-3.60 ∗ 10-11

(β=1.15)

Table 11. T-test for throughput (ID by Eq. (7))

This result shows that our idea of ID improvement is effective: the modified ID formulations
can capture users’ actual pointing difficulties better than the traditional ID. Further
evaluations with additional case data will be our future work.

5. Conclusions
Index of difficulty formulation in Fitts’ law was evaluated from the viewpoint of consistency
in widget size&distance design variations. It was found that ID in Eq. (2) may not
appropriately capture actual difficulty: user performances on the same device were not
consistent among target designs (A, W) and (nA, nW).
Based on this finding, two multiple regression models were evaluated. These models were
t=F(A,W) (c.f., t=F(A/W) in the Fitts’ model) which predicted the time t to point a target
with the distance A and the size W. The models are found to be able to appropriately
represent that W affected the index of difficulty more than A in the case of the small screen
touch UI device. The models however did not work so well in the case of the large screen
device, which remained to be investigated in a future research.
The authors next tried to improve the Fitts’ law ID formulation. Our idea was to raise A or
W depending on the screen size. The modified model was found to fit well to the users’
pointing data, which supports our idea.

6. References
Fitts, P.M. (1954). The information capacity of the human motor system in controlling the

amplitude of movement, Journal of Experimental Psychology, Vol.47, No.6, 381-391
ISO 9241. (2000). Ergonomic requirements for office work with visual display terminals

(VDTs) - Part 9: requirements for non-keyboard input devices.
Kvalseth, T. (1980). An alternative to Fitts’ law, Bulletin of the Psychonomic Society, Vol.5, 371-

373
MacKenzie, I.S. (1992). Fitts’s law as a research and design tool in human-computer

interaction, Human-Computer Interaction, Vol.7, 91-139
MacKenzie, I.S. & Buxton, W. (1992). Extending Fitts’ law to two-dimensional tasks.

Proceedings of ACM Conference on Human Factors in Computing Systems (CHI’92), 219-
226

Oehl, M., Sutter, C. & Ziefle, M. (2007). Considerations on efficient touch interfaces - how
display size influences the performance in an applied pointing task, in Smith, M.J.
& Salvendy, G. (Eds.), Human Interface, Part I, HCII 2007, LNCS 4557, 136-143

Plamondon, R. & Alimi, A.M. (1997). Speed/accuracy trade-offs in target-directed
movements, Behavioral and Brain Sciences, Vol.20, No.2, 279-349

 User Interfaces

236

4. Improvement in Fitts’ law ID formulation
The authors next investigate an improvement to the definition of ID in the Fitts’ model. The
advantage of multiple regression models was shown in Section 3, but a drawback of the
models is that users’ pointing throughput values cannot be calculated. This is because a
single index of difficulty is not defined in the case of the multiple regression models.
Our idea for the improvement is to raise A or W depending on the screen size as shown in
Eqs. (6) and (7).

 ID = log2(Aα/W + 1), α>1 (6)

 ID = log2(A/Wβ + 1), β>1 (7)

Eq. (6) is employed for larger screen devices and Eq. (7) for smaller ones.
The modified model was applied to the collected data. Appropriate values of α and β in Eqs.
(6) and (7) are explored by the bisection method so that there was no significant difference
between population mean values of throughputs for the targets S and L (i.e., the
throughputs were consistent between the two target sets) on the same device.
It is found that the modified model well fits to the data where α=1.61, 1.62 for the device L
and β=1.00, 1.15 for the device S (Tables 8-11): under these values of α and β, no significant
difference is observed between population mean values of throughputs for the targets S and
L. Thus, the modified indexes of difficulties by Eqs. (6) and (7) well represent actual
pointing difficulties for users so that users’ pointing throughputs become consistent on the
same device among target design variations (c.f., was inconsistent in the case of traditional
ID, Eq. (2)).

 Device L
 Targets S Targets L

Mean 12.5 12.5 Errors acceptable
(α=1.62) SD 2.89 1.91

Mean 11.9 11.9 Errors not acceptable
(α=1.61) SD 2.60 2.25

Table 8. Throughput values (ID by Eq. (6))

 Device L
 Errors acceptable Errors not acceptable

Targets
S vs. L

t=-5.75 ∗ 10-11
(α=1.62)

t=4.17 ∗ 10-12
(α=1.61)

Table 9. T-test for throughput (ID by Eq. (6))

 Device S
 Targets S Targets L

Mean 5.73 5.73 Errors acceptable
(β=1.00) SD 1.37 1.14

Mean 4.78 4.78 Errors not acceptable
(β=1.15) SD 1.15 1.09

Table 10. Throughput values (ID by Eq. (7))

Fitts’ Law Index of Difficulty Evaluated and Extended for Screen Size Variations

237

 Device S
 Errors acceptable Errors not acceptable

Targets
S vs. L

t=-2.68 ∗ 10-11
(β=1.00)

t=-3.60 ∗ 10-11

(β=1.15)

Table 11. T-test for throughput (ID by Eq. (7))

This result shows that our idea of ID improvement is effective: the modified ID formulations
can capture users’ actual pointing difficulties better than the traditional ID. Further
evaluations with additional case data will be our future work.

5. Conclusions
Index of difficulty formulation in Fitts’ law was evaluated from the viewpoint of consistency
in widget size&distance design variations. It was found that ID in Eq. (2) may not
appropriately capture actual difficulty: user performances on the same device were not
consistent among target designs (A, W) and (nA, nW).
Based on this finding, two multiple regression models were evaluated. These models were
t=F(A,W) (c.f., t=F(A/W) in the Fitts’ model) which predicted the time t to point a target
with the distance A and the size W. The models are found to be able to appropriately
represent that W affected the index of difficulty more than A in the case of the small screen
touch UI device. The models however did not work so well in the case of the large screen
device, which remained to be investigated in a future research.
The authors next tried to improve the Fitts’ law ID formulation. Our idea was to raise A or
W depending on the screen size. The modified model was found to fit well to the users’
pointing data, which supports our idea.

6. References
Fitts, P.M. (1954). The information capacity of the human motor system in controlling the

amplitude of movement, Journal of Experimental Psychology, Vol.47, No.6, 381-391
ISO 9241. (2000). Ergonomic requirements for office work with visual display terminals

(VDTs) - Part 9: requirements for non-keyboard input devices.
Kvalseth, T. (1980). An alternative to Fitts’ law, Bulletin of the Psychonomic Society, Vol.5, 371-

373
MacKenzie, I.S. (1992). Fitts’s law as a research and design tool in human-computer

interaction, Human-Computer Interaction, Vol.7, 91-139
MacKenzie, I.S. & Buxton, W. (1992). Extending Fitts’ law to two-dimensional tasks.

Proceedings of ACM Conference on Human Factors in Computing Systems (CHI’92), 219-
226

Oehl, M., Sutter, C. & Ziefle, M. (2007). Considerations on efficient touch interfaces - how
display size influences the performance in an applied pointing task, in Smith, M.J.
& Salvendy, G. (Eds.), Human Interface, Part I, HCII 2007, LNCS 4557, 136-143

Plamondon, R. & Alimi, A.M. (1997). Speed/accuracy trade-offs in target-directed
movements, Behavioral and Brain Sciences, Vol.20, No.2, 279-349

 User Interfaces

238

Ren, X. & Mizobuchi, S. (2005). Investigating the usability of the stylus pen on handheld
devices, Proceedings of The Fourth Annual Workshop on HCI Research in MIS, 30-34 15

Understanding SOA Perspective of
e-Governance in Indian Context:

Case Based Study
Harekrishna Misra

Institute of Rural Management Anand
India

1. Introduction
Role of information and communication technologies (ICT) in managing business processes
has been phenomenal. Today, ICT is aggressively used for development process and results
are showing positively in this direction. E-governance projects are no exception. In today’s
context, e-governance projects have become a part of national policies across the world.
Globally, e-governance projects have remained restricted to delivering government
interfaces digitally with the focus to optimize transaction latency, improving transparency
and extending on-line services. However, e-governance projects have fallen short of citizen
expectations in developing countries (Mehdi, 2005). Most of the developing countries
around the world have adopted e-governance systems strategically to provide better,
transparent and value added services to its citizens with the help of ICT. Millennium
development goals (MDG) have also included ICT as means of development (WSIS, (2004)).
In India there is rapid progress in implementing e-governance strategy keeping pace with
the global scenario. With the national e-governance plan (NeGP), the pace of progress in
setting up information technology (IT) infrastructure has been accelerated (Ramarao et al.
(2004)). NeGP has identified various projects on “Mission Mode” for scale up nationally and
have allocated funds for “Common Service Centres” (CSC) for deployment of ICT enabled
services including e-governance services at the door steps of citizens (Chandrashekhar,
(2006); NeGP, (2005)). Besides, there are many mission mode projects like Gramin Gyan
Abhiyan (GGA) as per agenda set through Mission 2007, National Rural Employment
Guaranty Act (NREGA) and Ministry of Company Affairs (MCA-21) have been taken up.
However, alike the experiences worldwide (Heeks, (2006)), the scale up exercise for e-
governance has not been yielding results as expected in India (Janssen, (2005); Mishra,
(2007)). Various reasons including inadequate local level planning with least participation of
citizens and challenging situations to spread effective infrastructure contribute to this poor
adoption of e-governance services. Despite improved ICT infrastructure, penetration of
telephony and internet, Indian e-governance applications and services are below expected
levels of delivery standards.
In this paper, it is posited that e-governance projects in India need to follow SOA principles
in order to make them successful in terms of sustainability, providing appropriate services
to citizens. It is argued that Indian e-governance initiatives to be termed successful should

 User Interfaces

238

Ren, X. & Mizobuchi, S. (2005). Investigating the usability of the stylus pen on handheld
devices, Proceedings of The Fourth Annual Workshop on HCI Research in MIS, 30-34 15

Understanding SOA Perspective of
e-Governance in Indian Context:

Case Based Study
Harekrishna Misra

Institute of Rural Management Anand
India

1. Introduction
Role of information and communication technologies (ICT) in managing business processes
has been phenomenal. Today, ICT is aggressively used for development process and results
are showing positively in this direction. E-governance projects are no exception. In today’s
context, e-governance projects have become a part of national policies across the world.
Globally, e-governance projects have remained restricted to delivering government
interfaces digitally with the focus to optimize transaction latency, improving transparency
and extending on-line services. However, e-governance projects have fallen short of citizen
expectations in developing countries (Mehdi, 2005). Most of the developing countries
around the world have adopted e-governance systems strategically to provide better,
transparent and value added services to its citizens with the help of ICT. Millennium
development goals (MDG) have also included ICT as means of development (WSIS, (2004)).
In India there is rapid progress in implementing e-governance strategy keeping pace with
the global scenario. With the national e-governance plan (NeGP), the pace of progress in
setting up information technology (IT) infrastructure has been accelerated (Ramarao et al.
(2004)). NeGP has identified various projects on “Mission Mode” for scale up nationally and
have allocated funds for “Common Service Centres” (CSC) for deployment of ICT enabled
services including e-governance services at the door steps of citizens (Chandrashekhar,
(2006); NeGP, (2005)). Besides, there are many mission mode projects like Gramin Gyan
Abhiyan (GGA) as per agenda set through Mission 2007, National Rural Employment
Guaranty Act (NREGA) and Ministry of Company Affairs (MCA-21) have been taken up.
However, alike the experiences worldwide (Heeks, (2006)), the scale up exercise for e-
governance has not been yielding results as expected in India (Janssen, (2005); Mishra,
(2007)). Various reasons including inadequate local level planning with least participation of
citizens and challenging situations to spread effective infrastructure contribute to this poor
adoption of e-governance services. Despite improved ICT infrastructure, penetration of
telephony and internet, Indian e-governance applications and services are below expected
levels of delivery standards.
In this paper, it is posited that e-governance projects in India need to follow SOA principles
in order to make them successful in terms of sustainability, providing appropriate services
to citizens. It is argued that Indian e-governance initiatives to be termed successful should

 User Interfaces

240

pay special attention to rural areas. Rural areas in India are largely challenged by digital
divides (social, educational, health etc.) and rural development largely influences overall
development of Indian economy which is related to citizen services, especially value added
rural services (Riley, (2003)). It is considered important that e-governance services should be
available to rural citizens on demand and through proper orchestration of inputs received
from various service provisioning agencies involved in the initiative. Essentially, SOA
principles provide such ambience and in this paper its contributions are discussed to extend
desired support to e-governance initiatives in India.
The organization of the paper is as follows. In section two, e-governance scenario in global
context is discussed with specific reference to development perspectives in India. It aims at
providing an appreciation of what is happening in India vis-à-vis global efforts in this
direction. In section three architectural issues are discussed with specific reference to e-
governance systems. A framework is presented in this section to understand the feasibility
of Indian e-governance systems with development perspective. Rationale for deployment of
SOA principles and their relevance in e-governance systems in Indian context are discussed
in this section. In section four, SOA based architectural framework is presented. It includes a
scenario built through SOA architecture to showcase the possible effect of SOA principles in
order to appreciate citizen centric services taking scale-up issues into consideration. Unified
Modelling Language (UML) is used for presenting the architecture and its possible use.
Through this language, the scenario is presented to explain the path to reflect the
underpinnings of orchestration of services on demand and service provisioning through e-
governance initiatives for effective implementation SOA principles. In section five, two
popular e-governance models implemented in India are taken for discussion based the SOA
principles and an evaluation is done to understand the scope for further value addition in
rendering citizen centric services. While concluding in section six, future direction of the
work is described.

2. Indian E-Governance systems: development perspective
Conceptualization and implementation of E-governance projects have gradually gained
momentum in recent years and many pilot projects have been taken up by governments
worldwide. Most of the governments have transformed their pilot activities to real projects
with scale up strategies (ADB,(2008)). European Union has strategies to collaborate and
unify e-governance services across all its member states (Benamou, N. (2006)).
Interoperability has been a critical evaluation criterion for enabling interstate transactions,
managing information flow seamlessly and overseeing the backend process for effective
delivery of citizen services. According to the European Commission (European
Commission, 2004,2006) survey an average of 84% of all public services was available online
in the EU member states much have been done for effective citizen transactions
(Capgemini, (2007)). Despite such good efforts, EU countries largely acknowledge that
though supply of e-governance services is rather not a problem, meeting the demands is
actually a challenge before the strategic implementers. Globally, contemporary e-
governance strategies therefore, profess for e-inclusion, e-participation and citizen centric
services. E-Governance applications expect integrated efforts to improve citizen interfaces
and citizen centric services while scaling up to make the government’s withdrawal strategy
feasible. These withdrawal strategies include involvement of private-public partnership,
citizen inclusiveness and a proper revenue model among other critical parameters.

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

241

In India, e-governance system is still evolving and is not free from challenges as experienced
in global terms. Mixed results of e-governance projects are experienced due to poor
participation of important stakeholders - the rural citizens. In Indian sub-continent, one of
the major concerns is ensuring “rural citizen interface through inclusion” and role of ICT in
addressing this concern is challenging. This is because of the fact that rural India constitutes
72 percent per cent of India's population who live in villages; 55 per cent villages don't have
electricity in homes and 85 percent have no sanitation facilities. The per capita income of
Indian villagers is INR 12,000, while the national average is INR 25,000 [rural poverty]. Thus
appreciating the role of e-governance services as “central” to their livelihoods is a difficult
proposition. However, e-governance services have the desired potential to transform this
centrality through demonstration of its orchestrating capabilities through which services
related to the rural citizen’s demand could be rendered. This orchestration has remained a
challenge because of ambiguous relationships among various stakeholders including
government agencies who need to coordinate the information management imperatives (ADB,
(2008)). There are many successful ICT initiatives in India oriented towards rural development
with a focus to address some specific issues of rural citizens, thus forming “islands”. These
initiatives are mostly led by the government administration, non-governmental organizations
(NGOs) and some are even in private sectors. National e-Governance Plan (NeGP) recognizes
the vitality of some critical, but successful ICT initiatives for their inclusion as mission-mode
projects for scaling up at national level. The aim is to provide a portfolio of services to the
citizens integrated with e-governance backbone to install a good e-governance system without
getting affected during scale up phase.

Fig. 1. ICT Indices for India (Dutta et al., (2008); Kaul, (2008)).

Good e-governance efforts need useful ICT infrastructure, individual readiness, government
readiness, support of political and regulatory systems and network readiness. Individual
readiness in Indian context, is quite critical because of the rural citizens are oblivious of the
e-governance initiatives which are yet to bring desired impact in the lives of these rural
citizens. Global “e-readiness” exercises to assess the ICT enabled capacities of countries and
the usage the infrastructure indicate this readiness as an important contributor. In India, this
readiness is gradually increasing. In Figure 1 other ICT indices which predominantly
influence Indian e-governance efforts are presented in global context. It reveals that ICT
infrastructure and individual’s orientation towards IT need more attention in order to
hasten the process of implementing e-governance systems in the country (Chan, (2005);

 User Interfaces

240

pay special attention to rural areas. Rural areas in India are largely challenged by digital
divides (social, educational, health etc.) and rural development largely influences overall
development of Indian economy which is related to citizen services, especially value added
rural services (Riley, (2003)). It is considered important that e-governance services should be
available to rural citizens on demand and through proper orchestration of inputs received
from various service provisioning agencies involved in the initiative. Essentially, SOA
principles provide such ambience and in this paper its contributions are discussed to extend
desired support to e-governance initiatives in India.
The organization of the paper is as follows. In section two, e-governance scenario in global
context is discussed with specific reference to development perspectives in India. It aims at
providing an appreciation of what is happening in India vis-à-vis global efforts in this
direction. In section three architectural issues are discussed with specific reference to e-
governance systems. A framework is presented in this section to understand the feasibility
of Indian e-governance systems with development perspective. Rationale for deployment of
SOA principles and their relevance in e-governance systems in Indian context are discussed
in this section. In section four, SOA based architectural framework is presented. It includes a
scenario built through SOA architecture to showcase the possible effect of SOA principles in
order to appreciate citizen centric services taking scale-up issues into consideration. Unified
Modelling Language (UML) is used for presenting the architecture and its possible use.
Through this language, the scenario is presented to explain the path to reflect the
underpinnings of orchestration of services on demand and service provisioning through e-
governance initiatives for effective implementation SOA principles. In section five, two
popular e-governance models implemented in India are taken for discussion based the SOA
principles and an evaluation is done to understand the scope for further value addition in
rendering citizen centric services. While concluding in section six, future direction of the
work is described.

2. Indian E-Governance systems: development perspective
Conceptualization and implementation of E-governance projects have gradually gained
momentum in recent years and many pilot projects have been taken up by governments
worldwide. Most of the governments have transformed their pilot activities to real projects
with scale up strategies (ADB,(2008)). European Union has strategies to collaborate and
unify e-governance services across all its member states (Benamou, N. (2006)).
Interoperability has been a critical evaluation criterion for enabling interstate transactions,
managing information flow seamlessly and overseeing the backend process for effective
delivery of citizen services. According to the European Commission (European
Commission, 2004,2006) survey an average of 84% of all public services was available online
in the EU member states much have been done for effective citizen transactions
(Capgemini, (2007)). Despite such good efforts, EU countries largely acknowledge that
though supply of e-governance services is rather not a problem, meeting the demands is
actually a challenge before the strategic implementers. Globally, contemporary e-
governance strategies therefore, profess for e-inclusion, e-participation and citizen centric
services. E-Governance applications expect integrated efforts to improve citizen interfaces
and citizen centric services while scaling up to make the government’s withdrawal strategy
feasible. These withdrawal strategies include involvement of private-public partnership,
citizen inclusiveness and a proper revenue model among other critical parameters.

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

241

In India, e-governance system is still evolving and is not free from challenges as experienced
in global terms. Mixed results of e-governance projects are experienced due to poor
participation of important stakeholders - the rural citizens. In Indian sub-continent, one of
the major concerns is ensuring “rural citizen interface through inclusion” and role of ICT in
addressing this concern is challenging. This is because of the fact that rural India constitutes
72 percent per cent of India's population who live in villages; 55 per cent villages don't have
electricity in homes and 85 percent have no sanitation facilities. The per capita income of
Indian villagers is INR 12,000, while the national average is INR 25,000 [rural poverty]. Thus
appreciating the role of e-governance services as “central” to their livelihoods is a difficult
proposition. However, e-governance services have the desired potential to transform this
centrality through demonstration of its orchestrating capabilities through which services
related to the rural citizen’s demand could be rendered. This orchestration has remained a
challenge because of ambiguous relationships among various stakeholders including
government agencies who need to coordinate the information management imperatives (ADB,
(2008)). There are many successful ICT initiatives in India oriented towards rural development
with a focus to address some specific issues of rural citizens, thus forming “islands”. These
initiatives are mostly led by the government administration, non-governmental organizations
(NGOs) and some are even in private sectors. National e-Governance Plan (NeGP) recognizes
the vitality of some critical, but successful ICT initiatives for their inclusion as mission-mode
projects for scaling up at national level. The aim is to provide a portfolio of services to the
citizens integrated with e-governance backbone to install a good e-governance system without
getting affected during scale up phase.

Fig. 1. ICT Indices for India (Dutta et al., (2008); Kaul, (2008)).

Good e-governance efforts need useful ICT infrastructure, individual readiness, government
readiness, support of political and regulatory systems and network readiness. Individual
readiness in Indian context, is quite critical because of the rural citizens are oblivious of the
e-governance initiatives which are yet to bring desired impact in the lives of these rural
citizens. Global “e-readiness” exercises to assess the ICT enabled capacities of countries and
the usage the infrastructure indicate this readiness as an important contributor. In India, this
readiness is gradually increasing. In Figure 1 other ICT indices which predominantly
influence Indian e-governance efforts are presented in global context. It reveals that ICT
infrastructure and individual’s orientation towards IT need more attention in order to
hasten the process of implementing e-governance systems in the country (Chan, (2005);

 User Interfaces

242

Converged services with local contents are critical contributors to a successful e-governance
initiative. In India, this is much more important since rural citizens need these services
under local conditions and on demand. This demands a suitable infrastructure with
adequate rural penetration (infrastructure readiness), government’s presence in the villages
in digital form with adequate reengineering (government readiness), decentralized
governance systems with adequate ICT support (political and regulatory readiness) and
networking of agencies (network readiness) to facilitate converge services. In all these areas
India needs improvement as per global standards.

3. Understanding Indian e-governance architecture
Choosing a good ICT driven architecture, identifying scalable components and managing a
sustainable relationship are basic tenets of ICT infrastructure set up and for understanding
its readiness. Successful architecture advocates for addressing “views”, “relationships” and
“growth” among various components (Mishra, (2009)); Garlan & Shaw, (1994)) to
meaningfully contribute to ICT enabled services without compromising desired services. E-
governance architectures are no exceptions since these are aimed at national level
encompassing a diverse pool of stakeholders. In India national e-governance architecture is
being planned with these objectives to formulate standards for e-governance initiatives
(Mishra & Hiremath, (2006)). “Common Service Centres” under the auspices of NeGP and
“Telecentres” with mandate of “Mission 2007” are critical attempts of government of India
to scale up e-governance project implementation strategy. Such national scale up strategy
bears relevance of an architectural treatment (Prabhu, (2004)).
In order to understand the rural e-governance architecture in India, two approaches are
considered important in this paper. The first one is the Architecture itself which is
essentially useful for understanding the services to be rendered to the stakeholders and the
second, the service grid that may be made available through 'back end' that can provide the
services 'on demand'. These two approaches aim to discuss the underpinnings of the
architectural issues for generating desired rural citizen centric services.
Most of the Indian e-governance services are now in the phases of consolidation and
gradually coming out of the 'incubation' period. 'Integration' of 'information and services
silos' are being networked through NeGP nationally. State data centres, national data
centres and other related backbone for 'back end' netwrok and grid are being installed.
Diverse platforms are extensively used for development of applications, services with focus
on local, regional and national languages. State level efforts are contributing to such
situations. Open standards along with web 2.0 technologies and grid computing
environment are being considered for implementation to enhance 'user services' (Prabhu,
(2007)). However, provisioning of user independence, usability of services and even
demanding the services are few challenges which have considerable impact on Indian e-
governance efforts. In the 'development' parlance, this is more critical due to the fact that
most of the 'users' belong to 'rural areas' and they lack basic infrastructure and facilities.
SOA based services therefore, are quite relevant in Indian context.
Service orientation is an essential component for Indian e-governance systems since 'desired
services' need to be provided to the citizens. As per NeGP, 'service grids' are being
developed through 'data centres' with an organised backbone. At this point of time,
aggregation of service requirements is more critical for the e-governance to generate a
broad-based pool. In Figure 2 a scenario of service orientation is presented. It is posited that

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

243

Fig. 2. Service Orientation Framework of Indian E-Governance System

citizens form the most critical element who are target recipients of services. In India, rural
citizens form a major stakeholder in the e-governance system and their acceptance of the e-
governance enable services would render the effort successful. As shown in (1) rural citizens
are vulnerably placed to project their demand on services and receive them. Therefore, the
architecture needs to capture their requirement appropriately. This is possible either
through individual citizen collaboration or through collectively held institutions as legally
framed through Indian governance systems. The later is quite strongly visible in the rural
areas who interface with citizen as representatives with government administration. These
bodies at local (panchayats, self help groups, micro finance institutions etc.), district (district
level PRI bodies, municipalities, corporations etc.), state (assembly) and central (parliament)
levels as shown in (2) are empowered to aggregate the demand and facilitate provisioning of
desired services. Even at individual level, right to information act (RTI Act) has been a
powerful instrument to raise demand on e-governance systems being developed. As shown
in (3), it is the government system who is the service provider to uphold governance system,
to implement the desired interface with citizens and provide services on demand. Therefore,
it is the responsibility of district, state and national government administration to
orchestrate the services and provide them to the citizens.
This is possible through a SOA based model which would enable service orientation
through citizen demands. Governance systems in India are organised at the grass root level
to capture these citizen service orientation. However, this is most difficult task since most of
the citizens reside in rural areas where 'digital divides' are quite strong (Heeks, 2003).
Aggregated service demanded are the inputs for the 'service provisioning agencies' in the
national network engaged for establishing the orchestrated link to manage the 'service
brokering' facility and supply the services. This provides a scope for the citizens to receive
the desired service through SOA based service model.

(1)

(2)

(3)

(Governance System)
National, State, Local

Bodies

Service Provisioning
Agencies

(Government System/
CBOs/

Private Agencies)

Citizens

Service

Compositions
(Aggregation of

Services)

Service
Orchestration/
Service Broker/

Cataloguing
(SUPPLY)

Service

Orientation
(DEMAND)

 User Interfaces

242

Converged services with local contents are critical contributors to a successful e-governance
initiative. In India, this is much more important since rural citizens need these services
under local conditions and on demand. This demands a suitable infrastructure with
adequate rural penetration (infrastructure readiness), government’s presence in the villages
in digital form with adequate reengineering (government readiness), decentralized
governance systems with adequate ICT support (political and regulatory readiness) and
networking of agencies (network readiness) to facilitate converge services. In all these areas
India needs improvement as per global standards.

3. Understanding Indian e-governance architecture
Choosing a good ICT driven architecture, identifying scalable components and managing a
sustainable relationship are basic tenets of ICT infrastructure set up and for understanding
its readiness. Successful architecture advocates for addressing “views”, “relationships” and
“growth” among various components (Mishra, (2009)); Garlan & Shaw, (1994)) to
meaningfully contribute to ICT enabled services without compromising desired services. E-
governance architectures are no exceptions since these are aimed at national level
encompassing a diverse pool of stakeholders. In India national e-governance architecture is
being planned with these objectives to formulate standards for e-governance initiatives
(Mishra & Hiremath, (2006)). “Common Service Centres” under the auspices of NeGP and
“Telecentres” with mandate of “Mission 2007” are critical attempts of government of India
to scale up e-governance project implementation strategy. Such national scale up strategy
bears relevance of an architectural treatment (Prabhu, (2004)).
In order to understand the rural e-governance architecture in India, two approaches are
considered important in this paper. The first one is the Architecture itself which is
essentially useful for understanding the services to be rendered to the stakeholders and the
second, the service grid that may be made available through 'back end' that can provide the
services 'on demand'. These two approaches aim to discuss the underpinnings of the
architectural issues for generating desired rural citizen centric services.
Most of the Indian e-governance services are now in the phases of consolidation and
gradually coming out of the 'incubation' period. 'Integration' of 'information and services
silos' are being networked through NeGP nationally. State data centres, national data
centres and other related backbone for 'back end' netwrok and grid are being installed.
Diverse platforms are extensively used for development of applications, services with focus
on local, regional and national languages. State level efforts are contributing to such
situations. Open standards along with web 2.0 technologies and grid computing
environment are being considered for implementation to enhance 'user services' (Prabhu,
(2007)). However, provisioning of user independence, usability of services and even
demanding the services are few challenges which have considerable impact on Indian e-
governance efforts. In the 'development' parlance, this is more critical due to the fact that
most of the 'users' belong to 'rural areas' and they lack basic infrastructure and facilities.
SOA based services therefore, are quite relevant in Indian context.
Service orientation is an essential component for Indian e-governance systems since 'desired
services' need to be provided to the citizens. As per NeGP, 'service grids' are being
developed through 'data centres' with an organised backbone. At this point of time,
aggregation of service requirements is more critical for the e-governance to generate a
broad-based pool. In Figure 2 a scenario of service orientation is presented. It is posited that

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

243

Fig. 2. Service Orientation Framework of Indian E-Governance System

citizens form the most critical element who are target recipients of services. In India, rural
citizens form a major stakeholder in the e-governance system and their acceptance of the e-
governance enable services would render the effort successful. As shown in (1) rural citizens
are vulnerably placed to project their demand on services and receive them. Therefore, the
architecture needs to capture their requirement appropriately. This is possible either
through individual citizen collaboration or through collectively held institutions as legally
framed through Indian governance systems. The later is quite strongly visible in the rural
areas who interface with citizen as representatives with government administration. These
bodies at local (panchayats, self help groups, micro finance institutions etc.), district (district
level PRI bodies, municipalities, corporations etc.), state (assembly) and central (parliament)
levels as shown in (2) are empowered to aggregate the demand and facilitate provisioning of
desired services. Even at individual level, right to information act (RTI Act) has been a
powerful instrument to raise demand on e-governance systems being developed. As shown
in (3), it is the government system who is the service provider to uphold governance system,
to implement the desired interface with citizens and provide services on demand. Therefore,
it is the responsibility of district, state and national government administration to
orchestrate the services and provide them to the citizens.
This is possible through a SOA based model which would enable service orientation
through citizen demands. Governance systems in India are organised at the grass root level
to capture these citizen service orientation. However, this is most difficult task since most of
the citizens reside in rural areas where 'digital divides' are quite strong (Heeks, 2003).
Aggregated service demanded are the inputs for the 'service provisioning agencies' in the
national network engaged for establishing the orchestrated link to manage the 'service
brokering' facility and supply the services. This provides a scope for the citizens to receive
the desired service through SOA based service model.

(1)

(2)

(3)

(Governance System)
National, State, Local

Bodies

Service Provisioning
Agencies

(Government System/
CBOs/

Private Agencies)

Citizens

Service

Compositions
(Aggregation of

Services)

Service
Orchestration/
Service Broker/

Cataloguing
(SUPPLY)

Service

Orientation
(DEMAND)

 User Interfaces

244

3.1 SOA principles and E-governance strategy
SOA principles draw strength from the benefits of well practiced architectures in software
engineering discipline like client-server, distributed (including component object
(COM)/distributed component object (DCOM) and Object-Oriented) architecture. SOA
principles work closely with applications and enterprise with 'service-orientation', 'services'
and ‘service-oriented solution logics’ (Erl, 2008). SOA promotes loosely coupled services
which could be independent from each other, but are related in certain way to accomplish
common tasks. SOA also encourages process orientation and includes organization and
technology seamlessly. Analogous to business paradigm, where SOA principles have
provided the intended impetus to reusability and productivity (Ravichandra et al., (2007)) e-
governance oriented information systems demand intensive deployment and use of
information technology (IT). Thus e-governance systems need agility, innovation and
adaptable service oriented architectures which SOA could provide. SOA however,
represents a paradigm shift at the architectural level to tackle integration requirements. E-
governance services require such treatment at all levels of deployment of infrastructure and
other resources.
E-governance services are mostly regarded as 'enterprise' level services since it includes
various 'stakeholders' in the process. Major stakeholders are 'citizens', 'government
agencies', 'communities' and 'service provisioning agencies'. SOA based models help
revolutionalise enterprise environment by leveraging web services technologies. 'IT-enabled
service-orientation' provides the right impetus for a good architecure which can be possible
through the SOA. Web-services driven SOA is fast gaining its status against traditional
'distributed architecure' environment. SOA builds on the strengths of 'application
architecure' and 'enterprise architecure' and therefore, has potential to manage e-governance
projects. Application architecures have evolved in Indian states disjointly and there are a
mumber of mission mode projects evolving for scale up. This scale up exercise entails
federating the application architecures and their 'reuse'. Enterprise driven solutions are part
of the mission mode projects which aim at having 'national reach' and providing distributed
environment for the services to reach the citizens. Indian citizens have varied demands with
strong rurla-urban disparities and yet having a huge potential to have converged and
unified services across the nation. This leads to an 'environment' conducive for encouraging
individual 'service orientation' while providing 'standardised services' nationally. Indian
villages cover large population to ignore and demands of this population vary depending
on local, hosuhold and individual priorities, market conditions and national policies. In
enterprise driven IT solutions like enterprise resource planning (ERP), SOA principles have
helped in provided service orientation through which IT and organizations are finely
blended. Despite rising complexities due to SOA applications, benefits are quite substantial
in terms of integration, reusability and user orientation and SOA oriented solutions have
provided effective support for business-process driven alignment. E-governance systems
look for these strengths since the back end services need all these properties for an effective
e-government service orientation. Besides, studies show that principles of “transaction cost
theory” and “agency theory” which are well supported by conventional ERP based
information systems have derived better results through SOA orientation in terms of their
characteristics related to “specificity”, “uncertainty”, “strategic importance” and
“frequency” (Bocke et al., 2009). All these attributes and principles of economic theories
discussed above are foundations of e-governance information systems and therefore, there
is a scope to induct SOA principles in those systems.

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

245

In order to formulate a strategy to have SOA oriented e-governance services, it is essential to
study the concept of SOA. SOA is expected to provide 'universal service identifier' in the
system so that desired service can be identified 'on demand' with least transaction time,
transaction cost and independent of spatial constraints. Universal service identifier is
expected to coordinate with service broker with service descriptions so as to mine the
desired service from the warehouse. A typical architecure is presented in Figure 3.

Fig. 3. Conceptual Model of SOA (Arsanjani, 2004)

In Figure 3 the concept behind SOA describes the service orientation and relationship of
various stakeholders who collaborate, orchestrate and provide services as desired. But an
enterprise level SOA needs an elaborate treatment for collating all possible services with
best practices, interaction among components and relationships. In order to capture the
underpinnings of SOA architecture for detailed abstraction seven layers are presented and
discussed in Figure 4 below.

Fig. 4. Abstracted SOA (Arsanjani, 2004)

 User Interfaces

244

3.1 SOA principles and E-governance strategy
SOA principles draw strength from the benefits of well practiced architectures in software
engineering discipline like client-server, distributed (including component object
(COM)/distributed component object (DCOM) and Object-Oriented) architecture. SOA
principles work closely with applications and enterprise with 'service-orientation', 'services'
and ‘service-oriented solution logics’ (Erl, 2008). SOA promotes loosely coupled services
which could be independent from each other, but are related in certain way to accomplish
common tasks. SOA also encourages process orientation and includes organization and
technology seamlessly. Analogous to business paradigm, where SOA principles have
provided the intended impetus to reusability and productivity (Ravichandra et al., (2007)) e-
governance oriented information systems demand intensive deployment and use of
information technology (IT). Thus e-governance systems need agility, innovation and
adaptable service oriented architectures which SOA could provide. SOA however,
represents a paradigm shift at the architectural level to tackle integration requirements. E-
governance services require such treatment at all levels of deployment of infrastructure and
other resources.
E-governance services are mostly regarded as 'enterprise' level services since it includes
various 'stakeholders' in the process. Major stakeholders are 'citizens', 'government
agencies', 'communities' and 'service provisioning agencies'. SOA based models help
revolutionalise enterprise environment by leveraging web services technologies. 'IT-enabled
service-orientation' provides the right impetus for a good architecure which can be possible
through the SOA. Web-services driven SOA is fast gaining its status against traditional
'distributed architecure' environment. SOA builds on the strengths of 'application
architecure' and 'enterprise architecure' and therefore, has potential to manage e-governance
projects. Application architecures have evolved in Indian states disjointly and there are a
mumber of mission mode projects evolving for scale up. This scale up exercise entails
federating the application architecures and their 'reuse'. Enterprise driven solutions are part
of the mission mode projects which aim at having 'national reach' and providing distributed
environment for the services to reach the citizens. Indian citizens have varied demands with
strong rurla-urban disparities and yet having a huge potential to have converged and
unified services across the nation. This leads to an 'environment' conducive for encouraging
individual 'service orientation' while providing 'standardised services' nationally. Indian
villages cover large population to ignore and demands of this population vary depending
on local, hosuhold and individual priorities, market conditions and national policies. In
enterprise driven IT solutions like enterprise resource planning (ERP), SOA principles have
helped in provided service orientation through which IT and organizations are finely
blended. Despite rising complexities due to SOA applications, benefits are quite substantial
in terms of integration, reusability and user orientation and SOA oriented solutions have
provided effective support for business-process driven alignment. E-governance systems
look for these strengths since the back end services need all these properties for an effective
e-government service orientation. Besides, studies show that principles of “transaction cost
theory” and “agency theory” which are well supported by conventional ERP based
information systems have derived better results through SOA orientation in terms of their
characteristics related to “specificity”, “uncertainty”, “strategic importance” and
“frequency” (Bocke et al., 2009). All these attributes and principles of economic theories
discussed above are foundations of e-governance information systems and therefore, there
is a scope to induct SOA principles in those systems.

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

245

In order to formulate a strategy to have SOA oriented e-governance services, it is essential to
study the concept of SOA. SOA is expected to provide 'universal service identifier' in the
system so that desired service can be identified 'on demand' with least transaction time,
transaction cost and independent of spatial constraints. Universal service identifier is
expected to coordinate with service broker with service descriptions so as to mine the
desired service from the warehouse. A typical architecure is presented in Figure 3.

Fig. 3. Conceptual Model of SOA (Arsanjani, 2004)

In Figure 3 the concept behind SOA describes the service orientation and relationship of
various stakeholders who collaborate, orchestrate and provide services as desired. But an
enterprise level SOA needs an elaborate treatment for collating all possible services with
best practices, interaction among components and relationships. In order to capture the
underpinnings of SOA architecture for detailed abstraction seven layers are presented and
discussed in Figure 4 below.

Fig. 4. Abstracted SOA (Arsanjani, 2004)

 User Interfaces

246

Each of the seven layers is numbered and discussed with reference to Indian e-Governance
SOA model. In Figure 3, it is suggested that each layer in SOA model, specific tasks are to be
carried out with clear delivery mechanisms. Each layer should also relate to the other as per
the demand of the enterprise in order to meet the overall objectives of the services rendered
(Erl, 2008). In this model quality of service, monitoring of services and establishing security
standards for citizen transactions are the most important contributors to maintain trust,
transparency and inter-operability which major deliverables of Indian e-governance systems
(Stayanaryana, 2004) .

4. Proposed architecture
As explained in section three, various service components of SOA can contribute to the
Indian e-governance system in order to provided desired services. The components are
'citizen demand on services', 'service on demand aggregation', 'service-on-supply
aggregation', 'service orchestrators' and 'service providers'. A seamless integration of all the
services and service provisioning components need to collaborate effectively to focus on
citizen centric services. Besides, capabilities of SOA can also be harnessed for garnering all
the benefits that e-government systems could provide through effective integration of
backend services networked nationally in a unified way.
In Table 1 below, the proposed deliveries of SOA based e-governance systems are discussed
based on its layers. These layers are ‘operational systems’, ‘enterprise component’, ‘services’,
‘business process composition’, ‘access’, ‘integration’ and ‘quality of services’ as explained
in Figure 3 in section three. Operating system is a major layer in governance architecture
which provides the base for establishment of systems, procedures and interaction principles
among all the stakeholders to derive the desired services targeted for overall development
of the society. This layer therefore, demands IT orientation for better ambience for
orchestration among all the stakeholders, and establishment of service brokerage. In layer
two, enterprise component is established to extend support to the service provisioning. This
is a critical layer which accounts for establishment of ‘on demand’ service portfolios,
provisioning of infrastructure and their maintenance. SOA principles look for loosely
coupled components in this layer so as to make them convenient for creation, deployment
and use. Layer three is focussed on identification of services, their points of generation and
aggregation of these services through layer two. Layer four calls for an integrated
environment in which all service provisioning agencies collaborate to capture services
demanded, analyze them and provide value added services through continued innovation.
Layer five is the access layer in which citizens are expected to gain access to the desired
services. This establishes user component based on user centred design principles and calls
for greater usability of the user driven application interfaces. In layer six, integration
services, components and user interfaces is managed for converged services which is
reflected in layer seven through management of quality principles.
In Table 1 below, a SOA model is presented with specific contribution to e-governance
scenario which could be mapped to Indian context. In the proposed model four layers of
SOA architecture are presented with a view to contribute to a good SOA architecture as
discussed in Figure 3. In Table 2 these layers are discussed. This simplification is done in
order to apply the e-governance framework presented in Figure 2 which is represented in
Figure 3 through UML.
The first layer (SOA-I) stage considers elicitation of 'citizen demand'. It is an independent
activity in the SOA since citizens may any type of services and these services may be specific

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

247

Layer Layer
Description Rationale E-Governance

(Indian Context)

SOA
Component

Proposed

1 Operational
Systems

Legacy Systems,
Business
Intelligence of
enterprise

Legacy systems have
evolved for e-
government systems as
backend services. E-
governance pilot
projects are emerging
in isolation and there is
effort to identify,
design and implement
National Mission mode
Projects.

Service
Provisioning
(Service
Brokerage and
Service
Orchestration)

2 Enterprise
Component

Maintain Quality
of Services;
Organize Service
Level Agreements

State Data Centres,
National Data Centres,
Identification of Service
Providers are in the
agenda

Services
Composition,
Loosely
Coupled

3 Services Business
Processes,
Interfaces and
Orchestration

State level Grids,
Connectivity to Citizen
services and Interfaces
with Citizens

Service
Providers
(Service
Composition,
Aggregation,
Orchestration)

4 Business
Process
Composition

Choreography,
Business
Integration

Government services
and business services to
converge; Government
and Business process
Re-engineering

Service
Orchestration
(Supply)

5 Access User Interfaces Citizen Interfaces Services
(Demand)

6 Integration Intelligent
interfaces,
protocol
mediation

Location specific
contents

Services
Composition,
Services
Composition
and
Choreopgraphy

7 Quality of
Services

Monitor, Manage
and maintain
quality of service

e-governance standards
at national government
level, interoperability
protocols

Service
orchestration

Table 1. Probable SOA based Deliveries

 User Interfaces

246

Each of the seven layers is numbered and discussed with reference to Indian e-Governance
SOA model. In Figure 3, it is suggested that each layer in SOA model, specific tasks are to be
carried out with clear delivery mechanisms. Each layer should also relate to the other as per
the demand of the enterprise in order to meet the overall objectives of the services rendered
(Erl, 2008). In this model quality of service, monitoring of services and establishing security
standards for citizen transactions are the most important contributors to maintain trust,
transparency and inter-operability which major deliverables of Indian e-governance systems
(Stayanaryana, 2004) .

4. Proposed architecture
As explained in section three, various service components of SOA can contribute to the
Indian e-governance system in order to provided desired services. The components are
'citizen demand on services', 'service on demand aggregation', 'service-on-supply
aggregation', 'service orchestrators' and 'service providers'. A seamless integration of all the
services and service provisioning components need to collaborate effectively to focus on
citizen centric services. Besides, capabilities of SOA can also be harnessed for garnering all
the benefits that e-government systems could provide through effective integration of
backend services networked nationally in a unified way.
In Table 1 below, the proposed deliveries of SOA based e-governance systems are discussed
based on its layers. These layers are ‘operational systems’, ‘enterprise component’, ‘services’,
‘business process composition’, ‘access’, ‘integration’ and ‘quality of services’ as explained
in Figure 3 in section three. Operating system is a major layer in governance architecture
which provides the base for establishment of systems, procedures and interaction principles
among all the stakeholders to derive the desired services targeted for overall development
of the society. This layer therefore, demands IT orientation for better ambience for
orchestration among all the stakeholders, and establishment of service brokerage. In layer
two, enterprise component is established to extend support to the service provisioning. This
is a critical layer which accounts for establishment of ‘on demand’ service portfolios,
provisioning of infrastructure and their maintenance. SOA principles look for loosely
coupled components in this layer so as to make them convenient for creation, deployment
and use. Layer three is focussed on identification of services, their points of generation and
aggregation of these services through layer two. Layer four calls for an integrated
environment in which all service provisioning agencies collaborate to capture services
demanded, analyze them and provide value added services through continued innovation.
Layer five is the access layer in which citizens are expected to gain access to the desired
services. This establishes user component based on user centred design principles and calls
for greater usability of the user driven application interfaces. In layer six, integration
services, components and user interfaces is managed for converged services which is
reflected in layer seven through management of quality principles.
In Table 1 below, a SOA model is presented with specific contribution to e-governance
scenario which could be mapped to Indian context. In the proposed model four layers of
SOA architecture are presented with a view to contribute to a good SOA architecture as
discussed in Figure 3. In Table 2 these layers are discussed. This simplification is done in
order to apply the e-governance framework presented in Figure 2 which is represented in
Figure 3 through UML.
The first layer (SOA-I) stage considers elicitation of 'citizen demand'. It is an independent
activity in the SOA since citizens may any type of services and these services may be specific

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

247

Layer Layer
Description Rationale E-Governance

(Indian Context)

SOA
Component

Proposed

1 Operational
Systems

Legacy Systems,
Business
Intelligence of
enterprise

Legacy systems have
evolved for e-
government systems as
backend services. E-
governance pilot
projects are emerging
in isolation and there is
effort to identify,
design and implement
National Mission mode
Projects.

Service
Provisioning
(Service
Brokerage and
Service
Orchestration)

2 Enterprise
Component

Maintain Quality
of Services;
Organize Service
Level Agreements

State Data Centres,
National Data Centres,
Identification of Service
Providers are in the
agenda

Services
Composition,
Loosely
Coupled

3 Services Business
Processes,
Interfaces and
Orchestration

State level Grids,
Connectivity to Citizen
services and Interfaces
with Citizens

Service
Providers
(Service
Composition,
Aggregation,
Orchestration)

4 Business
Process
Composition

Choreography,
Business
Integration

Government services
and business services to
converge; Government
and Business process
Re-engineering

Service
Orchestration
(Supply)

5 Access User Interfaces Citizen Interfaces Services
(Demand)

6 Integration Intelligent
interfaces,
protocol
mediation

Location specific
contents

Services
Composition,
Services
Composition
and
Choreopgraphy

7 Quality of
Services

Monitor, Manage
and maintain
quality of service

e-governance standards
at national government
level, interoperability
protocols

Service
orchestration

Table 1. Probable SOA based Deliveries

 User Interfaces

248

Layer Description SOA Component Proposed
SOA-I Service Demand
SOA-II Service Aggregation, Orientation
SOA-III Service Orchestration
SOA-IV Service Agency Collaboration

Table 2. layers Proposed

to local conditions. In second layer (SOA-II), demands are aggregated, composed and
service-orientation is done through an agency at the local level. This layer in turn is expected
to 'orchestrate' with layer-III (SOA-III) which carries all the 'services' available through
service providers. Layer-III, all the 'service providers' and 'services' are orchestrated. In layer
IV (SOA-IV), 'service agencies' are collaborated and in Indian context these are ‘national
government', 'state government' and 'NGO'. There are other service providers like corporate
agencies and social trusts engaged and can be added to the process of aggregation.
The proposed model is sequenced and presented in Figure 5 through UML principles. UML
provides a scope to generate solutions through business process modelling. E-governance
processes provide such opportunities since these services are mostly component based and
can be brokered through component objects. The UML generated model depicts the

Fig. 5. Proposed SOA e-Governance Model (UML Based)

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

249

explanations made in section three through Figure 2. This model posits that SOA-I would
capture demand of services raised either individually or collectively. It would take care of
the point of raising demand on services, the latency and appropriateness. This “point of
service (POS)” will generally be backed by appropriate technology to manage mode,
medium and frequency, service components to be pulled by appropriate component
technologies. In SOA-II, these services are collated for better management of information
systems. This layer also manages the service provisioning agencies which could be called for
active collaboration on demand. It provides the facility to add citizen demand as well. SOA-
III generates the platform for addition of service providers and their services for
orchestration. It relates to maintenance of databases for services, service providers related to
government and non-government systems, business houses and entrepreneurs. This is
mainly related to ‘orchestration’. SOA-IV establishes the need for backend ‘service-oriented
bus’ which would ensure detailed mapping of agencies their profiling, establishment of
adequate infrastructure, computing grids and application layers for providing services as
desired. Unified service provisioning facilities are created through this layer. This model
attempts to provide cyclic treatment to “service demands” and “service supplies” which
would provide the right input to the intermediary agencies to collaborate, orchestrate and
add value to the services being generated.
It may be noted here that Indian democracy provides limited autonomy to states which take
part in the governance systems with relation to the state boundaries. State legislations are part
of the state administration whereas the national level governance looks after central
governance issues. Therefore, e-governance projects reflect traces of such dual administrative
structure. In other words, there are concurrent attempts to provision citizen centric services
taken by central and state authorities. Of late, central administration has deployed mission
mode projects with states collaborating as part of NeGP (Chandrashekhar, 2006). NeGP also
mandates for public-private-participation (PPP) based services for the citizens. Therefore,
convergence of services is of prime importance so as to provide commercial approach to the
services and establish sustainable and remunerative information service provisioning.

5. Discussion of two cases
In this section two cases from India are presented and assessed through the model discussed
in section three in Figure 4. This assessment provides insights to the SOA based approach to
e-governance systems and their prospects to serve the citizens.

5.1 Case of national E-governance plan
National e-Governance Plan (NeGP) is getting implemented through 100,000 common
service centres (CSC) in India (Misra, 2009). The entire project is being based on
“Entrepreneurship Model” in which six villages would be covered by one CSC.
It is envisaged that the information backbone would extend services to these CSCs. The
vision states “Make all Government services accessible to the common man in his locality,
through common service delivery outlets and ensure efficiency, transparency & reliability of
such services at affordable costs to realize the basic needs of the common man” (Misra,
2009). It considers “state level and national level mission mode projects” as critical success
factors for the plan. In Figure 6 the approach of NeGP suggests an integrated environment
and therefore, calls for a robust architecture.
NeGP infrastructure includes state level data centres, state wide area networks, and considers
integration among various ICT enabled services. The Status of NeGP implementation

 User Interfaces

248

Layer Description SOA Component Proposed
SOA-I Service Demand
SOA-II Service Aggregation, Orientation
SOA-III Service Orchestration
SOA-IV Service Agency Collaboration

Table 2. layers Proposed

to local conditions. In second layer (SOA-II), demands are aggregated, composed and
service-orientation is done through an agency at the local level. This layer in turn is expected
to 'orchestrate' with layer-III (SOA-III) which carries all the 'services' available through
service providers. Layer-III, all the 'service providers' and 'services' are orchestrated. In layer
IV (SOA-IV), 'service agencies' are collaborated and in Indian context these are ‘national
government', 'state government' and 'NGO'. There are other service providers like corporate
agencies and social trusts engaged and can be added to the process of aggregation.
The proposed model is sequenced and presented in Figure 5 through UML principles. UML
provides a scope to generate solutions through business process modelling. E-governance
processes provide such opportunities since these services are mostly component based and
can be brokered through component objects. The UML generated model depicts the

Fig. 5. Proposed SOA e-Governance Model (UML Based)

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

249

explanations made in section three through Figure 2. This model posits that SOA-I would
capture demand of services raised either individually or collectively. It would take care of
the point of raising demand on services, the latency and appropriateness. This “point of
service (POS)” will generally be backed by appropriate technology to manage mode,
medium and frequency, service components to be pulled by appropriate component
technologies. In SOA-II, these services are collated for better management of information
systems. This layer also manages the service provisioning agencies which could be called for
active collaboration on demand. It provides the facility to add citizen demand as well. SOA-
III generates the platform for addition of service providers and their services for
orchestration. It relates to maintenance of databases for services, service providers related to
government and non-government systems, business houses and entrepreneurs. This is
mainly related to ‘orchestration’. SOA-IV establishes the need for backend ‘service-oriented
bus’ which would ensure detailed mapping of agencies their profiling, establishment of
adequate infrastructure, computing grids and application layers for providing services as
desired. Unified service provisioning facilities are created through this layer. This model
attempts to provide cyclic treatment to “service demands” and “service supplies” which
would provide the right input to the intermediary agencies to collaborate, orchestrate and
add value to the services being generated.
It may be noted here that Indian democracy provides limited autonomy to states which take
part in the governance systems with relation to the state boundaries. State legislations are part
of the state administration whereas the national level governance looks after central
governance issues. Therefore, e-governance projects reflect traces of such dual administrative
structure. In other words, there are concurrent attempts to provision citizen centric services
taken by central and state authorities. Of late, central administration has deployed mission
mode projects with states collaborating as part of NeGP (Chandrashekhar, 2006). NeGP also
mandates for public-private-participation (PPP) based services for the citizens. Therefore,
convergence of services is of prime importance so as to provide commercial approach to the
services and establish sustainable and remunerative information service provisioning.

5. Discussion of two cases
In this section two cases from India are presented and assessed through the model discussed
in section three in Figure 4. This assessment provides insights to the SOA based approach to
e-governance systems and their prospects to serve the citizens.

5.1 Case of national E-governance plan
National e-Governance Plan (NeGP) is getting implemented through 100,000 common
service centres (CSC) in India (Misra, 2009). The entire project is being based on
“Entrepreneurship Model” in which six villages would be covered by one CSC.
It is envisaged that the information backbone would extend services to these CSCs. The
vision states “Make all Government services accessible to the common man in his locality,
through common service delivery outlets and ensure efficiency, transparency & reliability of
such services at affordable costs to realize the basic needs of the common man” (Misra,
2009). It considers “state level and national level mission mode projects” as critical success
factors for the plan. In Figure 6 the approach of NeGP suggests an integrated environment
and therefore, calls for a robust architecture.
NeGP infrastructure includes state level data centres, state wide area networks, and considers
integration among various ICT enabled services. The Status of NeGP implementation

 User Interfaces

250

Fig. 6. CSC Implementation Approach (Mishra, 2007; EGovOnline, 2009)

programme is presented in figure 7 and Figure 8. As regards service oriented contents, NeGP
recognises the scope for large-scale implementation of application under mission mode
projects (MMPs) with emphasis on integrated services. Under NeGP, national level MMPs and
state level MMPs are identified for implementation on scale-up mode as presented in Figure 7.
Every interested state government is now under a state wide area network (SWAN). Each
state is now in the process of having state data centres under the NeGP policy. This
endeavour is part of state readiness exercise which is adapted mostly from the global
information technology report framework published annually by the World Economic
Forum. This assessment commencing in 2003 has provided insight to the performance of
states which are placed in six categories: Least Achievers (L1), Below Average Achievers
(L2), Average Achievers (L3), Expectants (L4), Aspiring Leaders (L5), and Leaders (L6). The
latest rankings of the participating states are given in Figure 8.

5.2 Case of E-Gram1
E-Gram is a state level e-governance project initiated by state authorities in one of the states
in India. The state has commissioned the project to provide services to citizens which
include issuing of documents and certificates, application forms for various development
and welfare schemes (like record of rights (land records), property registration, vehicle
registration, driving license, health care, employment registration and passport). Commercial
services include market rates, and distance learning opportunities. It has also helped 10,000
rural entrepreneurs in managing these e-gram centres on commission/incentive/salary basis.
Gram Panchayats2 are empowered to manage the infrastructure deployed. Gram Panchayat
can further offer services like; VSAT communication technology based broadband

1 'Gram' is a word in Indian Language and english version is 'Village'
2 'Panchayat' is local body which administratively empowered by Government of India as
per PRI Act

SOA-III

SOA-IV

SOA-I, II

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

251

Fig. 7. Status of NeGP

Fig. 8. Status of NeGP driven Projects. Source: www.mit.gov.in, accessed on 5 March, 2009

 User Interfaces

250

Fig. 6. CSC Implementation Approach (Mishra, 2007; EGovOnline, 2009)

programme is presented in figure 7 and Figure 8. As regards service oriented contents, NeGP
recognises the scope for large-scale implementation of application under mission mode
projects (MMPs) with emphasis on integrated services. Under NeGP, national level MMPs and
state level MMPs are identified for implementation on scale-up mode as presented in Figure 7.
Every interested state government is now under a state wide area network (SWAN). Each
state is now in the process of having state data centres under the NeGP policy. This
endeavour is part of state readiness exercise which is adapted mostly from the global
information technology report framework published annually by the World Economic
Forum. This assessment commencing in 2003 has provided insight to the performance of
states which are placed in six categories: Least Achievers (L1), Below Average Achievers
(L2), Average Achievers (L3), Expectants (L4), Aspiring Leaders (L5), and Leaders (L6). The
latest rankings of the participating states are given in Figure 8.

5.2 Case of E-Gram1
E-Gram is a state level e-governance project initiated by state authorities in one of the states
in India. The state has commissioned the project to provide services to citizens which
include issuing of documents and certificates, application forms for various development
and welfare schemes (like record of rights (land records), property registration, vehicle
registration, driving license, health care, employment registration and passport). Commercial
services include market rates, and distance learning opportunities. It has also helped 10,000
rural entrepreneurs in managing these e-gram centres on commission/incentive/salary basis.
Gram Panchayats2 are empowered to manage the infrastructure deployed. Gram Panchayat
can further offer services like; VSAT communication technology based broadband

1 'Gram' is a word in Indian Language and english version is 'Village'
2 'Panchayat' is local body which administratively empowered by Government of India as
per PRI Act

SOA-III

SOA-IV

SOA-I, II

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

251

Fig. 7. Status of NeGP

Fig. 8. Status of NeGP driven Projects. Source: www.mit.gov.in, accessed on 5 March, 2009

 User Interfaces

252

connectivity; free of cost communication between panchayats; common service centre facility
for the villagers. Villagers can also take advantage of internet and cyber services through the
establishment of these e-Gram services. This e- Gram would gradually also take other services
under its ambit, like electricity and telephone bills, visa, e-Postal services. The technology
partners involved in this e-Gram project are Airtel, Gilat, Cisco, IBM, Prodelin and Nokia
Siemens Networks. E-Gram covers all 13,693 panchayats of the state (egovIndia, (2009)).

5.3 Case analysis
Two cases discussed in section 5.2 provide an insight to e-government scenarios in India. In
the case of NeGP, a national level project covering all the willing states is driven by policy
on e-governance. This project having a 'top-driven agenda' intends to deploy mission mode
projects covering the entire nation. The next case on e-gram, a state sponsored project

Layer

Layer
Description

SOA
Component

Proposed

Case
(NeGP)

Case
(E-Gram)

1 Operational
Systems

II,III Available through
Mission Mode
Application Software
(strong for SOA)

Disjoint Application
(Weak in SOA)

2 Enterprise
Component

IV Available through
Mission Mode
Application Software
(Strong in SOA)

Service Composition is
localised to state
government
(Weak in SOA)

3 Services IV Common Service
Centres are on
entrepreneurship
model. So, multiple
services are available
(Strong in SOA)

E-Gram is state
sponsored. Panchayat
is empowered to take
decisions on
management, not
services
(Weak in SOA)

4 Business
Process
Composition

III Citizens are not
included in planning
(Weak in SOA)

Citizens are not
included in planning
(Weak in SOA)

5 Access I,II Access point is near to
village.
(Strong in SOA)

E-Gram is in Local
Language and in the
panchayat. (Strong in
SOA)

6 Integration III Services of State
Agencies and National
Network do not
converge
(Weak in SOA)

Services of State
Agencies and National
Network do not
converge
(Weak in SOA)

7 Quality of
Services

I Broad based Citizen
Demand is not planned
and captured.
(Weak in SOA)

Broad based Citizen
Demand is not planned
and captured.
(Weak in SOA)

Table 3. Case Analyses

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

253

provides similar services to the citizens through panchayats and in addition, it extends state
services which are otherwise not under the purview of national network under NeGP. The
backend services are mostly driven from the state data centres and a backbone network
funded through a NeGP. As per SOA model described in section 4 a comparative analyses
of both the cases are presented for appreciation. In Table 3 the analyses are discussed.

6. Conclusion
NeGP in India is policy driven project with an aim to spread ICT infrastructure in rural
areas, provide converged services to rural citizens and establish the backend data centres to
establish the linkage between governance systems. E-Gram initiative, in contrast, is a state
sponsored service. SOA architecture based treatment to NeGP and e-Gram services reveal
that there is a need to carefully conceptualize and to incorporate all the characteristics of
SOA in order to provide citizen centric services. It is far more important that countries like
India need to carefully articulate services with active collaboration of the citizens in order to
provide good governance systems. In Table 2 it is discussed and noted that both the e-
governance projects having sponsorship from national and state governments respectively,
these projects lack effort in 'orchestrating', ''composing', 'choreographing', and making the
services 'demand driven' from the view points of the citizens. SOA approaches provide a
comprehensive view to such projects and provide the necessary tools and appropriate
internet technologies to conceptualise, design, develop and implement e-governance
services. This paper is carved out of an initial research work done in the areas of SOA for e-
governance projects and there is a plan to take the research forward to implement SOA
driven software engineering principles and evaluate e-governance efforts in India.

7. References
Arsanjani, Ali, (2004), Service Oriented Modeling and Architecture, Web Service Centre of

Excellence, IBM
Asian Development Bank (2008), Strategy 2020, The Long-Term Strategic Framework of the

Asian Development Bank, 2008–2020, ISBN 978-971-561-680-5.
Benamou, N. (2006) Bringing e-Government Interoperability to Local Governments in

Europe, egovInterop'06 Conference, Bordeaux, France.
Brocke, Jan Vom, Schenk, Bernd and Sonnenberg, Christian, (2009), Classification Criteria

for Governing the Implementation Process of Service-Oriented ERP Systems – An
Analysis Based on New Institutional Economics, Americas Conference on
Information Systems(AMCIS 2009); Http://aisel.aisnet.org/amcis2009/316
accessed on 23.10.2009.

C S R Prabhu, (2007), Towards an E-Governance Grid for India (E-CGI): An Architectural
Framework for Citizen Service Delivery, International Conference of E-Governance
(ICEG 2007), Hyderabad, 29-30 December.

Chandrashekhar, R., (2006), Common Services Centres: A Strategic Cornerstone of NeGP,
Workshop on Knowledge Centre Initiatives, Jaipur, April, 19.

Dutta, Soumitra, Lanvin Bruno and Paua, Fiona, (2008), The Global Information Technology
Report, INSEAD, New York, Oxford University Press.

Egovonline,(2009), http://www.egovonline.net/news/news-details.asp?News=Gujarat-
Launches-e-Gram-Project&NewsID=15781, accessed on 27.02.2009

 User Interfaces

252

connectivity; free of cost communication between panchayats; common service centre facility
for the villagers. Villagers can also take advantage of internet and cyber services through the
establishment of these e-Gram services. This e- Gram would gradually also take other services
under its ambit, like electricity and telephone bills, visa, e-Postal services. The technology
partners involved in this e-Gram project are Airtel, Gilat, Cisco, IBM, Prodelin and Nokia
Siemens Networks. E-Gram covers all 13,693 panchayats of the state (egovIndia, (2009)).

5.3 Case analysis
Two cases discussed in section 5.2 provide an insight to e-government scenarios in India. In
the case of NeGP, a national level project covering all the willing states is driven by policy
on e-governance. This project having a 'top-driven agenda' intends to deploy mission mode
projects covering the entire nation. The next case on e-gram, a state sponsored project

Layer

Layer
Description

SOA
Component

Proposed

Case
(NeGP)

Case
(E-Gram)

1 Operational
Systems

II,III Available through
Mission Mode
Application Software
(strong for SOA)

Disjoint Application
(Weak in SOA)

2 Enterprise
Component

IV Available through
Mission Mode
Application Software
(Strong in SOA)

Service Composition is
localised to state
government
(Weak in SOA)

3 Services IV Common Service
Centres are on
entrepreneurship
model. So, multiple
services are available
(Strong in SOA)

E-Gram is state
sponsored. Panchayat
is empowered to take
decisions on
management, not
services
(Weak in SOA)

4 Business
Process
Composition

III Citizens are not
included in planning
(Weak in SOA)

Citizens are not
included in planning
(Weak in SOA)

5 Access I,II Access point is near to
village.
(Strong in SOA)

E-Gram is in Local
Language and in the
panchayat. (Strong in
SOA)

6 Integration III Services of State
Agencies and National
Network do not
converge
(Weak in SOA)

Services of State
Agencies and National
Network do not
converge
(Weak in SOA)

7 Quality of
Services

I Broad based Citizen
Demand is not planned
and captured.
(Weak in SOA)

Broad based Citizen
Demand is not planned
and captured.
(Weak in SOA)

Table 3. Case Analyses

Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study

253

provides similar services to the citizens through panchayats and in addition, it extends state
services which are otherwise not under the purview of national network under NeGP. The
backend services are mostly driven from the state data centres and a backbone network
funded through a NeGP. As per SOA model described in section 4 a comparative analyses
of both the cases are presented for appreciation. In Table 3 the analyses are discussed.

6. Conclusion
NeGP in India is policy driven project with an aim to spread ICT infrastructure in rural
areas, provide converged services to rural citizens and establish the backend data centres to
establish the linkage between governance systems. E-Gram initiative, in contrast, is a state
sponsored service. SOA architecture based treatment to NeGP and e-Gram services reveal
that there is a need to carefully conceptualize and to incorporate all the characteristics of
SOA in order to provide citizen centric services. It is far more important that countries like
India need to carefully articulate services with active collaboration of the citizens in order to
provide good governance systems. In Table 2 it is discussed and noted that both the e-
governance projects having sponsorship from national and state governments respectively,
these projects lack effort in 'orchestrating', ''composing', 'choreographing', and making the
services 'demand driven' from the view points of the citizens. SOA approaches provide a
comprehensive view to such projects and provide the necessary tools and appropriate
internet technologies to conceptualise, design, develop and implement e-governance
services. This paper is carved out of an initial research work done in the areas of SOA for e-
governance projects and there is a plan to take the research forward to implement SOA
driven software engineering principles and evaluate e-governance efforts in India.

7. References
Arsanjani, Ali, (2004), Service Oriented Modeling and Architecture, Web Service Centre of

Excellence, IBM
Asian Development Bank (2008), Strategy 2020, The Long-Term Strategic Framework of the

Asian Development Bank, 2008–2020, ISBN 978-971-561-680-5.
Benamou, N. (2006) Bringing e-Government Interoperability to Local Governments in

Europe, egovInterop'06 Conference, Bordeaux, France.
Brocke, Jan Vom, Schenk, Bernd and Sonnenberg, Christian, (2009), Classification Criteria

for Governing the Implementation Process of Service-Oriented ERP Systems – An
Analysis Based on New Institutional Economics, Americas Conference on
Information Systems(AMCIS 2009); Http://aisel.aisnet.org/amcis2009/316
accessed on 23.10.2009.

C S R Prabhu, (2007), Towards an E-Governance Grid for India (E-CGI): An Architectural
Framework for Citizen Service Delivery, International Conference of E-Governance
(ICEG 2007), Hyderabad, 29-30 December.

Chandrashekhar, R., (2006), Common Services Centres: A Strategic Cornerstone of NeGP,
Workshop on Knowledge Centre Initiatives, Jaipur, April, 19.

Dutta, Soumitra, Lanvin Bruno and Paua, Fiona, (2008), The Global Information Technology
Report, INSEAD, New York, Oxford University Press.

Egovonline,(2009), http://www.egovonline.net/news/news-details.asp?News=Gujarat-
Launches-e-Gram-Project&NewsID=15781, accessed on 27.02.2009

 User Interfaces

254

E-Readiness Assessment Report, (2008), Department of Information Technology, Ministry of
Communication and Information Technology, Government of India, New Delhi.

Erl, Thomas, (2008), SOA Principles of Service Design, Pearson Education, Boston, ISBN-13:
9780132344821.

European Commission (2006), Revisiting E-Inclusion: From Vision to Action.
Garlan David and Shaw Mary, (1994), An Introduction to Software Architecture, Carnegie

Mellon University Technical Report CMU-CS-94-166, January.
Heeks, Richard, (2005), ICTs and the MDGs: On the Wrong Track?, UK Development

Studies Association conference Open University, Milton Keynes, 7-9 Sep
Jansen, Arlid, (2005), Assessing E-Governance Progress- Why and What, Department of e-

government studies, University of Oslo, Norway, http://www.afin.uio.no/
om_enheten/folk/ansatte/jansen.html accessed on 11.07.2006

Kaul, Urvasi, (2008), Common Service Centres: Slow Progress,
http://dqindia.ciol.commakesections.asp/08061901.asp accessed on 19.09.2008

Mishra, D.C., (2007), Select Aspects of Conceptual Foundations of E-Government, Clearing
the Fog for Better Vision, International Conference of E-Governance (ICEG 2007),
Hyderabad, 29-30 December

Misra, H. K., (2009), Citizen Centric Rural E-Governance for Development in India: An
Architecture Based Approach, The 3rd International Multi Conference on Society,
Cybernetics & Informatics (IMSCI 2009), July 10-13, 2009 - Orlando, Florida,
USA.(Coming Up)

Misra, H. K., Hiremath, B. N., (2006), Citizen-led Participatory E-Governance Initiatives: An
Architectural Perspective, IIM Lucknow, Metamorphosis,A Journal of Management
Research, Special Issue on Public-Private Partnership:Issues and Strategeis, Vol.5
No. 2, pages 133 to 148.

National e-Governance Plan (NEGP) (2005), Ministry of IT, GoI,
http://www.mit.gov.in/plan/gdecisions.asp accessed on 09-07-2006

Prabhu, C.S.R., (2004), “E-Governance: Concepts and Case Studies”, Prentice-Hall of India,
New Delhi, pp.10-25.

Rama Rao, T.P., Rao, Venkata, V., Bhatnagar, Subhas, and Satyanarayana, J, (2004), E-
Governance Assessment Framework, EAF Ver-2.0, Department of Information
Technology, Ministry of Communication and Information Technology,
Government of India, New Delhi, May.

Ravichandran, T., Leong, Yi-Xing, Teo, Hock-Hai and Oh, Lin-Bin(2007), Service-Oriented
Architecture and Organizational Integration: AN Empirical Study of IT-Enabled
Sustained Competitive Advantage, International Conference on Information
Systems (ICIS); http://aisel.aisnet.org/icis2007/92 accessed on 23.10.2009.

Riley, Thomas B., (2003), E-Governance Vs. E-Government, I4D, November, Vol.1-4, New
Delhi.

Satyanarayana, J., (2004), e-Government, the Science of the Possible”, Prentice-Hall of India,
New Delhi, pp.8-22.

Simone Cecchini, and Christopher Scott, (2003), Can Information and Communications
Technology applications contribute to poverty reduction? Lessons from rural India,
Information Technology for Development 10 (2003), 73–84 73, IOS Press

WSIS, (2004), Partnership on Measuring ICT for Development, Project Document prepared
on 23 June 2004 WSIS Thematic Meeting on Measuring the Information Society,
Geneva, 7 to 9 February 2005.

16

User Interface for
Automatic Service Composition

Incheon Paik
 University of Aizu

Aizu-Wakamatsu City, Fukushima,
Japan

1. Introduction
Service-oriented computing provides an evolving paradigm for flexible and scalable
applications of open systems. Web services are already providing useful application
programmers’ interfaces (APIs) for open systems on the Internet and, thanks to the semantic
Web, are evolving into the rudiments of an automatic development environment for agents.
To further develop this environment, automatic service composition (ASC) aims to create
new value-added services from existing services, resulting in more capable and novel
services for users.
Consider an ASC example. If a user is planning a trip from Aizu (a city in Japan) to San
Francisco for an international conference, the user needs to find a transportation sequence
from the departure location to the arrival location, a hotel, and forms of entertainment.
Then, reservations and payment will be made. Manually, this takes time and effort. ASC can
achieve it dynamically and automatically, with minimal human effort and interaction.
ASC requires several stages, namely finding a workflow to fulfill the user’s goal, locating
service instances for the workflow, selecting services to satisfy nonfunctional properties
(NFPs), and executing the selected services. When a user gives a request to the composer,
the request has to be understood by the composer, and the composition process started. If
the composition completes after receiving the request from the user, only one interaction
(inputting the user’s goal) exists. However, there are many cases where the user needs to
interact further with the composer. This interaction can happen at each stage or just at the
start and end of the composition.
The composers (or agents) are computer-based, and are displayed in the form of user
interfaces (UIs). The UIs enable human users to communicate with composers. Users supply
a request to the composer via the UI that comprises a functional requirement (goal) and
nonfunctional requirements such as preferences, constraints, or quality of service (QoS)
issues. Usually, the whole composition does not finish without interaction with the user.
The user needs to respond to questions from the composer for interim decisions to be used
in the composition. The UI is important as the gateway through which the composer
receives several requests from the external human user. Therefore, those parts that involve
communication between human users and the composer will be defined together with the
ASC architecture. The necessity for, and the contents of, the communications between them

 User Interfaces

254

E-Readiness Assessment Report, (2008), Department of Information Technology, Ministry of
Communication and Information Technology, Government of India, New Delhi.

Erl, Thomas, (2008), SOA Principles of Service Design, Pearson Education, Boston, ISBN-13:
9780132344821.

European Commission (2006), Revisiting E-Inclusion: From Vision to Action.
Garlan David and Shaw Mary, (1994), An Introduction to Software Architecture, Carnegie

Mellon University Technical Report CMU-CS-94-166, January.
Heeks, Richard, (2005), ICTs and the MDGs: On the Wrong Track?, UK Development

Studies Association conference Open University, Milton Keynes, 7-9 Sep
Jansen, Arlid, (2005), Assessing E-Governance Progress- Why and What, Department of e-

government studies, University of Oslo, Norway, http://www.afin.uio.no/
om_enheten/folk/ansatte/jansen.html accessed on 11.07.2006

Kaul, Urvasi, (2008), Common Service Centres: Slow Progress,
http://dqindia.ciol.commakesections.asp/08061901.asp accessed on 19.09.2008

Mishra, D.C., (2007), Select Aspects of Conceptual Foundations of E-Government, Clearing
the Fog for Better Vision, International Conference of E-Governance (ICEG 2007),
Hyderabad, 29-30 December

Misra, H. K., (2009), Citizen Centric Rural E-Governance for Development in India: An
Architecture Based Approach, The 3rd International Multi Conference on Society,
Cybernetics & Informatics (IMSCI 2009), July 10-13, 2009 - Orlando, Florida,
USA.(Coming Up)

Misra, H. K., Hiremath, B. N., (2006), Citizen-led Participatory E-Governance Initiatives: An
Architectural Perspective, IIM Lucknow, Metamorphosis,A Journal of Management
Research, Special Issue on Public-Private Partnership:Issues and Strategeis, Vol.5
No. 2, pages 133 to 148.

National e-Governance Plan (NEGP) (2005), Ministry of IT, GoI,
http://www.mit.gov.in/plan/gdecisions.asp accessed on 09-07-2006

Prabhu, C.S.R., (2004), “E-Governance: Concepts and Case Studies”, Prentice-Hall of India,
New Delhi, pp.10-25.

Rama Rao, T.P., Rao, Venkata, V., Bhatnagar, Subhas, and Satyanarayana, J, (2004), E-
Governance Assessment Framework, EAF Ver-2.0, Department of Information
Technology, Ministry of Communication and Information Technology,
Government of India, New Delhi, May.

Ravichandran, T., Leong, Yi-Xing, Teo, Hock-Hai and Oh, Lin-Bin(2007), Service-Oriented
Architecture and Organizational Integration: AN Empirical Study of IT-Enabled
Sustained Competitive Advantage, International Conference on Information
Systems (ICIS); http://aisel.aisnet.org/icis2007/92 accessed on 23.10.2009.

Riley, Thomas B., (2003), E-Governance Vs. E-Government, I4D, November, Vol.1-4, New
Delhi.

Satyanarayana, J., (2004), e-Government, the Science of the Possible”, Prentice-Hall of India,
New Delhi, pp.8-22.

Simone Cecchini, and Christopher Scott, (2003), Can Information and Communications
Technology applications contribute to poverty reduction? Lessons from rural India,
Information Technology for Development 10 (2003), 73–84 73, IOS Press

WSIS, (2004), Partnership on Measuring ICT for Development, Project Document prepared
on 23 June 2004 WSIS Thematic Meeting on Measuring the Information Society,
Geneva, 7 to 9 February 2005.

16

User Interface for
Automatic Service Composition

Incheon Paik
 University of Aizu

Aizu-Wakamatsu City, Fukushima,
Japan

1. Introduction
Service-oriented computing provides an evolving paradigm for flexible and scalable
applications of open systems. Web services are already providing useful application
programmers’ interfaces (APIs) for open systems on the Internet and, thanks to the semantic
Web, are evolving into the rudiments of an automatic development environment for agents.
To further develop this environment, automatic service composition (ASC) aims to create
new value-added services from existing services, resulting in more capable and novel
services for users.
Consider an ASC example. If a user is planning a trip from Aizu (a city in Japan) to San
Francisco for an international conference, the user needs to find a transportation sequence
from the departure location to the arrival location, a hotel, and forms of entertainment.
Then, reservations and payment will be made. Manually, this takes time and effort. ASC can
achieve it dynamically and automatically, with minimal human effort and interaction.
ASC requires several stages, namely finding a workflow to fulfill the user’s goal, locating
service instances for the workflow, selecting services to satisfy nonfunctional properties
(NFPs), and executing the selected services. When a user gives a request to the composer,
the request has to be understood by the composer, and the composition process started. If
the composition completes after receiving the request from the user, only one interaction
(inputting the user’s goal) exists. However, there are many cases where the user needs to
interact further with the composer. This interaction can happen at each stage or just at the
start and end of the composition.
The composers (or agents) are computer-based, and are displayed in the form of user
interfaces (UIs). The UIs enable human users to communicate with composers. Users supply
a request to the composer via the UI that comprises a functional requirement (goal) and
nonfunctional requirements such as preferences, constraints, or quality of service (QoS)
issues. Usually, the whole composition does not finish without interaction with the user.
The user needs to respond to questions from the composer for interim decisions to be used
in the composition. The UI is important as the gateway through which the composer
receives several requests from the external human user. Therefore, those parts that involve
communication between human users and the composer will be defined together with the
ASC architecture. The necessity for, and the contents of, the communications between them

 User Interfaces

256

should also be considered in detail. The design of the ontology for data and workflow of the
UIs will be explained, and examples of UI implantation will be introduced.

2. ASC
ASC usually involves four stages (Claro et al., 2006), namely 1) planning a workflow of
individual service types, 2) locating services from a service registry (i.e., finding service
instances), 3) selecting the best candidate services for deployment and execution by using
NFPs, and 4) executing the selected services (Fig. 1). If an exception occurs during execution,
the planning or selection might have to be repeated to satisfy the composition goal (Shi et
al., 2004), (Claro et al., 2006). Each stage can be ranked and overridden for the best service
execution result (Agarwal et al., 2008). Some stages can be merged according to the domain,
problem, and various composition conditions (Lecue et al., 2007), (Lecue & Delteil, 2007),
(Kona & Gupta, 2008), (Oh et al., 2008).

Pl
an

ni
ng

D
is

co
ve

ry

Se
le

ct
io

n
&

O

pt
im

iz
at

io
n

Ex
ec

ut
io

n

Replanning

Rechoosing

Request
(Goal)

U
se

r

Fig. 1. Stages of ASC

2.1 The four-stage composition architecture
1. Planning Stage
The planning stage generates a finite sequence of Web services (we call it the abstract
workflow). The result is an execution order of tasks to fulfill the functionality of the
composition goal. The decision process chooses a finite sequence of Web services from a
service registry via its own decision approach.
In the planning stage, firstly, the definition of the problem space should be considered. The
elements of the composition problem space are a set of Web services with a set of initial
input parameters and desired output parameters. The elements can be transformed into a
state-space model within which a planner can work. In the state-space model for service
composition, the states are usually a collection of parameters when the planner has no
additional knowledge or planning information, as described in (Oh et al., 2008), (Kona &
Gupta, 2008).
The second issue is a decision about the sequence of services. To automate the finding of a
service sequence for an abstract workflow, several planning methods have been used, such
as hierarchical task networks (HTNs), finite state machines, constraint programming, and

User Interface for Automatic Service Composition

257

Petri nets (Narayanan & McIlraith, 2002), (Nau et al., 2004). There have been arguments
about which of planning and constraint programming is the better method (Nareyek et al.,
2005).
The third issue is the type of abstract workflow. There are several patterns for workflows.
They can be described as a simple sequence of tasks or a directed acyclic graph using a Petri
net, a workflow language, a services composition framework such as the semantic Web
ontology language (OWL-S) or the Web service modeling ontology (WSMO), a business
process execution language (BPEL) (Andrews et al., 2003), a Web service choreography
interface (Arkin et al., 2002), etc.
2. Discovery Stage
The candidate services for the task created in the planning stage are found in the discovery
stage. In general, this stage finds services matching service advertisements and service
requests. The discovery process comprises preprocessing of service requests, matchmaking,
and postprocessing of discovery results. The most important function, matchmaking,
discovers the best candidates for matches between the service advertisements and requests.
There are several methods for matchmaking of services, based on keywords, tables,
concepts, or ontologies (Paolucci & Sycara, 2002). To achieve better performance, several
aspects are considered, including services representation for functionality, context
information, definition of joint knowledge between service providers and service requestors,
reasoning behind the matching operation, and other methods that decide the uncertainty of
the matching such as text mining or statistical methods (Klusch & Sycara, 2006).
3. Selection and Optimization Stage
With the increasing number of services and better performance of services discovery, there
may be many candidate services for the tasks identified in the planning stage. The selection
and optimization stage selects an optimal set of candidate service instances to fulfill the
NFPs. The main issues of this stage are the modeling of NFPs, the matrix of service instances
and tasks, and how to solve the optimization problem of selecting a set of service instances
to satisfy the objective function with the given NFPs (Hassine et al., 2006). Much work is
required in modeling a complete NFP to be applicable to any set of properties.
4. Execution Stage
The selected service instances are executed in this stage. The stage should manage execution
monitoring. The monitor aims at maintaining better quality and analysis of execution
performance and exception handling. When the monitor finds errors or exceptions, a
handling mechanism for them will be executed. An exception manager can handle actions
for recovery such as rechoosing and replanning in the architecture. There have been several
approaches to execution monitoring on various execution platforms such as the OWL-S
virtual machine and the BPEL engine. Checks of functional properties and NFPs during
execution, languages for run-time execution monitoring, and combined approaches have
been developed (Baresi & Trainotti, 2009). These approaches can deal with the role of the
planning or selection stages in the execution stage to some extent. However, service
execution monitoring is very complex.

2.2 Additional functional blocks for ASC
In addition to the functional blocks of four-stage ASC, there are other important functional
blocks in a complete service composition. These blocks handle NFP transformation,
property translation, and workflow orchestration management. The whole ASC architecture
is shown in Fig. 2.

 User Interfaces

256

should also be considered in detail. The design of the ontology for data and workflow of the
UIs will be explained, and examples of UI implantation will be introduced.

2. ASC
ASC usually involves four stages (Claro et al., 2006), namely 1) planning a workflow of
individual service types, 2) locating services from a service registry (i.e., finding service
instances), 3) selecting the best candidate services for deployment and execution by using
NFPs, and 4) executing the selected services (Fig. 1). If an exception occurs during execution,
the planning or selection might have to be repeated to satisfy the composition goal (Shi et
al., 2004), (Claro et al., 2006). Each stage can be ranked and overridden for the best service
execution result (Agarwal et al., 2008). Some stages can be merged according to the domain,
problem, and various composition conditions (Lecue et al., 2007), (Lecue & Delteil, 2007),
(Kona & Gupta, 2008), (Oh et al., 2008).

Pl
an

ni
ng

D
is

co
ve

ry

Se
le

ct
io

n
&

O

pt
im

iz
at

io
n

Ex
ec

ut
io

n

Replanning

Rechoosing

Request
(Goal)

U
se

r

Fig. 1. Stages of ASC

2.1 The four-stage composition architecture
1. Planning Stage
The planning stage generates a finite sequence of Web services (we call it the abstract
workflow). The result is an execution order of tasks to fulfill the functionality of the
composition goal. The decision process chooses a finite sequence of Web services from a
service registry via its own decision approach.
In the planning stage, firstly, the definition of the problem space should be considered. The
elements of the composition problem space are a set of Web services with a set of initial
input parameters and desired output parameters. The elements can be transformed into a
state-space model within which a planner can work. In the state-space model for service
composition, the states are usually a collection of parameters when the planner has no
additional knowledge or planning information, as described in (Oh et al., 2008), (Kona &
Gupta, 2008).
The second issue is a decision about the sequence of services. To automate the finding of a
service sequence for an abstract workflow, several planning methods have been used, such
as hierarchical task networks (HTNs), finite state machines, constraint programming, and

User Interface for Automatic Service Composition

257

Petri nets (Narayanan & McIlraith, 2002), (Nau et al., 2004). There have been arguments
about which of planning and constraint programming is the better method (Nareyek et al.,
2005).
The third issue is the type of abstract workflow. There are several patterns for workflows.
They can be described as a simple sequence of tasks or a directed acyclic graph using a Petri
net, a workflow language, a services composition framework such as the semantic Web
ontology language (OWL-S) or the Web service modeling ontology (WSMO), a business
process execution language (BPEL) (Andrews et al., 2003), a Web service choreography
interface (Arkin et al., 2002), etc.
2. Discovery Stage
The candidate services for the task created in the planning stage are found in the discovery
stage. In general, this stage finds services matching service advertisements and service
requests. The discovery process comprises preprocessing of service requests, matchmaking,
and postprocessing of discovery results. The most important function, matchmaking,
discovers the best candidates for matches between the service advertisements and requests.
There are several methods for matchmaking of services, based on keywords, tables,
concepts, or ontologies (Paolucci & Sycara, 2002). To achieve better performance, several
aspects are considered, including services representation for functionality, context
information, definition of joint knowledge between service providers and service requestors,
reasoning behind the matching operation, and other methods that decide the uncertainty of
the matching such as text mining or statistical methods (Klusch & Sycara, 2006).
3. Selection and Optimization Stage
With the increasing number of services and better performance of services discovery, there
may be many candidate services for the tasks identified in the planning stage. The selection
and optimization stage selects an optimal set of candidate service instances to fulfill the
NFPs. The main issues of this stage are the modeling of NFPs, the matrix of service instances
and tasks, and how to solve the optimization problem of selecting a set of service instances
to satisfy the objective function with the given NFPs (Hassine et al., 2006). Much work is
required in modeling a complete NFP to be applicable to any set of properties.
4. Execution Stage
The selected service instances are executed in this stage. The stage should manage execution
monitoring. The monitor aims at maintaining better quality and analysis of execution
performance and exception handling. When the monitor finds errors or exceptions, a
handling mechanism for them will be executed. An exception manager can handle actions
for recovery such as rechoosing and replanning in the architecture. There have been several
approaches to execution monitoring on various execution platforms such as the OWL-S
virtual machine and the BPEL engine. Checks of functional properties and NFPs during
execution, languages for run-time execution monitoring, and combined approaches have
been developed (Baresi & Trainotti, 2009). These approaches can deal with the role of the
planning or selection stages in the execution stage to some extent. However, service
execution monitoring is very complex.

2.2 Additional functional blocks for ASC
In addition to the functional blocks of four-stage ASC, there are other important functional
blocks in a complete service composition. These blocks handle NFP transformation,
property translation, and workflow orchestration management. The whole ASC architecture
is shown in Fig. 2.

 User Interfaces

258

1. Property translation
In terms of abstractness and the users’ technological perspective, there are two domains,
namely the goal (or business) domain and the service domain. While the goal domain refers
to the requestors’ (human or machine) perspective, the service domain refers to the concrete
services at the system level. When a user makes a request to the composer, the composer
returns a sequence of services to fulfill the request.
The request usually comes in an abstract form understood by the user in the goal domain. In
the specified request given to the composer by the user, a goal consists of the functionality
to be achieved, nonfunctionalities, and other related information (WSMO, 2005). There may
be other nonfunctionalities that are not related to the requests. There are two types of goal,
namely the one understood by requestors only, and the other registered so that it can be
understood by the system. The registered goals can help the discovery service to locate the
corresponding services in the service domain. All services, including terms for
nonfunctionalities in the service domain, can be located from any service registry. The
abstract requests must link to the corresponding services, and it is important to refine the
generic and abstract goals into concrete goals and to discover services from the abstract
goals.
2. NFP transformation (Takada & Paik, 2009)
The functional property of a goal is to be used in the planning stage to fulfill the
functionality of the goal, and will be located in the discovery stage. On the other hand, an
NFP is generally used at the service selection stage. Users supply abstract NFPs, which
cannot be understood in the selection stage.
There are three levels of NFP. The first level includes abstract-level constraints. (Here, we
define the constraint as the representative term for an NFP.) These constraints are at a high
abstraction level close to natural human concepts. All terms are abstract, and the constraints
may not be defined in formal terms. They can be in natural language or may contain several
complex meanings in a keyword.
The second level includes intermediate-level constraints. Each comprises a relation, two
terms, context information, and an operator. They are generated by extracting abstract
relations, terms, and context information from abstract terms (which may include context
information) in natural language or compound terms at an abstract level. All the terms are
terminal (not compound) and have not yet been bound to concrete terms. The role of the
translator is to find the context information, operator, and variables by referring to the
ontology.
The third level includes concrete-level constraints. These have relations, terms as binding
information, and indexes of abstract workflow. For example,
“LessThan(Sum(AllService.Cost))” is transformed to “LessThan(Sum(task[0].Cost,task[1].
Cost, ..., task[n].Cost))”. “Cost” refers to the “getCost” method in a real Web service.
While the translator locates the terms in the service domain from abstract terms in the
business domain, the transformation obtains the information binding the intermediate terms
to the concrete terms that will be used in the selection stage.
3. Workflow orchestration management
There have been many studies of ASC, but they have only considered it as a one-step
composition. Where one-step composition does not achieve the goal requested by a user, we
must orchestrate further processes dynamically to reach the final goal. This procedure can
be recognized as multistep composition via orchestration of the workflows in a nested
composition structure.

User Interface for Automatic Service Composition

259

For example, consider a scenario involving a tour group for a conference (traveling from
Aizu to San Francisco. To create the tour group package (the top goal), there must be a
composition of three subprocesses, namely (1) trip scheduling, (2) making reservations, and
(3) creating the tour group package.
The trip scheduling service can be composed by ASC. Here, the ASC planner generates an
abstract workflow (using staged composition and execution) for traffic routes and hotels
between Aizu and Los Angeles, and selects an optimal workflow using a metric of
preconditions. Then, ASC discovers service candidates, and selects optimal instances of
services using QoS and user constraints on the workflow, which are normal steps in an ASC
activity (OWL-S, 2003).
However, to achieve the final goal, the selected trip schedule should be passed to the
reservation process, and the results of these two processes must be combined to create the
tour group. Therefore, the results of subprocesses must be orchestrated by an outer ASC to
achieve the final goal. The workflow orchestration manager orchestrates the nested
compositions and the whole composition flow.

Workflow
Generator

(Logical
Composer)

Selector
(Physical

Composer)

Abstract
Workflow

Verification
Exception Handling

Transformer

Concrete Constraints

Ontology

Knowledge Base

Discoverer

Concrete
Workflow

QoS

Service
Candidates

User

Matcher

Filter /
Selection

Services
Repository

To Executor

Abstract Constraints

Goal Domain
Request

Translator

Service Domain
Request

Fig. 2. ASC architecture

2.3 Service domain ontologies
For translation and transformation, many ontologies for service and service terms are
needed. The transformation algorithm uses the ontologies to include all classes of service
and the service variables being transformed, as shown in Fig. 3, and they will be used for the
UIs as well. According to the characteristics of the various service domains, the ontologies

 User Interfaces

258

1. Property translation
In terms of abstractness and the users’ technological perspective, there are two domains,
namely the goal (or business) domain and the service domain. While the goal domain refers
to the requestors’ (human or machine) perspective, the service domain refers to the concrete
services at the system level. When a user makes a request to the composer, the composer
returns a sequence of services to fulfill the request.
The request usually comes in an abstract form understood by the user in the goal domain. In
the specified request given to the composer by the user, a goal consists of the functionality
to be achieved, nonfunctionalities, and other related information (WSMO, 2005). There may
be other nonfunctionalities that are not related to the requests. There are two types of goal,
namely the one understood by requestors only, and the other registered so that it can be
understood by the system. The registered goals can help the discovery service to locate the
corresponding services in the service domain. All services, including terms for
nonfunctionalities in the service domain, can be located from any service registry. The
abstract requests must link to the corresponding services, and it is important to refine the
generic and abstract goals into concrete goals and to discover services from the abstract
goals.
2. NFP transformation (Takada & Paik, 2009)
The functional property of a goal is to be used in the planning stage to fulfill the
functionality of the goal, and will be located in the discovery stage. On the other hand, an
NFP is generally used at the service selection stage. Users supply abstract NFPs, which
cannot be understood in the selection stage.
There are three levels of NFP. The first level includes abstract-level constraints. (Here, we
define the constraint as the representative term for an NFP.) These constraints are at a high
abstraction level close to natural human concepts. All terms are abstract, and the constraints
may not be defined in formal terms. They can be in natural language or may contain several
complex meanings in a keyword.
The second level includes intermediate-level constraints. Each comprises a relation, two
terms, context information, and an operator. They are generated by extracting abstract
relations, terms, and context information from abstract terms (which may include context
information) in natural language or compound terms at an abstract level. All the terms are
terminal (not compound) and have not yet been bound to concrete terms. The role of the
translator is to find the context information, operator, and variables by referring to the
ontology.
The third level includes concrete-level constraints. These have relations, terms as binding
information, and indexes of abstract workflow. For example,
“LessThan(Sum(AllService.Cost))” is transformed to “LessThan(Sum(task[0].Cost,task[1].
Cost, ..., task[n].Cost))”. “Cost” refers to the “getCost” method in a real Web service.
While the translator locates the terms in the service domain from abstract terms in the
business domain, the transformation obtains the information binding the intermediate terms
to the concrete terms that will be used in the selection stage.
3. Workflow orchestration management
There have been many studies of ASC, but they have only considered it as a one-step
composition. Where one-step composition does not achieve the goal requested by a user, we
must orchestrate further processes dynamically to reach the final goal. This procedure can
be recognized as multistep composition via orchestration of the workflows in a nested
composition structure.

User Interface for Automatic Service Composition

259

For example, consider a scenario involving a tour group for a conference (traveling from
Aizu to San Francisco. To create the tour group package (the top goal), there must be a
composition of three subprocesses, namely (1) trip scheduling, (2) making reservations, and
(3) creating the tour group package.
The trip scheduling service can be composed by ASC. Here, the ASC planner generates an
abstract workflow (using staged composition and execution) for traffic routes and hotels
between Aizu and Los Angeles, and selects an optimal workflow using a metric of
preconditions. Then, ASC discovers service candidates, and selects optimal instances of
services using QoS and user constraints on the workflow, which are normal steps in an ASC
activity (OWL-S, 2003).
However, to achieve the final goal, the selected trip schedule should be passed to the
reservation process, and the results of these two processes must be combined to create the
tour group. Therefore, the results of subprocesses must be orchestrated by an outer ASC to
achieve the final goal. The workflow orchestration manager orchestrates the nested
compositions and the whole composition flow.

Workflow
Generator

(Logical
Composer)

Selector
(Physical

Composer)

Abstract
Workflow

Verification
Exception Handling

Transformer

Concrete Constraints

Ontology

Knowledge Base

Discoverer

Concrete
Workflow

QoS

Service
Candidates

User

Matcher

Filter /
Selection

Services
Repository

To Executor

Abstract Constraints

Goal Domain
Request

Translator

Service Domain
Request

Fig. 2. ASC architecture

2.3 Service domain ontologies
For translation and transformation, many ontologies for service and service terms are
needed. The transformation algorithm uses the ontologies to include all classes of service
and the service variables being transformed, as shown in Fig. 3, and they will be used for the
UIs as well. According to the characteristics of the various service domains, the ontologies

 User Interfaces

260

for the domains can be changed. If new services and conditions are added to the domain,
the ontology should be changed dynamically and gradually.

 (a) Service domain ontology (b) Variable domain ontology

Fig. 3. Domain ontologies for transformation

3. User interaction with service composer
It is important to decide the component parts of interactions between the user and the
composer, and the contents of the interaction. Let us consider each functional block in Table
1 using this scenario.
1. Translator
When a user supplies a request about composing a new service in ASC, the request should
be captured semantically. For example, consider the user request:
“I want to make a trip from a location A to a location B during October 1 – October 15. Total
cost should be less than 300,000.”
The request should be captured in a recognizable form by ASC. This can be in first-order
logic (FOL) or via a graphical user interface (GUI). The natural-language goal can be
described in the FOL form of Example 1.

Example 1. Service-level goal with abstract constraint.

 ServiceDomain(Trip).
 TripLocation(A, B).
 TripDuration(2009-10-,2009-10-15).
 LessThan(TotalCost,300000).

The service-level goals contain services and relations in a service and relation registry.
However, the terms of constraints may still be nonterminal. For instance, the term
“TotalCost” contains a compound meaning, namely the total cost of all services for the trip.
Therefore, the term “Total” can be categorized as an operator (here, the sum), and the term
“Cost” can be a variable of the constraint. The translator converts properties in the business
domain into those in the service domain.
The user inputs the request via the UI in the translator, and the UI outputs/emits the
translation result as a basic function. The user inputs a request (with both functional and
nonfunctional elements) in the goal domain, with additional context information such as

User Interface for Automatic Service Composition

261

Contents of Interaction with Machine Interaction
Functional Blocks Input Output

Translation
M: N/A
H: - Request in goal domain
- Additional context information

M: Request in service domain
H: - Possible inquiries for
checking translation result

Planning
M: Request in service domain
H: Additional request in service
domain

M: - Abstract workflow
- Interim constraints
H: - Possible inquiries for
checking planning result

Discovery

M: - List of abstract tasks of the
workflow
- Additional QoS requirements
H: - Additional context
information
- Additional QoS requirements

M: Service instances
H: - Possible inquiries for
checking discovery result

Selection

M: - Service instances
Nonfunctional concrete
constraints
H: - Additional constraints
Context information

M: Selected service instances
optimally
H: - Possible inquiries for
checking selection result

Execution
M: Selected service instances
H: Additional execution
condition

M: - Execution trace
- Exception after the execution
H: - Possible inquiries for
checking execution result
- Possible inquiries for selecting
exception handling method

Transformation

M: Intermediate constraints
from the orchestration manager
H: - Additional constraints in
intermediate form
- Additional context information

M: Concrete constraints
 (How can the human check this
correctness?)
H: - Possible inquiries for
checking transformation result

Orchestration

M: Interaction with all the other
blocks.
H: Decision guide input

M: Interaction with all the other
blocks for orchestration
H: - Possible inquiries for
checking orchestration
management

Legend:
- M: Machine (one of the ASC blocks) interacts with the human world via the API and defined

data format, but sometimes via the UI when required.
- H: Human being interacts with the machine (one of the ASC blocks) via the UI.
- There are two types of interaction, namely input and output, but, according to the target, we

differentiate the types of interactions as “input/output” for human beings, and “receive/emit” for
machines (i.e., UI).

Table 1. Interactions in ASC

 User Interfaces

260

for the domains can be changed. If new services and conditions are added to the domain,
the ontology should be changed dynamically and gradually.

 (a) Service domain ontology (b) Variable domain ontology

Fig. 3. Domain ontologies for transformation

3. User interaction with service composer
It is important to decide the component parts of interactions between the user and the
composer, and the contents of the interaction. Let us consider each functional block in Table
1 using this scenario.
1. Translator
When a user supplies a request about composing a new service in ASC, the request should
be captured semantically. For example, consider the user request:
“I want to make a trip from a location A to a location B during October 1 – October 15. Total
cost should be less than 300,000.”
The request should be captured in a recognizable form by ASC. This can be in first-order
logic (FOL) or via a graphical user interface (GUI). The natural-language goal can be
described in the FOL form of Example 1.

Example 1. Service-level goal with abstract constraint.

 ServiceDomain(Trip).
 TripLocation(A, B).
 TripDuration(2009-10-,2009-10-15).
 LessThan(TotalCost,300000).

The service-level goals contain services and relations in a service and relation registry.
However, the terms of constraints may still be nonterminal. For instance, the term
“TotalCost” contains a compound meaning, namely the total cost of all services for the trip.
Therefore, the term “Total” can be categorized as an operator (here, the sum), and the term
“Cost” can be a variable of the constraint. The translator converts properties in the business
domain into those in the service domain.
The user inputs the request via the UI in the translator, and the UI outputs/emits the
translation result as a basic function. The user inputs a request (with both functional and
nonfunctional elements) in the goal domain, with additional context information such as

User Interface for Automatic Service Composition

261

Contents of Interaction with Machine Interaction
Functional Blocks Input Output

Translation
M: N/A
H: - Request in goal domain
- Additional context information

M: Request in service domain
H: - Possible inquiries for
checking translation result

Planning
M: Request in service domain
H: Additional request in service
domain

M: - Abstract workflow
- Interim constraints
H: - Possible inquiries for
checking planning result

Discovery

M: - List of abstract tasks of the
workflow
- Additional QoS requirements
H: - Additional context
information
- Additional QoS requirements

M: Service instances
H: - Possible inquiries for
checking discovery result

Selection

M: - Service instances
Nonfunctional concrete
constraints
H: - Additional constraints
Context information

M: Selected service instances
optimally
H: - Possible inquiries for
checking selection result

Execution
M: Selected service instances
H: Additional execution
condition

M: - Execution trace
- Exception after the execution
H: - Possible inquiries for
checking execution result
- Possible inquiries for selecting
exception handling method

Transformation

M: Intermediate constraints
from the orchestration manager
H: - Additional constraints in
intermediate form
- Additional context information

M: Concrete constraints
 (How can the human check this
correctness?)
H: - Possible inquiries for
checking transformation result

Orchestration

M: Interaction with all the other
blocks.
H: Decision guide input

M: Interaction with all the other
blocks for orchestration
H: - Possible inquiries for
checking orchestration
management

Legend:
- M: Machine (one of the ASC blocks) interacts with the human world via the API and defined

data format, but sometimes via the UI when required.
- H: Human being interacts with the machine (one of the ASC blocks) via the UI.
- There are two types of interaction, namely input and output, but, according to the target, we

differentiate the types of interactions as “input/output” for human beings, and “receive/emit” for
machines (i.e., UI).

Table 1. Interactions in ASC

 User Interfaces

262

additional/changed goals and constraints. The translator outputs the translation result for
the user to check, and receives an input of the user reply about any additional request after
the check.
2. Planner
The planner, also called the logical composer (LC), generates a workflow to fulfill the
functionality of the request. The workflow comprises several abstract tasks that can reach
the final goal state. The planner is inputted (receives) requests in the service domain. A
request includes a top-level functionality and nonfunctionalites that affect the functionality.
It becomes a sequence of abstract tasks, together with interim constraints related to the tasks
generated by the planner.
The UI in the planner receives service-domain requests from the translator or obtains
service-level requests from users directly. Additional service-domain requests can be
supplied by users. The planner emits an abstract workflow to the discoverer or outputs
abstract workflow information for the user to check. The user can then input modifications
or possible additional inquiries to the planning result via the UI.
3. Discoverer
The discoverer receives the list of abstract tasks that were generated by the planner, and
outputs/emits service instances for each abstract task. Users can input QoS information to
the discoverer for further filtering of matched service instances.
Therefore, the UI of the discoverer receives abstract tasks from the planner, or obtains inputs
of additional constraints such as QoS factors to choose more-suitable service instances for
the user. In addition, it emits the service instances discovered to the selector, and outputs
the discovered result to the user for checking.
4. Selector
The selector, also called the physical composer (PC), selects the optimal service instances
that satisfy all the constraints from users or other composition blocks. It receives service
instances from the discoverer, and emits the selected service instances to the executor.
The UI of the selector obtains the input of additional constraints or context information such
as the user’s additional preferences or the detailed semantics of variable terms in the
constraints. It also outputs the selection result to the user for checking. The checking process
can be repeated according to the user and the result.
5. Executor
The executor receives the sequence of service instances, i.e., the result of services chosen
optimally by the selector, and executes the sequence. In addition, it outputs/emits the
execution result to the orchestrator or the user.
The UI of the executor obtains the input of additional execution conditions or context, and
outputs/emits an execution result such as the execution trace, information about exceptions,
or errors. The user can choose how to deal with any exceptions via the UI.
6. Transformer
The transformer receives intermediate constraints from the orchestrator or users and emits
or outputs the result as concrete constraints to the selector. It shows the transformation
result to the user for checking the correctness of the result or for re-binding the constraint to
another service instance.
The UI of the transformer obtains the input of additional constraints or context for the
constraints in intermediate form from the user. It also outputs the transformation result,
which includes linkage between constraint terms and the corresponding variables of real
service instances. The UI can provide a user editing function for the links to be decided by
the transformer. The procedure can be repeated several times.

User Interface for Automatic Service Composition

263

7. Orchestrator
The orchestrator interacts with all the blocks both internally and via users. The orchestrator
can instantiate the UIs of other blocks, and manage blocks to guide decisions. This means
that other blocks can input/output and receive/emit all their user information via the UI of
the orchestration manager.

4. Ontology for the ASC UI
Generally, the ontology for the UI describes the visual component, the data, and the
workflow, together with a UI specification for the human-computer interaction (Tsai &
Chen, 2008). The data and workflow for ASC and their ontology are the main components of
the design of the ASC UI.

4.1 Ontology for data in ASC
There are two kinds of data for the UI in ASC, namely the UI itself and the composition of
the data used by the UI. The ontology for the data to describe the UI is shown in Fig. 4. The
UI data profiles are modeled as input, output, emitting, or receiving. The figure shows the
detailed ontological structure of the four data profiles. The UI has input/output (IO) types
that inherit each data profile. In addition, each data profile is used by the corresponding UI.

useData useData useData useData

Fig. 4. Ontology for data profiles related to the UI
The data used by the UI in ASC are very extensive in various domains. As explained in the
previous section, the composer comprises seven functional blocks, each having its own UI.
The ontology for the main UIs and the input/output data for the whole composer are shown
in Fig. 5. The request is the initial data from a user, which initiates the composer, and is
important data for the operation of the composer. The request contains functional and
nonfunctional elements. The ontology for a request is shown in Fig. 6. The request in the
business domain may not have detailed service information, but may have abstract service
information only. The request in the service domain contains request information registered
in the service registry. These can be recognized by the service composer.

 User Interfaces

262

additional/changed goals and constraints. The translator outputs the translation result for
the user to check, and receives an input of the user reply about any additional request after
the check.
2. Planner
The planner, also called the logical composer (LC), generates a workflow to fulfill the
functionality of the request. The workflow comprises several abstract tasks that can reach
the final goal state. The planner is inputted (receives) requests in the service domain. A
request includes a top-level functionality and nonfunctionalites that affect the functionality.
It becomes a sequence of abstract tasks, together with interim constraints related to the tasks
generated by the planner.
The UI in the planner receives service-domain requests from the translator or obtains
service-level requests from users directly. Additional service-domain requests can be
supplied by users. The planner emits an abstract workflow to the discoverer or outputs
abstract workflow information for the user to check. The user can then input modifications
or possible additional inquiries to the planning result via the UI.
3. Discoverer
The discoverer receives the list of abstract tasks that were generated by the planner, and
outputs/emits service instances for each abstract task. Users can input QoS information to
the discoverer for further filtering of matched service instances.
Therefore, the UI of the discoverer receives abstract tasks from the planner, or obtains inputs
of additional constraints such as QoS factors to choose more-suitable service instances for
the user. In addition, it emits the service instances discovered to the selector, and outputs
the discovered result to the user for checking.
4. Selector
The selector, also called the physical composer (PC), selects the optimal service instances
that satisfy all the constraints from users or other composition blocks. It receives service
instances from the discoverer, and emits the selected service instances to the executor.
The UI of the selector obtains the input of additional constraints or context information such
as the user’s additional preferences or the detailed semantics of variable terms in the
constraints. It also outputs the selection result to the user for checking. The checking process
can be repeated according to the user and the result.
5. Executor
The executor receives the sequence of service instances, i.e., the result of services chosen
optimally by the selector, and executes the sequence. In addition, it outputs/emits the
execution result to the orchestrator or the user.
The UI of the executor obtains the input of additional execution conditions or context, and
outputs/emits an execution result such as the execution trace, information about exceptions,
or errors. The user can choose how to deal with any exceptions via the UI.
6. Transformer
The transformer receives intermediate constraints from the orchestrator or users and emits
or outputs the result as concrete constraints to the selector. It shows the transformation
result to the user for checking the correctness of the result or for re-binding the constraint to
another service instance.
The UI of the transformer obtains the input of additional constraints or context for the
constraints in intermediate form from the user. It also outputs the transformation result,
which includes linkage between constraint terms and the corresponding variables of real
service instances. The UI can provide a user editing function for the links to be decided by
the transformer. The procedure can be repeated several times.

User Interface for Automatic Service Composition

263

7. Orchestrator
The orchestrator interacts with all the blocks both internally and via users. The orchestrator
can instantiate the UIs of other blocks, and manage blocks to guide decisions. This means
that other blocks can input/output and receive/emit all their user information via the UI of
the orchestration manager.

4. Ontology for the ASC UI
Generally, the ontology for the UI describes the visual component, the data, and the
workflow, together with a UI specification for the human-computer interaction (Tsai &
Chen, 2008). The data and workflow for ASC and their ontology are the main components of
the design of the ASC UI.

4.1 Ontology for data in ASC
There are two kinds of data for the UI in ASC, namely the UI itself and the composition of
the data used by the UI. The ontology for the data to describe the UI is shown in Fig. 4. The
UI data profiles are modeled as input, output, emitting, or receiving. The figure shows the
detailed ontological structure of the four data profiles. The UI has input/output (IO) types
that inherit each data profile. In addition, each data profile is used by the corresponding UI.

useData useData useData useData

Fig. 4. Ontology for data profiles related to the UI
The data used by the UI in ASC are very extensive in various domains. As explained in the
previous section, the composer comprises seven functional blocks, each having its own UI.
The ontology for the main UIs and the input/output data for the whole composer are shown
in Fig. 5. The request is the initial data from a user, which initiates the composer, and is
important data for the operation of the composer. The request contains functional and
nonfunctional elements. The ontology for a request is shown in Fig. 6. The request in the
business domain may not have detailed service information, but may have abstract service
information only. The request in the service domain contains request information registered
in the service registry. These can be recognized by the service composer.

 User Interfaces

264

RequestInBusinessDomain

TranslatorUI

RequestInServiceDomain

IntermediateConstraint

TransformerUser ConcreteConstraint

ServiceInstance

DiscoverUI

SelectedService

SelectorUI
ExecutorUI

ExecutionTrace

Exception

OrchestrationManagerUI

ExeptionHandlingMessage

Planner

Selector

Planner

AbstractWorkflow

AbstractTask

input/receive

output/emit

emit/output

receive

output/emitinput

input/receive

receive/input

emit/output

receive/input

has

output/emit

receive/input

ExtractNFP

output/emit

receive/input

output/emit

output/emit

input/receive

output/emit

Fig. 5. Ontology for the whole composition: blocks and data

hasData hasData

IntermediateConstraintAbstractConstraint

Fig. 6. Ontology for a request

4.2 Composer UI workflow
Most top-level workflows of the UI for composition are related to the functional blocks of
the composer. The workflows are described in terms of a sequence of interactions among the

User Interface for Automatic Service Composition

265

blocks and users, and the data of the interaction. Users supply input data that the UIs read,
or deal with the output data that the UIs display. In addition, the UIs emit data that other
UIs will receive. Figure 7 shows an example of a workflow of a selector UI interacting with
other UIs and the user.
At first, the SelectorUI receives the ServiceInstances that have been emitted or input by the
DiscovererUI or by users. It also receives any ConcreteConstraint that has been emitted by
the TransformerUI. The user can input the constraints directly and the SelectorUI will read
them. When the SelectorUI finishes the selection procedure, it displays the result as
SelectedService. If the user wants to edit the constraint according to the result, the user
sends an EditedConstraint that the SelectorUI will read. The SelectorUI may display the
result (SelectedService) repeatedly until the user is satisfied. Finally, when the SelectorUI
gets an OK signal from the user, it emits the result (SelectedService) to the ExecutorUI that
belongs to the service executor.

User

Input
ConcreteConstraint

DiscovererUI

EmitServiceInstance

TransformerUI

EmitConcreteConstraint

SelectorUI

ReceiveServiceInstance

ReceiveConcreteConstraint

ReadConstraint

DisplaySelectedService

ReadEditedConstraint

Display SelectedService

ReadOK

EmitSelectedService ReceiveSelectedService

ExecutorUI

Input
EditedConstraint

InputOK

Fig. 7. Workflow of UI data handling in the SelectorUI

5. Case study of UIs for ASC
There are main UI points at seven functional blocks in the composer. Each UI can create sub-
UIs such as result windows, dialogs, and message boxes for subsequent activities. Figure 8
illustrates a case of UIs for ASC of a trip domain (Takada & Paik, 2008). The UI uses the
ontology, generates a web form, and sends user demands to the LC planner and a
transformer. A task search engine searches the task using keywords input by users from an
HTN planner ontology and a service domain ontology and proposes task candidates. The UI

 User Interfaces

264

RequestInBusinessDomain

TranslatorUI

RequestInServiceDomain

IntermediateConstraint

TransformerUser ConcreteConstraint

ServiceInstance

DiscoverUI

SelectedService

SelectorUI
ExecutorUI

ExecutionTrace

Exception

OrchestrationManagerUI

ExeptionHandlingMessage

Planner

Selector

Planner

AbstractWorkflow

AbstractTask

input/receive

output/emit

emit/output

receive

output/emitinput

input/receive

receive/input

emit/output

receive/input

has

output/emit

receive/input

ExtractNFP

output/emit

receive/input

output/emit

output/emit

input/receive

output/emit

Fig. 5. Ontology for the whole composition: blocks and data

hasData hasData

IntermediateConstraintAbstractConstraint

Fig. 6. Ontology for a request

4.2 Composer UI workflow
Most top-level workflows of the UI for composition are related to the functional blocks of
the composer. The workflows are described in terms of a sequence of interactions among the

User Interface for Automatic Service Composition

265

blocks and users, and the data of the interaction. Users supply input data that the UIs read,
or deal with the output data that the UIs display. In addition, the UIs emit data that other
UIs will receive. Figure 7 shows an example of a workflow of a selector UI interacting with
other UIs and the user.
At first, the SelectorUI receives the ServiceInstances that have been emitted or input by the
DiscovererUI or by users. It also receives any ConcreteConstraint that has been emitted by
the TransformerUI. The user can input the constraints directly and the SelectorUI will read
them. When the SelectorUI finishes the selection procedure, it displays the result as
SelectedService. If the user wants to edit the constraint according to the result, the user
sends an EditedConstraint that the SelectorUI will read. The SelectorUI may display the
result (SelectedService) repeatedly until the user is satisfied. Finally, when the SelectorUI
gets an OK signal from the user, it emits the result (SelectedService) to the ExecutorUI that
belongs to the service executor.

User

Input
ConcreteConstraint

DiscovererUI

EmitServiceInstance

TransformerUI

EmitConcreteConstraint

SelectorUI

ReceiveServiceInstance

ReceiveConcreteConstraint

ReadConstraint

DisplaySelectedService

ReadEditedConstraint

Display SelectedService

ReadOK

EmitSelectedService ReceiveSelectedService

ExecutorUI

Input
EditedConstraint

InputOK

Fig. 7. Workflow of UI data handling in the SelectorUI

5. Case study of UIs for ASC
There are main UI points at seven functional blocks in the composer. Each UI can create sub-
UIs such as result windows, dialogs, and message boxes for subsequent activities. Figure 8
illustrates a case of UIs for ASC of a trip domain (Takada & Paik, 2008). The UI uses the
ontology, generates a web form, and sends user demands to the LC planner and a
transformer. A task search engine searches the task using keywords input by users from an
HTN planner ontology and a service domain ontology and proposes task candidates. The UI

 User Interfaces

266

provides several GUI forms, namely a task search and select form, a user constraint form,
and a result form. Users use them sequentially. The HTN ontology describes information for
the planner and the task search engine. It has four classes and six properties (see Fig. 9). The
task search engine searches for the name of the task and the domain to which it belongs
using keywords and suggests results from the HTN ontology.
An Example Scenario
The scenario is trip planning from Aizuwakamatsu (a city in Japan) to San Francisco. If a
user inputs the keywords “trip aizu sanfrancisco” in the task-search GUI form (Fig. 10), the
instance Trip_Aizuwakamatsu_SanFrancisco is proposed by the task search engine and the
user can select it. The LC planner generates an abstract workflow as follows.

A1 = Train_Aizuwakamatsu_Koriyama
A2 = Train_Koriyama_Tokyo
A3 = Train_Tokyo_Narita
A4 = Airplane_Narita_SanFrancisco

Abstract tasks and abstract terms belong to the service-domain ontology. Abstract terms are
described as term objects (output of services) and term context information, as shown in the
Table 2.

Fig. 8. An example of ASC implementation, including UI

User Interface for Automatic Service Composition

267

Fig. 9. HTN ontology

Abstract term Term object Context

AT_StartTime TO_TimeFrom First

AT_EndTime TO_TimeTo End

AT_TotalCost TO_Cost Sum

AT_SeatClass TO_SeatClass

AT_Smoking TO_Smoking

AT_NowArrivalTime TO_TimeTo Now

AT_NextDepartureTime TO_TimeFrom Next

Table 2. Abstract terms in the trip domain.

Instances of the trip’s subclasses are proposed via the user’s constraint generation.
NextArrivalTime and NextDepartureTime are not proposed because there are terms for
hard constraints (as opposed to user demands). Users can supply constraints such as
TotalCost < $2,000 and SeatClass = Economy, as shown in Fig. 11. The user constraints are
transformed in the transformer to concrete constraints such as Sum(Cost) < $2,000 and
A4.SeatClass = Economy. The term object’s domain is used to determine abstract tasks such
as those related to AirplaneService and SeatClass. Service candidates are provided by the
service registry. Each concrete service has its own QoS, departure time, cost, grade, etc.
Service candidates and concrete constraints are common spatial pattern (CSP) triples. The
PC selector solves the CSP triple to select the concrete services in the final selection result
(see Fig. 12).

Fig. 10. Task search and select form

 User Interfaces

266

provides several GUI forms, namely a task search and select form, a user constraint form,
and a result form. Users use them sequentially. The HTN ontology describes information for
the planner and the task search engine. It has four classes and six properties (see Fig. 9). The
task search engine searches for the name of the task and the domain to which it belongs
using keywords and suggests results from the HTN ontology.
An Example Scenario
The scenario is trip planning from Aizuwakamatsu (a city in Japan) to San Francisco. If a
user inputs the keywords “trip aizu sanfrancisco” in the task-search GUI form (Fig. 10), the
instance Trip_Aizuwakamatsu_SanFrancisco is proposed by the task search engine and the
user can select it. The LC planner generates an abstract workflow as follows.

A1 = Train_Aizuwakamatsu_Koriyama
A2 = Train_Koriyama_Tokyo
A3 = Train_Tokyo_Narita
A4 = Airplane_Narita_SanFrancisco

Abstract tasks and abstract terms belong to the service-domain ontology. Abstract terms are
described as term objects (output of services) and term context information, as shown in the
Table 2.

Fig. 8. An example of ASC implementation, including UI

User Interface for Automatic Service Composition

267

Fig. 9. HTN ontology

Abstract term Term object Context

AT_StartTime TO_TimeFrom First

AT_EndTime TO_TimeTo End

AT_TotalCost TO_Cost Sum

AT_SeatClass TO_SeatClass

AT_Smoking TO_Smoking

AT_NowArrivalTime TO_TimeTo Now

AT_NextDepartureTime TO_TimeFrom Next

Table 2. Abstract terms in the trip domain.

Instances of the trip’s subclasses are proposed via the user’s constraint generation.
NextArrivalTime and NextDepartureTime are not proposed because there are terms for
hard constraints (as opposed to user demands). Users can supply constraints such as
TotalCost < $2,000 and SeatClass = Economy, as shown in Fig. 11. The user constraints are
transformed in the transformer to concrete constraints such as Sum(Cost) < $2,000 and
A4.SeatClass = Economy. The term object’s domain is used to determine abstract tasks such
as those related to AirplaneService and SeatClass. Service candidates are provided by the
service registry. Each concrete service has its own QoS, departure time, cost, grade, etc.
Service candidates and concrete constraints are common spatial pattern (CSP) triples. The
PC selector solves the CSP triple to select the concrete services in the final selection result
(see Fig. 12).

Fig. 10. Task search and select form

 User Interfaces

268

Fig. 11. User constraint form

Fig. 12. Result of trip planning scenario

User Interface for Automatic Service Composition

269

6. Conclusion
The overall concept of ASC was explained first. According to this concept, all possible
interaction points and contents were investigated. To devise UIs for ASC, the data ontology,
UIs, and workflows were designed and introduced. Finally, examples of UIs for ASC based
on this design were given.
The complete ontology set for the top-level UI was introduced, and an example of workflow
for service selection was illustrated. It can be extended to other UI workflows and detailed
data ontologies. Mapping to real GUIs is for interested readers to consider. We should
remember that there are many possibilities for variation in service composition, particularly
for goals and services that are more flexible.

7. Reference
Agarwal, V.; Chafle, G; Mittal S.; & Srivastava, B. (2008) Understanding Approaches for

Web Service Composition and Execution, Proceedings of COMPUTE 2008,
Bangalore, India, 2008

Andrews T.; & 16 others. (2003) Business Process Execution Language for Web Services
version 1.1, BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems (May 2003).
http://www-106.ibm.com/developerworks/library/ws-bpel/

Arkin A.; & 11 others. (2002) Web Service Choreography Interface (WSCI) 1.0, draft
specification, BEA Systems, Intalio, SAP AG, and Sun Microsystems (2002).
http://www.sun.com/software/xml /developers/wsci/wsci-spec-10.pdf

Baresi, L.; Guinea, S.; Pistore, M; & Trainotti, M. (2009) Dynamo + Astro: An Integrated
Approach for BPEL Monitoring, Proceedings of IEEE International Conference on
Web Services (ICWS'09), pp. 230–237, Jul. 2009, L.A, USA.

Claro, D.; Albers, P; & Hao, J. (2006). Web Services Composition in Semantic Web Service,
Processes and Application, Springer, New York

Hassine, A.; Matsubara, S.; Ishida, T. (2006) A Constraint based Approach to Horizontal
Web Service Composition, Proceedings of ISWC 2006, Athen, U.S.A

Klusch, M; Fries, B.; & Sycara, K. (2006) Automated Semantic Web Service Discovery with
OWLS-MX, Proceedings of AAMAS, Hakodate, Hokkaido

Kona, S.; Bansal, A.; Blake, M.; & Gupta, G. (2008) Generalized Semantics-based Service
Composition, Proc. of IEEE Int. Conf. on Web Services, p. 219-227, Beijing, China

Lecue, F.; Delteil, A. (2007) Making the Difference in Semantic Web Service Composition,
Proceedings of AAAI-2007, pp. 1383-1388, British Columbia

Lecue, F.; Delteil, A.; Leger, A. (2007) Applying Abduction in Semantic Web Service
Composition, IEEE International Conference on Web Services (ICWS 2007), pp. 94-
101, Salt Lake City/Utah, USA

Narayanan, S.; McIlraith, S. (2002). Simulation, Verification and automated Composition of
Web Services, In Proceeding 11th Int. Conf. WWW, Honolulu, Hawaii, USA

Nareyek, A.; Freuder, E.; Fourer, R; Giunchiglia, E.; Goldman, R.; Kautz, H.; Rintanen, J; &
Tate, A. Constraints and AI Planning, IEEE Intelligent Systems, Mar./Apr. 2005,
pp. 62-70

 User Interfaces

268

Fig. 11. User constraint form

Fig. 12. Result of trip planning scenario

User Interface for Automatic Service Composition

269

6. Conclusion
The overall concept of ASC was explained first. According to this concept, all possible
interaction points and contents were investigated. To devise UIs for ASC, the data ontology,
UIs, and workflows were designed and introduced. Finally, examples of UIs for ASC based
on this design were given.
The complete ontology set for the top-level UI was introduced, and an example of workflow
for service selection was illustrated. It can be extended to other UI workflows and detailed
data ontologies. Mapping to real GUIs is for interested readers to consider. We should
remember that there are many possibilities for variation in service composition, particularly
for goals and services that are more flexible.

7. Reference
Agarwal, V.; Chafle, G; Mittal S.; & Srivastava, B. (2008) Understanding Approaches for

Web Service Composition and Execution, Proceedings of COMPUTE 2008,
Bangalore, India, 2008

Andrews T.; & 16 others. (2003) Business Process Execution Language for Web Services
version 1.1, BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems (May 2003).
http://www-106.ibm.com/developerworks/library/ws-bpel/

Arkin A.; & 11 others. (2002) Web Service Choreography Interface (WSCI) 1.0, draft
specification, BEA Systems, Intalio, SAP AG, and Sun Microsystems (2002).
http://www.sun.com/software/xml /developers/wsci/wsci-spec-10.pdf

Baresi, L.; Guinea, S.; Pistore, M; & Trainotti, M. (2009) Dynamo + Astro: An Integrated
Approach for BPEL Monitoring, Proceedings of IEEE International Conference on
Web Services (ICWS'09), pp. 230–237, Jul. 2009, L.A, USA.

Claro, D.; Albers, P; & Hao, J. (2006). Web Services Composition in Semantic Web Service,
Processes and Application, Springer, New York

Hassine, A.; Matsubara, S.; Ishida, T. (2006) A Constraint based Approach to Horizontal
Web Service Composition, Proceedings of ISWC 2006, Athen, U.S.A

Klusch, M; Fries, B.; & Sycara, K. (2006) Automated Semantic Web Service Discovery with
OWLS-MX, Proceedings of AAMAS, Hakodate, Hokkaido

Kona, S.; Bansal, A.; Blake, M.; & Gupta, G. (2008) Generalized Semantics-based Service
Composition, Proc. of IEEE Int. Conf. on Web Services, p. 219-227, Beijing, China

Lecue, F.; Delteil, A. (2007) Making the Difference in Semantic Web Service Composition,
Proceedings of AAAI-2007, pp. 1383-1388, British Columbia

Lecue, F.; Delteil, A.; Leger, A. (2007) Applying Abduction in Semantic Web Service
Composition, IEEE International Conference on Web Services (ICWS 2007), pp. 94-
101, Salt Lake City/Utah, USA

Narayanan, S.; McIlraith, S. (2002). Simulation, Verification and automated Composition of
Web Services, In Proceeding 11th Int. Conf. WWW, Honolulu, Hawaii, USA

Nareyek, A.; Freuder, E.; Fourer, R; Giunchiglia, E.; Goldman, R.; Kautz, H.; Rintanen, J; &
Tate, A. Constraints and AI Planning, IEEE Intelligent Systems, Mar./Apr. 2005,
pp. 62-70

 User Interfaces

270

Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; William Murdock, J; Wu, D.; & Yaman, F. (2004).
SHOP2: An HTN Planning System, Journal of Artificial Intelligence Research

Oh, S.; Lee, D.; & Kumara, S. (2008) Effective Web Service Composition in Diverse and
Large-scale Service Networks, IEEE Transactions on Services Computing, 2008, vol.
1, no. 1, pp. 15-32.

OWL Services Coalition, (2003) OWL-S: Semantic Markup for Web services, OWL-S White
Paper http://www.daml.org/services/owl-s/1.0/owl-s.pdf

Paolucci, M.; Kawamura, T.; Payne, T.; & Sycara, K. (2002) Semantic Matching of Web
Services Capabilities, Proceedings of the First International Semantic Web
Conference, Sardinia, Italy

Shi, Y.; Zhang, L.; & Shi, B. (2004). Exception Handling of Workflow for Web Services,
Proceedings of International IEEE Conference Computer and Information
Technology, pp. 273-277, Shanghai, 2004

Takada, H. & Paik, I. (2008). Design of General User Interface for AutomaticWeb Service
Composition, Joint Workshop on Frontier of Computer Science and Technology
(FCST), Nagasaki, Japan, Dec. 2008.

Takada, H.; Paik, I. (2009). Transformation of Non-Functional Properties for Automatic
Service Composition, Proceedings of The 3rd Workshop on Non-Functional
Properties and SLA Management in Service-Oriented Computing NFPSLAM-
SOC'09 , Nov. 2009, Stockholem, Sweden

Tsai, W.; Huang, Q.; Elston, J.; & Chen, Y. (2008) Service-Oriented User Interface Modeling
and Composition, Proceedings of IEEE International Conference on e-Business
Engineering, pp. 21-28, Xian, China

WSMO. (2005) The Web Service Modeling Ontology (WSMO) Primer. Final Draft. Available
at: http://www.wsmo.org/TR/d3/d3.1/v0.1/

 User Interfaces

270

Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; William Murdock, J; Wu, D.; & Yaman, F. (2004).
SHOP2: An HTN Planning System, Journal of Artificial Intelligence Research

Oh, S.; Lee, D.; & Kumara, S. (2008) Effective Web Service Composition in Diverse and
Large-scale Service Networks, IEEE Transactions on Services Computing, 2008, vol.
1, no. 1, pp. 15-32.

OWL Services Coalition, (2003) OWL-S: Semantic Markup for Web services, OWL-S White
Paper http://www.daml.org/services/owl-s/1.0/owl-s.pdf

Paolucci, M.; Kawamura, T.; Payne, T.; & Sycara, K. (2002) Semantic Matching of Web
Services Capabilities, Proceedings of the First International Semantic Web
Conference, Sardinia, Italy

Shi, Y.; Zhang, L.; & Shi, B. (2004). Exception Handling of Workflow for Web Services,
Proceedings of International IEEE Conference Computer and Information
Technology, pp. 273-277, Shanghai, 2004

Takada, H. & Paik, I. (2008). Design of General User Interface for AutomaticWeb Service
Composition, Joint Workshop on Frontier of Computer Science and Technology
(FCST), Nagasaki, Japan, Dec. 2008.

Takada, H.; Paik, I. (2009). Transformation of Non-Functional Properties for Automatic
Service Composition, Proceedings of The 3rd Workshop on Non-Functional
Properties and SLA Management in Service-Oriented Computing NFPSLAM-
SOC'09 , Nov. 2009, Stockholem, Sweden

Tsai, W.; Huang, Q.; Elston, J.; & Chen, Y. (2008) Service-Oriented User Interface Modeling
and Composition, Proceedings of IEEE International Conference on e-Business
Engineering, pp. 21-28, Xian, China

WSMO. (2005) The Web Service Modeling Ontology (WSMO) Primer. Final Draft. Available
at: http://www.wsmo.org/TR/d3/d3.1/v0.1/

User Interfaces
Edited by Rita Matrai

Edited by Rita Matrai

Designing user interfaces nowadays is indispensably important. A well-designed
user interface promotes users to complete their everyday tasks in a great extent,
particularly users with special needs. Numerous guidelines have already been

developed for designing user interfaces but because of the technical development, new
challenges appear continuously, various ways of information seeking, publication
and transmit evolve. Computers and mobile devices have roles in all walks of life

such as in a simple search of the web, or using professional applications or in distance
communication between hearing impaired people. It is important that users can apply

the interface easily and the technical parts do not distract their attention from their
work. Proper design of user interface can prevent users from several inconveniences,

for which this book is a great help.

Photo by LV4260 / iStock

ISBN 978-953-307-084-1

U
ser Interfaces

ISBN 978-953-51-5910-0

	User Interfaces
	Contents
	 Preface
	1. Simple but Crucial User Interfaces in the World Wide Web: Introducing 20 Guidelines for Usable Web Form Design
	2. Navigation Strategies in Case of Different Kind of User Interfaces
	3. A User Survey on the Interface Causing Discomfort for Warning
	4. Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models
	5. Considering the Importance of User Profiles in Interface Design
	6. Graphical User Interface for PON Network Management System
	7. Graphical User Interface of System Identification Toolbox for MATLAB
	8. GUIs without Pain – the Declarative Way
	9. Automatic Hand-Pose Trajectory Tracking System Using Video Sequences
	10. An Empirical Approach for the Evaluation of Voice User Interfaces
	11. Embedded User Interface for Mobile Applications to Satisfy Design for All Principles
	12. Mixed Reality on Mobile Devices
	13. Multimodal Interfaces to Mobile Terminals – A Design-For-All Approach
	14. Fitts’ Law Index of Difficulty Evaluated and Extended for Screen Size Variations
	15. Understanding SOA Perspective of e-Governance in Indian Context: Case Based Study
	16. User Interface for Automatic Service Composition

